170 research outputs found

    Power management circuit: design and comparison of efficient techniques for ultra-low power analog switch and rectifier circuit

    Get PDF
    Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores, Instrumentação e Microssistemas EletrónicosA presente dissertação de mestrado apresenta um estudo na área de CMOS em circuitos analógicos/digitais para extração e conversão de potência adequado para aplicações em energy harvesting. As principais contribuições científicas deste trabalho são: o desenvolvimento de circuitos de baixo consumo energético, tais como um interruptor analógico e um retificador que podem extrair e converter eficientemente a potência de saída do energy harvester. Com os dois circuitos apresentados na presente dissertação, é possível alimentar um nó de uma rede de sensores sem fios. Estes circuitos foram projetados utilizando a tecnologia CMOS de 130 nm e as respetivas simulações foram realizadas utilizando o software Cadence Virtuoso Analog Environment. Neste trabalho projetou-se novo interruptor analógico para aplicações em energy harvesting com especial atenção para a obtenção de um baixo consumo energético. A configuração apresentada consegue atingir uma baixa resistência, quando em condução (ON), e evitar correntes reversas indesejadas provenientes da carga. Os resultados das simulações revelam que o circuito: consome uma potência de 200.8 nW; atinge uma baixa resistência, quando em condução, de 216 Ω; gera uma baixa corrente de fuga de 44 pA. Assim sendo, é possível verificar que este circuito consegue operar com um baixo consumo, baixa tensão e com uma baixa frequência. Para além disso, o mesmo interruptor analógico consegue realizar a técnica de up-conversion dentro do circuito de controlo de potência, o que indica a possibilidade de o mesmo contribuir para uma aplicação real com energy harvesters vibracionais. O retificador em CMOS proposto é constituído por dois estágios: um passivo com um conversor de tensão negativa; e um outro estágio com um díodo ativo controlado por um circuito de cancelamento de threshold. O primeiro estágio é responsável por retificar completamente o sinal de entrada com uma queda de tensão de 1 mV, enquanto que o último tem a função de reduzir a corrente reversa indesejada, o que consequentemente consegue aumentar a potência transferida para a carga. Deste modo, o circuito consegue atingir uma eficiência em tensão e potência de 99 % e 90%, respetivamente, para um sinal de entrada com 0.45 V de amplitude e para cargas resistivas de valor baixo. Ainda assim, este circuito consegue funcionar a uma banda de frequências desde os 800 Hz até 51.2 kHz, o que se revela ser promissor para a aplicação prática deste projeto.The master dissertation presents a study in the area of mixed analog/digital CMOS power extraction and conversion circuits for Power Management Circuit (PMC) suitable for energy harvesting applications. The main contributions of the work are the development of low power circuits, such as an Analog Switch and a Rectifier, that can efficiently extract and convert the output power of the vibrational energy harvester into suitable electric energy for powering a Wireless Sensor Network (WSN) node. The circuit components were fully designed in the standard 130 nm CMOS process, and the respective simulation experiments were carried out using the Cadence Virtuoso Analog Environment. A new Analog Switch was designed for energy harvesting applications with special consideration for achieving low power consumption. The proposed structure can achieve a reduced ON-resistance and avoid the reverse leakage current from the load. Simulation results reveal a power consumption of about 200.8 nW, a low ON-resistance of 244.6 Ω, and a low leakage current of around 44 pA, which indicates that the analog switch has features of low power consumption, low voltage, and low-frequency operation. Furthermore, this switching circuit is suitable for performing the up-conversion technique in the PMC, which may contribute to the real application of vibrational energy harvesters. The proposed CMOS Rectifier consists of two stages, one passive stage with a negative voltage converter, and another stage with an active diode controlled by a threshold cancellation circuit. The former stage conducts the signal full-wave rectification with a voltage drop of 1 mV while the latter reduces the reverse leakage current, consequently enhancing the output power delivered to the ohmic load. As a result, the rectifier can achieve a voltage and a power conversion efficiency of over 99 % and 90 %, respectively, for an input voltage of 0.45 V and low ohmic loads. This circuit works for an operating frequency range from 800 Hz to 51.2 kHz, which is promising for practical applications

    Design of low-power RF energy harvester for IoT sensors

    Get PDF
    Rapid technological advancement in CMOS technologies has resulted in increased deployment of low-power Internet-of-Things (IoT) devices. As batteries, used to power-up these devices, suffer from limited lifespan, powering up numerous devices have become a major concern. Radio frequency (RF) is ubiquitous in the surroundings from which energy can be harvested and utilized to increase battery lifetime. Even for low-power sensors, RF energy harvesters can be utilized as primary power sources. However, power density of RF signals is very low and therefore building blocks of RF energy harvester need to be designed carefully to maximize efficiency to gain suitable output power. This research is focused on the design of an RF energy harvesting system in standard CMOS technology. The main goal of this research is to design an RF energy harvesting system with high power conversion efficiency (PCE) and adequate output voltage for low input power. The proposed dynamic voltage compensated cross-coupled fully differential rectifier is capable of providing very high PCE. The synchronous DC-DC boost converter provides stable DC output voltage. Rectifier and DC-DC converter of the system have been designed by using low-power transistors to ensure operation at very low input power. In order to maximize the power transfer through the system, matching network and maximum power point tracking (MPPT) controller has been implemented. In order to cope with rapid input power variation, a machine learning (ML) based MPPT controller has been designed and implemented into FPGA. The proposed ML based MPPT controller has demonstrated fast response time. To further enhance the performance of the RF energy harvesting system, a self-compensated rectifier integrated energy harvesting system is also presented. The energy extracted by using the proposed RF energy harvesting systems can easily be stored and utilized to fully power up low-power sensors used for IoT devices. Integration of RF energy harvester with these devices will significantly reduce the maintenance cost and result in energy-effluent IoT technologies.Includes bibliographical references

    Circuit design in complementary organic technologies

    Get PDF

    Exploration of Nonlinear Devices and Nonlinear Transmission Line Techniques for Microwaves Applications

    Get PDF
    RÉSUMÉ Les systèmes de communication modernes dépendent fortement des circuits non linéaires, tels que les amplificateurs de puissance (PA), les mélangeurs, les multiplicateurs, les oscillateurs, les commutateurs, etc., qui sont construits à partir de composants non linéaires passifs (comme des diodes) ou actifs (par exemple des transistors). Cette thèse étudie les dispositifs non linéaires passifs traditionnels et émergents, ainsi que les techniques de lignes de transmission non linéaires (NLTL). Plusieurs de leurs applications micro-ondes ont également été étudiées, y compris la récupération d'énergie sans fil, la synthèse d’impédance électronique et l’adaptation d’impédance bidimensionnelle (inductive et capacitive). Dans le chapitre 1, sont d'abord étudiés les dispositifs non linéaires traditionnels résistifs, capacitifs et inductifs. Les dispositifs non linéaires émergents, y compris les dispositifs MEMS et la spindiode, sont ensuite explorés. La construction physique de base, les principes de fonctionnement, ainsi que les caractéristiques et applications pour divers types de dispositifs non linéaires sont expliqués et comparés. Les lignes de transmission non-linéaires (NLTL) traditionnelles utilisant des dispositifs non linéaires capacitifs (varactor, BST etc.) ou inductifs (ferrite saturée), et la technique hybride NLTL émergente utilisant à la fois des dispositifs non linéaires capacitifs et inductifs sont également étudiées. Le chapitre 2 examine les techniques de conversion d'énergie micro-ondes à courant-continu de faible puissance à la fine pointe de la technologie. Une image complète de l'état de l'art sur cet aspect est donnée graphiquement. Elle compare différentes technologies telles que le transistor, la diode et les technologies CMOS. Depuis le tout début des techniques intégrées RF et micro-ondes et de la récupération d'énergie, les diodes Schottky ont été le plus souvent utilisées dans les circuits de mélange et de redressement. Cependant, dans des applications spécifiques de récupération d'énergie, la technique des diodes Schottky ne parvient pas à fournir une efficacité satisfaisante de conversion RF-dc. Suite aux limitations mises en évidence des dispositifs actuels, ce travail introduit, pour la première fois, un composant non linéaire pour une redressement de faible puissance, basé sur une découverte récente en spintronique, à savoir, la jonction tunnel magnétique, parfois appelée spindiode. Un modèle équivalent de spindiode est développé pour décrire le comportement en fréquence.----------ABSTRACT Modern communication systems are heavily dependent on nonlinear circuits, such as PA, mixer, multiplier, oscillator, switch, etc., the core of which are either passive nonlinear elements and devices (e.g. diodes) or active nonlinear components and devices (e.g. transistors). This thesis aims at investigating a number of traditional and emerging passive nonlinear devices and nonlinear transmission line (NLTL) techniques, and developing four of their microwave applications such as wireless power harvesting, electronic impedance synthesizer, and two-dimensional tuning circuit. In Chapter 1, traditional nonlinear devices in terms of the categories of resistive, capacitive and inductive are firstly investigated. Emerging nonlinear devices including microelectromechanical system (MEMS) devices and spindiodes are then explored. The basic physical constructions, operation principles, and characteristics as well as applications of various types of nonlinear devices are explained and compared. Traditional NLTL techniques make use of either capacitive nonlinear devices (varactor, BST etc.) or inductive nonlinear devices (saturated ferrite), and emerging hybrid NLTL techniques are also studied through the deployment of both nonlinear capacitive and inductive devices. Chapter 2 examines the state-of-the-art low-power microwave-to-dc energy conversion techniques. A comprehensive picture of the state-of-the-art on this aspect is given graphically, which compares different technologies such as transistor, diode, and CMOS schemes. Since the very beginning of RF and microwave integrated techniques and energy harvesting, Schottky diodes as the undisputable dominant choice, have been widely used in mixing and rectifying circuits. However, in specific μW power-harvesting applications, the Schottky diode technique seemingly fails to provide a satisfactory RF–dc conversion. Subsequent to the highlighted limitations of current devices, this work introduces, for the first time, a nonlinear component for low-power rectification based on a recent discovery in spintronics, namely, the Magnetic Tunnel Junction, also called spindiode. An equivalent model of spindiode is developed to describe the frequency behavior. Full parametric studies show that the interfacial capacitance, rather than the geometric capacitance, as it is usually the case for diode, plays a crucial role in the drop of efficiency in microwave frequency applications

    Low power design of a versatile analog mixed Signal sensor module

    Get PDF
    The development of space electronics especially for launcher such as Ariane 6 has to fulfill space standards and space requirements provided by the space industries. The standards of the European Cooperation for Space Standardization (ECSS) are used extensively to ensure a development process that meets the space requirements. This standard covers space project management, space product assurance and space engineering. The ECSS is a cooperative effort of the European Space Agency, national Space Agencies and European Industry Associations for the purpose of developing and maintaining common standards. The work presented in this dissertation was carried out to fill the gap of developing wireless sensor network for Ariane launchers. The development process follows the space requirements that demand the sensor node to survive the environmental condition inside the launcher. This makes the work uniquely compared to commercial wireless sensor network development. The versatile analog mixed signal module proposed in this work consists of infrared transmitter, VLC receiver, power management, data processing with digital/analog sensor interface unit and solar cell as energy harvester. The sensor module is used to build wireless sensor network inside the Vehicle Equipment Bay (VEB) of Ariane 5

    Design of a low-power analog circuit for an implantable RFID-enabled device with passive pressure sensor

    Get PDF
    Title from PDF of title page, viewed on Aug. 22, 2011Thesis advisor: Walter D. León-SalasVitaIncludes bibliographical references (p. 120-122)Thesis (M.S.)--School of Computing and Engineering. University of Missouri-Kansas City, 2011A low-power analog core for an implantable RFID-enabled pressure measurement system is designed. The analog core includes the power generation block for the system, the clock extractor for the digital core and the pressure sensor data converter. Circuit design constraints of low-power consumption and small form factor were followed in the implementation of the analog core. A new low-power analog-to-digital converter (ADC) for the pressure sensor is designed. The designed data converter is implemented using charge-distribution technique which consumes 90 µW of power and has a resolution of 12 bits making it suitable for such energy-constrained applications. The designed ADC is targeted towards a commercially available passive capacitive pressure sensor (microFab E1.3N). Cadence Virtuoso 6.1 Analog Design Environment simulators are used to design, test and compare the schematic and post-layout simulations of the components. The developed analog circuit will be a part of an implantable RFID chip with passive sensors which can communicate with RFID readers.Introduction -- Background -- Design -- Results -- Concluding remarks and future work

    Properties of Nanogenerator Materials for Energy-Harvesting Application

    Get PDF
    Advancements in nanotechnology and materials science have led to the development of a variety of nanogenerator materials with improved properties, making energy harvesting technologies increasingly viable for various applications, such as powering wearable devices, remote sensors, and even small electronic gadgets in the future. The evolution of hybrid materials consisting of polymers and nanoparticles as efficient energy harvesters and energy storage devices is in high demand nowadays. Most investigations on organic ferroelectric P(VDF-TrFE) as a polymer host of polymer nanocomposite devices were primally focused on the β phase due to its excellent electrical properties for various application purposes. Nanofiller is also introduced into the polymer host to produce a polymer nanocomposite with enhanced properties. A brief description of various physical quantities related to ferroelectric, dielectric, pyroelectric effects and Thermally Stimulated Current (TSC) for energy harvesting applications in nanogenerator materials is presented. This article explores the different materials and uses of various nanogenerators. It explains the basics of the pyroelectric effect and the structure of pyroelectric nanogenerators (PNGs), as well as recent advancements in micro/nanoscale devices. Additionally, it discusses how the performance of ferroelectric, dielectric, pyroelectric, and TSC are impacted by the annealing treatment of P(VDF-TrFE) polymer

    Human Energy Harvesting in the Urban Environment

    Get PDF
    The overall aim of the thesis was to provide a holistic view of the potential for electrical energy generation from harvesting of human mechanical work in the urban environment. This required consideration of a broad range of topics including, energy in people, energy conversion technologies and the activity of people and focussed on floor and door integrated devices. The initial step was to consider the potential offered by an individual through consideration of the flow of energy within people and the potential available for harvesting from single actions on floor and door integrated devices. Secondly the process and technologies available for converting mechanical work into electrical energy were considered with a focus on the efficiency with which this could be achieved. Finally, computer based modelling was carried out to determine the expected energy outputs from a device or system of devices to both determine the maximum achievable values and for various assumption based location scenarios in the urban environment. In addition the economic value and displaced carbon dioxide emissions from the generated energy were considered in terms of replacing grid energy. It was concluded that although significant potential exists in the form of human activity, utilising this potential is problematic for a variety of reasons. Much of the energy expended by people is required to complete actions necessary for survival and everyday life, leaving only a small fraction available for energy harvesting. The efficiency with which mechanical work can be converted into electrical energy was found to vary greatly between technologies. In addition it was found that the energy potential is spread diffusely throughout the built environment, with even the most suitable locations returning only modest energy generation values. As a direct consequence it was highlighted that the cost and embodied emissions of devices must be low if human energy harvesting is to offer any benefits

    Fabrication and Characterization of Metal- Insulator -Metal Diode and Gray scale Lithography

    Get PDF
    The objective of this thesis is to successfully design, fabricate, and characterize an optimum metal-insulator-metal diode that can be used as a fast switching diode in various applications such as solar energy conversion. The improvements of this type of diode will result in rectification of a wider spectrum of AC signals to usable electricity. In this project, several proposed designs of MIM diodes were successfully fabricated and characterized. Pt-Al2O3-Al metal-insulator-metal diode was fabricated to have high asymmetry in I-V curve. Additionally, in an attempt to study the effect of material properties on MIM diode’s performance, four different combinations of MIIIIM diode were compared and discussed. Many processes were involved in the fabrication of these diodes such as E-beam evaporation, photolithography, reactive ion etching RIE, and Atomic Layer Deposition (ALD) technique. The fabricated tunneling diodes are intended to operate in the GHz regime and can also operate at higher frequencies (THz) by changing and scaling the dimensions. In addition to MIM diode work, this project attempted to engineer the contrast curve of polystyrene as a negative resist used for E-beam lithography using multi layer resist stack. If the resist stack has a very high contrast and its sensitivity differs between the various layers, it can be ideal for the fabrication of multi-level zone-plate/Fresnel lens
    • …
    corecore