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RÉSUMÉ 

Les systèmes de communication modernes dépendent fortement des circuits non linéaires, tels que 

les amplificateurs de puissance (PA), les mélangeurs, les multiplicateurs, les oscillateurs, les 

commutateurs, etc., qui sont construits à partir de composants non linéaires passifs (comme des 

diodes) ou actifs (par exemple des transistors). Cette thèse étudie les dispositifs non linéaires 

passifs traditionnels et émergents, ainsi que les techniques de lignes de transmission non linéaires 

(NLTL). Plusieurs de leurs applications micro-ondes ont également été étudiées, y compris la 

récupération d'énergie sans fil, la synthèse d’impédance électronique et l’adaptation d’impédance 

bidimensionnelle (inductive et capacitive). 

Dans le chapitre 1, sont d'abord étudiés les dispositifs non linéaires traditionnels résistifs, capacitifs 

et inductifs. Les dispositifs non linéaires émergents, y compris les dispositifs MEMS et la 

spindiode, sont ensuite explorés. La construction physique de base, les principes de 

fonctionnement, ainsi que les caractéristiques et applications pour divers types de dispositifs non 

linéaires sont expliqués et comparés. Les lignes de transmission non-linéaires (NLTL) 

traditionnelles utilisant des dispositifs non linéaires capacitifs (varactor, BST etc.) ou inductifs 

(ferrite saturée), et la technique hybride NLTL émergente utilisant à la fois des dispositifs non 

linéaires capacitifs et inductifs sont également étudiées. 

Le chapitre 2 examine les techniques de conversion d'énergie micro-ondes à courant-continu de 

faible puissance à la fine pointe de la technologie. Une image complète de l'état de l'art sur cet 

aspect est donnée graphiquement. Elle compare différentes technologies telles que le transistor, la 

diode et les technologies CMOS. Depuis le tout début des techniques intégrées RF et micro-ondes 

et de la récupération d'énergie, les diodes Schottky ont été le plus souvent utilisées dans les circuits 

de mélange et de redressement. Cependant, dans des applications spécifiques de récupération 

d'énergie, la technique des diodes Schottky ne parvient pas à fournir une efficacité satisfaisante de 

conversion RF-dc. Suite aux limitations mises en évidence des dispositifs actuels, ce travail 

introduit, pour la première fois, un composant non linéaire pour une redressement de faible 

puissance, basé sur une découverte récente en spintronique, à savoir, la jonction tunnel magnétique, 

parfois appelée spindiode. Un modèle équivalent de spindiode est développé pour décrire le 

comportement en fréquence. Des études paramétriques complètes montrent que la capacité 

d’interface, plutôt que la capacité géométrique, joue un rôle clé dans son efficacité aux 
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hyperfréquences. L'ingénierie de la résistance d’interface est proposée comme une solution pour 

améliorer les pertes dues aux composants parasites, ainsi que la fréquence de fonctionnement de la 

spindiode. En plus d'une analyse du rôle de la non-linéarité et de la résistance en absence de 

polarisation dans le processus de redressement de la spindiode, le travail explique comment la 

spindiode pourrait améliorer le rendement de redressement même à très faible puissance et 

comment cette technique changerait les paradigmes de conception des dispositifs et circuits à 

diodes. 

Au chapitre 3, un syntoniseur d'impédance électronique utilisant la résistance négative des diodes 

à effet tunnel est proposé. Outre le fait qu'il s'agisse d'une solution intéressante pour synthétiser 

l'impédance avec un coefficient de réflexion supérieur à un, ce schéma s'avère plus simple et 

consomme moins de puissance que les techniques de l'état de l'art. La topologie globale du circuit 

comprend deux parties, à savoir un bloc d'impédance comprenant une diode PIN combiné avec une 

diode à effet tunnel pour générer un ensemble de points d'impédance, et un déphaseur à 360° basé 

sur une géométrie de ligne de transmission non linéaire (NLTL) pour faire tourner l'ensemble des 

points d'impédance autour du diagramme de Smith de 1.5 à 5 GHz. La puissance de fonctionnement 

du syntoniseur électronique est inférieure à -25 dBm, limitée par la diode à effet tunnel. Dans le 

cas le plus défavorable, la consommation d'énergie maximale du syntoniseur électronique est 

inférieure à 3 mW, ce qui signifie qu’il pourrait fonctionner avec une pile. Un tel accordeur 

électronique serait utile pour le développement de systèmes de caractérisation du bruit sur gaufre. 

Dans le chapitre 4, nous proposons et présentons tout d'abord une procédure de conception 

analytique pour le synthétiseur à impédance électronique distribuée (EIS). Bénéficiant de 

caractéristiques avantageuses tels qu’un réglage rapide, un faible encombrement et une intégration 

facile, l'EIS a été développé pour les systèmes de caractérisation load-pull sur gaufre, les réseaux 

accordables (TMN), les appareils et systèmes reconfigurables, etc. Les conceptions précédentes de 

l'EIS étaient principalement basées sur des données empiriques plutôt que sur des solutions 

analytiques. Dans ce travail, la méthode d'optimisation d'essaim de particules (PSO) est également 

introduite pour optimiser l'EIS non uniformément distribué que nous proposons et qui comprend 

un circuit de réglage et un circuit non uniformément distribué. Les résultats expérimentaux 

démontrent que la structure non uniformément distribuée proposée permet non seulement 

d’améliorer la couverture de l’abaque de Smith, mais aussi de réduire sa taille (par rapport à une 

structure uniforme). L'EIS non uniforme fabriqué fonctionne de 0.8 à 2.5 GHz et présente un bon 
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accord entre la théorie et la mesure. En outre, un ensemble complet de figures de mérite est présenté 

pour évaluer l'EIS fabriqué, parmi lesquelles une théorie de distribution de tension qui est 

développée pour l'EIS distribué et fournit un moyen de comprendre et prédire la tenue en puissance 

et la non-linéarité de EIS au bord de sa région linéaire. 

Dans le chapitre 5, un circuit d'accord bidimensionnel basé sur une technique hybride de ligne de 

transmission non linéaire NLTL est analysé dans les domaines temporel et fréquentiel. Les 

paramètres de la permittivité et perméabilité effective sont extraits des S-paramètres de la structure 

périodique. L’impédance caractéristique ainsi que la vitesse de phase de la ligne de transmission 

non linéaire NLTL sont étudiées théoriquement en accordant à la fois la permittivité effective et la 

perméabilité. La théorie sera ensuite validée par des expériences et des simulations pour les 

matériaux non-magnétiques, NLTL avec varactors ainsi que la ligne microruban à base de ferrite. 

Enfin, les applications en mode petit et grand signaux des circuits d'accord bidimensionnel sont 

discutés. 
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  ABSTRACT 

Modern communication systems are heavily dependent on nonlinear circuits, such as PA, mixer, 

multiplier, oscillator, switch, etc., the core of which are either passive nonlinear elements and 

devices (e.g. diodes) or active nonlinear components and devices (e.g. transistors). This thesis aims 

at investigating a number of traditional and emerging passive nonlinear devices and nonlinear 

transmission line (NLTL) techniques, and developing four of their microwave applications such as 

wireless power harvesting, electronic impedance synthesizer, and two-dimensional tuning circuit. 

In Chapter 1, traditional nonlinear devices in terms of the categories of resistive, capacitive and 

inductive are firstly investigated. Emerging nonlinear devices including microelectromechanical 

system (MEMS) devices and spindiodes are then explored. The basic physical constructions, 

operation principles, and characteristics as well as applications of various types of nonlinear 

devices are explained and compared. Traditional NLTL techniques make use of either capacitive 

nonlinear devices (varactor, BST etc.) or inductive nonlinear devices (saturated ferrite), and 

emerging hybrid NLTL techniques are also studied through the deployment of both nonlinear 

capacitive and inductive devices.  

Chapter 2 examines the state-of-the-art low-power microwave-to-dc energy conversion techniques. 

A comprehensive picture of the state-of-the-art on this aspect is given graphically, which compares 

different technologies such as transistor, diode, and CMOS schemes. Since the very beginning of 

RF and microwave integrated techniques and energy harvesting, Schottky diodes as the 

undisputable dominant choice, have been widely used in mixing and rectifying circuits. However, 

in specific µW power-harvesting applications, the Schottky diode technique seemingly fails to 

provide a satisfactory RF–dc conversion. Subsequent to the highlighted limitations of current 

devices, this work introduces, for the first time, a nonlinear component for low-power rectification 

based on a recent discovery in spintronics, namely, the Magnetic Tunnel Junction, also called 

spindiode. An equivalent model of spindiode is developed to describe the frequency behavior. Full 

parametric studies show that the interfacial capacitance, rather than the geometric capacitance, as 

it is usually the case for diode, plays a crucial role in the drop of efficiency in microwave frequency 

applications. Interfacial resistance engineering is proposed as a solution to improve the parasitic 

factor, as well as the operation frequency of spindiode. Along with an analysis of the role of 

nonlinearity and zero bias resistance in the rectification process of the spindiode, it is shown how 
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the spindiode could enhance the rectification efficiency even at a very low-power level and how 

this technique would shift the design paradigms of diode-based devices and circuits. 

In Chapter 3, an electronic impedance tuner using the negative resistance of a tunneling diode is 

proposed. Aside from the fact that it is an interesting solution to synthesize impedance with 

reflection coefficient larger than one, this scheme is proven to be simpler and consume less power 

than the state-of-the-art techniques. The overall circuit topology consists of two parts, namely 

impedance tuning circuit including a hybrid block of PIN and tunneling diode for generating a set 

of impedance points, and wideband nonlinear transmission line (NLTL)-based 360º phase shifter 

for rotating the set of impedance points around the Smith chart from 1.5 to 5 GHz. The operating 

power of the electronic tuner is below -25 dBm, which is limited by the tunneling diode negative 

slope range. The worse-case maximum power consumption of the electronic tuner is as low as 3 

mW, which would allow battery-powered operation. Such an electronic tuner should be useful for 

the development of on-wafer noise characterization systems. 

In Chapter 4, we propose and present, first of all, a semi-closed form design procedure for the 

distributed electronic impedance synthesizer (EIS). Benefiting from advantageous features of fast 

tuning, small size and easy integration, the EIS has been developed for on-wafer load-pull 

characterization systems, tunable matching networks (TMN), reconfigurable devices and systems 

etc. However, the previous designs of the EIS were mostly based on empirical data instead of 

closed-form design. Moreover, incomplete figures of merit are usually utilized to optimize and 

evaluate the EIS. In this work, a particle swarm optimization (PSO) method is introduced to 

optimize the proposed non-uniformly distributed EIS, which comprises an adjusting circuit and a 

non-uniformly distributed circuit. Experimental results demonstrate that the proposed non-

uniformly distributed structure can not only improve the Smith chart coverage but also reduce the 

size, as compared to the uniform counterpart. The fabricated non-uniform EIS operating from 0.8 

to 2.5 GHz, exhibits a good agreement between theory and measurement. Furthermore, the most 

comprehensive figures of merit are presented to evaluate the fabricated EIS, among which a voltage 

distribution theory is developed for the distributed EIS, it provides a way of understanding and 

predicting the power-handling capacity and nonlinearity of EIS from its linear region.  

In Chapter 5, two-dimensional tuning circuit based on hybrid NLTL technique is analyzed in both 

time domain and frequency domain. The parameter extraction method of effective permittivity and 
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permeability is developed based on the S-parameters analysis. The characteristics of the impedance 

and phase velocity of ferrite-based NLTL are studied theoretically by tuning both the effective 

permittivity and permeability. The theory is then validated by experiments and simulations for non-

magnetic material, namely NLTL with varactors as well as ferrite-based microstrip line. Finally, 

the small signal and large signal applications of two-dimensional tuning circuits are discussed.  
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CHAPTER 1 INTRODUCTION 

 

Modern wireless and communication systems are heavily dependent on nonlinear circuits such as 

power amplifier (PA), mixer, multiplier, oscillator, switch, etc., the core of which are passive 

nonlinear devices (e.g. diodes) or active nonlinear devices (e.g. transistors). The term “nonlinear” 

intuitively means that the output signals and input signals are not in a linear relationship, it 

essentially indicates that one  parameter is nonlinear with voltage or current. It should be noted that 

it is different from the nonlinearity of frequency responses, for instance, dispersion.  

In this work, we focus on passive nonlinear devices. One purpose of this thesis is to provide a way 

for the readers to understand and choose proper nonlinear devices in accordance with different 

applications. Traditional nonlinear devices in terms of the categories of resistive, capacitive and 

inductive are firstly investigated in the following.  

As listed in Table 1.1, the resistive devices include conventional PN junction diode, Point-Contact 

diode, Schottky diode, PIN diode, Step-Recovery diode (SRD), Metal-Insulator-Metal (MIM) 

diode, Tunnel diode (Esaki diode), Backward diode, Resonant Tunneling diode (RTD), Gunn diode, 

IMPATT diode, etc. [1, 2], among which the last five diodes present a differential negative 

resistance region in their current-voltage (I(V)) characteristics. The basic physical construction, 

operation principles as well as characteristics and applications for various types of diode are 

explained and compared.   

The capacitive nonlinear devices include semiconductor and ferroelectric ceramics, whereas the 

inductive nonlinear devices usually use ferrite and other magnetic materials. Emerging nonlinear 

devices includes microelectromechanical system (MEMS) devices and spindiodes.  

Nonlinear transmission line (NLTL) is a transmission line periodically loaded with nonlinear 

devices. Traditional NLTL technique uses either capacitive nonlinear devices (varactor, BST, PZT 

etc.) or inductive nonlinear devices (saturated ferrite). Emerging hybrid NLTL technique uses both 

nonlinear capacitive and inductive devices.  
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Table 1.1: Comparison of traditional and emerging passive nonlinear devices. 

Categary Nonlinear Type Nonlinear Device Specialty Applications 

traditional 

nonlinear 

devices 

resistive  

PN junction diode  
detector, rectifier, modulator, switch, 

demoudulator circuit, etc. 

point-contact diode  mixer, detector, etc 

Schottky diode  detector, mixer, rectifier, etc. 

PIN diode  
switch, attenuator, phase shifter, limiter, 

modulator, etc. 

step-recovery diode  
short pulse generator, frequency 

multiplier, comb generator, etc. 

MIM diode  Mixer, rectifier, etc.  

tunnel diode 

negative 

resistance 

oscillator, amplifier, mixer, detector, etc. 

backward diode detector, rectfier, switch, etc. 

RTD Oscillator, switch, etc. 

Gunn diode 
Oscillator, amplifier, radar speed gun, 

etc. 

IMPATT diode power generation, etc. 

capacitive 

semiconductor 

varactor 
 

VCO, parametric amplifier, harmonic 

generator, frequency multipliers, mixer, 

microwave signal synthesizers, tunable 

circuit, etc. 

BST  
phase shifter, capacitor, DRAM, etc. 

PZT  

inductive ferrite  

tunable filter, oscillator, amplifier, 

circuilator, isolators, phase shifter, 

bandstop filter, magnet recording, etc. 

emerging 

nonlinear 

devices 

 MEMS devices  
phase shifters, tunable filters, impedance 

tuners, oscillators, mixer, switch, etc. 

 MTJ  MRAM, oscillator, rectifier, etc. 

1.1 Traditional RF and microwave nonlinear devices  

1.1.1 Resistive nonlinear devices 

1.1.1.1 Conventional PN junction diode 

Construction 

The conventional PN junction diode is the most basic and simplest solid state electronic device. It 

is constructed by the combination of P-type and N-type of semiconductors [1, 2]. By doping an 
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intrinsic semiconductor with acceptor impurities, a P-type semiconductor is formed, in which holes 

are the majority carriers while electrons are the minority carriers. The term P-type denotes the 

positive charge of the hole. As opposed to P-type semiconductors, N-type semiconductors are 

formed by doping an intrinsic semiconductor with donor impurities, in which free electrons have a 

more massive concentration than holes. The term N-type refers to the negative charge of the 

electron.  

 

Figure 1.1: Energy band diagram of PN junction diode. 

Operation principle and characteristics 

As depicted in Fig. 1.1, a PN junction will be formed when a P-type semiconductor is placed in 

contact with a N-type semiconductor. The density gradient at both sides of the PN junction results 

in the free holes in P-type side that diffuse across the interface and recombine when they reach N-

type side, and leave behind the fixed negatively charged acceptor ions. Similarly, it also results in 

the free electrons that diffuse from N-type side to P-type side, and leave behind the fixed positively 

charged donor ions. The negatively and positively charged ions will create an electrostatic potential 

barrier, which will prevent the diffusion of free charge carriers. A depletion layer will be formed 

when an equilibrium state will be reached, and no free charge carriers will exist in this layer. The 

extra energy that is required to overcome the barrier is called the barrier potential, which depends 

on the semiconductor material, doping level as well as temperature, and is about 0.7 V for silicon 

and 0.3 V for germanium.  

Opposite to the diffusion current that is caused by the majority carriers, the drift current is due to 

the minority carriers that are moving across the junction and accelerated by the barrier potential. In 
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the unbiased condition, the net current is zero since the drift current and diffusion current are equal 

to each other.    

Ohmic effects  

In the forward bias condition, the P-type and N-type semiconductors are connected with the 

positive and negative electrode of the voltage source, respectively. The external voltage can push 

the majority carriers (holes) in the P-type side and the majority carriers (electrons) in the N-type 

side toward and then neutralize the depletion layer so that the width of the depletion layer is reduced. 

There is almost no current when the external voltage is less than the barrier potential since the free 

electrons and holes cannot overcome the barrier. As shown in the I(V) characteristic of PN junction 

diode in Fig. 1.2, with the increases of the forward bias, the depletion zone decreases, eventually 

results in an electrical resistance reduction. The relationship of IV characteristic of PN junction 

diode can be expressed as  [2] 

 ( )

( 1)

s
q V IR

nKT
sI I e



 
 (1.1) 

where Is is the reverse saturation current, q is the electron charge, V is the external bias, Rs is the 

series resistance of PN junction, n is ideality factor, K is Boltzmann constant, and T is absolute 

temperature.   

 

Figure 1.2: IV characteristic of conventional PN junction diode. 
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In the reverse bias condition, the P-type and N-type semiconductors are connected with the negative 

and positive electrode of the voltage source, respectively. The reverse bias pulls the holes in the P-

type side and electrons in the N-type side away from the junction, which increases the width of the 

depletion layer, so that results in a high resistance allowing a small current across the junction. As 

shown in Fig. 1.2, when the reverse bias increases beyond a critical level, the depletion region 

breaks down and current begins to flow, and it is called the avalanche effect.  

Junction capacitance  

Two types of capacitance mechanisms are involved in PN junction, namely depletion capacitance 

and diffusion capacitance, respectively, as shown in the capacitance-voltage (C(V)) characteristic 

of a PN junction diode in Fig. 1.3. The depletion capacitance is caused by the impurity atoms, and 

it dominates under the reverse bias condition. It can be calculated as [2] 

 

0

0

(1 )
j

C
C

V

V





 (1.2) 

where C0 is the zero-bias capacitance, V is the reverse bias voltage, V0 is built-in potential, γ is a 

constant, it is 1/2 for an abrupt junction, 1/3 for a graded junction, and 1 to 2 for a hyperabrupt 

junction. The diffusion capacitance is caused by the injected minority charge, and it dominates 

under the forward bias condition. It is proportional to the minority carrier lifetime, therefore related 

to the switching characteristic of the PN junction diode. 

 

Figure 1.3: Junction capacitance-voltage characteristic of PN junction diode. 



6 

 

 

Application 

The PN junction diodes can be found in the applications of detector, rectifier, modulator, switch, 

demodulation circuit, clamping circuit, clipping circuit, clamping circuit, etc. [2]  

1.1.1.2 Point-Contact diode 

Construction 

Similar to conventional PN junction, Point-Contact diode is also one of the most basic forms of 

diodes. It has been developed during the Second World War, and is often used as mixer or detector. 

As depicted in Fig. 1.4, it is made by a cat whisker metal wire placed on a piece of N-type 

semiconductor [1, 2]. During the formation of a Point-Contact diode, a relatively high current will 

pass through the cat whisker wire to the semiconductor, part of the metal will migrate into the 

semiconductor, a small P-type region will be formed in the vicinity of the point contact, thus a PN 

junction is formed which behaves the same as a conventional PN junction.  

 

Figure 1.4: Point-Contact diode. (a) Construction and constituents and (b) p-region around point 

contact [1]. 

Operation principle 

The operation mechanism of Point-Contact diode is quite similar to a conventional PN junction 

diode. However, the characteristics are different under forward and reverse bias conditions, mainly 

because of the small contact between the cat whisker and the semiconductor. The resistance of 

Point-Contact diode in the forward bias condition is larger than the conventional PN junction diode, 

while the capacitance in the reverse bias condition is smaller. The very low junction capacitance 
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leads to a better switching ability than a conventional PN diode, thus ideal for many RF applications. 

However, the small junction also limits the power handling of a high current [1]. 

Applications 

With the advantages of fast switching and the small junction capacitance due to small junction area, 

Point-Contact diode is suitable for high-frequency applications, such as mixer, detector, etc. [1]. 

1.1.1.3 Schottky diode  

Construction 

The Schottky diode can be considered as a variation of point-contact diode, it can be manufactured 

in different forms, in which the simplest form is a point-contact diode (Fig. 1.5(a)). As shown in 

Fig. 1.5(b), the metal-semiconductor junction in the deposited metal Schottky diode is a surface 

rather than a point contact [1]. A large contact area between the metal and the semiconductor 

enables a low forward resistance and low capacitance.  

 

Figure 1.5: Schottky diode. (a) Point-contact type, (b) deposited metal type [1]. 

Operation principle and chracteristics 

 

Figure 1.6: Energy band diagram for ideal Schottky barrier junction [2]. 



8 

 

 

In a metal, the energy gap between the valence band and conduction band is too small, so that it is 

conductive. By contrast, no free electron exists at the Fermi level in the semiconductor because the 

Fermi level lies within the energy gap. When a metal contacts with a semiconductor, a Schottky 

junction is formed, and the Fermi levels must align, the energy band diagrams for the Schottky 

junction is illustrated in Fig. 1.6 [2]. Since the work function of the metal is greater than that of the 

semiconductor, an electrostatic barrier is formed, which enables a Schottky diode to have the 

rectifying properties.  

The current-voltage characteristics of a Schottky diode is similar to that of a PN junction diode. 

However, there are still some differences: by using the same semiconductor material, the reverse 

leakage current of a Schottky diode is higher, and the reverse breakdown voltage is lower than a 

PN junction diode. While at a specific forward current, the forward voltage for a Schottky diode is 

lower than a PN junction diode.  

Equivalent circuit model 

The equivalent circuit model of PN junction diode is shown in Fig. 1.7 [2, 3]. Cj and Rj represent 

the nonlinear junction capacitance and junction resistance, respectively. Rs denotes the total series 

resistance that includes the resistance of the epitaxial layer and the substrate, Ls denotes the series 

inductance, and Cp represents the packaging capacitance.  

 

Figure 1.7: Equivalent circuit of Schottky diode. 

Applications 

Similar to the point-contact diode, the Schottky diodes can be used in applications requiring high 

switching speed, high power and high frequency capacity. They have the following advantages [1]: 

(i) Low turn-on voltage due to the high current density, it is 0.2 - 0.3 V for a Silicon Schottky diode 

that is similar to a germanium PN junction diode. The less waste of energy makes them suitable for 

the applications that require high efficiency; (ii) High frequency capacity and fast recovery time 



9 

 

 

due to almost no minority carrier charge storage. Unlike the conventional PN junction diode that 

relies on the recombination of holes or electrons when they move to the other side of semiconductor, 

Schottky diode is a majority carrier device;  (iii) Low noise generation; (iv) Low forward resistance; 

(v) Low junction capacitance due to the small contact area. The reduction of RC time constant 

makes them faster than the conventional PN junction diodes, which enables them suitable for many 

applications requires fast speed. The characteristics of low parasitic parameters and fast recovery 

time make them suitable for high frequency applications.  

1.1.1.4 PIN diode 

Construction 

PIN stands for P-Intrinsic-N, it is a PN junction device. Located between the P-type and N-type 

semiconductors, a minimally doped thicker layer or an intrinsic semiconductor is inserted, so that 

a high resistivity is presented. PIN diodes are usually constructed on Silicon due to its better power-

handling capability, however, GaAs can be chosen if higher speed is required [1].  

Operation principle and characteristics 

When a PIN diode is forward biased, holes and electrons are injected from P-type and N-type region 

into the intrinsic region (I-region), respectively. Instead of combining immediately, a finite quantity 

of charges will remain in the I-region. The quantity of charges relies on the recombination time or 

carrier-lifetime as well as the forward bias current. The thick intrinsic layer increases the transit 

time for electrons to cross the I-region, resulting in the accumulation of electrons in the I-region. 

PIN diode acts as a traditional rectifying device up to about 100 MHz, and beyond this frequency, 

the storage of charges in the I-region makes the diode act as a variable resistance[1].  

When PIN diode is reverse biased, the reverse current flows until the I-region is depleted of charges. 

The switching time or recovery time is defined as the time required to remove the charges stored 

in the I-region due to the forward bias. When PIN diode is used as switch, the switching time can 

be understood as the time to switch from a low-impedance state (forward bias) to a high-impedance 

state (reverse bias) [1].  
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Figure 1.8: (a) Equivalent circuits of PIN diode; Simplified equivalent circuit (b) under forward 

bias and (c) under reverse bias [1, 2]. 

Equivalent circuit model 

The equivalent circuit of PIN diode is described in Fig. 1.8(a) [2], it mainly consists of two sets of 

elements in series: the first part is similar to a PN junction, it includes diffusion capacitance Cd in 

parallel with junction resistance Rj and junction capacitance Cj; while the second part consists of 

the undepleted I-region resistance Ri and capacitance Ci. Besides the core parts, Ls denotes the lead 

inductance, Rs represents the resistance of the bulk semiconductor and the contacts, Cp denotes the 

packaging capacitance, Cf represents fringing capacitance of the structure which can be neglected 

as compared to other capacitances.  

Although the model shown in Fig. 1.8(a) can describe the physical model, it is not practical in the 

circuit design. It can be simplified for both forward bias and reverse bias conditions. Under the 

forward bias condition, the diffusion capacitance Cd is large so that shorts out the junction 

parameters. The charge carriers will be injected into the I-region, the Ci will vanish so that only Ri 

left. The equivalent circuit for the forward bias condition is simplified as Fig. 1.8(b) [1, 2, 4, 5], Rt 

is the total RF resistance (Rs plus Ri), which is a current-controlled resistance.  

Under the reverse bias condition, the diffusion capacitance Cd vanishes, and the junction resistance 

Rj becomes large, only Cj remains. The Ri-Ci part will vanish if the reverse bias is high enough to 

deplete the I-region. The equivalent circuit for a reverse bias condition will be simplified as Fig. 

1.8(c) [1, 2, 4, 5]. 

Applications 

The presence of the intrinsic layer provides two benefits for the reverse bias condition: high 

breakdown voltage so as to have high power handling capacity, small junction capacitance due to 
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the separation between P-type and N-type semiconductors. The benefits make PIN diode useful for 

high frequency and high power rectification application. Under the forward bias condition, the I-

region is controlled by the amount of injected charge carriers, which makes the possibility to control 

the large RF signal with a small level of dc excitation. It is extensively used in the low loss and low 

distortion applications, for instance, RF switches, attenuators, phase shifters, limiters and amplitude 

modulator, etc. [1, 2]. 

1.1.1.5 Step-Recovery diode (SRD)  

Construction 

A SRD is usually constructed upon the PIN structure, although in principle it can be constructed 

on any diode structure. The difference with PIN diode is that the SRD is fabricated with gradually 

decreased doping level as the close of the junction, which results in fewer charge carriers stored in 

the I-region so as to have shorter switching time [1, 2]. This advantage makes SRD suitable for 

applications that require fast switching.  

Operation principle and characteristics 

The operation of a SRD relies on the charges storage and extraction characteristics in the 

semiconductor. As illustrated in Fig. 1.9, in the positive conduction region (forward bias), the SRD 

operates like a normal diode, the RF current will follow the RF voltage waveform, the charges will 

be stored in the I-region of the diode. In the negative portion of the RF voltage cycle (reverse bias), 

the charges start to extract from the I-region. Once the free charges are removed from the I-region, 

the RF current suddenly reduces to zero in a very short time. The rapid vanish of current in time 

domain stands for rich harmonics in frequency domain.  

 

Figure 1.9: Diagram of current and voltage waveforms of SRD [2]. 
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Figure 1.10: Equivalent circuit of SRD [2]. 

Equivalent circuit model 

The equivalent circuit of the SRD can be modeled by combining the forward- and reverse-biased 

circuit with a switch, as shown in Fig. 1.10, in which the series resistance Rs denotes the voltage 

drop across the diode [2]. The switch is closed under the forward bias condition, the circuit consists 

of a relatively large diffusion capacitance Cf, accounting for the large charge storage in the I-region, 

in shunt with a resistance Rf. Under the reverse bias condition, the switch is still closed until all the 

charges are extracted from the diffusion capacitance Cf, the circuit also includes the depletion layer 

capacitance Cr.  

Applications 

Due to the fast switching times characteristic, the SRD is suitable for the applications of short pulse 

generator, high-efficiency high-order frequency multiplier, comb generator, etc. [1, 2]. 

1.1.1.6 Tunnel diode (Esaki diode)  

Construction 

Tunnel diode, also called Esaki diode, has a junction that enables tunneling transport, classically 

use P-type and N-type semiconductors. The semiconductors are heavily doped with impurity, 

resulting in a depletion layer thin enough for majority carriers to cross by tunneling [1]. Since it is 

the movement of majority carriers, the operation of tunnel diode is faster than conventional PN 

junction diode. Different from the conventional transit time concept, the time of tunneling is 

proportional to quantum transition probability.  
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Figure 1.11: Energy bands of tunnel diode at zero-bias condition [1]. 

Operation principle and characteristics 

Fig. 1.11 illustrates the energy bands of tunnel diode at the zero-bias condition [1]. Only when the 

filled state at N-side and empty state at P-side are aligned at the same level, tunneling will occur. 

The current-voltage characteristic of a tunnel diode is presented in Fig. 1.12. When the applied 

forward bias increases, electrons start to tunneling from N-side to P-side, because the filled state at 

N-side starts to align at the same level with an empty state at P-side. When they are aligned exactly, 

the maximum current will be reached, after that the current starts to decrease until a very low level. 

With the further increases of bias, ordinary injection current starts to increase exponentially, which 

is similar to a PN junction diode.   

 

Figure 1.12: Current-voltage characteristic of tunnel diode. 
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Applications 

Tunnel diode has advantages of high speed, low operation voltage, low noise generation, high peak 

current-to-valley current ratio, low cost and lightweight. It exhibits a negative resistance under the 

forward bias condition, thus can be used in microwave oscillators and amplifiers. It also can be 

used in microwave mixers, detectors, and binary memory.  

1.1.1.7 Backward diode  

The backward diode, is also a form of PN junction diode. The operation mechanism is similar to 

the tunnel diode, the difference is that backward diode operates by tunneling only under the reverse 

current condition. In the backward diode, doping level in one side of the junction is less than the 

other, the doping profile gives a freedom to modify some characteristics from the tunnel diode [6].  

Operation principle and characteristics  

Under the reverse bias, the tunneling effect of the backward diode is similar to the tunnel diode, 

while under the forward bias the tunneling effect reduces and it is similar to a conventional PN 

junction diode  [6]. In other words, its name comes from the fact that the diode can be used 

backward.  

As can be seen from Fig. 1.13, the forward IV curve is similar to a conventional PN junction diode. 

Zener breakdown starts at a low reverse bias voltage, the voltage remains relatively constant and is 

independent of the reverse current. It should be noted that the negative resistance region is not 

presented in the IV curve, because the tunneling phenomenon is only incipient.   

 

Figure 1.13: Current-voltage characteristic of backward diode. 
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Applications  

The backward diode has a strong nonlinearity at a small signal region, and it does not have a charge 

storage effect so that it can be used as a detector and rectifier at high frequency (more than 40 GHz) 

with weak signals, and it also can be used for high speed switching applications [6].  

1.1.1.8 Resonant tunneling diode (RTD) 

Resonant Tunneling Diode (RTD) is a two-terminal quantum device, it consists of a quantum well 

locating between two quantum barriers. It works by the resonant tunneling effect so that negative 

differential resistance regions are often present in the current-voltage characteristics, which enables 

many high-speed applications. An RTD can be fabricated with a variety of semiconductor materials 

and different resonant tunneling structures [7, 8].  

Operation principle and characteristics 

Fig. 1.14 illustrates the operation mechanism of a double-barrier RTD [7, 8]. The charge carriers 

in the quantum well only can present at discrete energy states. As the bias of RTD increases, the 

first confined state is close to Fermi level, the current increases, as shown from point A to B in Fig. 

1.14(d). As the bias further increases, the first confined state becomes lower than Fermi level and 

fall into the bandgap, the current decreases, as shown from point B to C in Fig. 1.14(d). When the 

second confined state is close to Fermi level, the current will increase again, as shown from point 

C to D in Fig. 1.14(d).   

 

Figure 1.14: Operation mechanism of double-barrier RTD. Energy bands for three different bias 

(a)-(c); (d) IV curve of RTD. 
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Applications  

Since the quantum tunneling effect through the thin barriers and quantum well is very fast, RTD is 

capable of enabling high-speed and high-frequency applications, such as oscillators and switching 

devices at terahertz frequencies [7, 8]. 

1.1.1.9 MIM Diode 

Construction 

Metal-Insulator-Metal (MIM) diode is similar to a semiconductor diode, it consists of an insulating 

layer sandwiched two layers of metal [9-11]. It is based on the tunneling mechanism. The insulating 

layer should be thin enough in the order of tens of atom layers for the tunneling. The fabrication 

process of thin film deposition for an insulating layer with a few nanometers thickness was 

achieved in the 1960s, the simple materials and fabrication technology make the MIM diode more 

competitive with other techniques. Multiple insulating barriers can be built in MIM diode to 

overcome the thermal voltage limitation of a Schottky diode [9, 12].  

Operation principle and characteristics 

Two operation mechanisms involve in a MIM diode, namely quantum tunneling and thermal 

activation (also called Schottky effect) [9, 13]. The geometry of the insulating layer, such as 

thickness, barrier height as well as temperature, will determine the domination of each mechanism. 

Tunneling will dominate only when the barrier is high and thin enough. The two mechanism can 

be sorted out by the measurements for MIM diodes with two barrier thicknesses at two different 

temperatures [14].  

Applications 

MIM diode can be used in the high-speed applications due to the tunneling mechanism and very 

low junction capacitance, for instance, a mixer at 148 THz [15]. It also could be used in the rectifier, 

the state-of-the-art MIM diode with multiple insulating layers has already presented very similar 

zero-bias current responsivity with the Schottky diode [9].  
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1.1.1.10 Gunn diode  

Construction 

A Gunn diode is a type of transferred electron device (TED), it operates on the principle of Gunn 

effect that is discovered by physicist J.B. Gunn in 1963 [16]. It presents a negative resistance region. 

Unlike other semiconductor diode consisting of P- and N-type semiconductor materials, Gunn 

diode is composed of only N-type semiconductor material, therefore, it is not a unidirectional 

device. A Gunn diode consists of two heavily doped materials on the terminals, and a thin layer of 

lightly doped material in the middle [1].  

Operation principle and characteristics  

In Gunn diode, the conduction electrons transfer between different energy levels with the influence 

of the electric field, it is also referred to as TED. When the bias at the two terminals of the Gunn 

diode increases, the current increases. At a certain bias level, the resistivity of the thin middle layer 

increases, which results in the drop of the current. In other words, the Gunn diode presents a 

negative differential resistance region, in which the increases of the bias will cause a decrease in 

current [1].   

Applications 

The property of negative resistance allows the Gunn diode can be used in the amplification 

application at microwave frequency, such as amplifier, oscillator, etc. Gunn diode oscillator can be 

used in airborne collision avoidance radar, anti-lock brakes, radar speed guns, motion detector, air 

traffic control, millimeter-wave radio astronomy receivers [16]. 

1.1.1.11 IMPATT diode  

Construction 

IMPATT (IMPact Avalanche Transit Time) diodes are semiconductor devices that use the 

properties of avalanche effect and transit time of semiconductors, also referred to as avalanche 

transit time devices. As illustrated in Fig. 1.15, IMPATT diode is made from a heavily doped N-

type semiconductor layer (N+ layer), beside which another lightly doped layer (N layer) is deposited 

epitaxially. At the other terminal, P-type semiconductor layer is heavily doped (P+ layer) [1]. 

IMPATT diodes can be fabricated with Si, GaAs or InP. The Si-based IMPATT diode can work up 
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to above 200 GHz with high output and is cheaper due to the simple fabrication process. By contrast, 

the GaAs-based IMPATT diode has higher efficiency and lower noise than others.  

 

Figure 1.15: Schematic diagram of IMPATT diode. 

Operation principle and characteristics 

Although the structure of IMPATT diodes are similar to traditional Schottky or PIN diodes, the 

operation principle is quite different. Similar to a Schottky diode, it will break down at a certain 

level of reverse bias, the IMPATT diodes operate in this breakdown region and based on avalanche 

effect. When a certain level of reverse bias is applied, a high potential gradient is generated across 

the PN junction due to the narrow gap, which results in the acceleration of minority carriers. The 

accelerated carriers will collide with the crystal lattice, as a result more carriers will be freed and 

accelerated. This process will cause avalanche breakdown due to the fast multiplication of carriers 

[1, 17].  

Applications 

With the advantage of high-power capability, IMPATT diodes are used for solid-state microwave 

and millimeter wave power generation. Compared to Gunn diodes, IMPATT diodes are more 

efficient and have higher output power with lower power supply [1]. 

1.1.2 Capacitive nonlinear devices 

1.1.2.1 Varactor 

A varactor is a type of PN junction, having the junction capacitance optimized for a reverse bias 

scenario. It presents a variable capacitance with the control of the reverse bias [1, 2].  

 

 



19 

 

 

Operation principle and characteristics 

A depletion layer is formed between P- and N-type of semiconductors when a reverse bias is 

applied, it can be seen as a dielectric between two semiconductors. With the increases of reverse 

bias, the width of the depletion layer increases, thus the junction capacitance decreases [1, 2]. The 

C(V) characteristic of a varactor is similar to a PN junction diode, as illustrated in Fig. 1.3. It also 

shares the same equivalent circuit model with a Schottky diode, as shown in Fig. 1.7. 

Applications  

Varactors are usually used in the application of tuning circuits, voltage-controlled oscillator (VCO), 

parametric amplification, harmonic generation, frequency multipliers, mixer, microwave signal 

synthesizers, active filters, signal detection and modulation, up-conversion, etc. [1, 2]. 

1.1.2.2 Ferroelectric ceramic  

Barium Strontium Titanate (BST) [18, 19] and Lead Zirconate Titanate (also called PZT) [20, 21] 

are two most popular ferroelectric ceramics. BST is made by the complete solid solution of 

strontium titanate and barium titanate. PZT exhibits piezoelectric effect, its shape changes with the 

applied electric field.  

Applications  

BST and PZT have advantages of high dielectric constant, high tunability and low dielectric loss,  

it has been used in the application of phase shifter, capacitor, microsensors, dielectric ceramics 

with high energy storage, dynamic random access memory (DRAM), pyroelectric infrared detector, 

etc. [18-21]. 

1.1.3 Inductive nonlinear devices 

Ferrite is a type of ferrimagnetic material made by iron oxide blended with other metallic materials. 

In terms of magnetic property, ferrites can be divided as soft ferrite, hard ferrite, and gyromagnetic 

ferrite. According to the type of crystal, the gyromagnetic ferrite can be classified as spinels (e.g. 

nickel ferrite), garnets (e.g. Yttrium Iron Garnet (YIG)) and hexaferrites (e.g. barium ferrite) [22].  
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Applications 

With the advantages of low dielectric loss, narrow resonance line width at microwave frequency 

region, small saturation magnetism, YIG can be found in the applications of tunable filter, 

oscillator, circulator, isolator, phase shifter, bandstop filter, magnet recording, etc. [1, 23]. 

1.2 Emerging RF and microwave nonlinear devices 

1.2.1 MEMS devices  

A microelectromechanical system (MEMS) indicates a small size component/system that integrates 

both electrical and mechanical functionalities. Micromachining techniques are the key to MEMS 

fabrication process, the most generally used techniques are surface micromachining, bulk 

micromachining, and Lithographie, Galvanoformung, Abformung (LIGA) techniques. Assembly 

techniques and packaging techniques are also essential for MEMS fabrication, which can transfer 

MEMS devices to RF circuits, the most generally used techniques are flip-chip assembly, solder 

self-assembly, and wafer-level assembly [2, 24].  

MEMS switch 

RF MEMS switch can be classified as resistive contact switch and capacitive contact switch. The 

cross-sectional view of MEMS switch, as well as the equivalent circuit of the two switches are 

shown in Fig. 1.16 and Fig. 1.17, respectively [2].  

 

Figure 1.16: (a) Cross-sectional view and (b) equivalent circuit of resistive contact MEMS switch 

[2]. 
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MEMS varactor 

Similar to the capacitive contact MEMS switch which has two capacitive states, the capacitance of 

MEMS varactor can be changed continuously by controlling the physical dimension of the device 

with voltage [2].   

Applications 

With the advantages of small size, low weight, low insertion loss, high isolation, RF MEMS switch 

and varactor are used in the applications of phase shifters, tunable filters, impedance tuners, 

oscillators, mixer, information storage, materials science, switching devices in cell phones, etc. [2]. 

 

 

Figure 1.17: (a) Cross-sectional view and (b) equivalent circuit of capacitive contact MEMS 

switch [2]. 

1.2.2 Magnetic Tunnel Junction (MTJ) 

Introduction and construction 

As is well known that an electron has a charge and a spin, in conventional electronic device only 

charges are utilized, and spins are ignored. Until the discovery of giant magnetoresistance (GMR) 

of magnetic multilayers in 1988 [25], people started to control the motion of electrons efficiently 

by acting on the spins, which can be changed with the orientation of magnetization. This great 

discovery promoted the development of a new technology called spintronics (spin-electronics) [26].  



22 

 

 

The magnetic stack of the MTJ was deposited on a Si substrate and then etched into elliptical shape 

pillars of nanometric dimensions. As illustrated in Fig. 1.18, the magnetic stack consists of substrate 

PtMn 20 / CoFe 2.27 / Ru 0.8 / Cox1Fey1Bz1 2.2 / CoFe 0.5 / MgO 1.2 / Cox2Fey2Bz2 2.5, where 

the numbers following the composition are thicknesses in nm [27].  

 

Figure 1.18: Description of the device (sketch on the right not to scale). Elliptical pillars have a 

typical section of 85 nm x 220 nm [27]. 

 

 

Figure 1.19: Four properties and corresponding applications of MTJ. 

Operation principle and applications 

As shown in Fig. 1.19, there are four essential properties in MTJ: (a) Tunneling magnetoresistance 

effect, (b) Spin-transfer torque effect, (c) Spin oscillation effect, (d) Spin torque diode effect [28]. 

2007 Nobel Prize in physics was awarded to Albert Fert and Peter Grünberg for their discoveries 

http://en.wikipedia.org/wiki/Peter_Gr%C3%BCnberg
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of giant magnetoresistance. The GMR based sensor was successfully applied in the read heads of 

hard disk drives in the 1990s. The research on tunneling magnetoresistance of MTJ was an essential 

step in the development of spintronics since MTJ can provide high TMR ratio at room temperature 

[26].  

Spin transfer torque effect (b) is the opposite effect of (a), which is considered as the promising 

technique in the next generation Magnetic Random Access Memory (MRAM) [29]. Benefiting 

from the successful application in read heads and MRAM, intensive research on MTJ has been 

done from different perspectives. Another application of spin transfer torque effect is the 

microwave oscillator, the polarized current can result in the magnetization precession in the free 

layer, and hence excites steady state oscillation. The oscillation frequency is in GHz and can be 

tuned by dc bias current and external magnetic field, this tunability and compatibility with 

conventional CMOS process make MTJ based oscillator as a potential candidate for microwave 

generator [30].  

The MTJ also has rectification behavior due to the spin torque diode effect, it is also called 

spindiode in this perspective. When applying a small RF current to MTJ, the spin-polarized current 

which is polarized in the reference layer can cause a magnetization precession in the free layer. As 

shown in Fig. 1.20, once the frequency of applied RF current is close to the precession frequency, 

this effect can excite a ferromagnetic resonance (FMR) mode, and result in oscillation of resistance 

and hence a rectification [31]. It is noticed that the spin torque diode effect (d) is also the reverse 

effect of (c).  

Due to the tunnel magnetoresistance effect [26], the resistance of the structure depends on the 

relative alignment of magnetizations of the reference and free layers. As described in the inset of 

Fig. 1.21, the heterostructure can have two stable states at zero volts, namely low resistance when 

the magnetizations of the two layers are parallel (P) and high resistance when the magnetizations 

are anti-parallel (AP). Due to the different compositions and thickness in the free layer and 

reference layer, the current-voltage characteristics of MTJs are not symmetric [32]. For an 

asymmetrical tunneling barrier, the resistance-voltage characteristic is roughly a parabola and the 

maximum resistance is not at zero bias due to the asymmetry (Fig. 1.21). The nonlinearity of 

resistance-voltage characteristic derives from the change of the tunneling probability, which is 

inversely proportional to the barrier height. When the applied voltage increases, the barrier height 
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decreases and then the tunneling probability increases, so that the resistance decreases [33, 34]. In 

other word, the MTJs exhibit nonlinearity in both anti-parallel (AP) state and parallel (P) state. This 

nonlinearity is a crucial factor for the non-resonant rectification that converts RF power into DC. 

 

Figure 1.20: Spin torque diode effect. 

 

Figure 1.21: Measurements and modeling results of differential resistance of devices obtained by 

taking the first derivative of voltage with respect to current. 

The magnetic state of an MTJ can be changed upon the application of an external magnetic field 

or a voltage via a physical phenomenon called spin transfer-torque [35]. The state switching is 

visible in Fig. 1.22 at ± 600mV. The mainstream use of the MTJ hard disk read heads and 

magnetic random access Memory (MRAM). Since this technology is now widespread and will 

continue to expand into new applications, all the tools are available for a mass production of RF 

spindiodes. 



25 

 

 

 

Figure 1.22: IV characteristic of spindiode. Transitions between the two magnetic states of a 

spindiode are obtained for an applied voltage of 600 mV for AP-to-P and -600 mV for P-to-AP. 

Table 1.2: Comparison of traditional and emerging nonlinear transmission line (NLTL) techniques. 

Categary Nonlinear Type Nonlinear Device Applications 

traditional 

NLTL 

techniques 

capacitive 
semiconductor 

varactor pulse sharpener, shock wave, 

true time delay line, phase shifter, 

harmonic generation, 

comb generator, 

high power RF generation, 

soliton wave, etc. 

inductive ferrite 

emerging 

NLTL 

techniques 

hybrid varactor and ferrite 

 

1.3 Traditional NLTL techniques  

Traditional NLTL is a transmission line loaded periodically with nonlinear elements, such as 

nonlinear capacitance or nonlinear inductance. As listed in Table 1.2, the traditional NLTL can be 

classified as capacitive NLTL, inductive NLTL according to the types of nonlinear elements used 

in the NLTL. There are three characteristics for NLTL, nonlinearity, dispersion and dissipation 

[36]. The nonlinearity arises from the voltage-dependent capacitance or current-dependent 

inductance of the nonlinear elements. The dispersion means the variation in phase velocity with 

frequency, which is caused by the periodicity of the structure. The dissipation is from the 

conductive loss of the transmission line and series resistance of the nonlinear elements. NLTLs can 

be found in a variety of applications, such as ultra-short pulse generation, true time delay line for 
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wideband antenna array, phase shifter, soliton wave, high power generation, harmonic generation, 

filtering, etc.  

1.3.1 Classification of NLTL 

1.3.1.1 Capacitive NLTL 

Capacitive NLTL is implemented either by periodically loading nonlinear devices (varactor [37-

40], BST [41-43] or PZT [20, 21]), also called periodically loaded NLTL, or by continuously 

distributing the nonlinearity in semiconductor substrate [44], also called fully distributed NLTL. 

The circuit diagram and equivalent LC circuit model of a periodically loaded capacitive NLTL with 

varactor are shown in Fig. 1.23 And Fig. 1.24, respectively.  

 

Figure 1.23: Circuit diagram of varactor-loaded NLTL. 

 

Figure 1.24: Equivalent LC circuit of varactor-loaded NLTL. 

1.3.1.2 Inductive NLTL 

As shown in Fig. 1.25, inductive NLTL can be constructed by coaxial line loaded with nonlinear 

inductance that arises from ferromagnetic, such as ferrite [45]. The equivalent LC circuit model of 

inductive NLTL is shown in Fig. 1.25, in which the ferrite is modeled as variable inductance. A 

particular application of ferrite-loaded coaxial NLTL is for high-voltage pulse-sharpening and 

microwave power generation [45-50]. The ferrite can be pre-biased by a dc current through the 

center conductor of the coaxial line, then it will be driven to saturation region by a high voltage 

pulse of 10 - 100 kV.  
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(a) (b) 

Figure 1.25: (a) Cross sectional diagram and (b) 3D model of the ferrite-loaded NLTL [48]. 

1.3.2 Application of NLTL  

Table 1.2 lists the applications of NLTL, it can be classified by the balance of nonlinearity and 

dispersion, operation frequency compared to Bragg cutoff frequency, small signal or large signal, 

etc. [36, 51]. Because the input impedance of a NLTL is almost real, it is helpful for the wideband 

matching.  

Pulse sharpener / shock wave 

For varactor-loaded NLTL, the nonlinearity arises from the voltage-dependent capacitance of 

varactor. As is known that different capacitance can result in different phase velocity, in other 

words, the wave travels at different velocities when voltages are different, which results in the 

sharpening of either rise-time or fall-time of a pulse [40, 51-56]. By contrast, the dispersion of the 

structure will expand the pulse. When nonlinearity and dispersion come to a balance, limited rise-

time or fall-time is reached [51].  

For ferrite loaded NLTL, the nonlinearity arising from the current dependent inductance of ferrite. 

High voltage with the order of kV is used in this case to drive the ferrite to saturation region [46-

48, 50, 57], a sub-nanosecond rise time of pulse can be obtained.  

True time delay line / phase shifter 

NLTL is by nature a delay line / phase shifter when operating in small signal regime [51, 58-60]. 

The dc bias of the varactor controls its capacitance, so as to control the phase velocity of NLTL. 

The bandwidth of the phase shifter is determined by the Bragg cutoff frequency as well as the cutoff 

frequency of the varactor. Compared to the phase shifter that is frequency dependent, true time 

delay line can provide the same delay time for a range of frequency, in other words, the true time 

delay line is frequency independent. It can be used for wideband phased array. In addition, for a 
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true time delay line, the operation frequency is much smaller than fBragg, the dispersion is negligible 

over the operation frequency band.   

Harmonic generation / comb generator 

NLTL can be used for harmonic generation, its lowpass behavior can filter higher order harmonics 

so as to increase the conversion efficiency [51, 61-63]. NLTL operates at intermediate dispersion 

region which is less than a half of the Bragg cutoff frequency. When the operation frequency is 

much less than the Bragg cutoff frequency, NLTL can be used for comb generator [64].  

High power RF generation 

Ferrite-loaded NLTL can be used to generate a high power RF and microwave signal up to sub-

gigawatt level [43, 65-69]. Similar to the pulse generator, pulse with the order of kV voltage needs 

to be applied.  

Soliton wave 

When the dispersion and nonlinearity come to a balance, soliton wave will occur along the NLTL. 

Soliton wave is an ultra-short pulse, it has special propagation characteristics [70, 71]. Similar to 

the pulse sharpener, soliton wave can be used in the application of ultra wideband communication 

system, sampling oscillator, vector network analyzer, etc. the NLTL operates at high dispersion 

region with the operation frequency close to the Bragg cutoff frequency.  

1.4 Emerging hybrid NLTL 

In [72], the concept of hybrid NLTL was first proposed, which includes both nonlinear capacitance 

and nonlinear inductance. For a lossless NLTL, the characteristic impedance can be expressed as 

( ) / ( )TZ L i C v , the phase velocity can be expressed by 1/ ( ) ( )p Tv L i C v , where L(i) and 

C(v) denotes the equivalent inductance and capacitance, respectively, per unit length. Traditional 

NLTL is made by either voltage-dependent capacitance and linear inductance, or current-dependent 

inductance and linear capacitance. Although the characteristic impedance of traditional NLTL is 

real, it will change with the voltage or current which makes the matching difficult in a large 

dynamic range [72]. The proposal of a hybrid NLTL gives more freedom to manipulate the 

characteristic impedance and phase velocity. For instance, if L(i) and C(v) are tuned in the same 

manner (Fig. 1.26(a)), the characteristic impedance can be kept constant (Fig. 1.26(b)), while the 
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phase velocity changes faster than the traditional NLTL, which results in a larger phase shift or 

pulse compression for each unit of NLTL. In [72], the nonlinear inductance is made by a saturating 

ferrimagnetic inductor on A9 Ferroxcube core. The experiments show a good agreement with the 

theory. However, the fabrication of inductors are complicated.  

Since the last four decades, some works related to hybrid NLTL have been conducted but only 

based on simulation [73-77]. So far, no further experiment has been reported to our knowledge. As 

it will be seen later, this thesis work discusses the possibility to realize a hybrid NLTL at circuit 

level. 

  

(a) (b) 

Figure 1.26: (a) Characteristics of nonlinear inductance and capacitance; (b) variation of delay 

and characteristic impedance with bias [72]. 

 

 

Figure 1.27: Applications of nonlinear devices and NLTL techniques 
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1.5 Thesis Outline 

This thesis research investigates the traditional and emerging passive nonlinear devices and 

nonlinear transmission line (NLTL) techniques. In addition, different microwave applications for 

nonlinear devices (the left half in Fig. 1.27) and NLTL-technique (the right half in Fig. 1.27) are 

explored. Four applications [78-81] will be presented in this thesis. Application of a new type of 

nonlinear device is investigated in Chapter 2, in which Schottky diode and spindiode are analyzed 

for the applications of RF and microwave energy harvesting in order to achieve a high efficiency 

at low power environment [27, 79]. Three common applications of nonlinear device and NLTL 

technique are implemented in Chapter 3, 4 and 5. In Chapter 3, negative resistance device and 

NLTL-based phase shifter are utilized to realize an electronic impedance tuner with reflection 

coefficient larger than one [80]. In Chapter 4, a non-uniform distributed electronic impedance 

synthesizer is developed based on PIN diode and NLTL techniques [81, 82]. In Chapter 5, a hybrid 

NLTL is analyzed in both time domain and frequency domain. Parameters of effective permittivity 

and permeability are extracted based on the f, and the theory is validated with simulations and 

experiments. Then, small signal and large signal applications of two-dimensional tuning circuits 

are discussed. Our hybrid NLTL technique is investigated and developed in an attempt to overcome 

the impedance matching problems.   
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CHAPTER 2 LOW-POWER HIGH-EFFICIENCY RF AND 

MICROWAVE ENERGY HARVESTING 

 

Much progress has been made in the research and development of rectifiers since the first high-

frequency power detectors were fabricated by Hertz. In the last decades, Schottky diodes have 

increased the efficiency of RF rectifiers while integrated electronic devices, following the Moore's 

law, have become less energy consuming [83, 84]. The result of this device research suggests the 

ability to power simple devices, such as low-duty cycle sensors, microcontrollers and RF 

transmitters, without a battery but powered instead by means of a Wireless Power Transfer (WPT) 

[85]. Regarding the powering capabilities, RF and microwave WPT systems can be divided into 

three types (qualitative output dc powers are given with respect to FCC compliant systems): Near-

field Power Transfer (tens of watts, but limited to a meter-range distance), Microwave Power 

Transfer (MPT) or Power Beaming Transfer (tens of milliwatt, up to a few meters distance with a 

limited space positioning freedom), and Surrounding or Ambient Microwave Power Harvesting 

(MPH) (up to hundreds of microwatts, but without a distance limitation if the receiver is in the 

proximity of a statistically concentrated area of RF transmitters or base-stations like the areas 

covered by broadcasting stations and cell phone systems). 

The core enabling part of MPH and MPT system is the rectifying circuit. This is because it should 

convert a limited available RF power into an exploitable dc energy. The work of Brown [86] is one 

of the most important milestones in this field. Before that, research was focused on obtaining 

highest possible microwave-to-dc efficiency. After that, efforts have been redirected toward 

pushing the maximum efficiency of rectifying circuit to the handling of a lower input RF power. 

In the mid-70s, using GaAs fast solid state diodes, the team of Brown yielded outstanding RF/dc 

rectification efficiencies, such as 82.5% for 8 W input power reported in [87]. In 2001, with the 

introduction of a new diode [88], the record was brought to 84.4% overall rectification efficiency 

for an input power of  105mW (~20dBm) [89]. A high efficiency can be obtained at this power 

level because the high barrier Schottky diode operates as a switch: an open circuit for applied 

negative voltages and nearly a short circuit for applied positive voltages.  
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However, the MPT community is facing a fundamental dilemma because RF rectifiers have a poor 

low power efficiency and the efficiency decreases with transmission distance (Fig. 2.1, calculated 

with [90]). In Fig. 2.1, measured efficiency vs input power is extracted from [89] for the M/A-

COM device, from [91] for the Powercast device and from [92] & [93] for the Skyworks device at 

medium power & low power, respectively. The data are presented to provide a qualitative view of 

the situation. Data are calculated and generated using the read range equation [94] with typical 

value i.e. 1W of radiated power, 5 dBi circularly polarized transmitting antenna, 5 dBi linearly 

polarized receiving antenna, CW frequency of 915MHz and efficiencies presented in Fig. 2.2. 

Consequently, the output dc power drops abruptly as transmission distance increases. This is a 

difficult-to-overcome issue because a high efficiency at a long transmission distance is needed to 

maximize the powering range. An efficient low power rectifier could increase the effective range 

of the rectenna. The problem is similar for ambient RF energy harvesting. With current low power 

limitations, the low surrounding energy cannot be harvested in most areas. 

 

Figure 2.1: Maximum rectification efficiency that can be expected from state-of-the-art 

commercial rectifying devices. 

Comprehensive state of the art rectifiers reported in the literature with Schottky diodes [87, 89, 95-

102], CMOS [103-105] and transistors [106] are presented in Figure 2.2. The corresponding works 

are listed in Table 2.1 for simplifying the presentation. It gives a very good picture of the maximum 

RF-dc conversion efficiency that can be reached for a large range of RF power. It also highlights 

the critical role of those nonlinear devices in the functionality of a rectifying circuit. 
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Figure 2.2: State of the art microwave rectifier circuits (measurements). Color/shape of the 

scatters indicate on which nonlinear device a circuit of interest is based (see Table 2.1). Rectifiers 

that do not include matching circuit losses are not reported here. 

This is particularly obvious for rectifier designs based on SMS7630 Schottky diode. Although the 

works reported in the graph are related to a number of very different circuit architectures, harmonic 

termination techniques, substrate and frequencies, the outcomes are all limited by the junction 

nonlinearity.  In other words, using the same diode would yield similar results. The circuit in [99] 

was an exception because the diode is directly mounted on a spiral antenna with neither matching 

condition nor harmonic termination. In this case, most of the energy does not reach the junction. 

This is a good example that reflects the difficulties of a broadband rectifier matching. 

The devices operating at a power higher than 10 mW (transistor and high barrier Schottky diode) 

are the only ones that can reach more than 80% efficiency. Due to the low ON resistance, the 

matching is quite easy, and the dc power can be delivered efficiently to the load. To operate as a 

switch, however, the device needs to be biased/self-biased, which requires energy. For this reason, 

those devices cannot operate with a low input power. 

As for low power rectifications (µW and lower), the principle is significantly different because it 

operates around the zero-bias point. Thus, it is the zero-bias nonlinearity that plays a major role in 
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the physical and electrical mechanism of RF-dc conversion. On the other hand, the zero-bias 

resistance (ZBR) is a strong limiting factor for the RF energy to enter the diode (matching 

conditions and parasitic losses) and for the dc power to be delivered to the load. This limits the 

conversion efficiency to only a few percent at µW level. 

Table 2.1: Description of circuits reported in Fig. 2.2 

Symbol Reference Year Rectifying device Frequency 

 [87] 1976 Custom GaAs diode 2.388GHz 

 [89] 2002 MA4E1317 2.45GHz 

 [89] 2002 MA4E1317 5.8GHz 

 [90] 2006 HSMS2820 2.45GHz 

 [96] 2010 HSMS2820 2.45GHz 

 [97] 2009 HSMS2850 - 

 [107] 2010 HSMS2860 2.45GHz 

 [93] 2004 SMS 7630 broadband 

 [92] 2010 SMS 7630 2.45GHz 

 [108] 2010 SMS 7630 2.45GHz  

 [108] 2010 SMS 7630 1.85GHz  

 [108] 2010 SMS 7630 0.9 GHz  

 [109] 2012 SMS 7630 1.96 GHz  

 [91] 2008 CMOS 2.45GHz 

 [104] 2009 CMOS 915MHz 

 [105] 2009 CMOS 915MHz 

 [110] 2012 GaN transistor 2.14GHz 

 

The third operation region is related to the medium power. In this region, there is a progressive 

transition from the zero-bias nonlinearity to the "switch" behavior. To give a simplified explanation, 

the device nonlinearity plays the same role as in the low power region. But the device is self-biased, 

resulting in a lower video resistance, thus leading to an improved efficiency. It should be noted that 
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due to their ON/OFF behavior, the high barrier diodes have a very high ZBR and therefore cannot 

operate at a low power level. That is why a single device cannot operate in a large power span.  

It can be concluded from this above discussion that the nonlinear device is the key of the rectifier 

circuit. Even if a high-power rectification has not been a challenge since a long time, there is still 

a lot that needs to be done for low power scenarios. This chapter addresses the low power 

rectification from the perspective of the zero-bias responsivity and the ZBR. It will be shown that 

existing Schottky and CMOS devices exhibit fundamentally limited low power rectification 

capabilities. A novel type of nonlinear device, called Magnetic Tunnel Junctions (MTJ), or simply 

spindiode, is introduced and investigated in this chapter. This device is based on Spintronics, a new 

field that explores not only the electron charge but also its spin effects [26]. Exploiting the intrinsic 

non-linearity of spindiodes and given their significantly lower ZBR than Schottky counterparts, the 

goal of this work is to determine the potential of MTJs for achieving a low power RF-dc high 

conversion efficiency.  

2.1  Physical limitation of RF and microwave rectification 

The principle of RF and microwave rectification is to transpose the energy carried by a wave at RF 

and microwave frequency to dc by a frequency conversion. During this process, the energy goes 

through four loss stages that prevent a rectifying device from being efficient. The efficiencies 

related to those different losses are displayed in Fig. 2.3 and explained in the following sub-

sections.  The overall rectifying circuit efficiency is based on the following [78]  

 0
DC

M p DCT

RF

P

P
        (2.1) 

 

Figure 2.3: Efficiency link of a rectifying circuit, from RF power to dc power. M  stands for 

matching efficiency, p is the efficiency associated with parasitic losses, 0 is the efficiency of 

conversion that takes place in the nonlinear device (core conversion), and DCT is the efficiency 

of dc power transfer from the nonlinear device to the dc load. (A full rectenna would also include 
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the antenna radiation efficiency and dc/dc converter efficiency). The efficiency link is illustrated 

in Fig. 2.7 for SMS7630 diode. 

2.1.1 Matching efficiency 

Due to an impedance discontinuity, the RF and microwave signal experiences reflection losses 

when it enters a nonlinear device. The reflections can be canceled using a matching circuit, but 

potentially with the disadvantage of narrowing operating frequency band and adding insertion 

losses that can be troublesome at high frequency. Those effects can be seen in the single stage 

matching network case [111]: 

 

1

1
M

c

Q

Q

 


 (2.2) 

but trends also stand for any matching networks. In (2.2),  0Q f  is the network quality factor 

that should be obtained to attain a matching condition, and is a function of initial unmatched 

reflection coefficient 0 (Fig. 2.4). The net component quality factor  1/c cQ f R  describes the 

non-ideality of a real network. cQ  is a function of the inverse of resistance cR , which is the 

equivalent parasitic resistance of the network’s reactive component. To maximize the matching 

efficiency, cQ Q  should be satisfied, which means that for a given matching network 

technology, 0  should be minimized. Besides, the higher the frequency is, the more lossy the 

matching circuit will be.  

From Fig. 2.4, and assuming that the source impedance is 50 Ω,  the initial unmatched reflection 

coefficient can be written as [23]: 
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

        
  (2.3) 

where   is the pulsation or angular frequency, jC  and jR are the junction capacitor and resistor 

and sR  is the series resistor (Fig. 2.4). For a better understanding, (2.3) can be simplified as 

follows: 
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From (2.4), it is clear that at high frequency or when
2 2 2 1j jC R    , only sR  is required to be 

close to 0 50Z    because the junction resistor is "shorted" by the junction capacitor. However, 

an optimal operation is found at low frequency if j sR R is close to 0 50Z   . Therefore, since 

rectifying diodes are not used above cut-off frequency, and since j sR R  the main parameter to 

enhance the matching efficiency is the junction resistance jR . 

2.1.2 Parasitic component efficiency 

A portion of the energy of wave is dissipated in the parasitic resistance sR  and passes through 

reactive parasitic component jC  of the nonlinear device and therefore cannot be converted. A 

major limitation is associated with a low-pass filter effect [112] where the junction resistance jR is 

involved. Assuming that at zero-bias j sR R , 

   
2

2

1

1 2
p

j S jf C R R







     
 (2.5) 

For (2.5) and the following equations, the junction resistance is a function of the dc current flowing 

through the junction  biasI , that comes from self-biasing. The value of those components can be 

extracted from S-parameters measurements and I(V) measurements. The junction capacitance jC  

is typically a function of the voltage across the junction. Special care should be given during the 

fabrication process of the nonlinear device and its packaging to minimize the parasitic losses. 

 

Figure 2.4: Model of a nonlinear component used in the analysis of this section. 
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2.1.3 RF-to-dc conversion efficiency 

At a low power level, the nonlinear part of a rectifying device cannot be considered as a simple 

switch but needs to be modeled by a variable resistance. The nonlinearity of a device is inherently 

described by the dc voltage-current relationship. This can be expanded in power series about biasI : 

  
   

 
   

 
1 2

2
( ) ...

1! 2!

bias bias

bias bias bias

v I v I
v i v I i I i I         (2.6) 

where    1 2
, ,...v v  are derivative of  v i  with respect to i . For the power range addressed in this 

work, higher-order (larger than two) nonlinearity terms can be neglected. If an RF current of 

magnitude M and frequency   

    
0

cosfi t M t                                   (2.7) 

flows through a perfectly matched junction, the rectified voltage can be calculated by replacing i   

by 
0
( )fi t  in (2.6), and keeping only the terms for which 0  : 
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M d v
v

di
   (2.8) 

In (2.8), it is considered that no power goes to the harmonics (ideal harmonic terminations). 

Keeping the term depending on   will give the RF voltage across the junction: 

    
0

cosf

dv
v t M t

di
    (2.9) 

which can be used to calculate the RF power absorbed by the junction, if we consider the later one 

as an integration of the product of the RF current and voltage over period T: 
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 (2.10) 

The voltage responsivity is the ratio of the output dc voltage by the input RF power and its unit is 

[V/W]: 
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With (2.8) and (2.10), one can extract v from the I(V) measurements. 
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2

j

v

j

dR

di

R
    (2.12) 

with j

dv
R

di
 being the differential junction resistance depending on biasI . Responsivity is a 

parameter that is quite convenient to measure because it does not vary at low frequency, low power 

and high load resistor, and can be thus easily obtained experimentally. The open circuit voltage 

responsivity v can be linked to the short circuit current responsivity I by the differential 

junction resistance [112]: 

 v I jR    (2.13) 

The current responsivity will be used later because it does not depend on the junction resistance, 

but rather on the process and diode technology. The generated dc power that will be dissipated in 

the dc circuit can then be calculated by 
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with v j sR R R  being the video resistance. The conversion efficiency can now be expressed as a 

function of the junction resistance: 

 0 0

2 2
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L s j

P R

R R R

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

 
 (2.15) 

The trend observed in Fig. 2.2, for which the efficiency increases with power can be explained with 

(2.15) as follows. The higher the input power becomes, the more the nonlinearity of the device will 

be used. This scenario is in a very similar manner as in the case of a square law detector, the higher 

the RF power becomes, the higher the dc voltage will be. Usually the current responsivity is limited 

by junction technology; therefore, one can try to fabricate a device with low series resistance and 
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high junction resistance to maximize (2.15). From the standpoint of conversion efficiency, it is also 

better to use a load that is small compared to the junction resistance. 

2.1.4 DC power transfer efficiency 

Once the RF wave is rectified, dc power should be used by the load, with minimum losses in the 

diode. This is expressed with the well-known dc power transfer efficiency [78]: 
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   (2.16) 

The nonlinear device can be seen by the load as a Thevenin generator. rectv  and vR corresponds 

then to the Thevenin voltage resistance, respectively. Maximum dc power transfer efficiency is 

obtained for low video resistance and high load. However, if using a Maximum Power Point 

Tracking (MPPT) circuit that will show an optimum load to the rectifier, the dc power transfer 

losses can be strongly reduced. 

2.1.5 Overall efficiency 

It is difficult to integrate the matching efficiency into a generalized analytical model because this 

efficiency depends too much on the circuit technologies, but trends can be considered and will be 

discussed afterwards. Thus, considering low power and ideal matching conditions ( 1M  and 

j sR R ), the optimum diode efficiency is found when j LR R : 
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                    (2.17) 

As a conclusion, the conversion efficiency competes against other losses when considering the 

optimal value of the ZBR.  

At low frequency (when 
2 21 j j sC R R    ), it is desirable to have the highest possible junction 

resistance. This statement should be tempered by the matching consideration. As a matter of fact, 

most antennas have an impedance that is below 300 Ω, so going too far with jR  will result in a 

decrease of the overall efficiency because of the matching losses. However, at high frequency 
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(when 
2 21 j j sC R R    ), it is vital to have a ZBR that is as small as possible. As for intermediate 

frequencies, it is preferred to choose the ZBR depending on the operating frequency and diodes 

inner parasitic. Therefore, it is highly desirable to have the ability to tune the ZBR, depending on 

applications. This is not possible for Schottky diode technology but very easy for spindiode.  

2.2  Strength and limitation of Schottky diodes 

The exponential I-V relationship of low and high Schottky barrier heights are given in Fig. 2.5. As 

it is emphasized by the differential junction resistance plotted in Fig. 2.6, the variation of resistance 

of the high barrier diode is greater than the low barrier diode. The result is a switch-like behavior 

but also a very high ZBR. The low Schottky barrier diodes (also called zero-bias diodes) are 

sacrificing the strong nonlinearity and small series resistance to reach a lower ZBR. In the case of 

a Skyworks diode SMS7630 used as a reference in this study, the responsivity value is about 

100mV/µW, and it has a ZBR of 5 kΩ (Fig. 2.6). This value is rather small for a diode, but it is still 

very high for a low power rectifying device. 

 

Figure 2.5: I (V) curve of Skyworks SMS7630 low barrier Schottky diode (red dots) and M/A-

COM MAE1317 high barrier Schottky diode 
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Figure 2.6: Differential resistance of the devices obtained by taking the first derivative of the 

voltage with respect to the current (Data calculated from the spice model). Under high 

bias (> 100mA), the differential resistance is very close to the series resistance (𝑅𝑠). Also, under 

low bias (< pA), the value tends to the Zero Bias Resistance (ZBR). Note that in reality, 

differential resistance does not reach value higher than few hundreds of kilo-Ohm due to leakage 

current in the device. 

 

Figure 2.7: Study of the losses in a rectifying circuit based on the SMS7630 diode. Result are 

given considering a perfect matching and no circuit losses based on circuit simulation (ADS). The 

low power analytical model described in section 2.1 is plotted with boxes. Frequency is 2.45GHz 

and output load is 1 kΩ. 
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Because of the parasitic elements and this kilo-Ohm ZBR, the impedance changes rapidly with 

frequency, thereby resulting in the impossibility to match it for a wide frequency band, whereas a 

rectifier circuit would gain in rectifying a wideband signal [113]. Moreover, at high frequency, this 

ZBR is short-circuited by the low impedance shunt junction capacitor. This results in a shunt-cutoff 

frequency limiting the operation over the GHz range.  

Fig. 2.7 provides a quantitative view of the operating losses. Data are obtained using Agilent 

Advanced Design System (ADS) circuit simulation software. In order to show only the diode losses, 

the device is considered as ideally matched, and the RF circuit losses are not taken into account. 

The simulation is run in a typical condition, i.e. 2.45 GHz CW input signal with a load of 1kΩ. Fig. 

2.7 also plots the efficiency calculated using the equations presented in section 2.1. This model is 

good enough to describe the rectification mechanisms at µW level.  

As it can be observed, the RF-dc conversion starts to be efficient from 100nW, but there is no 

impact on the overall rectification efficiency because of the parasitic losses and dc transfer losses 

that are both induced by the high 5 kΩ ZBR. As the power gets higher, the self-biasing starts to 

operate and the junction resistance progressively decreases, leading to a decrease of the dc transfer 

losses and the parasitic losses. Beyond 1mW, the breakdown voltage of the diode starts to have an 

impact on the rectification, leading to a decrease of the conversion efficiency [114]. 

Although the zero-bias Schottky diodes are better than high barrier diodes for medium power 

rectification, they are not well adapted for µW operation under those conditions, mainly because 

of their high zero-bias resistance. If one looks for a new device capable of increasing the low power 

rectification at high efficiency, focus should be given on the ZBR. 

2.3  Use of spindiode for rectification 

The spindiode is a MTJ composing of two ferromagnetic electrodes, called reference and free layers, 

separated by an MgO insulating layer. Fig. 2.8 compares the photograph of the MTJ device with a 

millimeter-wave Schottky diode. It can be seen that the junction area of the MTJ is much smaller 

(0.015 µm², cf. Fig. 2.8) than the Schottky junction, offering a possibility of high-density 

integration. The resistance-area product (RA) of the MgO junction in this work is about 10 Ω.µm², 

and the bit area varies from 0.006 to 0.04 μm2. The samples can be classified in four subgroups of 

ellipse with different hard axis, designed to be equal to 63, 85, 100 and 120 nm. In each group, the 
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aspect ratio ranges from 1.7 to 2.5. For a given magnetic stack, the ZBR of the spindiode can be 

tailored to any resistance by simply adjusting the junction area. 

 

Figure 2.8: Photograph describing the Schottky diode MACOM MA4E13 (left) and the on-wafer 

spindiode (right) from Everspin Technologies. Three pads are used for measurement purposes 

using a Ground-Signal-Ground (GSG) RF probe. The spindiode area is less than 0.015µm² and is 

therefore not visible on the microscope image. Its location is indicated by a black dot. 

2.3.1 Device modeling 

The understanding of underlying physical mechanism is necessary prior to a spread use of the 

technology. Early electrical investigations have been focused on the analysis of junction resistance 

and tunnel magnetoresistance (TMR) as well as low frequency phenomena [115-117]. Nonetheless, 

the nature of the measurements done in those studies did not allow a comprehensive analysis of the 

effects observable only at microwave frequencies. In a recent attempt to extract the peak power of 

a spin-transfer induced precession oscillator, a lossy capacitance signature has been identified [118] 

in the parasitic impedance of MTJ at microwave frequencies, but has been incorrectly attributed to 

the top and bottom electrodes. It suggested that the samples with the same test pads should have 

the same parasitic impedance, obviously this is not true in the reality. Actually, the parasitic 

parameters of MTJ should be bit area-dependent.  

2.3.1.1 Measurement setup 

The samples of MTJs we studied in this work are from Everspin Technologies, Inc. The on-wafer 

samples were fabricated for the application of MRAM, and there is no available datasheet and 

commercial document. The set up used in this work was controlled by a Labview automation 
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software to run 3 measurements in sequence, the frame and front panels of the program are shown 

in Fig. 2.9. First, the I(V) curve is measured in order to extract the device nonlinearity and ZBR. 

Those values were used to control the quality of the device. Then, RF measurements of S11 

parameter and dc rectified voltage were done to evaluate the applicability of MTJ for RF and 

microwave applications. Finally, another I(V) curve was measured to control the integrity of the 

device after RF and microwave measurements. 

 

Figure 2.9: The frame and front panel of the developed program for spin diode measurement. 

 

Figure 2.10: Schematic diagram of the setup based on Vector Network Analyzer that is used to 

measure voltage coefficient, the voltmeter is assigned to measure the non-resonant rectification 

through a bias-T. 

The RF measurements were mainly based on a dc voltmeter and an one-port Vector Network 

Analyser (VNA) that is not only used to measure the voltage reflection coefficient (S11) but also 

used as RF signal source for rectification measurement (Fig. 2.10). All measurements were done 

on a Summit Cascade Probing station, using GSG (Ground-Signal-Ground) GGB industry 150 µm 
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pitch probes. It should be noted that the output power of VNA is frequency dependent, this should 

be taken into consideration especially for the measurement at high frequency. Fig. 2.11 shows the 

diagram of power calibration with the internal de-embedding tool from VNA, and a power 

correction was made to compensate the loss from VNA, cable and probe. It can be seen clearly that 

the power correction was significant at high frequency especially above 10 GHz. During the 

measurements, the power delivered to the end of the GSG probe always remains constant at -20 

dBm (10 μW). The sensitivity was computed later using this power as a reference. The dc voltages 

were retrieved using the bias-T of the VNA and measured using a 6½ digit HP 34401A voltmeter 

with more than 1 s of integration time. I(V) characterization of the samples were done using an 

Agilent 33250A as voltage source, an HP 3457A as ampere meter, and a HP 34401A as voltmeter. 

      

Figure 2.11: Power calibration with de-embedding technique and power correction. 

2.3.1.2 Equivalent circuit 

Due to the novelty of this device, however, the research community working on the MTJ has not 

yet come to a consensus on this point. In this work, it has been chosen not to enter the debate in 

order to focus on targeted RF and microwave applications. Similar to emerging X-parameters, a 

behavioral model will be considered (Fig. 2.12). The model merges a nonlinear description of the 

junction tunnel magnetoresistance with a set of high frequency parasitic components. The former 

is the core of the MTJ behavior, while the latter significantly yields adverse effect at microwave 

frequencies. The junction resistance dependence with the bias voltage is approximated by: 

 
(2) 2 (3)

0( ) j jR i R i v i v      (2.18) 
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for a very small current, where 
 2

jv  describes the zero bias detector capability of the MTJ and the 

parameter 
 3

jv  is mostly related to the I(V) curve point symmetry [9]. The zero bias resistance 0R  

is commonly defined as: 

 ( ) / *100AP P PMR R R R   (2.19) 

where   is the angle between fixed layer and free layer.  

 

Figure 2.12: Equivalent MTJ model with nonlinear description of junction resistance and high 

frequency parasitic components. Test pads effect is not shown in this model. 

The set of parasitic components comprise series resistance Rs, accounting for the access leads and 

the top and bottom contacts losses. With the definition of magnetoresistance ratio

, our samples are supposed to have MR ratio of 80% since the MR ratio 

measured at a constant voltage should be independent from the bit area. By measuring MTJs with 

different bit area, it is possible to extract the series resistance Rs that makes the corrected MR ratio 

independent of bit areas. With the correction of , Rs is extracted and 

has a value of roughly 30 Ω for all samples. Lj is anticipated to represent the change of MTJ 

characteristics as response to magnetic field and current variations in the ferromagnetic materials 

and is extracted to be 0.1 nH for all samples. For a typical sample of R0 = 600 Ω, the impact of Lj 

on the MTJ behavior is negligible below 50 GHz. Interfacial capacitance Ci and interfacial 

resistance Ri are used to express the spin-dependent screening effect at the interface of 

ferromagnet/insulator [119, 120]. The model has been rigorously checked on tens of samples for 

every elliptic shape and size to allow more accurate inferences to be drawn from our measurements. 

( ) / *100AP P PMR R R R 

( ) / ( )*100AP P P SMR R R R R  
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As an electric field is applied to the MTJ, the buildup of electric charges gives rise to an electron 

screening effect. The induced charges will impact the surface magnetization of ferromagnet [119, 

120] due to the exchange interaction. As a result, the unbalanced chemical potential between spin 

up and spin down will result in a spin-dependent voltage drop at the interface, which is modeled in 

Fig. 2.13 with the interfacial resistance Ri, while the spin accumulation at the interface is described 

by an interfacial capacitance. It should be noted that the use of a series branch of a resistor and a 

capacitor in shunt with the junction resistance in an MTJ model has been properly applied to MTJ 

[118], but was previously attributed to measurement artefacts.  

The model parameters are extracted from Current-Voltage characteristic measurements, impedance 

measurements, and non-resonant rectification measurements.  The details of extraction are shown 

in the following sections. Errors are analyzed by taking the uncertainty from the measurement 

instruments and extraction method into consideration.  

2.3.1.3 Linear model extraction and validation 

The linear part of the model in terms of parameters Rs, Lj, Ci and Ri is extracted from impedance 

measurements. Fig. 2.17 shows the real part (Re (Z)) and imaginary part (Im (Z)) of the impedance 

in both antiparallel (AP) and parallel (P) states for two elliptical MTJs with different junction areas 

(0.02 and 0.0096 μm2). Error bar is added to the results by considering the uncertainty from the 

VNA. SPICE simulations are compared to the measurements in the figures. The real part of the 

impedance at low frequency is equal to the junction resistance defined by the tunneling probability 

of the barrier and the junction areas. As frequency increases, the real part of the impedance 

decreases as the alternating currents flow through the interfacial capacitance. The imaginary part 

of impedance stays negative, which witnesses the strong capacitive property of the magnetic tunnel 

junction.  

The interfacial resistance and capacitance are related to the unbalance of spin up and spin down, 

and the amount of spin accumulation at the interface of ferromagnet/insulator. Therefore, they are 

bit area-dependent, and cannot be credited to the measurement procedure. As shown in Fig. 2.14(a) 

– (d), the interfacial resistance and interfacial capacitance in AP state are not the same as in P state, 

which indicates the resistance shall be related to the magnetization of MTJ. More investigations 

are necessary to establish what physical mechanism is standing behind this. 
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Figure 2.13: Real and imaginary parts (Re(Z) and Im(Z), respectively) of the impedance for two 

MTJs with different junction areas (a) 0.02 and (b) 0.0096 μm2 in both AP and P states. The 

points with error bar denote the experimental data while the solid lines represent the simulation 

data using the model. 

The interfacial capacitance suggests also a few counterintuitive observations. Firstly, by comparing 

Fig. 2.14(c) and (d) with (e), we can see that the interfacial capacitances Ci extracted for MTJs are 

much larger than the related geometrical capacitances Cg that can be calculated from parallel-plate 

capacitor theory: 0 /g rC A h   , where 0 denotes the permittivity of space,  denotes the 

relative permittivity of MgO that is around 9.7, A is the bit area of junction and h is the thickness 

of MgO. The same phenomenon has been already reported previously [115-117], while some works 

[119-121] suggested the measured capacitance should be less than the geometric capacitance in 

MTJ. Negative interfacial capacitance [115-117] has been introduced to explain the larger observed 

capacitance. However, the physical mechanism of negative interfacial capacitance is not clear so 

far. In contrast, positive interfacial capacitance has been demonstrated for aluminum oxide based 

MTJs [119, 122]. More research needs to be done on the issue of a larger value of measured 

capacitance compared to geometrical capacitance. Furthermore, contrary to our expectation, the 

interfacial capacitance is not a monotonic function of bit area. 

r
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Figure 2.14: (a) - (d) Parametric study of interfacial resistance and interfacial capacitance with 

error bar in both AP and P state. (e) Calculated geometrical capacitance for all of the samples 

with different bit area. Circle and cross denote the samples with short axis 63 nm and 85 nm, 

respectively, while star and triangle denote the samples with short axis 100 nm and 120 nm, 

respectively. 

2.3.1.4 Test pads effect extraction 

The 3-D electromagnetic model of the test pads has been built in 3-D full wave simulation software 

High Frequency Structural Simulator (HFSS) based on the physical structure, while the equivalent 
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circuit model has been built in ADS. As shown in Fig. 2.15(a) and (b), test pads are patterned as 

GSG mode in order to be tested easily using a GSG probe, and the equivalent circuit can be 

simplified as a low pass structure consisting of a series inductor Lp and a shunt capacitor Cp. The 

inductance comes from the leads, and the capacitance comes from the narrow gap where the MTJ 

is placed. S-parameters used here are to describe the transmission and reflection characteristics of 

the two-port network. As shown in Fig. 2.15(c), the parameters of test pads can be extracted when 

similar results are obtained from the simulation in HFSS and ADS, and the extracted Lp and Cp are 

30 pH and 35 fF, respectively.  

 

Figure 2.15: (a) 3-D electromagnetic model of test pads, in which the wave port is defined as port 

1, and the lumped port is defined as port 2. (b) Equivalent circuit model in ADS. (c) Comparison 

of S-parameters from two simulations. 

2.3.1.5 Nonlinear model extraction and validation 

There are two kinds of rectifications involved in MTJs: non-resonant rectification operating as a 

classical nonlinear device due to the nonlinearity of current-voltage characteristic, and resonant 

rectification due to spin-torque-driven ferromagnetic resonance (ST-FMR) [31]. The resonant 

rectification voltage in our experiment is ignorable comparing to the non-resonant rectification in 

both AP and P states. So, we focus on the non-resonant rectification in the absence of external 

magnetic field. The physical mechanisms of non-resonant rectification include tunneling effect, 

spin mixing [9], and Seebeck effect [123] which can generate a dc voltage due to the temperature 

gradient crossing the MTJ junction. The effects of all the mechanisms are involved in the second 

term of (2.18). The nonlinear aspects of the model are extracted from Current-Voltage 
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characteristic measurement and non-resonant rectification measurements. In this part, both the 

uncertainty from VNA and volt-meter are taken into consideration.  

Input reflection coefficient was being constantly monitored during the rectifying operation. It is 

very valuable information that allows to retrieve the input impedance of the device, but also to 

know what quantity of the input power effectively enters the device. To enhance the accuracy of 

the device characterization, a nonlinear VNA (NVNA) could be used to operate a calibrated 

measurement of the reflected energy at harmonic frequencies. However, in this work, basic S11 

results are enough to describe the main frequency behavior of the nonlinear device.  The matching 

efficiency denotes the proportion of power that is injected into the MTJ, and can be simply 

calculated as: 

 
2

111M S    (2.20) 

The nonlinearity of the current-voltage characteristic of MTJs, early reported by Julliere [124], is 

responsible for the non-resonant rectification. As a figure of merit to represent the nonlinearity, the 

matched voltage sensitivity M  is defined as the ratio of the rectified dc voltage to the input RF 

power [125]: 

 / ( )M rect RF MV P   (2.21) 

where rectV  is the rectified voltage, and RFP  is the RF power from the VNA source. RF MP   

represents the power that is delivered to the MTJ. The matched voltage sensitivity indicates how 

much dc voltage will be generated per unit power. Fig. 2.16 (a) shows the matched voltage 

sensitivity of the 0.02 μm2 MTJ sample, as can be seen that the sensitivity in AP state is higher than 

in P state because of its stronger nonlinearity. 

The parasitic effect can be seen on the stacked area chart of power distribution for the 0.02 μm2 

MTJ sample given in Fig. 2.16(b). The data presented in the figure are obtained from a harmonic 

balance (HB) simulation in electronic design automation software ADS. As frequency increases, 

the matching between the source and the MTJ improves as a result of the drop of impedance, 

resulting in more power is injected into MTJ. Nonetheless, less power is delivered to Rj at high 

frequencies and more power is dissipated in the series resistance Rs and interfacial resistance Ri. 

At high frequency, the interfacial capacitance presents a low impedance path for the signal, and the 
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lower impedance at Ri and Ci path compared to Rj path gives rise to less power go through Rj. Fig. 

2.16(b) reveals the decrease of microwave current injected into the junction resistance due to 

parasitic effect, leading to the drop of rectified voltage as well as voltage sensitivity that is shown 

in Fig. 2.16(a). The nonlinear parameters are extracted from the current-voltage measurements and 

validated by the non-resonant rectification measurements. 

 

Figure 2.16: (a) Matched sensitivity calculated from measurement of rectified voltage and 

injected power, considering the uncertainty from VNA and volt-meter. (b) Stacked area chart of 

power distribution analysis for the 0.02 μm2 MTJ sample, the gray part stands for the power 

reflected towards the generator, the orange part represents the power passing through the 

nonlinear junction resistance and the green part represents the power consumed in the series 

resistance Rs and interfacial resistance Ri. 

The non-resonant rectification measurements were done under a small RF signal condition, the 

effects of parasitic parameters can be summarized using the parasitic factor metric that can be 

calculated as [126]: 0/Mk   ,  while 0  indicates the voltage sensitivity when frequency tends to 

zero hertz. This factor is a key parameter to describe the efficiency of the MTJ used in microwave 

applications. It indicates how much the parasitic parameters affect the frequency-dependent 

performance of the MTJ, while no effect is observed at low frequencies (k = 1). The extracted 

parasitic factor for the 0.02 μm2 MTJ sample in both AP and P states are shown in Fig. 2.17, as can 

be seen that the simulation based on the equivalent model agrees well with the measurement except 

the small difference at high frequencies, and less sensitive to parasitic parameters is seen in P state 

compared to AP state. 
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Figure 2.17: Extracted parasitic factor is used to evaluate the performance of MTJs at microwave 

frequencies. The points denote the experimental data of the 0.02 μm2 MTJ sample while solid 

lines are from simulation using the equivalent model. 

 

Figure 2.18: Analysis of (a) junction resistance (b) voltage sensitivity when frequency tends to 

zero hertz, and (c) 3 dB cutoff frequency for all of samples in both AP and P state. The points are 

from measurements, the blue dash line is just a guide for the eyes. 
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To give a full parametric study, the junction resistance and voltage sensitivity 0  are also 

presented with different bit area. As shown in Fig. 2.18(a), junction resistance of MTJ is inversely 

proportional to bit area. Fig. 2.18(b) shows that the voltage sensitivity is higher in AP state than in 

P state, and the sensitivity decreases as bit area increases. Since 0  is proportional to the 

curvature coefficient
2 2/ / ( / )d i dv di dv , the nonlinearity in AP state is stronger than in P state, and 

smaller bit area MTJ has stronger nonlinearity. 

2.3.1.6 Cutoff frequency derivation 

Cutoff frequency is an essential metric to quantify the maximum operation frequency of devices 

and circuits. The 3-dB cutoff frequency is defined as the frequency boundary at which energy 

flowing through junction resistance reduces to half of the energy injected into the MTJ. After this 

frequency, the performance of the MTJ degrades dramatically.  

 

Figure 2.19: (a) Complete model for MTJ including test pads effect. (b) Simplified model in order 

to analyze cutoff frequency. 

Since Lj, Lp and Cp only have impact on frequency beyond 50 GHz, they can be ignored when we 

analyze the cutoff frequency that is in the range of hundreds of MHz. As shown in Fig. 2.19 (b), 

Vin denotes the voltage across the MTJ while Vout denotes the voltage across the junction resistance. 

The input impedance of MTJ Zin and the relationship of Vout and Vin can be expressed as: 

 
( 1/ )

1/

j i
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Then the injected power and the power that goes through junction resistance can be obtained: 
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where we consider Vin as a real value in order to simplify the calculation. According to the 

definition of 3 dB cutoff frequency, we can express the power ratio as:  

 

2

*

1 Real( ) 1
Real( ) / ( )

2

out

in in j

P H

P Z R
   (2.26) 

The 3-dB cutoff frequency ω/2π can be obtained by solving the above equation. Since the 

calculation is complicated, we did not show the final expression of 3-dB cutoff frequency here.  

As shown in Fig. 2.18(c), the 3-dB cutoff frequency for all our samples is between 80 and 650 

MHz, we believe that the high interfacial capacitance is responsible for this limitation. On the other 

hand, contrary to a typical microwave device that has a cutoff frequency decreasing with higher 

area, in the MTJ the cutoff frequency increases as bit area increases, which means MTJs with higher 

bit area or lower junction resistance are less sensitive to parasitic parameters and then can be 

applied at higher frequency. It also can be seen that cutoff frequency in P state is higher than in AP 

state. 

In fact, due to the current divider nature of the MTJ equivalent circuit, the interfacial resistance is 

limiting the current flowing through the parasitic capacitance Ci. Therefore, Ri could be engineered 

in the future design to improve the parasitic factor. Increasing the unbalance between spin up and 

spin down should increase the interfacial resistance, which in turn, would allow the operation of 

Spintronics devices at higher frequency. 
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(a) 

 

(b) 

 

(c) 

Figure 2.20: Comparison of (a) S11, (b) real part and (c) imaginary part of impedance between 

two spindiodes with different junction resistances and a commercial SMS7630 Schottky diode. 

During measurement, power entering the nonlinear device was kept below – 40 dBm. 



58 

 

 

2.4   Comparison of Schottky diode and spindiode 

2.4.1 Comparison of parasitic factor and parasitic components  

Input reflection coefficients (referenced to 50 Ω) for one SMS 7630 diode and two spindiodes 

having different pillar section are plotted in Fig. 2.20(a). As expected, due to a lower ZBR, more 

RF power enters the spin-devices. As it can be seen in Fig. 2.20(b) and (c), the impedance varies 

much less than in the case of the Schottky diode, especially for low ZBR MTJ. The spindiode will 

then support higher efficiency, wider band matching capability than the Schottky diode. 

The parameters given in Table 2.2 are extracted from the impedance measurements. Interfacial 

resistance iR that reduces the low pass effect of the junction capacitance is another advantage of 

spindiode over Schottky diode for high frequency operation. A nice example can be seen in Fig. 

2.21 with the measured parasitic efficiency. At high frequency, the Schottky diode curve decreases 

abruptly, but the slope of the spindiode is small and even becomes positive. The direct conclusion 

of this fact is that the low pass filter’s cut-off frequency commonly used is not a good criterion to 

describe the capabilities of the spindiode as rectifying devices. As expected, the junction resistance 

has a strong impact on the parasitic losses, and a low ZBR provides a better efficiency, even for 

wider area sample, like the 300 Ω device in Fig. 2.21.  

 

Figure 2.21:  Efficiency related to the parasitic losses. Data shown are calculated as the square of 

measured responsivity, normalized to low frequency value, with a compensation of insertion 

losses. 



59 

 

 

Table 2.2:  Value of equivalent model elements shown in Fig. 2.12. 

Symbol COMMENT 
SMS7630 Schottky 

diode 

900 Ω 

spindiode 

 300 Ω 

spindiode 

pC
 

Package capacitance -- 35 fF  35 fF 

pL
 

Package inductance 0.35nH 0.01 nH  0.01 nH 

jL
 

Junction inductance -- 0.275nH  0.14nH 

sR
 

Series resistance 20 Ω 1 Ω  1 Ω 

jC
 

Junction capacitance 90 fF  10 fF  20 fF 

iR  Interfacial resistance -- 272 Ω  272 Ω 

iC
 

Interfacial capacitance -- 0.88 pF  1 pF 

a Coefficient for  j jI V   -- 4.9e-3  2.55e-3 

b Coefficient for  j jI V  -- 2.84e-4  4.73e-5 

c Coefficient for  j jI V  -- 2.39e-3  1.04e-3 

0  Zero-bias Responsivity 100 mV/µW 128 µV/µW  47 µV/µW 

ZBR   Zero-bias Junction 

Resistance 

7000 890 Ω  280 Ω 

      

 

Figure 2.22:  Calculated dc responsivity from I(V) measurements results. The point located at 

zero-bias indicates a low frequency low power measurements to validate the responsivity 

extraction. 
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2.4.2 Comparison of responsivity 

As described in section 2.1, the responsivity can be used to evaluate the device nonlinearity. Fig. 

2.22 compares responsivity values calculated from the I(V) curve for a 900 Ω spindiode and for 

the SMS7630 Schottky diode.  For verification purpose, the responsivity is measured directly from 

a low RF signal of 20 MHz. There are about 3 orders of magnitude of difference between the two 

technologies. That may seem an extremely large ratio, but it should be noted that the nonlinearity 

of Schottky diode is a result of more than 40 years of development, and that the MTJ investigated 

in this work is in fact a MRAM bit, operating as a spindiode, but optimized only for memory 

applications.  

2.5   Discussion of capability of spindiode rectification 

With their scalable ZBR capabilities, the spindiodes are very promising devices for low power 

rectification with high-efficiency, but also for low power mixer applications. Unfortunately, the 

spindiode sample measured in this work does not have enough nonlinearity to be used for a practical 

rectifier demonstration. However, a proper diode design should lead to a significant improvement 

of the RF-to-dc conversion efficiency. The magnetic stack deposition process is also a key element 

that could be optimized in several ways. For example, the tunnel barrier could be optimized to 

enhance the nonlinearity, and consequently the sensitivity [127]. The MTJ ferromagnetic resonance 

could also be adjusted to coincide with the input signal frequency. In this configuration, the low 

nonlinearity of the spindiode would be compensated by an enhanced magnetic susceptibility. A 

recent work presented conditions to obtain a 500 Ω magnetic tunnel junctions having a sensitivity 

of about 10000 mV/mW [128]. This factor combined with the improvement in parasitic losses 

would lead to a surpass of the current Schottky diodes (which do not have any room for 

improvement).  

Although the model in Fig. 2.12 works up to 20 GHz, complex model (Fig. 2.23) could be used for 

up to 40 GHz [129]. Fig. 2.24 shows the low power efficiency 

 
2

4

j

M in pI

R
P       (2.27) 

calculated using the dc value of the current responsivity I  and the parasitic efficiency data 

measured at 30 GHz. As stated earlier, the MTJ samples measured here would not provide a 
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satisfying low power efficiency, but following the projection of [128], the spindiode can surpass 

the diode, therefore paving the way for a bright future for low RF and microwave power harvesting 

and rectification with high-efficiency. In particular, millimeter-wave to dc rectification will benefit 

from the special features of spindiodes. 

 

Figure 2.23: Complex model of MTJ [129]. 

 

Figure 2.24: Low power diode efficiency under the matched conditions and the load condition

j LR R . Data were calculated based on the measurement of responsivity, ZBR and parasitic 

efficiency at 30 GHz. 

2.6   Conclusion  

This present work has highlighted electrical and physical behaviors and limitations of the Schottky-

based low power RF-to-dc rectifiers. It has been shown that MPH circuits based on spindiodes are 
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a promising alternative. Besides, this work shows the role of the nonlinearity as well as the value 

of the zero bias resistance in the RF-to-dc power conversion. Detailed analysis and modeling are 

carried out to suggest the advantageous features of spindiodes as the next generation of active 

devices for RF and microwave rectifications and other nonlinear applications. The concluding 

remarks have been supported by theoretical and experimental results as well as physical 

explanations and discussions. 
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CHAPTER 3 NEGATIVE RESISTANCE-BASED ELECTRONIC 

IMPEDANCE TUNER 

 

Negative resistance can manifest in some electronic devices or circuits, such as tunneling diode, 

Gunn diode, IMPATT diode, transistor and operational amplifier with feedback, etc. The intrinsic 

amplification has been applied in PA and oscillator [130, 131]. As a matter of fact, the negative 

resistance can also to be used in electronic impedance tuner to compensate the inner insertion loss 

and therefore enable the reflection coefficient up to the full unity.  

In RF characterization systems, electronic tuner is most often found in niche market, as compared 

with its electromechanical and active counterparts, although it has advantages of small size, low 

cost and fast tuning. In fact, the realizable maximum reflection coefficient is systematically limited 

by its large insertion loss [132]. To reach a larger reflection coefficient, one has to compensate the 

loss by an amplification. A reflection coefficient larger than one means that the reflected signal is 

somewhere amplified by the circuit. From the standpoint of impedance, this implies that the signal 

has to be reflected by a negative resistance.  

The main contribution of this work is to use the amplification property of a negative resistance 

device to compensate the loss stemmed from an electronic tuner. Somehow it is similar to an active 

tuner, but it is more cost-effective due to its simplicity and low power consumption. Interestingly, 

the very intuitive operation of this circuit could be used for pedagogical purposes.  

3.1 Principle of negative resistance-based tuner  

The proposed topology includes a wideband phase shifter and an impedance tuning circuit (Fig. 

3.1), in which port 2 is usually connected to 50 Ω, while port 1 presents different impedance states. 

As depicted in the ideal circuit (Fig. 3.2(a)), the core part is a shunt tunneling diode and a series 

PIN diode. The tunneling diode is biased to the level that presents a negative resistance (-RTD). The 

PIN diode is forward-biased in order to provide a variable positive resistance (RPIN).  

Without considering any parasitic effect, this topology generates a set of impedance points by a 

negative resistance in parallel with an equivalent positive resistance (Req) after considering the 50 

Ω port effect (Fig. 3.2(b)). The total resistance can be calculated by e eR R / (R R )TD q q TD   . Ideally, 

when Req is swept from low resistance (e.g. 50 Ω) to high resistance (e.g. 600 Ω), as illustrated in 
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Fig. 3.2(c), the generated impedance points will be distributed from center to open circuit, then to 

outside of Smith chart (negative resistance region).  

 

Figure 3.1:  Diagram of electronic tuner: it consists of a wideband NLTL-based phase shifter and 

an impedance tuning circuit. 

 

Figure 3.2: (a) Ideal circuit of the proposed topology; (b) Simplified circuit to generate 

impedance values; (c) Operation principle illustrated on Smith chart. 

One criterion to evaluate the electronic tuner is Smith chart coverage [82], a simple way to improve 

the coverage is to use a 360° phase shifter before the impedance tuning circuit. As shown in Fig. 

3.2(c), the set of impedance points generated by the impedance tuning circuit will be rotated by the 

360° phase shifter. With the advantages of broadband, easy impedance matching and low loss, 

nonlinear transmission line (NLTL) technique is a good solution for controlling the phase shift over 

a wide frequency range.  

However, the tunneling diode and PIN diode are not pure resistances, parasitic parameters can not 

be ignored over the GHz frequency range. The consequence is that the impedance distribution 

would be distorted. Therefore, two adjusting components, Ca and Ra, can be presented in the 
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impedance tuning circuit in order to adjust the impedance distribution (Fig. 3.1). The values will 

be determined according to the operation frequency range as well as the impedance distribution on 

Smith chart.  

3.2 Modeling of tunneling diode and PIN diode 

Since parasitic parameters from device and connection pads have impact on the impedance, 

accurate models of tunneling and PIN diodes should be established prior to the design. A behavioral 

model, more relevant in field operation, is developed from I(V) characteristic and C(V) 

characteristic as well as measured S-parameters.  

It is important to mention that the I(V) curve of the tunneling diode is measured with a known 

positive resistor in parallel with it, in order to avoid unexpected oscillation and irregular 

discontinuity in the I(V) curve [133]. In Fig. 3.3(a), the equation of the I(V)curve of the tunneling 

diode is expressed in a Symbolically Defined Devices (SDD) model. 7th order polynomial is applied 

to fit the measured I(V) curve that is shown in Fig. 3.3(b) 

 

2 3

4 5 6 7

(v) 1.5 5 0.01879 0.18638 0.15171

7.16518 45.47 110.9539 97.13563

i e v v v

v v v v

         

      
.  (3.1) 

The derivation of the I(V) equation is also shown in Fig. 3(b). As it can be seen, the resistance 

remains -409 Ω in the bias range of 0.1 to 0.25 V. Parasitic parameters inductance Ls (0.7 nH) 

related to the long lead, series resistance Rs (0.3 Ω), and total capacitance CT (0.1 pF) are extracted 

from S-parameters measurements. It is worthwhile to note that there is still no proper model that 

can represent the RF characteristics of a tunneling diode. The parasitic parameters of tunneling 

diode extracted in this work are only approximate. 

So far there is no accurate SPICE model for PIN diode, mainly because it shows distinct features 

under reverse and forward bias conditions. A PIN diode under forward bias condition can be 

modeled as a current-controlled series resistance with a parasitic inductance (Fig. 3.4(a)). The series 

resistance can be extracted from S-parameters measurements under different biases. As depicted in 

Fig. 3.4(b), the PIN diode can be considered as a variable RF resistance from a few Ω to hundreds 

Ω when current is swept from μA to mA level. However, it should be mentioned that a precise bias 

source is required. The parasitic inductance is dependent on the package, which is 0.7 nH for 

SMP1320 with package of SC-79. 
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Figure 3.3: (a) Tunneling diode model with Symbolically Defined Devices (SDD), (b) I(V) curve 

and extracted resistance of tunneling diode MBD5057-E28X from MACOM Technology 

Solutions. 

 

Figure 3.4: (a) SPICE model for PIN diode under forward bias; (b) Equivalent series resistance 

Rs of PIN diode SMP1320 from Skyworks Solutions Inc. 

3.3 Design of NLTL-based phase shifter 

3.3.1 Theory of NLTL-based phase shifter 

Fig. 3.5 shows the LC model of unit cell of NLTL, Cd is the capacitance of varactor, Lt and Ct are 

equivalent inductance and capacitance of the transmission line. The unloaded characteristic 

impedance of the transmission line can be expressed as 
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The loaded characteristic impedance of the NLTL is  
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Figure 3.5: LC model of unit cell of NLTL. 

It means the impedance of NLTL is also a real value, so that it is easy to realize a wideband 

impedance matching. In order to remain a wideband matching when tuning the capacitance of 

varactor from the minimum Cdmin to the maximum Cdmax, usually the impedance of NLTL at a 

middle point a‧Cdmax is set as 50 Ω (a is coefficient), so that the matching at both Cdmin and Cdmax 

conditions are reasonable. The middle point α‧Cdmax is usually chosen as large signal capacitance, 

however, it is not the optimized case since the phase shifter is a small signal application. The 

coefficient α can be optimized in simulation according to the tuning range of the varactor. In this 

work, α = 0.5 is chosen. 

Define the loading factor as 
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Then the loaded impedance at middle point can be written as 
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It can be rewritten as 

 0 50 1Z ax    (3.6) 
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The transmission line can therefore be designed from the unloaded impedance Z0, afterwards the 

equivalent permittivity εreff can be calculated [23].  

According to the Floquet analysis in Chapter 1, the lowest cutoff frequency fBragg|min can be 

calculated at the condition of Cdmax  

 min
max t
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Then we have  
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After calculating the distance per section, the equivalent inductance and capacitance of the 

transmission line can be calculated by the distance and unloaded phase velocity vp0 [52] 
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and 
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where 0 /p reffv c  . Then the relationship between the maximum capacitance Cdmax and loading 

factor x can be calculated from (3.4), which can be used as a criterion to choose a proper 

commercial varactor.  

Let us define the ratio of the maximum capacitance Cdmax and the minimum capacitance Cdmin of 

varactor as max

min

d

d

C
y

C
 . Larger y denotes a larger capacitance variation. Then the minimum and 

maximum phase velocity of NLTL can be calculated as: 

 min
max

/1
|

( ) 1

reff
p

t t d

c
v

L C C x


 

 
                     (3.11) 

and 
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The time delay per unit can be obtained as: 
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and the phase shift per unit can be calculated as: 
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Finally, knowing   it is possible to calculate the number of sections required to obtain 360° phase 

shift:  

 
2

n






                                                 (3.15) 

 

Figure 3.6: LC model of unit cell of NLTL with loss. 

To be integrated with impedance tuner, the NLTL-based phase shifter is designed on microstrip 

line technology. The losses of microstrip line includes dielectric loss, conductive loss as well as 

radiation loss, in which the first two dominate. Since the conductive loss is much larger than 

dielectric loss, in this work, we only consider the conductive loss. The analysis of NLTL on Chapter 

1 is based on lossless transmission line, by taking the conductive loss of the transmission line and 

diode loss into consideration, the unit cell model is modified as Fig. 3.6, in which Rt denotes the 

skin resistance per unit, and Rs represents the series resistance of varactor. Then the loss per unit 

cell is expressed as [134] 
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where Cdmax is used to calculate the largest insertion loss of each varactor. In other words, (3.16) 

represents the largest loss per unit cell of NLTL. Then the total insertion loss of NLTL can be 

calculated 

 n 8.686 dBtotalIL                (3.17) 

 

Figure 3.7: Diagram of design procedure of NLTL-based phase shifter. 

3.3.2 Design procedure of NLTL-based phase shifter 

Based on the design principle of NLTL-based phase shifter in the previous section, the diagram of 

design procedure is described in Fig. 3.7. The most important step is to choose a commercial 

varactor according to the calculated Cdmax, since there are limited choices. As discussed in Chapter 

1, for a true time delay line, the Bragg cutoff frequency will be chosen as 5 times of the highest 

operation frequency, the time delay is independent of frequencies. However, this may result in a 
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small d as well as small capacitance, which is not easy to realize by PCB technique and commercial 

varactor. In this work, it is not necessary to have a true time delay for the tuner, since the tuner is 

for single tone rather than broadband signal. The minimum Bragg cutoff frequency is chosen as 6 

GHz at the condition of Cdmax.  

 

Figure 3.8: Design results of NLTL-based phase shifter. 
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Following the design procedure in Fig. 3.7, the NLTL-based phase shifter is designed on Rogers 

6002 with thickness of 30mil, and the designed frequency is set to 2.5 GHz in order to verify the 

amount of phase shift. Fig. 3.8 shows the calculated results, and the loading factor x is chosen as 3. 

As shown in Fig. 3.8(c), the maximum capacitance is around 1 pF, varactor of MA46H120 from 

MACOM is chosen to provide 0.15 - 1.1 pF capacitance with bias from -15V to 0 V. The distance 

between every two sections is chosen to be 5.27 mm so as to have a minimum Bragg cutoff 

frequency of 6 GHz (Fig. 3. 8(b)). Fig. 3.8(d) - (h) are calculated results for the designed frequency 

2.5 GHz, as can be seen that the 360° requires 17 sections, in order to have a large phase shift for 

low frequencies, the number of sections is chosen as 22.   

3.4 Validation of the proposed tuner 

3.4.1 NLTL-based phase shifter 

The fabricated circuit is shown in Fig. 3.9, the long transmission line of phase shifter is bended in 

order to reduce the total circuit size. Measurement results of the phase shifter are presented in Fig. 

3.10. It can be seen that 360° phase shifter is realized at different frequencies with a different 

voltage tuning range so as to limit the maximum loss to 3 dB. Since the wideband tuning is for 

single tone signal rather than broadband signal, different bias is not a problem.  

 

Figure 3.9:  Photo of the fabricated electronic impedance tuner. 
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Figure 3.10:  Measured phase difference of the NLTL-based phase shifter. 

 

Figure 3.11: Measured 25740 impedance states for the proposed electronic impedance tuner at (a) 

1.5 GHz, (b) 2 GHz, (c) 2.5 GHz, (d) 3 GHz, (e) 4 GHZ, and (f) 5 GHz. The blue circle in (a) and 

(f) stands for the reflection coefficient equals to 1. 
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3.4.2 Impedance tuner 

Ideally, the bias of the tunneling diode could be fixed, and the bias of the PIN diode was swept 

from 0.3 to 0.8 V while the bias of phase shifter was swept from -15 to 0 V, in order to generate 

impedance points all over the Smith chart. However, the parasitic parameters distort the impedance 

distribution, and a fine bias of the tunneling diode becomes necessary (swept from 0.14 to 0.7 V) 

to adjust the impedance distribution on Smith chart. The adjusting components Ca and Ra are 

chosen as 1.8 pF and 68 Ω, respectively, to have a better distribution for frequency range 1.5 - 5 

GHz.  

For an analog tuner, the impedance can be tuned continually. In other words, there are infinite 

impedance states. 25740 impedance states are tested for each frequency with the automatic test 

program, and the results for different frequencies are shown in Fig. 3.11. The maximum reflection 

coefficient Γ is larger than one for 1.5 - 1.9 GHz and 4.5 – 5 GHz, while it is in the range of 0.8 – 

1 for other frequencies. The insertion loss of the phase shifter will reduce the maximum Γ generated 

by the impedance tuning circuit, which means the maximum Γ will decrease after the rotation (Fig. 

3.11(a)). However, in practice, we only care about the coverage inside the Smith chart without 

considering the impedance outside of Smith chart.  

The comparison of the proposed electronic tuner with the recent work as well as with conventional 

mechanical tuner is listed in Table 3.1. The proposed tuner presents the largest maximum Γ 

compared to other work, which can be used in the noise characterization system for active device 

with impedance near 0 Ω. It also presents the lowest power consumption, which is mainly 

consumed by the tunneling diode and PIN diode. Limited by the tunneling diode, the maximum 

operation power of the proposed tuner is around -25 dBm, which is lower than the MOS FET and 

PIN diode based electronic tuner and the mechanical tuner. However, this power level still can be 

used for noise measurement, since the output power of the noise source is always below -50 dBm. 

Further work can be done to improve the power handling capability. For instance, two transistors 

and linear positive resistors could be combined to a generate negative resistance that can handle a 

large power [135].  
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Table 3.1: Comparison with the state-of-the-art work of electronic impedance tuner. 

 This work [136] [137] [138] 

Frequency band 

(GHz) 
1.5 - 5 130 - 170 0.3 - 0.8 0.8 - 8 

Smith chart 

coverage 
High Small High High 

Nonlinear device 

Varactor,  

PIN diode, 

tunneling diode 

MOS FET PIN diode 
Mechanical 

probe 

Maximum 

Gamma 
> 1 0.5 ~ 0.87 0.9 - 0.98 

Power handling  -25 dBm 8 dBm > 30 dBm 1414 W 

Power 

consumption 
3mW -- -- -- 

Loss 2 – 25 dB 6 – 22 dB < 2 dB < 1 dB 

Repeatability 25 dB -- -- 45 dB 

It should be noted that the proposed electronic tuner requires precise bias sources for both PIN 

diode and tunneling diode. A small variation of biases may lead to the shift of impedance. 

Repeatability is presented to describe the stability of tuner, which denotes the difference between 

two S-parameters measurements. As can be seen in the Table 3.1, the repeatability of the proposed 

tuner is around 25 dB, which is limited by the stability and precision of the bias sources.   

Over the GHz frequency range, the distorted impedance distribution, caused by the parasitic 

parameters, can be corrected for different frequency ranges by replacing the adjusting components. 

Small footprint devices and shorter connection pads can be chosen to further reduce the parasitic 

effects so as to improve the performance. In practice, the high insertion loss of the proposed 

electronic tuner will be calibrated prior to the noise measurement.  
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3.5 Conclusion 

In this work, we illustrate the potential use of a negative resistance device in the development of 

an electronic impedance tuner. The experiments exhibit a good performance of the electronic tuner 

over the frequency range 1.5 – 5 GHz. The proposed topology can be an alternative solution for 

on-wafer noise characterization systems. Although only parts of frequencies can have impedance 

states with reflection coefficient larger than one, accurate modeling of tunneling diode and PIN 

diode can be further investigated to predict the impedance distribution efficiently. In addition, large 

power negative resistance devices can be studied to make the electronic tuner work for high power 

condition. 
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CHAPTER 4 NON-UNIFORMLY DISTRIBUTED ELECTRONIC 

IMPEDANCE SYNTHESIZER 

 

A growing number of wireless communication devices sold per year requires that the suppliers of 

PAs or radio modules to dramatically increase their testing capabilities. Positioned at the output of 

PA or radio module, an antenna generally has a limited area and is susceptible to human factor and 

environmental effect. As a result, a whole set of specifications of the PAs or radio modules must 

be evaluated with a stress test under different impedance conditions simulating a mismatch of the 

antenna.  

Industry is using an electromechanical impedance tuner, a well-established technique for the field 

testing. This equipment allows for a very high level of mismatch and power but with the cost of an 

extremely low tuning speed. For on-wafer measurements, electromechanical impedance tuner can 

only be placed far away from device under test (DUT) due to its large size and weight. Additionally, 

the adjustable positioner also limits the flexibility and accuracy of measurement. The industry has 

therefore greatly promoted the development of a fast tuning electronic impedance synthesizer (EIS) 

in the past years. The tuning speed of the EIS is in the range of milliseconds whereas tuning speed 

of electromechanical impedance synthesizer in the range of seconds. The synthesis rate is almost 

instantaneous and can reduce the measurement time dramatically. This is very important for full 

range testing of several dc and RF parameters of a PA or a radio module in production runs, 

especially when a large throughput is required. 

Beside the application in characterization system, EIS has also been widely used as a tunable 

matching network (TMN) for reconfigurable devices or systems [139-147]. The development of 

software-defined radio (SDR) and new generation communication systems require a number of 

reconfigurable devices that can operate in different frequency bands and with different 

communication standards. In a reconfigurable PA, TMN can be placed in both input and output of 

the PA to match the impedances so as to improve the power transfer gain and efficiency. In a 

reconfigurable antenna, TMN can improve the maximum radiation power [147]. 

A traditional digital EIS is made by a set of switches combined with fixed capacitors, which are 

placed periodically along the transmission line. The switches can be PIN diodes [141, 142], 
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varactors [143, 144, 148, 149], MMICs or transistors [150-155] and MEMS switches [139, 140, 

145, 146, 156]. The position of a capacitor can be varied virtually along the transmission line by 

choosing the appropriate switch. In such a configuration with a number of n switches, the EIS can 

only provide limited impedance states (2n) by combing different states of switches: ON and OFF. 

The EIS was mostly developed based on the topology of single-stub, double-stub and triple-stub 

[157], pi-structure [144, 147, 158], T-structure [159], as well as multi artificial transmission lines 

[153] and transmission line with tunable impedance [160].  

The topology with the distributed transmission line technique has been proved having better 

performance than double- or triple- stub topology [139, 140, 152, 154, 157, 161-163], mainly 

because of the physical features of distributed structure. In the distributed double-slug EIS [140], 

eighty sections of minimal-contact MEMS varactors are located periodically along the transmission 

line. Although it has a uniform Smith chart distribution, a limited voltage standing wave ratio 

(VSWR) is realized, and large number of varactors and control signals are needed for low frequency, 

which increases the complexity of control circuit.  

In fact, uniform topology is always a compromise solution, it does not guarantee the best 

performance. Non-uniform distributed structure has been demonstrated in sampling VNAs [164] 

with better performance than traditional uniform topology. The distance between two sections 

decreases along the propagation direction, the Bragg cutoff frequency increases so as to have a 

sharper rise time or fall time for the sampling. Although the application is different, the concept of 

non-uniform distributed topology could be implemented for an EIS.  

A type of non-uniform distributed EIS has been presented in a patent [163], in which only one PIN 

diode is turned ON at any time, and it is not fully turned ON. The PIN diode in series with a 

grounded capacitor somehow acts like a varactor but with large series resistance, which results in 

a large dissipation loss. Although this EIS can be applied to wideband application, non-fully turned 

ON PIN diode will cause serious intermodulation distortion problem in high power application. 

Based on the same non-uniform distributed topology in [163], EIS comprising two arrays of solid 

state tuner and a combiner network has been proposed [161]. The combination of two arrays with 

a total of 2*N switching elements can only generate N2 impedance states in lieu of 2n, somehow it 

is a waste of resources and space. In both works [161, 163], a prime number relationship of the 
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physical lengths of transmission lines was proposed to avoid generating repeated reflection 

coefficient, however, this relationship does not guarantee the best Smith chart coverage.  

 

Figure 4.1: Topology of non-uniform EIS consists of an adjusting circuit and a distributed circuit. 

 

Figure 4.2: Illustration of the effect of the adjusting circuit. Impedance distribution on Smith 

chart when PIN diode is (a) ON, and (b) OFF; (c) the total effect of the adjusting circuit on the 

improvement of Smith chart coverage. 

In this work, we propose a non-uniform distributed EIS, it consists of an adjusting circuit and a 

non-uniform distributed circuit (Fig. 4.1). Not only the transmission line length, but also the 

impedance and loading capacitance for each section are non-uniform. The distributed circuit 

comprises a high impedance transmission line non-uniformly loaded with different values of 

capacitors. The adjusting circuit comprises a small value capacitor (e.g., 2 pF) in parallel with a 

combination of large value capacitor (e.g., 30 pF) in series with a PIN diode. When the PIN diode 

is turned ON, the total capacitance is around 32 pF, it almost does not have impact on the impedance 

distribution of the distributed circuit (Fig. 4.2(a)). By contrast, when the PIN diode is turned OFF, 

the total capacitance is around 2 pF, which can rotate the impedance distribution in 

counterclockwise direction on Smith chart (Fig. 4.2(b)). As illustrated in Fig. 4.2, the role of the 
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adjusting circuit is to compensate the uncovered area so as to improve the Smith chart coverage, at 

the same time keep the total circuit length as short as possible. The adjusting circuit can be replaced 

by a variable phase shifter or the combination of several different TLs with switches, which can 

rotate the distributed points in clockwise direction. However, the circuit proposed in this work is 

simpler and smaller.  

So far, except the double-slug distributed EIS [140, 165], it is difficult to have closed-form design 

process for other topologies due to the unpredictable jumping of impedance states. This work 

addresses the design and optimization of the proposed non-uniform distributed EIS.  

4.1 Semi-closed form design procedure 

A semi-closed form design procedure is proposed for uniform distributed topology in order to 

obtain the initial values and boundaries for the multiple parameters. The range of loading 

capacitance is firstly determined from the approximate estimation of the maximum reflection 

coefficient. Then the maximum distance d between each two sections is determined by the Bragg 

cutoff frequency according to NLTL theory [139, 165, 166], while the minimum distance d is 

determined by the rule of that total length should be larger than half wavelength of the lowest 

frequency so as to have a large Smith chart coverage.  

 A quantitative analysis of Smith chart coverage, which describes the percentage of Smith chart 

covered by an EIS, is helpful for the evaluation and optimization of the EIS. Visual observation on 

Smith chart was always used to evaluate the coverage [139, 162]. However, a subjective judgment 

leads to different results from person to person, and it is not helpful for the parametric study and 

optimization. To yield a meaningful result and build a goal function for optimization, a quantitative 

analysis is therefore required. Although the Smith chart coverage has been studied for tunable 

matching network [141, 142], this definition is not applicable to the case of EIS due to the different 

scenario. In this work, a similar criterion is developed for the EIS. As shown in Fig. 4.3(a), let us 

first discretize the whole Smith chart, and make sure there are enough points at each constant 

VSWR circle. In other words, the discretization process should guarantee enough resolution for 

applications. We predefined 1116 impedance points in this work for the whole Smith chart, the 

number of the predefined points varies with the application. Then the measured 4096 impedance 

points (Fig. 4.3(b)) are projected to the predefined Smith chart, and the redundant points are 

removed, during which the point with minimum loss is preserved if several points are close to each 
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other. Finally, Smith chart coverage can be expressed by the ratio of the selected predefined points 

to the total predefined points. 

 

Figure 4.3: (a) Predefined 1116 impedance points on Smith chart; (b) measured impedance 

points; (c) selected measured points; and (d) selected predefined points. 

4.1.1 Determination of the range of loading capacitance 

As shown in Fig. 4.1, the input admittance Yin of the EIS can be calculated from the load side easily. 

In order to simplify the scenario which is similar to the real calibration condition, the admittance 

of source and load are set as 0.02s LY Y  . Fig. 4.4 illustrates how the impedance moves on Smith 

chart when multiple capacitors are loaded along the transmission line. As can be seen in Fig. 4.4(a), 

only when the impedance distributed in the capacitive part of Smith chart, the loaded capacitance 

can further increase the reflection coefficient. For finding out the maximum  , we need to focus 

on the capacitive part of Smith chart. Since the total length of N sections transmission line needs 

to be longer than half wavelength of the minimum frequency, there must be at least N/4 times to 

load capacitors in the capacitive part of Smith chart for each frequency. Therefore, the maximum 

  can be estimated approximately by only one transmission line loaded with / 4C N . Then the 

input admittance can be calculated by  
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And the estimated maximum reflection coefficient Γ can be expressed as 
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The magnitude of estimated Γ needs to be larger than the required reflection coefficient
req ,  
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Then we can obtain the lower boundary of the loading capacitance 
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To have as large as possible Smith chart coverage and keep the impedance points distributed in 

Smith chart as uniform as possible, another restriction condition will be applied. When only one 

capacitance C is loaded, the reflection coefficient should be smaller than the required
req , 

otherwise most of the impedance points will distribute at the edge of the Smith chart. This can be 

expressed as 
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Then we can obtain the upper boundary of the loading capacitance 
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For a requirement of 0.875req  , the maximum and minimum loading capacitance are plotted in Fig. 

4.5 as a function of frequency for a 12 sections EIS. A proper capacitance can be chosen ideally to 

have operation bandwidth more than 1 octave. In practice, the results on upper and lower boundary 

of frequency band are not good. For low frequencies, the impedance distribution will be 

concentrated on the center of Smith chart due to the small loading capacitance, while the impedance 

distribution for high frequency will be close to the edge of Smith chart because of the larger loading 

capacitance. As a matter of fact, the operation bandwidth of a real circuit is smaller than 1 octave, 
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which is limited by the parasitic parameters from the commercial PIN diode and capacitor as well 

as the pads. 

 

Figure 4.4:  Impedance movement after (a) loading capacitance on the capacitive part of Smith 

chart, (b) loading with / 4C N  (N = 12), (c) loading with capacitance on the inductive part of 

Smith chart; (d) Required constant reflection coefficient circle. 

 

Figure 4.5: Lower and upper boundaries of loading capacitance. 

4.1.2 Determination of the range of distance d 

When all of the PIN diodes are turned ON, the distributed circuit (Fig. 4.1) is similar to a 

conventional NLTL [54], and the Bragg cutoff frequency will be applied due to the low pass 

property [23, 139, 166] 
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where d denotes the distance between two sections, c is the speed of the light, reff  is the effective 

dielectric constant of unloaded transmission line. The scaling factor K is expressed as 
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where C  is the loading capacitance, Z0 is the impedance of unloaded transmission line. The cutoff 

frequency should be larger than highest operation frequency Bragg Hf f , otherwise it will cause 

serious loss problem (Fig. 4.5). Then the upper boundary for the distance d can be expressed as 
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 (4.9) 

The effect of Bragg cutoff frequency are illustrated in Fig. 4.6, where the transmission response 

and loss feature with different d leading to Braggf  of 3 GHz, 4 GHz and 5 GHz are shown. The 

loss will increase dramatically after the cutoff frequency, and higher cutoff frequency will result in 

lower loss in the operation frequency band, but at the cost of a smaller d. In other words, more 

sections will be needed to have a high Smith chart coverage, which in turn increase the total loss. 

So that a tradeoff needs to be made, in this work, a cutoff frequency of 4 GHz will be chosen for 

the EIS with operation frequency band of 0.8 to 2.5 GHz. 

 

Figure 4.6: (a) Transmission response and (b) loss feature of EIS with Braggf  of 3 GHz, 4 GHz 

and 5 GHz. Only the conductive loss and dielectric loss are taken into consideration in the total 

loss. The ripples in transmission response are because of the mismatching at this impedance state. 

Note that it is only the response of the impedance state with all the PIN diode turned ON. 
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To guarantee there are enough impedance points at the starting frequency point, the total length of 

transmission line should be larger than half wavelength of the lowest frequency. Then the distance 

between two sections should be  

 / 2( 1)maxd N   (4.10) 

Compared to the strict limit factor in (4.9), the lower boundary of d is more flexible. If a small 

starting frequency and a high Bragg cutoff frequency are chosen, conflict will occur between (4.9) 

and (4.10). In this case, restriction of (4.9) should be followed. In general case, (4.9) and (4.10) 

will limit d to a small range, which is critical for the design. 

The Smith chart coverage and mean loss are investigated for the EIS with different numbers of 

sections (Fig. 4.7) while keeping Braggf  as 4 GHz. As can be seen that when d is limited by (4.9), 

the Smith chart coverage can be improved by increasing the number of sections, but with the 

sacrifice of loss. It also can be seen from Fig. 4.7, the minimum coverage within a certain bandwidth 

always occurs at both sides of the frequency range. Therefore, the relationship between the 

minimum coverage for a certain bandwidth and the number of sections N could be obtained, which 

can be used as a preliminary guidance to determine the minimum N according to the required 

coverage.  

 

Figure 4.7:  The investigation of (a) Smith chart coverage as well as (b) mean loss of the EIS with 

different number of sections while keeping 
Braggf  as 4 GHz. Mean loss is the average loss for the 
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selected impedance points. Reactive parasitic parameters from commercial PIN diode and 

capacitor are not taken into consideration in the loss. 

4.1.3 Selection of PIN diode and determination of Z0 

The PIN diode has wide intrinsic layer, therefore it can handle high RF voltage [167] and then has 

good linearity [168]. In addition, a PIN diode has fast switching time [169, 170]. In this work, 

commercial PIN diodes will be selected for the design of the EIS mainly based on two aspects: the 

parasitic parameters and the power-handling capacity. Tradeoff needs to be made between series 

resistance and capacitance because of their opposite relationship with junction area.  

The power-handling capacity and nonlinearity of an EIS are highly dependent on the performance 

of each PIN diode. Therefore, the PIN diode needs to be evaluated prior to applying it in the design 

of an EIS. Appropriate biases of PIN diode for both ON and OFF states will be determined firstly 

from the intermodulation distortion (IMD) measurements.  

For OFF state, the PIN diode can be considered as a voltage-controlled capacitor in series with an 

inductor (inset in Fig. 4.8(a)), the IMD is dominated by the nonlinearity of depletion capacitance 

with reverse bias (Fig. 4.8(a)). The third-order intercept point can be predicted by [171]  

 
2 2 2

03 6.5 10log(f Z / )IP d C dV dBm     (4.11) 

where Z0 denotes the characteristic impedance of system, and 2 2/d C dV  denotes the second 

derivative of C(V) characteristic. It should be noted that the breakdown effect has not been 

considered in (4.11), so the reverse bias close to breakdown voltage will result in a decrease of IP3. 

It has been demonstrated that PIN diode with thicker intrinsic layer has flatter C(V) characteristic 

due to the small portion of depletion layer compared to the overall thickness [171]. Therefore, the 

third order intercept point (IP3) for OFF state is proportional to the width of intrinsic layer, and 

inversely proportional to the operation frequency.  

For ON state, PIN diode can be considered as a current controlled resistor in series with an inductor 

(inset in Fig. 4.8(b)), the nonlinear IV characteristics in intrinsic layer is the main source of IMD 

(Fig. 4.8(b)). The third-order intercept point can be expressed theoretically by [172] 

 F3 69 15log(I f/ Rs)IP dBm   (4.12) 
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where IF stands for the forward current, τ denotes the minority carrier lifetime or recombination 

lifetime, and f represents operation frequency while RS is the high frequency resistance. Since

2 / 2s FR W I  , where W is the width of intrinsic layer and μ is ambipolar mobility, then the IP3 is 

proportional to forward current and operation frequency, and inversely proportional to the width of 

intrinsic layer.  

In order to have a higher IMD for both ON and OFF states, PIN diode needs to be chosen with a 

tradeoff. In this work, SMP1320-079LF from Skyworks Solution Inc. with 8 μm intrinsic layer, 

and BAR95-02LS from Infineon Technologies with 19 μm intrinsic layer are chosen for the 

experiments to handle at least 0.5 watt CW power. The IMD test of PIN diode SMP1320 under 

different reverse bias and forward currents are depicted in Fig. 4.8(c) and (d). A low input IP3 (IIP3) 

is measured when a small reverse bias or small forward current is applied. In this case, smaller test 

power needs to be used for IMD test, otherwise too high test power will result in stronger 

nonlinearity [173]. As can be seen from Fig. 4.8(c) and (d), the theoretical calculation based on 

(4.11) and (4.12) can be used to predict the power-handling capacity of the PIN diode. Finally, a 

half of the breakdown voltage -25 V is selected for OFF state, and forward bias 30 mA is selected 

for ON state, so that single PIN diode will have IIP3 more than 50 dBm.  

 

Figure 4.8:  Nonlinearity of (a) Rs (IF) and (b) CT (Vr) characteristics of PIN diode SMP1320. 

IMD test for both (c) OFF and (d) ON states. Dots denote measurement while line denotes 

theoretical predictions. 



88 

 

 

Similar to NLTL theory, the initial impedance of unloaded transmission line Z0 is set to a high 

value, in order to keep the loaded impedance close to 50 Ω after loading the capacitors. Increasing 

Z0 improves the Smith chart coverage of the EIS, but a high Z0 leads to a narrow trace, where 

soldering the commercial components becomes challenging.  

4.2 Optimization 

For an EIS with N sections (Fig. 4.1), 3*N+6 variables will be involved in the optimization process, 

including N loading capacitors, N+1 lengths of transmission line and N+1 impedances for 

distributed circuit, 2 capacitors and 2 lengths of 50 Ω transmission line for adjusting circuit. The 

complexity of the optimization problem grows with the number of sections. This work is the first 

to introduce Particle Swarm Optimization (PSO) to solve the multi-parameter microwave design 

problem of an EIS, which can dramatically shorten the development cycle.  

PSO is an emerging heuristic search method, which is inspired by the collaborative behavior or 

information sharing mechanism of biological populations, such as flocks of birds, schools of fish. 

As a population-based search method, the best solution can be discovered by moving around a 

population (swarm) of candidate solutions (particles) in the multi-dimensional search space. The 

movement of each particle is guided not only by its local best-known position, but also by the best 

known positions of the entire swarm so as to move the swarm toward the best solution after several 

iterations.  

4.2.1 Definition of fitness function 

A fitness function is a figure of merit that indicates how close the design solution is to the goal. 

Smith chart coverage will be considered as the fitness function since it is the most important 

criterion to evaluate an EIS. In addition, several criteria such as loss, uniformity factor, power 

handling also can be integrated into the fitness function according to different applications. 

4.2.1.1 Loss 

Three loss definitions, transducer power gain
TG , power gain

PG , and available power gain 
AG  

[174], can be utilized for a mismatched two port network in either logarithm [140, 141, 145] or 

linear format [139, 146]. The selection of loss definition depends on the different scenario as 

explained in Fig. 4.9.  



89 

 

 

 

Figure 4.9: Four different scenarios to use EIS: (a) Calibration with VNA; (b) Load-Pull 

characterization system; (c) Noise measurement; (d) TMN for reconfigurable PA or antenna. 

Except acting as a one-port variable load, EIS is normally used as a two-port network in four 

scenarios (Fig. 4.9). In the calibration process (Fig. 4.9(a)), the EIS will be connected to a 50 Ω 

VNA, then we have 0S L    . In this case, the power gain
PG , the ratio of power available from 

the network and power input to the network, is suitable to describe the loss of the EIS. It describes 

the power dissipated in the network, and it can be simplified as  

 

2

21

2

111
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S



 (4.13) 

Since the EIS will not be used in practical application with both sides terminated by 50 Ω, this loss 

definition only can used as a reference.  

When the EIS used as a load tuner in Load-Pull characterization system (right side in Fig. 4.9(b)), 

the impedance at the output port of DUT is unknown (but not 50 Ω), then we have 0S  and

0L  . Power gain 
PG only can be calculated and it has the same simplified form as (4.13). In 

practical application, the impedance of the EIS will be swept until maximum power is detected by 

the power meter that is placed at the output of the EIS, then we consider the output of DUT and the 

input of the EIS are conjugation matched. From power gain
PG , we can estimate the output power 

from the DUT. In fact, the optimal impedance and maximum power at the output port of DUT are 

what one expects from Load-Pull system. Since the load tuner scenario shares the same loss 



90 

 

 

equation with the calibration scenario (Fig. 4.9(a)), the loss from the calibration process can be 

considered as a reference for load tuner.  

In source tuner scenario (left side in Fig. 4.9(b)) or noise measurement (Fig. 4.9(c)), 0S  and

0L  , we will select available power gain
AG that is defined by the ratio of power available from 

the EIS and power available from the source. 
AG  can be simplified as 

 

2

21

2

221
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S
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S



  (4.14) 

from which we can estimate the power output from EIS or the power input to DUT if the 

conjugation matching is considered.  

When an EIS is used as a TMN for reconfigurable devices (Fig. 4.9(d)), both sides are probably 

not 50 Ω, which means 0S  and 0L  . In this case, we select transducer power gain
TG , which 

is defined by the ratio of power delivered to the load and power available from the source, because 

we care about the maximum power transferred to the load. 
TG  considers the power dissipated in 

the EIS and the mismatching loss on both sides, as well as the conductive and dielectric loss. It can 

be expressed as  
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where 
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 (4.16) 

From the above analysis, one knows that the loss is not always describing the power dissipated 

inside the EIS. As used in most of work, the definition of (4.13) is also chosen in this work for two 

reasons: 1) It is similar to the real calibration process with both sides terminated by 50 Ω. 2) 

Although it is not suitable for all the scenarios, it is the only measurable loss compared to others, 

and the measured results can be used to verify the theory. 
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4.2.1.2 Uniformity factor 

The ideal EIS should have a uniform distribution, which can be understood as same number of 

impedance points distributed in an equal area. The Smith chart coverage criterion can provide a 

total number of useful points, but it does not show where those points are distributed on Smith 

chart. A high coverage does not guarantee a uniform distribution. We propose to apply the criterion 

of uniformity factor from TMN [145] into the EIS so as to compensate the deficiency of Smith 

chart coverage. It is a numerical solution to roughly estimate the uniformity of distribution on Smith 

chart, therefore it also can be used as restriction condition in optimization. A lower value indicates 

a better distribution over the entire Smith chart.  

The uniformity factor calculation process is described as the following: first the Smith chart will 

be divided into Nr and Nθ subsections from radius and phase directions, respectively (Fig. 4.10). It 

should be noted that non-uniform division will be done in radius direction in order to ensure each 

subsection has same area. Then the number of impedance points N (i,j) in each subsection will be 

counted. Finally, the uniformity factor can be expressed by calculating the variance 
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 (4.17) 

 

Figure 4.10: The division of Smith chart to calculate the uniformity factor. 
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4.2.1.3 Maximum peak voltage 

Voltage distribution theory developed in this section is to estimate the power handling and 

nonlinearity of the distributed EIS in an easy way. It helps to know the peak voltage at any position 

of the distributed structure. During the optimization, we can improve the power handling of an EIS 

by limiting the maximum peak voltage to a certain level. 

Power-handling capacity is defined as the maximum average power that could be delivered to EIS 

without degrading its performance. The 1 dB gain compression point (P1dB) is often used as a 

metric to evaluate the power-handling capacity. As a matter of fact, every electronic component or 

system has some degree of nonlinearity, which can be described by the IIP3 from IMD test. As 

listed in Table 4.1, limited work has been done on the power-handling capacity and HB simulation, 

but only for a limited number of impedance states because the simulations and measurements are 

time-consuming and inefficient, especially for the statistic study of an EIS involving thousands of 

impedance states. They are always used as verification [139, 157], which are, however, not able to 

be considered in the design and optimization process. 

 

Figure 4.11: Traditional topology of distributed electronic impedance synthesizer. 

It is quite a challenge to measure the voltage distribution, so that simulation of voltage distribution 

is commonly used to verify the impedance states [139, 140, 157], or predict the power-handling 

capacity qualitatively [162]. By contrast, the proposed voltage distribution theory in this work can 

prove to be very useful to predict the power-handling capacity and nonlinearity quantitatively for 

distributed nonlinear circuits. Since the nonlinearity of EIS comes from the nonlinear devices (PIN 

diodes) in the circuit, the power handling capacity of an EIS is related to the operation status of 

each PIN diode. The analysis of voltage distribution enables to find out the maximum peak voltage 

along the transmission line. Larger maximum peak voltage will result in lower power-handling 

capacity, and vice versa. Consequently, if the relationship between power-handling capacity and 

maximum peak voltage can be established from a small amount of simulations (e.g., 20), it is 
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possible to estimate the power-handling capacity as well as nonlinearity by the proposed voltage 

distribution theory, and then use it as a criterion in the design and optimization process to boost the 

power-handling capacity and linearity. 

Table 4.1: Studies of power-handling capacity and nonlinearity of EIS. 

Reference 
Voltage 

distribution 
P1dB IP3 

[157] Simulation Measurement, 24 dBm Measurement, 33 dBm 

[139] Simulation 
Measurement, 28.5 dBm 

(self-actuation power) 
Measurement, 31 dBm 

[140] Simulation -- -- 

[175] -- -- 
Measurement, OIP3 ≈ 48 

dBm 

[158] -- Measurement, ≈ 33 dBm  -- 

[154] -- 
Measurement, -1 dBm 

(Pout1dB) 
-- 

[147] -- Measurement, > 40dBm -- 

[162] Simulation 
Measurement, 36 dBm  

(self-actuation power) 
-- 

[161] -- Measurement, 38.5 dBm -- 

This 

work 

Theory 

& Simulation 

Measurement & Simulation 

35 dBm 

Measurement & Simulation 

IIP3 = 57 dBm 

 

In order to simplify the analysis of distributed topology, lossless transmission line is first 

considered (Fig. 4.11). Fig. 4.12(a) shows the circuit of (m-1)th and mth sections of the distributed 

EIS. The circuit before the (m-1)th diode can be replaced by Thevenin voltage th, -1mV , and 

Thevenin impedance th, -1mZ (Fig. 4.12(b)). th, -1mZ is the impedance seen on the left side the diode 

m-1 by considering the voltage source as RF short circuit. In Fig. 4.12(c), the right-handed side 

circuit is considered as open circuit when calculating the Thevenin voltage at node m. The voltage 

and current at position z can be expressed as [23] 

 (z) ( ) 2 cos( )j z j zV A e e A z       (4.18) 

 
0

( ) 2 sin( )
A

I z j z
Z

   (4.19) 
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The voltage at z = -l can also be calculated by 
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From (4.18) and (4.20), one can obtain the coefficient A 
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Substitute (4.21) into (4.18), the Thevenin voltage at node m can be obtained by letting z = 0, and 

Vth,m can be iterated until m = 1. If 0sZ Z , then th,1
j l

sV V e  , where Vs is the source voltage, 

and it is expressed as 0 s8 (Z )sV P real   . In order to further simplify the scenario, we assume 

the PIN diode used here as an ideal switch. As illustrated in Fig. 4.12(b), the Thevenin voltage 

'
th, 1mV  can be calculated from th, -1mV  by the theory of voltage divider,  
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where 1/c dZ j C , and Sm-1 denotes the status (0 or 1) of the th( 1)m PIN diode. With iteration, 

one could obtain the relationship between the Thevenin voltage at each node and the source voltage 

as follows, 
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where m > 2. As depicted in Fig. 4.12(d), the voltage at node m can be calculated by 
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Figure 4.12:  Diagram for voltage distribution analysis. (a) Equivalent circuit of (m-1)th section; 

Thevenin equivalent circuit (b) at node m-1 with open termination; (c) at node m with open 

termination; (d) at node m with load. 

 

Figure 4.13:  Equivalent unit circuit model with PIN diode at (a) ON state, and (b) OFF state. 

Loading capacitor is still considered as ideal capacitor in order to keep the calculation concise. 

The biasing circuit is not shown in the model. 

In practice, the switch and capacitor, as well as transmission line are not ideal components, the 

equivalent circuit model can be described as in Fig. 4.13, in which α denotes the dielectric loss and 

conductive loss of transmission line. Let us take the parasitic parameters of PIN diode into account, 
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PIN diode at ON state can be described by series inductor Ls and series resistor Rs, the Rs is 

controlled by forward current IF. On the other hand, PIN diode at OFF state is described by series 

inductor Ls and total capacitor CT, which is controlled by reverse voltage VR. The loss of 

transmission line can be included in the calculation by replacing jβ by α+ jβ in the above calculation. 

The Zc in (4.24) is then changed to  

 
1

c s s
d

Z j L R
j C




    (4.25-1) 

 
1 1

c s
d T

Z j L
j C j C


 

    (4.25-2) 

for 1 1mS   and 1 0mS   , respectively. And (4.22) will become 
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Through the voltage divider theory, the peak voltage on the mth PIN diode will be obtained (Fig. 

4.3) 
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for 1 1mS   , while  
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for 1 0mS   . Although the voltage distribution theory developed in this work is based on the 

distributed topology as shown in Fig. 4.11, similar method can be applied to any other distributed 

topology to help understanding the nature of voltage distribution.  

Since the peak voltage is proportional to square root of power, it should have linear relationship 

with P1dB or IIP3 (dBm) under a linear power region. This relationship can be integrated in the 

analytical model, then we can calculate the power-handling capacity and nonlinearity for all the 

impedance points quickly.  
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Figure 4.14: Diagram of optimization process using PSO. 

4.2.2 Description of optimization process of PSO 

Fig. 4.14 shows the diagram of optimization process of an EIS, the engineering problem with 

multiple parameters can be considered as a multidimensional space in PSO, and each combination 

of parameters will be a position in the space. PSO algorithm consists of three steps, namely, 

generating particles’ positions and velocities, velocity update, and position update. In basic PSO 

algorithm, the initial position ,k ix  and velocity ,k iv  of each particle are generated randomly based 

on the upper and lower bounds of each particle. In this work, we directly use the initial parameters 

that are obtained from the semi-closed form design procedure. The initial position will dramatically 

reduce the searching time for the best solution. 
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In second step, the velocity of particle i at time k+1 
1,k iv 

will be updated from its current velocity 

,k iv  by the equation [176]: 
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 (4.28) 

where 
ip  stands for the best position for particle i, while gk

represents the best global position 

value in the current swarm. It shows that the next search direction for each particle is influenced 

not only by its best position, but also the best position in the swarm. Three weight factors are 

introduced to express the portion of influence for each term, namely inertia factor,
0c , self-

confidence factor, 
1c , and swarm confidence factor, 

2c . In addition, two uniformly distributed 

random parameters 
pr and 

gr are applied to guarantee a good coverage and avoid local optimal. The 

last step of PSO in each iteration is to update the position with the following equation:  

 1, , 1,k i k i k ix x v t     (4.29) 

The updated parameters after PSO will be used to evaluate the fitness function. One important step 

to calculate the Smith chart coverage is to remove the redundant impedance points and choose 

useful points. Several restriction conditions can be applied in this step for specific application, for 

instance, limit the maximum loss to 10 dB, limit the uniformity factor to a certain value, and limit 

the maximum peak voltage as a certain level. In order to have a high coverage for the whole 

frequency band, in each iteration, we will find out the minimum coverage versus frequency. Then 

in PSO, we will define the optimization goal as maximizing the minimum coverage. The best 

solution will be obtained when the maximum iteration is reached, or the optimization goal is 

satisfied. It should be noted that the developed optimization method can be applied to optimize the 

specific area on Smith chart if special requirement is asked in the application.  

Optimization results show that the difference of impedance of N+1 transmission line does not 

improve the results obviously. Therefore, we can remove some optimization variables in order to 

reduce the optimization time. PSO is inherently a continuous optimization method, one can modify 

it to handle discrete design variables according to the commercial value of capacitors. Actually, a 

slight change of capacitance does not have much effect on the performance of an EIS. Therefore, 

we can just replace the optimized capacitance by the closest practical capacitor value.  
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About the computational efficiency of PSO, for an optimization with 27 parameters, it averagely 

takes about 1.5 seconds for each iteration when the number of particle is set as one. In this work, 

20 particles are set for PSO, it usually can reach the optimal value after 20 iterations, which means 

10 hours for the optimization of an EIS with 27 variables. It is worthwhile to note that the total 

optimization time will decrease when the number of parameters reduces.   

4.3 Experiment 

In order to validate the design procedure and the optimization method, three general purpose EISs 

(Fig. 4.15(a) - (c)) are proposed for 0.8 – 2.5 GHz. Only Smith chart coverage and loss are 

considered in the fitness function of optimization to simplify the verification of the theory. As 

shown in Fig. 4.15, three circuits are optimized and fabricated on Rogers 6002 substrate with 

thickness of 20 mil. Circuit 1 is a 12-section uniform distributed topology with d = 4.71 mm, Cd = 

1.8 pF, and Z0 = 83 Ω (Fig. 4.15(a)). Based on circuit 1, circuit 2 adds an adjusting circuit (Fig. 

15(b)), in which Ca1 is 1.8 pF, and Ca2 is 30 pF (Fig. 4.1). All the parameters of circuit 2 are 

optimized as different values (Fig. 4.15(c)), the distance d in circuit 3 varies from 1.48 to 9.16 mm, 

while the loading capacitance C varies from 0.7 to 9.1 pF. It is apparent that the circuit 3 has a 

smaller size than circuit 1 and 2.  

The three circuits (Fig. 4.15(a) - (c)) are measured automatically with the software FDCS from 

Focus Microwaves Inc., and a controller is dedicated to switch the states of EIS. The measured and 

theoretically calculated Smith chart coverage of these three circuits are depicted in Fig. 4.16. 

Theoretical result of circuit 2 has a Smith chart coverage 10% better than circuit 1, which validates 

the effect of adjusting circuit. Theoretical result of non-uniform circuit 3 further improves the 

Smith chart coverage compared to circuit 2. However, the measurement results for all three circuits 

deviate from the theory at high frequency. Measurement results prove the effectiveness of non-

uniform topology and PSO method, even though the deviation is observed between theory and 

measurement. Parametric studies are carried out to investigate the intrinsic reason of the deviation, 

which show that the series inductance and series resistance are the two main factors resulting in 

the deviation in Fig. 4.16.  
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Figure 4.15: Fabricated uniform and non-uniform circuits, biasing wires are not shown. (a) 

Circuit 1: 12 section uniform distributed topology without adjusting circuit. (b) Circuit 2: 12 

section uniform distributed topology with one section of adjusting circuit. (c) Circuit 3: 12 

section non-uniform distributed topology with one section of adjusting circuit. (d) Circuit 4: New 

13 section non-uniform distributed EIS with one section of adjusting circuit. 

The EIS is sensitive to every parasitic parameter in the real circuit, so the equivalent circuit model 

of a unit circuit of the EIS is necessary to be built. As depicted in Fig. 4.17, the commercial 

capacitor is modeled by a series circuit of RLC. The Lcap is around 0.4 nH for a capacitor with 0402 

footprints, which is obtained by fitting the self-resonance frequency of the capacitor. The PIN diode 

at ON state can be modeled by a series inductor LPIN and a series resistor RPIN, while OFF state is 

modeled by a series inductor LPIN and a series capacitor CPIN. LPIN is dependent on the footprint 

selection of PIN diode. The effects of connection pads and via holes can be modeled as an inductor, 

which is around 0.2 - 0.4 nH obtained from modeling the measured S-parameters of a unit circuit.  

Among the parasitic parameters, the series inductance from the PIN diode, the capacitor, and the 

connection pads and via holes has critical effect on the performance of an EIS, since it will resonate 

with the loading capacitor near the operation frequency band. The effect of the parasitic inductance 

is studied at the impedance state with all PIN diodes are turned ON. When the total parasitic 
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inductance L is 0, the Bragg cutoff frequency dominates, when L increases to 0.8 and 1.5 nH, the 

resonance frequency starts to dominate. The consequence is that the loss increases dramatically 

near the resonance frequency. The effect of parasitic inductance on the performance of an EIS is 

also studied for all the impedance states. The Smith chart coverage at high frequency are distorted 

seriously due to the increases of the parasitic inductance, and the mean loss at high frequency 

becomes worse.  

 

Figure 4.16: (a) Comparison of measured and theoretically calculated Smith chart coverage for 

four fabricated circuits. 

 

Figure 4.17:  Equivalent circuit model of a unit circuit when PIN diode is turned (a) ON and (b) 

OFF. 
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In addition to the parasitic inductance, the series resistance is also a critical factor leading to the 

degradation of performance at high frequency. In a circuit with high standing wave, a small 

parasitic resistance will cause obvious loss problem due to the multipath loss.  The sweep of 

resistance from 0 to 3 Ω leads to an increase of the loss before resonance frequency. The parametric 

study of the series resistance on the performance of EIS for all impedance states show that the 

increases of resistance reduces the Smith chart coverage more than 20% and increases the loss 

more than 10 times at high frequency. 

In the circuit 1 to 3, PIN diode of SMP1320-079LF from Skyworks Solution Inc. is chosen, which 

has series inductance around 0.7 nH. Therefore, the total parasitic inductance should be around 1.5 

nH after considering the inductance from a commercial capacitor (0.4 nH) and the inductance from 

the connection pads and via holes (0.4 nH). It will resonate with the loading capacitance near the 

operation frequency band. However, only 0.9 nH parasitic inductance was considered in the first 

experiment due to the inaccurate modeling for the parasitics. In addition, total series resistance 

should be around 3 Ω after taking into account RPIN of 1 Ω from the PIN diode, and the series 

resistance of 2 Ω from the commercial capacitor and the connection pads. However, only 1 Ω 

parasitic inductance was considered in the first experiment. In summary, the inaccurate modeling 

of series inductance and series resistance lead to the deviation between theory and measurement at 

high frequency for circuit 1-3. 

After considering the parasitic parameters in the design of PIN diode-based EIS, some degree of 

correction should be made on (4), (6) and (9). However, these complicated corrections can be done 

in the optimization process instead of the design procedure. By contrast, the EIS based on MEMS 

[139, 140] does not suffer from the parasitic problem, so that it can be designed at millimeter wave 

frequency band.  

The first experiment (Fig. 4.15(a) - (c)) shows that the non-uniform topology not only has a smaller 

physical size, but also have a better Smith chart coverage than the uniform topology, which 

validates the effectiveness of the proposed non-uniform topology. In order to further eliminate the 

gap between measurement and theory at high frequency, a new non-uniform circuit is designed and 

optimized (Fig. 4.15(d)).  Two steps are done to reduce the parasitic inductance. First, PIN diode 

of BAR95-02LS from Infineon Technologies with parasitic inductance of 0.2 nH is selected. Then, 

shorter and smaller connection pads and larger via are made to have minimum parasitic inductance 
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around 0.2 nH. Even so, the total parasitic inductance is around 0.8 nH, and the total parasitic 

resistance is around 3 Ω. However, they are not avoidable if commercial components are used.    

Since the minimum parasitic inductance 0.8 nH is determined, the maximum loading capacitance 

will be limited to 2 pF so as to keep the resonance frequency at 4 GHz. From Fig. 4.4, we can see 

that this restriction will largely narrow the choices of loading capacitance. In other words, the small 

selectable capacitance will reduce the Smith chart coverage in the desired frequency band, 

especially for low frequency. As illustrated in Fig. 4.7, one solution to improve the Smith chart 

coverage is to increase the number of sections. In this work, we choose the total number of sections 

as 14, which includes one section of adjusting circuit and 13 sections of distributed circuit. One 

reason is that the improvement of Smith chart coverage is not obvious with section number more 

than 14. Another reason is that the test limitation with the tuner controller from Focus Microwave 

Inc. is 14 bits. It should be noted that the fabrication on wafer will not have so large limitation 

thanks to the small parasitic inductance, e.g. MEMS technique. 

In circuit 4 (Fig. 4.15(d)), we use the same capacitance of 2 pF for all the capacitors in the non-

uniform topology. Then PSO is applied to optimize the distances between sections, and the 

optimized circuit dimensions are listed in Table 4.2. Compared to circuit 3, the limitation of fixed 

loading capacitance in circuit 4 leads to a larger d in order to have as large as possible the Smith 

chart coverage. The circuit is bended to reduce the total size. Fig. 4.18 depicts the good match 

between measured and theoretical results of S parameters for two impedance states with all the PIN 

diodes are turned ON and OFF, respectively.  

Table 4.2: Final dimension of non-uniform distributed EIS. Unit: capacitor: pF; impedance: Ω; 

distance: mm. 

Ca1 2 d1 8.26 d8 4.49 

Ca2 30 d2 8.82 d9 8.55 

Za1, Za2 50 d3 8.62 d10 8.55 

Z1 ~ Z14 74.4 d4 8.82 d11 7.98 

Cd1~ Cd13 2 d5 8.82 d12 8.58 

da1 3 d6 8.27 d13 4.64 

da2 2 d7 8.75 d14 8.82 
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Figure 4.18: Comparison of measured and theoretical S parameters for impedance states with all 

PIN diodes are turned (a) ON and (b) OFF. Dots denotes measurement, while solid line denotes 

theory. 

4.4 Evaluation  

A variety of figures of merit (FOM) have been presented to evaluate the TMN [139-142, 145] and 

the EIS [146, 156, 177, 178] in previous works. Indeed, the core of a TMN is an EIS, therefore, the 

evaluation FOM for a TMN and an EIS can be studied together. Table 4.3 lists all the FOM that 

have been used to evaluate TMN or EIS. Certain FOM can be selected from them for specific 

application.   

Tuning range 

For either optimization or evaluation of an EIS, a quantized criterion is always helpful. Tuning 

range of EIS usually can be represented by Smith chart coverage [141, 142], uniformity factor 

[145], maximum VSWR [140], or maximum reflection coefficient [179]. Most of published work 

used one or two of them, however, each criterion has its own pros and cons. None of them can 

describe the tuning range alone. In this work, we list all of them according to their significance. 
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Figure 4.19: (a) All 16384 measured impedance points; (b) Selected points for the calculation of 

Smith chart coverage. 

Smith chart coverage  

After removing the redundant points as described in the definition of Smith chart coverage, useful 

impedance points are selected from the measured points (Fig. 4.19(a) and (b)). The measured and 

simulated Smith chart coverage are compared in Fig. 4.16. The Smith chart coverage of circuit 4 

is lower than circuit 3 mainly because of the limitation of loading capacitance. However, the 

measured results show a good match with simulation after eliminating the impacts from Bragg 

cutoff frequency and resonance problem, the difference is within 5%. In other words, the design of 

the EIS is reliable after considering the accurate parasitic parameters.  

The measured and theoretical impedance distribution on Smith chart at several frequencies are 

compared in Fig. 4.20. Since the impedance generated by the EIS is sensitive to the parasitic 

parameter, it is difficult to have exact point to point matching between the theory and measurement, 

especially for the EIS with soldered commercial components. For the PIN-diode based EIS, the 

acceptable differences presented in Fig. 4.18 and Fig. 4.20 indicate that the theory can be used to 

predict the real performance approximately and statistically.  

Uniformity factor 

An ideal distribution should have Smith chart coverage as high as possible, at the same time, have 

uniformity factor as low as possible. The calculation of uniformity factor has been described in 

section 4.2. A lower uniformity factor indicates a better distribution on Smith chart. Nr of 16 and 
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Nθ of 64 are chosen to divide the Smith chart from radius and phase directions, respectively. As 

shown in Fig. 4.21, the measurement results show good match with theory.  

Table 4.3: Summarization of criteria to evaluate TMN and EIS. 

                             Reference 

       Criteria 

Tunable Matching Network (TMN) Electronic Impedance Synthesizer (EIS) 

[139] [140] [145] [141] [142] 
This 

work 
[177] [178] [156] [146] 

Tuning range 

Smith chart Coverage 

(subjective) 
×       × ×  

Smith chart Coverage 

(numerical) 
   × × ×    × 

Maximum VSWR 

constant circle 
 ×    ×     

Uniformity factor   ×   ×     

Maximum reflection 

coefficient 
     × × ×   

 bandwidth      × × ×  × 

 Loss × × × ×  × ×   × 

 Case study ×          

Power 

handling 

Voltage distribution ×     ×   ×  

P1 dB point test      ×  ×   

Nonlinearity Linearity test ×     × ×    

 Noise figure      × ×    

Other 

concerns 

Tuning accuracy      ×  ×   

Tuning resolution      × × ×   

tuning speed      × × ×   

Size, weight, ease of 

integration 
     × × ×   

Others: spurious 

oscillations, 

temperature drift 
     × ×    
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Maximum VSWR  

In practical application, it is important to have enough points for each constant VSWR circle, which 

is useful to check the performance of the DUT by varying the phase while the VSWR keeps 

constant. The VSWR is larger than 15 for 1.5 - 2.2 GHz, and larger than 10 for 1.2 - 1.4 GHz and 

2.3 - 2.5 GHz. In fact, this criterion is not so accurate because of the subjective judgement on the 

irregular distribution.  

Maximum reflection coefficient 

Maximum reflection coefficient Γ refers to the radius of the farthest point away from the center of 

Smith chart. Compared to the previous three criteria, maximum Γ is most meaningless criterion, 

since it is only one impedance point that carries on very limit information. Fig. 4.22 depicts the 

comparison of required, estimated, theoretical and measured maximum Γ. As can be seen that the 

measurement results are close to the theory, and both of them are higher than the required Γ. The 

estimation of maximum Γ using (4.2) is lower than the required Γ particularly at low frequency, 

because the parasitic inductance limits the loading capacitance to 2 pF which is too small for the 

low frequency (Fig. 4.4). If no restriction is applied to the loading capacitance, the estimated 

maximum Γ should be larger than the requirement. 

Bandwidth  

Bandwidth describes the frequency range over which a minimum given Smith chart coverage, 

maximum uniformity factor, and maximum VSWR are satisfied. Bandwidth must be not wide 

when satisfying these harsh criteria. Nevertheless, we could choose different values for those three 

criteria according to different application. For the non-uniform topology in Fig. 4.15(d), the 

bandwidth is 800 MHz when we choose minimum Smith chart coverage as 60%, maximum 

uniformity factor as 500, and maximum VSWR as 10.  
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Figure 4.20:  (a) Measured and (b) theoretical impedance distribution at 1.2 GHz; (c) Measured 

and (d) theoretical impedance distribution at 1.5 GHz; (e) Measured and (f) theoretical 
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impedance distribution at 1.8 GHz; (g) Measured and (h) theoretical impedance distribution at 2.1 

GHz; (i) Measured and (j) theoretical impedance distribution at 2.4 GHz. The blue circle 

represents the constant VSWR=15 circle (|Γ|=0.875). 

 

Figure 4.21: The comparison of measured and theoretically calculated uniformity factor. 

 

Figure 4.22:  Comparison of required Γ (black dash line), estimated maximum Γ (red solid line), 

theoretical maximum Γ (orange solid line with circle marker), and measured maximum Γ (blue 

solid line with triangle marker). 

Loss  

As discussed in Section 4.2.1, the measurable loss is considered as a reference for the load tuner 

scenario. The sources of the loss of the EIS includes dielectric loss, conductive loss, parasitic RPIN 

from PIN diode, equivalent resistance of capacitor and connection pads. In addition, parametric 

studies show that it will be largely affected by the resonance caused by the parasitic inductance and 
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loading capacitance. Fig. 4.23(a) and (b) show the theoretical and the measured loss for the selected 

impedance states at 1.5 GHz, it can be seen that the loss increases with the increases of reflection 

coefficient because of the multipath loss at high reflection condition. The comparison of measured 

and theoretical mean loss at different frequencies (Fig. 4.23(c)) presents good match between them.  

 

Figure 4.23: (a) Theoretical and (b) measured loss for the selected impedance points at 1.5 GHz; 

(c) Comparison of theoretical and measured mean loss over frequency. 

Power handling analysis 

Voltage distribution theory for a traditional distributed EIS has been developed in section 4.2, 

similar theory can be applied to the proposed non-uniform distributed EIS, and maximum peak 

voltage at the position of each diode can be monitored. Voltage distribution of two limiting Г states, 

called the highest Г (0.91) and lowest Г (0.01), with 0.5 watt input power are shown in Fig. 4.24 

(a) and (b). Simulations with ADS have been presented to validate the theory, because it is not able 

to measure the voltage distribution in real circuit. As can be seen that the theory matches the 
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simulation very well. Due to the inhomogeneous property, the standing wave that presents at the 

input port (steady state) is not as same as the one exists along the transmission line. Two 

observations can be highlighted from Fig. 4.24. Firstly, large peak voltage always appears at the 

position of PIN diode with the OFF state. Since for the ON state, the series resistance is small, 

small voltage will be assigned to the PIN diode according to the power divider theory. In the OFF 

state, compared to the loaded capacitance Cd, total capacitance of PIN diode CT is small. According 

to the theory of two series capacitor, PIN diode will get most of the voltage. Secondly, the VSWR 

presented at the input port is not the same as the VSWR existing along the transmission line. For 

instance, in the lowest Г case, the equivalent voltage standing wave presented at the input port is 

1.02, while the standing wave existing in the transmission line is around 9.08. 

 

Figure 4.24: Comparison of theoretical and simulated voltage distribution along the transmission 

line under average power of 0.5 watt for the (a) highest Г state (|Γ|=0.9) and (b) lowest Г state 

(|Γ|=0.01). 

The nonlinearity of the EIS is mainly caused by those PIN diodes with OFF states. Larger 

maximum peak voltage existing on the transmission line will lead to a lower power handling 

capacity. Under a linear operation power, the maximum peak voltage is proportional to the input 

power (dBm). The voltage distribution theory has been proved to be able to predict the P1dB 

without doing the actual power handling test [168]. As depicted in Fig. 4.25(a), 20 impedance states 

with large maximum peak voltage have been chosen for Harmonic Balance simulation in ADS with 
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input power of 0.5 watt. Then linear fitting (solid line) is applied for the 20 simulations, and the 

extension line (dash line) can be used to predict the P1dB for impedance states with low maximum 

peak voltage. And this linear fitting has been proved can fit all the impedance states [168]. It shows 

that the PIN diode-based non-uniform EIS has P1dB higher than 33 dBm. In other words, the EIS 

can handle 0.5 watt average power linearly. 

Nonlinearity analysis 

   Ideal EIS should be as linear as possible. The IIP3 can be applied to express the nonlinearity of 

the EIS. Similar to the prediction of P1dB, the IIP3 can also be estimated from a small amount of 

simulation in ADS without doing actual IMD measurement. As illustrated in Fig. 4.25(b), the IIP3 

of the PIN diode-based non-uniform EIS is higher than 53 dBm.  

 

Figure 4.25: Simulated relationship of (a) P1 dB and (b) IIP3 with the maximum peak voltage 

along the transmission line for 20 impedance points under input power of 0.5 watt. Solid line is 

the linear fitting curve of the selected 20 points, while the dash line is the extension of the fitting 

curve. 

Noise figure  

For any active device, high noise figure stands for significant influence to the noise performance 

of the system. The EIS will introduce noise to the practical application, therefore the noise 

performance of the EIS itself is significant. In this work, noise source, noise analyzer and a tuner 
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controller along with an automation program are presented to measure the noise figure of the EIS 

automatically. Fig. 4.26 shows the results for 816 selected useful impedance states.  As can be seen 

that, the noise figure of the EIS increases while the reflection coefficient increases. Although the 

EIS has maximum noise figure of 17.5 dB at 1.5 GHz, it can be calibrated in the noise 

characterization system without affecting the accuracy of the noise figure test for the DUT.  

Other concerns 

Repeatability 

Repeatability indicates the differences of S-parameters among several time measurements for the 

same impedance state. It shows how well the EIS can repeat each impedance state. The EIS used 

in non-real-time measurement system requires pre-calibration. Therefore, it is critical for the EIS 

to repeat the same impedance state, which means that the EIS should be stable. The repeatability 

test must be done over a large number of impedance states and a range of frequencies to find the 

worst case. The proposed non-uniform EIS exhibits at least 55 dB repeatability. It will make the 

test data precise enough when evaluating the PA or radio module.   

Tuning resolution  

Tuning resolution of the EIS refers to the resolution of impedance points generated by the EIS. An 

EIS with high resolution is important for precise measurement. Traditional EIS exhibits irregular 

impedance pattern with unpredictable jumping of impedance states so that it is difficult to have an 

exact value for tuning resolution. However, the tuning resolution can be described by the pre-

defined density in the discretization process when the Smith chart coverage is calculated.  

Tuning speed 

Tuning speed is the time taken by the impedance synthesizer moves from one impedance state to 

the next one. The switching time of the selected PIN diode is in the order of 0.1 µs, so the switch 

time of the EIS from one state to another state is also in the same order. In the pre-calibrated 

procedure, the speed is mainly limited by the VNA and also the reading via GPIB interface, in the 

order of 0.1 s. In the real application, the speed is limited by the controller, which is in the order of 

10 ms. Even so, it only need a few seconds to finish the measurement with 1000 useful impedance 

states, which is much faster than electromechanical tuner. In other words, the EIS can be used in 

the application where high measurement throughput is required.  



114 

 

 

 

Figure 4.26: Noise figure of the proposed non-uniform EIS at 1.5 GHz for 816 selected 

impedance states. 

Temperature drift 

Temperature drift can describe how the performance of the EIS changes when temperature varies. 

Experiments with thermotank show that when temperature varies from -40 to 40 °C, the 

repeatability keeps 50 dB, which means that the EIS works stable when temperature changes in 

this range.  

Cost, size, weight, ease of integration 

The advantages of EIS compared to electromechanically tuner and active tuner are the size and 

weight. They are essential for the on-wafer test. Although the size of the EIS in this work is around 

36 mm × 32 mm, the whole circuit can be further integrated on the wafer for high frequency if 

other switching technique, e.g. MEMS, can be adopted. 

4.5 Conclusion 

We have presented a semi-closed form design procedure for a uniform electronic impedance 

synthesizer (EIS). Initial values and boundaries of multiple parameters have been determined in 

this procedure. Then Particle Swarm Optimization (PSO) method is introduced to solve the multi-

parameter optimization problem of the proposed non-uniform the EIS. The effectiveness of the 

proposed non-uniform topology and the optimization method are validated by experiments. 

Experimental results show that the proposed non-uniform distributed topology not only has better 
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Smith chart coverage, but also has smaller size than uniform topology. Parametric studies 

demonstrate that inappropriate consideration of parasitic parameters can degrade the performance 

at high frequency. With accurately modeling of parasitics, the measurement of non-uniform EIS 

present a good match with the theory. 

This work provides a computer aided design for the non-uniform EIS. The successful utilization of 

PSO can shorten the development period of an EIS to a few hours. Different criteria can be 

configured in the fitness function of the optimization process so as to satisfy specific requirements 

for different applications. Furthermore, comprehensive figures of merit (FOM) are studied and 

summarized, different FOM can be chosen to evaluate the EIS according to their application. 

Although we designed a general purpose EIS in this work, the PSO and complete list of FOM give 

more freedom to design EIS for different purposes. 
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CHAPTER 5 TWO-DIMENSIONAL TUNING CIRCUITS AND 

APPLICATIONS 

In this chapter, the theory of two-dimensional (electrical and magnetic) tuning circuits using a 

ferrite-based hybrid NLTL technique will be proposed and studied. Firstly, the hybrid NLTL 

technique will be analyzed in both time and frequency domain. Secondly, an extraction method of 

complex permittivity and permeability will be developed based on the S-parameters. The theory 

will then be validated by experiments and simulations for the case of a non-magnetic material, 

NLTL with varactors as well as YIG-based microstrip line. Finally, small signal and large signal 

applications of two-dimensional tuning circuits will be discussed.  

5.1 Analysis of hybrid NLTL technique 

In order to characterize the periodically loaded structure of a hybrid NLTL, both time domain and 

frequency domain analyses are carried out. The time domain analysis gives the phase velocity as 

well as characteristic impedance. The frequency domain method Floquet Theorem [23] is applied 

to find out the Bragg cutoff frequency [51], since the frequency domain analysis is more suitable 

to analyze the lowpass nature of a periodically loaded structure.  

5.1.1 Time domain analysis  

Although this time domain analysis is based on a fully distributed hybrid NLTL, which is a 

transmission line consisting of uniformly distributed nonlinear shunt capacitance, the conclusions 

are also validated for a ferrite-based transmission line loaded with varactor periodically when the 

unit length is much smaller than the wavelength [51]. The hybrid NLTL can be characterized by a 

variable inductance per unit length L(i) and a variable capacitance per unit length C(v), as shown 

in Fig. 5.1.  

 

Figure 5.1: Equivalent circuit model of fully distributed hybrid NLTL per unit length. 



117 

 

 

Assuming V and I are differentiable single-valued functions of distance z and time t, and applying 

Kirchhoff’s voltage and current law:  

 ( ) 0
V I

L i
z t

 
 

 
 (5.1) 

 ( ) 0
I V

C v
z t

 
 

 
 (5.2) 

Since the principle of superposition of forward wave and backward wave are not applicable for 

nonlinear differential equations, the method of characteristics is applied in this case [39, 180]. A 

linear combination of these two equations can be made with undetermined multiplier λ 
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By introducing a nonlinear mapping 
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four ordinary differential equations, also called characteristic equations, can be obtained 
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From (5.7-1) and (5.7-3), the propagation velocity of the forward and backward traveling wave can 

be obtained as 

 
1

( ) ( )
vp

L i C v
    (5.8) 

From (5.7-2) and (5.7-4), the characteristic impedance of the forward and backward traveling wave 

can be obtained as 
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5.1.2 Floquet analysis 

 

Figure 5.2: Equivalent LC circuit model of unit cell of periodically loaded hybrid NLTL. 

Floquet analysis is applied to the periodically loaded hybrid NLTL to capture the lowpass nature 

of the structure [23, 51]. Fig. 5.2 shows the equivalent LC circuit model of the unit cell of hybrid 

NLTL, then the ABCD matrix can be written as 
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By using a Floquet analysis, we can obtain the dispersion equation 
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Since the right-hand side of (5.10) is real, the solution will be either 0   or d   (0 or π). While 

in the latter case, there is no propagation along the transmission line. By solving the dispersion 
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equation under the condition of d   (0 or π), the approximate closed-form expression of Bragg 

cutoff frequency can be obtained [51] 
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L i C v
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It can be seen that the lowpass characteristic is performed in the periodically loaded hybrid NLTL. 

5.2 Study of ferrite  

The hybrid NLTL of interest in this work is based on a ferrite substrate. This section will explain 

the operation principle of ferrite. As is well known that, an electron has two properties: charge and 

spin. In most solids, the spins of electrons usually occur in pairs but with opposite directions so-

called spin up and spin down, resulting in a negligible net magnetic moment. In a magnetic material, 

e.g. ferrite, although the number of spin up and spin down are unpaired, the random orientation 

leads to a small net magnetic moment. When an external magnetic field is applied, the dipole 

moments will align along the same direction of magnetic field, a large magnetic moment will be 

generated.   

Two frequency concepts will be used in the following analysis [23]. Larmor frequency or 

precession frequency ω0 can be expressed as  

 0 0 0H    (5.12) 

where μ0 is the permeability of vacuum, γ is the gyromagnetic ratio, H0 is the applied external 

magnetic field. And another frequency concept can be expressed as 

 0m sM    (5.13) 

where Ms is the dc saturation magnetization. The relationship of magnetization M and internal 

magnetic field H can be expressed with a tensor susceptibility [χ], 
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where the tensor elements can be calculated as 
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According to the relationship between the magnetic flux density B and magnetic field H, we can 

obtain  

 0 0( H) [ ]H ([U] [ ])HB M         (5.16) 

then the permeability tensor [μ] with magnetiv field bias in z direction can be given as  
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where  
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Then the effective permeability can be calculated as 
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As can be seen in (5.18), when the operation frequency ω equals to ω0, the μ and k are infinite, this 

phenomenon is called gyromagnetic resonance.  

By considering the loss of the ferrite, the resonance frequency becomes complex 0 0 j   

, where α is the damping factor. Then the susceptibilities in (5.15) becomes complex 

 ' "xx xx xxj     (5.20-1) 

 ' "xy xy xyj     (5.20-2) 
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And the elements of permeability tensor in (5.18) also become complex 

 ' "j     (5.21-1) 

 ' "k k jk   (5.21-2) 

The effective permeability can be calculated as  
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The linewidth of ferrite H is related to the damping factor. In the curve of "xx  versus magnetic 

field bias H0, the linewidth is defined as the width of H when the magnitude of "xx  decreases to 

a half of its peak, and it can be calculated as 

 
0

0 0

2
H

 

   


    (5.22) 

A small linewidth represents a low loss. For the YIG used in this work, the linewidth is around 17 

Oe, and the saturation magnetization 4 sM  is 1780 Oe. Fig. 5.3 shows the relationship of 

permeability tensor elements and effective permeability with the external applied magnetic field at 

an operation frequency of 12.5 GHz, the effective permeability is calculated based on (5.22). 

 

Figure 5.3: Permeability tensor elements and effective permeability versus magnetic bias. 
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When the magnetic bias is perpendicular to the ferrite plate (in z direction), the internal magnetic 

bias Hi is related the shape of the ferrite and the direction of external magnetic bias, it can be 

expressed as [23] 

 0H Mi H N    (5.23) 

where N = Nx , Ny, or Nz represents the demagnetization factor of external bias in different direction. 

Different ferrite shapes result in different demagnetization factors, and they have the relationship 

of Nx + Ny + Nz = 1. Kittel’s equation 

 0 0 x z s 0 z s[H (N N )M ][H (N N )M ]r y        (5.24) 

can be used to calculate the gyromagnetic resonance frequency. Based on (5.24), Fig. 5.4 shows a 

linear relationship between gyromagnetic resonance frequency and external magnetic bias in z 

direction.  

 

Figure 5.4: Gyromagnetic resonance frequency versus external magnetic bias. 
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Figure 5.5: Effective permeability versus external magnetic bias at different operation frequency. 

Fig. 5.5 shows the relationship of effective permeability with the external magnetic bias at different 

operation frequencies. As can be seen that, in the tunable circuit application, the effective 

permeability can be tuned from 1 to almost 0, and the magnetic bias will be swept from 0 Tesla to 

a certain value less than the corresponding magnetic field of gyromagnetic field. 

 

Figure 5.6: Effective permeability versus operation frequency at 0.44 tesla magnetic bias 

condition. 
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Fig. 5.6 shows the relationship of effective permeability with the operation frequency at 0.45 Tesla 

external magnetic bias. It can be seen that the YIG is very dispersive when close to the 

gyromagnetic resonance frequency. When the magnetic bias increases, the corresponding 

gyromagnetic resonance frequency increases, which results in the influence at low frequency. 

Therefore, for a tunable circuit, the operation frequency is higher than the gyromagnetic resonance.  

5.3 Parameters extraction of complex permittivity and permeability  

Prior to the design of a hybrid NLTL, the characterization of ferrite material over a wide range of 

frequencies should be studied first. A tremendous amount of methods [181-195] have been used to 

extract the complex permittivity and permeability from the measured S parameters of the material 

sample. As shown in Fig. 5.7, three measurement setups are usually used for the measurement of 

S parameters, namely free space measurement [191, 196], air-filled coaxial configuration [192] 

and waveguide configuration [185, 193]. The first two techniques are based on TEM propagation 

mode in a broadband frequency range, while the last one is based on TE10 mode with a limited 

frequency range.  

   

Figure 5.7: (a) Free space measurement [196], (b) air-filled coaxial line configuration [192], (c) 

waveguide configuration [185]. 

The conventional transmission-reflection (T/R) method is the Nicolson-Ross-Weir (NRW) method 

[181, 182, 192, 193], it gives closed-form solutions. However, one or more resonances are observed 

in the extracted parameter at frequencies corresponding to integer multiples of one-half wavelength, 

as shown in Fig. 5.8. This phenomenon has been investigated in [188], because the phase of S11 

becomes unstable and uncertain when the magnitude of S11 close to 0, so as to result in the 

ambiguity problem. Alternative methods have been studied, including zero-order and high-order 

approximation method [188], phase unwrapping method [185, 186], iterative method [182, 183], 

1st order regression [184], Kramers-Kronig technique [194], multiline method [197, 198]. However, 

most of the methods only work for certain scenarios, either assume the permeability as one or do 
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not have a unique and stable solution according to different tolerance in numerical methods. The 

analysis in this work is based on the modified NRW method and time domain smoothing technique. 

 

Figure 5.8: (a) Measured S-parameters, (b) extracted impedance, (c) extracted permittivity and 

(d) extracted permeability. 
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5.3.1 Methodology  

5.3.1.1 Analysis of air-filled coaxial line configuration 

 

Figure 5.9: Diagram of setup of air-filled coaxial line. 

In order to simplify the analysis, the calculation is based on the air-filled coaxial line with cutoff 

frequency at zero. As shown in Fig. 5.9, the reflection coefficient Γ at the interface of air and 

sample can be defined as 
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where Z is the non-normalized characteristic impedance of transmission line filled with sample, Z0 

is the reference impedance of the system, zc is the normalized impedance.  Then we have 
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The characteristic impedance can also be calculated from the measured S11 and S21 [181, 182, 184, 

195]  
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In the conventional NRW method, the reflection coefficient can also be calculated from the 

measured S11 and S21 

 2 1K K      (5.28) 
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where 
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The sign in (5.28) is determined by the restriction of 1  . It should be noted that Γ is a transient 

response while S11 is a steady response which can be explained by the multi-reflection theory [23]. 

Only when the length of the sample is infinite, Γ will equal to S11. As can be seen from (5.29), K 

becomes algebraically unstable when S11 approaches zero, which in turn results in the ambiguity 

problem.  Then the propagation/transmission factor T can be found as 
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 (5.30) 

The propagation factor is also defined as [23] 

 ( )d j dT e e       (5.31) 

where γ is the propagation constant of wave through the material, α denotes attenuation constant, 

and β denotes phase constant. From (5.31), the propagation constant can be written as 

 ln(T) / d    (5.32) 

The propagation constant can be also expressed as 

 0 reff reff     (5.33) 

where the propagation constant at vacuum 
0  can be calculated from the wavelength at vacuum 

0  

 0 02 /j    (5.34) 

If it is coaxial line, the λc will be considered as infinite. From (5.33) we can obtain 
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  (5.35) 

From (5.26) and (5.35), we can obtain the analytical results of εreff and μreff  
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   (5.37) 

In the air-filled coaxial line and waveguide, the extracted εreff and μreff from the S-parameters equal 

to the parameters of the material. However, if a microstrip line or CPW line is used in the 

measurement, the extracted of εreff and μreff are the effective permittivity and permeability of the 

whole structure. The parameters of material then can be calculated based on the filling factor of the 

microstrip line or CPW line. 

5.3.1.2 Analysis of microstrip line 

For free space measurements, complex test setup as well as precise calibration are required, and 

the extraction range is limited by the test antennas. Microstrip line or CPW line however, can 

operate across a much broader frequency range. In this case, the line needs to be fabricated on the 

material that is used as a substrate.  

In the previous analysis, the geometry structure of air-filled coaxial section and material filled 

section are the same, so that same geometrical factor can be applied. However in the measurement 

of a microstrip line, the section of connector and substrate are different, the geometrical factor of 

microstrip line must be considered. In this case, normalized impedance cannot be used due to the 

different reference, and the non-normalized impedance will be used instead. The impedance in 

(5.27) is normalized to the system impedance that is 50 Ω, so that the non-normalized impedance 

can be expressed as 
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The non-normalized impedance of microstrip line can be calculated as 
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where 0  is the wave impedance of free space, and g is the geometrical factor of microstrip line, 

it can be calculated as [23] 
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From (5.38) and (5.39), we can obtain 
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Then the analytical results of εreff and μreff can be obtained from (5.35) and (5.41)  
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Actually, the εreff and µreff are enough for the design of circuit if the same topology will be used. 

However, if material parameters are needed, one more step is needed in order to extract the 

parameters. The relationship between the effective permittivity of circuit and permittivity of the 

substrate can be expressed according to the parameters of the microstrip line [23] 
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, if W/h>1 (5.44-2) 

By using the duality relationship, the relationship between the effective permeability of circuit 

and permeability of substrate can be expressed as  
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, If W/h<1 (5.45-2)  

From (5.42) and (5.44), the permittivity of substrate can be extracted. Similarly, the permeability 

of substrate can be extracted from (5.43) and (5.45). 

5.3.1.3 Time domain smoothing technique 

As shown in Fig. 5.10(a), one or more resonances occur in the measured S-parameters, which 

results in the resonance in the extracted impedance zc as well as 
reff  and 

reff , so that the 

extracted parameters of material are not accurate. A time domain smoothing technique can be used 

to eliminate the resonance of extracted zc and therefore eliminate the resonance in the extracted   

and  [189].  

Actually, in (5.36), the 
0/   within the frequency range is flat, the resonance of extracted 

reff  

shown in Fig. 5.10(c) is due to the resonance in the extracted impedance (Fig. 5.10(a)). The main 

idea of the time domain smoothing technique is to filter the time domain response of the resonance 

in the frequency domain. Firstly, the frequency range in real part and imaginary part of impedance 

(Fig. 5.10(a)) that covers the resonance will be truncated and transformed to the time domain by 

an inverse discrete Fourier transform (DFT) [189] 
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where k=0, 1, …, N-1 is the index in frequency domain, and n=0, 1, …, N-1 is the index in time 

domain, N is the number of measured data points. 'Z  and ''Z  are the real part and imaginary part 
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of impedance, respectively. The time domain responses of the resonance in the real and imaginary 

parts of impedance are shown in Fig. 5.10(a) and (c). Then time domain rectangular windows are 

applied to filter the zero-time components, the modified time domain impedance can be expressed 

as  

 '[ ]_ 1[ ] '[ ]z n windowed w n z n   (5.47-1) 

 ''[ ]_ 2[ ] ''[ ]z n windowed w n z n   (5.47-1) 

where the window functions 1[ ]w n  and 2[ ]w n  filter almost only the zero-time components, they 

can be defined as 

 
1, 0,1,...

1[ ], 2[ ]
0,

n
w n w n

others


 


 (5.48) 

The windows applied in the time domain means applying a lowpass filter in the frequency domain. 

In other words, this process only keeps the data in the starting frequency range and gets rid of the 

resonance data. The modified time domain impedances are shown in Fig. 5.10(b) and (d).  

 

Figure 5.10: (a) Non-windowed and (b) windowed real part of time domain impedance, (c) Non-

windowed and (d) windowed imaginary part of time domain impedance. 
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Finally, the time domain impedance will be transformed to the frequency domain by the forward 

DFT, and the modified response can be expressed as [189] 
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Since the time domain response of real and imaginary parts of impedance is different, the window 

width in (5.48) can be chosen differently, as long as the modified responses in (5.46) are smooth 

enough. Time domain window with n = 0 indicates that only zero-time components are preserved.  

5.3.2 Validation  

The validation of the parameter extraction theory is from three experiments and simulations. The 

first experiment is for a non-magnetic material, which is based on the measurement of a 

transmission line on the substrate of ROGERS 6002. The second experiment is based on the 

simulation of NLTL with commercial varactors in ADS, effective permittivity is extracted under 

different reverse bias conditions. The third experiment is based on the simulation of a microstrip 

line on YIG substrate in HFSS, effective permeability is extracted under different magnetic bias 

conditions. The effective permittivity and permeability will be used in the design of a YIG-based 

hybrid NLTL. 

5.3.2.1 Non-magnetic material 

A microstrip line on the substrate of ROGERS 6002 is designed and measured. The thickness of 

the substrate is 0.508 mm, the width and length of the microstrip line are 0.5 mm and 10 mm, 

respectively. The measured and modified frequency domain responses of impedance are shown in 

Fig. 5.11, as can be seen that the resonance in the truncated frequency range (gray region) is already 

eliminated, replaced by a flat curve.  
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Figure 5.11: Frequency domain response of impedance with and without time domain smoothing 

technique. The gray region indicates the truncated frequency range. 

 

Figure 5.12: Extracted permittivity with and without time domain smoothing technique. The gray 

region indicates the truncated frequency range. 
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Based on the modified impedance, the extracted 
reff  and 

reff  are shown in Fig. 5.12 and Fig. 

5.13, respectively. As can be seen that, the time domain smoothing technique is demonstrated as 

an efficient way to eliminate the resonance problem. By using the theory in Section 5.3.1, the 

extracted real part of the permittivity of the substrate is 2.92 ± 0.05, which is close to the datasheet 

2.94 ± 0.05. If more resonances occur, a similar process could be done for each resonance [189].  

 

Figure 5.13: Extracted permeability with and without time domain smoothing technique. The 

gray region indicates the truncated frequency range. 

5.3.2.2 NLTL with varactors  

Since the NLTL loaded with varactors is a periodic structure, the total circuit can be equally 

considered as a uniform transmission line. The loading of capacitance means the increases of 

effective permittivity, in other words, the effective permittivity can be tuned by the reverse bias 

voltage. The equivalent model of varactor MAVR011020 from MACOM Technology Solutions 

has been used in the ADS simulation, six units circuit with detailed parasitic parameters of pads 

has been designed. The total circuit length is 8.25 mm, and the width of the transmission line is 0.5 

mm. The permittivity of the substrate is chosen as 15, which is the same as YIG. 

The effective parameters extractions are based on (5.42) and (5.43) with the simulated S-

parameters from ADS. The reverse bias is tuned from 0 to 15 V, the corresponding loading 

capacitance is from 0.275 pf to 0.05 pf. The extracted effective permittivity at three frequencies is 
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shown in Fig. 5.14, as can be seen that the effective permittivity decreases when the reverse bias 

increases due to the reduction of loading capacitance. The missed points at 9 GHz at low bias 

conditions are due to the influence of Bragg cutoff frequency, a smaller distance between two units 

will result in higher Bragg cutoff frequency, which in turn improve the performance at 9 GHz. It 

also can be seen in Fig. 5.14, the difference between different frequencies become larger when the 

loading capacitance increases, in other words, the dispersion becomes strong. 

 

Figure 5.14: Extracted effective permittivity at three frequencies for NLTL with varactor. 

5.3.2.3 YIG-based microstrip line 

In this section, microstrip line with the thickness of 0.5 mm on YIG substrate with the thickness of 

0.762 mm is simulated in HFSS. And the effective permeability is extracted based on the simulated 

S-parameters. From (5.42) and (5.43) we can see that the extraction does not include the 

information on gyromagnetic resonance. In addition, Fig. 5.5 and Fig. 5.6 indicate that YIG is very 

dispersive. If YIG is used in a tunable circuit, frequencies higher than gyromagnetic resonance 

should be chosen because the low frequencies will be influenced by the corresponding 

gyromagnetic resonance during the tuning of the magnetic field. In addition, the YIG should 

operate at saturation region in order to reduce the loss [23]. The applied magnetic bias is 

perpendicular to the YIG substrate, and the bias setting in HFSS is internal bias instead of external 

bias, as expressed in (5.23).  
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The extracted effective permeability at three frequencies is shown in Fig. 5.15. Compared with Fig. 

5.6, they have the same trend, although Fig. 5.6 presents the calculated permeability of YIG, and 

Fig. 5.15 presents the effective permeability of the YIG-based circuit. Due to the influence of 

gyromagnetic resonance, the magnetic bias larger than 800 Oe will destroy the performance at 7 

GHz, while the magnetic bias larger than 1300 Oe will destroy the performance at 8 GHz.  

 

Figure 5.15: Extracted effective permittivity at three frequencies for YIG-based circuit. 

5.4 Small signal application of two-dimensional tuning circuits 

One of the small signal applications of two-dimensional tuning circuits is phase shifter. Hybrid 

NLTL technique can be utilized, and the NLTL with commercial varactors will be fabricated on 

the YIG substrate. The tuning of capacitance will not affect the permeability characteristic of the 

structure, and the tuning of magnetic bias will not affect the permittivity characteristic of the 

structure. In other words, the tuning of permittivity and permeability are independent. The extracted 

parameters in Section 5.3 could be used to design a two-dimensional tuning circuit if the same 

structure is used. Compared to pure electric tuning or magnetic tuning circuit, the two-dimensional 

tuning circuit has more freedom to manipulate the electrical and magnetic fields so as to keep 

impedance constant while changing the phase velocity rapidly.  
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Figure 5.16: Calculated characteristic impedance of hybrid NLTL when tuning the internal 

magnetic bias and reverse voltage bias. 

It can be seen from Fig. 5.14 and Fig. 5.15 that the operation frequency will be limited by the 

gyromagnetic resonance frequency of YIG and the Bragg cutoff frequency of NLTL. Based on the 

extraction of Fig. 14 and Fig. 15, the characteristic impedance of YIG-based NLTL at 8 GHz can 

be calculated by (5.39), and the result is shown in Fig. 5.16, as can be seen that the impedance 

increases when the magnetic bias Hi decreases and the reverse bias voltage Vr increases. It is easy 

to find a combination of Hi and Vr that can result in the constant impedance.  

The phase velocity can be calculated as 

 p

reff reff

c
v

 
   (5.47) 

where c is the speed of light. The result is shown in Fig. 5.17, as can be seen that the phase velocity 

increases when Hi increases and Vr increases. It can be seen from (5.47), the delay variation of the 

hybrid NLTL is larger than the capacitive or inductive NLTL, at the same time, the impedance can 
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be kept constant. For a certain value of delay of the phase shifter, a less number of unit will be 

required for the hybrid NLTL. Actually, it is also easy to find a combination of Hi and Vr that 

results in a constant phase velocity while the impedance changes rapidly.  

 

Figure 5.17: Calculated phase velocity of hybrid NLTL when tuning the internal magnetic bias 

and reverse voltage bias. 

5.5 Large signal application of two-dimensional tuning circuits 

It can be seen from (5.26) and (5.47) that the hybrid NLTL could have higher compression rate 

[72] than the traditional capacitive or inductive NLTL while keeping the input impedance constant. 

For a small signal application, the circuit operates in a linear condition, and the parameters of the 

circuit are tuned by the external biases. By contrast, for a large signal application, e.g. pulse 

sharpener, the hybrid NLTL needs to be driven by the signal itself or large dc bias.  

The capacitive component in a hybrid NLTL can be varactor, BST or PZT, and the inductive 

component is usually ferrite. The varactor [37-40] in NLTL can be driven by the signal with 

amplitude from a few volts to tens of volts, BST [41-43] can be driven by the signal with amplitude 
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from hundreds of volts to a few kilo volts, PZT [20, 21] can be driven by a few kilo volts. The 

ferrite is usually driven to its saturation region by a high voltage pulse of 10 - 100 kV [45-50]. It 

can be seen that proper ceramic dielectric material and ferrite can be chosen for the design of a 

hybrid NLTL, a possible topology can be multilayers or alternate material blocks, in which the 

materials can be driven by the same pulse signal. However, the application of an extremely large 

pulse signal is out of the scope of this work.  

One of the goals of this work is to explore the possibility of developing ahybrid NLTL using 

varactor and ferrite, which means the maximum amplitude of the signal is tens of volts. The work 

in [72] provides a possible way to drive the abrupt-junction varactors and ferrite-based inductors 

with a small-signal plus bias, or a large-signal plus bias. However, the large loss in the inductor at 

high frequencies limits the cutoff frequency in the range of MHz. So far, there is no experimental 

work of hybrid NLTL has been done at microwave frequency, mainly because of a required large 

magnetic bias for ferrite at microwave frequency range. The relationship between current bias and 

external magnetic bias could be investigated firstly, then more work could be done from the 

following aspects: 1) If the required magnetic bias is high, the YIG substrate can be pre-biased 

close to the saturation region, and then use the amplitude of the signal to tune the permeability. 2) 

If the small ferrite core is used, the inductor can be fabricated with a small size, it can not only 

work at microwave frequency, but also require a similar bias level as varactors. 3) Use the 

microwave ferrite material at low frequency region since higher frequency needs higher magnetic 

bias (Fig. 5.15), the required magnetic bias may reduce to the similar bias level as varactors.  

5.6 Conclusion 

In this chapter, we analyze the ferrite-based hybrid NLTL in both time domain and frequency 

domain. Then, parameter extraction of complex permittivity and permeability have been developed 

and validated. The two-dimensional tuning theory can provide more freedom to manipulate the 

electrical and magnetic fields of the circuit in order to have a constant impedance or constant phase 

velocity. Finally, the small-signal and large-signal applications of two-dimensional tuning circuits 

have been studied theoretically.  
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

 

Conclusions 

This PhD thesis explores the traditional and emerging nonlinear devices and nonlinear transmission 

line (NLTL) techniques and their microwave applications. So far, the research work has resulted 

in 5 journal publications and 1 patent. The principal scientific contributions of this research work 

can be summarized as follows: 

• An equivalent circuit model is developed for spindiode up to 20 GHz.  

• Investigation of the use of spindiode is conducted for low-power wireless power harvesting 

application. Detailed analysis and modeling are carried out to suggest the advantageous 

features of spindiodes as the next generation of active devices for RF and microwave 

rectifications and other nonlinear applications. 

• A negative resistance device is demonstrated for using in the development of an electronic 

impedance tuner, which can generate a reflection coefficient beyond one. 

• A semi-closed form design procedure is developed for the distributed electronic impedance 

synthesizer (EIS).  

• A non-uniformly distributed EIS is proposed and it has a smaller size and better Smith chart 

coverage than the uniform topology. 

• A Particle Swarm Optimization (PSO) method is introduced to solve the multi-parameter 

optimization problem of the proposed non-uniform EIS. The successful utilization of PSO 

can shorten the development period of an EIS to a few hours. 

• A voltage distributed theory is developed for the distributed EIS, and it can predict the 

power-handling capacity and nonlinearity from its linear operation region. In addition, the 

voltage distribution analysis can largely reduce the computation complexity of EIS, 

especially involving thousands of discrete impedance states. 
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• Comprehensive figures of merit (FOM) of EIS and tunable matching network (TMN) are 

studied and summarized, different FOM can be chosen to evaluate the EIS according to 

their applications. 

• Hybrid NLTL is analyzed in both time domain and frequency domain. 

• Parameters extraction method of complex permittivity and permeability is developed. 

• Small-signal application of two-dimensional tuning circuits is studied theoretically.  

• Future work of the large-signal application of two-dimensional tuning circuits is discussed.  

 

Future Work 

The research presented in this thesis could be continued from the following aspects. 

For the application of wireless power harvesting with spindiode: 

• In this work, we only focus on the non-resonant rectification of Spindiode. Actually, there 

are two more rectification mechanisms present in Spindiode: resonant rectification and 

Seebeck effect [123]. These two mechanisms could be studied more from the physics point 

of view. And then the rectification with the combination of two or three mechanisms could 

be studied theoretically and validated with the experiments. Although the current spindiode 

with non-resonant rectification is much lower than Schottky diode, it has potential to 

compete with Schottky diode if two or more mechanisms could be implemented 

simultaneously.  

• The spindiodes we used in this work were designed for MRAM instead of real diodes, 

more physical studies could be done to find out the crucial physical parameters that could 

result in a better current responsivity. Then physical construction could be optimized to 

improve the characteristics of the spindiode.  

For the application of electronic impedance tuner: 

• In this work, we focus on the design and optimization of the electronic impedance tuner, 

more studied could be done from the application side, such as Load-Pull system and noise 

measurement.  
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• More importantly, the design of electronic impedance tuner could be modified to tunable 

matching network, so that it can be used in the reconfigurable devices, such as PA and 

antenna.  

For the application of hybrid NLTL: 

• The parameter extraction method for NLTL-based circuit need to be further improved. 

Although the time domain smoothing technique can solve the jumping problem in the 

extracted parameters, it filters most of the components in a large frequency region. More 

investigation need to be done for the influence of the missing components.  

• The theory hybrid NLTL needs to be further validated through the experiments. The NLTL 

on ferrite substrate should be fabricated and measured. 

• Since the phase velocity of hybrid NLTL varies faster than the traditional NLTL while 

keeping the impedance constant, low-power high-speed Analog-Digital Converter (ADC) 

with high dynamic range may be possibly realized by the hybrid NLTL techniques.    
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