39 research outputs found

    Adaptive dynamic CMAC neural control of nonlinear chaotic systems with L2 tracking performance

    Get PDF
    [[abstract]]The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Adaptive PI Hermite neural control for MIMO uncertain nonlinear systems

    Get PDF
    [[abstract]]This paper presents an adaptive PI Hermite neural control (APIHNC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The proposed APIHNC system is composed of a neural controller and a robust compensator. The neural controller uses a three-layer Hermite neural network (HNN) to online mimic an ideal controller and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Moreover, a proportional–integral learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed APIHNC system is applied to an inverted double pendulums and a two-link robotic manipulator. Simulation results verify that the proposed APIHNC system can achieve high-precision tracking performance. It should be emphasized that the proposed APIHNC system is clearly and easily used for real-time applications.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Active disturbance cancellation in nonlinear dynamical systems using neural networks

    Get PDF
    A proposal for the use of a time delay CMAC neural network for disturbance cancellation in nonlinear dynamical systems is presented. Appropriate modifications to the CMAC training algorithm are derived which allow convergent adaptation for a variety of secondary signal paths. Analytical bounds on the maximum learning gain are presented which guarantee convergence of the algorithm and provide insight into the necessary reduction in learning gain as a function of the system parameters. Effectiveness of the algorithm is evaluated through mathematical analysis, simulation studies, and experimental application of the technique on an acoustic duct laboratory model

    Intelligent control of nonlinear systems with actuator saturation using neural networks

    Get PDF
    Common actuator nonlinearities such as saturation, deadzone, backlash, and hysteresis are unavoidable in practical industrial control systems, such as computer numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead crane mechanisms, and more. When the actuator nonlinearities exist in control systems, they may exhibit relatively large steady-state tracking error or even oscillations, cause the closed-loop system instability, and degrade the overall system performance. Proportional-derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not compensated well. The problems are particularly exacerbated when the required accuracy is high, as in micropositioning devices. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely operation uncertainty, are unknown, the saturation compensation research is a challenging and important topic with both theoretical and practical significance. Adaptive control can accommodate the system modeling, parametric, and environmental structural uncertainties. With the universal approximating property and learning capability of neural network (NN), it is appealing to develop adaptive NN-based saturation compensation scheme without explicit knowledge of actuator saturation nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes in several scenarios of nonlinear systems are investigated. The nonlinear systems studied within this dissertation include the general nonlinear system in Brunovsky canonical form, a second order multi-input multi-output (MIMO) nonlinear system such as a robot manipulator, and an underactuated system-flexible robot system. The abovementioned methods assume the full states information is measurable and completely known. During the NN-based control law development, the imposed actuator saturation is assumed to be unknown and treated as the system input disturbance. The schemes that lead to stability, command following and disturbance rejection is rigorously proved, and verified using the nonlinear system models. On-line NN weights tuning law, the overall closed-loop performance, and the boundedness of the NN weights are rigorously derived and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted into a feedforward path. The simulation conducted indicates that the proposed schemes can effectively compensate for the saturation nonlinearity in the presence of system uncertainty

    Intelligent failure-tolerant control

    Get PDF
    An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods

    Joint University Program for Air Transportation Research, 1989-1990

    Get PDF
    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented

    Joint University Program for Air Transportation Research, 1991-1992

    Get PDF
    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented

    A Robust Adaptive Control using Fuzzy Neural Network for Robot Manipulators with Dead-Zone

    Get PDF
    In this paper, a robust-adaptive-fuzzy-neural-network controller (RAFNNs) bases on dead zone compensator for industrial robot manipulators (RM) is proposed to dead the unknown model and external disturbance. Here, the unknown dynamics of the robot system is deal by using fuzzy neural network to approximate the unknown dynamics. The online training laws and estimation of the dead-zone are determined by Lyapunov stability theory and the approximation theory. In this proposal, the robust sliding-mode-control (SMC) is constructed to optimize parameter vectors, solve the approximation error and higher order terms. Therefore, the stability, robustness, and desired tracking performance of RAFNNs for RM are guaranteed. The simulations and experiments performed on three-link RM are provided in comparison with neural-network (NNs) and proportional-integral-derivative (PID) to demonstrate the robustness and effectiveness of the RAFNNs

    Current Trends in Tactical Missile Guidance

    Get PDF
    The problem of tactical missile guidance is very challenging and has been treated using several basic metlfodologies in the past four decades. Major techniques can be grouped underclassical guidance laws, modern guidance laws, l'aws for manoeuvring targets, predictive guidance for endgame scenario, and guidance laws based on intelligent control methods. Each technique has some advantages and disadvantages while implementing in a practical system. Guidance law selection is dictated by nature of flight profile like boost, midcourse, terminal homing, etc, and also miss-distance and a single-shot kill probability. This paper presents a brief survey of the existing techniques and current trends in tactical missile guidance
    corecore