
Cedarville University
DigitalCommons@Cedarville

Engineering and Computer Science Faculty
Publications School of Engineering and Computer Science

2005

Neural Network Control of a Parallel Hybrid-
Electric Propulsion System for a Small Unmanned
Aerial Vehicle
Frederick G. Harmon
Cedarville University, fharmon@cedarville.edu

Follow this and additional works at: http://digitalcommons.cedarville.edu/
engineering_and_computer_science_publications

Part of the Aeronautical Vehicles Commons

This Dissertation is brought to you for free and open access by
DigitalCommons@Cedarville, a service of the Centennial Library. It has
been accepted for inclusion in Engineering and Computer Science Faculty
Publications by an authorized administrator of
DigitalCommons@Cedarville. For more information, please contact
digitalcommons@cedarville.edu.

Recommended Citation
Harmon, Frederick G., "Neural Network Control of a Parallel Hybrid-Electric Propulsion System for a Small Unmanned Aerial
Vehicle" (2005). Engineering and Computer Science Faculty Publications. 191.
http://digitalcommons.cedarville.edu/engineering_and_computer_science_publications/191

http://www.cedarville.edu/?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.cedarville.edu/?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/engineering_and_computer_science_publications?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/engineering_and_computer_science_publications?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/engineering_and_computer_science?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/engineering_and_computer_science_publications?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/engineering_and_computer_science_publications?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/219?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/engineering_and_computer_science_publications/191?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@cedarville.edu
http://www.cedarville.edu/Academics/Library.aspx?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.cedarville.edu/Academics/Library.aspx?utm_source=digitalcommons.cedarville.edu%2Fengineering_and_computer_science_publications%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages

DISTRIBUTION STATEMET.!T A
Approved for Public Release

Distribution Unlimited

Neural Network Control of a
Parallel Hybrid-Electric Propulsion System for a

Small Unmanned Aerial Vehicle

by

FREDERICK G. HARMON

B.S. Electrical Engineering (Embry-Riddle Aeronautical University) 1992
M.S. Electrical Engineering (Air Force Institute of Technology) 1996

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Mechanical and Aeronautical Engineering

in the
OFFICE OF GRADUATE STUDIES

of the
UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in Charge

2005

20050525 040

Disclaimer

The views expressed in this document are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or the

U. S. Government.

I I II

R DForm Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I 12.May.05 DISSERTATION
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

NEURAL NETWORK CONTROL OF A PARALLEL HYBRID-ELECTRIC
PROPULSION SYSTEM FOR A SMALL UNMANNED AERIAL VEHICLE

6. AUTHOR(S)

MAJ HARMON FREDERICK G

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

UNIVERSITY OF CALIFORNIA AT DAVIS REPORT NUMBER

CI04-1076

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

THE DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMBER

AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited distribution " T-
In Accordance With AFI 35-205/AFIT Su TiJ T TA

Approved for Public Release
Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

280
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Frederick G. Harmon
June 2005

Mechanical and Aeronautical Engineering

Neural Network Control of a Parallel Hybrid-Electric Propulsion System
for a Small Unmanned Aerial Vehicle

Abstract

Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial
vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The
benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater
range as compared to electric-powered UAVs and stealth modes not available with gasoline-
powered UAVs. This dissertation contributes to the research fields of small unmanned aerial
vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design
of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is
intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design
reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion
system. The resulting hybrid-electric propulsion system is a two-point design that includes an
engine primarily sized for cruise speed and an electric motor and battery pack that are primarily
sized for a slower endurance speed. The electric motor provides additional power for take-off,
climbing, and acceleration and also serves as a generator during charge-sustaining operation or
regeneration. The intelligent control of the hybrid-electric propulsion system is based on an
instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency
maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The
hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization
algorithm is flexible and allows the operator/user to assign relative importance between the use
of gasoline, electricity, and recharging depending on the intended mission. A
MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model
Arithmetic Computer (CMAC) associative memory neural network is applied to the control of
the UAV's parallel hybrid-electric propulsion system. The CMAC neural network approximates
the hyper-plane generated from the instantaneous optimization algorithm and produces torque
commands for the internal combustion engine and electric motor. The CMAC neural network
controller saves on the required memory as compared to a large look-up table by two orders of
magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex
logic every time step.

Frederick G. Harmon
June 2005

Mechanical and Aeronautical Engineering

Neural Network Control of a Parallel Hybrid-Electric Propulsion System
for a Small Unmanned Aerial Vehicle

Abstract

Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial
vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The
benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater
range as compared to electric-powered UAVs and stealth modes not available with gasoline-
powered UAVs. This dissertation contributes to the research fields of small unmanned aerial
vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design
of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is
intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design
reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion
system. The resulting hybrid-electric propulsion system is a two-point design that includes an
engine primarily sized for cruise speed and an electric motor and battery pack that are primarily
sized for a slower endurance speed. The electric motor provides additional power for take-off,
climbing, and acceleration and also serves as a generator during charge-sustaining operation or
regeneration. The intelligent control of the hybrid-electric propulsion system is based on an
instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency
maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The
hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization
algorithm is flexible and allows the operator/user to assign relative importance between the use
of gasoline, electricity, and recharging depending on the intended mission. A
MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model
Arithmetic Computer (CMAC) associative memory neural network is applied to the control of
the UAV's parallel hybrid-electric propulsion system. The CMAC neural network approximates
the hyper-plane generated from the instantaneous optimization algorithm and produces torque
commands for the internal combustion engine and electric motor. The CMAC neural network
controller saves on the required memory as compared to a large look-up table by two orders of
magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex
logic every time step.

Acknowledsments

As I was preparing for the preliminary exams required for the PhD program, I
read Psalm 102:25 in the Scriptures: "In the beginning you laid the foundations of the
earth, and the heavens are the work of your hands." It reminded me that God
miraculously created the universe. As I learn more about the world around us, the more I
realize how little I know compared to our great and almighty God. He allows us to see
glimpses of the order and design of the universe through science and engineering. I am
thankful for the time that I have spent learning at UCD. I am most thankful for the love,
faithfulness, and kindness of my Lord and Savior, Jesus Christ, who gave me the talents
and abilities to earn the PhD degree.

My family has been very supportive and loving throughout my time here.
was patient with me when I needed to work during the day and late in the evenings. She
managed the house well and kept up with the home schooling. The children were a much
needed blessing. I am sure that !OW still has a draft copy of the dissertation
somewhere in one of his treasure boxes. drew and colored many pictures while
sitting next to me at the computer desk. • put together many puzzles and played
underneath my chair, andill liked to crawl, walk, and smile continuously. Our latest
addition, 8 , has also been a blessing in her first few months. Our family has
enjoyed our time here, but we are looking forward to moving on to our next assignment.

A graduate program would be impossible to complete without the understanding,
encouragement, and support of professors who have dedicated themselves to their work
and the students. Professors Frank, Joshi, Chattot, Baughn, and Hess were instrumental
in guiding me, giving me technical insight, and supporting me throughout my time at
UCD. I appreciate their understanding to allow me to complete the PhD degree in the
three years that I was allowed by the Air Force.

The fellow students in the Hybrid-Electric Vehicle (HEV) Center were very
helpful during the dissertation work. Although I did not have time to work with the other
students on the FutureTruck HEVs as I had hoped, their experience and help were
invaluable. I wish the best for the other students such as Vern, Tom, Owen, Joey, and
Chris. I know you all will do well wherever your careers take you.

Lastly, I am thankful for the career that God has given me in the Air Force. I
never dreamed that I would make the military a career, but the opportunities have been
tremendous. I am grateful that I was allowed to have three years to pursue a PhD here at
UCD while still on active duty.

iii

Table of Contents

Disclaimer ... ii

Acknowledgments .. iii

Table of Contents .. iv

List of Figures .. vii

List of Tables ..

Abstract .. xvii

Chapter 1: Overview

1.1 Introduction .. 1
1.2 B ackground .. 5

1.2.1 Objectives for the Hybrid-Electric UAV Propulsion System Controller.. 5
1.2.2 Hybrid-Electric Vehicle Configurations 5
1.2.3 Hybrid-Electric Vehicle Power Train Operating Strategies 8
1.2.4 Hybrid-Electric Vehicle Power Train Control Approaches 10

1.3 Dissertation Objectives and Approach ... 12
1.4 Research Focus Areas 14
1.5 Overview of Dissertation .. 17

Chapter 2: Hybrid-Electric Power Train Control Approaches

2.1 Power Train Control of Hybrid-Electric Vehicles 19
2.2 Rule-Based Control Strategies .. 20
2.3 O ptim al Control .. 23
2.4 Fuzzy Logic Control .. 32
2.5 Artificial Neural Networks .. 38
2.6 Adaptive Control .. 42
2.7 Advanced Control Algorithm Summary .. 46

Chapter 3: CMAC Artificial Neural Network

3.1 Introduction to the CMAC ANN ... 49
3.2 History of the CMAC ANN 51
3.3 CMAC ANN Description ... 52

3.3.1 Training ... 55
3.3.2 Convergence and Stability 55

iv

3.3.3 Generalization ... 57
3.3.4 M odeling Errors .. 57
3.3.5 M emory Requirement .. 58
3.3.6 Higher-Order Basis Functions ... 59

3.4 Function Approximation Example ... 59

Chapter 4: Hybrid-Electric Unmanned Aerial Vehicle Simulink Model

4.1 Flight Profile ... 67
4.2 Pilot/Operator .. 68
4.3 Propulsion System .. 70

4.3.1 Internal Combustion Engine ... 71
4.3.2 Clutch ... 73
4.3.3 Battery Pack and Electrical Accessories .. 75
4.3.4 Electric M otor ... 77
4.3.5 Propulsion System Controller .. 80
4.3.6 Gear Reduction Unit ... 84
4.3.7 Propeller ... 84

4.4 Unm anned Aerial Vehicle ... 86

Chapter 5: Hybrid-Electric UAV Conceptual Design and Sizing

5.1 Introduction .. 91
5.2 M ission Requirements ... 93
5.3 Performance Requirements ... 93
5.4 W eight Fractions .. 95
5.5 Propulsion System Component and W ing Sizing .. 95
5.6 Optimization and Conceptual Design Results ... 100

Chapter 6: CMAC Controller Design and Simulation Results

6.1 Introduction .. 107
6.2 Background .. 108

6.2.1 Energy Paths .. 108
6.2.2 Efficiency M aps .. 108

6.3 Optimization Algorithms ... 112
6.3.1 Two-Input Algorithm/Rule-Based Controller 112
6.3.2 Three-Input Algorithm .. 115

6.4 CM AC Neural Network Controller Simulink Block ... 122
6.5 CM AC Controller Approximations ... 123

6.5.1 Two-Input CM AC Controller Approximations 124
6.5.2 Three-Input CM AC Controller Approximations 128

6.6 Flight Profile Simulation Results ... 138
6.6.1: One-Hour ISR M ission .. 138
6.6.2: Three-Hour ISR M ission .. 153
6.6.3: Cruise M ission Segment with W ind Turbulence 169

6.7 M emory Savings .. 174
6.8 Conclusions .. 174

V

Chapter 7: Conclusions and Recommendations

7.1 Sum m ary .. 175
7.2 Potential Future Research .. 176

7.2.1 Dynamometer Testing of Advanced Propulsion Systems 176
7.2.2 Adaptive Scheme/Real-Time CMAC ANN Training 176
7.2.3 Higher-Order Basis Functions for the CMAC ANN 177
7.2.4 CM A C ANN Input Space Adaptation ... 177
7.2.5 V ariable Pitch Propeller .. 177

Appendix: MATLAB and C++ Code

A .1 Conceptual Design M ATLAB Code ... 179
A .2 HEUAV M odel M ATLAB Code .. 193

A .2.1 HEUAV Setup File ... 193
A .2.2 Internal Com bustion Engine Data Files ... 200
A .2.3 Battery D ata File .. 205
A .2.4 Electric M otor D ata File ... 205
A .2.5 U AV D ata File .. 207

A .3 Controller Algorithm M ATLAB Code ... 208
A .3.1 Two-Input Algorithm ... 209
A .3.2 Three-Input Algorithm ... 211

A .4 CM AC ANN C++ Code .. 217
A .4.1 Input File .. 217
A .4.2 CM AC ANN Program .. 222

Bibliography ... 253

vi

List of Figures

Figure 1-1: Series and Parallel Hybrid-Electric Configurations 7

Figure 1-2: HEUAV Power Train Controller .. 14

Figure 1-3: Energy Paths for the Parallel Hybrid-Electric Propulsion System 16

Figure 2-1: Neuron Model .. 40

Figure 2-2: Block Diagram of a Direct Adaptive Controller 43

Figure 2-3: Block Diagram of an Indirect Adaptive Controller 43

Figure 3-1: CMAC ANN Structure ... 53

Figure 3-2: Original Function ... 60

Figure 3-3: CMAC Approximation (L=3) of Original Function 61

Figure 3-4: RMS Error for CMAC Approximation (L=3) .. 61

Figure 3-5: CMAC Approximation (L=10) of Original Function 62

Figure 3-6: RMS Error for CMAC Approximation (L=10) 62

Figure 4-1: HEUAV Simulink Model .. 66

Figure 4-2: Flight Profile Model ... 68

Figure 4-3: Pilot/Operator Model .. 69

Figure 4-4: Propulsion System Model .. 70

Figure 4-5: Engine Model .. 71

Figure 4-6: Clutch Model ... 73

Figure 4-7: Battery Pack Model ... 76

Figure 4-8: Electric Motor Model ... 78

Figure 4-9: Propulsion System Controller Model .. 81

Figure 4-10: Regeneration/Charge-Sustaining Logic Block .. 83

vii

Figure 4-11: Propeller Model .. 85

Figure 4-12: UAV Model ... 87

Figure 4-13: UAV Forces Model ... 88

Figure 5-1: Hybrid-Electric Propulsion System Sizing Flowchart 92

Figure 5-2: Endurance Speed and Power Required for 30 lb UAV 99

Figure 5-3: Power Required at Sea Level and 5 kft MSL .. 102

Figure 5-4: Weight Fractions, Normalized to UAV Weight .. 103

Figure 5-5: Weight Fractions for the HEUAV Propulsion System 104

Figure 6-1: Energy Paths Available in the Hybrid-Electric System 108

Figure 6-2: Two-Stroke Engine Efficiency Map ... 109

Figure 6-3: Four-Stroke Engine Efficiency Map ... 109

Figure 6-4: Motor Efficiency Map ... 111

Figure 6-5: Battery Pack Efficiency Map .. 111

Figure 6-6: Two-Input Algorithm/Rule-Based Controller ... 113

Figure 6-7: Engine Torque Control Surface, Two-Stroke, Two-Input Algorithm 114

Figure 6-8: Engine Torque Control Surface, Four-Stroke, Two-Input Algorithm 114

Figure 6-9: Three-Input Optimization Algorithm .. 116

Figure 6-10: Engine Torque Control Surface, Two-Stroke, Three-Input Algorithm,

Charge-Sustaining, SOC=100% ... 117

Figure 6-11: Engine Torque Control Surface, Two-Stroke, Three-Input Algorithm,

Charge-Sustaining, SOC=25% ... 117

Figure 6-12: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,

Charge-Sustaining, SOC=100% ... 118

Viii

Figure 6-13: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,

Charge-Sustaining, SOC=25% ... 118

Figure 6-14: Engine Torque Control Surface, Two-Stroke, Three-Input Algorithm,

Charge-D epletion, SOC=100% ... 120

Figure 6-15: Engine Torque Control Surface, Two-Stroke, Three-Input Algorithm,

Charge-D epletion, SOC=25% ... 120

Figure 6-16: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,

Charge-D epletion, SOC=100% ... 121

Figure 6-17: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,

Charge-D epletion, SOC=25% ... 121

Figure 6-18: CMAC Controller Simulink Block ... 122

Figure 6-19: CMAC Approximation (L=3) for Engine Torque Control Surface (see

Figure 6-7), Two-Stroke, Two-Input Controller ... 125

Figure 6-20: CMAC Approximation (L=18) for Engine Torque Control Surface (see

Figure 6-7), Two-Stroke, Two-Input Controller ... 125

Figure 6-21: RMS Error, Two-Stroke, Two-Input Controller 126

Figure 6-22: CMAC Approximation (L=18) for Engine Torque Control Surface (see

Figure 6-8), Four-Stroke, Two-Input Controller ... 127

Figure 6-23: RMS Error, Four-Stroke, Two-Input Controller 127

Figure 6-24: CMAC Approximation (L=3) for Engine Torque Control Surface (see

Figure 6-10), Two-Stroke, Three-Input Controller, Charge-Sustaining, SOC=100%

... 12 9

ix

Figure 6-25: CMAC Approximation (L=3) for Engine Torque Control Surface (see

Figure 6-11), Two-Stroke, Three-Input Controller, Charge-Sustaining, SOC=25%

... 12 9

Figure 6-26: CMAC Approximation (L=14) for Engine Torque Control Surface (see

Figure 6-10), Two-Stroke, Three-Input Controller, Charge-Sustaining, SOC=100%

. 130

Figure 6-27: CMAC Approximation (L=14) for Engine Torque Control Surface (see

Figure 6-11), Two-Stroke, Three-Input Controller, Charge-Sustaining, SOC=25%

.......................... 130

Figure 6-28: CMAC Approximation (L=3) for Engine Torque Control Surface (see

Figure 6-12), Four-Stroke, Three-Input Controller, Charge-Sustaining, SOC=100%

... 13 2

Figure 6-29: CMAC Approximation (L=3) for Engine Torque Control Surface (see

Figure 6-13), Four-Stroke, Three-Input Controller, Charge-Sustaining, SOC=25%

... 132

Figure 6-30: CMAC Approximation (L=14) for Engine Torque Control Surface (see

Figure 6-12), Four-Stroke, Three-Input Controller, Charge-Sustaining, SOC=100%

... 13 3

Figure 6-31: CMAC Approximation (L=14) for Engine Torque Control Surface (see

Figure 6-13), Four-Stroke, Three-Input Controller, Charge-Sustaining, SOC=25%

... 13 3

• m i Ii I ix

Figure 6-32: CMAC Approximation (L=14) for Engine Torque Control Surface (see

Figure 6-14), Two-Stroke, Three-Input Controller, Charge-Depletion, SOC=100%

..°°.°°.°..°.°-.°.°°. -°°..-.. . -..- °°-..-°°-.°-..-° 13...135

Figure 6-33: CMAC Approximation (L=14) for Engine Torque Control Surface (see

Figure 6-15), Two-Stroke, Three-Input Controller, Charge-Depletion, SOC=25% 135

Figure 6-34: CMAC Approximation (L=9) for Engine Torque Control Surface (see

Figure 6-16), Four-Stroke, Three-Input Controller, Charge-Depletion, SOC=100%

... 13 7

Figure 6-35: CMAC Approximation (L=9) for Engine Torque Control Surface (see

Figure 6-17), Four-Stroke, Three-Input Controller, Charge-Depletion, SOC=25%

... 137

Figure 6-36: One-Hour Flight Profile .. 139

Figure 6-37: Fuel Consumed, One-Hour Mission, Two-Stroke, Original and HEUAV

C onfigurations ... 140

Figure 6-38: Engine Torque and Speed, One-Hour Mission, Two-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Depletion 141

Figure 6-39: Engine Operating Points, One-Hour Mission, Two-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Depletion 141

Figure 6-40: Actual vs. Desired UAV Speed, One-Hour Mission, Two-Stroke, HEUAV

Configuration, Three-Input CMAC Controller (L= 19), Charge-Depletion 142

Figure 6-41: Engine Operating Points, One-Hour Mission, Two-Stroke, HEUAV

Configuration, Three-Input CMAC Controller (L= 19), Charge-Depletion 143

xi

Figure 6-42: Motor Torque and Speed, One-Hour Mission, Two-Stroke, HEUAV

Configuration, Three-Input CMAC Controller (L=19), Charge-Depletion 144

Figure 6-43: Battery SOC, One-Hour Mission, Two-Stroke, HEUAV Configuration,

Rule-Based and Three-Input CMAC Controllers, Charge-Depletion 145

Figure 6-44: Desired and Actual UAV Speed, One-Hour Mission, Four-Stroke, Original

C onfiguration .. 147

Figure 6-45: Engine Torque and Speed, One-Hour Mission, Four-Stroke, Original

C onfiguration .. 148

Figure 6-46: Motor Torque and Speed, One-Hour Mission, Four-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Depletion 149

Figure 6-47: Battery SOC, One-Hour Mission, Four-Stroke, HEUAV Configuration,

Rule-Based and CMAC Controllers, Charge-Depletion ... 149

Figure 6-48: Engine Operating Points, One-Hour Mission, Four-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Depletion 150

Figure 6-49: Engine Operating Points, One-Hour Mission, Four-Stroke, HEUAV

Configuration, Three-Input CMAC Controller (L= 19), Charge-Depletion 151

Figure 6-50: Three-Hour Flight Profile ... 153

Figure 6-51: Engine Torque, Three-Hour Mission, Two-Stroke, Original Configuration

°°°.. °. °-. °°°. -°°°-°°.-°°°°..°...°°.°°.°-°°°..°°.°..°.°°-°..°°o..°°°.-°-°...°°i.°°°.. 154

Figure 6-52: Engine Speed, Three-Hour Mission, Two-Stroke, Original Configuration

... 15 5

Figure 6-53: Battery Plots, Three-Hour Mission, Two-Stroke, HEUAV Configuration,

Rule-Based Controller, Charge-Sustaining ... 156

xii

Figure 6-54: Engine Operating Points, Three-Hour Mission, Two-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Sustaining 156

Figure 6-55: Motor Torque and Speed, Three-Hour Mission, Four-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Sustaining 157

Figure 6-56: Desired and Actual UAV Speed, Three-Hour Mission, Four-Stroke,

HEUAV Configuration, Three-Input CMAC Controller (L=14), Charge-Sustaining

..-...-....-.......-............. 159

Figure 6-57: Battery SOC, Three-Hour Mission, Two-Stroke, HEUAV Configuration,

Three-Input CMAC Controllers, Charge-Sustaining .. 159

Figure 6-58: Desired and Actual UAV Speed, Three-Hour Mission, Four-Stroke,

O riginal Configuration .. 161

Figure 6-59: Engine Torque, Three-Hour Mission, Four-Stroke, Original Configuration

... 162

Figure 6-60: Propeller Speed, Three-Hour Mission, Four-Stroke, Original Configuration

... 16 3

Figure 6-61: Battery Plots, Three-Hour Mission, Four-Stroke, HEUAV Configuration,

Rule-Based Controller, Charge-Sustaining ... 164

Figure 6-62: Engine Operating Points, Three-Hour Mission, Four-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Sustaining 164

Figure 6-63: Motor Torque and Speed, Three-Hour Mission, Four-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Sustaining 165

xiii

Figure 6-64: Desired and Actual UAV Speed, Three-Hour Mission, Four-Stroke,

HEUAV Configuration, Three-Input CMAC Controller (L=14), Charge-Sustaining

... 16 7

Figure 6-65: Battery SOC, Three-Hour Mission, Four-Stroke, HEUAV Configuration,

Three-Input CMAC Controllers, Charge-Sustaining .. 167

Figure 6-66: Autocorrelation of Sample Wind Turbulence ... 170

Figure 6-67: Turbulence Speed for Cruise Mission Segment .. 171

Figure 6-68: Actual and Desired UAV Speed, Cruise Mission Segment with Wind

Turbulence, Four-Stroke, HEUAV Configuration, CMAC Controller (L=14),

C harge-Sustaining ... 172

Figure 6-69: Engine Torque Control Surface and Operating Points, Cruise Mission

Segment with Wind Turbulence, Four-Stroke, HEUAV Configuration, CMAC

Controller (L=14), Charge-Sustaining .. 172

xiv

List of Tables

Table 1-1: Propulsion System Weight Comparison for Series and Parallel Hybrid-

Electric Configurations for a 30 lb UAV ... 8

Table 2-1: Advanced Control Algorithms for HEV Power Train Control 47

Table 3-1: RMS Error and Memory Savings for CMAC Approximations 60

Table 5-1: HEUAV Performance Requirements ... 94

Table 5-2: CD,0 Estimates for a 30 lb Conventional High-Wing UAV 97

Table 5-3: 30 lb UAV Optimization and Conceptual Design Results 101

Table 5-4: Off-the-Shelf Components for a 30 lb HEUAV ... 105

Table 6-1: Parameter Summary for the HEUAV CMAC ANN Controllers 123

Table 6-2: Summary of the CMAC Approximation Results for the Two-Input Controller,

Charge-Depletion, Two-Stroke Engine .. 124

Table 6-3: Summary of the CMAC Approximation Results for the Two-Input Controller,

Charge-Depletion, Four-Stroke Engine .. 126

Table 6-4: Summary of the CMAC Approximation Results for the Three-Input

Controller, Charge-Sustaining, Two-Stroke Engine ... 128

Table 6-5: Summary of the CMAC Approximation Results for the Three-Input

Controller, Charge-Sustaining, Four-Stroke Engine ... 131

Table 6-6: Summary of the CMAC Approximation Results for the Three-Input

Controller, Charge-Depletion, Two-Stroke Engine .. 134

Table 6-7: Summary of the CMAC Approximation Results for the Three-Input

Controller, Charge-Depletion, Four-Stroke Engine .. 136

xv

Table 6-8: Power Consumption and Energy Use Summary for One-Hour Flight Profile,

Tw o-Stroke Engine ... 146

Table 6-9: Power Consumption and Energy Use Summary for One-Hour Flight Profile,

Four-Stroke Engine ... 152

Table 6-10: Power Consumption and Energy Use Summary for Three-Hour Flight

Profile, Tw o-Stroke Engine .. 160

Table 6-11: Power Consumption and Energy Use Summary for Three-Hour Flight

Profile, Four-Stroke Engine .. 168

Table 6-12: Energy Use Summary for Cruise Mission Segment with Wind Turbulence,

Four-Stroke Engine, Charge-Sustaining ... 173

xvi

Abstract

Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial
vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions.
The benefits, due to the hybrid and electric-only modes, include increased time-on-station
and greater range as compared to electric-powered UAVs and stealth modes not available
with gasoline-powered UAVs. This dissertation contributes to the research fields of
small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent
control in the following areas:

1) Conceptual Design of a Hybrid-Electric UAV: A conceptual design of a
small UAV with a parallel hybrid-electric propulsion system is provided. The
UAV is intended for intelligence, surveillance, and reconnaissance (ISR)
missions. The conceptual design reveals the trade-offs that must be considered to
take advantage of the hybrid-electric propulsion system. The resulting hybrid-
electric propulsion system is a two-point design that includes an engine primarily
sized for cruise speed and an electric motor and battery pack that are primarily
sized for endurance speed. The electric motor provides additional power for take-
off, climbing, and acceleration and also serves as a generator during charge-
sustaining operation or regeneration. Electric-only operation provides stealth
operation not available with gasoline-powered UAVs by reducing the acoustic,
smoke, and thermal signatures.

2) Instantaneous Optimization of Energy Use: The intelligent control of the
hybrid-electric propulsion system is based on an instantaneous optimization
algorithm (i.e. instantaneous rate of energy consumption) that generates a hyper-
plane from the nonlinear efficiency maps for the internal combustion engine,
electric motor, and lithium-ion battery pack. The hyper-plane incorporates
charge-depletion and charge-sustaining strategies in addition to ideal operating
band (lOB) and ideal operating line (IOL) concepts developed by previous
researchers. The optimization algorithm is flexible and allows the user to assign
relative importance between the use of gasoline, electricity, and recharging
depending on the length and type of intended mission.

3) Simulations using Intelligent Control Algorithm: The Cerebellar Model
Arithmetic Computer (CMAC) associative memory neural network is applied to
the control of the UAV's hybrid-electric propulsion system. A
MATLAB/Simulink model was developed to test the control algorithms. The
CMAC neural network approximates the hyper-plane generated from the
instantaneous optimization algorithm and produces torque commands for the
internal combustion engine and electric motor. The CMAC neural network
controller saves on the required memory as compared to a large look-up table by
one to two orders of magnitude. The CMAC controller also prevents the need to
compute a hyper-plane or complex logic every time step.

xvii

BLANK

xviii

Chapter 1: Overview

1.1 Introduction

Within the automotive industry, hybrid-electric vehicle (HEV) technology is

leading to vehicles with increased fuel economy and reduced emissions. The same

technology would have similar and even additional benefits if applied to unmanned aerial

vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions.

A hybrid-electric vehicle is "a vehicle in which propulsion energy is available from two

or more kinds or types of energy stores, sources, or converters, and at least one of them

can deliver electrical energy" [1]. The task of controlling and optimizing the propulsion

energy for a hybrid propulsion system is difficult due to the interaction of electrical,

mechanical, thermodynamic, and electrochemical devices. Journal and conference papers

describing control systems for hybrid-electric power trains and the optimization of the

energy use began to appear in the 1980's and early 1990's. In the late 1990's and in this

decade, papers appeared describing the application of adaptive control, optimal control,

and fuzzy logic to the control of HEV power trains for automotive applications. A neural

network controller is developed in this dissertation research to optimize the energy use of

a parallel hybrid-electric propulsion system for a small UAV intended for military,

homeland security, and disaster-monitoring missions.

HEV technology for automobiles can be applied to small or tactical UAVs to

satisfy military missions. The potential benefits, due to the hybrid and electric-only

modes, include increased endurance (time-on-station), longer range, stealth modes, and

increased battery energy for the sensors. A hybrid-electric propulsion system for a UAV

provides increased endurance time and longer range as compared to an electric-only

2

powered UAV such as the current Dragon Eye or Desert Hawk [2]. The engine or fuel

converter is down-sized for steady-state conditions and operated near a constant power

output. The electric motor provides the additional power, if needed, for acceleration or

climbing and serves as a generator at other times. Electric-only operation provides

stealth operation not available with gasoline-powered UAVs and reduces the acoustic,

smoke, and thermal signatures [3]. Also, electric-only operation eliminates exhaust

emissions that interfere with chemical-detecting sensors. The already existing battery

pack or generator that provides power for the video, electro-optic/infrared, or acoustic

sensors now provides propulsion energy during certain phases of flight. In addition, the

battery pack is available to power sensors while the UAV is setting in a surveillance

location. Due to these advantages, a UAV with a hybrid-electric propulsion system

enhances military-related missions.

The current military missions for a small or tactical UAV include force

protection, surveillance, and reconnaissance. The Force Protection Aerial Surveillance

System (FPASS) or Desert Hawk was designed for the Air Force security forces to

conduct area surveillance, monitor runway approach and departure ends, and patrol base

perimeters [2]. It was strongly needed to increase the security of overseas bases.

Another small UAV, the electric-powered Dragon Eye, was built to conduct

reconnaissance for the Marine Corps [2]. The Pioneer UAV, a tactical UAV, has been

used by the Navy, Army, and Marine Corps for reconnaissance and surveillance. Wilson

comments that "The Navy's Pioneer, a direct derivative of Israeli surveillance and

reconnaissance UAVs, played a crucial role as a spotter for U.S. battleships. They were

so effective that Iraqi troops began to associate the sound of the little aircraft's two-cycle

3

engine with an imminent devastating bombardment" [4]. Additional military missions

for the small or tactical UAV include intelligence, communications relay, chemical

weapons detection, target acquisition, and battle-damage assessment.

A UAV with a hybrid-electric propulsion system could also be advantageous for

homeland security missions such as pipeline inspection, seaport surveillance, and security

for large facilities [4]. Electric-only operation (stealth mode) would prevent intruders

from detecting the approaching UAV and would also prevent public noise disturbances

while the UAV is flying over populated areas. The electric-only operation would also not

cause any interference with highly-sensitive chemical or biological weapon sensors. The

increased range and endurance time would also be beneficial for homeland security

missions. Various government agencies have begun to realize these benefits and are

considering hybrid-electric projects for UAV applications.

The Defense Advanced Research Projects Agency (DARPA), the NASA Glenn

Research Center, and other government agencies are considering hybrid-electric

propulsion systems for UAVs. DARPA's Micro Air Vehicle (MAV) project is designed

to give the Army or Special Operations Forces a UAV with a reconnaissance and

surveillance capability in a tactical environment [5]. The MAV is a vertical take-off and

landing (VTOL) vehicle utilizing ducted fan technology. A series hybrid-electric

propulsion system that includes a diesel engine, generator, electric motor, and batteries

has been considered for the MAV. DARPA proposed that electric-only operation could

provide a "perch and stare" capability. DARPA also has given a contract to Boeing to

design a fuel cell-based hybrid-electric propulsion system for a UAV [6]. This Ultra

Leap project was proposed to have military as well as civilian applications. An example

4

of a civilian application is Helios, NASA's high-altitude, long-endurance UAV built by

AeroVironment, designed for telecommunications and atmospheric monitoring [7]. The

Helios currently uses solar power during the day to charge batteries giving it a limited

night-time capability. A light weight fuel cell system is currently in the development

stage that will provide an all-night capability. These projects in addition to several

electric propulsion projects for general aviation aircraft illustrate that various

organizations are evaluating hybrid-electric propulsion for aerospace applications [8, 9].

Another proposed application for a UAV with a hybrid-electric propulsion system

is disaster monitoring such as the observation of forest fires. The California Space

Institute is considering a hybrid-electric propulsion system for a small UAV intended for

disaster monitoring. The hybrid-electric UAV would be useful for real-time monitoring

of forest fires. Due to the cost of the sensors, the electric system would provide a back-

up to the internal combustion engine while the UAV is operating in dense smoke

conditions. The hybrid-electric system could potentially reduce the risk of losing

expensive payloads and the UAV while it is operating in hazardous conditions.

Freeh of NASA recommends that for small or general aviation aircraft, "further

investigation into various hybrid configurations may be beneficial based on both the

technical and financial success of battery/IC engine automobile hybrids currently in the

market" [9]. The researchers at UCD's HEV Center have been very successful in the

design and development of parallel HEVs and have consistently placed in the top three in

the FutureTruck competitions. This research applies the same technology to a small

UAV to gain insight into the potential military uses of the technology.

5

1.2 Background
1.2.1 Objectives for the Hybrid-Electric UAV Propulsion System

Controller

The three objectives of the advanced control system for the hybrid-electric

unmanned aerial vehicle (HEUAV) propulsion system are to:

9 Increase the range (corresponds to fuel economy)

* Provide adequate time for the UAV to operate in stealth (electric-only) mode

e Provide adequate battery power for the UAV's sensors (in the air or on the

ground)

These overall objectives are directly related to several operational metrics listed in

the Office of the Secretary of Defense's (OSD) UAV roadmap. The hybrid-electric

propulsion system, depending on the mission, could potentially meet the capability

metrics of a "30% increase in time-on-station requirement with the same fuel load" and

"a UAV inaudible from a 500-1000 ft slant range" [2]. The FutureTruck vehicles

designed by the HEV Center with a parallel hybrid-electric configuration have increased

fuel economy and the same technology applied to a UAV results in increased range and

endurance (time-on-station). The inaudible requirement, of course, is met during electric-

only operation.

1.2.2 Hybrid-Electric Vehicle Configurations

The mechanical configuration of an HEV can be classified into two main

categories: series and parallel as shown in Figure 1-1 [1, 10-13]. The internal

combustion engine (ICE) in a series configuration acts as an auxiliary power unit (APU)

to drive a generator that provides power to the energy storage system or the electric

motor. Only the electric motor (EM) is connected to the mechanical drive train. The

6

engine is not connected to the mechanical drive path which allows the engine to operate

in an optimum torque and speed range independent of the driving conditions. However,

large energy conversion losses exist between the mechanical and electrical system

diminishing the overall system efficiency [14]. Also, the motor has to be sized for the

maximum power required [10]. The series configuration is useful for low-speed, high-

torque applications such as buses and aircraft tow tractors. In a parallel configuration,

each energy source or converter can provide propulsion energy since the ICE and EM are

both mechanically linked to the drive train. The torque of the electric motor can

supplement the torque of the ICE, or if additional torque is available from the ICE, the

ICE can operate the EM as a generator to recharge the battery pack. Because of the

mechanical coupling, energy converters such as gas turbines with a relatively large turn

on/off time cannot be used in the parallel configuration [12]. The speed of the drive train

is not always the optimum speed for the engine, but the energy conversion losses are

minimized. A continuously variable transmission (CVT), sometimes used in automotive

applications, permits the engine to be operated near a constant speed and the electric

motor permits the engine to operate close to a constant torque [14]. The engine and

motor can be sized smaller than in a series configuration, and the motor is used as the

generator so a separate generator is not required. The parallel configuration is used in

most FutureTruck competition vehicles [15-17] and others such as the Honda Insight and

Civic [18]. The parallel and series hybrid configurations are the traditional

configurations, but others have been used such as the series-parallel configuration used in

the Toyota Prius [1, 19] and the Nissan Tino [20]. This configuration has characteristics

of both series and parallel configurations. The Toyota Prius uses a planetary gear with

7

the generator attached to the sun gear, the engine connected to the planetary carrier, and

the motor/axle to the ring gear [21]. This power split approach permits the engine to

drive the generator and/or the motor/axle. The different configurations each have their

advantages and disadvantages, and the application and the type of energy

sources/converters often dictate the preferred configuration.

Fuel Tank/ Fuel Tank/Gas Propeller

Gas Engine Engine/Clutch Motor/

r Series Parallel
Generar onfiguration Configuration

Battery Motor PropellerPack
Pack

Figure 1-1: Series and Parallel Hybrid-Electric Configurations

An estimate was completed between a parallel and a series configuration for a

small UAV (see Table 1-1). The estimate shows that the parallel configuration is lighter

by approximately 2.5 lbs, or 8%, of the gross weight of 30 lbs. The extra weight for the

series configuration is primarily due to the required generator and the larger electric

motor. The series configuration and controller are mechanically and electronically

simpler, but the disadvantages are the weight penalty and the energy conversion losses.

Harmats also concluded that the parallel configuration was more effective than the series

configuration for a hybrid-electric propulsion system (solar power/electric motor/engine)

for a UAV [22]. The parallel configuration contains a more complicated controller and

clutch/gearing mechanism, but weighs less which is a significant consideration for the

UAV design. The parallel configuration also does not have the significant energy losses

8

associated with the generator and battery charging/discharging. During flight, the

parallel hybrid propulsion system allows the vehicle to be propelled directly with the ICE

or the EM.

The parallel configuration is used for the HEUAV due to the advantages of a

parallel configuration for analogous applications, the weight savings, and also because of

the parallel HEV experience at UCD [16, 23, 24]. The parallel configuration permits a

smaller engine and electric motor to be used as compared to the series configuration, and

weight is saved since no APU/generator set is required. The advanced control system is

designed to optimize the energy use of a parallel HEV configuration for the UAV

application.

Table 1-1: Propulsion System Weight Comparison for Series and Parallel Hybrid-
Electric Configurations for a 30 lb UAV

Component Parallel Series (Gasoline ICE
(Gasoline ICE+EM) +Generator+EM)

Gasoline Engine' 2.5 (1.3 in3) 3
48 oz. Fuel Tank 3 3

Generator2 N/A 1.5
Electric Motor2 0.5 1.5
Clutch/Gearing 0.5 N/A

Batteries 6 6
Total (lbs): 12.5 15

'The engine weight is estimated at 1.5 lbs/hp based on First Place Engine specifications [25]. A
conventional 30 lb UAV would require a 35-45 cc gasoline engine weighing approximately 4.5 lbs.2The electric motor and generator weights are estimated at 1 lb/hp based on Aveox electric motor
specifications. A brushless DC motor has the highest power density [26].

1.2.3 Hybrid-Electric Vehicle Power Train Operating Strategies

In addition to the two primary HEV configurations, three overarching operating

strategies are used for the energy management of an HEV: electric-only, charge-

sustaining, and charge-depleting [27]. The electric-only strategy depends on the engine

turn-on speed, the size of the battery pack, and the amount of low-speed operation. The

9

electric-only strategy is available if the system is mechanically designed to permit it. The

other two strategies are the hybrid approaches. The charge-sustaining hybrid strategy

often uses a "thermostat" approach with an attempt to maintain the battery state-of-charge

(SOC) at a certain level. This approach is often used for series hybrid-electric

configurations [28] but is also used for parallel HEVs. The thermostat method allows the

vehicle to be similar to conventional vehicles. If the engine is used to keep the battery at

a specified SOC, the driver does not need to charge the battery pack from an external

source and only needs to "fill up the gas tank." Another approach used for the charge-

sustaining strategy is load-following where the output of the APU in the series hybrid is

based on the rate of change of the battery SOC. In contrast to the charge-sustaining

strategy, the charge-depleting strategy allows the battery SOC to decrease maximizing

the energy use from off-board charging. This requires the driver to plug the vehicle into

an external outlet to charge the batteries, hence the name "plug-in" HEV. The charge-

depleting strategy can be used in series or parallel HEVs. The HEV Center's vehicles use

a charge-depleting strategy until the battery pack drops to a low SOC and then a charge-

sustaining strategy is used [16]. The charge-depleting strategy has been used effectively

by the HEV Center in their plug-in vehicles, and the charge-sustaining strategy has been

used successfully by Honda and Toyota in the marketplace.

The HEUAV uses a mix of the operating strategies depending on the mission and

the intent of the operator. Due to the weight limitations, a relatively large battery pack

and a purely charge-depleting strategy cannot be used. A purely charge-sustaining

strategy will limit the endurance (time-on-station) and the stealth mode duration.

Sufficient SOC is required for the enemy area or whenever the stealth (electric-only)

10

mode is required. Because of this rationale, a combination of the charging strategies is

used.

Two different modes are proposed for a relatively long surveillance mission:

NORMAL or STEALTH. The NORMAL mode is the standard mode for take-off,

climbing, cruising, and landing. The engine is used for take-off and climb with

assistance from the motor, if needed, in a charge-depleting strategy. During cruise to the

area of interest, a charge-sustaining strategy is used where the engine is primarily used

for propulsion with margin for battery charging. During descent, the engine can be

turned off and the motor used as a generator, similar to regenerative braking. The engine

may also be idled back to avoid energy conversion losses associated with charging and

discharging the batteries. During STEALTH operation, only the electric motor is used in

an electric-only strategy. The two modes take advantage of the three operating strategies

to maximize time-on-station in STEALTH mode and to increase the range.

1.2.4 Hybrid-Electric Vehicle Power Train Control Approaches

The operating strategies and modes are overarching approaches. For each of the

strategies and modes, control algorithms are used to optimize the energy or power use of

the propulsion system. In addition to rule-based or logic-based strategies, several

advanced control approaches have been reported in the literature for the control of HEV

power trains in automotive applications:

* Optimal Control

e Fuzzy Logic

* Neural Networks

e Adaptive Control

11

"* Nonlinear Control

"* Genetic Algorithms

These approaches have primarily been studied or applied in an academic environment or

on research vehicles. A brief overview of each and their application to the control of

HEV power trains are given in Chapter 2.

The goal of an advanced control system is to use a minimal amount of energy by

finding the best combination of motor torque and engine torque as a function of power

train speed, battery SOC, torque demand, or other parameters. Of the hybrid-electric

power train advanced control schemes appearing in the current literature, those based on

artificial neural networks (ANN) or fuzzy logic appear to be the most promising due to

the relatively low computational resources needed and because an accurate power train

propulsion model is not required (an accurate model is required for simulations). These

approaches are also useful for nonlinear and multi-variable systems, can learn, and

generalize. While results from many of the other control methods such as optimal control

are very good, the computational requirements are too excessive for the embedded

microcontrollers and the majority of the theory is for linear models.

The use of ANNs in HEV applications has been limited. Due to the potential

benefits, this particular control method was selected for the HEUAV application. It is

well known that ANNs can approximate nonlinear functions. An ANN has tremendous

potential if applied to the control of the nonlinear HEUAV propulsion system. A specific

type of neural network, the Cerebellar Model Arithmetic Computer or Cerebellar Model

Articulation Controller (CMAC), was chosen for this application due to its rapid training

time, practical hardware implementation, and low computational cost [29]. The CMAC

12

is an alternative to the more common back-propagation multi-layer network [30]. The

CMAC ANN, described in detail in Chapter 3, has been successfully applied to industrial

applications, vibration control, robotic control, and fuel-injection systems [31-42].

1.3 Dissertation Objectives and Approach

The objective of the dissertation research was to design a CMAC neural network

to control a parallel hybrid-electric propulsion system for a small UAV that:

* provides good performance for a nonlinear, multi-input plant

* takes into consideration the energy use of all components and not just the

internal combustion engine or electric motor

e requires minimal computational and memory requirements to allow

implementation in an embedded microprocessor

Based on speed and altitude profiles for typical intelligence, surveillance, and

reconnaissance (ISR) missions, a CMAC ANN control algorithm was designed that

minimizes the energy use of a nonlinear hybrid-electric propulsion system for a UAV

intended for military, homeland security, and disaster-monitoring missions. The

controller takes into consideration the efficiency of the ICE, EM, and the batteries. The

controller requires minimal computational power to permit implementation in an

embedded microprocessor for real-time operation. A simple rule-based controller was

used to validate the HEUAV model and to obtain baseline results. The CMAC ANN

controller simulation results were compared to the rule-based controller results.

A CMAC neural network controller was developed that minimizes the energy use

of the HEUAV. During HEV mode, the optimum power split between the engine and the

electric motor was determined. The operator in the loop provides the closed-loop

13

feedback to maintain the desired UAV speed and altitude. The operator could be a

human at a control station or an autonomous, pre-programmed computer.

The research approach involved four steps. First, an HEUAV model was

developed that is based on an HEV model developed by researchers at the HEV Center

for Visteon. The model, described in detail in Chapter 4, was updated to include a model

for a UAV and propeller instead of an automobile and a transmission. The specific data

for the ICE, EM, batteries, and other components were updated to match the appropriate

components for the simulated UAV. The model was used to test the control algorithms.

Second, a conceptual design approach was used to optimize the size of the wing and the

propulsion system components for the small UAV. Third, the UAV model was run with

an original propulsion system with either a two-stroke or four-stroke gasoline engine to

provide baseline results for the hybrid-electric propulsion system. Fourth, the results for

the HEV propulsion system with a rule-based controller were compared to the CMAC

ANN controller results.

The neural network controller uses a CMAC ANN for the replacement of the rule-

based controller as shown in Figure 1-2. The CMAC controller is implemented in the

Simulink model using an S-function to permit the code to be directly portable to a

microprocessor. The controller has inputs such as demanded torque, propulsion system

rotational speed, battery SOC, and UAV speed. The outputs include hybrid mode (engine

and clutch engagement command), engine throttle command, and electric motor torque

command.

In addition to comparing performance and energy use results between the rule-

based and CMAC controllers, the microprocessor memory requirements were analyzed

14

for the ANN controller. The CMAC greatly saves on memory and computational

requirements as compared to having a multi-dimensional look-up table or computing a

solution hyper-plane for every instant in time.

(Replaces Rule- 7[7
Based Controller• Controller

Speed e(t) UAV Rule-Based u(t) UAV y(t)
Reference + Operator Controller Model

Output

Figure 1-2: HEUAV Power Train Controller

To narrow down the scope of the dissertation research, the research did not

include the actual design of the airframe and propulsion system components, cost

analysis, or airworthiness analysis. Although a precursory design was completed with

off-the-shelf components, it was assumed that each component was designed close to its

maximum efficiency. Aircraft balance and flight control system design was also not

considered even though any of these items would provide significant and interesting

research projects. The research did not involve analyzing the reduction of emissions

from the hybrid-electric propulsion system.

1.4 Research Focus Areas

Several problem areas were the focus of the research and include contributions

to the fields of hybrid-electric propulsion system control, unmanned aerial vehicles,

and neural network control.

Advanced Control Algorithm for Electric-Only/Hybrid Operation: To determine the

best use of available energy in the hybrid-electric propulsion system, two primary items

16

The efficiency maps of the ICE, EM, and the batteries and appropriate parameters

(demanded torque, rotational speed, SOC) were used to form a "hyper-plane" based on an

instantaneous optimization algorithm. This hyper-plane is used to train the CMAC neural

network. The algorithm includes a performance measure to minimize the total power

consumption. The CMAC neural network controller replaces the rule-based controller

and the results are compared.

P ath I Path I

Figre1-:neGyatsforlthe Paralle l Hyri-Ee tric Pr PulsonpSyste

m any ofhec l Clutch aoMotor/ i ath s
S Path 3 p aPathe 3 Generator Ca

Pat Path 2

3 Path 2
.....Battery

Pack

Figure 1-3: Energy Paths for the Parallel Hybrid-Electric Propulsion System

Real-Time, Minimal Computation Control Algorithm: One of the disadvantages of

many of the control algorithms such as optimal control is that the solutions must be

computed off-line due to the large computational requirements. Rules are then derived

from the results and programmed into the microcontroller. As the CMAC neural network

was developed for the HEUAV application, the potential microprocessor was considered

in order to choose a neural network structure that is consistent with the memory

capabilities of a microprocessor. Although the CMAC controller was initially trained

off-line, the CMAC's association memory is capable of being stored in the memory of

the microprocessor. The computational requirements for the CMAC are minimal which

would allow an adaptive scheme to be implemented in follow-on research.

15

were determined: the times when the vehicle should be in hybrid or electric-only mode

and if in hybrid mode, the torque split between the engine and the motor. Control

strategies for a parallel HEV configuration usually determine the time to be in hybrid

mode based on the speed of the vehicle. The HEUAV took the same approach and

normally operates in hybrid mode unless flying at endurance speed where it operates in

electric-only mode (stealth mode). While in hybrid mode near cruise speed, power is

minimized by attempting to run the engine in its most efficient operating region: the

_ideal-operating line (IOL) or ideal operating band (1OB) [43]. -For low torque demand, a

large amount of energy can be used for regeneration by using the engine to supply energy

to the motor/generator, to the batteries, and then back to the electric motor. The energy

conversion losses reduce the over-all ef y..e of

research was to determine when the engine should be idled back and still provide direct

mechanical energy to the drive train or when it should be operated on or near the IOL and

use the additional energy to recharge the batteries. Computing the amount of energy

exchange with the batteries as compared to using the engine in a lower efficiency region

is not a straight forward problem due to the nonlinear efficiency maps for the engine and

motor and differing charge and recharge battery resistances [44]. As shown in Figure 1-

3, the energy available in the gasoline and the batteries can follow one of three paths:

directly to the propeller from the fuel tank/engine, directly to the propeller from the

battery pack/motor, or indirectly to the propeller from the fuel tank/engine to the motor,

batteries, and back through the motor. While in hybrid mode, the CMAC ANN controller

determines the torque split to obtain the most efficient use of the on-board energy for a

specific mission.

17

Conceptual Design of a Hybrid-Electric UAV: A conceptual design of a parallel

hybrid-electric propulsion system is given for a small UAV designed for intelligence,

surveillance, and reconnaissance (ISR) missions. The conceptual design reveals the

trade-offs that must be considered to exploit the advantages of the hybrid-electric

propulsion system. The resulting hybrid-electric propulsion system is a two-point design

that includes an engine primarily sized for cruise and an electric motor and battery pack

that are primarily sized for endurance.

1.5 Overview of Dissertation

A CMAC neural network that controls the energy use of a hybrid-electric

propulsion system for a small UAV was developed in this research. The parallel HEV

expertise at UCD is applied to a UAV with the potential of satisfying military, homeland

security, and disaster-monitoring missions. The electric-only operation of the UAV

provides stealth operation. The CMAC neural network controller is applied to a small

UAV with a fixed-pitch propeller, electric motor, gasoline engine, and lithium-ion battery

pack. The major areas of research were to develop the advanced control algorithm to

minimize (i.e. optimize) the energy use of all of the propulsion system components and to

design a control algorithm that could be used in real-time with minimal computational

and memory requirements. The developed control algorithms for the UAV are also

applicable to other HEV applications.

Chapter 2 of the dissertation includes the literature search and explains in detail

the various control algorithms that others have used for the control of hybrid-electric

power trains. Chapter 3 provides an overview of the CMAC neural network. Chapter 4

explains in detail the MATLAB/Simulink model that was developed for the HEUAV.

18

Although the focus of the research was on the advanced control algorithm, a typical

design process was required to select satisfactory and nominal propulsion system

components for the HEUAV. The conceptual sizing of the wing and the propulsion

system components are explained in Chapter 5. Chapter 6 provides the simulation results

of the CMAC controller for typical ISR missions and comparisons to a rule-based

controller. Conclusions and recommendations for future research are included in Chapter

7. The Appendix includes the MATLAB and C++ code used for the conceptual design,

HEUAV Simulink model, and CMAC artificial neural network.

19

Chapter 2: Hybrid-Electric Power Train Control
Approaches

2.1 Power Train Control of Hybrid-Electric Vehicles

The power train control approaches for a hybrid-electric vehicle (HEV) can be

classified into two general categories:

9 Rule-Based Strategies Based on Practical Experience or Empirical Data

e Advanced Control Algorithms

Although the first category has resulted in many successful and reliable implementations

such as in the ADVISOR HEV simulation software and the FutureTruck competitions,

other more advanced control techniques such as optimal control, fuzzy logic, and neural

networks can potentially be used to further improve the fuel economy and performance of

the power train. The advanced control algorithms build on the experience-based

algorithms and are not necessarily a replacement but a supplement to the control

approaches based on empirical data or experience.

Several advanced control algorithms have been used for the control of the HEV

power train in automotive applications:

"• Optimal Control

"* Fuzzy Logic Control

"* Artificial Neural Networks

"* Adaptive Control

"• Nonlinear Control

"* Genetic Algorithms

20

A brief overview of the first four and their application to the control of HEV power

trains, as found in the literature, is given in this chapter. Optimal control, fuzzy logic,

neural networks, and adaptive control are the focus of the overview, although several

researchers have applied nonlinear control [45, 46] and genetic algorithms [47] to their

HEV application. This overview provided the technical background necessary to select

the appropriate or desired control system for the hybrid-electric unmanned aerial vehicle

(HEUAV) propulsion system.

2.2 Rule-Based Control Strategies

The rule-based control strategies based on lab data and experience have resulted

in successful, reliable, and efficient HEV power trains. These control strategies have

been used in the ADVISOR HEV simulation software [44] and the FutureTruck

competitions [16, 48]. The approach can vary depending on whether the HEV is a

parallel or series configuration or whether the vehicle will be operating with an electric-

only, charge-sustaining, or charge-depleting strategy [27]. Other factors include the goals

of the designer or researcher, the source of the electricity, type of fuel, size of the vehicle,

performance requirements, and the application of the vehicle.

The overall objective for the rule-based or any advanced control algorithm is to

optimize the energy use of the power train or to reduce the emissions. For all of the rule-

based implementations, an attempt is made to operate the internal combustion engine

(ICE) and the electric motor (EM) in their most efficient regions. Since operating one

energy source in its most efficient region usually does not permit the other one to operate

in its most efficient region, trade-offs must be made. For example, the engine in a

parallel HEV is usually not operated at low vehicle speeds where it is very inefficient.

21

Once the vehicle is at a higher speed, the ICE can be used along with the motor to propel

the vehicle. The ICE is used at low vehicle speeds only if the battery state-of-charge

(SOC) is low. The efficiency maps of the engine and electric motor, along with the

expected energy conversion losses in the batteries and other components, are used to

minimize the energy use of the power train.

Several publications focus on the modeling of the power train and give a brief

description of the rule-based algorithm. Cikanek and Powell describe in detail their

models used for the engine, motor, clutch, transmission, batteries, and the vehicle [49-

51]. The models are intended to be used in a plug-and-play environment to test different

control strategies. Relatively simple logic rules are used to validate the power train

model. Yang also describes in detail a forward-facing HEV power train model that was

built in MATLAB/Simulink [52]. The model is based on rigid body motion similar to

many of the other models. The power train controller includes traditional proportional-

integral-derivative (PID) control with switching logic and outputs control signals to the

motor, engine, and transmission. He implements a model based on empirical data for an

engine-assisted parallel HEV [53]. Bowles uses relatively simple logic in a charge-

sustaining parallel HEV power train model to keep the battery SOC constant [54]. Chang

and Buntin also developed a model based on previous work by Powell and others that is

used in a logic-based control algorithm [55, 56]. Finally, Bailey uses logic in his

supervisory controller to provide seamless transitions from one hybrid mode to another

[57]. The very detailed models allow the users to obtain accurate simulation results and

provide the ability to test multiple control algorithms.

22

For series HEVs, three control strategies based on logic or rules are found in the

literature. First, the thermostat method turns the auxiliary power unit (APU) on and off

based on the battery SOC. The minimum and maximum SOC values are determined by

examining the efficiency maps of the battery pack [58, 59]. The battery pack is operated

in the most efficient region. Second, the load-following method controls the output of the

APU based on the rate of change of the battery SOC. Third, the power split strategy

usually used in parallel hybrids is utilized by Jalil for a series HEV to improve the fuel

economy over the thermostat method [58]. The power split control logic in the series

hybrid determines if the energy for the electric motor comes from the APU directly or if

it comes from the batteries. The thermostat, load-following, and power split strategies

are all effective control strategies for series HEVs.

The parallel plug-in HEVs designed by the HEV Center at UCD use logic based

on experience, simulations, and intuition to produce effective control strategies [16, 24,

60]. The plug-in vehicles have relatively large battery packs to maximize the all-electric

range. The vehicles primarily operate in a charge-depleting strategy to also maximize the

off-board electricity use. If the battery SOC drops to a low level, the power train enters a

charge-sustaining hybrid mode. The overall approach is to operate in electric-only mode

at low vehicle speeds such as in the city where the ICE is inefficient and to operate in

hybrid mode at highway speeds or when the battery SOC is low [61]. The ICE is

operated on or near the ideal operating line for the best efficiency during hybrid mode

-........--- [43, 621.- The- electric-notor -_,s _ddtional-t........ +c " � gee.to during

re ainerathve braking..Whieitnhybidmderw snlitstrateies are used-ominimize

-the overall energy -use-or to minimize emissions. The viae-based control strategiesseen

So mm •i iz er s io s 1 I i i i i I | i

23

in the literature based on lab data, simulations, and experience have resulted in successful

and reliable HEV power trains but other more advanced control algorithms have the

potential of improving the fuel economy or further reducing the emissions.

2.3 Optimal Control

The objective of optimal control is to "determine control signals that will cause a

process (plant) to satisfy some physical constraints and at the same time extremize

(maximize or minimize) a chosen performance criterion" [63]. The plant is usually

described in state variable form and the physical constraints are applied to the state

variables. The performance criterion or cost function can be formulated either to

minimize transient energy, control energy, fuel usage, or time [63, 64]. For an HEV

power train, the fundamental objective is to either improve the fuel economy or reduce

emissions. The optimal control problem then is to find the optimal power split between

the engine and the electric motor in hybrid mode, or the optimal energy use between gas

and electricity to obtain the desired speed on the driving cycle. Other parameters such as

the SOC of the battery and the gear ratio of a continuously variable transmission (CVT)

may be used to determine the optimal solution. The optimal solution can be determined

for an instantaneous optimization or for a global optimization such as over an entire

driving cycle. Although the concept of optimal control is intuitive, implementation for an

HEV power train, especially for global optimization, is much more difficult. Various

optimal control schemes that have been applied to the power train control of an HEV will

be discussed along with the different computational algorithms required to implement the

control schemes.

24

The most difficult aspects of implementing an optimal control scheme for the

HEV application are to determine an accurate model and cost function, to estimate the

final conditions if a global optimization is desired, and to use a computational algorithm

that can be computed in real-time. The HEV power train model can either be nonlinear

or approximated as a set of linear functions. Since an HEV power train includes highly

nonlinear components, it can be difficult to obtain an accurate linear model that captures

the dynamics of the power train. An accurate cost function can also be difficult to

determine because of the nonlinear components. In addition to the challenge of deriving

"an accurate power train model and cost function, the classic solution to the optimal

control problem requires initial conditions for the state equation and final conditions for

the costate equation (adjoint system). The cost function, state, and costate equations are

used to determine the optimal control inputs for the desired time interval. Final

conditions (or states) for a global optimization scheme are often difficult to determine for

an algorithm that needs to be computed real-time in an embedded microcontroller. The

driving route is usually not known a priori; therefore, it is difficult to select the final

states of the system. The solution for the fundamental optimal control problem is

backward-in-time and is very effective for applications such as pre-planned aircraft

routes or a known path such as for a bicycle or auto race. Even if the final conditions can

be determined, the computational algorithms required usually are difficult to implement

in an embedded microcontroller. Most research papers state that the optimal control

solution is for simulation only and that more work needs to be done on algorithms that

can be used in real-time. The limitations are due to the computational intensive

algorithms and the look-ahead requirements for most global optimal control

25

implementations. The challenge of applying optimal control to the control of an HEV

power train is to find a realistic, concise, linear or nonlinear model that accurately

represents the drive train, determine an appropriate cost function, and to implement the

solution in a real-time embedded microcontroller.

The optimal control implementations seen in the literature are either global or

instantaneous solutions. The global implementations are intended more for simulations

due to the required look-ahead final conditions and the computational requirements. The

instantaneous optimization implementations solve the optimal solution during each time

step and not over the entire driving cycle [27, 60, 65, 66]. The global optimization

schemes generally achieve higher fuel economy but cannot be implemented effectively in

real-time.

Optimal control for instantaneous optimization has been used in simulations by

Kleimaier and Kim to improve the fuel economy of a parallel HEV with a CVT [14, 48].

Kleimaier's objective is to minimize the drive train's instantaneous power dissipation.

The controller uses the cost function:

J = PDiss + 'PBatt + K (2-1)

where PDiss is the power dissipated by the engine, motor, and CVT, PBatt is the change in

the stored battery energy, a is the weighting factor for the electric energy use, and K

primarily determines either hybrid or electric mode. Electric energy is increased for city

driving by decreasing a and minimizing the penalty for electricity use. For highway

driving, the use of electric energy can be penalized by increasing a. With the

implementation of the cost function, concerns such as the drive train components' range

of operation and the SOC of the battery pack have to be considered resulting in a

26

constrained optimal control problem. The plot of the cost function has local minima that

the controller uses to give engine and motor controller commands to minimize the power

consumption of the drive train. The battery SOC is explicitly used in the cost function

and not as a constraint since the cost function is intended to be used in real-time. The

scheme is an instantaneous optimization one, but parameters such as a are determined in

off-line simulations. Kleimaier is currently attempting to more efficiently implement the

code so it can be operated in real-time. Kim takes a similar approach in a simulation and

defines a cost function related to the effective specific fuel consumption defined as the

fuel burned per output kWh [14]. An optimum operation line is used to determine the

control variables such as the CVT gear ratio, motor torque, and engine throttle as a

function of vehicle speed, battery SOC, and required power. The state variables include

the engine and motor torque, motor speed, the battery SOC, and the power required. The

battery and electric motor are transformed into an equivalent ICE model and the hybrid

system is modeled as two engines. The optimal operation line is found by repeatedly

calculating the specific fuel consumption for all allowable combinations of the system

state variables. Kleimaier and Kim both effectively use the optimal control approach in

their simulations to improve the fuel economy of their parallel HEVs with a CVT, but the

challenge is still to implement the algorithms in an actual vehicle controller.

Delprat and Steinmauer have implemented optimal control algorithms in their

HEV power train simulations that are intended to be implemented in real-time. Delprat

uses a global optimal control algorithm in a simulation of a parallel HEV power train

with a two-speed transmission [67, 68]. The approach uses the battery SOC as a state

variable, and the overall goal is to take the battery SOC from an initial state to a final

27

state and minimize the cost function, J, that primarily involves the fuel consumption. The

constrained optimal control formulation takes into consideration the torque and speed

limits of the engine and motor and the inefficiencies of the components. To find the

minimum of the function, partial derivatives and Lagrange multipliers are used for either

negative or positive electric motor torque. The resulting optimal control formulation is

relatively computationally efficient and is intended to be used real-time and not just for

simulations. Another similar approach by Steinmauer in a simulation also uses the fuel

consumption in the cost function, and the battery current is calculated for each time step

to minimize the cost function [69]. This determines the times when the battery power is

used or when the engine/generator is turned on in the series HEV. A simplex algorithm

is used that results in minimum fuel consumption. Both of these optimal control

approaches may eventually be implemented in a real-time controller.

Optimal control can effectively be used with nonlinear models [70]. The linear

models of the highly nonlinear drive train components of an HEV are often unable to

accurately predict the actual performance of the system. Lyshevski developed nonlinear

models of a series-hybrid diesel-electric power train and then used these models in an

optimal control scheme [71, 72]. The nonlinear controller is designed using Lyapunov-

based theory and is a constrained controller due to the bounded control inputs such as the

injected fuel and voltages applied to the field windings of the electric motor. The theory

for the constrained optimal controller using nonlinear models is based on the theory

developed by Lyshevski [73]. The constrained optimization problem with nonquadratic

functionals is solved using dynamic programming. The optimization approach extends

the Hamilton-Jacobi theory using nonquadratic functionals [74]. The constrained optimal

28

controller using nonlinear models and adaptive programming could be an effective

approach for the control system of an HEV power train.

The optimal control formulation is used by some researchers as one of the tools in

more complicated control schemes for HEV power trains. For example, Saeks uses a

linear optimal controller as a part of an adaptive control scheme for a four-wheel drive

HEV [75]. Zhang uses an optimal controller as a component of an HEV controller based

on hybrid dynamical systems theory [76]. The HEV is modeled as a complex hybrid

system with numerous subsystems. The information flow is via signals that are either

discrete or continuous. The hierarchical structure includes supervision, coordination, and

execution levels. The subsystem-specific controllers are implemented at the execution

level and the optimal controller is implemented at the coordination level. Dynamic

programming is not used to solve the optimal controller problem due to the large memory

requirement. The nonlinear optimal control problem is simplified and a sequential

quadratic programming (SQP) technique is used to solve the second order approximation

for the cost function and constraints. The literature reveals that optimal control can be

effectively used as a tool in more complicated control architectures.

The optimization problem, especially for global optimization, associated with

HEV power train models and cost functions is usually too complex to be solved

analytically; therefore, a numerical solution is required. Techniques used to solve a

dynamic optimal control problem include calculus of variations, the Pontryagin principle,

and dynamic programming. Numerical techniques such as Runge-Kutta are not

applicable due to the split boundary conditions [77]. As Lyshevski states, "[o]ne of the

major problems in optimal control is the lack of efficient methods which allow one to

29

solve constrained control problems for high-order systems" [73]. Most of the methods

use gradients that require the calculation of the Hamiltonian and the adjoint (costate)

differential equations [78]. The nonlinear HEV models and lack of smooth surfaces for

the cost function make the derivative-required algorithms difficult to use. A method that

does not require the use of the Hamiltonian is the sequential quadratic programming

(SQP) method. A SQP method is used by Zhang, Kleimaier, and Zoelch to solve their

optimization problems [76, 78, 79]. The SQP is currently only a simulation technique

since the memory requirements are too large for an embedded real-time controller. Most

derivative-free optimization techniques such as direct rectangles (DIRECT) and

simulated annealing (SA) usually require a large number of iterations which make them

unusable for real-time application [80]. These techniques are useful to determine the

optimal solution and can be used to formulate a rule-based strategy that closely mimics

the results of the off-line simulation.

Dynamic programming techniques can be useful in the solution of the global

energy optimization problem, but they are difficult to implement in real-time [81, 82].

Lin applies dynamic programming to solve the minimal fuel optimal control problem for

a charge-sustaining parallel hybrid-electric truck [83]. A dynamic optimal solution over

a complete driving cycle is developed but cannot be implemented on the vehicle due to

the look-ahead requirement of the algorithm and because of the heavy computational

requirement. The cost function to minimize the fuel consumption takes the following

form:

J = Yk• L(x(k),u(k)) (2-2)J kO(22

30

where N is the length of the driving cycle and L is the fuel consumption rate. U(k) is the

vector of control variables such as the fuel injection rate and output torque and x(k) is the

state vector. Since the application is a constrained optimization scheme, constraints are

applied to the engine and motor speeds, motor torque, battery SOC, and other parameters.

The optimization problem is solved using dynamic programming based on Bellman's

principle of optimality [84]. The disadvantage of this approach is the requirement to

solve the recursive equation backwards from time N-1. Therefore, simple rules were

derived from the optimal control simulations using neural networks and implemented in

the vehicle. Brahma also uses dynamic programming to determine the optimum power

split for either electrical energy generation or storage for a series HEV [85, 86]. The

optimal solutions again are based on known driving cycles so a load forecasting

algorithm would be needed to apply this method to a real-time application.

Saeks uses adaptive dynamic programming (ADP) techniques to solve for the

optimal control law in real-time. He states that adaptive dynamic programming:

methods were introduced into neural control in the past decade to

circumvent the classical conundrum of optimal control theory where "the

optimal cost (or return) function is required to compute the optimal control

law and vice versa." The Calculus of Variations attempts to circumvent

this problem by directly evaluating the optimal control law while dynamic

programming takes the opposite approach by solving Bellman's equation

for the optimal cost function. ADP methods, on the other hand, are

designed to learn the optimal cost function and the optimal control law on-

line, converging asymptotically to the optimal solution. At each time step,

31

the controller estimates the optimal cost of taking the system from the

present state to the final state, and uses that estimate to specify a control

law at that time step, while simultaneously updating the estimate [75].

ADP methods could potentially solve for the optimal solution in an embedded controller

for an HEV application.

A method related to optimal control was used by Morchin to minimize the energy

use of a hybrid-electric bicycle [87]. The equations for the energy use of the bicycle due

to acceleration, friction, air drag, and hill climbing are combined, and Lagrange's

calculus is used to find minimums in the two-dimensional surface [88]. The disadvantage

of this technique is that the speed and driving cycle must be known beforehand to

compute the optimum energy use. The technique is useful for races or known commuting

routes so the optimal energy use can be computed, but it is not as beneficial for unknown

riding paths or commuting routes.

Optimal control could be used for the control of the HEUAV propulsion system.

If a realistic linear model can be developed along with a quadratic cost function, then the

traditional optimal control and algorithms can be applied. If a nonlinear model or a

nonquadratic cost function is needed, the theory and solution techniques are not as well

developed. The other possible disadvantage is the apparent lack of computational

algorithms that can be implemented in real-time. Furthermore, the classical solution

techniques require final conditions that may be difficult to determine. Based on the

literature, the instantaneous optimization schemes have been more successful than the

global optimal control implementations, even though global optimization schemes

provide better fuel economy.

32

2.4 Fuzzy Logic Control

Fuzzy logic controllers (FLC) use linguistic knowledge that contains the intuition

and experience of an operator or designer [89]. Fuzzy control is described by Jantzen as

"control with sentences rather than equations" [90]. Fuzzy control can be used in a wide

range of applications, but it is often used to handle high-level, supervisory control

functions that original control theory has difficulty in addressing [91]. A brief overview

of fuzzy logic will be given and how it has been used in HEV power train controllers.

Fuzzy logic (FL) originated with a publication written by Zadeh entitled "Fuzzy

Sets" [92]. The theory, an extension of multi-valued logic, was termed "fuzzy logic" as

compared to binary, crisp, or Boolean logic [93]. In traditional binary set theory where

parameters can only take on values of 0 or 1, parameters in fuzzy set theory can take on

values anywhere between 0 and 1 [94]. The binary values are at the extremes of the

fuzzy range. The fuzziness of the data is modeled after human thought and classification

processes where there is uncertainty in the accuracy or the confidence of the data [95].

More specifically, the elements in a fuzzy set have a degree of membership dependent on

the membership or characteristic functions that can be triangular, trapezoidal, or other

shapes. The membership functions determine the actual fuzzy values in the system. A

fuzzy variable has values that are labels of fuzzy sets and usually take on linguistic values

such as "small," "medium," and "large."

Fuzzy variables can be used in conditional statements to generate fuzzy rules that

mimic human thought. The conditional statements are similar to those found in software

programming using terms such as IF-THEN. An example of a conditional statement for

an HEV application is "IF (Vehicle Speed Low) THEN (ICE Torque is Zero AND EM

33

Torque is Medium)". The input conditions are referred to as antecedents and the output

conditions are called consequents. The use of linguistic rules is a powerful method that

can be used in a controller.

The actual FLC controller can be thought of as a black box with inputs and

outputs. The FLC uses fuzzy sets, fuzzy rules, and fuzzy logic to determine the outputs

from the inputs. The key components of the controller are:

"* Rule Base: Fuzzy rules based on knowledge that describe how the FLC performs.

The rules form the heart of the controller since the output is based on these rules.

"* Fuzzification Interface: Converts the crisp numerical data inputs into fuzzy data.

"* Inference Mechanism: Applies the fuzzy rules to the fuzzy input data to

determine the linguistic fuzzy outputs. The minimum (Mamdani), max-product,

or max-min (Zadeh) implication rules are often used to determine the degree of

membership each rule has in the output.

"* Defuzzification Interface: Converts the fuzzy outputs to crisp numerical outputs.

The center of gravity and center of area methods are often used.

The FLC components permit linguistic knowledge to be embedded in the controller. A

complete overview of FLC and the components can be found in several texts [77, 96].

The FLC does not require an accurate model of the system. Fuzzy controllers are

useful for complex, nonlinear, multi-dimensional systems, systems with parameter

variations, and when the model is unknown [97]. A FLC is reportedly a good choice for

HEV applications due to its robustness and tolerance for imprecise measurements and

component variability [98]. Several researchers have used FLCs in HEV applications.

34

Several authors, Salman, Farrall, Lee, Schouten, and Won, have used fuzzy logic

in the design of controllers for parallel HEVs. Salman uses fuzzy logic for the energy

management and control system for a charge-sustaining parallel HEV [98]. The logic

rules are intended to optimize the efficiency of the entire system, not just one component

such as the engine or motor. The fuzzy logic rules are based on the driver's inputs, the

battery SOC, and the speed of the motor/generator [99]. The fuzzy logic rules generate

commands for the diesel ICE, motor, battery, and transmission (5-speed manual). The

fuzzy logic controller is a Sugeno-Takagi type that requires membership functions for the

inputs but not for the outputs. During the design of the controller, valuable insights were

gained. An efficiency map of the batteries revealed that the battery pack is the most

efficient at high SOC and low power levels. The ICE and motor/generator are used to

charge the batteries only when the ICE is operating close to its highest efficiency. The

electric motor propels the vehicle when the efficiency is 16% better than using the ICE

directly. This was determined based on the energy conversion losses while charging and

discharging the batteries. The resulting strategy only uses the motor at low speeds and

power levels, the engine is used during moderate power demands, and the hybrid mode is

used at high power demands. The controller was implemented in the forward-looking

simulation program PSAT and produced higher fuel economy than the default controller.

Farrall also uses fuzzy logic in a controller for a parallel HEV with a five-speed manual

transmission [100]. Farrall stresses that the controller is not a controller in the traditional

sense since the controller does not actually track a reference input. The driver of the

forward-facing model implements the feedback for the entire vehicle. The controller

takes the power request from the driver and determines the throttle angle of the engine

35

and the armature current of the electric motor. The logic closely mimics that of a human

to determine several outputs based on an input. The models of the vehicle do not include

states and there is no cost function as in optimal control. The fuzzy logic controller uses

the max-product method for implication. The fuzzy set for the engine was highly

nonlinear in order to have high sensitivity in the region where the engine is usually

operated. Farrall ends his analysis by stating that the best use of fuzzy logic would

include provisions for the decision rules to adapt to the driving conditions. Lee uses

dynamometer test results to build the fuzzy logic rules for a charge-sustaining parallel

hybrid-electric bus [101, 102]. Max-min composition and the center of gravity method

are used in the inference engine and the defuzzification step, respectively. There are two

inputs, accelerator pedal position and the electric motor speed, and one output in the

controller. The output is the ratio of torque command to the rated torque at a specific

speed. The proposed strategy is insensitive to disturbances such as the driver's driving

habits, driving route, and the load on the vehicle. Schouten uses a Sugeno-Takagi FLC

like Salman to either optimize the fuel economy or to minimize emissions [103].

Membership functions are derived for the driver input, SOC, electric motor speed, gear

ratio, and the vehicle speed. Output commands are generated for the ICE, EM, and

mechanical braking. The rule base is split up based on the desired goal of the driver:

performance, fuel economy, or braking. Won implements a parallel FLC in a hierarchal

structure that incorporates modes such as start, acceleration, deceleration, and cruise

[104]. A specific set of rules is developed for each mode. Different energy management

strategies can be used such as charge-sustaining or electric only. All of the fuzzy logic

controllers were successful designs for the parallel HEV applications.

36

Cerroto and Zahran use fuzzy logic in the controllers for their series HEVs.

Cerroto uses a FLC for the energy management in a series hybrid-electric bus [105]. The

inputs to the controller are the error of the requested traction power, difference between

the engine power and average requested power, and the battery SOC. The outputs of the

controller are the power gradient for the generator and the delta between the required

drive train power and the power of the generator. The membership functions are

generated using exponential laws, and the height method is used for defuzzification.

Zahran also applies fuzzy logic control to a series HEV [89] that uses a photovoltaic

battery. The author selected fuzzy logic based on the highly nonlinear system and

environment. The inputs to the controller are the battery SOC and the battery current.

The output of the controller is the change in the current and the logic controls for the

diesel engine/generator. The FLC is implemented in a microcontroller. The results

indicate that FL can be used in a series HEV in addition to parallel HEV applications.

Several patents have been issued for HEV power train controllers that are based

on fuzzy logic. Sakai was issued a patent for the FLC of either a series or parallel

charge-sustaining HEV [106]. The fuzzy logic rules use the SOC and the change in the

SOC to determine the output commands. Ibaraki received a patent for a FLC designed to

control the electric motor in a parallel HEV [107]. The literature reveals that the auto

manufacturers have a high interest in the use of FLC for HEV applications.

Fuzzy modeling has been used as a part of an intelligent control scheme by

Quigley to predict the duration and distance of a driving route [108, 109]. Data was

collected from several vehicles and a subtractive clustering method was used to generate

membership functions and rules in a fuzzy inference system [110]. Due to the wide

37

variation of data, the rules developed from the data still must be used in conjunction with

data about the energy consumption. This would permit the ICE to be shut off in the latter

part of the driving trip when the confidence is high that the driver is almost to the work

site, home, or other location. The intelligent control system was able to predict the trips

during the week much more accurately than weekend trips due to more repeatable trips

during the week.

FL can be used in forward-facing simulations and can eventually be programmed

into microcontrollers. The resulting controllers are not computationally intensive and can

be used real-time in the vehicle [111]. Koo implemented his FLC in a digital signal

processor [101]. The ability to implement a FLC in a real-time controller makes FL a

promising method for HEV applications.

Adaptive control techniques can be used to adjust the fuzzy logic rules and the

membership functions in the FLC, or the FLC can be used as the adjustment mechanism

in the adaptive controller. An adaptive FLC has been used by Rajagopalan in a predictive

intelligent control scheme that uses traffic and road conditions [112]. Neural network

algorithms or other techniques can be used to update parameters in the FLC [94].

Combining adaptive control, fuzzy logic, and neural networks can potentially provide an

effective controller that uses the advantages of each. For other applications, the fuzzy

logic supervisory controller can be used to adjust the gains in a PID controller or

parameters in other types of controllers [91].

To conclude the fuzzy logic section, FLCs appear to have the largest advantage

when used in applications that require high-level, supervisory, task-oriented control

instead of regulation where PID control is sufficient. FLC permits the designer to

38

articulate thoughts, experience, and intuition into a powerful controller that mimics the

preferences of the designer. Fuzzy logic can be used with other control strategies to take

advantage of the benefits of each.

2.5 Artificial Neural Networks

Artificial neural networks (ANN) can be used to estimate a plant model or replace

a controller in adaptive control schemes. An ANN is intended to learn in a similar

manner as the human brain. Researchers study biological nervous systems with the

purpose of designing computational systems that have brain-like capabilities. The

artificial neurons of a neural network are arranged to process information in parallel and

to send/receive information from other neurons similar to biological systems. Neural

networks are receiving a great deal of attention in the current literature and are being used

in many applications such as image and voice recognition, system identification, and

control. As with any control algorithm, neural networks have advantages and

disadvantages. Neural networks are useful in the control of nonlinear multi-variable

plants, are capable of learning from a training set, and parallel processing is inherent.

The disadvantages include the difficulty of extracting the knowledge base contained in

the net, predicting results for cases outside the training set, and the convergence and

training time. Several excellent surveys of neural network control can be found in the

papers by Agarwal [113], Hunt [114], and Narendra [115]. Some of the recent work

using neural networks for optimization problems may be valuable for an HEV

application.

The concept of ANNs originated with McCulloch and Pitts and the perceptron

was later introduced by Rosenblatt [96]. Despite research in the area, ANNs were not

39

fully understood until the 1980s as a result of the research by Hopfield and others [116].

The most commonly used neural network in applications is the Multi-Layer Perceptron

(MLP) network which is a direct extension of the networks using perceptrons and

adaptive linear neurons (ADALINE) proposed years ago. The interest and research in the

area of ANNs has exploded since the 1980s, and the conference and journal papers are

too numerous to list.

The basic neuron model includes inputs, weights, a summation, an activation

function, and an output as shown in Figure 2-1 [117]. The inputs can come from other

neurons or external inputs and are multiplied by adjustable weights corresponding to

biological synapses. The weights are determined by using a training algorithm. The

weighted inputs are summed, and an activation function determines the output of the

neuron. The most common activation functions are linear (ADALINE), binary, sigmoid,

hyperbolic tangent, or perceptrons [96]. The output of the neuron varies between zero

and one. The simple neuron model is used as a building block for the more complex

nonlinear ANN.

The architecture or topology of an ANN can be classified into the following:

Hopfield recurrent network, feed-forward network, feedback networks, and symmetric

auto-associative networks [96]. The Hopfield recurrent network has nodes which can

interact with nodes in the same, higher, or lower layers. The information in a feed-

forward network only flows from the lower (input) to higher (output) layers. In the

feedback network, the information flows from the output to the input. The last topology

has connections and weights that are symmetric. Most topologies are multi-layered and

use a hidden layer of neurons between the input and output layers. The Hopfield ANN

40

topology is often used in control applications due to its advantages that it can learn from

experience rather than programming, can generalize, can generate nonlinear mappings,

and is a powerful parallel processing setup. ANNs, in general, are capable of producing

any arbitrary input-output mapping which is critical for nonlinear systems. The

application will often determine the best type of ANN to use.

Weights

'Inputs Summation Activation Outputt
S• Function

Figure 2-1: Neuron Model

One of several algorithms is used to train an ANN and is an active area of research.

The two basic classes of ANN training are supervised and unsupervised. Supervised

learning requires an external source for knowledge or data as compared to unsupervised

training that requires no external source of information. More specifically, supervised

training involves a structure that produces an output that corresponds to the input. The

popular back-propagation algorithm is a member of the supervised training class. For

unsupervised training algorithms (open-loop adaptation), no information exists for the

desired output and how it corresponds to the input. The unsupervised training algorithms

are often used for associative memories and classification algorithms. The associative

memories generally have fast initial learning and convergence. Associative memory

networks have features which make them useful for on-line modeling and control

applications.

41

Traditional training algorithms determine the weights in an ANN. Once trained

with operational data, the ANN can extrapolate to make decisions. Many of the training

algorithms are based on traditional gradient-based algorithms. There is a close

relationship between the necessary conditions of optimal control theory and the gradient

algorithms for training an ANN.

Neural networks can be used for system identification as a part of an indirect

adaptive control scheme, and examples are seen in the literature. ANNs can be used as

the adjustment mechanism to update parameters in direct adaptive control schemes.

Adaptive control architectures are discussed in more detail later.

The use of neural networks for HEV applications in the literature has been

limited. Yuan uses a neural network for a series HEV controller [118]. Two ANNs are

used in an indirect adaptive control scheme: one ANN is used for system ID and the

other ANN is used in the power train controller. ANNs have been used by Swan,

Baumann, and Bhatikar for battery modeling [119-1211.

The lack of ANNs in the academic environment for HEV applications opens up a

door for potential contributions. The work by Hopfield, Tank, Tagliarini and others

illustrate the usefulness of ANNs for optimization problems and the ability to apply them

in real-time controllers [122]. The fundamental concept for applying ANNs to

optimization problems is the fact that recurrent (feedback) networks stabilize and the

stabilized ANN and the associated states can be directly related to local minima of an

optimization problem. If the ANN satisfies specific stability criterion developed by

Cohen-Grossberg, then the ANN will converge. Additionally, the converged, stable

solution can be related to the solution of the optimization problem [117]. If the stability

42

criteria exist, a Lyapunov function can be found. A Lyapunov function places constraints

on the equations describing the system [117]. Hopfield referred to the Lyapunov function

for his specific ANN as an "energy function" that can correspond to the energy in a

physical system. Hopfield and Tank initially had the insight to use an ANN that seeks to

minimize the energy function and to associate variables in an optimization problem to

variables in the ANN's energy function [122]. This insight could prove invaluable for an

embedded controller in an HEV application.

2.6 Adaptive Control

An adaptive controller is "a controller with adjustable parameters and a

mechanism for adjusting the parameters" [84]. The architecture of an adaptive control

system has a control loop and an adjustment mechanism loop. An adaptive controller is

nonlinear; therefore, it is more complicated than a PID controller. In this overview, two

types of adaptive controllers and the applications that can benefit from the use of an

adaptive controller are discussed. A discussion of several journal papers describing the

application of adaptive control to the energy management of an HEV is also included.

Adaptive control methods are roughly categorized as either direct or indirect. In a

direct adaptive control method, an explicit model of the controller is created, and the

controller parameters are directly changed by the adjustment mechanism. The model-

reference adaptive system (MRAS) is one form of the direct method as shown in Figure

2-2 [84]. The performance specifications are given in terms of a reference model which

is usually a linear, low-order dynamic model. The adaptive mechanism adjusts the

controller parameters so that the error between the output of the plant, y(t), and the output

of the reference model, ym(t), is small. The most challenging aspects of the MRAS are to

43

select a suitable reference model and to determine an adjustment mechanism that is stable

and also brings the error to zero.

Reference Yn(t)
Model

Controller 1U SL Adutent

Parameters Mechanism

Reference u"(t) I] output
Input Controller Plant

Figure 2-2: Block Diagram of a Direct Adaptive Controller

An indirect adaptive control method produces an estimate of the plant and an

inverse method generates the control law. A specific formulation of the indirect method

is the self-tuning regulator (STR) as shown in Figure 2-3. The STR obtains estimates of

the plant parameters, and a controller design algorithm changes the controller parameters

using the estimated parameters. The controller parameters are updated indirectly by the

controller design algorithm. The STR approach is very flexible since numerous

techniques can be used for the estimator and the controller design algorithm. The

estimator and controller can be designed separately due to the separation principle [46].

Specification Controller Plant Parameters

Controller • Estimator I

Parameters

Reference U(t) ul(t) Output
Input Plant

Figure 2-3: Block Diagram of an Indirect Adaptive Controller

44

Adaptive control methods are beneficial for some specific applications. Adaptive

control is useful when the plant dynamics change, if the characteristics of the

disturbances change, and to improve engineering efficiency [84]. The plant dynamics

may be unknown originally, or if they are known, may change once the system has been

operating for a period of time such as those in power systems [46]. Without the use of

adaptive control, the system may become unstable due to the changing or unknown plant

dynamics. Industrial applications that benefit from adaptive control are nonlinear

actuators, robots, steering, aircraft control, and process control. The benefits of using

adaptive control vs. a more simplified approach must be determined for a specific

application. Many times a constant feedback control system can perform as well as an

adaptive controller.

Saeks uses a decentralized adaptive control system for a four-wheel drive HEV

[75, 123]. The four motor-generator four-wheel drive HEV is intended for heavier

vehicles such as trucks and buses. The HEV uses a fuel cell for the energy converter and

a flywheel for energy storage. Four separate but connected adaptive controllers are used

to control the vehicle's speed, steering, side slip, and energy management. For the

energy management controller, a neural adaptive controller and a linear adaptive dynamic

programming (ADP) controller are cascaded to facilitate the use of a linear optimal

controller that is at the heart of the energy-management controller. The linear cost

function for the system involves the motor speed error, Om, and fuel cell power, Pc,

subject to the constraint that the flywheel power is finite as shown below:

J -- O0)2 + P-].dt (2-3)

45

Linear models of the motor, fuel cell, and flywheel are used in the state model. Since the

model of the vehicle is highly nonlinear, the neural adaptive controller minimizes the

speed error and produces a motor speed command. The linear adaptive dynamic

programming controller determines the fuel cell, flywheel, and motor-generator

commands. The state variables include the electric motor speed and current, the fuel cell

current, and the fuel consumption. The control input variables include the voltage of the

electric motor, the fuel cell voltage, and the commanded motor speed. The Lagrange

multiplier theorem is used to transform the constrained optimization problem into an

unconstrained optimization problem. The adaptive controller is compared to a PID

controller. At specific design points, the PID performed as well as the advanced adaptive

controller, but the adaptive controller has a larger dynamic range.

Several patents for the control of an HEV based on adaptive control have been

issued. Drozdz uses an adaptive control scheme for the energy management of a series or

parallel HEV [28]. The performance of the HEV power train is analyzed on-board the

vehicle in real-time, and the control algorithm changes based on performance data.

Schmitz uses an adaptive scheme based on the battery temperature and SOC, regenerative

braking mode, and the operating state of the electric motor [124]. The patents illustrate

that adaptive control schemes can effectively be used for the energy management of an

HEV.

Adaptive control for the hybrid-electric power train of an HEV has been used by

several researchers. For one application, the adaptive control algorithm in the energy

management scheme permits a more simplified optimal control solution to be found.

46

Others have attempted to modify control laws based on the driving conditions or driver

requests.

2.7 Advanced Control Algorithm Summary

Listed in Table 2-1 is a comparison of the different control algorithms used for the

control of HEV power trains. As with any engineering application, control approaches

each have their advantages and disadvantages and are listed in the table. The specific

concerns for the HEV application are also listed in the table. The control approaches can

be combined in numerous ways to take advantage of the benefits of each as in neuro-

fuzzy controllers.

47

Table 2-1: Advanced Control Algorithms for HEV Power Train Control
Control Advantages Disadvantages Comments
Algorithm
Optimal 1. HEV power train 1. Theory not as well 1. Global optimization
Control application is an developed for nonlinear implementations

optimization problem (fuel models and nonquadratic provide better results
economy or emissions). functionals. than instantaneous
2. Well-developed theory 2. Classical solution optimization
for linear models and requires final conditions implementations but
quadratic cost functionals. that may be difficult to are more difficult to

determine, implement.
3. Computational
algorithms are usually not
implementable in real-time.
4. Accurate model needed.

Fuzzy 1. Controller design based 1. Lack of robustness and 1. FLC useful for
Logic on intuition, experience, or stability theory. high-level supervisory

knowledge. control such as a
2. Useful for nonlinear or power train controller
complicated multi-variable where components
mechatronic systems. have their own
3. Requires minimal controller.
computing power. 2. FLC can be very
4. Accurate model not powerful if an adaptive
needed. mechanism updates
5. Uncertainty and fault the rules.
tolerant.

Artificial 1. Ability to approximate 1. Difficult to extract the 1. Can be used for
Neural nonlinear functions or knowledge base. nonlinear system ID.
Networks complicated multi-variable 2. Convergence and 2. Computational

systems. training time may be long efficiency allows on-
2. Parallel processing that for some neural networks. line learning.
permits high computational 3. Usually trained from 3. Learning
speeds and real-time operational data. algorithms often based
implementation. 4. Lack of stability and on optimal control
3. Plant model not needed. convergence theory. techniques.
4. Reliable and fault 4. Can be applied to
tolerant. optimization problems.
5. Inherently adaptable to 5. For associative
conditions, can learn, and memory networks,
generalize, rules may be extracted.

Adaptive 1. Useful when plant 1. Existing adaptive
Control dynamics significantly techniques usually require a

change or are unknown. linear parameterization of
2. Useful when the the nonlinear plant
characteristics of the dynamics.
disturbances change.

48

BLANK

49

Chapter 3: CMAC Artificial Neural Network

3.1 Introduction to the CMAC ANN

The goal of the advanced control system is to use a minimal amount of energy.

This is accomplished by finding the best combination of engine torque and motor torque

as a function of parameters such as propulsion system rotational speed, torque demand,

battery state-of-charge (SOC), and other parameters. Of the potential hybrid-electric

vehicle (HEV) advanced control schemes, those based on artificial neural networks

(ANNs) or fuzzy logic appear to be the most promising due to the relatively low

computational resources needed. Additionally, in many applications, an accurate

mathematical model is not needed (an accurate model is needed for simulations). These

approaches are also useful for nonlinear and multi-variable systems, can learn, and

generalize. While results from many of the other control methods such as optimal control

are very good, the computational requirements are too excessive for the embedded

microcontrollers and the majority of the theory is for linear models. This chapter

describes the neural network control algorithm that manages the energy use of the hybrid-

electric unmanned aerial vehicle (HEUAV) propulsion system.

The use of ANNs in HEV applications has been limited, and due to the potential

benefits, this particular control method was selected for the HEUAV application. It is

well known that ANNs can approximate nonlinear functions, so an ANN has tremendous

potential if applied to the control of the nonlinear HEUAV propulsion system. A specific

type of neural network, the Cerebellar Model Arithmetic Computer or Cerebellar Model

Articulation Controller (CMAC), was chosen for this application due to its rapid training

time, practical hardware implementation, and low computational cost [29]. The CMAC

50

is a feedforward, supervised ANN and is an alternative to the more common back-

propagation multi-layer perceptron (MLP) network [30]. The CMAC was originally

developed to adaptively control robots since it can handle large input spaces, adapt, learn

quickly, generalize, and is stable. The CMAC ANN has been successfully applied to

industrial applications, vibration control, robotic control, and fuel-injection systems [31-

42].

Before the advantages of the CMAC are discussed in more detail, the

disadvantages of the back-propagated multi-layer perceptron ANN for a real-time

application will be discussed. First, the common back-propagated ANN is usually not

feasible for on-line learning since numerous iterations are needed for the ANN to

converge during training. Please note that on-line learning is not used for the HEUAV

application but could be an area of future research. Second, many calculations are

needed per training iteration for the back-propagated ANN which can necessitate custom

hardware. Third, the more commonly used training algorithms for back-propagation are

based on gradient techniques and the neural network can get "stuck" in a relative

minimum during training vs. converging to the global minimum on the error surface as

for the CMAC. Fourth, it has been shown that the local learning approaches used in the

CMAC ANN and other associative memory networks are superior for control

applications as compared to those used in the multi-layer ANNs [77]. Fifth, the

computational time needed to produce an output from the CMAC ANN is minimal since

only a few calculations are needed to obtain the output for an input. For these reasons,

the CMAC was selected for the HEUAV application instead of the back-propagated

multi-layer ANN.

51

3.2 History of the CMAC ANN

The CMAC neural network was originated by James Albus in 1975 [125, 126].

The CMAC is modeled after the method that the cerebellum uses to learn and store

information and control reflexive movement. In contrast, a traditional neural network

attempts to mimic the interactions between the brain's neurons. The CMAC attempts to

duplicate the functional properties of the brain instead of the structure of it [126]. The

CMAC was not called a neural network at the time it was proposed since the term was

not commonly used then. Nevertheless, the CMAC can definitely be considered a neural

network.

The CMAC is a lattice-based associative memory network (AMN) that

nonlinearly maps the inputs to a hidden associative memory. The hidden memory is then

linearly mapped to an adaptive weight vector that generates the output. The output is the

sum of the activated weights. For each input, only a small subset of the network

influences the instantaneous output which minimizes the computational time. This is a

significant benefit for an embedded controller. Whereas the computational cost for most

neural networks is exponentially dependent on the dimensions of the input space, the

computational cost for a CMAC is linearly dependent on the input space dimensions

[127]. In short, the CMAC takes real-valued vectors and produces real-valued output

vectors, can learn locally and generalize, can learn nonlinear functions, has a relatively

short training time, requires a small number of computations per training iteration, and

can be implemented in simple software and hardware [29]. It is reported that the number

of training iterations is orders of magnitude smaller than that of other ANNs [30, 128]. A

possible disadvantage of the CMAC includes possible noise if hash coding is used to

52

store the associative memory. For the HEUAV application, hash coding is not used due

to the errors introduced into the control surface approximation. The CMAC ANN is

applied to the control of the HEUAV propulsion system and will essentially store the

efficiency and other maps for the engine, motor, and battery pack to produce commands

for the propulsion system components.

The CMAC can be thought of as an adaptive look-up table. The CMAC is better

suited to real-time control as compared to a look-up table for two reasons. The CMAC

can generalize whereas a look-up table cannot. Also, for large input spaces, the CMAC

requires much less memory than a look-up table. Both of these topics will be discussed

in more detail later. The memory requirements for the CMAC ANN are analyzed for the

HEUAV application in Chapter 6.

3.3 CMAC ANN Description

A diagram of a typical CMAC artificial neural network is shown in Figure 3-1.

Continuous vectors are first transformed into quantized input vectors. The maximum and

minimum values of the inputs (range) are needed along with the quantization width

(precision or resolution) of the inputs to determine the size of the input space [32]. The

input space is n-dimensional if more than one input is fed to the CMAC structure.

Second, the input space is nonlinearly mapped into exactly L locations (generalization

factor) in the associative memory satisfying the uniform projection principle. Please note

that the nonlinear mapping in a CMAC structure occurs in the initial mapping and not in

the sigmoid/threshold function of a neuron as in other types of ANNs. Each of the

association cells (also referred to as basis functions with support or receptive fields)

within each parallel layer of the memory has a corresponding weight. Each association

53

cell has a support area of L' where n is the dimension of the input space. Third, for each

possible input, the weights corresponding to the L activated memory locations are then

summed to form the output. The weights mapped to each memory location determine the

output and are adaptively updated. The output is linearly dependent on the adaptive

weights and therefore allows convergence conditions to be established [127]. It is

emphasized that the nonlinear fixed mapping occurs from the input space to the

association layers, and the adaptive linear mapping occurs from the association layers and

the associated weights to the output.

3-

3 2 11 2 3 4

0 0

Input 2 Input 1

Figure 3-1: CMAC ANN Structure

The nomenclature used in this dissertation for the CMAC structure will be:

n: Dimensions of the input (dimensions of each lattice cell)

54

L: Number of association layers (number of non-zero basis functions for each

input)

b: Total number of basis functions (association cells) in the association layers

N: Total number of possible inputs (number of lattice cells)

These parameters typically have the following relationship for a controls application:

n<SL < b<N (3-1)

The example in Figure 3-1 has parameters of n=2, L=3, b=22, and N=36. The total

number of basis functions, b, is determined by summing the number of basis functions for

each association layer. The total number of possible inputs, N, is found by multiplying

the number of intervals, vi, in each direction as follows:

N I-= vi (3-2)
i=1

where N is the number of entries that would be found in a look-up table. The CMAC is

considered well defined if 1 < L < max(vi) for 1 < i < n [127]. If the CMAC is not well

defined, then a basis function will cover a relatively large area of the input space (lattice).

The distribution of the layers is determined by a displacement vector. The

original Albus scheme offset the layers by one from each other. The displacement vector

is (1,1,1), (2,2,2), and (3,3,3) for the example in Figure 3-1. The original scheme satisfies

the uniform projection principle but does not produce results as good as other schemes.

Parks and Militzer produced tables of displacement vectors as a function of L and n

[129]. Their proposed displacement vectors are based on the distance between the

elements in the association vectors and elements in the input space. The placement of the

overlays is optimized by directly relating the Hamming distance (absolute value of the

differences of each component) between the association vectors to the Euclidian distance

55

between the input values [30, 129]. The improved displacement vectors generally

produce a smoother approximation for a function.

3.3.1 Training

Several techniques can be used to update the weights in the CMAC structure. For

the results in this dissertation, the CMAC's weights are updated using an instantaneous

gradient descent method to minimize the mean square error (MSE). The instantaneous

estimate of the MSE is described using [32]:

1B-. (YDesired - YCMAC) 2 (3-3)
2

where: E is the instantaneous estimate of the mean square output error

YDesired is the desired output

YCMAC is the output of the CMAC controller

Taking a partial derivative with respect to an activated weight, wj:

aE L

- = (YDesired - YCMAC) = -(YDMsired -I Wi,Activated) (3-4)

Only local learning occurs since only the activated weights are updated. The resulting

first-order update training rule using the instantaneous gradient descent method is:

8
W j,updated = W j,previous + - (YDesied - YCMAC) (3-5)

L

where 6 is the training rate [127]. The learning algorithm requires minimal memory and

computational cost.

3.3.2 Convergence and Stability

The convergence of the network is critical during training. Miller states that the

CMAC will converge to a global minimum on the error surface (if exact training rules are

56

used) and since the error surface has no local minima, it can learn nonlinear functions at

least approximately [130]. To better understand the convergence capabilities, the

solution matrix needs to be described.

The solution matrix for the CMAC can be viewed as the solution to a system of

linear equations:

YDesired =Aw (3-6)

where: A is the matrix composed of the association vectors (Nxb)

w is the weight vector (bx 1)

YDesired is the output vector or the control signal (Nx 1)

The A matrix is sparse and does not have full column rank (columns are linearly

dependent). Since the rank of A is equal to b or less and therefore does not have full rank

for the CMAC ANN, A has a left inverse but it is not unique [131]. The ideal solution to

Equation 3-6 can be obtained from the pseudo-inverse A+= AT(AAT)"l. For the CMAC

application, using the pseudo-inverse is not practical due to the size of the matrices.

Since A is sparse and the convergence is rapid, an iterative method is used. Iterative

techniques such as the instantaneous gradient descent method are used to train the CMAC

ANN.

A theorem given by Brown and Harris states that the rank of the set of b binary

basis functions of a well-defined CMAC is b-(L-1) [127]. In words, the rank of the set is

equal to b minus the rank of the null space. The number of weights that can be assigned

arbitrarily is L-1, but the Lth weight is not arbitrary so the rank of the null space is L-1.

Although a global minimum exists on the error surface, more than one weight matrix can

57

solve Equation 3-6. The resulting solution using instantaneous training rules can fall into

a "minimal capture zone" which is an approximation to the global minimum [127, 132].

3.3.3 Generalization

The CMAC generalizes due to the width and overlap of the association cells in the

hidden layers [126]. The generalization is determined by the initial nonlinear mapping,

since each basis function or association cell has a pre-determined corresponding support

or receptive field. The supports each have a volume of L0 or less if on the edge of the

input space. Therefore, the generalization parameter, L, determines the number of

association layers, the number of weights contributing to each output, and the size of

support for each basis function [127]. If two inputs are relatively close to each other in

the input space, then approximately the same association cells will be activated to

produce an output. For two inputs that are spaced far apart, entirely different association

cells are activated. The CMAC generalizes over a small area which minimizes the

computations required for each training iteration. However, if L is large, the

generalization is less local but the memory requirement is less.

3.3.4 Modeling Errors

Most neural networks are potentially universal function approximators if given

sufficient resources. However, for practical applications, the function approximation will

include modeling errors. For the CMAC neural network, the initial nonlinear mapping

affects the modeling capabilities. The generalization parameter and the displacement

vector also influence the modeling capabilities. As L increases, the generalization is less

local and the modeling error typically increases. For a look-up table, L=I, and there is no

error. The flexibility of the CMAC decreases as L increases due to the decreased

58

generalization. The advantage is the decreased memory requirement. The instantaneous

gradient descent training method also introduces errors into the modeling capability. The

modeling errors introduced by the instantaneous training method can be reduced if the

learning rate is allowed to decrease to zero as the training progresses.

Brown and Harris have investigated the types of functions the CMAC can and

cannot model and have developed consistency equations and orthogonal equations,

respectively [127]. The consistency equations provide insight into which functions the

CMAC can model exactly, and the orthogonal equations show which functions the

CMAC cannot model exactly. Any function can be decomposed into a set of consistency

equations and a set of orthogonal functions. The decomposition will determine the

modeling error for a particular function. For most applications, the modeling error is low

even if the CMAC cannot model the function exactly if the appropriate parameters are

chosen for the number of layers, the learning rate, and the structure of the hidden layers.

3.3.5 Memory Requirement

In addition to comparing performance and energy use between the rule-based and

CMAC controllers, the microprocessor memory requirements are analyzed for the

CMAC ANN controller in Chapter 6. A typical processor such as the Motorola MPC555

has approximately 512 KB of flash memory. If each CMAC weight is assumed to be a

float value requiring 4 bytes (32 bits), the allowable size of the associative memory in the

CMAC can be determined. The number of weights is approximately, N/L n-l, where N is

the possible number of inputs, L is the number of association layers, and n is the

dimension of the input space [127]. To produce an output, the weights stored in L

memory locations are summed. The CMAC structure greatly saves on memory and

59

computational requirements as compared to having a multi-dimensional look-up table or

computing a hyper-plane for every instant in time.

3.3.6 Higher-Order Basis Functions

The binary basis functions used in the original Albus CMAC description produce

a piecewise constant output. Higher-dimensional basis functions can produce a smoother

output, if required, but at the expense of computational time. Research into applying

higher order basis functions to the CMAC ANN can be found in Lane et al. [133].

3.4 Function Approximation Example

To illustrate the use of the CMAC neural network to approximate a surface, a

simple example is given. The generalization number will be increased to illustrate how

the accuracy and memory requirement varies with a change in the number of association

layers (generalization factor).

The function to be modeled is given by:

f(x, y) e'eo'(x2+y2) • sin(2 x + y) (3-7)

and the plot is shown in Figure 3-2.

60

N
0

1

3 ~

I0 I

I

Figure 3-2: Original Function

In Table 3-1, the RMS error and the memory savings as compared to a look-up

table (LUT) are listed. The training rate, 6, was equal to 0.05, and the number of training

iterations was 250. As the generalization factor (number of layers in the neural network)

increases, the RMS error generally increases as would be expected.

Table 3-1: RMS Error and Memory Savings for CMAC Approximations
Generalization Factor RMS Error Memor Savings'

3 5.71x102
2.81___________

5 6.20x10 2 44
8 7.5 9x10-2

6.43__________

10 9.27x10 2 76
'Number of entries in a LUT/number of weights in the CMAC associative memory

61

5-

33
22

I3
00

y -2 -3 - -

Figure 3-3: CMAC Approximation (L=3) of Original Function

1.4

1.2

I

0.8

0.6-

0.2

0 5 0 100 180 200 250
Training Itertio

Figure 3-4: RMS Error for CMAC Approximation (L3)

62

3
2

0I
0

y -2 .- 3. " - . -

Figure 3-5: CMAC Approximation (L=10) of Original Function

1.4

1.2

°I

0.6-

OA

0.2 - ,

0
0 0 200 250

TraIning fteratlon

Figure 3-6: RMS Error for CMAC Approximation (L=10)

63

Figures 3-3 and 3-4 show the CMAC approximation to the function for a CMAC

structure with L=3 and the corresponding RMS error during training, respectively. The

number of hidden layers is one more than the number of inputs. The approximation is

very close to the original function. Figures 3-5 and 3-6 show the CMAC approximation

to the function for a CMAC structure with L=10 and the corresponding RMS error during

training, respectively. As the number of association layers increases, the modeling error

gets worse. The amount of acceptable error must be determined for an application which

limits the amount of potential memory savings. A compromise must be made between

the accuracy of the function approximation and the amount of memory savings.

64

BLANK

65

Chapter 4: Hybrid-Electric Unmanned Aerial
Vehicle Simulink Model

A MATLAB/Simulink model of the parallel hybrid-electric unmanned aerial

vehicle (HEUAV) was developed for the dissertation research. The model is derived

from the Visteon/UCD hybrid-electric vehicle (HEV) model designed by the HEV Center

under contract #ABG P0000 013588. The forward-facing simulation model was

originally for the Coulomb parallel HEV. The model of the hybrid-electric propulsion

system was modified to match the configuration and the dynamics of the HEUAV, but

the overall hierarchy and structure of the model has been retained. Specifically, the

subsystem model of the UAV replaces the model of the automobile, and the propeller

model replaces the transmission model. However, the engine, clutch, electric motor, and

rule-based controller models are very similar to the original subsystem models. A

standard atmosphere model was added to account for changes in the density, temperature,

and pressure with altitude. This chapter briefly explains the HEUAV model, and the

improvements that were made to the original model during the dissertation research.

The structure of the simulation program is modular, and several of the Simulink

blocks, or modules, in the original Visteon model were closely modeled after NREL's

ADVISOR simulation program [134]. These blocks include the battery model and the

speed profile model. These same blocks were used in the HEUAV model to minimize

the software development and to use software components that have already been

validated.

66

The I.Ird Electrc Unm=n"ed Acrla Vehile (HIIUAV) model lea
forweard4cilng simulation model. The model isemeted with subsyslemsto

allow*a modular approm ch. At the top leel of the hierarchy, a s byaem is cated
for the flight profile, the pilot/operetor, propulrion syem, end the UAV. A Sandard

atmosphere model isall Included in the HEUAV model. OCk

Output Variable.
culUV pe

es

Actual UAV Spd
mi) Throttle (0-t) ----------

nb .Throhte(0-1)

-ot (SNp)ee

l

AculUVSope Sped ma

Do~ad AVSped m~s 1.Wrd AV ped (ls Raan (0) UM) A~ tdV M o peedl m

PL • p. loMod- 1 propulsion System Model Al T< er~ r K)PFlight Profile

L DlflW•1y (k',•3

Standard Atmosphere

Figure 4-1: HEUAV Simulink Model

The HEUAV model uses empirical data, theoretical predictions, and dynamics

principles to simulate the HEUAV. Empirical data is used in look-up tables to estimate

the efficiency maps of components such as the electric motor, engine, and battery pack.

The components are modeled using performance data for off-the-shelf components to

simplify the design of an actual hardware model if the opportunity arises. Theoretical

predictions and empirical data are used to determine the lift-drag curve of a typical UAV,

the efficiency of the propeller, and the state-of-charge (SOC) of the battery pack.

Dynamics principles are used to model the engine, clutch, electric motor, gear reduction

unit, propeller, and the UAV.

The forward-facing simulation program for the HEUAV model is required to

simulate and test control system strategies. The forward-facing program is more realistic

of a dynamic system and can be used to develop real-time control strategies. Backward-

facing simulation programs, such as NREL's ADVISOR, are useful for sizing

67

components and for estimating fuel economy. Although a backward-facing simulation

program is usually easier to use and the run times are shorter, the forward-facing program

was used for all of the dissertation research to test the advanced control strategies.

The following sections document the blocks used in HEUAV Simulink model.

Each block has corresponding data files that are loaded into the MATLAB workspace.

The blocks are ordered as shown in Figure 4-1 starting at the flight profile, the most

upstream component, then the pilot/operator, propulsion system, and ending at the UAV,

the most downstream component. A standard atmosphere model is also included. The

explanations in this appendix for the engine, motor, and clutch models are derived from

the original model documentation [135].

4.1 Flight Profile

The flight profile model used in the HEUAV model reads in speed and altitude

data as shown in Figure 4-2. The speed model is very similar to the speed profile or

driving cycle used in ADVISOR [134]. The desired speed, in kts, of the UAV is read

from the MATLAB workspace and is converted to m/s. A smoothing algorithm that uses

centered-in-time averaging is available to smooth out jumps in the trace. For the

HEUAV model, the speed is assumed to be the true velocity. In addition to the desired

speed, the altitude of the UAV is read from the workspace and used in the simulation.

Only the speed is used as a feedback variable since an increase in altitude with no throttle

adjustments will result in a decreased speed. It is assumed that a longitudinal control

system maintains the UAV at the correct altitude. The desired UAV speed and the

altitude are outputs of the flight profile model.

68

Smooth, No-Lag Swth (i,,•___. ,,, ds)

wRelational Coniant2 Swtch2 (kls->m/s) Desired UAV
OperatorSpeed (m/s)

Constant3

Speed Profile,
No Smoothing

Smontn4R ationa No-ans tat5h Swth (t>m)Alttd

Operator2(mML

Altitude Profile,

No Smoothing

This block determines the desired eed and altitude of the UAV.

If pr filter bool astrue, a centered-In-time average of the profile Isrequired.

Thlslsuaeful to smiooth out Jumpsin the flight profile.

Otherwise, the speed and altitude, exactly as publishred, ls desired of the UAV.
*The peed s assumed to be the true velocity (m/s)for the simulation.

Figure 4-2: Flight Profile Model

4.2 Pilot/Operator

The pilot/operator model shown in Figure 4-3 is almost identical to the UCD

Visteon driver model except there is a regeneration command instead of a brake output as

there would be for an automobile [135]. The model is relatively simple, but a significant

amount of tuning was performed to achieve good performance over a wide operating

range.

thr wol be fo an auo obl [15] Th ioe is reai vl simpe bu a significan

69

("") IUI I IdI• S '-PI •'"nI.8) �S tr"InI

A.OreI UAV Speed PlO Contmlli0 rlU 2xon2
m/)(pl dlcel P. 1, - d D) (-Irffi0) - -

Fcn • Tlsbock e~ilnsl~thmt Salnd ,2 fR~thaUmnnV T. ./ . , _I0d,_, /

If • dec~llersfln ilrl~qulrld, * rmgenorltlorn command Is glvn. / -- ' --
Tnd.r F00.2nd 0.8..

Figure 4-3: Pilot/Operator Model

The inputs to the block are the desired speed and actual UAV speed. The desired

speed is a direct input from the flight profile block. The actual speed is taken from the

UAV model and is the true velocity of the UAV. The normalized outputs from the

pilot/operator model are the throttle output (acceleration) and the regeneration command

(deceleration).

The pilot/operator model has three different stages. The first stage is the

implementation of proportional-integral-derivative (PID) controllers. The PID

controllers use a modified version of the standard Simulink PID block. One PID

controller is used for acceleration and another one for deceleration. Each one is saturated

to only provide a contribution when it is required. The second stage adds the output of

these controllers together and limits the rate of change of the combined response. A rate

limiter prevents large signal changes from causing step outputs and a filter smoothes the

signal. The third stage saturates the outputs that are passed to the rest of the HEUAV

model. The throttle command (acceleration) is saturated so it is always between 0 and 1,

and the regenerative command (deceleration) is multiplied by -1 and saturated so it is

always positive between 0 and 1. A conditional statement ensures that the pilot/operator

will output zero commands when the desired speed and delta are zero.

70

The block was hand tuned by previous researchers to meet the conventional traces

used within ADVISOR. Specifically, the model was tuned so the actual vehicle speed

would be within the standard specification of +/-2 mph of the desired speed trace such as

FUDS, HWFET, and US06 [135]. The pilot/operator model was further tuned during the

research, so the desired trace would be within several kts of the desired speed.

4.3 Propulsion System

The propulsion system block is shown in Figure 4-4. Within the block are the

engine, clutch, battery, electric motor, gear reduction, propeller, and propulsion system

controller blocks for the HEUAV. An engine block and controller for the original UAV

configuration (engine-only) are also included.

F 4 P

Figure 4-4: Propulsion System Model

71

4.3.1 Internal Combustion Engine

The engine is the furthest upstream component in the propulsion system. It

constitutes the first value of inertia that is passed on to other components in the parallel

hybrid-electric system. The engine requires a throttle position command and produces an

output torque based on the speed determined by the propeller, gear reduction, and clutch

blocks. The block also calculates the fuel flow and the fuel consumed.

The inputs to the engine block shown in Figure 4-5 include the enable (hybrid

mode) command, speed in, and throttle position command. The outputs include the

inertia, fuel flow, and torque out. Within the model, look-up tables for the throttle/torque

relationship and fuel consumption are used to determine the outputs.

.C!D
i4f. Out
01•',2)

Thiablodhf wn Uf u tpwq md th fuNl 1,, 11, ngin9.

STFigureMa 4-5: ngineMode

E" "d"

Several conditions will cause the engine model to disable the ignition. If the

engine speed exceeds its maximum allowable speed or falls below a designated stall

speed, the ignition is turned off. These limits prevent the engine from operating in these

extreme regions. On most gasoline engines for model airplanes, there is no ignition shut

LA

72

off at high speeds since the engine is supposed to be matched to the propeller size and

expected propeller loading. The maximum operating limit is included in the HEUAV

model as a check to be sure the engine does not operate too high if the clutch is

disengaged at an inappropriate time, especially during propulsion control system design.

The ignition shut off could easily be programmed into a real-time propulsion system

controller. The stall speed limit is realistic since model airplane engines are programmed

to turn off the ignition and shut off the fuel simultaneously when the engine is turned off.

The engine fuel consumption maps in NREL's ADVISOR return the fuel flow as

a function of torque and speed [134]. In order to more accurately simulate a real engine,

a throttle model was implemented by previous researchers. This allows the model to

react to the throttle position and permits a more accurate representation of certain

phenomena such as torque absorption at low throttle openings and high rotational speeds.

Since torque data as a function of throttle and speed are not currently available, two

formulas were created by previous researchers that estimate these maps [135]. The

Visteon model documentation has more details on these maps [135]. The hypothetical

throttle maps could be replaced with actual engine data if it became available.

The efficiency for the engine is inherent in the fuel consumption map. For a

given torque and speed, a fuel consumption value is provided. The fuel consumption, in

g/kWh, is used to calculate the fuel used and the fuel flow. The output torque is adjusted

using a first-order approximation based on the decrease in density with altitude. The

power loss is equal to the power produced from the fuel minus the current power output

of the engine.

73

The transient effects on the efficiency and fuel consumption maps are not

considered in the model. The lower density effect with increasing altitude is considered

by using a first-order approximation for the decrease in density, P/PSL [136]. The small

HEUAV is not expected to fly above several thousand feet MSL which should not effect

the fuel consumption considerably so the first-order approximation is sufficient.

4.3.2 Clutch

The clutch model is downstream from the engine in the propulsion system block

(see Figure 4-6). The clutch model for the Visteon simulation was designed by previous

researchers using basic, well-known behavior models [135]. The equations are

parameterized with data that are relatively easy to obtain or estimate.

Inertia In

Clutch Inertia-(l4'mn2)

Loc(d/d
10 1"r~ I (N'm) ITraindwe Fcn1

Torqu W N /

(0 or1) Clutch Engaerntnoiengg..e 6 C utc od e()

S'pfatd In (,ad&,) *< kid~tM

(N'm) (Nm)

"I I.. IN. Lk '"("')

Speued O-:Cut c Model1

74

The inputs to the clutch model are enable (hybrid mode), inertia in, speed out, and

torque in. The enable input is the main command for this block and determines whether

the clutch is being engaged or disengaged. If the enable command is greater than 0.5, the

clutch is commanded to engage. If it is less than 0.5, the clutch is commanded to

disengage. Each command is followed by ramping the torque demand of the clutch, so

the transition will take a certain amount of time as specified in the input file. The inertia

input is the upstream inertia from the engine. Depending on the internal conditions, this

inertia will be passed downstream or used to determine the internal acceleration. The

speed out is determined by the downstream components and determines the speed to be

passed upstream. The torque in is obtained from the upstream components. When the

clutch is locked, this value is passed directly to the torque out. When the clutch is open

or slipping, this torque is used with the inertia to determine the acceleration of the

upstream components.

The outputs of the clutch model block are inertia out, speed in, and torque out.

The inertia out is determined from the clutch state and the input inertia. If the clutch is

locked, the input inertia is passed directly. If the clutch is disengaged or slipping, the

output inertia is estimated to be one-half of the clutch inertia.

The speed in depends on the internal state. If the clutch is locked, the speed in is

equal to the speed out. If the clutch is open or slipping, the speed in is determined by

dividing the torque (input torque commanded or transfer torque) by the input inertia and

integrating. During a transition from the locked state to the unlocked state, the state of

the integrator is initialized with the current output speed. This behavior allows the engine

to accelerate and decelerate in an unlocked state just as a normal engine would.

75

The torque out is determined by the input torque and the internal transient torque

transfer magnitude. If the clutch is locked, the torque is transferred through the device.

If the clutch is open, no torque is transmitted. If the clutch is slipping, the torque

transferred through the device will be controlled and will ramp up over time until lock is

achieved.

The clutch model can be roughly divided into four modules implementing two

states. The modules are the clutch engagement/disengagement controller, the lock

detector, the locked state processor, and the unlocked state processor. The Visteon model

documentation has more details on these modules [135].

For the HEUAV, an electromagnetic clutch was modeled. The power drain of an

electromagnetic clutch is not modeled but could easily be lumped in with the accessory

loads on the batteries. Empirical data for a potential electromagnetic clutch uses 5-6 W.

4.3.3 Battery Pack and Electrical Accessories

The battery pack model shown in Figure 4-7 determines the electrical energy use

of the motor and electrical accessories. The block models the energy storage system as a

voltage source in series with an internal resistance and determines the effect of current

draw on the voltage and the SOC. The model was adapted from ADVISOR with only

minor changes such as the change in ambient temperature with an increase in altitude and

the amount of recharging needed to recharge the battery pack to its original SOC [134].

The battery pack block models the energy storage system as a voltage source in

series with an internal resistance. The voltage source is dependent on the SOC and the

ambient temperature. The internal resistance is dependent on the SOC, ambient

temperature, and the current direction. The convention used is that the positive current

76

represents the discharge current. The power loss during discharge is computed as I2 R

and the recharge loss is due to the Coulombic inefficiency. Thermal modeling of the

battery performance is modeled in the open-circuit voltage, internal resistance, and

capacity parameters. The SOC is computed assuming that the Ah battery capacity is

dependent on the ambient temperature. A first-order transfer function is included in the

voltage line to smooth out the battery pack dynamics.

current 100 (
ust Current Gain (dec-,%) (%)

SOC current Terminator

batteryemp lgoithm-
1 urie eo0Current Vlt ain

Current 11 ----n Transfer Fcn MV)
(A) pCalculate

273 Voc, Rint

(K->C)

[air tamp) r +Ns-> Wh)

Air Tem perature

20 ~~+x ~ hre

Temperature Greater

In Fuselage 1/ I
•1 Integral Gain H

Power Supplied (W->Ws) Prod
by Battery

This block modelsthe energy storage system asa voltage source in sedeswith an Internal resistance.
The voltage source is dependent on the SOC and the ambient temperature.

The internal resistance Isdependent on the SOC. temperature, and current direction.
The SOC Inscomputed assuming the Ah capacity Isdependent on the ambient temperature.

The convention used isthat the positive current represents the discharge current.
The powerloss during discharge Iscomputed asI^2*R and

the recharge loss Isdue to the Coulombic Inefficiency.

Thermal modeling of the battery performance ismodeled in the
Voc, Rent, and capacity parameters

Figure 4-7: Battery Pack Model

The electrical accessories component model includes all of the electrically-

powered systems and the power demanded by the payload. The payload could include

items such as infrared or video sensors or signal processing cards. The current drain for

the accessory loads is determined by using a constant electrical accessory power load,

dividing by a constant efficiency, and then dividing by the pack voltage.

77

4.3.4 Electric Motor

The motor model for the UCD/Visteon simulation was designed by previous

researchers using parametric data in a series of simple equations [135]. The motor block

uses manufacturer data and can be modified as necessary to tune the behavior of the

model.

The inputs to the motor block are the torque command, motor speed, and voltage.

The normalized torque command is the external request from the propulsion system

controller. The motor controller is assumed not to have a direct torque input but a

normalized input that is proportional to the maximum available torque. At low speeds in

the torque-limited region, the input is a torque command. At higher speeds in the power-

limited region, the input signal is scaled to make full scale correspond to the power-

limited maximum torque. The input voltage and the motor speed are the physical inputs

from the other modeled components. The input voltage to the motor controller is

determined by the characteristics of the battery pack. The voltage for a given load is

related to the current drawn by the motor controller to achieve a desired motor output

power. The other input, motor speed, is determined by the gear reduction block. The

propulsion system uses the torque of the engine, motor, and propeller, as well as the

propulsion system inertia to determine the acceleration that is then integrated to

determine the motor and engine speed. The motor speed is used by the motor block to

determine the location on the efficiency map.

The outputs from the motor block are the motor inertia, available motor torque,

torque out, and current. The inertia and torque out are used by the downstream

components to determine the acceleration that is integrated and fed back as the motor

78

speed taking into consideration the gear reduction unit. The current output is used to

determine the battery SOC.

The electric motor module, as shown in Figure 4-8, was built by previous

researchers to be modular and flexible while incorporating the safety features expected

for a motor [135]. This model is intended to simulate an actual motor/controller system

while retaining the ability to simulate different types of motors with incomplete data.

The model was based on parametric data obtained from manufacturers for

motor/controller systems.

The parametric model has three main sections. The first section is the safety

limiter that implements the required safety limitations such as the maximum speed,

current, and voltage. The second section is a filter on the limited torque request to

approximate the torque delivery dynamics. The third section determines efficiency data

based on the torque required, speed, and voltage. The Visteon model documentation has

more details on these sections [135].

*C~D
Mot nor I t Inertia Out

Mot"o2) (tgomTo1)

Motor Torque CommatM r Torque O t (Wm2

Motor Speed Available Motor Torque

Figms) 4-8: ELecti MNlm)

Voltagecurn

(V) -Torque Our (Wmr) Cumrm (A)• - (A)

10'Moor Speed (r1d/) • _ _

| I Motor Power Loss
Effii~oye r#

Figure 4-8: Electric Motor Model

79

The motor model uses a simplified dynamics model that implements important

dynamics while preventing unnecessary complexity. Typical motor models use an

armature inductance and inertia to create a second-order response. The dynamics model

implemented is similarly divided into a mechanical piece and an electrical piece. The

mechanical dynamics of the motor are modeled as inertia. This inertia is passed to

downstream components. The electrical system dynamics are lumped into a pre-filter on

the torque response. This allows the limiter block and the efficiency calculator to receive

signals that do not change instantaneously and allows the electrical system dynamics to

be changed rapidly with predictable results. The electrical dynamics are very dependent

on the motor/controller system so it is difficult to create a universal filter. These

dynamics are currently implemented as a first order filter as shown below:

T -ut 1 (4-1)

Ti, T.s+l

where -r is the time constant. This provides a delay between the input and output while

allowing the limiters to operate at full speed and avoid possible instabilities.

The efficiency calculation performed is a parametric model that determines the

required input power from the speed, torque, and voltage of the motor. The data

generally available for efficiency calculations are in the form of a map of efficiency vs.

speed and torque. Multiplying the speed and torque, the output power can be calculated

and used with the efficiency to determine the required input power. The efficiency map

is also used to determine the regeneration torque by simply flipping the map about the

zero-torque axis to form positive and negative torque regions.

80

4.3.5 Propulsion System Controller

The propulsion system controller is a supervisory system that issues commands to

the engine and electric motor based on the pilot/operator request and other parameters. A

block for an optional variable-pitch propeller is included in the model, and the controller

could also produce commands for this optional propeller, if desired. The HEUAV model

includes an option to switch between a rule-based strategy that is similar to those used in

the UCD hybrid-electric vehicles and the neural network controller (see Chapter 6).

The inputs to the propulsion system controller include the battery SOC, actual

UAV speed, propeller speed, throttle, and regeneration commands. The battery SOC

input is essential for a hybrid-electric vehicle, especially when operating in a charge-

sustaining mode. The rule-based controller in the model implements a charge-depleting

mode and a charge-sustaining mode depending on the desired mission.

The propeller speed is used as the input to the controller since it is directly related

to the motor speed. The engine speed is either zero or directly related to the propeller

speed at all times except when the clutch is engaging or disengaging. The speed signal is

used as an input to look-up tables that retrieve engine and motor data. The throttle and

regeneration inputs are signals that range from zero to one and are sent by the

pilot/operator model.

The outputs include the hybrid mode (engine enable and clutch engagement

command), engine throttle command, and motor torque command. The engine enable

command is a binary signal that commands the engine ignition to turn on or off. The

same signal is also used to engage or disengage the clutch. The engine throttle command

is a throttle position command to the engine. The electric motor command varies

81

between -1 to +1 where negative values represent regeneration and positive values

represent positive torque. The signal represents a fraction of the maximum torque of the

motor at its current speed. More specifically, the normalized output represents the

desired motor torque divided by the maximum motor torque provided by the speed-

dependent look-up table.

CD pThrotlk (0,l) Erolm TorqoCormnud (0-1)

--rot Angtno Torque m- n) (00

(01 "n. T10-t (5.1)

-• R .Wo . (0-1) SI,,~ Prop. Ilpoe .-- dIS E", T,•_---.

Mo- t.ort TruCor~m~r . o Saturation Conn Man'd'

R" From Prod2 TotA toqu +1) huet.

(0.1))wtEao UAV 810.4 T0t 1 ..

Actual UAV Spool NOTE: COMMANDS ARE
(OO) Neural_ o_ n r% OF MAX TORQUE

Ruel.-B.d Contooll.,

Co T hL r onol.te Logical mase0: R alu-edreMv- Oporator FHle -
NN Controll so It Io mo l Mod.

Prop op..d
lrad/.) L po~s- Look-op Tobi..

MtI UoAr SPo.W (1.4.)

foolS (0-1)
n~e - l

SrgkroTorque Corrornd (0-1)--I

F2 PP082 Total Tontu. R~q..4
3OC (Wm)

SOC
N Wt. ornt. Cororrrd (.1-too)

IN Orgmn. CoV)nt Sottdr5 Motor Torque Commaond

VoI1.g. :HUV

CV) Nuoral Netoot Controllor

Figure 4-9: Propulsion System Controller Model

The propulsion system controller model is separated into several blocks with

specific functions as shown in Figure 4-9. All control parameters, including look-up

tables, are placed in the MATLAB workspace via data files (in-files). The original rule-

based propulsion system controller model utilizes three major subsections: the throttle

interpretation (resulting in torque commands), look-up tables based on the propeller

82

speed, and a block that converts the engine torque command into a throttle position

command. An additional block is provided for the neural network controller (see Chapter

6).

The look-up tables are necessary to properly calculate the engine and motor

torque commands based on the operator's input. The look-up tables include the

maximum engine torque, ideal operating line (IOL) torque for the engine, maximum

motor torque, and the maximum regeneration torque. The tables are one-dimensional and

relate the appropriate speed in rad/s to their respective output.

The rule-based controller block determines the output torque commands for the

engine and the electric motor including regeneration. The engine command is between 0

and 1, and the motor command is between -1 and 1 to include regeneration. The fractions

represent the fraction of each component's maximum torque. The engagement state of

the engine and clutch, or "hybrid" mode, is based on operator or mission-dependent

commands and the UAV speed. The rule-based controller assumes that the throttle

position linearly commands a fraction of the total available propulsion system torque

whether or not the engine is currently engaged. This allows the throttle response to be

consistent. The throttle operation is based on two regimes: electric-only (engine-off)

mode and hybrid-electric vehicle (engine-on) mode. In electric-only mode, the throttle

position commands the electric motor torque. In the HEV mode, engine torque is

commanded with increasing throttle position up to the engine IOL, then motor torque up

to the maximum motor torque, and finally commands the remaining engine torque.

Regeneration using the electric motor occurs in a similar manner during

deceleration or a descent. The regeneration input commands a fraction of the total

83

regeneration torque available from the electric motor. Charge-sustaining operation for

the controller is implemented in the same block as the regeneration command as shown in

Figure 4-10. Charge-sustaining can be implemented for the first phase of the mission,

and then charge-depletion can be used until the battery SOC drops to a pre-determined

level.

The throttle curve block converts the desired engine torque to the respective

throttle position. This calculation is performed using the mathematical relationship

established in the engine data file.

Io ,ssnlt _sc D Xc._ F;1 -F - -

0.01 . (ptcP CS Pand D) Mo Regen. Motor Regen. CommandSO ;P .•,I~ Commandowth (0-,)
S.....o ASSUM ES

FrIm4 COM MANDOS
% OF MAX TORQUE

SCatSFromc Engine R genm
Cmmande

Relational ThEncgienetergeeai n e Comm and f orte motor

[.timeakeofn_dur+5 Operatoanhre Constant5 • •e y tegine The (0ol)Constantf Ii• dmodel•
Frem7L...._ '"

Froerm2 Ei-,- Il Ial-Der I

incRlainl• --- lue oi c o hres~ligoeain u~gtefr

Relational Logicalp 0c end0time OperatorI
Constant4l

M '
L o g i caI=r-"-- i I I peratlr3

From3 I
IReltoal s r ' Thslock determines the regeneration command for the motor

pt S e d tim e Operato 3 1•1. ANDl ; .,. and the com pensation required by the engine. The blockalso

-Constant2 ReayaR .J D I/ncludes logi~c-for charge-sustaining operation. During the flrst

FHu1 eriseg nor CSai n H segment ofethe mission while cruising, a charge-sustaining (CS)L - " Il algorithm is used. A charge-depletion algorithm is used for the
0 e perato,2 rest of the m Ission unless the SOC falls below a pre-determined

31 >tm l ••1• value. CSIs not used during climbing. IfnotCS, regeneratlon

Frm ý rlati--a can still occur durnfg descent or deceleration.

tim I Reatonal
p~cS ed~tie • Operator4

Constant6;

Figure 4-10: Regeneration/Charge-Sustaining Logic Block

84

4.3.6 Gear Reduction Unit

The gear reduction units connect components of the propulsion system to the

propeller. This block calculates the transfer of engine or motor inertia, torque, and speed

through the unit and adds torque loss to the system.

The inputs to the gear reduction unit are inertia in, torque in and speed out. The

outputs are inertia out, torque out, and speed in.

Several simplifying assumptions were made in the design of the gear reduction

block. The effect of the gear ratio (ratio squared) on the upstream inertia is included in

the model, but the inertia of the gears is not included. The model does not incorporate

any dynamic effects but only reduces the speed and increases the torque of the propulsion

system.

4.3.7 Propeller

The propeller serves to provide thrust to propel the UAV through the air. The

propeller block uses the standard advance ratio to determine the efficiency of the

propeller and the thrust and power coefficients [137]. The propeller thrust and speed can

then be determined. The advance ratio is calculated using:

J nVDD (4-2)

where V is the true velocity (m/s) of the aircraft, n is the rotational speed (rev/s) of the

propeller, and D is the diameter (m) of the propeller. The peak efficiency of the propeller

is approximately 75% for cruise speed and is matched to the expected load on the

propeller and the size of the engine. The thrust and the torque of the propeller are

dependent on the advance ratio and are calculated using the following equations [138]:

85

Thrust = p. n 2 • D 4 •CT
p" n 3.•D5*•Cp (4-3)

Torque
=

where CT is the thrust coefficient and Cp is the power coefficient. Empirical data is used

for the coefficients in the simulations.

The propeller block is shown in Figure 4-11. The inputs are the inertia in, torque

in, and the actual UAV speed. The outputs are the propeller speed and thrust.

Inertia In G ot 01
(19 W2)

rp-pintertopnpoe
Goto2

Prop Inedia Pmd4
~Gotohr

prot tUm Prop Speed
Torque In Not Prop Torqto e Goto6 nt ------ (mdls)

(N *M I (N)r (0 0(p1 -, in f) E iop o 7

(m ro 3Lo okdJp Teb le T hi s blo ck detennine s the th rutS , accelere tion , end speed of the prop.
To detenmine the tihruo end torque, the advance retio, J, of the prop iscalCUiated

end took-up tables are used to deterorine the CT and CP coefficients
The acceleration of the prop isdetertnined by celcuieting the net prnp totrque end

then dividing by the pov.roetrein inettia. The ecceleration ieintegtated to get the prop Wreed.
A wtUration biockleousd to prevent a negative prop speed.

Figure 4-11: Propeller Model

The propulsion system inertia from the upstream components is added to the

propeller inertia to calculate the total inertia. The propeller inertia is calculated assuming

the propeller can, be modeled as a thin slender rod using:

L _ __ _ _'___ _ __ _ _

86

I=-. m.' (4-4)
12

where m is the mass (kg) and D is the diameter (m) of the propeller. The total inertia of

the propulsion system and the net torque of the propeller are used to calculate the

acceleration of the propeller and the propulsion system. The acceleration of the propeller

is integrated to obtain the propulsion system rotational speed.

4.4 Unmanned Aerial Vehicle

The unmanned aerial vehicle (UAV) model shown in Figure 4-12 implements basic

equations typically used to model aircraft drag and lift. The model is intended to be

modified for the intended UAV, so it is parameterized with commonly available data.

The inputs to the UAV model block are the propeller thrust and the altitude. The

propeller thrust is calculated in the propeller block, and the altitude is obtained from the

flight profile. The output of the UAV block is the actual UAV speed. The UAV speed

(m/s) is saturated to prevent a negative speed. The forces acting on the UAV and the net

propeller thrust are also outputs made available in the MATLAB workspace.

The equations of motion for the UAV in translational flight are needed to

determine the acceleration and speed of the UAV [137]. For the simulations, the UAV is

treated as a particle with mass and the two equations that are used include four forces

acting on the UAV:

L - W . cos(climb angle) = 0

T - D - W .sin(climb angle) = dV (4-5)
dt

where: L=lift (N)

W=weight (N)

T=propeller thrust (N)

87

D--total drag (N)

m=mass of UAV (kg)

dV/dt=UAV acceleration (mi/s2)

UAV Total Ma, UAV Maws
(Ig) 0.001 (19)

i [engine..fell • (g-i) HEUAV
HEUJAV Configurationi

a _OI fSwildi
[engnejuelog 0.001

(Z)(0-1g) i uavý_accl]
CD - PTop Ntt UAV Acceleration

Prop ThNest Pndi (mlc2)
(N) Trs N

(OraglCiimbDescend Forces
N I. M .)1 (N)

Altitude n "ra-)CRntu nnd F° " (N)DI ua..fosI]

(m MSL) Actual UAV Speed (mnl)

aimbDescnd FrcesActual UIAV Speed
Intl Saturation (MIS)

(0.001-vinf) (m s)

This blocldeteraines the actual speed and acceleration of the UAV. Got0l
To determine the acceleration, the aerodynamic and dlmbldesend forcesnare subtacted
from the propeller thnrst and the quantity Is divided by the massofthe UAV. The massin Ii svdisance

determlned by subtracting the weight of the foel used fhom the staining ,welght. IfUAV Dance Traveled
The acceleration is integrated to obtain the peed. The net thrust isalso an output. nt2 (in)

"..The speed Is arumed to be the troe velocity (mrs) forthe dmulatlon.� Pr°P-netthrMus

Plop Net ThruMst
(N)

Figure 4-12: UAV Model

The first equation is the summation of the forces acting on the UAV perpendicular to the

flight path. The second equation is the summation of forces acting parallel to the flight

path. The assumptions made in the derivation of the two equations include: the thrust is

along the fuselage reference line and the angle-of-attack is small. These assumptions are

sufficient for performance analysis [137]. The second equation is implemented in the

UAV model block to determine the acceleration of the UAV. The first equation is used

to determine the lift coefficient and is implemented in the UAV forces block.

88

The vehicle model contains a block to determine the aerodynamic,

climbing/descending, and rolling resistance (during take-off and landing) forces acting on

the UAV. The inputs to the UAV forces block shown in Figure 4-13 are the UAV speed

and the altitude. The output is the total forces acting on the UAV.

A Look,-Up T 1 : Wn Gust
dUd etcl8Input: Time S [•wtcnh

Altitude d .slt Output: Wnd Gus Force 0
(m MSL) Der

CD X sl•lm re

Actual UAV Speed ProdJ Iaturati(on e

(MIS) J I Prod4 I -I* I Ae rg

Sumi Climb neid Fort
Trig. F as(N)

legl

Tis (d-dete e) h aaerodynamic Gnd d d t gt

ATc eho o f G r a v i t y
(r e ed o a r tCe d g n g

In the-fullI [ng - d Lith l -re e CrAgCoefnicient

(m^sc2)• Tig.d Fc2XC

is t h e n P ro d to9 f n t h d r g c e l d e t C d f o m h e t D r ag p ola r i cpl o t.

Fr 03•c"" X- - •

~~X J÷ IngReynolds

RollingfTd-nce Ind�pa rtia lI d ng Chord rie. d R i ng reyancle d

Figure 43 0Rollo Fc esiModel

The-of cilmb/esien force Su caclae us3n WPnrto nge

Rling Fitieflown gepeiofothlitoeicetCIL(.rh V^S)Atae o-u

ns then use +ofn h rgcefdnCfo h itda oa lt

Thsbockdleringesitane aerdnd amicand liltdudntaeoffnd loeanding aalon theluded.

Figur aerdynmi fA orce ss luae usingl =oedmanl)ndtnusgL

89

The forces block first determines the climb angle of the UAV using asin(Vv/V)

where V is the velocity of the UAV and Vv is the vertical velocity of the UAV

determined by taking the derivative of the altitude. The climbing/descending force is

then calculated using W'sin(climb angle). The aerodynamic drag force is more

complicated but uses well known equations. A drag polar in the form of a look-up table

is used to determine the drag coefficient indexed by the lift coefficient. To better

understand the drag polar, a brief overview will be given on the aerodynamic drag acting

on the UAV. The total aerodynamic drag acting on the UAV includes two terms: the

parasite drag (friction and pressure drag) and the induced drag (due to lift) [137]. The

total drag can be expressed as:

CDD "- CD'o + (4-6)

where: CD--total drag coefficient

CD,o=parasite drag coefficient or zero-lift drag coefficient (it is a constant for a

specific aircraft configuration and is not a function of lift)

CL=lift coefficient

e=Oswald efficiency factor

AR=aspect ratio (b2/S where b is the wing span and S is the planform area of the

wing)

The total drag coefficient is calculated in the UAV data file using relatively common data

and the equation shown above. The drag coefficient is a function of the lift coefficient

since all of the other parameters are constants for a specific aircraft configuration. Once

the drag coefficient is available, it can be used to determine the total aerodynamic force

acting on the UAV.

90

The equations above can now be used to find the total forces acting on the UAV

and the thrust required. The lift is calculated using the first equation of 4-5,

L=W'cos(climb angle). The lift coefficient is needed as the input into the drag polar

look-up table. The lift coefficient is determined using:

L
CL = 0.5 (4-7)

where: CL=lift coefficient

L=lift (N) (L=W'cos(climb angle))

p=air density (kg/m3)

V=UAV speed (m/s)

S=planform area of wing (mi2)

The lift coefficient is used as the index into the drag polar look-up table to

determine the drag coefficient. The drag coefficient is multiplied by the denominator in

Equation 4-7 to calculate the total drag. The total forces acting on the UAV are output to

the UAV model block where they are subtracted from the propeller thrust to determine

the net thrust. The UAV model uses the inertia of the vehicle and net thrust to calculate

the UAV acceleration that is integrated to determine the UAV speed. The speed is

integrated to determine the distance traveled. The drag polar is assumed to be the same

for all phases of flight which is sufficient for propulsion modeling, even though it is

known that the configuration for take-off and landing would change the drag polar.

91

Chapter 5: Hybrid-Electric UAV Conceptual
Design and Sizing

5.1 Introduction

Many hybrid-electric vehicles (HEV), such as those designed for the Future Truck

competition, are conversions from stock vehicles. The original power train is removed,

and the appropriate components for the hybrid-electric power train are installed.

Although the design for the hybrid-electric unmanned aerial vehicle (HEUAV) could take

the same approach by using a large scale model aircraft or a manufacturer's UAV, this

chapter will briefly step through a conceptual design process to look at the trade-offs that

must be considered for sizing the wing and the propulsion system components of a

HEUAV. The background provides a fundamental understanding of the requirements for

the hybrid-electric propulsion system to enable a better control system design.

The conceptual design approach for aircraft is well described in Anderson,

Raymer, Stinton, and Corke [136, 139-141]. Several software packages exist such as

ACSYNT [142] and RDS [143] for aircraft sizing and design. Advanced algorithms have

been applied to the aircraft conceptual design and sizing problem. Raymer and Crossley

use genetic algorithms and evolutionary methods to size aircraft [143]. The techniques

permit an optimization of key design variables such as wing design lift coefficient, wing

loading, power-to-weight ratio, and aspect ratio. The more advanced genetic algorithms

are used instead of the more traditional calculus-based algorithms in order to find a global

minimum and avoid local minimums. Holden et al. also use genetic algorithms in a

conceptual design process [144]. The literature reveals that defense contractors,

universities, and others have devoted much effort to the subject of conceptual design.

92

Conceptual design is a multi-disciplinary endeavor (aerodynamics, structures,

flight controls, weight and balance, cost, etc.), but the focus in this chapter will be the

initial sizing of the wing and the propulsion system components in order to scope the

problem. A MATLAB routine was written to optimize the size of the wing and the

propulsion system components for a conventional high-wing UAV. The HEUAV sizing

problem is a constrained optimization formulation. The MATLAB optimization routine

uses a sequential quadratic programming method. A quasi-Newton updating method is

used at each iteration. The solution of a quadratic programming subproblem is then

computed and used in a line search procedure.

[Mission [Performance Propulsion Component Conceptual

Requirements H Requirements 10Sizing/Wing Sizing Design
(Optimization)

Figure 5-1: Hybrid-Electric Propulsion System Sizing Flowchart

The basic sizing of the wing and the propulsion system components for the

HEUAV can be determined using a flowchart as shown in Figure 5-1. To begin, the

primary mission requirements of the aircraft must be determined. Once the mission is

specified, performance parameters required to satisfy the mission can then be established.

The size of the wing and the propulsion system components can then be estimated based

on the performance parameters. The result is a conceptual design that would undergo

iterations before a preliminary or detailed design is obtained.

Before more details are given about the conceptual design for the HEUAV,

several items should be mentioned. First, it is understood that a UAV with a vertical

take-off and landing (VTOL) capability would be highly desired for military missions,

but a conventional aircraft is used for the purposes of this research. DARPA has

considered designing a series hybrid-electric system for a VTOL UAV called the Micro

93

Air Vehicle [5]. The control algorithms developed in this research could be modified as

needed to propel a VTOL aircraft with a hybrid-electric system. Second, the basic

assumption that the HEUAV be less than 50 lbs was made for several reasons. The

Academy of Model Aeronautics (AMA) safety code requires that a model aircraft be less

than 55 lbs at takeoff. If the HEAUV is less than the limit, anyone with an AMA number

and trained to fly model aircraft could fly the HEUAV if one was built at an academic

institution. Also, a Request for Information (RFI) for small UAVs, written by the Air

Force's Aeronautical Systems Center, categorized small UAVs as having a weight of up

to 50 lbs. In addition, a UAV in the 25-50 lb range permits one individual to carry the

UAV and another to carry the ground control station equipment.

5.2 Mission Requirements

A typical mission for a small UAV is the intelligence, surveillance, and

reconnaissance (ISR) mission. A typical flight profile would be to take-off, climb to

several thousand feet, cruise for an hour to the location of interest, fly at endurance speed

in stealth mode (electric-only) while on station for an hour while conducting ISR, and

then return to base (RTB) and land. The HEUAV is sized for this mission. A descent

and climb could also be added before and after the time-on-station segment to get a closer

look at the area of interest. The typical mission will be used to illustrate the concepts but

the sizing process could be easily adapted to other missions.

5.3 Performance Requirements

Performance requirements to satisfy the ISR mission will be used to size the wing

and the propulsion system components. The size of the internal combustion engine

(ICE), fuel tank, electric motor (EM), and battery pack of the parallel hybrid-electric

94

propulsion system will be based on the performance requirements. Table 5-1 includes a

proposed list of the performance requirements.

The hybrid-electric system components are based on the following regimes of

operation [13, 145]:

"* Take-off power provided by the ICE or the ICE and EM.

"* Climbing power provided by the ICE or the ICE and EM.

"" Maximum speed power provided by the ICE and EM.

* Cruise power provided by the ICE. A margin is needed to recharge the

batteries during charge-sustaining operation.

"* Endurance power provided by the EM for stealth operation.

"* Missed approaches and emergency power provided by the ICE and EM.

The energy density and mass of the battery pack determines the duration of the "stealth

mode." The ICE is primarily sized for cruise, and the EM is primarily sized for the

endurance speed. The maximum power from the motor may be needed intermittently

during take-off, acceleration, maximum speed, and emergencies. These requirements

were analyzed in a typical ISR mission simulation. The flight profile includes take-off,

climb, cruise, time-on-station, cruise, descent, approach, and landing.

Table 5-1: HEUAV Performance Requirements
Parameter Value

Cruise Speed (kts) 45-55 (23.2-28.3 ni/s)
Endurance Speed (kts) 20-25 (10.3-12.9 rn/s)
Maximum Speed (kts) 60-65 (30.9-33.4 m/s)
Rate-of-Climb (ft/min) 400 (2.0 m/s)
Time for Cruise (Range) (hr) I

Time at Endurance Speed (hr) 1
Take-off Distance (fi) 80-100 (--24.4-30.5 m)
Avionics and Payload Power (W) 75
Payload Mass (lbs) 3-6 (=1.4-2.7 kg)

95

5.4 Weight Fractions

The weight of the UAV can be expressed using weight fractions as [139]:

W /Wpayload

1 WFueI WEmpty

W. W.

where Wo is the gross take-off weight. Since the empty weight includes the propulsion

system, Equation 5-1 can be modified to separate the propulsion system weight:

Wpayload (5-2)
I- WFuel WEpty _Wpropulsion PWp opulsion

W.W. WO

The term, (WEpty-WPropulsio.)/Wo, will be referred to as the glider weight fraction.

Equation 5-2 is used to compare the weight of the original configuration (two-stroke

gasoline ICE) to the hybrid-electric configuration. The propulsion system weight fraction

for the original configuration includes a larger two-stroke engine, generator, and the

propeller. For the parallel hybrid-electric configuration, the propulsion system weight

fraction includes the down-sized engine, clutch, batteries, electric motor, and the

propeller. The fuel weight fraction, Wue/Wo, is determined by computing the amount of

fuel needed for each mission segment using estimates and the well known Breguet

equation [136]. For the HEUAV, no fuel is used during the endurance mission segment

since only electric power is required. The amount of fuel required for the mission is then

used to size the fuel tank for the original configuration and the HEUAV configuration.

5.5 Propulsion System Component and Wing Sizing

The sizing of the wing and the propulsion system components are determined

from the performance requirements. Due to the potentially large number of variables

96

involved, several were chosen as the key parameters for the sizing process such as the

wing loading, aspect ratio, maximum lift coefficient, stall speed, and endurance speed.

Several constraints apply to the optimization formulation and will be discussed in detail.

The power required at the endurance speed was chosen as the objective function to be

minimized. By minimizing the power required at the endurance speed, the weight

fraction for the batteries will be minimized while satisfying the constraints and the

performance requirements and permitting a feasible payload weight. The logic and

concepts involved reveal the trade-offs that must be considered to select the correct sizing

of components for the application.

Since the focus of the mission is on the ISR segment, the electric motor and

battery weight are first sized to satisfy the one hour of endurance while on station in

stealth mode. The power required at the endurance speed is the objective function for the

constrained optimization problem. The power required to fly at the endurance speed is

given by [136]:

/2."W3." C' WJ2"ýW'C2 .-.ý 4"D°A).5 5PR= lprop.PEM 2.S.C =W. -= 2 e (5-3)

-- s-c S.CL)(3.CDo

where: AR=aspect ratio e=Oswald efficiency factor

CD-total drag coefficient p=air density (kg/m3)

CD,o=zero-lift drag coefficient S=wing area (M2)

CL=lift coefficient W=weight of the UAV (N)

The power required is minimized with a small wing loading, W/S, and a large aspect ratio

if initial estimates for W, CD,o, and e are available. To minimize the power, the result can

be thought of as an aircraft that has a large wing area and aspect ratio such as a glider.

This type of aircraft would be the most beneficial for sizing the electric system but limits

97

other performance parameters such as the maximum speed. A compromise must be made

between this geometry and a smaller wing and aspect ratio. In order to determine the

power required from the batteries, it is noted that the power given by Equation 5-3 does

not include the propeller efficiency, motor efficiency, and the power required for the

payload, avionics, and flight control system.

The parameter C'L2 /CD in Equation 5-3 is referred to as the endurance parameter

and is found in the literature as the key parameter for solar aircraft or any aircraft with a

mission requiring it to fly near or at the endurance speed [146]. Since the ISR mission

requires the HEUAV to fly near the endurance speed, the endurance parameter is critical.

An estimate for the zero-lift drag coefficient, CD,o, was computed by estimating

the type of air flow, wetted area, and the guidelines given in Raymer [139]. For several

of the components, the air flow could be laminar but a conservative approach was taken

for the estimates so all air flow is considered turbulent. A summary of the estimates is

given in Table 5-2. The fineness ratio, FR, and the form factor, FF, are listed. The flat-

plate skin friction coefficient, Cf, and the drag coefficient, Cd, for each component are

also shown. The reference speed and wing area for the estimates are 10 m/s (-20 kts) and

1.5 M2, respectively. The estimates are based on a high-wing conventional aircraft.

Table 5-2: C. Estimates for a 30 lb Conventional Hi -Wing UAV
Component L (in) Reynolds Boundary Swet FR FF Cf Cd

Number Layer (m 2)
Fuselage 2.5 1.53x1O0 Turbulent 1.50 9 1.10 4.14x103 0.0046
Wing 0.30 1.83x1O0 Turbulent 3.00 NA 1.32 6.27x103 0.0166
Horizontal Tail 0.25 1.53 xl0' Turbulent 0.50 NA 1.25 6.52x103 0.0027
Vertical Tail 0.30 f1.83Txli Turbulent 0.40 NA 1.25 6.2x2 Tr 0.0021
Engine Nacelle 0.20 1.22 xl0 Turbulent 0.15 1 1.35 6.85x103 0.0009
Engine Muffler NA NA NA NA NA NA NA 0.0030
Landing Gear NA NA NA NA NA NA NA 0.0030
Antennas/Sensors NA NA NA NA NA NA NA 0.0025

Total, CD,o: 0.0354

98

Several constraints are required to complete the constrained optimization

problem. The endurance velocity is given by [136]:

VEndurance = S CD7. .e. AR. 1(5-4)

The endurance velocity is clearly a function of wing loading and the aspect ratio.

Squaring each side and rearranging gives the first constraint:

Vj3.CDO.lr . ý_ _ 1 (5-5)
=P'S) endu"nce

The endurance power required and the endurance velocity are plotted in Figure 5-2 for a

30 lb UAV. The endurance speed and power required increase with increasing wing

loading but decrease with increasing aspect ratio. The design point used in the

simulations is shown with a small circle.

The second constraint involves the wing loading, stall speed, and the maximum

lift coefficient using the following relationship [136]:

w * pVtII CL (5-6)

S 2

The stall speed, for this application and low-speed aircraft, determines the desired wing

loading [136]. The landing distance, considered not to be critical for this application, can

also determine the wing loading. A speed margin of approximately 3-5 kts is desired

between the stall and endurance speeds to account for wind gusts and other disturbances.

99

_Endurance Speed (kIs) - Power Required (W) o Design Point
20 / ,,,

2C iiiI I I

'I -,

// •'
15-/

10-
I- / -. -

10 " / -" Iq',"'••-•

5- - --

10 15 20 25 30 35 40 45 50

Wing Loading, W/S (oz/ft2)

Figure 5-2: Endurance Speed and Power Required for 30 lb UAV

The third constraint determines the size of the gasoline engine. A margin of

approximately 125% is used on the ICE so there is extra power from the engine to

operate the motor as a generator to recharge the batteries while charge-sustaining and to

provide power for the avionics, flight control system, and payload. The expression for

the power required during cruise can be expressed as:

PR = PIcE• " 8•op "0.88 = V [ise. 0.5p V 2 S CDo+ S (5-7)'0.5.p V,2ij,,.n.e. AR S

where PR=Vcruise.TR and TR is the thrust required at cruise speed. Using S=S'W/W, the

equation becomes:

100

PR=PICE • rlop • 0.8=0.5.p.V1,is .W.CD, -+O • (5-8)' W 0.5 p. V. V i,,-. c'e'AR - E

For the maximum speed, the EM and ICE are both used. The electric motor can tolerate

an over-torque for short periods of time, so the expression for the maximum speed is the

same as Equation 5-8 except PR=PIcETilProp+overtorque'ilProp.PEM. Typical values for the

over-torque factor are 1.5-2.0.

The objective function and the third constraint form the foundation for a two-

point design for the HEUAV. The electric motor and battery pack of the propulsion

system are sized based on the endurance speed, and the gasoline engine is sized primarily

based on the cruise power requirements. The optimization routine determines the

optimum design between these two design points. The design and sizing approach could

be adapted to other types of missions.

5.6 Optimization and Conceptual Design Results

The conceptual design results based on the constrained optimization problem led

to the following results for an altitude of 5 kft MSL. Table 5-3 includes the optimization

routine and conceptual design results. Limits were placed on the variables that were

optimized and the results show that the optimization routine used the lowest wing loading

available. The size of the wing is directly related to the wing loading. A large wing is

desired but other performance parameters must be considered along with the structural,

weight, and low-observable requirements. Limits were placed on the maximum lift

coefficient in an attempt to obtain results that would permit a standard NACA, Eppler, or

Selig airfoil [147, 148] to be used. Other high lift wings could be used such as the low

Reynolds number NASA LRN-I-1010 airfoil used in the Navy's low-altitude unmanned

research aircraft (LAURA) project [149]. The optimization results either meet or exceed

101

the performance requirements listed in Table 5-1. The endurance speed from the

optimization routine is less than the stall speed which is physically not realistic but was

permitted to obtain realistic values for the power required at endurance speed. The power

required to fly 3-5 kts above the stall speed instead of precisely at the endurance speed is

minimal. The power requirements for each mission phase are shown and are used to size

the different components. A smaller ICE and less fuel can be used for the HEUAV as

compared to the original configuration. The HEUAV requires 25% less fuel than the

original configuration for the same mission but with a reduced payload.

Table 5-3: 30 lb UAV Optimization and Conceptual Design Results
Parameter Value

Optimization Routine Results for HEUAV
Aspect Ratio 14.6
Wing Loading (N/m2) 90 (30 oz/t)
Max Lift Coefficient, CL,.ax (fimite wing) 1.25
Oswald Efficiency Factor 0.85
Zero-lift Drag Coefficient 0.036
Stall Speed (m/s) 11.7 (22.7 kts)
Endurance Speed (m/s) 9.1 (17.7 kts)
EM Power Required at Endurance Speed (W) 114
ICE Power Required at Cruise Speed (W) 837
Conceptual Design Results
Wing Area (e 2) 1.48 (15.9 l)
Wing Span (in) 4.65 (15.3 ft)
Wing Chord (in) 0.32 (12.5 in)
Endurance Parameter 20.4
Max L/D Ratio 16.4
Power Required for Take-Of (W) 503
Power Required for Climb' (W) 356
Power Required for Cruise' (W) 502
Power Required for Endurance' (W) 85
Power Required for Max Speed' (W) 852
Nominal Propeller Efficiency (%) 75
Original Fuel Mass (kg) 2.0 (71 oz)
HEUAV Fuel Mass (kg) 1.5 (53 oz)
Original Payload Mass (kg) 3.0 (6.6 lbs)
HEUAV Payload Mass (kg) 1.9 (4.2 lbs)
Original ICE Power Required (W) 1230 (1.7 hp)
HEUAV Battery Mass' (kg) 2.2 (4.9 lbs)
HEUAV Battery Storage2 (Wh) 220

'The power required does not include any of the propulsion system
inefficiencies or the power required for the avionics and payload.
2The battery storage requirement includes the power needed for the payload.

102

The hybrid-electric propulsion system is a two-point design with the electric

"system sized for endurance speed and the gasoline engine primarily sized for cruise

speed. The endurance speed of approximately 20-25 kts (10.3-12.9 m/s) occurs near the

minimum power required of 85 W (see Figure 5-3). The electric motor and battery pack

are sized for this speed with additional power for the avionics, payload, and flight control

"system. The gasoline engine is sized for a cruise speed of 50 kts (25.7 m/s) which

requires approximately 500 W, not including the inefficiencies of the propulsion system

and the margin required for charge-sustaining operation. The two design points are

shown in the figure. Since the electric system is sized for the endurance speed, the

weight of the battery pack permits a feasible payload weight.

2500 , ,

- Sea Level
- - 51drMSL /
o Endurance /
* Cruise /

2000/

/
/

g ,/

1500 /

/

/

1000o

500/

0 I I I I I I I

0 5 10 15 20 25 30 35 40 45
V (m/s)

Figure 5-3: Power Required at Sea Level and 5 kft MSL

103

The weight fractions required for the original and HEUAV configurations are

shown in Figure 5-4. The glider weight fraction is estimated from several long endurance

UAVs and large scale model airplanes in the same weight class with an empty weight of

0.63. The propulsion weight fraction for the original configuration is 0.12 less than the

HEUAV configuration. The fuel weight fraction is approximately 0.11 for the HEUAV

and 0.15 for the original configuration. The advantages of the HEUAV configuration

must be weighed against the loss in payload mass for a particular mission. The weight

fractions for the HEUAV propulsion system components are shown in Figure 5-5. Less

fuel is required for the HEUAV, but the battery weight is significant with a weight

fraction of 0.16. For comparison, the fuel weight fraction can be as large as 0.35 for

UAVs such as the long-endurance Aerosonde UAV.

0.8
- Original
- Hybrid-Electric

0.7

0.6

0.5

10.4

0.3

0.2-

0.1

0-
Gider Propulsion Empty Fuel POyoad

Component

Figure 5-4: Weight Fractions, Normalized to UAV Weight

104

Off-the-shelf components are matched to the optimization simulation results and

are shown in Table 5-4. Since the focus of the research is on the control system for the

parallel hybrid-electric propulsion system, nominal design values based on the results

from the optimization routine and the components in Table 5-4 are used for the HEUAV

propulsion system simulations. The ICE, EM, and battery pack are slightly larger than

required which will ensure the power requirements are met for the intended mission. The

suppliers for the components are all U.S.-based, so the components are readily available.

0.16

0.14

0.12

0.1

I
0.08

0.06

0.04

0.02-

0-
Fuel ICE Clutch Batteries EM Prop

Propulsion System Component

Figure 5-5: Weight Fractions for the HEUAV Propulsion System

105

Table 5-4: Off-the-Shelf Co ponents for a 30 lb HEUAV
Parameter Value Parameter Value

Airframe Conventional High- Battery Pack Ultralife UBI-2590
Wing Aircraft (2 in Parallel)

Mass (kg) 13.6 (30 ibs) Type Li-Ion, Rechargeable
Oswald Efficiency Factor 0.85 Mass (kg) 1.44"2=2.88 (6.3 lbs)
Zero-lift Drag Coefficient 0.036 Voltage (V), nominal 14.4
Wing/Airfoil NACA 23012, E214, Voltage Range (V) 12.0 to 16.4

S2091, or SD7032

CL.nax 1.25 (3-D, Re=150k) Capacity, C/2.5 (Ah) 10"2=20
Aspect Ratio 14.6 Energy Density (Wh/kg) 100
Wing Area (in2) 1.48 (15.9 ft2) Recommended Discharge 8"2=16 A

SCurrent (A)

Wing Span (m) 4.65 (15.3 ft) Electric Motor (3.7:1 Aveox 2739/3Y
Gearbox) Brushless DC

Wing Chord (m) 0.32 (12.5 in) Mass (kg) 0.16 (5.6 oz)
Payload Max Peak Current (A) 30
Original Payload Mass (kg) 2.9 (6.4 lbs) Max Continuous Current (A) 22
HEUAV Payload Mass (kg) 1.7 (3.7 lbs) Winding Resistance (Ohms) 0.0817
Original Generator or Battery 0.5 No Load Current (A) 0.90
Pack Mass (kg)

Power (W) (include avionics) 75 Speed Constant (rpm/V) 1134
Engine (Two-Stroke, Gas) First Place Engines Torque Constant (in-oz/A) 1.19
Displacement (cc) 21 (1.3 in7) Motor Constant 4.28

(Original-35 cc) (in-oz/sqrt(W))

Mass (kg) 1.13 (2.5 lb) Maximum Speed (rpm) 50,000
Fuel Tank 54 oz (Original-74 Propeller Wood, Maple, 18x10

oz)
Clutch (Electromagnetic) RM Hoffman Co. Mass (kg) 0.17 (6 oz)
Mass (kg) 0.25 (0.55 lbs) Horizontal and Vertical NACA 0009 Airfoil

Stabilizer

A two-stroke gasoline engine was matched to the optimization results since the

fuel is available at military installations and because the engines are readily available. A

four-stroke engine is also simulated in Chapter 6, but the more efficient engine is heavier

and the payload capacity is decreased. Attempts are being made to design small heavy

fuel engines for UAVs, so that they use similar fuels as other military vehicles instead of

gasoline. A team at Schrick, Inc. has built a 34 kW diesel engine for UAVs with an

installed specific weight of 0.7 kg/kW [150]. D-Star Engineering has designed and built

a 0.07 kW and a larger 1 kW diesel engine intended for UAVs [151]. For the purposes of

the conceptual design in this chapter, typical performance of a two-stroke gasoline engine

106

was used, but the control algorithm approach could be easily adapted to other types of

engines.

A conceptual approach to the sizing of the UAV wing and propulsion system

components was discussed in this chapter. An optimization problem with constraints was

formulated to minimize the power required at or near the endurance speed. The weight of

the battery pack was also minimized with this approach. The conceptual design process

revealed the trade-offs that must be considered for a hybrid-electric UAV. The

optimization and conceptual design results were matched to off-the-shelf components

which are used in the simulations. The background explained in this chapter gives a

more fundamental understanding of the requirements for the hybrid-electric propulsion

system to enable a better control system design.

107

Chapter 6: CMAC Controller Design and
Simulation Results

6.1 Introduction

The conceptual design and sizing of the hybrid-electric unmanned aerial vehicle

(HEUAV) explained in the previous chapter revealed the trade-offs that must be

considered for the design of the hybrid-electric propulsion system. Using the conceptual

design results as a foundation, this chapter covers the design of a CMAC neural network

controller and how it approximates the results of an instantaneous optimization algorithm.

The optimization of the energy use is achieved by minimizing the instantaneous rate of

energy consumption (i.e. using the total power consumption as the objective function to

be minimized). The separate nonlinear efficiency maps for the internal combustion

engine (ICE), electric motor (EM), and battery pack are used in an off-line instantaneous

optimization algorithm to minimize the power consumption by determining the torque

split between the ICE and EM during hybrid-electric operation. A control surface for the

ICE torque command is generated from the optimization algorithm. A CMAC neural

network approximates the optimal control surface and is used in the simulations. Several

flight profiles are used in the MATLAB/Simulink HEUAV model (see Chapter 4) to

compare the CMAC neural network controller results to the rule-based controller results

for the hybrid-electric configuration. Also, the hybrid-electric configuration results are

compared to the original configuration (ICE only) simulation results.

108

6.2 Background

6.2.1 Energy Paths

The energy available in the small HEUAV is either from the gasoline or the

electrical energy stored in the battery pack. To provide power to the propeller, the energy

can take one of three paths (see Figure 6-1). For Path 1, energy stored within the

gasoline is used by the engine to deliver power directly to the propeller. Electrical energy

can be delivered directly to the propeller via Path 2. Path 3 uses the engine to recharge

the battery pack and the stored electrical energy is delivered to the propeller at a later

time. For the HEUAV application, the electrical energy is assumed to be delivered to the

propeller at endurance speed (stealth/electric-only mode). The three paths will be

referred to during the discussion of the optimization algorithm.

IgPath 1 Path IFuel Gasoline Engine/ =iPropeller

TankCluth Moor/ Path 3
Path 3 •1Path 3 Generator ,

3i Path 2Battery
Figure 6-1: Energy Paths Available in the Hybrid-Electric System

6.2.2 Efficiency Maps

The nonlinear efficiency maps for the ICE, EM, and battery pack are used in the

off-line optimization algorithm. The maps are stored in tables, and interpolation is used

to calculate the efficiency at specific points in the input space (i.e. demanded torque,

rotational speed, battery state-of-charge) during the off-line optimization calculations.

109

10 -• I -4

-4 1

4 1 -•I
/1-1 I I - 1. •. •

Torque (I4m) 0 (rpm)

Figure 6-2: Two-Stroke Engine Efficiency Map

- ~I "-

- - -I I I "I

I~ I I A I -I

10.0. 4000''\ \/ \\ X\ .

0.5 • ~2000 40

Torque (NIm) 0 (rpm)

Figure 6-3: Four-Stroke Engine Efficiency Map

110

The engine efficiency maps are derived from estimates and engine manufacturer

dynamometer tests. Estimated fuel consumption for a two-stroke engine was used in the

previous chapter for the conceptual design results. This chapter will present results using

a two-stroke engine and a more fuel efficient four-stroke engine. The efficiency map for

the two-stroke engine was derived for a 21 cc (1.3 in3) engine using estimates and testing

results from First Place Engines [152]. The efficiency map is shown in Figure 6-2. The

best fuel consumption is approximately 780 g/kWh or 12% maximum efficiency. The

efficiency map for the four-stroke engine was derived from literature for the Honda

GX31, 31 cc (1.9 in 3), engine and is shown in Figure 6-3 [153, 154]. The best fuel

consumption is approximately 350 g/kWh or a maximum efficiency of 24%.

The electric motor efficiency map is derived from manufacturer data and the

following equations:

STEM = Kt• -0I- Io)(61
o°=Kv "(V-R. -I)(-)

where: TEM-torque output of the EM (N'm) o=rotational speed (rpm)

Kt=torque constant (N'm/A) Kv=speed constant (rpm/V)

I=current (A) V=voltage (V)

Io=no-load current (A) Rm=winding resistance (Q)

The EM used in the simulations has a maximum efficiency of 90% (see Figure 6-4).

The battery pack used in the simulations consists of two lithium-ion batteries

(Ultralife UBI-2590) in parallel. Data from the manufacturer and a battery model (see

Chapter 4) were used to develop an efficiency map for the battery pack with current and

the state-of-charge (SOC) as inputs as shown in Figure 6-5. The plot clearly shows the

decrease in efficiency with either an increase in discharging or charging current.

100-?

0- -i l I I Ji

0:.2
o.2 ">•" . "_.-- • •LxC•3.6

-0.2 1 1.5 2 0

Torque (a~m) -0.4 0.5

0 (rpm)

Figure 6-4: Motor Efficiency Map

100 1- -
J• I •• ""

94.••.

l

20- -2

as ()o 4
Curn

jA

Fi8e654ateyPc ffcec a

112

6.3 Optimization Algorithms

The complexity of the optimization algorithm for the hybrid-electric propulsion

system controller increased during the development of the controller. The first algorithm

duplicates the rule-based algorithm with the rotational speed and demanded torque as the

controller inputs to produce a two-input controller. A more complex three-input

controller uses the battery SOC as an additional input. A CMAC neural network

approximates the output results of the optimization algorithm.

6.3.1 Two-Input Algorithm/Rule-Based Controller

The two-input CMAC controller is designed to duplicate the rule-based controller.

The controller has two inputs: demanded torque and rotational speed. The engine is

operated on the line of maximum efficiency, the Ideal Operating Line (IOL) [61, 62],

unless the demanded torque is less than the IOL torque or if the demanded torque is

greater than the combined IOL torque and maximum EM torque. Only the ICE generates

torque if the demanded torque is less than the IOL torque. If the demanded torque is

greater than the combined IOL torque and the maximum EM torque, then additional

torque from the ICE is provided. A flowchart for this algorithm is shown in Figure 6-6.

A plot of the commanded ICE torque generated from the two-input algorithm is

shown in Figure 6-7 for the two-stroke engine. The resulting plot is the control surface

that the CMAC neural network approximates. The CMAC neural network controller

replaces the rule-based controller in the simulations as shown in Figure 1-2. The

commanded ICE torque for the four-stroke engine is shown in Figure 6-8. The flat

surface represents the IOL torque for a relatively large area of the input space (i.e.

rotational speed and total desired torque).

113

Operator
Torque Request

No Yes

SUe ReEngine

FUie 6nl6iw-ne Also UseTorqu OnWElectric Motor

No > Yes
T fw a- ovesec org sa

TorqMtouTrqee

basd o thexeced lent Tofrthe +iso and theo batrTO.Apoortional

Ms oto Torque +Additional Engine
Motor orqueTorque

'Requires a Table Look-Up
2 If Torque Request < 0 N' m, then Engine Torque =0 N'mi

Figure 6-6: Two-Input Algorithm/Rule-Based Controller

The flowchart shown in Figure 6-6 does not include any recharging, so it is

considered a charge-depletion (CD) strategy. If the mission requirements cannot be met

with CD only, then a charge-sustaining (CS) algorithm is used. The CS algorithm is

based on the expected length of the mission and the battery SOC. A proportional-

derivative (PD) controller, with the SOC as an input, determines the amount of

recharging required (see Figure 4-10).

114

-I
I

I

2.5
I

",.
I

S-

10 000

1.5

8000

Total Desired Torque (N.m) 0o (rpm)

Figure 6-7: Engine Torque Control Surface, Two-Stroke, Two-Input Algorithm

j0.5, ~ I

2

1000

1. --
0 0 0

" 400 0 0

0.5
2000 40

Total Desired Torque (Nm) 0 (rpm)

Figure 6-8: Engine Torque Control Surface, Four-Stroke, Two-Input Algorithm

115

6.3.2 Three-Input Algorithm

The three-input controller uses the battery SOC as an input in addition to the

demanded torque and rotational speed. The algorithm minimizes the total power

consumption of the engine and the motor:

J = PICE +Y .PEM + 1"PEM_recharge (6-2)

PICE is the power consumption equivalent (33.44 kWh/gal of gasoline) of the ICE to

rotate the propeller (Path 1). PEM is the electrical power consumption of the EM (Path 2),

whereas PEM_recharge is the power consumption equivalent for the ICE to operate the EM as

a generator to recharge the batteries (Path 3). The weighting factors, a and P3, penalize

the amount of electricity use and the amount of recharging, respectively, and are mission

dependent. If the torque of the engine is greater than the demanded torque, then the

motor is used as a generator to recharge the batteries.

The flowchart for the optimization algorithm is shown in Figure 6-9. The logic

and calculations involved such as the table look-ups would be excessive for an embedded

microcontroller [27]. For the appropriate branches of the flowchart, the objective

function is calculated in the off-line optimization by stepping the engine torque by 0.02

N-m increments to determine which torque split will minimize the power consumption.

The values determined for a and 03 depend on the type of mission. If the mission is a

relatively short mission, values that encourage CD are used, but if a longer mission is

required, different values to produce a CS control surface are used. For both cases, more

charging can be produced as the battery SOC decreases. Examples for the two-stroke and

four-stroke engines for both CS and CD control surfaces will be given.

116

Operator
Torque
Request

No <-- Yes

N'm?

Determine Engine and
Motor Power for Range of

Engine Torque:
0 N'm to IOL Torque"'

2

J=P'PEMrecharge

NoBelow Max Yes

Determine Engine and
Motor Power for

o TorqueRange of Engine Torque: Engine0 N'm to Maximum NYes
Torque>De

aSelect Lowest J and Use Determine Engine and Determine Engine and
Associated Engine and Motor Power for Motor Power for Range of

Motor Torque Range of Engine Torque: Engine Torque:

0 NMm to Desired Torque' Desired Torque to
J=PICE+en tPEM Maximum Torque2

J=P1cE+P*"PEM_recharge

'Requires Table Look-Ups[

2Dependent on the Battery SOC• ,
and Assumes Discharge Occurs at Select Lowest J and Use ...Select Lowest J and UseI
the Endurance Speed During Associated Engine and Associated Engine and [
Stealth Mode (Electric-Only) Motor Torque Motor Torque

Figure 6-9: Three-Input Optimization Algorithm

117

•,• I . - IN q •

I_• 1.4.

•. .kI "

4.

"I •

I

L

I QI
0.4:, -

-.

"I
1.5

80 Boo0

0.5 "200 4O

Total Desired Torque (N.m) 0 (rpm)

Figure 6-10: Engine Torque Control Surface, Two-Stroke, Three-Input Algorithm,
Charge-Sustaining, SOC=1O0%

IA- -
I •••

I • •

0.4 .

.• I "'I

S 1 2-

1000r •

1.5

Soo• 10

• .
• 400

0.5
"200

Total Desired Torque (N-m) 0 0 (rm

Figure 6-11: Engine Torque Control Surface, Two-Stroke, Three-Input Algorithm,
Charge-Sustaining, SOC=25%

118

1.4. • .• i

0.4,.-",-

0.. 2000

Total Desired Torque (N-ml) 0 0

Figure 6-12: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,

Charge-Sustaining, SOC=100%

10.5 -- 10D -

0.5 200 40 00

Total Desired Torque (N-m) 0 0 (rpm)

Figure 6-12: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,
Charge-Sustaining, SOC=105%

1 9

0 1

2.5 I

2•' J• 1- • I00004

• •- . 4000

0.5 2000

Total Desired Torque (N.m) 0 0 (r m

Figure 6-13: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,
Charge-Sustaining, SOC=25%

119

Examples of the CS control surfaces for the two-stroke and four-stroke engines

are shown in Figures 6-10 through 6-13. For the two-stroke engine, the weighting values

are a =10.0+10.0"(1-SOC) and 13=0.05"SOC. The weighting factors are a =4.0+4.0"(1-

SOC) and 13=0.3"SOC for the more efficient four-stroke engine. The values were

determined to allow the UAV to complete a three-hour ISR mission. More recharging is

performed as the SOC decreases while still minimizing the objective function. The

optimization algorithm produces control surfaces that cause the engine to operate near or

at the IOL, especially for a low battery SOC.

Examples for the two-stroke and four-stroke engines to produce charge-depletion

control surfaces are shown in Figures 6-14 through 6-17. For the two-stroke engine, the

a and 03 values are set equal to 6.5+1.0"(1-SOC) and 5.0"SOC, respectively. The

weighting factors are a =3.0+1.0"(1-SOC) and 03=2.0"SOC for the more efficient four-

stroke engine. The values were determined to allow the UAV to complete a one-hour

ISR mission. These values emphasize CD and the engine is not operated on the IOL as

often. The CD surfaces cause more electrical energy to be used. For low power settings,

only the engine or only electrical energy is used to meet the torque demand. The charge-

depletion surfaces allow the HEUAV to complete a shorter one-hour mission.

The torque control surfaces shown in Figures 6-7 and 6-8, and 6-10 through 6-17

can be thought of as control surfaces that can be stored in a look-up table. However, a

look-up table requires a memory location for every value in the input space or fewer

values and more interpolation. The CMAC neural network approximations to these

surfaces will require less memory storage and are used in the HEUAV simulations.

120

2 1000

0.5 200 400

Total DeshAu Torque (N.m) 0 0 a (rpm)

Figure 6-14: Engine Torque Control Surface, Two-Stroke, Three-Input Algorithm,
Charge-Depletion, SOC=100%

I- -

1.2 • •I
I• • I

Z

1000

0.5 200

Total Desired Torque (N.m) 0 0 0 (rpm)

Figure 6-15: Engine Torque Control Surface, Two-Stroke, Three-Input Algorithm,
Charge-Depletion, SOC=25%

121

2

0I

40.50

0.i 200

Total Dolled Torque (N.m) 0 0

Figure 6-16: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,
Charge-Depletion, SOC=100%

1.4-~~~
r _I I• .

060.2 _

Total Desired Torque (N.m) 0 0 0 (rpm)

Figure 6-17: Engine Torque Control Surface, Four-Stroke, Three-Input Algorithm,
Charge-Depletion, SOC=25%

122

6.4 CMAC Neural Network Controller Simulink Block

The CMAC neural network Simulink block (see Figure 6-18) replaces the rule-

based controller in the HEUAV MATLAB/Simulink model as described in Chapter 4.

Parameters such as the propeller speed, demanded torque, and the battery SOC are used

as inputs. The index for each input is then output from the block. Once the location in

the input space is determined from the inputs, an S-function is used to determine the

output value of the CMAC neural network. The values of the CMAC neural network

approximations are used to determine the engine torque command. The electric motor

torque command is determined by subtracting the engine torque from the desired torque.

The output commands are used in the model in the same way as the commands from the

rule-based controller.

Actuall UAV Speed HEVSwtc H ld Mod.
ONmEV it (O or 1)

[f qf(0-o) r o tbodue.--t-I qu.ooro m~d sfoh onin en ot r nS-uoio"ce o I t, CeAC Funtbon2 1t o uat()

Froper 6- CMACd Co ror Simlnl
.d. pdmn od- + F1 1l

V•IV) ~~~~oi Fu11on ... to qutud r~• EgneToqe
(lo

Conell9 Mo9 onto dmd Motor Toq.

(0-t) ldo s t o p rd uc to.u 2o ld for Y +h 11in F'ndon 1oor nS- ntonI ldfrte MA n troller.(2

Figur %-18: min otrle iuln lc

(% = ý =* + Cei~ Ion to I I i I

123

6.5 CMAC Controller Approximations

To implement the CMAC controller, various parameters were chosen such as the

inputs, quantization widths, generalization parameter, and learning rate. The parameters

chosen determine the accuracy of the CMAC approximation for the control surface.

Brown and Harris state that "that most reasonable choices give acceptable results" [127].

A summary of the CMAC parameters for each HEUAV propulsion system controller are

given in Table 6-1.

The CMAC controller inputs that were chosen are measurable with relatively

inexpensive commercial off-the-shelf (COTS) components. These inputs include

rotational speed, demanded torque, and the battery SOC. The torque output of the engine

and electric motor could be useful, but experience with hybrid-electric automobiles

illustrate that it is reasonable to use steady-state performance maps for the propulsion

system components.

Table 6-1: Parameter Summary for the HEUAV CMAC ANN Controllers
Parameter Two-Input Controller Three-Input Controller

Output Commanded Engine Torque Commanded Engine Torque
Inputs Rotational Speed Rotational Speed

Demanded Torque Demanded Torque
Battery State-of-Charge

Input Ranges Speed: 190-880 rad/s Speed: 190-880 rad/s
Torque: 0-2.5 N'm Torque: 0-2.5 N'm

SOC: 2-100%
Input Resolution Speed: 10 rad/s Speed: 10 rad/s

Torque: 0.05 N'm Torque: 0.05 N'm
SOC: 2%

Number of Input Cells' 70"51=3,570 70"51"50=178,500
Generalization Factor' 3,5,8,10,13,15,18 3,7,9,14,19, 25
Learning Rate 0.05 0.05
Training Iterations 250 150-200
'Entries required for a Look-Up Table (LUT)
2Most of the generalization factors used correspond to displacement vectors that provide
a CMAC structure of good quality [127]

124

6.5.1 Two-Input CMAC Controller Approximations

The function approximations for the two-input controller illustrate how the

CMAC neural network approximates the engine torque control surface. The two-input

controller duplicates the rule-based controller. The more complex three-input CMAC

controller improves on the two-input/rule-based controller.

Two-Stroke Engine Approximations: A summary of the CMAC approximation results

using the two-stroke engine are shown in Table 6-2. The RMS error increases with an

increase in the generalization parameter. The memory savings is a factor of 10.98 (one

order of magnitude) as compared to a look-up table (LUT) for L=1 8.

Table 6-2: Summary of the CMAC Approximation Results for the Two-Input
Controller, Charge-Depletion, Two-Stroke Engine

Generalization RMS Displacement Number of Memory
Parameter Error Vector Weights Savings'

3 3.47"10-3 (1,1) 1255 2.84
5 3.71 10"- (1,2) 803 4.45
8 5.05"10-3 (1,3) 551 6.48
10 6.47"10"- (1,3) 468 7.63
13 7.92 10- (1,5) 393 9.08
15 9.33"10-7 (1,4) 361 9.88
18 9.87"10"1 (1,5) 325 10.98

'Number of entries in a LUT/number of weights for the CMAC associative memory

The CMAC approximation (L=3) to the rule-based controller is shown in Figure

6-19. If the generalization factor is increased to 18, the modeling error of the CMAC

approximation gets worse as shown in Figure 6-20. The generalization factors used are

considered "good quality" due to the displacement vector [127]. If L is increased above

;20, the RMS error increases and acceptable results are not produced. This can be

attributed to a CMAC structure that is not well defined. The RMS errors during training

for several cases in Table 6-2 are shown in Figure 6-21. As the generalization factor

increases, the initial convergence is faster, but the resulting RMS error is worse.

125

-, I

-0 .5 . •
" . I

2 10000 40

1 0.5 2000 4000 IB

Tota Desired Torque (Nmn) 0 0 0 (rpm)

Figure 6-19: CMAC Approximation (L=3) for Engine Torque Control Surface (see
Figure 6-7), Two-Stroke, Two-Input Controller

0-51 N

-, I I "

2 1 .

1. - 8000

0.5 2000 4000

Tota Deked Torque (N.m) 0 0 a (rpm)

Figure 6-20: CMAC Approximation (L=18) for Engine Torque Control Surface (see
Figure 6-7), Two-Stroke, Two-Input Controller

126

L- 3

0.8

0.8

0.4

0.2

0 50 100 150 200 250Training Iterullon

Figure 6-21: RMS Error, Two-Stroke, Two-Input Controller

Four-Stroke Engine Approximations: A summary of the CMAC approximation results

for the two-input controller using the four-stroke engine are shown in Table 6-3. The

CMAC approximation (L=18) for the two-input control surface is shown in Figure 6-22.

For the four-stroke engine controller surface, the error is still minimal with L=18. The

RMS errors during training for several cases in Table 6-3 are shown in Figure 6-23. The

number of training iterations was 250 although only 100 are shown in the plot.

Table 6-3: Summary of the CMAC Approximation Results for the Two-Input
Controller, Charge-Depletion, Four-Stroke Engine

Generalization RMS Displacement Number of Memory
Parameter Error Vector Weights Savingsl

3 3.62 10 (1,1) 1255 2.84
5 3.19"10- (1,2) 803 4.45
8 3.54"10- (1,3) 551 6.48
10 3.73'10 3 (1,3) 468 7.63
13 4.67" 103 (1,5) 393 9.08
15 5.37 10- (1,4) 361 9.89
18 5.05" 10- (1,5) 325 10.98

'Number of entries in a LUT/number of weights for the CMAC associative memory

127

i- 1.5 "-I "- .

-0.5 >

4000
0.5 2000

Total Desired Torque (N.m) 0 0 0 (rpm)

Figure 6-22: CMAC Approximation (L=18) for Engine Torque Control Surface (see
Figure 6-8), Four-Stroke, Two-Input Controller

0.84

0.8

0.6_
0.4 - f

0.2

00 10 20 30 40 50 60 70 s0 00 100

Figure 6-23: RMS Error, Four-Stroke, Two-Input Controller

128

6.5.2 Three-Input CMAC Controller Approximations

The control surface approximations for the three-input controller reveal how the

CMAC neural network can accurately approximate a four-dimensional surface. The

CMAC ANN approximates the results of the instantaneous optimization algorithm. The

optimization algorithm is an improvement over the rule-based controller. Different

surfaces are generated for CS and CD operation. The CS surfaces are used for a three-

hour ISR mission. The CD control surfaces are used for a shorter one-hour ISR mission.

Two-Stroke Engine, Charge-Sustaining Approximations: A summary of the

approximation results are shown in Table 6-4 for the two-stroke engine for charge-

sustaining operation. CS weighting factors of a=10.0+10"(l-SOC) and 0=0.05"SOC

permit the HEUAV to complete a three-hour mission. The runs for L=3, 7, and 9 used

200 training iterations, and the other two runs used 150 iterations. The CMAC

approximations for L=14 and 19 save on at least two orders of magnitude as compared to

a LUT.

Table 6-4: Summary of the CMAC Approximation Results for the Three-Input
Controller, Ch rge-Sustaining, Two-Stroke Engine

Generalization RMS Displacement Number of Memory
Parameter Error Vector Weights Savings'

3 1.31"102 (1,1,1) 21,767 8.20
7 2.41"102 (1,2,3) 4,888 36.5
9 2.9010#2 (1,2,4) 3,266 54.7
14 4.37 10"2 (1,3,5) 1,696 105.2
19 5.82"10z1 (1,3,7) 1,137 157.0

tNumber of entries in a LUT/number of weights for the CMAC associative memory

The CMAC approximations for L=3 and L=14 for a SOC of 100% and 25% are

shown in Figures 6-24 through 6-27. The CS surfaces for L=3, 7, 9, and 14 produce

acceptable results. A generalization factor of L=19 does not since the approximation

causes too much recharging due to the modeling errors.

129

t.6' _•

• I • I

01.4 .-.

0.2 • -00

02.5 • • • ••

24 1000

0.5 200

Total D Torque (N.m) 0 0 0 (rpm)

Figure 6-24: CMAC Approximation (L=3) for Engine Torque Control Surface (see
Figure 6-10), Two-Stroke, Three-Input Controller, Charge-Sustaining, SOC=100%

II

-

• 1.6 . -•

I • • .

I..4

I-I

0.4 .- -.

I2 1000.

0.8,- 400
0.5 200 O0

Total Desired Torque (N.m) 0 0 0 (rm)

Figure 6-25: CMAC Approximation (L=3) for Engine Torque Control Surface (see
Figure 6-11), Two-Stroke, Three-Input Controller, Charge-Sustaining, SOC=25%

130

IA, I.r" .. I1., T

0.6- • I• •.

2.5

S1000

1.5• 400

0.5 -D 4

Total Deelr Torque (N.m) 0 0 (rpm)

Figure 6-26: CMAC Approximation (L=14) for Engine Torque Control Surface (see
Figure 6-10), Two-Stroke, Three-Input Controller, Charge-Sustaining, SOC=100%

1. - i- .J 1

1.42 .- I I• -

i.8 • 1 .

0.2> . '•"••

1.5.5

"2 1000

0.520 40

Total D o*ed Torque (N-m) 0 0 0 (rpm)

Figure 6-27: CMAC Approximation (L=14) for Engine Torque Control Surface (see
Figure 6-11), Two-Stroke, Three-Input Controller, Charge-Sustaining, SOC=25%

131

Four-Stroke Engine, Charge-Sustaining Approximations: A summary of the CMAC

approximation results for the three-input controller using the four-stroke engine are

shown in Table 6-5. Charge-sustaining values for a and 03 were determined that permit

the HEUAV to complete a three-hour ISR mission. The runs for L=3, 7, and 9 used 200

training iterations, and the other runs used 150 iterations. The CMAC approximation

(L=14) saves on two orders of magnitude as compared to a LUT.

Table 6-5: Summary of the CMAC Approximation Results for the Three-Input
Controller, Charge-Sustaining, Four-Stroke Engine

Generalization RMS Displacement Number of Memory
Parameter Error Vector Weights Savings1

3 2.29"10.2 (1,1,1) 21,767 8.20
7 3.96-10 (1,2,3) 4,888 36.5
9 4.73"10-2 (1,2,4) 3,266 54.7
14 6.36" 10-2 (1,3,5) 1,696 105.2
19 8.18"10-2 (1,3,7) 1,137 157.0

'Number of entries in a LUT/number of weights for the CMAC associative memory

The approximation to the original control surface gets worse as the generalization

factor increases. Two examples for the SOC of 100% and 25% are shown in Figures 6-

28 and 6-29, respectively, for L=3. For L=14, the approximations for the same SOC are

shown in Figures 6-30 and 6-31. The accuracy decreases as a cell in the associative

memory covers more of the input space. The surfaces are not continuous as compared to

the two-input controller surfaces, so the generalization factor cannot be increased to the

same degree as for the simpler controller. If the function is continuous, a larger

generalization factor can be used. If discontinuities exist, a smaller generalization factor

must be used to minimize the RMS error. A generalization factor of L=19 did not

produce acceptable results. The surface approximation was not accurate enough to

produce the desired torque commands. The battery SOC dropped to zero since not

enough recharging was generated to complete the mission.

132

- I I

2 1000

0.5
200

Total Deelred Torque (Nm) 0 0 0 (rpm)

Figure 6-28: CMAC Approximation (L=3) for Engine Torque Control Surface (see
Figure 6-12), Four-Stroke, Three-Input Controller, Charge-Sustaining, SOC=100%

20.5 - i--",--

"2 -1000

"N 400
0.5 200

Total Doelred Torque (N-m) 0 0 a (rpm)

Figure 6-29: CMAC Approximation (L=3) for Engine Torque Control Surface (see
Figure 6-13), Four-Stroke, Three-Input Controller, Charge-Sustaining, SOC=25%

133

i r - I

00.5,

2 1000

005
200 400 O

Total Desired Torque (N-m) 0 0 ()

Figure 6-30: CMAC Approximation (L=14) for Engine Torque Control Surface (see
Figure 6-12), Four-Stroke, Three-Input Controller, Charge-Sustaining, SOC=100%

I

I,

2 1.000

0..5 20 400i .

Total Desired Torque (N-m) 0 0 a (rpm)

Figure 6-31: CMAC Approximation (L=14) for Engine Torque Control Surface (see
Figure 6-13), Four-Stroke, Three-Input Controller, Charge-Sustaining, SOC=25%

134

Two-Stroke Engine, Charge-Depletion Approximations: A summary of the CMAC

approximation results for charge-depletion operation using the two-stroke engine is

shown in Table 6-6. Alpha and beta values were determined for charge-depletion

operation to permit the HEUAV to complete a shorter one-hour mission.

Table 6-6: Summary of the CMAC Approximation Results for the Three-Input
Controller, Charge-Depletion, Two-Stroke Engine

Generalization RMS Displacement Number of Memory
Parameter Error Vector Weights Savings'

3 2.22"102 (1,1,1) 21,767 8.20
7 3.92" 10". (1,2,3) 4,888 36.5
9 4.64"10-2 (1,2,4) 3,266 54.7

14 6.91"10-2 (1,3,5) 1,696 105.2
19 8.62"10-2 (1,3,7) 1,137 157.0

25 1.04"10-' (1,3,8) 828 215.6
1Number of entries in a LUT/number of weights for the CMAC associative memory

The approximation to the original control surface gets worse as the generalization

factor increases. Two examples for the SOC of 100% and 25% are shown in Figures 6-

32 and 6-33, respectively, for L=14. As a cell in the associative memory covers more of

the input space, the approximation gets worse as is revealed by the increase in the RMS

error. If discontinuities exist such as in the control surface for the engine, a smaller

generalization factor must be used to minimize the RMS error.

The CD surface causes more off-board electrical energy to be used than for the

CS surfaces. If the demanded torque is not met by the internal combustion engine, then

electrical energy must be used. The CD surfaces do not necessarily keep the engine

operating on or near the IOL as often as for the CS surfaces. The weighting factor alpha

in the objective function determines the amount of electrical energy that is used.

135

-I I "-

Ll

2.5 " .1 I

2• •• • 10001..5 Boo

"400
0.5 200

Total Dsied Torque (Nm) 0 0 a (rpm)

Figure 6-32: CMAC Approximation (L=14) for Engine Torque Control Surface (see
Figure 6-14), Two-Stroke, Three-Input Controller, Charge-Depletion, SOC=100%

I, II ""I•• '
9 1.4 - 0

0.2 0

.2.55

$ 0.80.5 20 400 • 1 • •

TotalDesired Torque (N~m) 0 0 0 (rpm)

Figure 6-33: CMAC Approximation (L=14) for Engine Torque Control Surface (see
Figure 6-15), Two-Stroke, Three-Input Controller, Charge-Depletion, SOC=25%

136

Four-Stroke Engine, Charge-Depletion Approximations: A summary of the CMAC

approximation results for charge-depletion operation using the four-stroke engine is

shown in Table 6-7. Alpha and beta values were determined for charge-depletion

operation to permit the HEUAV to complete a shorter one-hour mission. The runs for

L=3, 7, and 9 used 200 training iterations, and the other runs used 150 iterations.

Table 6-7: Summary of the CMAC Approximation Results for the Three-Input
Controller, Charge-Depletion, Four-Stroke Engine

Generalization RMS Displacement Number of Memory
Parameter Error Vector Weights Savings'

3 2.50"10-2 (1,1,1) 21,767 8.20
7 4.42"10-1 (1,2,3) 4,888 36.5
9 5.25"10-1 (1,2,4) 3,266 54.7
14 6.53"10-2 (1,3,5) 1,696 105.2
19 7.69"102 (1,3,7) 1,137 157.0
25 8.82"10-1 (1,3,8) 828 215.6

'Number of entries in a LUT/number of weights for the CMAC associative memory

The approximation to the original control surface gets worse as the generalization

factor increases. Two examples for the SOC of 100% and 25% are shown in Figures 6-

34 and 6-35, respectively, for L=9. As a cell in the associative memory covers more of

the input space, the approximation gets worse as is shown by the increase in the RMS

error. If discontinuities exist such as in the control surface for the engine, a smaller

generalization factor must be used to minimize the RMS error. The charge-depletion

surfaces for L=3, 7, 9, 14, and 19 produced acceptable results. A generalization factor of

L=25 allowed the battery SOC to drop to a very low value. Since a cell covers nearly

half of the input space for the third input dimension, L=25 is too high of a generalization

factor for this application.

137

0I-"

-0.5>
2.5 •••• .••

1.00

400
0.5 200

Total Deslred Torque (N-m) 0 0 I(rpm)

Figure 6-34: CMAC Approximation (L=9) for Engine Torque Control Surface (see
Figure 6-16), Four-Stroke, Three-Input Controller, Charge-Depletion, SOC=100%

1.6- - •I-"-

1- I

Total Desired Torque (N.m) 0 (pm

Figure 6-35: CMAC Approximation (L--9) for Engine Torque Control Surface (see
Figure 6-17), Four-Stroke, Three-Input Controller, Charge-Depletion, SOC=25%

138

6.6 Flight Profile Simulation Results

As described in Chapter 5, the small HEUAV is sized for a typical intelligence,

surveillance, and reconnaissance (ISR) mission. Two ISR missions and a cruise mission

segment with wind turbulence demonstrate the capabilities of the HEUAV.

The MATLAB/Simulink model developed for the HEUAV (see Chapter 4)

includes an option for the original UAV configuration that includes an engine only. The

engine is sized larger than the engine used in the hybrid-electric version. The results for

the HEUAV using the different controllers (rule-based vs. CMAC) will be compared to

the UAV with the engine only. Selected plots for each configuration and controller will

be shown. The plots include illustrations such as engine torque and speed, motor torque

and speed, battery SOC, and UAV speed. The sections will include summary tables of

the power consumption and energy use for each configuration and controller for each

flight profile.

For the rule-based controller and the two-input CMAC controller, logic must be

programmed to determine when charge-sustaining is allowed. The flexibility in the

objective function for the three-input controller shows how the CMAC controller can be

trained depending on the expected mission length and requirements. Separate logic for

the three-input controller to enable charge-sustaining is not needed since the charge

sustaining is inherent in the optimization algorithm.

6.6.1: One-Hour ISR Mission

To show initial results for the various mission segments of a flight profile, a short

one-hour ISR mission was generated. The speed and altitude for the flight profile is

shown in Figure 6-36. The flight profile consists of a take-off, climb, cruise, endurance

139

speed, high speed dash, descent, and landing. The cruise speed is designed to be 50 kts

and the endurance speed 25 kts. At endurance speed, the HEUAV operates in electric-

only (stealth) mode. The design altitude is approximately 5 kft mean sea level (MSL),

and for this flight profile, the UAV takes off from 4 kft MSL. A climb and descent prior

to the endurance mission segment simulate the flight over an obstacle.

100 M0

14+- Alttde

Speed

I

I0 III 4600I

0 00 1000 1500 2000 2500 3000 3M00 4000
Thu (S)

Figure 6-36: One-Hour Flight Profile

Two-Stroke Engine, Charge-Depletion Simulations: A simulation using the original

configuration (ICE only) was completed first to provide a baseline for comparison. A

plot of the fuel consumed during the ISR mission is shown in Figure 6-37 for the original

configuration and the hybrid-electric configuration (rule-based). At the end of the

mission, 516 g (18.2 oz) of fuel have been burned for the original configuration. The

hybrid-electric configuration has consumed much less fuel. The mass of the UAV is

140

decreased during the simulation as the fuel is burned. The mass of the original

configuration will be lighter than the HEUAV at the end of the mission since more fuel is

burned. No fuel is burned during the endurance mission segment for the HEUAV since it

is in electric-only (stealth) mode. It will be shown that less fuel and less energy will be

consumed by the HEUAV.

-Original (ICE only)
- - HEUAV Rule-Based

400

j300 , ," -/

00 50 100 1500li 2600 2500 300 0 40

Time (s)

Figure 6-37: Fuel Consumed, One-Hour Mission, Two-Stroke, Original and
HEUAV Configurations

The torque and speed of the engine for the HEUAV configuration (rule-based) is

shown in Figure 6-38. The speed of the engine slows to zero during electric-only

operation. The torque of the engine is also zero during the stealth mode. Since the

engine is not operating during approximately half of the mission, the HEUAV

configuration intuitively uses much less fuel than the original configuration. Also, no CS

is programmed so almost all of the electrical energy in the battery pack is used.

141

2

.5-

0.5

0

-2005 I I I

0 500 1000 1600 20 25600 3000 3500 4000

1000,

em~s

Figure 6-38: Engine Torque and Speed, One-Hour Mission, Two-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Depletion

4007

20

0.5

m (pmi)

Figure 6-39: Engine Operating Points, One-Hour Mission, Two-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Depletion

142

The operating points for the ICE for the HEUAV configuration (rule-based) are

shown in Figure 6-39. The operating points have been adjusted to sea level. The ICE is

operating on the IOL unless the torque demand is less than the IOL torque or if the torque

demand is greater than the combined IOL torque and maximum EM torque. The

maximum torque from the ICE is used during take-off. Slight variations from the IOL

are due to the first-order approximation (function of altitude) for the ICE torque.

The three-input CMAC controller (CD surface) improves on the rule-based

controller. The HEUAV using the CMAC controller follows the flight profile closely as

it does for the other configurations and controllers. The actual UAV speed vs. the desired

speed is shown in Figure 6-40. The pilot/operator model sufficiently keeps the UAV on

the flight profile during the ISR mission.

70 , ,

-40-

20

10-

I0

0 500 1000 1500 2000 2500 3000 3500 4000
lime (s)

Figure 6-40: Actual vs. Desired UAV Speed, One-Hour Mission, Two-Stroke,
HEUAV Configuration, Three-Input CMAC Controller (L=19), Charge-Depletion

143

The intent of the one-hour mission is to efficiently use the electrical energy in the

battery pack. For the shorter mission, more electrical energy can be used and the engine

does not need to stay on the IOL. Charge-sustaining is not required for this mission. For

the three-input CMAC controller, the optimization algorithm produces a surface which

allows the engine to operate at a torque output less than the IOL to permit more electrical

energy to be used. The engine operating points for the short ISR mission are shown in

Figure 6-41.

2-

Figure 6-41: Engine Operating Points, One-Hour Mission, Two-Stroke, HEUAV
Configuration, Three-Input CMAC Controller (L=19), Charge-Depletion

The motor torque and speed are shown in Figure 6-42 for the HEUAV with the

three-input CMAC controller (L=19). Recharging is produced during the final descent.

During other mission segments, the EM is providing positive torque to the propeller. The

torque does drop below zero during some of the transients between the mission segments.

144

0.3

0.2

S-0.2

.0.3

0 500 1000 1500 2000 2500 3000 3500 4000

limne (at)

3500 M T a , O , T300-
2000

•15001
t000

0 500 1000 1500 2000 25LO0 300 3500 4000
Time (s)

Figure 6-42: Motor Torque and Speed, One-Hour Mission, Two-Stroke, HEUAV

Configuration, Three-Input CMAC Controller (L=19), Charge-Depletion

The optimization algorithm generates a CD control surface that maximizes the use

of the electrical energy. The battery SOC is allowed to drop down to 10-15%. If the

SOC is dropped below 10%, little margin is left for emergencies if electrical power is

needed for climbing or acceleration. A plot of the SOC for several of the three-input

CMAC controllers is shown in Figure 6-43. For L=19, the SOC drops slightly below

10%. The modeling error as L exceeds 20 is too great and too much electrical energy is

used. As L increases above 20, the CMAC structure is not well defined, and the

modeling error increases greatly. For generalization factors less than 20, the decrease in

the SOC is approximately the same.

145

100,,

- Rule-Based
- - 3-Input CMAC (L.3)
S.... 3-Input CMAC (L114)

3-InputCMAC (L19)

70"

40-

30-

,,,'

20 - 'N.. .

10 10.

40 "- .-

0 500 1000 150 200 2500 30 30 400
Tnme (a)

Figure 6-43: Battery SOC, One-Hour Mission, Two-Stroke, HEUAV Configuration,
Rule-Based and Three-Input CMAC Controllers, Charge-Depletion

A summary of the power consumption and energy use for the HEUAV during the

one-hour ISR mission with the two-stroke engine is given in Table 6-8. The power

consumption is broken down by mission segment and provides insight into which mission

segment requires the most and the least power. As expected, take-off and the maximum

speed dash consume the most power and the descent and endurance speed segment

consume the least amount of power. The HEUAV with the three-input CMAC controller

(L=19) uses 67% less energy than the original configuration and 6.5% less energy than

the rule-based controller. The rule-based controller for the HEUAV uses 65% less

energy than the original configuration.

146

Table 6-8: Power Consumption and Energy Use Summary for One-Hour Flight
Profile, Two-Stroke Engine

Mission Engine Rule- Two-Input CMAC, Three-Input CMAC,
Segment Only Based no Charge-Sustaining Charge-Depletion

L=3 L=10 L=18 LUT L=3 L=9 L=14 L=19
Power

Consumption
Take-Off(W) 24274 11460 12118 12099 12118 12145 12202 12143 12195 12071

Climb (W) 8940 6760 6345 6351 6333 4606 4651 4612 4271 4436
Cruise (W) 10255 7448 7257 7257 7256 6857 6732 6475 6567 6315
Endurance 4941 240.3 240.4 240.4 240.4 240.5 240.5 240.5 240.5 240.6(W)
Max Speed 19969 13240 13662 13523 13602 11910 12008 12241 12246 12761(W)
Descent (W) 3259 1224 857 880 872 2684 2714 2725 2525 3180
Energy Use

Fuel (g) 516.2 162.7 155.4 155.4 155.4 150.5 149.7 147.8 145.7 146.5
Fuel (kWh) 6.14 1.95 1.86 1.86 1.86 1.80 1.79 1.77 1.75 1.76
Electricity NA 0.204 0.227 0.227 0.228 0.244 0.246 0.248 0.253 0.256

(kWh)
Total (kWh) 6.14 2.15 2.09 2.09 2.09 2.05 2.04 2.02 2.00 2.01

147

Four-Stroke Engine, Charge-Depletion Simulations: A comparison of the desired

speed and the actual speed from the simulation for the original four-stroke engine-only

configuration is shown in Figure 6-44. The UAV follows the flight profile closely. The

engine and torque speed are shown in Figure 6-45. Since the original configuration only

has gasoline available, it will use much more energy than the hybrid-electric

configuration that has a fully-charged battery pack available.

70 I

Actual speed

60

50o

~40-

20

10

0II I I
0 500 1000 1500 2000 2500 3000 3500 4000

Tli (s)

Figure 6-44: Desired and Actual UAV Speed, One-Hour Mission, Four-Stroke,
Original Configuration

The hybrid-electric propulsion system controllers use a charge-depletion strategy

for the short mission. Due to the short length of the mission, charging is not needed. The

rule-based strategy and the two-input CMAC controller do not use any charge-sustaining

logic. The three-input controllers use the charge-depletion control surfaces.

148

2.51- ------------------------------------- -

2

S1.5

0.5 -Torque Output

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

S~~~1000 ,. .

o 500 1000 1500 2000 2500 3000 3500 4000
Time (a)

Figure 6-45: Engine Torque and Speed, One-Hour Mission, Four-Stroke, Original
Configuration

The rule-based controller is the baseline for the hybrid-electric propulsion system

controllers. The EM torque and speed are shown in Figure 6-46. Since a gearbox with a

ratio of 3.7 is used, the rotational speed of the motor is greater than the propeller or

engine. The two-input CMAC controller approximates the rule-based controller. The

three-input controllers improve on the rule-based controller. A sample plot of the battery

SOC for each of these controllers is shown in Figure 6-47. All of the CMAC controller

surfaces are generated for sea-level operation. First-order approximations are used to

adjust the engine torque output commands. The rule-based controller also uses adjusted

output torque commands, but due to the variation in implementation and modeling errors,

the results will be slightly different than the two-input CMAC controllers.

149

0.3 , ,

0.25

02-
it 0.15.

0.
--

0. 500 1000 1500 2000 2500 3000 3500 4000
kmu (s)

lime Is)

Figure 6-46: Motor Torque and Speed, One-Hour Mission, Four-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Depletion

0- - 2-Input CMAC, L-
90 .. ? • •....3-In CMACL,,t9

- 60".... ,,

2500

400

%.N

300

20

0 500 1000 1500 2000 2500 3000 3500 4000
muls)

Figure 6-47: Battery SOC, One-Hour Mission, Four-Stroke, HEUAVConfiguration, Rule-Based and CMAC Controllers, Charge-Depletion

150

The simulation results for the three-input CMAC controllers reveal that they use

less electrical energy than the other controllers. For comparison, the engine operating

points for the rule-based controller are shown in Figure 6-48. An example of the engine

operating points for the three-input CMAC controller (L=19) is shown in Figure 6-49.

The torque has been adjusted to sea level. The commands near the IOL do not fall

precisely on the IOL due to the CMAC control surface approximation. The rule-based

controller surface is continuous, and the change in torque commands is more gradual than

for the CMAC controller. The output torque of the engine is often on the IOL during the

flight profile for the rule-based controller, but this does not necessarily mean the least

amount of energy is being used with the available electrical energy in the battery pack.

1.4 •

• " +

0.8-

0.4

, (rpm)

Figure 6-48: Engine Operating Points, One-Hour Mission, Four-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Depletion

151

1.,4-
g•1.2- OL

E" 1 + +

0.8

+. +
0. +•.• +1: "

0.2 094___2
2000 3000 4000 5OO060 O 7000 8000 MWO

m (rpm)

Figure 6-49: Engine Operating Points, One-Hour Mission, Four-Stroke, HEUAV
Configuration, Three-Input CMAC Controller (L=19), Charge-Depletion

A summary of the power and energy use for the rule-based, two-input, and three-

input CMAC controllers is listed in Table 6-9. The control surfaces produced with the

higher generalization numbers give satisfactory results (i.e. minimal energy use and

larger memory savings), so the surfaces with the lower generalization numbers are not

needed. Since the flight profile takes advantage of the charge-depletion logic or

controller surfaces, much less energy is used for the hybrid-electric configurations than

the original (ICE only) configuration. The rule-based controller uses 54% less energy

than the original configuration. The three-input controller (L=19) uses 58% less energy

than the original configuration. The large decrease in energy use is due to the charge-

depletion surfaces since no gasoline energy is used to maintain the battery charge.

152

Table 6-9: Power Consumption and Energy Use Summary for One-Hour Flight
Profile, Four-Stroke Engine

Mission Engine Rule- Two-Input CMAC, Three-Input CMAC,
Segment Only Based no Charge-Sustaining Charge-Depletion

L=3 L=10 L=13 L=15 L=18 LUTI L=3 L=9 L=14 L=19
Power

Consumption
Take-Off(W) 9234 4796 5221 5209 5223 5212 5212 5369 5357 5392 5375 5354

Climb (W) 3020 2425 2245 2248 2247 2247 2245 2279 2202 2355 2374 2362
Cruise (W) 4052 3324 3091 3087 3090 3090 3087 2967 2859 2922 3023 2934
Endurance 1756 241.0 241.1 241.1 241.1 241.1 241.1 241.1 241.2 241.1 241.1 241.2

Max Speed 7464 5549 5667 5658 5647 5648 5647 5629 5632 5642 5548 5738(W)
Descent(W) 1151 588.0 456.21453.9 448.2 459.1 455.4 819.8 979.7 920.6 919.1 944.6
Energy Use

Fuel (g) 192.3 70.4 64.1 63.9 63.9 64.0 63.9 61.2 60.5 61.0 61.7 60.3
Fuel (kWh) 2.29 0.844 0.768 0.766 0.766 0.767 0.766 0.734 0.725 0.732 0.740 0.723
Electricity N/A 0.202 0.226 0.226 0.226 0.226 0.226 0.235 0.238 0.238 0.236 0.239

(kWh)
Total (kWh) 2.29 1.05 0.994 0.993 0.993 0.993 0.993 0.968 0.963 0.969 0.976 0.962

153

6.6.2: Three-Hour ISR Mission

A more realistic and appropriate three-hour ISR mission was generated to test the

various controllers. The flight profile is shown in Figure 6-50. The flight profile

includes a take-off, climb, cruise, endurance speed, high speed dash, descent, and

landing. The ISR segment is split into two different segments to simulate the observation

of two different ground locations. The cruise speed is designed to be 50 kts and the

endurance speed 25 kts. At endurance speed, the hybrid-electric UAV operates in

electric-only (stealth) mode. The design altitude is approximately 5 kft mean sea level

(MSL), and for this flight profile, the UAV takes off from 3.5 kft MSL. Simulations will

be given for the two-stroke and four-stroke engine designs.

100 , , 5000

4- Al~iudO r

--

50J

5O 4000j

Sped

0- I I I I .00

O0 2000 4000 6000 8000 10000 1200

Tkm (a)

Figure 6-50: Three-Hour Flight Profile

154

Two-Stroke Engine, Charge-Sustaining Simulations: Simulations were completed for

the three-hour mission using the two-stroke engine and the various configurations and

controllers.

The torque output and the maximum torque of the ICE for the original

configuration are shown in Figure 6-51. The torque is adjusted for the altitude and for an

altitude of 5 kft MSL, the output torque of the engine is approximately 86% of the output

torque at sea level using a first-order approximation. During the maximum speed dash,

the engine operates at its maximum torque output. The engine speed during the ISR

mission is shown in Figure 6-52. The rotational speed nears 900 rad/s during the high

speed dash. During the rest of the mission, the speed stays above 200 rad/s except during

the landing and shutdown.

3

'i g -. . . . I I I-I
2.5 - - I - - - - -~

1 I I J

'2 t t I

2-

0.5i

0-- Torque Output
Madmurn Torque

-0.5-
0 0 2000 4000 6000 8000 10000 12000

nme (a)

Figure 6-51: Engine Torque, Three-Hour Mission, Two-Stroke, Original
Configuration

155

900

700a -
1o00

14W0

300-

200-

100-

I I I I ____

0 2000 4000 6000 6000 10000 12000
Time (a)

Figure 6-52: Engine Speed, Three-Hour Mission, Two-Stroke, Original
Configuration

The rule-based controller was used in the simulations to provide a baseline for the

HEUAV results. Charge-sustaining is allowed through-out the mission to provide

enough electrical energy during the two half-hour ISR mission segments. The amount of

charge-sustaining is dependent on the battery SOC since a proportional-derivative (PD)

controller controls the amount of extra engine torque. Battery plots, including the SOC,

voltage, and current are shown in Figure 6-53. Due to the PD controller, the rate of

charging increases as the SOC decreases. The SOC does not drop below 15% due to the

programmed logic. The rule-based controller manages the storage of electrical energy

sufficiently for the hybrid-electric system, but the three-input CMAC neural network

controller improves on the rule-based controller.

156

0 2000 4000 6000 8000 10000 12000

50 -i

-01

0 2000 4000 6000 8000 10000 12000

Time (-)

Figure 6-53: Battery Plots, Three-Hour Mission, Two-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Sustaining

200 2000 4000 500 000 7000 80001W

e (rpm)

Figure 6-54: Engine Operating Points, Three-Hour Mission, Two-Stroke, HEUAV

Configuration, Rule-Based Controller, Charge-Sustaining

157

The rule-based controller operates the engine on the IOL during moderate torque

demands and less than the IOL during low torque demands. In Figure 6-54, the operating

points for the engine are shown on the efficiency map for the two-stroke engine. The

operating points are adjusted to sea level. The engine operates near the maximum torque

during the high-speed dash and acceleration. During the recharging at the end of the

mission, the engine torque output is increased above the IOL to a lower efficiency. This

relatively large increase in torque due to the PD controller will be shown using the

CMAC controller not to be the best method for recharging at the end of the mission. The

rule-based controller provides a good baseline for comparison to the three-input CMAC

controller results.

0.3

.0.1

_O o

-0.2

-0.3
-0.4

0 2000 4000 60"0 MW 10000 12000

Time (s)

3500ii

30u00)

2 500

00 2000 4000 a00 8000 10000 12000

Figure 6-55: Motor Torque and Speed, Three-Hour Mission, Four-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Sustaining

158

The motor torque and speed are shown in Figure 6-55. The gear unit has a ratio

of 3.7 so the motor operates at a much higher speed than the engine and the propeller.

Negative torque represents recharging as seen during the descent and charge-sustaining

operation. During the descents, the amount of recharging can be varied. The plots

illustrate that the motor is sufficiently sized for the HEUAV application.

Simulations using the optimization results and the three-input CMAC

approximation controllers were completed for L=3, 7, 9, 14, and 19. For L=19, the

modeling error was relatively large and too much recharging was created so the battery

SOC went to 100%. The additional torque from the engine was then "wasted" and not

used to recharge the battery pack. The UAV follows the speed and altitude profile

closely for the three-input CMAC controller (L=14) as shown in Figure 6-56. The

battery SOC for the different controllers is shown in Figure 6-57. During the constant

speed and altitude mission segments (i.e. cruise), an error in the approximation will cause

a difference in the amount of recharging. For L=3, 7, 9 and 14, the battery SOC follows a

similar path as for the optimization (i.e. LUT) results. All of the simulations end with a

battery SOC near 20% so all of the approximations are sufficient.

A closer look at Figure 6-57 reveals that the recharging is completed at a

relatively constant rate as compared to the r'ule-based controller. Since the rule-based

controller uses a PD algorithm, the rate increases as the SOC decreases. For the CMAC

controllers, the rate is relatively constant throughout the SOC range. This keeps the

engine running at a more continuous power level. Since the CMAC controllers keep the

SOC near a constant SOC, most of the recharging is used to provide power to the

avionics, flight control system, and the payload.

159

-- DWed Speed

-- Ac$POW

70-

60

50-

30

20

10

0 i i
0 2000 4000 6000 8000 10000 12000

Tke (S)

Figure 6-56: Desired and Actual UAV Speed, Three-Hour Mission, Four-Stroke,
HEUAV Configuration, Three-Input CMAC Controller (L=14), Charge-Sustaining

- CMAC (13)-- CMAC (L-7)

90" . CMAC (L-9)
CMAC(L-14)

70o

600

50b

401

30-

20

10"

0 2000 4000 6000 8000 10000 12000
nme (5)

Figure 6-57: Battery SOC, Three-Hour Mission, Two-Stroke, HEUAV
Configuration, Three-Input CMAC Controllers, Charge-Sustaining

160

The power and energy consumption for the HEUAV using the different

controllers is shown in Table 6-10. The power consumption is listed for each mission

segment. The fuel use is converted to an electricity equivalent. The energy use shows

that the original configuration uses the most energy. The energy use for the HEUAV

using the rule-based controller is 34% less than the original configuration. The

optimization algorithm result (i.e. LUT) uses 38% less energy than the original

configuration and 6.9% less than the HEUAV with the rule-based controller. The power

consumption values for cruise are taken from the mid-section of the flight profile. For

the rule-based controller, the amount of recharging is much greater at the end of the

mission than at the beginning of the mission. The CMAC approximations are close to the

optimization results and show that a generalization factor up to 14 can be used. Values of

L=3, 7, 9, or 14 still provide reasonable results and use less energy as compared to the

rule-based controller. In summary, a CMAC controller (L=14) would save two orders of

magnitude on memory and would use 6.3% less energy than the rule-based controller.

Table 6-10: Power Consumption and Energy Use Summary for Three-Hour Flight
Profile, Two-Stroke Engine

Mission Engine Rule- Three-Input CMAC, Charge-Sustaining
Segment Only Based LUT L=3 L=7 L=9 L=14

Power
Consumption
Take-Off (W) 24935 11412 12512 12505 12531 12628 12573

Climb (W) 8979 6802 7853 7834 7759 7751 7934
Cruise (W) 10479 9790 7640 7642 7643 7641 7848

Endurance (W) 4883 237.0 236.9 236.9 237.0 236.9 237.0
Max Speed (W) 26527 17616 18417 18410 18405 18407 18401

Descent (W) 5054 5534 5338 5355 5467 5457 5644
Energy Use

Fuel (g) 2025 1318 1220 1224 1216 1223 1234
Fuel (kWh) 24.1 15.8 14.6 14.7 14.6 14.7 14.8

Electricity (kWh) NA 0.241 0.252 0.250 0.257 0.253 0.256
Total (kWh) 24.1 16.0 14.9 14.9 14.8 14.9 15.0

161

Four-Stroke Engine, Charge-Sustaining Simulations: A comparison of the desired

speed and the actual speed from the simulation for the original four-stroke engine-only

configuration is shown in Figure 6-58. The UAV follows the flight profile closely with a

maximum speed of 68 kts. The maximum speed is not necessarily limited by the torque

of the engine, but it is also dependent on the choice of the propeller and other

components for the UAV. The flight profile illustrates that the pilot/operator model is

sufficient to keep the UAV on the speed and altitude trace.

so
_-- Dslred SpeedActual SpeedI

70

50

140-

30 -

201

10

0I1
0 2000 4000 6000 8000 10000 12000

Tie (a)

Figure 6-58: Desired and Actual UAV Speed, Three-Hour Mission, Four-Stroke,
Original Configuration

Simulations using the original configuration are useful for designing the input

space required for the CMAC controllers. By determining the range of various

parameters, an efficient structure can be developed for the CMAC neural network. The

torque output and the maximum torque of the engine for the original configuration are

162

shown in Figure 6-59. The torque is adjusted for the altitude and for an altitude of 5 kft

MSL, the output torque of the engine is approximately 86% of the output torque at sea

level using a first-order approximation. During cruise, the engine operates close to its

IOL torque. However, during the endurance segment, the engine is forced to operate in a

lower efficiency region. During the maximum speed dash, the engine operates at its

maximum torque output. The propeller speed (engine speed) is shown in Figure 6-60.

The propeller speed varies from 203-930 radls. The range of the propeller speed and the

range of the demanded torque are useful for determining the range of inputs required for

the CMAC controller input space.

2.5 ._ - --- - - - -I --- - "-
II II I

2-

i 1.8

0.8

Torque Output

•-0.5 iI iIi
0 2000 4000 6000 8000 10000 12000

Time (a)

Figure 6-59: Engine Torque, Three-Hour Mission, Four-Stroke, Original
Configuration

163

loo1

900

800

700

5 0

4W00

3W00

2W00

100-

0 IIII I _ _

0 2000 4000 6000 8000 10000 12000
Thu (s)

Figure 6-60: Propeller Speed, Three-Hour Mission, Four-Stroke, Original
Configuration

The rule-based controller was used in the simulations to provide a baseline for the

HEUAV results. Charge-sustaining is allowed through-out the mission to provide

enough electrical energy during the two half-hour ISR mission segments. The amount of

charge-sustaining is dependent on the battery SOC since a proportional-derivative (PD)

controller controls the amount of extra torque the engine produces for recharging.

Battery plots, including the SOC, voltage, and current are shown in Figure 6-61. Due to

the PD controller, the rate of charging increases as the SOC decreases. The SOC does

not drop below 15% due to the programmed logic. The rule-based controller manages

the storage of electrical energy sufficiently for the hybrid-electric system, but the CMAC

neural network controller improves on the rule-based controller.

164

5-G

0.4

0 2000 4 000 6000 7000 10000 12000
Time (a)

Fiue8-2 EnieOeaigPit , The-Hu Miso, Fu-toe E

Confgurtio, Rl-ae Cnrle, ChreSsann

0 20D0 4000 6000 mm0 10000 12000

50

0 2000 4000 G0X am0 10000 12J000
Tirm (a)

Figure 6-61: Battery Plots, Three-Hour Mission, Four-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Sustaining

1.8 • • 4 Max Torque

1. + ÷ +

1.46 1

+ + + • .

+ ++

S+• + +
.. 1 ++ .+ + .2+

0.84

0.2ý ' +

2=0 3000 4M0 5m0 am0 7000 8000 9m0
0 (mm)

Figure 6-62: Engine Operating Points, Three-Hour Mission, Four-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Sustaining

165

The rule-based controller operates the engine on the IOL during moderate torque

demands and less than the IOL during low torque demands. In Figure 6-62, the operating

points for the engine are shown on the efficiency map for the four-stroke engine. The

IOL torque and the maximum torque are adjusted for sea level. Since there is variation in

the altitude during the flight profile, the IOL and maximum torque vary based on the

first-order approximation. The engine operates near the maximum torque during the

high-speed dash and acceleration. The rule-based controller provides a good baseline for

comparison for the three-input CMAC controller results.

0.3

-0.1

-0.2

-0.3

4)40 2000 4000 600 8000 100 12000

Time (a)

2000-0 6O080O 100 20

lime (s)

Figure 6-63: Motor Torque and Speed, Three-Hour Mission, Four-Stroke, HEUAV
Configuration, Rule-Based Controller, Charge-Sustaining

The motor torque and speed are shown in Figure 6-63. The gear unit has a ratio

of 3.7, so the motor operates at a much higher speed than the engine and the propeller.

Negative torque represents recharging as seen during the descent and during charge-

166

sustaining operation. During the descents, the amount of recharging can be varied due to

a saturation limit on the regeneration command. The plots illustrate that the motor is

sufficiently sized for the HEUAV application.

Simulations using the optimization results and the three-input CMAC

approximation controllers were completed for L=3, 7, 9, 14, and 19. For L=19, the

torque commands were not sufficient for the HEUAV to complete the mission. The

UAV follows the speed and altitude profile well for the three-input CMAC controller,

L=14, as shown in Figure 6-64. The battery SOC for the different controllers is shown in

Figure 6-64. During the constant speed and altitude mission segments (i.e. cruise), an

error in the approximation will cause a difference in the amount of recharging. For L=19,

the approximation causes insufficient recharging. However, for L=3, 7, 9 and 14, the

battery SOC follows a similar path as for the optimization (i.e. look-up table) results.

The battery SOC for the CMAC controller (L=9, 14) drops below 10% due to not enough

recharging during cruise. All of the simulations end with a battery SOC near 20%. This

permits a relatively accurate comparison to be made between the different controllers.

A closer look at Figure 6-64 reveals that recharging is completed at a relatively

constant rate as compared to the rule-based controller. Since the rule-based controller

uses a PD algorithm, the rate increases as the SOC decreases. For the CMAC controllers,

the rate is relatively constant throughout the SOC range. This keeps the engine running

at a more continuous power level. Since the CMAC controllers keep the SOC near a

constant SOC, most of the recharging is used to provide power to the avionics, flight

control system, and the payload.

167

I-Deskd Speed

8070

60

30

20

10

C Io Is0 2000 4000 6000 800 10000 1200
Thu (a)

Figure 6-64: Desired and Actual UAV Speed, Three-Hour Mission, Four-Stroke,
HEUAV Configuration, Three-Input CMAC Controller (L=14), Charge-Sustaining

900-
CMAC (1-3)

- - CMAC (L-7)
90 " \ CMAC (L-9)

CMAC (L1.9)

80 "\

70-

40-

30-

20-

1 0

0 2000 4000 00 8000 10000 12000
Thu (a)

Figure 6-65: Battery SOC, Three-Hour Mission, Four-Stroke, HEUAV
Configuration, Three-Input CMAC Controllers, Charge-Sustaining

168

The power and energy use for the HEUAV using the different controllers is

shown in Table 6-11. The power consumption is listed for each mission segment. The

fuel use is converted to an electricity equivalent. The energy use shows that the original

configuration uses the most energy. The energy use for the HEUAV using the rule-based

controller is 22% less than the original configuration. The optimization algorithm result

(i.e. LUT) uses 27% less energy than the original configuration and 6.10% less than the

HEUAV with the rule-based controller. For the rule-based controller, the amount of

recharging is much greater at the end of the mission than at the beginning of the mission.

The CMAC approximations are close to the optimization results and show that a

generalization factor up to 14 can be used. Values of L=3, 7, 9, or 14 still provide

reasonable results and use less energy as compared to the rule-based controller. In

summary, a CMAC controller (L=14) would save two orders of magnitude on memory

and would use 5.7% less energy than the rule-based controller.

Table 6-11: Power Consumption and Energy Use Summary for Three-Hour Flight
Profile, Four-Stroke Engine

Mission Engine Rule- Three-Input CMAC, Charge-Sustaining
Segment Only Based LUT L=3 L=7 L=9 L=14

Power
Consumption
Take-Off (W) 10074 7318 6979 6985 6961 6945 6995

Climb (W) 3084 2438 2651 2652 2656 2647 2654
Cruise (W) 4127 4466 3549 3545 3632 3548 3568

Endurance (W) 1755 239.8 239.7 239.7 239.7 239.8 239.7
Max Speed (W) 10128 7140 7459 7461 7460 7456 7456

Descent (W) 1796 1921 1834 1829 1855 1849 1871
Energy Use

Fuel (g) 779.3 582.1 544.3 548.4 546.1 541.5 545.8
Fuel (kWh) 9.27 6.98 6.52 6.57 6.55 6.50 6.54
Electricity N/A 0.240 0.253 0.244 0.245 0.266 0.263

(kWh) 9.27 7 67 6Total (kWh) 9.7 7.22 6.78 6.82 6.79 6.76 16.8H

169

6.6.3: Cruise Mission Segment with Wind Turbulence

The two ISR missions include primarily steady state conditions. Transients exist

between mission segments, but each mission segment assumes constant conditions such

as a steady wind, constant speed, and constant altitude. This section will present results

for a cruise mission segment with wind turbulence to illustrate the improvements of the

three-input CMAC neural network over the rule-based controller during a mission with

variable forces acting on the UAV. One of the proposed applications for the HEUAV is

disaster monitoring such as the real-time observation of forest fires. Turbulence would

be experienced during these conditions, so wind turbulence is included in the model to

further understand the capabilities and usefulness of the thee-input CMAC controller for

the HEUAV application.

The UAV is treated as a point mass in the MATLAB/Simulink model as

described in Equation 4-5. The wind turbulence is treated as another force acting on the

UAV as shown in the UAV model in Figure 4-13. The turbulence is described using the

turbulence intensity, a probability density function, and an autocorrelation function. The

turbulence intensity (TI) is described as TI=G/U where a is the standard deviation and U

is the average speed of the wind [155, 156]. For wind turbulence with an average speed

of 10 m/s and a TI of 0.3 (mountains), the standard deviation is 3.0. Manwell et al. and

Rohatgi et al. state that wind turbulence can be modeled using a well-known Gaussian

probability distribution function [155, 156]. The distribution function gives a measure of

the likelihood of the wind speed of the turbulence, but it does not describe the speed

based on what is has been in the past. The autocorrelation function relates the wind

speed at an instant in time to a previous wind speed as given by a time lag. An example

170

of the autocorrelation function for wind turbulence with a mean speed of 10 m/s, TI of

0.3, and a maximum time lag of 100 s is shown in Figure 6-66. The autocorrelation

function, R, for this data can be described as:

Ns-r

R 2 (Ns -r) Wuiui+r (6-3)

where Ns is the number of samples, r is the time lag in seconds, and u is the wind speed

[155]. The sample data for the wind was generated using software developed by the

University of Massachusetts for the Renewable Energy Research Laboratory [157]. For

this sample data, wind is not correlated to wind that occurred greater than 100 s in the

past.

0.9-

0.8

0.7S~I 0.0

S0.5-

0.4

0.3

0.2

0.1

0 I I .
0 10 20 30 40 50 60 70 80 90 100

Lg 6lime (W)

Figure 6-66: Autocorrelation of Sample Wind Turbulence

171

The forces acting on the HEUAV need to be related to the changes in wind speed.

At a cruise speed of 50 kts, a change in wind speed of 1 m/s corresponds to a change in

force of approximately 1.5 N acting on the UAV that was designed in Chapter 5.

Therefore, 1 m/s of wind turbulence is approximately equivalent to a change in force of

1.5 N at cruise speed. The change in wind speed was equated to the changes in force at

the cruise speed and used to vary the forces acting on the UAV during a cruise mission

segment. A plot of the wind turbulence speed is shown in Figure 6-67. A 100 s

turbulence sample is repeated ten times to produce the entire mission segment which lasts

over fifteen minutes.

8

4-

2

02

.2

-8

-10

-12
0 100 200 300 400 800 600 700 800 00 1000Tme (a)

Figure 6-67: Turbulence Speed for Cruise Mission Segment

Simulations were completed for the four-stroke engine using the original

configuration, the rule-based controller, and the three-input CMAC controller. The

172

50.5

50V
I

'I

49

48.6

--Adua, Speed

0 100 200 300 400 500 600 700 800 900 1000
TWe (a)

Figure 6-68: Actual and Desired UAV Speed, Cruise Mission Segment with Wind
Turbulence, Four-Stroke, HEUAV Configuration, CMAC Controller (L=14),

Charge-Sustaining

-0.5 .

100

2 1000

0.5 200 40

Totel Desired Torque (N.m) 0 0 (rMM)

Figure 6-69: Engine Torque Control Surface and Operating Points, Cruise Mission
Segment with Wind Turbulence, Four-Stroke, IIEUAV Configuration, CMAC

Controller (L=14), Charge-Sustaining

173

charge-sustaining control surfaces or algorithms were used in the simulations. The

battery SOC was set to 50% at the beginning of the simulations. A sample speed plot for

the UAV for the CMAC controller (L=14) is shown in Figure 6-68. The pilot/operator

model keeps the UAV within 0.5 kts of the desired cruise speed of 50 kts. A plot of the

commanded torque is shown in Figure 6-69 for the CMAC controller (L=14). The

location of the points for the commanded torque is in a much larger area of the input

space as compared to the flight profiles with constant forces acting on the UAV. The

other simulations that included the wind turbulence had similar results.

The cruise mission segment with wind turbulence shows the improvement of the

three-input CMAC controller over the rule-based controller and original configuration

(see Table 6-12). The rule-based controller uses 12% less energy than the original

configuration, and the CMAC controller (L=14) uses 15% less energy than the engine-

only configuration. The CMAC controller algorithm (L=14) uses less energy (3.2%) than

the rule-based controller which illustrates the advantage of the neural network controller

over the rule-based controller for this type of mission segment. For other types of

disturbances or varying forces acting on the UAV, similar results would be expected.

Table 6-12: Energy Use Summary for Cruise Mission Segment with Wind
Turbulence, Four-Stroke Engine, Charge-Sustaining

Mission Segment Engine Rule-Based Three-Input CMAC
Only Controller

LUT L=14
Fuel (g) 94.0 82.3 80.0 79.2

Fuel (kWh) 1.12 0.986 0.959 0.949
Electricity (kWh) N/A 0.00186 0.00209 0.00665

Total (kWh) 1.12 0.988 0.961 0.956

174

6.7 Memory Savings

For each CMAC approximation to the engine torque control surface, the memory

savings as compared to a look-up table (LUT) were listed. The number of weights was

also included. If each weight requires 4 bytes (32 bits), then each approximation requires

memory space, in bytes, four times that of the number of weights required. For example,

the two-input controller requires 3,570 entries or 14,280 bytes for a look-up table but

would require only 9.89 times less memory or 1,444 bytes for the CMAC approximation.

Clearly, for the two-input controller, the look-up table or the original rules would be

sufficient. However, as the complexity of the controller increases, the memory savings is

more significant. For the three-input controller, the LUT requires 178,500 entries or 714

kbytes (0.714 MB). If the same embedded controller is needed for the flight control

system, navigation, telemetry, or the payload, then the memory savings is significant.

For the three-input CMAC controller with a generalization factor of L=14, the memory

savings is a factor of 105.2. This means that instead of 0.714 MB, the CMAC controller

only requires approximately 7 kbytes of memory to achieve approximately the same

result as a large LUT that would represent the optimization results from the optimization

algorithm.

6.8 Conclusions

This chapter presented an optimization algorithm and the design of the CMAC neural

network controller used to approximate the optimization results. The optimization

algorithm is flexible and permits the operator to generate CD or CS surfaces depending

on the mission. The three-input CMAC controller consistently used less electrical energy

than the original configuration or the HEUAV with the rule-based controller.

175

Chapter 7: Conclusions and Recommendations

7.1 Summary

Parallel hybrid-electric propulsion systems would be beneficial for small

unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-

monitoring missions. The benefits, due to the hybrid and electric-only modes, include

increased endurance time and greater range as compared to electric-powered UAVs and a

stealth mode not available with gasoline-powered UAVs. The dissertation research

presented a conceptual design for the parallel hybrid-electric propulsion system and the

associated small UAV, an algorithm for the instantaneous optimization of the energy use

on-board the UAV, and the application of a CMAC artificial neural network to

approximate the engine torque control surfaces obtained from the optimization algorithm.

The conceptual design is a two-point design that includes an engine primarily sized for

cruise speed and a battery pack and electric motor primarily sized for a slower endurance

speed. The optimization algorithm that was developed can be used to generate charge-

sustaining or charge-depletion control surfaces depending on the length of the intended

mission. The various control surfaces were implemented in several flight profiles to

illustrate and compare the usefulness of the different controllers. The CMAC

approximations to the control surfaces reduce the memory requirement as compared to a

look-up table (LUT) by one to two orders of magnitude. The CMAC controllers also

prevent the need to compute a hyper-plane or complicated logic every time step.

Although the CMAC neural network was trained off-line, the associative memory

weights could be directly transferred to an embedded controller. Another option would

be to program the insight and knowledge gained into a rule-based controller. For

176

example, instead of using a proportional-derivative (PD) controller for charge-sustaining

operation, a constant power output from the engine could be programmed into the rule-

based controller. The research presented in the dissertation has generated several

questions which could provide interesting research topics.

7.2 Potential Future Research

7.2.1 Dynamometer Testing of Advanced Propulsion Systems

As UAVs are used for more applications, computerized dynamometer test stands

will be needed to test more fuel efficient internal combustion engines and propulsion

systems. The commercially available dynamometers are expensive but a relatively low

cost dynamometer, such as the one developed at Oklahoma State University, would be

useful for the testing of UAV propulsion systems [158]. The dynamometer needs to be

reliable and accurate with the capability to convert all data to standard day atmosphere to

permit comparisons to simulation data. Parameters such as torque, thrust, rotational

speed, fuel flow, voltage, and current need to be measured. Thrust and airspeed can be

measured accurately if the propulsion system, including the propeller, is placed in a wind

tunnel. The development of an advanced dynamometer test stand for UAV propulsion

systems would provide an excellent research project for students.

7.2.2 Adaptive Scheme/Real-Time CMAC ANN Training

The CMAC neural network controller developed in this research is trained off-

line. The weight values of the CMAC controller can then be directly transferred to the

memory of an embedded microcontroller. If the torque output of the engine and electric

motor could be measured or estimated, then an adaptive controller could be developed to

optimize the energy use in real-time. As the atmospheric conditions change, the torque

177

output of the engine could be varied to optimize the energy use in real-time to increase

the range of the UAV.

7.2.3 Higher-Order Basis Functions for the CMAC ANN

The basis functions currently used in the associative memory of the CMAC neural

network are binary. A stair-step output is produced from the CMAC controller. A filter

could be placed on the output of the controller to smooth out the commands. The binary

functions could also be replaced with linear or quadratic functions to produce a smoother

function approximation if required in a hardware implementation. The convergence rate

is also faster if higher-order basis functions are used but the training time is longer and

the memory requirements are larger.

7.2.4 CMAC ANN Input Space Adaptation

Depending on the resulting hyper-plane surface, a uniform input space for the

CMAC controller may not be sufficient. Higher resolution may be needed for the surface

in certain areas, especially where discontinuities exist. Limited research has been

completed in this area. A nonlinear placement strategy can account for the

discontinuities in the training data. By placing multiple nodes in the same location,

discontinuities can be better modeled.

7.2.5 Variable Pitch Propeller

A fixed pitch propeller was used in the HEUAV model, but as with most

propellers, it operates at its peak efficiency over a short range of advance ratio. For the

HEUAV, the advance ratio was similar at cruise and endurance speed. However, at other

speeds that may be required for various missions, the propeller may not operate near its

maximum efficiency. A variable pitch propeller permits a high efficiency over a wider

178

range of advance ratio. The desired pitch could be an output from the propulsion system

controller.

179

Appendix: MATLAB and C++ Code

A.1 Conceptual Design MATLAB Code

The conceptual design of the parallel hybrid-electric propulsion system for a

small UAV was explained in Chapter 5. This section includes the MATLAB code

developed to optimize the size of the wing and the components of the propulsion system.

"% Algorithm for Sizing Hybrid-Electric UAV

"% References:
"% Anderson, Intro to Flight, 4th Edition
"% Anderson, Aircraft Performance and Design
"% Raymer, Aircraft Design: A Conceptual Approach, 2nd Edition

"% Clear Workspace
close all;
clear all;

% UAV and Component Parameters
uavCdo-ref=0.035; % Zero-Lift Drag Coefficient for reference S, V=10 m/s
uavS ref=l.5; % Wing Area Reference for the reference Cdo (m^12)
uav e=0.85; % Oswald Efficiency Factor
propm=0.17; % Prop Mass (kg), 20x8
propeff'=-0.75; % Typical Prop Efficiency during climb, cruise, endurance
batED= 100; % Battery Energy Density (Whlkg), assume lithium-ion
EM_eff=-0.85; % Typical EM Efficiency
EMovertrq=2; % EM Over-Torque Factor
clutch_m=0.25; % Clutch Mass for HEUAV (kg)
SFCcruise=2.45E-6; % Specific Fuel Consumption (900 g/kWhr*9.81 nI/s^2=2.45E-6 N/Ws), Anderson-
P&D, pg 154
SFCendure=3.27E-6; % Specific Fuel Consumption (1200 g/kWhr*9.81 m/SA2=3.27E-6 N/Ws),
Anderson-P&D, pg 154

% Design Parameters
desuav_m=13.6; % UAV Mass (kg), 13.6 kg=>30 lbs
despay_m=2.72; % Payload Mass (kg), 2.72 kg=>6 lbs
despayP=75; % Payload Power (W)
desuavS=1.5; % Wing Area of Design (m^2)
des uavAR=15; % AR of Design
WF~empty=0.63; % Weight Fraction for the Empty Weight, Anderson-P&D, pg 400, Aerosonde UAV

% Performance Parameters
perf tendure=3600; % Time for Endurance (s)
perf tcruise=3600; % Time for Cruise, one-way (s)
perfROC=2.032; % Rate-of-Climb (m/s), 2=>400 ft/min
perfVstall=10.3; % Stall Velocity (m/s), 10.3 m/s=>20 kts
perfVendure=12.9; % Endurance Velocity (m/s), 12.9 m/s=>25 kts
perfVcruise=25.7; % Cruise Velocity (m/s), 25.7 m/s=>50 kts
perfVmax=30.9; % Max Velocity (m/s), 30.9 m/s=>60 kts
sdmin=2.57; % Minimum Speed Delta between Stall and Endurance Speeds (mi/s), 2.57 m/s=>5 kts

180

perf s TO=25; % Take-Off Distance (in)
perfceiling=4572; % Service Ceiling (in), 15000 ft

% Constants and Preliminary Calculations
g--9.8 1; % Acceleration of Gravity (m/s^2)
air-viscosity=2E-5; % Air Viscosity (N*s/m^2), FE Text-pg 11-2
msec2kts=1.944; % Unit Conversion (m/s->kts)
kts2msec=0.5144; % Unit Conversion (kts->m/s)
W2hp=1.34/1000; % Unit Conversion (W->hp)
hp2W=0.75* 1000; % Unit Conversion (hp->W)
uavW=des_uav_m*g; % Weight of UAV (N)
prop W=prop_m*g; % Prop Weight (N)
clutchW=clutch_m*g; % Clutch Weight (N)

% Select Altitude for the Calculations
rhoSL=1.225; % Air Density (kg/mA3), Sea Level=>1.225

disp('Select Altitude for the Calculations:');
disp('Note: All Take-off Calculations are Done at Sea Level.');
disp(' 1: Sea Level');
disp(' 2: 5000 ft (1524 in)');
disp(' 3: 10000 ft (3048 in)');
disp(' 4: 15000 ft (4572 m)');
profile=input('Enter your selection: ');
switch profile

case 1
rho=1.225;

case 2
rho=1.056;

case 3
rho=0.9048;

case 4
rho=0.771 1;

case 5
disp(Not a valid selection.');

end

% Optimize the Design
disp(' ');
disp('Select optimization/solution routing:');
disp(' 1: Harmon optimization equations');
disp(' 2: Chattot optimization equations');
profile=input('Enter your selection: ');
switch profile

case 1
% Minimize Endurance Power (Nonlinear Equation) with Equality Constraints
xO=[100; 12; 1.2; 10; 11; 1000; 0.035]; % Initial values for x
lb=[90; 8; 1; 5; 5; 500; 0.025]; % Lower Bound for variables
ub=[200; 20; 1.25; 20; 20; 2500; 0.045]; % Upper Bound for variables
disp(' ');
disp('Minimizing EM Power, Optimizing W/S, AR, Clmax, Vstall, Vendure, ICE Power, Cdo:)');
disp(' ');
options=optimset('LargeScale','off','Display,'final','Maxlter', 15000,'MaxFunEvals',75000);

[xfvalexitflagoutput]=finincon(@SizeEqMinPRxO,[],[],[],[],lbub,@SizeEqConoptionsuav- -uavCdo
ref, uavS ref, uav e,propeff,perf Vstall,perfVendureperfVcruise,perfVmax,rho,sdmin);

EMPW=fval; % EM Power (W)

181

disp('));
disp('Optimization Completed:');
disp(['Exitflag (>0 if Converged, =0 if Max Iterations, <0 if No Convergence): ',num2str(exitflag)])
output
output.algorithm
disp(' ');
disp('Solution Computed from Optimization (Harmon):');
disp(['W/S (N/m^2): ',num2str(x(1))]);
disp(['Aspect Ratio: ',num2str(x(2))]);
disp(['Clmax: ', num2str(x(3))]);
disp(['Vstall (kts): ', num2str(msec2kts*x(4))]);
disp(['Vendure (kts): ', num2str(msec2kts*x(5))]);
disp(['EM Power (W): ',num2str(EMP W)]);
disp(['ICE Power (W): ',num2str(x(6))]);
disp(['Zero-Lift Drag Coefficient: ', num2str(x(7))]);

% Assign Variables
WLstall=x(1); % Wing Loading for Stall (N/m^2), Anderson-P&D, Eqn 8.26
uavWL=WLstall; % Wing Loading (N/m^n2)
uavAR=x(2); % Aspect Ratio
uavClmax=x(3); % Max Cl during Cruise
uavClniaxTO=uav_Clmax; % Max Cl during Take-Off, assume no flaps
Vstall=x(4);
Vendure=x(5); % Endurance Velocity (m/s)
ICEPW=x(6); % ICE Power (W)
uavCdo=x(7); % Zero-Lift Drag Coefficient

% Compare Equation Values to Solution Values
disp(' ');
disp('Percent Error Between Parameter Values and Equation Values:');
disp(['W/S Error (%): ',num2str(100*(x(l)-0.5*rho*VstallA2*x(3))/x(1))]);
disp(['AR Error (%): ',num2str(l00*(x(2)-

(2*x(1)/(rho*sqrt(3*uavCdo*pi*uav-e)*x(5)A2)) 2)/x(2))]);
disp(['Vstall Error (%): ', num2str(100*(x(4)-sqrt(2*x(1)/(rho*x(3))))/x(4))]);
disp(['Vendure Error (%): ', num2str(100*(x(5)-

sqrt(2*x(l)*sqrt(l/(3*uavCdo*pi*uave*uavAR))/rho))/x(5))]);
disp(['EM Power Error (%): ', num2str(100*(EM_P W*prop efF-

uavW*sqrt(2*x(1)/rho)*4*uav Cdo/(3*uav Cdo*pi*uav e*x(2))A0.75)/(propeff*EMPW))]);
disp(['ICE Power Error (%): ', num2str(100*(prop eff*0.8*x(6)-

(0.5*rho*perfVcruise3 *uav_W*uavCdo/x(l)+2*perfVcruise*uavW*x(1)/(rho*perfVcruiseA2*pi*u
ave*x(2))))/(propeff*0.8*x(6)))]);

disp(['Zero-Lift Drag Coefficient Error (%): ', num2str(100*(x(7)-
uavCdoref*uav_S ref*x(1)*(10/x(5))^0.2/uavW)/x(7))]);

case 2
% Minimize Endurance Power (Nonlinear Equation) with Equality Constraints
xO=[100; 12; 1.2; 10; 11; 1000; 0.035]; % Initial values for x
lb=[90; 8; 1; 5; 5; 500; 0.025]; % Lower Bound for variables
ub=[200; 20; 1.25; 20; 20; 2500; 0.045]; % Upper Bound for variables
disp(' ');
disp('Minimizing EM Power, Optimizing W/S, AR, Clmax, Vstall, Vendure, ICE Power, & Cdo:)');
disp('');
options=optimset('LargeScale','off, 'Display,,'fmal',`Maxlter, 1 5000,'MaxFunEvals',75000);

[x,fval,exitflag,output]=finincon(@SizeEqMinPR2,xO,[],[],[],[],lb,ub,@SizeEqCon2,optionsuav_Wuav_C
do_ref, uav_S_refuav-e,propeff,perf Vstall,perfVendure,perfVcruise,perfVmax,rho,sdmin);

EM_P_W=fval; % EM Power (W)

182

disp(' ');
disp('Optimization Completed:');
disp(['Exitflag (>0 if Converged, =0 if Max Iterations, <0 if No Convergence): ',num2str(exifflag)]);
output
output.algorithm
disp(');
disp('Solution Computed from Optimization (Chattot):');
disp(['W/S (N/m^2): ',num2str(x(1))]);
disp(['Aspect Ratio: ',num2str(x(2))]);
disp(['Clmax: ', num2str(x(3))]);
disp(['Vstall (kts): ', num2str(msec2kts*x(4))]);
disp(['Vendure (kts): ', num2str(msec2kts*x(5))]);
disp(['EM Power (W): ',num2str(EMPW)]);
disp(['ICE Power (W): ',num2str(x(6))]);
disp(['Zero-Lift Drag Coefficient: ', num2str(x(7))]);

% Assign Variables
WLstall=x(l); % Wing Loading for Stall (N/mA2), Anderson-P&D, Eqn 8.26
uavWL=WLstall; % Wing Loading (N/mA2)
uavAR=x(2); % Aspect Ratio
uavClmax=x(3); % Max Cl during Cruise
uavClmaxTO=uav_Clmax; % Max Cl during Take-Off, assume no flaps
Vstall=x(4); % Stall Velocity (ni's)
Vendure=x(5); % Endurance Velocity (mis)
ICE P W=x(6); % ICE Power (W)
uavCdo=x(7); % Zero-Lift Drag Coefficient

% Compare Equation Values to Solution Values
disp(' ');
disp('Percent Error Between Parameter Values and Equation Values:');
disp(['W/S Error (%): ',num2str(100*(x(1)-0.5 *rho*x(4)A2*x(3))/x(1))]);
disp(['AR Error (%): ',num2str(l00*(x(2)-

((x(4)/x(5)) 2*x(3)/sqrt(3 *pi*uav_e*uavCdo))A2)/x(2))]);
disp(['Vstall Error (%): ', num2str(100*(x(4)-sqrt(2*x(1)/(rho*x(3))))/x(4))]);
disp(['Vendure Error (%): ',num2str(100*(x(5)-

sqrt(2*x(1)*sqrt(1/(3*uav Cdo*pi*uav-e*uavAR))/rho))/x(5))]);
disp(['EM Power Error (%): ', num2str(100*(EM PW-

4*uavCdo*uavW*x(5)*(x(5)/x(4))A2/(propeff*x(3)))/EM P W)]);
disp(['ICE Power Error (%): ', num2str(100*(propeff*0.8*x(6)-

(1+3*(x(5)/perf Vcruise)A4)*(perf Vcruise/x(4)) 2*perf Vcruise*uavW*uavCdo/x(3))/(prop eff*0.8*x
(6)))]);

disp(['Zero-Lift Drag Coefficient Error (%): ', num2str(100*(x(7)-
uavCdoref*uavS ref*x(1)*(10/x(5))AO.2/uavW)/x(7))]);

% Plot ICE Power vs. Vstall and Clmax
sd=Vendure-Vstall; % Speed Delta between Stall and Endurance Speeds (mi/s), 2.57 m/s=>5 kts
Vstall range=[7:0.1:15]; % Range of Stall Velocities (m/s)
Clmax range=[1:0.01:2.5]; % Range of Max Lift Coefficients
figure;
[V,Cl]=meshgrid(Vstallrange,Clmax range);

ICEP1=(1 *ones(size(V))+3 *((V+sd*ones(size(V)))./perf Vcruise) A4).*(perfVcruise.iV).A2*perfVcruis

e*uav_W*uav Cdo./(Cl*prop eff*0.8);
[C,h]=contour(VClICE_P ,'k');
clabel(C,h);
hold on;

ICE P2=(ones(size(V))+3 *((V+sd*ones(size(V)))./perf Vmax).A4).*(perf VmaxiV).A 2*perf Vmax*uav

183

W*uav_Cdo./(Cl*propeft)-
4*EMovertrq*uavCdo*uav-W*(V+sd*ones(size(V))).*((V+sd*ones(size(V))).N/).A2./(prop-eff*Cl);

[C,h]=contour(VClICEP2,'r:');
clabel(C,h);
[C,h]=contour(VClICE_P 1 -ICE P2,0 -5000],'b');
clabel(C,h);
plot(Vstall,uavClmax,'bo');
xlabel('Stall Velocity (m/s)'); ylabel('Max Lift Coefficient, Cl');
title({'ICE Power Required';'[Cruise (W) : Max Velocity (W)'});
%print -depsc2 -tiff -r600 UAVICE_P_Vstall_Cl

case 3
disp(Not a valid selection.');

end

% Plot Cf vs. Reynolds Number
Re 1 =[1E3: 1000: 1E6]; % Range of Reynolds Number
Re2=[1E5:1000:IE8]; % Range of Reynolds Number
Cflam=1.328./sqrt(Rel); % Cf for Laminar Flow, Raymer, Eqn 12.25
Cfturb=0.455./(log10(Re2)).^2.58; % Cf for Turbulent Flow, Raymer, Eqn 12.27
figure;
loglog(Rel ,Cflam,'b:');
hold on;
loglog(Re2,Cfturb);
xlabel('Reynolds Number, Re'); ylabel('Cf);
title('Flat-Plate Skin-Friction Coefficient vs. Reynolds Number');
legend('Turbulent','Laminar');
grid on;
%print -depsc2 -tiff -r600 UAVCf Re

% Determine Wing Area and Wing Loading
uav_S-=uavW/WLstall; % Calculated Wing Area of UAV based on Wing Loading for Stall (m^2)
if (uavS>des_uav_S)

disp(' ');
disp('S is larger than desired due to Wing Loading for Stall->Increase CLmax, Vstall, or S');
disp(['Desired S (m^2): ', num2str(des uav S)]);
disp(['Calculated S (m^2): ', num2str(uavS)]);

end

% Calculate Endurance Parameter and L/D Ratio
uavK=I/(pi*uav e*uavAR); % Constant
uavCI15_Cd=(3*uavCdo/uavK).^0.75/(4*uavCdo); % Endurance Parameter (CI^1.5/Cd), Anderson-
Flight, Eqn 6.87
uavCICd=sqrt(uavCdo/uav_K)/(2*uavCdo); % Lift-to-Drag Ratio (CI/Cd), Anderson-Flight, Eqn 6.85

% Check Endurance Velocity and Stall Velocity
disp(' ');
disp(['Difference Between Desired and Actual Endurance Velocity (kts): ',
num2str(msec2kts*(perfVendure-Vendure))]);
disp(['Difference Between Desired and Actual Stall Velocity (kts): ', num2str(msec2kts*(perfVstall-
Vstall))]);
disp(['Difference Between Endurance Velocity and Stall Velocity (kts): ', num2str(msec2kts*(Vendure-
Vstall))]);

% Wing Geometry Calculations
LDmax=sqrt(1/(4*uav_K*uavCdo)); % Maximum Lift-to-Drag Ratio, Anderson-P&D, Eqn 5.24

184

V_LDmax=sqrt(2*uavWL/rho*sqrt(uavK/uavCdo)); % Velocity at Max L/D (m/s)
design ClIendure=2/(rho*Vendure^2)*(uavWL); % Design Lift Coefficient, Raymer, Eqn 4.5
design Clcruise=2/(rho*perf VcruiseA2)*(uav WL); % Design Lift Coefficient, Raymer, Eqn 4.5
uavwingspan-=sqrt(uavS*uavAR); % Wing Span (m)
uav_wingchord=uavS/uavwingspan; % Wing Chord (m)
uavwingReynoldsVendure=rho*Vendure*uav wing_chord/air-viscosity; % Reynolds number of Wing
for Endurance
uavwingReynolds_Vcruise=rho*perfVcruise*uav_wingchord/air viscosity; % Reynolds number of
Wing for Cruise
uavwingReynoldsVmax=rho*perf Vmax*uav wing_chord/airviscosity; % Reynolds number of Wing
for Max Speed

% Plot to Show Relationship Between Vendure and PRendure vs. W/S and AR
uav_WLrangeozft2=[10:0.5:50]; % Wing Loading (oz/ftA2)
uavAR range=[5:0.1:20]; % Aspect Ratio
K_range=l./(pi*uave*uavAR range); % Constant
[WL,AR]=meshgrid(uavWLrangeozft2,uavARrange);
Vendure-range=sqrt(2*3.0*WL./rho.*sqrt(1./(3*uavCdo*pi*uav e*AR))); % Endurance Velocity (m/s),
Anderson-P&D, Eqn 5.41
figure;
[C,h]=contour(WL,AR,msec2kts*Vendure_range,2*[5 6 7 8 9 10 11 12 13 14 15],'k'); % Plot Endurance
Velocity (kts) vs. W/S and AR
clabel(C,h);
hold on;
CI15_Cd=(3*uavCdo*pi*uav e*AR).AO.75./(4*uavCdo); % Endurance Parameter (CIA1.5/Cd),
Anderson-Flight, Eqn 6.87
PRVendure range=uavW.*sqrt(2*3.0*WL./rho)./Cl_15_Cd; % Power Required for Endurance (W),
Anderson-P&D, Eqn 5.56
[C,h]=contour(WL,AR, PRVendurerange,[50 75 100 125 150 200],'k--');
clabel(C,h);
plot(0.333*uavWLuav_AR,'ko');
xlabel('Wing Loading, W/S (oz/ftA2)'); ylabel('Aspect Ratio, AR');
title(' Endurance Speed (kts) --- Power Required (W) o Design Point');
%print -depsc2 -tiff -r600 UAVPRVendureWLAR

% Plot Endurance Parameter and L/D Ratio vs. AR
uav Cl 15 Cd range=(3*uav_Cdo./K_range).A0.75./(4*uavCdo); % Endurance Parameter (CIA1.5/Cd),
Anderson-Flight, Eqn 6.87
uav Cl Cd range=sqrt(uavCdo./Krange)./(2*uavCdo); % Lift-to-Drag Ratio (Cl/Cd), Anderson-Flight,
Eqn 6.85
figure;
plot(uav AR range,uavCl_15_Cd range,'b');
hold on;
plot(uav AR range,uavClICd range,'k');
plot(uavARuav Cl_ 15Cd,'bo');
plot(uavARuav C1 Cd,'ko');
xlabel('Aspect Ratio (AR)'); ylabel('Endurance Parameter or L/D Ratio');
title('Endurance Parameter and L/D Ratio vs. AR');
legend('Endurance Parameter, C1A1A.^5/Cd','Lift-to-Drag Ratio, L/D','Design Points');
%print -depsc2 -tiff -r600 UAVEndParLDAR

% Determine Power Required for Endurance for 30 lb UAV
uav S range=[0.5:0.1:2]; % Wing Area (mA2)
[S,Cl1 15 Cd]=meshgrid(uav S range,uav Cl115_Cdrange);
PRendurerange=sqrt(2*uav_W. A3./(rho.*S))./C1_15_Cd; % Power Required (W), Anderson-P&D, Eqn
5.56

185

figure;
[C,h]=contour(S,C1_15_Cd, PRendure range);
clabel(C,h);
hold on;
plot(uav_SuavCl 15_Cd,'o');
xlabel('Wing Area, S (m^2)'); ylabel('Endurance Parameter, CI^IA.A5/CdI); zlabel('Power Required (W)');
title('Endurance Power Required (W) for UAV mass=13.6 kg (30 Ibs)');
legend('Design Point');
%print -depsc2 -tiff -r600 UAVPRendure_S_EndPar

% Plot Power Required for Endurance and Battery Weight vs. Weight
W=[0:200]; % Range of Weights (N)
figure;
plot(W,sqrt(2*W.^3./(rho.*uavS))./uav Cl 15 Cd,k'); % Assume Endurance Parameter is the current one
hold on;
plot(W,batED*0.2*W*propeff*EM eff/g-des_payP,'k:'); % Assume 20% of Weight is batteries
xlabel('Weight (N)'); ylabel('Power (W)');
title('Endurance Power Required and Battery Power Available');
legend('Power Required','Battery Power Available');
%print -depsc2 -tiff -r600 UAV_PRendure_BatteryWeight

% Plot Power Required for Endurance vs. Weight and Wing Area
W=[0:1:200]; % Range of Weights (N)
S=[0.5:0.1:2.5]; % Range of Wing Area (m^2)
figure;
[W,S]=-meshgrid(W,S);
PRendure=sqrt(2*W.A3./(rho.*S))./uav Cl 15_Cd; % Assume Endurance Parameter is the current one
[C,h]=contour(W,S,PRendure,[25 50 100 150 200 250 300 350 400],'k');
clabel(C,h);
hold on;
PAbat=-batED*0.2*W*propeff*EM eff/g-des_payP*ones(size(W)); % Assume 20% of Weight is
batteries
[C,h]=contour(W,S,PAbat,'r:');
clabel(C,h);
[C,h]=contour(W,S,PRendure-PAbat,[0 -1000],'b');
clabel(C,h);
plot(uavW,uav_S t o');
xlabel('Weight (N)'); ylabel('Wing Area, S (m^2)');
title({'Endurance Power Required and Battery Power Available (0.2 WF)';'I Power Required (W) Battery
Power Available (W)'});
%print -depsc2 -tiff -r600 UAVPRendureWS

% Plot Power Required for Endurance vs. Weight and Endurance Parameter
W=[50:1:200]; % Range of Weights (N)
CI15_Cd=[10:0.1:20]; % Range of Wing Area (mA2)
figure;
[W,Cl_15_Cd]=meshgrid(W,Cl1 5_Cd);
PRendure=sqrt(2*W.A3./(rho.*uavS))./C1l15_Cd; % Assume Wing Area is the current one
[C,h]=contour(W,C1_15_CdPRendure,[25 50 100 150 200 300 400],Vk);
clabel(C,h);
hold on;
PAbat=-batED*0.2*W*propeff*EM eff/g-des_payP*ones(size(W)); % Assume 15% of Weight is
batteries
[C,h]=contour(W,C1_15_CdPAbat,'k:');
clabel(C,h);
[C,h]=contour(W,C1_15_CdPRendure-PAbat,[0 -1000],Vk);

186

clabel(C,h);
plot(uav_WuavCli 5 Cd,'ko');
xlabel('Weight (N)'); ylabel('Endurance Parameter (CI^.5/Cd)');
title({'Endurance Power Required and Battery Power Available (0.2 WF)';'I Power Required (W) Battery
Power Available (W)'});
%print -depsc2 -tiff -r600 UAVPowerWeightEndPar

% Plot Lift Coefficent, Cl, vs. Velocity
V=[Vstall:0.5:perfVmax]; % Range of Velocities (m/s)
Cl=uav_WL./(0.5*rho*V.^2); % Lift Coefficient, Anderson-Flight, Eqn 6.26
figure;
plot(msec2kts*V,C1);
xlabel('Velocity (kts)'); ylabel('Lift Coefficient, Cl');
title('Lift Coefficient vs. Velocity');
%print -depsc2 -tiff -r600 UAVLiftCoefSpeed

% Section for Original Configuration UAV
% Determine Power Required to Meet ROC Requirement
V=[Vstall-2.57:0.5:perfVmax]; % Range of Velocities (m/s)
Cl=uavWL./(0.5*rho*V.A2); % Lift Coefficient, Anderson-Flight, Eqn 6.26
Cd=uavCdo+uavK*Cl.^2; % Drag Coefficient, Anderson-Flight, pg 359
PRSL=sqrt(2*uav WA3 *Cd.A2./(rho*uavS*Cl.A3)); % PR for S&L (W), Anderson-Flight, Eqn 6.27
PRclimb=perf ROC*uavW*ones(size(Cd))+PR SL; % PR for Climb (W), Anderson-Flight, Eqn 6.50
uav_PRmin_climb=min(PR-climb); % PR min in PR-climb vector (W)

% Plot Power Required to Climb
figure;
plot(msec2kts*V,PRclimb,'b');
xlabel('Velocity (kts)'); ylabel('Power (W)');
title('Power Required to Climb to Meet ROC Requirement (m=13.6 kg, 30 lbs)');
%print -depsc2 -tiff -r600 UAVPRROC

% Determine Power Required to Meet Take-off Requirement
TRTO=1.21 *(uavWL)/(g*rhoSL*uavClmaxTO*perfs_TO/uav_W); % Thrust Required for Take-off
(N), Anderson-P&D, Eqn 6.95
Vtakeoff=1.2*sqrt(2*uavWL/(rhoSL*uav_ClmaxTO)); % Velocity at Take-Off (mi/s), 120% of Vstall,
Anderson-P&D, Eqn 5.67
uavPRTO=TRTO*Vtakeoff; % Power Required for Take-off(W)

% Determine Power Required to Meet Max Velocity Requirement
C1=uav WL/(0.5*rho*perf Vmax 2); % Lift Coefficient for Cruise, Anderson-P&D, Eqn 5.11
Cd=uavCdo+uav_K*ClA2; % Drag Coefficient for Cruise, Anderson-P&D, Eqn 5.10
uav PR Vmax=sqrt(2*uav_WA 3*Cd A2/(rho*uav_S*C1A3)); % Power Required for Vmax (W), Anderson-
Flight, Eqn 6.27

% Determine Power Required to Meet Cruise Requirement
Cl=uavWL/(0.5*rho*perfVcruise A2); % Lift Coefficient for Cruise, Anderson-P&D, Eqn 5.11
Cd-uavCdo+uav_K*ClA2; % Drag Coefficient for Cruise, Anderson-P&D, Eqn 5.10
LDcruise=CI/Cd; % L/D Ratio at Cruise
uav PR Vcruise=sqrt(2*uav WA 3*Cd 2/(rho*uavS *C1 3)); % Power Required for Vcruise (W),
Anderson-Flight, Eqn 6.27

% Determine Power Required to Meet Endurance Requirement
Cl=uavWL/(0.5*rho*Vendure 2); % Lift Coefficient for Cruise, Anderson-P&D, Eqn 5.11
Cd=uavCdo+uav_K*CIA2; % Drag Coefficient for Cruise, Anderson-P&D, Eqn 5.10

187

uavPRVendure=sqrt(2*uav_ W3*Cd^2/(rho*uavS*C1A3)); % Power Required for Vendure (W),
Anderson-Flight, Eqn 6.27

% Place Power Requirements into a Vector
PR=[uavPRTO uav PRmn-in climb uavPRVcruise uavPRVendure uavPR Vmax]; % Power
Required for the Mission Segments (W)
ICE P_W org=rax(PR/propefl)+1.25*despayP; % Size of ICE to meet PR (W), includes payload
power and generator efficiency
ICEP_hporg=W2hp*ICE P W_org; % Size of ICE to meet PR (hp)
ICESizein3_org=ICEPhporg; % Size of ICE (inA3), assume 1 hp=l in^3

% Mission Segment Weight Fractions for the Original Configuration
Wo=uav_W; % Desired UAV Weight (N)
WF_TO org=0.97; % Weight Fraction for Take-off, Raymer-A/C Design, Section 3.4
WFclimb org=0.985; % Weight Fraction for Climb, Raymer-A/C Design, Section 3.4
R=perfVcruise*perftcruise; % Range of UAV (m)
Cl=uavWL/(0.5*rho*perfVcruise^2); % Lift Coefficient for Cruise, Anderson-P&D, Eqn 5.11
Cd=uavCdo+uavK*ClA2; % Drag Coefficient for Cruise, Anderson-P&D, Eqn 5.10
WFcruise org=exp(-R*SFC_cruise/(propeff'*(C/Cd))); % Weight Fraction for Cruise, Derived from
Breguet Formula
Cl=uavWL/(0.5*rho*VendureA2); % Lift Coefficient for Endurance, Anderson-P&D, Eqn 5.11
Cd=uavCdo+uavK*CIA2; % Drag Coefficient for Endurance, Anderson-P&D, Eqn 5.10
WFendure org=exp(-Vendure*perf tendure*SFCendure/(propeff*(Cl/Cd))); % Weight Fraction for
Endurance, Raymer, Section 3.4
WF_landingorg=0.995; % Weight Fraction for Landing, Raymer, Section 3.4
WE_fuelorg=l.06*(1-
WF_TOorg*WFclimb org*WFcruise_org*WFendureorg *WFcruise org*WFlandingorg); %
Weight Fraction for Fuel, Raymer, Section 3.4
payWorg=Wo*(1-WEfuel_org-WF_ernpty); % Calculate Payload Weight (N)
paymrnorg=payWorg/g; % Payload Mass of Original UAV (kg)
WF_payorg=payWorg/Wo; % Weight Fraction for the Payload
ICE m_org=ICE P W-org/1000; % Engine Mass of Original UAV (kg), Assume 1.5 lb/hp or 1 kg/kW
fuel m_org=WF fuel org*Wo/g; % Fuel mass of Original UAV (kg)
essmorg=0.5; % Mass of original Battery Pack or Generator (kg)
uavempty_rmorg=des uav m-fuel-m-org-pay_rm~org; % Empty Mass of Original UAV (kg)
uavglider-m=uav_emptyrnorg-ICE-mrorg-ess-m-org-propm; % Glider Mass of Original UAV (kg)
propulsion-m-org=ICE-m-org+ess mrorg+propm; % Mass of Propulsion System of Original UAV (kg)
WF_propulsionorg=propulsionmrnorg*g/Wo; % Weight Fraction for Propulsion System for Original
UAV

% Plot Performance Requirements on a T/W and W/S Plot
uav_WLrangeozft2=[10:0.5:50]; % Wing Loading (oz/ftA2)
uavTW range=[0.05:0.05:0.75]; % Thrust-to-Weight Ratio
[WL,TW]=meshgrid(uavWL-range_ozft2,uavTWrange);
PRVmax-range=TW*uav_W.*sqrt((TW.*3.0.*WL+3.0*WL.*sqrt(TW.A2-
4*uavK*uavCdo))./(rho*uavCdo)); % Power Required for Vmax (W), Anderson-P&D, Eqn 5.50
figure
[C,h]=contour(WL,TWPRVmaxrange,'b'); % Plot Power Required for Vmax vs. T/W and W/S
clabel(C,h);
hold on;
PRROCrange=uavW.*TW.*sqrt(2*3.0*WL/rho.*sqrt(uav_K/(3*uavCdo))); % Power Required for
Max ROC (W), Anderson-P&D, pg 266-267, 276
[C,h]=contour(WL,TWPRROC range,'g'); % Plot Power Required for Max ROC
clabel(C,h);
PRTO range=1.2*TW.*uav_W.*sqrt(2*3.0*WL/(rhoSL*uavClmaxTO)); % Power Required for Take-
off(W)

188

[C,h]-contour(WL,TWPRTO range,r); % Plot Power Required for Take-off Roll (W)

clabel(C,h);
xlabel('Wing Loading, W/S (oz/ft^2)'); ylabel('Thrust-to-Weight Ratio, T/W'); zlabel('Power Required
(W)');
title({'Power Required (W) for Performance Parameters vs. T/W and W/S','Vmax-blue ROCmax-green
Take-Off-red'});
%print -depsc2 -tiff -r600 UAVPerfTW_WL

% Plot Performance Requirements on a AR and W/S Plot
uav_WLrangeozft2=[20:0.5:40]; % Wing Loading (oz/ft^2)
uavARrange=[5:0.1:15]; % Aspect Ratio
[WL,AR]=meshgrid(uavWL range-ozft2,uavAR range);
q_max=0.5*rho*perfVmax^2; % Dynamic pressure for Vmax
Krange=l./(pi*uave*AR); % Constant
PR Vmax=perfVmax*(qmax*uav_S*uav Cdo*ones(size(WL))+Krange.*uavS.*(3.0*WL) .A2/q max
); % Power Required for Vmax (W), Anderson-P&D, Eqn 5.13
figure;
[C,hl]=contour(WL,AR PRVmax,b'); % Plot Power Required for Vmax (W)
clabel(C,hl);
hold on;
q_cruise=0.5*rho*perfVcruiseA2; % Dynamic pressure for Vcruise
PRVcruise=perfVcruise*(qccruise*uav_S*uavCdo*ones(size(WL))+K range.*uavS.*(3.0*WL).A2/q_
cruise); % Power Required for Cruise (W), Anderson-P&D, Eqn 5.13
[C,h2]=contour(WL,ARPRVcruise,'c'); % Plot Power Required for Vcruise (W)
clabel(C,h2);
Cl 15 Cd=(3*uav Cdo./Krange).AO.75./(4*uav Cdo); % Endurance Parameter (ClAI .5/Cd), Anderson-
Flight, Eqn 6.87
PRVendure=uav_W*sqrt(2*3.28*WL./rho)./Cl_15_Cd; % Power Required for Endurance (W), Anderson-
P&D, Eqn 5.56
[C,h3]=contour(WL,AR, PRVendure,'k');
clabel(C,h3);
VROC=sqrt(2*3.0*WL/rho.*sqrt(Krange/(3*uavCdo))); % Velocity for Max ROC, Anderson-P&D, Eqn
5.118
Cl=uav WL./(0.5*rho*VROC.^2); % Lift Coefficient, Anderson-Flight, Eqn 6.26
Cd=uavCdo*ones(size(Cl))+uavK *CI. 2; % Drag Coefficient, Anderson-Flight, pg 359
PRROC=perfROC*uav_W*ones(size(Cd))+0.5*rho*VROC.A2. *uavS.*Cd.*VROC; % Power
Required for Max ROC (W), Anderson-P&D, pg 276
[C,h4]=contour(WL,ARPRROC,'g');
clabel(C,h4);
[C,h4]=contour(WL,AR,PR nVmax-(EM overtrq*PRVendure+1.25*PRVcruise),'r');
clabel(C,h4);
plot(O.333*uav_WLuavAR,'ro');
xlabel('Wing Loading, W/S (oz/ftA2)'); ylabel('Aspect Ratio, AR'); zlabel('Power Required (W)');
title({'Power Required (W) for Performance Parameters vs. AR and W/S','Vmax-blue Vcruise-cyan
Vendurance-black ROCmax-green'});
%print -depsc2 -tiff -r600 UAVPerfWLAR

"% Section for Hybrid-Electric UAV (HEUAV)
"% Determine Size of EM and Mass of Batteries
%EMPW=uavPR Vendure/propeff; % Power of EM (W)
bat_m=l .25*EMPW*perf tendure/(bat ED*3600)+des_payP/batED; % Mass of batteries for
PR design (kg), includes payload power
batW=bat m*g; % Weight of Batteries (N)
EM_m=NEM_ PW*0.000603; % Mass of EM (Assume I lb/hp or 0.000603 kg/W)
EMW=EMm*g; % Weight of EM (N)

189

% Determine Power Required to Cruise and Size ICE
ICE_P_hp=W2hp*ICE_P_W; % Size of ICE to meet PR (hp)
ICESizein3=ICE_P_hp; % Size of ICE (inA3), assume 1 hp=l inA3

% Mission Segment Weight Fractions for HEUAV Configuration
Wo=uavW; % Desired UAV Weight (N)
WF_EM=EMW/Wo; % Weight Fraction of EM
WFbat-batW/Wo; % Weight Fraction of batteries
WFTO=0.97+0.015; % Weight Fraction for Take-off, 1/2 for Electric, Raymer-A/C Design, Section 3.4
WFclimb-0.985+0.0075; % Weight Fraction for Climb, 1/2 for Electric, Raymer-A/C Design, Section 3.4
R=perfVcruise*perftcruise; % Range of UAV (m)
Cl=uavWL/(0.5*rho*perfVcruise^2); % Lift Coefficient for Cruise, Anderson-P&D, Eqn 5.11
Cd=uavCdo+uav_K*CIA2; % Drag Coefficient for Cruise, Anderson-P&D, Eqn 5.10
WE cruise-exp(-R*SFCcruise/(propeff*(Cl/Cd))); % Weight Fraction for Cruise, Derived from Breguet
Formula
WFendure=1; % Weight Fraction for Endurance, All-Electric
WFlanding=0.995+0.0025; % Weight Fraction for Landing, 1/2 for Electric, Raymer, Section 3.4
WFfuel=1-.06*(1-WFTO*WFclimb*WF cruise*WFendure*WFcruise*WF landing); % Weight
Fraction for Fuel, Raymer, Section 3.4
ICE m=ICE_P_W/1000; % Engine Mass of HEUAV (kg), Assume 1.5 lb/hp or 1 kg/kW
ICEW=ICEm*g; % ICE Weight (N)
fuel-m--WF_fuel*Wo/g; % Fuel mass of HEUAV (kg)
fuel_W=fuel_m*g; % Fuel Weight (N)
pay_m--desuav_m-uav glider m-ICEm-fuelm-clutchm-batim-EM_m-prop_m; % Payload Mass of
HEUAV (kg)
pay W=paym*g; % Payload Weight of HEUAV (N)
WF pay=payW/Wo; % Weight Fraction for the Payload
uav-empty mr=des uav m-fuel m-paym; % Empty Mass of HEUAV (kg)
propulsion_m--ICE m+clutchm+batm+EM m+prop_m; % Mass of Propulsion System for HEUAV (kg)
WF_propulsion=propulsion-m*g/Wo; % Weight Fraction for Propulsion System for Original UAV

% Check Max Speed Requirement
disp(' ')
if (ICE PW+EMovertrq*EMPW)>(uavPRVmax/prop eff) % Over-Torque EM for short periods

disp([-IE Propulsion System Meets Vmax Requirement by (W): ',
num2str((ICE P W+EM overtrq*EM P W)-(uav PRnVmax/prop efl))]);
else

disp(['HE Propulsion System Does not Meet Vmax Requirement by (W): ',

num2str((uav PRVmnax/propeff)-(ICE P W+EM_overtrq*EM PW))]);
end

% Check Take-off Requirement
if (ICE P W)>(uav PR TO/propeff)

disp(['HE ICE Alone Meets Take-off Requirement by (W): ', num2str(ICE P W-
(uav PRkTO/propeft))]);
else

disp(['HE ICE Alone Does Not Meet Take-off Requirement by (W): ', num2str((uavLPRTO/prop eft)-
ICEPW)]);
end

% Check the ROC Requirement Requirement
ROCmax=(ICE P W*prop_eff-uavPRVendure)/uav W; % Max ROC (m/s), Anderson-P&D, Eqns
5.117 and 5.118
if (ROCmax>perfROC)

disp(['HEUAV ICE Alone Exceeds ROC Requirement by (ft/nin): ',num2str(196.9*(ROCmax-
perfROC))]);

190

else
disp(['HEUAV ICE Alone Does Not Meet ROC Requirement by (ft/min): ',num2str(196.9*(perfROC-

ROCmax))]);
end

% Check the Service Ceiling Requirement
% Best ROC at Endurance Speed, ROC=(PA-PRendure)IW
% Reference: Anderson-P&D, Eqn 5.117, 118

% Plot Normalized Weight Fractions for UAV
figure; colormap('gray');
h=bar([uavgliderrn/desuavm uavglider-m/desuav m; propulsion m-org/des uav_m
propulsion_rn/des_uavm; uav-emptymrorg/des uav m uavempty m/desuav m;
fuel_m_org/des uavm fuelm/des uav_m; payrnorg/desuavm payrn/desuavm],'group');
set(gca,'XTickLabel', {'Glider;'Propulsion;'Empty';'Fuel';'Payload'});
xlabel('Component'); ylabel('Weight Fraction');
legend('Original (ICE Only)','Hybrid-Electric');
title('Weight Fractions, Normalized to UAV Weight (m--13.6 kg, 30 lbs)');
%print -depsc2 -tiff -r600 UAVWeightFractionsUAV

% Plot Normalized Fuel Weight Fractions for UAV Configurations
figure; colormap('gray');
bar([1-WF TO org 1-WF_TO; 1-WF_climb org 1-WF climb; 1-WEcruise_org^2 1-WF cruiseA2; 1-
WF_endure org 1-WF_endure; 1-WF_landing org 1-WE_landing],'group')
set(gca,'XTickLabel', {'Take-off ;'Climb';'Cruise';'Endurance';'Landing'});
xlabel('Mission Segment'); ylabel('Weight Fraction');
legend('Original (ICE Only)','Hybrid-Electric');
title('Fuel Weight Fractions, Normalized to UAV Weight (m=13.6 kg, 30 lbs)');
%print -depsc2 -tiff -r600 UAVFuelWeightFractionsUAV

% Plot Normalized Weight Fractions for the Propulsion Components for Original Configuration
figure;
bar([fuel_m_org/desuav_m; ICE m-org/des uavm; proprn/des uav_m],'k');
set(gca,'XTickLabel', {'Fuel';'ICE';'Prop'});
xlabel('Propulsion System Component'); ylabel('Weight Fraction');
title('Weight Fractions for Original UAV (m=13.6 kg, 30 lbs)');
%print -depsc2 -tiff -r600 UAVWeightPropFractionsOrg

% Plot Normalized Weight Fractions for the Propulsion Components for HEUAV
figure;
bar([fuelW/uav_W; ICEW/uav_W; clutchW/uav_W; bat_W/uavW; EMW/uav_W;
propW/uavW],'k');
set(gca,'XTickLabel', {'Fuel';'ICE';'Clutch;'Batteries';'EM';'Propeller'});
xlabel('Propulsion System Component'); ylabel('Weight Fraction');
title('Weight Fractions for Hybrid-Electric UAV (m=13.6 kg, 30 lbs)');
%print -depsc2 -tiff -r600 UAVWeightPropFractionsHE

% Display Data
disp('');
disp('UAV Parameters:');
disp(['UAV Oswald Efficiency Factor: ', num2str(uav-e)]);
disp(['UAV Zero-Lift Drag Coefficient (Cdo): ', num2str(uav Cdo)]);
disp(['Max Lift Coefficient (Clmax): ', num2str(uavClmax)]);
disp(['Max Take-off Lift Coefficient (ClmaxTO): ', num2str(uavClmaxTO)]);
disp(['Propeller Efficiency: ', num2str(propeft]);
disp(' ');

191

disp('Performance Parameters:');
disp(['Endurance Time (hr): ', num2str(perf tendure/3600)]);
disp(['Rate-of-Climb (ft/min): ', num2str(perfROC*60*3.28)]);
disp(['Cruise Velocity (kts): ', num2str(msec2kts*perfVcruise)]);
disp(['Endurance Velocity-Desired (kts): ', num2str(msec2kts*perfVendure)]);
disp(['Endurance Velocity-Actual (kts): ',num2str(msec2kts*Vendure)]);
disp(['Endurance Parameter-Actual (CI^1.5/Cd): ', num2str(uav Cl1 5 Cd)]);
disp(['Stall Velocity-Desired (kts): ', num2str(msec2kts*perfVstall)]);
disp(['Stall Velocity-Actual (kts): ',num2str(msec2kts*Vstall)]);
disp(['Max Velocity (kts): ', num2str(msec2kts*perfVnax)]);
disp(['Take-off Distance, Ground Roll only (m): ', num2str(perf sTO)]);
disp(['Payload Power (W): ', num2str(despayP)]);
disp(' ');
disp('UAV Design Results:');
disp(['UAV Total Mass-Desired (kg): ', num2str(des uav m)]);
disp(['UAV Total Mass-Actual (kg): ', num2str(Wo/g)]);
disp(['Payload Mass-Desired (kg): ', num2str(despay m)]);
disp(['Payload Mass-Actual for Original (kg): ',num2str(paymnorg)]);
disp(['Payload Mass-Actual for HEUAV (kg): ',num2str(paym)]);
disp(['Original UAV Empty Mass (kg): ', num2str(uavemptymorg)]);
disp(['HEUAV Empty Mass (kg): ',num2str(uav emptym)]);
disp(['Wing Area-Desired (m^2): ',num2str(desnuay S)]);
disp(['Wing Area-Actual (m^2): ', num2str(uavS)]);
disp(['Aspect Ratio-Desired: ', num2str(des uavAR)]);
disp(['Aspect Ratio-Actual: ', num2str(uavAR)]);
disp(['Max L/D Ratio: ',num2str(LDmax)]);
disp(['L/D at Vcruise: ',num2str(LDcruise)]);
disp(['Velocity at Max L/D Ratio (kts): ', num2str(msec2kts*VLDmax)]);
disp(['Best Glide Ratio, 1/LDmax (deg): ', num2str(1 80/(LDmax*pi))]);
disp(['Rate of Descent at Best Glide Ratio (ftlmin): ', num2str(60*3.28*VLDmax*sin(1/LDmax))]);
disp(['Design Lift Coefficient for Endurance: ', num2str(designClendure)]);
disp(['Design Lift Coefficient for Cruise: ', num2str(design.Clcruise)]);
disp(['Wing Span (m): ', num2str(uavwingspan)]);
disp(['Wing Chord (m): ', num2str(uavwing_chord)]);
disp(['Wing Reynolds Number, Endurance: ', num2str(uav-wingReynoldsVendure)]);
disp(['Wing Reynolds Number, Cruise: ', num2str(uavwingReynoldsVcruise)]);
disp(['Wing Reynolds Number, Max Velocity: ', num2str(uav-wingReynoldsVmax)]);
disp(' ');
disp('Power Requirements for the UAV:');
disp(['Power Required for Take-off(W): ', num2str(uav PR TO)]);
disp(['Power Required for Climb (W): ',num2str(uavPRmin_climb)]);
disp(['Power Required for Cruise (W): ',num2str(uav PRVcruise)]);
disp(['Power Required for Endurance (W): ', num2str(uavPRVendure)]);
disp(['Power Required for Max Velocity (W): ', num2str(uav PR Vmax)]);
disp(' ');
disp('Weight Fractions for Original Configuration:');
disp(['WF for Take-off: ', num2str(WF TOorg)]);
disp(['WF for Climb: ',num2str(WF_climb_org)]);
disp(['WF for Cruise: ',num2str(WF_cruise_org)]);
disp(['WF for Endure: ', num2str(WF~endureorg)]);
disp(['WF for Landing: ', num2str(WFlandingorg)]);
disp(['WF-Empty: ', num2str(WF empty)]);
disp(['WF-Fuel: ', num2str(WFjfuel_org)]);
disp(['WF-Payload: ', num2str(WFpayorg)]);
disp(['WF-Propulsion (ICE, Gen, Prop): ', num2str(WFpropulsionlorg)]);
disp(['ICE Size (W): ', num2str(ICEPWorg)]);

192

disp(['ICE Size (hp): ', num2str(ICE P_hporg)]);
disp(['ICE Size (in^3): ', num2str(ICESizein3_org)]);
disp(' ');
disp('Weight Fractions for HEUAV:');
disp(['WF for Take-off: ', num2str(WFTO)]);
disp(['WF for Climb: ',num2str(WF climb)]);
disp(['WF for Cruise: ',num2str(WF cruise)]);
disp(['WF for Endure: ',num2str(WF_endure)]);
disp(['WF for Landing: ', num2str(WFlanding)]);
disp(['WF-Empty: ', num2str(W _empty)]);
disp(['WF-Fuel: ', num2str(WFfuel)]);
disp(['WF-Payload: ', num2str(WFpay)]);
disp(['WF-Propulsion (ICE, Clutch, Batteries, EM, Prop): ',num2str(WF_propulsion)]);
disp(' ');
disp('Propulsion Requirements for HEUAV:');
disp(['ICE Size (W): ',num2str(ICE PW)]);
disp(['ICE Size (hp): ',num2str(ICEP~hp)]);
disp(['ICE Size (in^3): ', num2str(ICE Size in3)]);
disp(['Power Required for Endurance (W): ', num2str(uavPRVendure)]);
if x(5)<x(4)+sdmin

V=x(4)+sdmin; % Endurance Velocity (m/s), 3 kt margin above stall
Cl=uavWL./(0.5*rho*V.A2); % Lift Coefficient, Anderson-Flight, Eqn 6.26
Cd=uavCdo+uavK*Cl. 2; % Drag Coefficient, Anderson-Flight, pg 359
PRSL=sqrt(2*uav_W^3*Cd.^2./(rho*uavS*Cl.^3)); % PR for S&L (W), Anderson-Flight, Eqn 6.27
disp(['Vstall>Vendure, Additional Power Required for Increased Endurance Velocity (W): ',

num2str(PRSL-uavPRVendure)]);
end
disp(['EM Power for Endurance (W): ', num2str(EM_P_W)]);
disp(['EM Efficiency (%): ', num2str(l00*EM-eff)]);
disp(['EM Over-Torque Factor: ', num2str(EM overtrq)]);
disp(['Battery Mass (kg): ', num2str(batm)]);
disp(['Battery Storage (Wh): ', num2str(bat-m*batED)]);

function
f=-SizeEqMinPR(x,uavW,uavCdoref, uavS ref, uave,propeff,perfVstall,perfVendure,perfVcruise,
perfVmax,rho,sdmin)

% Nonlinear Equation to Minimize (Power Required for Endurance)

% References
% Anderson, Intro to Flight, 4th Edition
% Anderson, Aircraft Performance and Design
% Raymer, Aircraft Design: A Conceptual Approach

% Variables
"% x(l): Wing Loading, W/S (N/m^2)
"% x(2): Aspect Ratio, AR
"% x(3): Clmax
"% x(4): Vstall (m/s)
"% x(5): Vendure (m/s)
"% x(6): Internal Combustion Engine Power (W)
"% x(7): Zero-Lift Drag Coefficient

"% Function to Minimize (Power Required for Endurance)(Anderson, P&D, Eqns 5.38 & 5.56)
f=(uavW*sqrt(2*x(1)/rho)*4*x(7)/(3*x(7)*pi*uave*x(2))AO.75)/propeff;

193

function
[c,ceq]=SizeEqCon(x,uavW,uavCdoref, uavS ref,uave,prop eff,perfVstall,perfVendure,perfVcrui
se,perfVmax,rho,sdmin)
"% Constraints for Minimized Nonlinear Equation

"% References
"% Anderson, Intro to Flight, 4th Edition
"% Anderson, Aircraft Performance and Design
"% Raymer, Aircraft Design: A Conceptual Approach

"% Variables
"% x(l): Wing Loading, W/S (N/m^2)
"% x(2): Aspect Ratio, AR
"% x(3): Clmax
"% x(4): Vstall (m/s)
"% x(5): Vendure (mi/s)
"% x(6): Internal Combustion Engine Power (W)
"% x(7): Zero-Lift Drag Coefficient

"% Nonequality Constraint
c=[x(4)-sdmin-x(5)];

% Equality Constraints
ceq=[2*x(l)/(rho*x(3))-x(4)A2;

2*x(1)/(rho*sqrt(3*x(7)*pi*uav-e)*x(5)A2)-sqrt(x(2));
0.5*rho*perfVcruise 3*uavW*x(7)/x(1)+2 *uav W*x(1)/(rho*perfVcruise*pi*uav-e*x(2))-

propeff*0.8*x(6);
uavCdoref*uav S ref*x(1)*(10/x(5))AO.2/uavW-x(7)];

A.2 HEUAV Model MATLAB Code

The HEUAV model was developed in a MATLAB/Simulink environment. Data

files in the form of m-files were used to store the data for the propulsion system

components and the small UAV. A setup file allows the user to select the desired

configuration, engine, controller, charging strategy, and flight profile. The m-files are

included in this section.

A.2.1 HEUAV Setup File

% Hybrid-Electric Unmanned Aerial Vehicle Input File
close all; % Close figures
clear all; % Clear variables
pack; % Clean up memory

%%%%%%%%%% PHYSICAL CONSTANTS %%%%%%%%%%
gravityacceleration=9.8 1; % (m/s^2)
airviscosity=2E-5; % Air Viscosity (N*s/mA2), FE Text-pg 11-2
air temp_SL=288.15; % Air Temperature at SL (K)

194

air temp=air tempSL; % Initialize Air Temperature variable
airpressureSL=1.0133E5; % Air Pressure at SL (N/mA2)
air_densitySL=1.225; % Sea level Air Density (kg/m^3)
airdensity=air density SL; % Initialize Air Density variable (kg/m^3)
load stdatm; % Load Standard Atmosphere data
%%%%%%%%%% END OF PHYSICAL CONSTANTS %%%%%%%%%%

%%%%%%%%%% CONFIGURATION DATA %%%%%%%%%%

% Select configuration
disp(' ');
disp('Select original or hybrid-electric configuration:');
disp(' 1: Original (engine only)');
disp(' 2: Hybrid-Electric');
config=input('Enter your selection: ');
switch config

case 1
HEUAV=O;
ann=0;
inputsize=l;
quant(l)=1;
quant(2)=1;
quant(3)=l;

quant(4)=l;
cmac-output=- 1;
spdmin=l;
trq_min=l;
SOCmin=l;
spd_max=1;
trq_max=1;
SOCmax=1;
spdres=1;
trqres=l;
SOCres=1;
u(l)--O;
u(2)=O;
u(3)--0;

case 2
% Select charging strategy
disp(' ');
disp('Select a charging strategy:');
disp(' 1: Charge-Sustaining');
disp(' 2: Charge-Depletion');
chgstrategy=input('Enter your selection: ');
HEUAV=1;
ann=l;
u(1)=o;
u(2)=0;

u(3)=O;
case 3

disp('Not a valid selection.');
end

% Select type of engine
disp(' ');
disp('Select a specific engine:');
disp(' 1: FCQ100 or PC125->2-Stroke Gasoline Engine, Scaled');

195

disp(' 2: GX3 1->4-Stroke Gasoline Engine');
fc sel=input('Enter your selection: ');
switch fc sel

case 1
FCQ100; % Quadra Aerrow 100 cm^3 2-Stroke Engine, from Ferguson
%FCPC125; % Piaggio Cosa 125 cm^3 2-Stroke Engine, from Heywood and Sher

case 2
FCHondaGX3 1; % Honda GX31 4-Stroke Gasoline Engine

case 3
disp(rNot a valid selection.');

end

% If HEUAV configuration, select type of controller
NN_Strategy=0;
if (HEUAV1I)

disp(' ');
disp('Select Rule-Based or CMAC ANN controller:');
disp(' 1: Rule-Based');
disp(' 2: CMAC ANN');
controller=input('Enter your selection: ');
if (controller-2)

NNStrategy=l;
end
switch controller

case 1
input size= 1;
quant(1)=l;
quant(2)=l;
quant(3)=l;
quant(4)=l;
cmac-output'=l;
spd_min=l1;
trqnin=l1;
SOC_min= 1;
spdmax=1;
trqjmax=l;
SOCmax=1;
spdres=l;
trqres=1;
SOCres=1;

case 2
disp(' ');
disp('Select the CMAC ANN controller:');
disp(' 1: 2 Inputs-Rotational Speed and Demanded Torque');
disp(' 2: 3 Inputs-Rotational Speed, Demanded Torque, and SOC');
ann=1+input('Enter your selection: ');
switch ann

case 2
input size=2;
quant(1)=70;
quant(2)=51;
quant(3)=l;
if (fcsel~l)

fid=fopen('Trq_Cmd__ICEEM_2SMATLABdata.txt');
else

fid=fopen('TrqCmdICEEM_4SMATLABdata.txt');

196

end
[A,count]=fscanf(fid,'% 15f); % 8f for CMAC code, 15f if using optimization data directly
c=1;
for (i= :quant(l))

for (j=1:quant(2))
inputl(i)=A(c);
input2(j)=A(c+l);
cmac-output(ij)=A(c+2);
c=c+3;

end
end
spdmin-input 1 (1);
trq_min-input2(1);
SOC min= l;
spdmax=inputl (quant(1));
trq_max=input2(quant(2));
SOC_max=l;
spdres=inputl(2)-inputl 1();
trq_res=input2(2)-input2(1);
SOCres=1;

case 3
input size=3;
quant(1)=70;
quant(2)=5 1;
quant(3)=50;
if (fcsell)

if (chgstrategy==l)
fid=fopen('TrqCmdICEEMSOC_2SCSMATLAB_data.txt');

else
fid=fopen('Trq_CmdICEEMSOC_2SCDMATLAB_data.txt');

end
else

if (chgstrategy=1)
fid=fopen('Trq_CmdICEEMSOC_4SCSMATLABdata.txt');

else
fid=fopen('Trq_CmdICEEMSOC_4SCDMATLABdata.txt');

end
end
[A,count]=fscanf(fid,'% 15f'); % 8f for CMAC code, 15f if using optimization data directly
c=l;
for (i= :quant(1))

for (j=1:quant(2))
for (k=1 :quant(3))

inputl(i)=A(c);

input2(j)=A(c+l);
input3(k)=A(c+2);
cmac-output(i,j,k)=A(c+3);
c=c+4;

end
end

end
spdmrin=inputl (1);
trq_min=input2(1);
SOC min-input3(1);
spdmax=inputl (quant(1));
trq_max=input2(quant(2));

197

SOC_max=input3(quant(3));
spdres=inputl (2)-input 1 (1);
trqres=input2(2)-input2(1);
SOCres=input3(2)-input3(1);

case 4
disp('Not a valid selection.');

end
case 3

disp(Not a valid selection.');
end
spd~index=1;
trq_index=l1;

end
%%%%%%%%%% END OF CONFIGURATION DATA %%%%%%%%%%

%%%%%%%%%% SPEED/ALTITUDE PROFILE %%%%%%%%%%
% Load speed/altitude profile
disp(' ');
disp('Choose a speed/altitude profile:');
disp(' 1: Endurance Speed-25 kts, 5 kft MSL');
disp(' 2: Cruise Speed-50 kts, 5 kft MSL');
disp(' 3: Max Speed-65 kts, 5 kft MSL');
disp(' 4: Regen-35 kts, descent');
disp(' 5: Combo-climb, cruise, endurance, descent, etc.');
disp(' 6: ISR Mission-1 hr cruise, 1 hr endurance, 1 hr cruise');
disp(' 7: Georgia ISR Mission-includes 2 endurance segments');
disp(' 8: Terrain Following-50 kts, 5 kft MSL, +/-100 ft');
profile=input('Enter your selection: ');
disp(' ');

switch profile
case I

PRCON25KTS;
case 2

PRCON5OKTS;
case 3

PRMAXSPD;
case 4

PRREGEN;
case 5

PRCOMBO;
pr filter bool=l;
pravgtime=2.5;

case 6
PRISR;
prfilter bool=l;
pravgtime=2.5;

case 7
PRISRGA;
prfilter bool=l;
pravgjtime=2.5;

case 8
PRTF;
prfilter bool=1;
pravgtime=2.5;

otherwise

198

PRCOMBO;
prfilter bool-l;
pravgtime-=2.5;

end

% Select if a wind gust disturbance is desired
disp('Do you want to include wind turbulence?: ');
disp(' 0: No');
disp(' 1: Yes');
wg~on--input('Enter your selection: ');
disp(' ');

% Start and stop times
sim_start=max(pr kts(min(find(pr kts(:,2)>O)),l)-2,O); % (s)
sim stop=max(prkts(:, 1)); % (s)
%%%%%%%%%% END OF SPEED/ALTITUDE PROFILE %%%%%%%%%%

%%%%%%%%%% UAV & COMPONENT DATA %%%%%%%%%%

% Load component and UAV data
MCAveox2739_3Y; % Aveox 2739/3Y motor, sized for endurance speed
ESSUB12590_Parallel; % Ultralife UBI-2590 Battery, sized for endurance speed
UAV_301b; % Includes drag polar and prop data
%%%%%%%%%% END OF UAV & COMPONENT DATA %%%%%%%%%%

% %%% MISCELLANEOUS DATA %%%%%%%%%%
radps2rpm=60/(2*pi); % (rad/s->rpm)
workspace sample time=-1; % Sample time of-1 saves variables at simulation step size
%%%%%%%%%% END OF MISCELLANEOUS DATA %%%%%%%%%%

%%%%%%%%%% PILOT MODEL DATA %%%%ooo•o%%%%%%
% PID Controller
% For ISRGA, can use HEUAV values for the original configuration
if(config--1) % Original configuration

pil accel_P=0.25;
pil accel_1=0.1;
pil-accelD=0.1;
pil-decel_P=0.25;
pil-decel_1=0.1;
pil-decelD=0.1;
pilIclamp=0.5;

else % HEUAV configuration
pil-accel_P=0. 1; % 2S-0.1, 4S-0.5
piltaccelI--0.02; % 2S-0.02, 4S-0.1
pil-accel_D=0.02; % 2S-0.02, 4S-0.1
pil decelP=0. 1; % 2S-0.1, 4S-0.5
pil-decel_1=0.02; % 2S-0.02, 4S-0.I
pil-decelD=0.02; % 2S-0.02, 4S-0.I
pilIclamp--0.5; %

end
% First-order transfer function
pil__tau=0.05; % (s) Original: 0.05
% Second-order transfer function
zeta=l; % Damping Ratio
wn=25; % Natural Frequency (radls)
pil-tf a=2*zeta*wn;
pil-tf b=wn^2;

199

clear zeta, wn;
% Other settings
pil maxrate=10; % Throttle throw rate of change limit (throttle throw/s)
pil-accel_max=0.999; % Maximum Throttle Throw (1.0=full command, 0.999 required to prevent
numerical problems)
pil decelmax=0.999; % Maximum Regenerative Throw (1.0=full command)
%%%%%%%%%% END OF PILOT MODEL DATA %%%%%%%%%%

%%%%%%%% ENGINE DATA %%%%%%%%%
% Determine ICE inertia
if (HEUAV=0)

fc_inertia=engmass org*(0.5*0.5*0.05A2); % Engine Inertia (kg*mA2), Original engine
fcinertia org=fcinertia;

else
fcinertia=fc_mass*(0.5*0.5*0.05^2); % Engine Inertia (kg*m^2), Down-sized engine for HEUAV
fcinertia-org-=fcinertia;

end
"% Assumes 50% of engine is equivalent to rotating parts and the rotating mass is a cylinder
"% The equivalent cylinder mass has a radius of 0.05 m
"% Optional Reference: Auto. Handbook, Bosch, 1996, pg 385->need piston and crankshaft mass
%%%%%%%% END OF ENGINE DATA %%%%%%%%%

%%%%%%%%%% CLUTCH DATA %%%%%%%%%%
% Clutch torque response transfer function coefficients
clutchinertia=3.5E-5; % Clutch Inertia (kg*m^2), Reference: RM Hoffman Company
zeta=l; % Damping Ratio
wn=25; % Natural Frequency (rad!s)
clutchtf_a=2*zeta*wn;
clutchtf_b=wnA2;
clutchmax torque=2; % Max Torque for Clutch (N*m)
clutchmusover muk-=-1.2;
clutch_engagement time=1.0; % Engagement Time (s)
clutchdisengagementtime=1.0; % Disengagement Time (s)
clear zeta, wn;
%%%%%%%%%% END OF CLUTCH DATA %%%%%%%%%%

%%%%%%%% BATTERY DATA %%%%%%%%%

% No additional data
%%%%%%%% END OF BATTERY DATA %%%%%%%%%

%%%%%%%% MOTOR DATA %%%%%%%%%
% No additional data
%%%%%%%% END OF MOTOR DATA %%%%%%%%%

%%%%%%%% PROP DATA %%%%%%%%%
% No additional data
%%%%%%%% END OF PROP DATA %%%%%%%%%

%%%%%%%% UAV DATA %%%%%%%%%
% No additional data
%%%%%%%% END OF UAV DATA %%%%%%%%%

%%%%%%%% POWERTRAIN CONTROLLER DATA %%%%%%%%%
ptchybridengineonspdlow=13.5; % UAV Speed above max endurance speed (m/s)
ptchybridengine onspdhigh=14.5; % UAV Speed above max endurance speed (m/s)
ptcSOC lowl=0.15; % Lowest SOC before using a CS algorithm

200

ptcSOClow2=0.20; % SOC level to turn off CS, permits hysteresis during CS operation
ptc.CS P=0.5; % ISRGA_4SCS, ISRGA_2SCS, or Combo_4S-0.5, CruiseWind_4S-10
ptcCS D=0. 1;
mc_IOLtrq=mcjmax~trq;
enablestop=0; % Enable Stop: 0: Do not Enable, 1: Enable Stop (0.001<SOC<100, ESS Voltage out of
range, or Run out of Fuel)
zeta=l; % Damping Ratio
wn=25; % Natural Frequency (rad/s)
cmac tf a=2*zeta*wn;
cmac tf b=wn^2;
clear zeta, wn;
%%%%%%%% END OF POWERTRAIN CONTROLLER DATA %%%%%%%%%

%%%%%%%% DISPLAY PERTINENT DATA %%%%%%%%%
disp(' ');
disp('Pertinent data for the simulation:');
disp(['Configuration (0: Original, 1: HEUAV) -', num2str(HEUAV)]);
disp(['Control Strategy (0: Rule-Based, 1: NN) -', num2str(NNStrategy)]);
disp(' ');
disp(['Note: Mass data only applicable if HEUAV Configuration selected']);
disp(['UAV Total Mass (kg) - ', num2str(uav-total_mass)]);
disp(['UAV Glider Mass (kg) - ', num2str(uavglidermass)]);
disp(['Original UAV Payload Mass (kg) - ', num2str(uavpayload mass org)]);
disp(['HEUAV Payload Mass (kg) - ', num2str(uavpayload mass)]);
disp(['Original UAV Empty Mass (kg) - ', num2str(uav-emptymass-org)]);
disp(['HEUAV Empty Mass (kg) -', num2str(uav emptymass)]);
disp(['Battery Mass (kg) - ', num2str(essmodulemass*essmodulenum)]);
disp(' ');
disp(['Battery Capacity (Ah) - ', num2str(ess maxah_capacity)]);
disp(['Battery Maximum Volts (V) -', num2str(ess module num*ess_maxvolts)]);
disp(['Battery Storage (Wh) - ', num2str(essmaxahcapacity*ess modulenum*essmaxvolts)]);
disp(['Engine Torque Scale - ', num2str(fctrq_scale)]);
disp(['Motor Torque Scale -', num2str(mc trq_scale)]);
fclose('all');
%%%%%%%% END OF DISPLAY PERTINENT DATA %%%%%%%%%

A.2.2 Internal Combustion Engine Data Files

% Engine Data File: FCQ100.M

% Data sources:
"% Quadra Aerrow Engines, (613)264-0010, Perth, Ontario
"% ICE, Ferguson, 1986, p. 480, 356 cmA3 engine
"% Other references as mentioned in the comments

"% Q100B Gasoline Engine (Battery Ignition)
"% Maximum Power: 7.8 kW (10.4 hp) at 7800 rpm
"% Peak Torque: 9.6 N*m (7.1 ft-lbs) at 7600 rpm

%%%%%%%%% FILE ID INFO %%%%%%%%%%
fc-description='Quadra Aerrow Gasoline Engine, 7.8 kW (10.4 hp)';
fc_proprietary=0; % 0=> non-proprietary, 1 => proprietary
fcvalidation=1; % 0=> no validation, 1=> data agrees with source data
fc fuel type='Gasoline';
fcdisp=0.098; % Engine Displacement (L)

201

disp(['Data loaded: FCQ100.M - ',fcdescription]);
%%%%%%%%%% END OF FILE ID INFO %%%%%%%%%%

%%%%%%%%%% DEFAULT SCALING %%%%%%%%%%
% Scale fcmapspd to simulate a faster or slower running engine (-)
fc spd scale=0.85;
% Scale fc rmaptrq to simulate a higher or lower torque engine (--)
if (HEUAV-0)

fc_trq_scale=1.5*0.21; % Original engine
else

fc_trqscale=1.0*0.21; % Down-sized engine for HEUAV
end
% Scale fc power (--)
fcpwr-scale=fc-spdscale*fctrqscale;
%%%%%%%%%% END OF DEFAULT SCALING %%%%%%%%%%

%%%%%%%%%% SPEED & TORQUE RANGES %%%%%%%%%%
% Speed range of the engine (rad/s)
fc-map-spd=fc-spd-scale*[2000 3000 4000 5000 6000 7000 8000 9000 10000]*(2*pi)/60;
% Torque range of the engine (N*m)
fcnlap_trq=fctrqscale*[1.5 2.5 3.5 4.5 5.5 6.5 7.5]*1.3558;
%%%%%%%%%% END OF SPEED & TORQUE RANGES %%%%%%%%%%

%%%%%%%%%% FUEL USE MAPS %%%%%%%%%%
"% Fuel use map indexed vertically by fcmapspd (top to bottom)
"% and horizontally by fcmaptrq (left to right) (g/kWh)
"% Efficiency map estimated from ICE, Ferguson, 1986, p. 480
fc-fuel_mapgpkWh=l.5*[1300 1140 1120 1130 1180 1310 1400;

1280 1110 1030 1050 1100 1215 1280;
1200 980 870 910 930 1070 1200;
1225 950 785 780 785 990 1100;
1130 870 765 725 750 870 1020;
1060 920 710 600 625 780 980;
950 825 650 525 610 710 980;

1000 910 750 700 770 820 970;
1080 980 955 960 970 1000 1070];

"% Convert g/kWh to efficiency to get fuel efficiency map
"% (reciprocal of g/kWh*33.44 kWh/gal*gal/6.15 lbs*2.2 lbs/kg*kg/1000 g)
% Reference: SAE J1711 Standards Paper
fc eff map=(6.15* 1000)./(fc fuelrnapgpkWh*33.44*2.2);
% Convert g/kWh maps to g/s maps
[T,w]=meshgrid(fc map trq, fcmap_spd);
fc mapkW=T.*w/1000;
fcfuel_mapgs=fc fuel mapgpkWh.*fc mapjkW/3600;
%%%%%%%%%% END OF FUEL USE MAPS %%%%%%%%%%

%%%%%%%%%% LIMITS %%%%%%%%%%
% Maximum torque curve of the engine indexed by fcmapspd (N*m)
fcmaxtrq=fc trq scale*[4.5 5.5 6.0 6.5 6.7 6.9 6.9 6.0 4.6]*1.3558;
fcstallspd=fc spd_scale*1000*(2*pi)/60; % Engine Stall Speed (rad/s)
fc rev limit=max(fc map spd)* 1.5; % Maximum Engine Speed (rad/s)
%%%%%%%%%% END OF LIMITS %%%%%%%%%%

%%%%%%%%%% PARAMETERS THAT SCALE %%%%%%%%%%
fc_maxpwr=(max(fcmapspd.*fc_maxtrq)/1000); % Peak Engine Power (kW)
%fcbasemass=3.1 *fc__pwr_scale; % Engine Mass (kg)

202

%fcfuelmass=2.34*fcpwrscale; % Mass of Fuel (kg), (0.6 kg/kWh*7.8 kW for 0.5 h)
%fcmass=fcbasemass+fcfuelmass; % Total Engine/Fuel System Mass (kg)
%fcinertia=fc_pwrscale*fcbase mass*(0.5*0.5*0.05^2); % Engine Inertia (kg*mA2)
"% Assumes 50% of engine is equivalent to rotating parts and the rotating mass is a cylinder
"% The equivalent cylinder mass has a radius of 0.05 m
"% Optional Reference: Auto. Handbook, Bosch, 1996, p.385->need piston and crankshaft mass
%%%%%%%%%% END OF PARAMETERS THAT SCALE %%%%%%%%%%

%%%%%%%%%% OTHER PARAMETERS %%%%%%%%%%
"% Density and LHV of gasoline
"% Reference: Thermodynamics, Cengel, 2002, pg. 864
fcfuelden=753; % Density of the Fuel (g/liter)
fc_fuellhv=44000; % Lower Heating Value of the Fuel (J/g)
% Coefficients of engine torque response transfer function
zeta=l; % Damping Ratio
wn=16; % Natural Frequency (rad/s)
fctf_a=2*zeta*wn;
fcif_b=wnA2;
clear zeta, wn;
% Idle Control
fc idle spd=fc spd scale*2500*(2*pi)/60; % Idle Speed (rad/s)
fcidlecontrol spd=1.05*fc_idle spd; % Idle Control Speed (rad/s)
fc_idle_loopprop--0. 1; % PI-Compensator P coefficient, Original: 0.2
fc_idleloop int=-0. 1; % PI-Compensator I coefficient, Original: 0.2
% Closed throttle torque of the engine indexed by fcmapspd (N*m)
fccttrq=fctrq scale*(4.448/3.281 *(-fc_disp)*61.02/24*(fcmapspd/max(fcmapspd)).A2+
14 *(fcmapspd/max(fcmapspd))));
% Throttle Position (deg)
% Row index in fc_trq_map throt and fc_trqmap ign off, fc map spd is the column index
fcmapthrot=-[0 10 20 30 40 50 60 70 80 90];
throtmax=-max(fcmapthrot);
% Throttle Exponent and Curve
throt-exp=0.5;
fcthrotcurve=((fc mapthrot/throt max).Athrot-exp);
% Torque map as a function of throttle & speed when ignition is on (N*m)
fctrqmapthrot=-meshgrid(fc cttrq,fcmap throt)+((fcmap throt/throt max).Athrotexp)'*(fc max trq
-fc-cLtrq);
% Torque map as a function of throttle & speed when ignition is off (N*m)
fctrqmapign off= fc-cttrq(1)+(1 -(fc__map_throt/throtmax).^throt-exp)'*(fccttrq-fccttrq(1));
% Default idle throttle position, throttle for zero torque (deg)
fc idle throt-interpl(fc trq map throt(:,l),fc map throt,0);
%%%%%%%%%% END OF OTHER PARAMETERS %%%%%%%%%%

%%%%%%%%%% IOL TABLE %%%%%%%%%%
[fcmax-eff,trqindex]=max(fc_effmap');
fcIOLtrq=fcmaptrq(trq_index);

%%O000 00000END OF IOL TABLE %%%%%%%%%%

% Engine Data File: FCHondaGX3 1.M

% Data sources:
"% Honda Mini 4-Stroke Engine brochure
"% Efficiency map based on the Insight engine map from ADVISOR
"% Other references as mentioned in the comments

203

%%%%%%%%% FILE ID INFO %%%%%%%%%%
fcdescription='Honda 4-Stroke Gasoline Engine, 31 cc';
fcproprietary=0; % 0=> non-proprietary, 1=> proprietary
fc_validation=l; % 0=> no validation, 1=> data agrees with source data
fc_fuel_type='Gasoline';
fc disp=0.03 1; % Engine Displacement (L)
disp(['Data loaded: FCHondaGX3 1.M - ',fcdescription]);
%%%%%%%%%% END OF FILE ID INFO %%%%%%%%%%

%%%%%%%%%% DEFAULT SCALING %%%%%%%%%%
% Scale fcmapspd to simulate a faster or slower running engine (--)
fc-spd~scale=l.5;
% Scale fcmaptrq to simulate a higher or lower torque engine (--)
if (HEUAV--0)

fctrq_scale=1.5*0.024; % Original engine
else

fctrq_scale=1.0*0.024; % Down-sized engine for HEUAV
end
% Scale fc power (--)
fc_pwr_scale=fc_spd_scale*fc_trq_scale;
%%%%%%%%%% END OF DEFAULT SCALING %%%%%%%%%%

%%%%%%%%%% SPEED & TORQUE RANGES %%%%%%%%%%
% Speed range of the engine (rad/s)
fc-mapispd=fc spd_scale*[1200 1600 2000 3200 4000 4400 4800 5600 6000]*2*pi/60;
% Torque range of the engine (N*m)
fcmaptrq=fc trq_scale*[6.8 13.6 20.4 27.2 33.8 40.6 47.4 54.2 61 67.8 74.6 81.4];
%%%%%%%%%% END OF SPEED & TORQUE RANGES %%%%%%%%%%

%%%%%%%%%% FUEL USE MAPS % %%
"% Fuel use map indexed vertically by fcmapspd (top to bottom)
"% and horizontally by fcmaptrq (left to right) (g/kWh)
fcfuel_mapgpkWh=1.4*[
685.7 635.7 541.4 447.2 352.9 332.2 311.4 322.4 333.5 333.5 333.5 333.5
678.4 500.1 443.8 387.4 331.1 301.8 297 263.4 269.8 328 335 335
663.4 483.4 407.6 350.1 294.3 280.8 267.3 253.9 269.8 303.2 336.7 336.7
699.1 537.9 480.3 412.7 301.4 283.9 266.3 248.7 258.8 268.8 271.9 317.9
662.9 592.9 494.6 393.4 295.1 279.4 263.6 247.9 255.2 262.5 295 320
667.9 524.8 381.6 351.9 322.2 304.9 287.5 270.8 290.8 310.9 320.9 324
650.6 530.6 422.5 411.1 310 305 305.8 304.2 314.5 324.8 332.7 337.7
698.4 500.5 428.6 392.7 356.8 337.9 328.4 319 328.8 333.6 338.7 340.7
751.1 637.8 521.1 407.8 393.1 378.4 363.3 348.2 338.8 340.2 345.2 350.2];

"% Convert g/kWh to efficiency to get fuel efficiency map
"% (reciprocal of g/kWh*33.44 kWh/gal*gal/6.15 lbs*2.2 lbs/kg*kg/1000 g)
% Reference: SAE J1711 Standards Paper
fckeff map=(6.15*1000)./(fc_fuel mapgpkWh*33.44*2.2);
% Convert g/kWh maps to g/s maps
[T,w]=meshgrid(fcmaptrq, fc map spd);
fcmapkW=T.*w/1000;
fc_fuelmapgs=fc fuel__mapgpkWh.*fc_mapjkW/3600;
%%%%%%%%%% END OF FUEL USE MAPS %%%%%%%%%%

%%%%%%%%%% LIMITS %%%%%%%%%%
% Maximum torque curve of the engine indexed by fcmapspd (N*m)
fc_max_trq=fc trq_scale*[66 71 76 81 81 79 77 66 60];

204

fcstall_spd=fc spdscale*800*(2*pi)/60; % Engine Stall Speed (radls)
fc rev limitn=max(fcmapspd)* 1.5; % Maximum Engine Speed (rad/s)

END OF LIMITS %%%%%%%%%%

%%%%%%%%%% PARAMETERS THAT SCALE %%%%%%%%%%
fcmaxpwr=(max(fc mapspd.*fc_max_trq)/1000); % Peak Engine Power (kW)
%cbasemass=3. l*fcpwrscale; % Engine Mass (kg)
%fc_fuel_mass=2.34*fcpwr scale; % Mass of Fuel (kg), (0.6 kg/kWh*7.8 kW for 0.5 h)
%fcmass=fcbasemass+fcfuelmass; % Total Engine/Fuel System Mass (kg)
%fcinertia=fcpwr_scale*fcbase mass*(0.5*0.5*0.05A2); % Engine Inertia (kg*mA2)
% Assumes 50% of engine is equivalent to rotating parts and the rotating mass is a cylinder
% The equivalent cylinder mass has a radius of 0.05 m
% Optional Reference: Auto. Handbook, Bosch, 1996, p.385->need piston and crankshaft mass
%%%%%%%%%% END OF PARAMETERS THAT SCALE %%%%%%%%%%

%%%%%%%%%% OTHER PARAMETERS %%%%%%%%%%
% Density and LHV of gasoline
% Reference: Thermodynamics, Cengel, 2002, pg. 864
fc _fuelden=753; % Density of the Fuel (g/liter)
fcfuellhv=44000; % Lower Heating Value of the Fuel (J/g)
% Coefficients of engine torque response transfer function
zeta=l; % Damping Ratio
wn=25; % Natural Frequency (rad/s)
fc tf a=2*zeta*wn;
fctfb=wn^2;
clear zeta, wn;
% Idle Control
fcidle_spd=fc spd. scale* I 500*(2*pi)/60; % Idle Speed (rad/s)
fc idle control spd=l.05*fcidle spd; % Idle Control Speed (rad/s)
fcidleloop_prop=0.5; % PI-Compensator P coefficient, Original: 0.2
fcidle_loop int0. 1; % PI-Compensator I coefficient, Original: 0.2
% Closed throttle torque of the engine indexed by fcmapspd (N*m)
fc-ct~trq=fc trq_scale*(4.448/3.281 *(-fc_disp)*61.02/24*(9*(fcmapspd/max(fc mapspd)).A 2+
14*(fcmapspd/max(fcmapspd))));
"% Throttle Position (deg)
"% Row index in fc_trq_mapthrot and fctrq_mapignoff, fcmapspd is the column index
fcmapthrot=-[0 10 20 30 40 50 60 70 80 90];
throt_max=max(fcmapthrot);
% Throttle Exponent and Curve
throt exp=l.0; % Original 0.5
fcthrot_curve=((fcmapthrot/throt-max).^throt-exp);
% Torque map as a function of throttle & speed when ignition is on (N*m)
fctrq_mapthrot=meshgrid(fcct_trq,fc_mapthrot)+((fcmapthrot/throt max). throtexp)'*(fcmaxtrq
-fc cttrq);
% Torque map as a function of throttle & speed when ignition is off (N*m)
fctrqmap ignoff=fccttrq(l)+(I -(fcmap_throt/throt-max).Athrotexp)'*(fc cttrq-fcct~trq(l));
% Default idle throttle position, throttle for zero torque (deg)
fcidlethrot=interp l(fctrqmap throt(:, 1),fc map throt,0);

%%%%%%%%%% END OF OTHER PARAMETERS %%%%%%%%%%

%%%%%%%%%% IOL TABLE %%%%%%%%%%
[fcmax-eff,trqindex]=max(fceff map');
fcTOL_trq=fcmap trq(trq_index);

/%%%%%%%%% END OF IOL TABLE %%%%%%%%%%

205

A.2.3 Battery Data File

"% Battery Data File: ESSUBI2590_Parallel.m

"% Data source: Ultralife Lithium-Ion Battery Brochure/Manufacturer Data

%%%%%%%%%% FILE ID INFO %%%%%%%%%%
essdescription='2 Ultralife UBI-2590 Lithium-Ion Batteries in Parallel, each in Parallel Mode';
ess_proprietary=0; % 0=> non-proprietary, 1=> proprietary, do not distribute
essvalidation=l; % 0=> no validation, 1=> data agrees with source data
disp(['Data loaded: ESSUBI2590_Parallel.m - ',essdescription]);
%%%%%%%%%% END OF FILE ID INFO %%%%%%%%%%

%%%%%%%%%% SOC & TEMP RANGES %%%%%%%%%%
esssoc=[0 10 20 40 60 80 100]/100; % (-)
esstmp=[0 23 45]; % (C)
%%%%%%%%%% END OF SOC & TEMP RANGES %%%%%%%%%%

%%%%%%%%%% LOSS & EFFICIENCY DATA %%%%%%%%%%
"% Parameters indexed by SOC horizontally and temperature vertically
"% Max Capacity at C/2.5 rate, indexed by esstmp
essnmaxah_cap=2*2*[4.75 5 4.9]; % (Ah)
% Coulombic Efficiency, indexed by esstmp
esscoulombiceff=[0.97 0.99 0.99]; % (--)
% Module's Resistance during Discharge, indexed by esssoc and ess_tmp
ess r dis=1/4*[0.30 0.34 0.34 0.34 0.34 0.34 0.34;

0.17 0.17 0.17 0.17 0.17 0.17 0.17;
0.15 0.15 0.16 0.18 0.18 0.18 0.18]; % (ohm)

"% Module's Resistance during Charge, indexed by ess soc and ess_tmp
"% No data available, set equal to discharge resistance
ess r chg=ess rdis;
% Module's Open-Circuit Voltage (no-load), indexed by esssoc and esstmp
ess-voc=[3.57 3.63 3.69 3.77 3.86 3.97 4.05;

3.48 3.59 3.66 3.76 3.85 3.96 4.05;
3.40 3.51 3.59 3.75 3.83 3.96 4.05]*4; % (V)

%%%%%%%%%% END OF LOSS & EFFICIENCY DATA %%%%%%%%%%

%%%%%%%%%% LIMITS %%%%%%%%%%
essnin_volts=12;
essmax volts=1 6.4;
%%%%%%%%%% END OF LIMITS %%%%%%%%%%

%%%%%%%%%% OTHER DATA %%%%%%%%%%
essmodule_num=1; % Default for Number of Modules
essmodulenmass=2*1.44; % Mass of 2 UBI-2590 batteries in parallel (kg)
ess capscale=1; % Scale Factor for module max Ah Capacity
%%%%%%%%%% END OF OTHER DATA %%%%%%%%%%

A.2.4 Electric Motor Data File

% Motor Data File: MCAveox2739_3Y

% Data source:
% Aveox specification sheet for the 2739/3Y brushless motor

206

%%%%%%%%%% FILE ID INFO %%%%%%%%%%
mcversion= 1;
mc_description='Aveox, 2739/3Y Brushless Motor';
mc_proprietary=0; % 0=>non-proprietary, 1 =>proprietary
mcvalidation=l; % 0=>no validation, 1=>data agrees with source data
% 2=>data matches source data and data collection methods have been verified
disp(['Data loaded: MCAveox2739/3Y - ',mcedescription]);
%%%%%%%%%% END OF FILE ID INFO %%%%%%%%%%

%%%%%%%%%% MOTOR DATA %%%%%%%%%%
lo=0.90; % No Load Current (amps), measured with sensorless controller
Imax=30; % Maximum Continuous Current (amps)
Kv=1 134; % Voltage Constant (rpm/volt), measured with sensorless controller
Kt=l. 19; % Torque Constant (in-oz/amp)
Rm=0.0817; % Armature Resistance (ohms)
Km=Kt/sqrt(Rm); % Motor Constant (in-oz/sqrt(W))
Pmax=600; % Maximum Continuous Power (W)
RPMmax=50000; % Maximum Speed (rpm)
%%%%%%%%%% END OF MOTOR DATA %%%%%%%%%%

%%%%%%%%%% DEFAULT SCALING %%%%%%%%%%
% Scale mcmapspd to simulate a faster or slower running motor (--)
mc spdscale=1.0;
% Scale mcmaptrq to simulate a higher or lower torque motor (--)
mctrqscale=l.0;
% Scale mc power (--)
mc_pwrscale=--mcspdscale*mc-trqscale;
%%%%%%%%%% END OF DEFAULT SCALING %%%%%%%%%%

%%%%%%%%%% SPEED & TORQUE RANGES %%%%%%%%%%
% Calculations based on page 9 of Aveox manual
% Calculate the torque based on the current
mc_current-[1 2 3 5 7.5 10 15 20 25 30 35 40]; % Current (amps)
mcmaptrq=mc_trqscale*(mccurrent-Io)*Kt*(1/12)*(1/16)*1.3558; % Torque Range (N*m)
% Calculate the no-load speed based on the voltage
mcvoltage=[5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30]; % Voltage (volts)
mcmax voltage=RPMmax/Kv+Rm*Io; % Maximum Voltage for no-load (V)
mcmapspd=mc-spd~scale*(2*pi)/60*Kv*(mc voltage-Rm*Io); % No-Load Speed Range (rad/s)
%%%%%%%%%% END OF SPEED & TORQUE RANGES %%%%%%%%%%

%%%%%%%%%% LOSSES AND EFFICIENCIES %%%%
% Calculate the efficiency map
[T,w]=meshgrid(mcmaptrq, mcmapspd);
[I,w]=meshgrid(mccurrent, mcmapspd);
mcoutpwrmap2=T.*w;
mcinpwrmap2=1.*(w*60/(Kv*2*pi)+Rm*I);
mc eftmapl=mcoutpwrmap2./mcinpwrmap2;

% Convert Efficiency Map to Input Power Map
% Compute losses in well-defined efficiency area
[Tl ,wl]=meshgrid(mcmaptrq,mcmapspd);
mc outpwrmapl=Tl .*wl;
mclosspwrmapl=(1./mc_eff mapi-1).*mcoutpwrmapl;

%% Compute losses in entire operating range
%% ASSUME that losses are symmetric about zero-torque axis

207

mcmaptrq=[-fliplr(mcmaptrq) mcmaptrq];
mceffmap=[fliplr(mceftmapl) mceftfmapl];
mc_losspwrmap=[fliplr(mclosspwrmapl) mc losspwr_mapl];
mcoutpwrmap=[-fliplr(mcoutpwrmap 1) mcoutpwrmapl];
mcinpwrmap=mcoutpwrmap+mc losspwr_map;
%%%%%%%%%% END OF LOSSES AND EFFICIENCIES %%%%%%%%%%

%%%%%%%%%% LIMITS %%%%%%%%%%
mcmax_crrnt=Imax; % Maximum Current (amps)
mc_minvoltage=mcvoltage(1,1); % Minimum Voltage (volts)
mc_max trql =ones(size(mcmapspd)).*(Imax-Io)*Kt*(1/1 6)*(1/ 12)* 1.3558; % Maximum Torque
related to max continuous current (N*m)
mcmax~trq2=Pmax./mcmap_spd; % Maximum Torque related to maximum continuous power (N*m)
[mccomer spd,mc comer_pt,index]=polyxpoly(mcmapspd,mc maxtrql ,mc mapspd,mc_maxtrq2);
% Comer Parameters
mc_maxtrq(1:index)=mcmax~trql(l :index); % Torque values for low-speed maximum torque region
mc_maxtrq(index+1 :length(mcmap spd))=mc_maxtrq2(index+1 :length(mc_mapspd)); % Torque
values for maximum power region
mcmaxgentrq=-l *mcmax_trq; % Maximum Regenerating Torque (N*m)
%%%%%%%%%% END OF LIMITS %%%%%%%%%%

%%%%%%%%%% OTHER DATA %%%%%%%%%%
mcinertia=1.3E-6*mctrqscale*mc spdscale; % Rotor's Rotational Inertia (kg*mA2)
mc_mass=(O.161+0.02)/2.2; % Mass of Motor and Controller (kg)
mc_overtrq_factor=l.5; % Maximum Over-Torque for intermittent operation only
mc tau=0.04; % Time Constant (s)
%%%%%%%%%% END OF OTHER DATA %%%%%%%%%%

A.2.5 UAV Data File

% 30 lb UAV Data File: UAV_301b.m

%%%%%%%%%% FILE ID INFO %%%%%%%%%%

uavdescription='30 lb UAV';
disp(['Data loaded: UAV Description - ',uav description]);
%%%%%%%%%% END OF FILE ID INFO %%%%%%%%%%

%%%%%%%%%% UAV DATA %%%%%%%%%%
% Battery pack data
essmodulenum=l; % Number of Battery Modules
ess init soc=0.98; % Initial State of Charge (%)
ess-max ah capacity=interpl(ess tmp,ess max ah cap,(air temp+10)-273); % (Ah)

% Propeller data
% Reference: NACA Tech Note #698
propmass=0. 17; % Prop Mass (kg), Reference: DynaThrust Props, 20x8

% Coefficient data for 18x10 prop (2 blades)
propdiam=0.457; % Prop Diameter (m)
propinertia=1/12*propmass*(propdiam)^2; % Inertia of Prop, assumes slender rod (kg*m^2)
propJ=[[0:0.05:0.7] 1]; % Advance Ratio, J
propCT= [0.0888 0.0880 0.0861 0.0831 0.0791 0.0743 0.0687 0.0623 0.0551 0.0471 0.0384 0.0289
0.0188 0.0080 -0.0036 -0.0869]; % Propeller Thrust Coefficient
propeff=-[0.0340 0.1186 0.2324 0.3389 0.4362 0.5233 0.5989 0.6617 0.7099 0.7403 0.7467 0.7172 0.6239
0.3881 0.0001 0.0001]; % Efficiency vs. J

208

propCP=propCT.*propJ./propeff; % Propeller Power Coefficient
prop CP(1)=propCP(2);
propCP(15)=0.005;
propCP(16)=-0.07;

% Mass data
uav_totalmass=13.6; % Total Mass of original or hybrid-electric UAV (kg)
WF_empty=0.63; % Weight Fraction for empty weight
uav emptymass org=WF empty*uav totalmass; % Empty Mass of original UAV (kg)
engmass org=2; % Engine Mass of original UAV (kg), 4.5 lbs-U.S. Engine
fuelmass org=2. 1; % Fuel mass of original UAV (kg), (74 oz)
essmass org=0.5; % Mass of original Battery Pack or Generator (kg)
uav_payloadmassorg=uav totalmass-fuel massorg-uavemptymass org; % Payload Mass of original
UAV (kg)
uav glidermass=uav emptymass org-eng mass org-essmassorg-prop rnass; % Glider Mass of
original UAV (kg)
clutchrmass=0.25; % Clutch Mass for HEUAV (kg)
fc_mass=l .13; % Engine Mass for HEUAV (kg), (40 oz)
fuel_mass=l.53; % Fuel Mass of HEUAV (kg), (54 oz)
uav_payloadmass=uavtotal_mass-uav glidermass-fuelmass-fcmass-clutch mass-
ess_modulemass*ess module num-mcmass-propmass; % Payload Mass of HEUAV (kg)
uav emptymass=uav totalmass-fuelmass-uav payloadmass; % Empty Mass of HEUAV (kg)

% Lift-Drag Polar
uav_S=1.48; % Wing Area (m^2)
uavchord=0.3 19; % Wing Chord (m)
uavAR=14.6; % Aspect Ratio (chord of 12 in)
uavoseff=0.85; % Oswald Efficiency Factor
uav_Cdo=0.036; % Zero-Lift Drag Coefficient, parasite drag
uav_Cl=[0:0.0 1:10]; % Lift Coefficient vector
uavCd=uavCdo+(uav Cl.^2)/(pi*uav oseiT*uavAR); % Drag Coefficient
uavClmax=l.25; % NACA Airfoil 23012, E214, S2091, or SD7032

% Electrical Accessories data
accelec_pwr=75; % Power Draw of Accessories (W), Original: 75
acceleceff=-l.0; % Efficiency of Accessories

% Power Train Gear Reduction data
grlratio=l .0; % Ratio of Gear Reduction for engine
gr2_ratio=3.7; % Ratio of Gear Reduction for electric motor
grloss=0; % Power Loss in Gear Reduction (W)
%%%%%/%%%/ END OF UAV DATA %%%%%%%%%%

A.3 Controller Algorithm MATLAB Code

Off-line controller algorithms were written in MATLAB code. The two-input

algorithm is intended to duplicate the rule-based controller. The three-input input

algorithm has an additional input (i.e. battery SOC) and incorporates an objective

function that is minimized.

209

A.3.1 Two-Input Algorithm

% Generate commanded engine torque using engine and motor efficiency maps
close all; % Close figures
clear all; % Clear variables
pack; % Clean up memory

% Load engine data and plot efficiency
HEUAV=1;
disp(' ');
disp('Select a specific engine:');
disp(' 1: FC_Q100 or PC125->2-Stroke Gasoline Engine, Scaled');
disp(' 2: GX3 1->4-Stroke Gasoline Engine');
fcsel=input('Enter your selection: ');
switch fc sel

case 1
FCQ100; % Quadra Aerrow 100 cm^3 2-Stroke Engine, from Ferguson
%FCPC125; % Piaggio Cosa 125 cm^3 2-Stroke Engine, from Heywood and Sher

case 2
FCHondaGX3 1; % Honda GX31 4-Stroke Gasoline Engine

case 3
disp(Not a valid selection.');

end
figure; colormap([0 0 0]);
[Teng,weng]=meshgrid(fc map_trq, fc_mapspd);
C=mesh(weng*(30/pi),Teng,fceffmap* 100);
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Torque (N\cdotm)'); zlabel('Efficiency (%)');
title('Engine Efficiency Map');
%print -depsc2 -tiff -r600 ICEEff

% Load motor data and plot efficiency
MCAveox2739_3Y;
gr=3.7; % Gear Ratio
figure; colormap([0 0 0]);
[Tmot,wmot]=meshgrid(mcmaptrq, mcmap spd);
C=mesh(wmot*(30/pi),Tmot,mc eftfmap*100);
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Torque (N\cdotm)'); zlabel('Efficiency (%)');
title('Motor Efficiency Map');
%print -depsc2 -tiff -r600 MotorEff

% Generate commanded torque curves for engine/motor combination
inputl--transpose([190:10:880]); % Speed (propeller) map for input space (rad/sec)
input2=transpose([0:0.05:2.5]); % Torque (commanded) map for input space (N*m)
quant=-[length(inputl) length(input2)]; % Number of cells in each direction
% Compute hyperplane
engTorque=zeros(quant(1),quant(2)); % Pre-allocate memory
motTorque=zeros(quant(l),quant(2)); % Pre-allocate memory
for (il=1:quant(1))

for (i2=1 :quant(2))
eng_IOLT=interpl(fcmapspd,fcIOLtrq,inputl (i1));
if (input2(i2)<engIOLT)

eng_T=input2(i2); % Engine torque less than IOL torque
if(input2(i2)<O)

210

eng T=O;
end

else
engT=eng_IOL_T; % Engine torque equal to IOL torque

end
motT=input2(i2)-engT; % Torque required from motor at prop
if ((motT/gr)>interp 1 (mcmap spd,mcmaxtrq,gr*inputl (i1)))

motT=gr*interpl(mcmapspd,mc max trq,gr*inputl(il)); % Set motor torque to max torque
engT=input2(i2)-motT;

end
engTorque(i 1,i2)=engT; % Engine torque at prop
motTorque(il,i2)=motT; % Motor torque at prop

end
end

% Plot commanded engine torque
[T,w]=meshgrid(transpose(input2), transpose(inputl));
figure; colormap([O 0 0]);
C=mesh(w*(30/pi),T,eng Torque);
xlabel('\omega (rpm)'); ylabel('Total Desired Torque (N\cdotm)'); zlabel('Commanded Engine Torque
(N\cdotm)');
set(gca,'GridLineStyle','--');
title('Commanded Engine Torque');
%print -depsc2 -tiff -r600 TrqCmdICE

% Plot commanded motor torque
figure; colormap([0 0 0]);
C=mesh(w*(30/pi),T,mot_Torque);
xlabel('\omega (rpm)'); ylabel('Total Desired Torque (N\cdotm)'); zlabel('Commanded Motor Torque at
Propeller (N\cdotm)');
set(gca,'GridLineStyle','--');
title('Commanded Motor Torque');
%print -depsc2 -tiff -r600 Trq_CmdEM

% Save commanded engine torque data to a file
count=0;
Trq=zeros(quant(1)*quant(2),3); % Pre-allocate memory
for (il=l :quant(l))

for (i2=1 :quant(2))
count=count+l;
Trq(count,:)=[inputl(il) input2(i2) eng_Torque(il,i2)];

end
end

% Write data to files
if (fc_sel==l)

save TrqCmd ICE EM 2S data.txt Trq -ascii -tabs;
copyfile('TrqCmdICE EM_ 2Sdata.txt','TrqCmd_ICEEM_2S train.txt');
copyfile('TrqCmdICEEM_2S data.txt','Trq_CmdICEEM_2S test.txt');

elseif (fcsel==2)
save TrqCmd ICE EM 4S data.txt Trq -ascii -tabs;
copyfile('TrqCmdICE EM 4S data.txt','TrqCmdICEEM_4S traintxt');
copyfile('Trq_CmdICEEM_4Sdata.txt','TrqCmdICEEM_4S test.txt');

else
disp('Data not saved.')

end

211

A.3.2 Three-Input Algorithm

% Generate commanded engine torque using engine, motor, and battery efficiency maps
close all; % Close figures
clear all; % Clear variables
pack; % Clean up memory

% Load engine data
HEUAV-1;
disp(' ');
disp('Select a specific engine:');
disp(' 1: FC_Q100 or PC125->2-Stroke Gasoline Engine, Scaled');
disp(' 2: GX31->4-Stroke Gasoline Engine');
fc_sel=input('Enter your selection: ');
switch fc sel

case 1
FCQ100; % Quadra Aerrow 100 cm^3 2-Stroke Engine, from Ferguson
%FC PC125; % Piaggio Cosa 125 cm^3 2-Stroke Engine, from Heywood and Sher

case 2
FCHondaGX3 1; % Honda GX31 4-Stroke Gasoline Engine

case 3
disp('Not a valid selection.');

end

% Select charging strategy
disp(' ');
disp('Select a charging strategy:');
disp(' 1: Charge-Sustaining');
disp(' 2: Charge-Depletion');
chgstrategy=input('Enter your selection: ');

% Add zero torque row for interpolation
fc~maptrq=[0 fcmaptrq];
[m,n]=size(fc eff map);
fc eff map=[zeros(m,1) fcefftmap];

% Plot engine efficiency
figure; colormap([0 0 0]);
[weng,Teng]=ndgrid(fcnmap spd,fcmaptrq);
C=mesh(weng*(30/pi),Teng,fc eftfmap*100);
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Torque (N\cdotm)'); zlabel('Efficiency (%)');
title('Engine Efficiency Map');
%print -depsc2 -tiff -r600 ICEEff

% Load motor data and plot efficiency
MCAveox2739_3Y;
gr=3.7; % Gear Ratio
figure; colormap([0 0 0]);
[wmot,Tmot]=ndgrid(mc_mapspd,mcmaptrq);
C=mesh(wmot*(30/pi),Tmot,mc eftfmap*100);
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Torque (N\cdotm)'); zlabel('Efficiency (%)');
title('Motor Efficiency Map');
%print -depsc2 -tiff -r600 MotorEff

212

% Load battery file and determine battery efficiency
ESS_UB12590_Parallel;
ambient temp=(288+10)-273; % Ambient Temperature at sea level (C)
essmodulenum=1; % Number of Battery Modules
essmax ah capacity==interpl(esstmp,ess max ah capambienttemp); % (Ah)

% Determine battery efficiency
SOC=[0:0.1:l];
current=-[-35:5:50];
ess eftmap=zeros(length(SOC),length(current)); % Pre-allocate memory
for (i=l :length(SOC)) % SOC loop

essminit soc=SOC(i);
for (j=1 :length(current)) % Current loop

[T,X,Y]=sim('Battery Model',[],",[0.1,current(j)]);
Voltage(ij)=Y(length(Y),l);
Voc(ij)=Y(length(Y),3);
if (current(j)<0)

ess eff map(ij)=Voc(ij)/Voltage(ij);
else

ess eff map(ij)=Voltage(ij)/Voc(ij);
end

end
end

% Plot battery efficiency
figure; colormap([0 0 0]);
C=mesh(current,SOC* 100,esseftfmap* 100);
set(gca,'GridLineStyle','--');
xlabel('Current (A)');ylabel(QSOC (%)');zlabel('Efficiency (%)');
title('Battery Efficiency Map');
%print -depsc2 -tiff -r600 Battery_Eff

% Generate commanded torque curve from engine/motor/battery efficiency maps
inputl--transpose([190:20:890]); % Speed (propeller) map for input space (rad/sec)
input2--transpose([-0. 1:0.05:2.5]); % Torque (commanded) map for input space (N*m)
input3--transpose(SOC); % SOC map for input space
quant=[length(inputl) length(input2) length(input3)]; % Number of cells in each direction
engTorque=zeros(quant(1),quant(2),quant(3)); % Pre-allocate memory
motTorque=zeros(quant(1),quant(2),quant(3)); % Pre-allocate memory

% Parameters for the run
im='linear'; % Interpolation Method

% Compute hyper-plane data used to train CMAC neural network
motdischgeff=interp2(Tmot,wmot mceffmap,0.1,1400,im); % EV operation at endurance speed
for (il=1l:quant(1))

disp(il);
engIOLT=interpl (fcmapjspd fc_IOL_trq,inputl (il),inm);
engmaxT=interp 1 (fcmap spd,fc max_ trq,inputl(il),im);
motmaxT=interp 1(mc mapspd,mc max-trq,gr*inputl (il),im);
for (i2=1:quant(2))

for (i3=l :quant(3))
bat dischgeff=interp2(current,SOC,ess eff map, 1 7.0,input3(i3),im); % Includes 5 A for acc.
if (fc sel-=l) % 2-Stroke

if (chgstrategy== 1) % Charge-Sustaining

213

alpha=l0+l0*(l-input3(i3)); % variable to penalize electricity use
beta=0.05*input3(i3); % variable to penalize recharging

else % Charge-Depletion
alpha=6.5+l *(l-input3(i3)); % variable to penalize electricity use
beta=5*input3(i3); % variable to penalize recharging

end
else % 4-Stroke

if (chg strategy•l) % Charge-Sustaining
alpha=4+4*(1-input3(i3)); % variable to penalize electricity use
beta=0.3*input3(i3); % variable to penalize recharging

else % Charge-Depletion
alpha=3+l *(1-input3(i3)); % variable to penalize electricity use
beta=2*input3(i3); % variable to penalize recharging

end
end
% Demanded torque less than zero
if (input2(i2)<O)

% Path 3
eng_T step=[0.01:0.02:engIOLT];
pathleff=-interp2(Teng,weng,fceffmap,engTstep,inputl (i l),im);
T_avail=input2(i2)-eng_T_step; % Torque Available to charge at prop
mot chgeff=-interp2(Tmot,wmot,mc eftmap,Tavail/gr,gr*inputl(il),im);
charge current=inputl(il).*Tavail.*mot-chg_eff./16.7; % Could substitute in Voltage
GN=isfinite(charge current);
batchgeff=-interp2(current,SOC,esseff map,charge_current(GN),input3(i3),im);
path3_eff=-mot-chgeff(GN).*batchgeff.*bat-dischgeff.*motdischg eff; % Path 3 Eff.
Pmot-chg=inputl(il)*eng_Tstep(GN)./pathl-eff(GN)-inputl (il)*(-Tavail(GN)).*path3_eff;

% Power for Path 3
% Calculate objective function
J=beta*Pmotchg;
[x,index]=min(J);
eng_T step=eng_T_step(GN);
engT=eng_T_step(index);

clear('engTstep','pathl_eff' 'Tavail','motchgeff','charge current','GN','bat_chgeff,'path3_eff,'Peng','
Pmot_chg','J','x','index','engTstep');

% Demanded torque equal to zero
elseif (input2(i2)O)

engT=engTorque(il,i2-1,i3);
% Demanded torque greater than zero but less than max engine torque
elseif (input2(i2)<=engmaxT)

% Engine torque less than the demanded torque
eng_T stepl=[0.01:0.02:input2(i2)];
% Path 1
pathleff=-interp2(Teng,weng,fceffmap,eng_Tstepl,inputl (i l),im); % Path 1 Eff.-ICE only
% Path 2
mot_T step=input2(i2)-eng_Tstepl;
moteff=-interp2(Tmot,wmot,mc eftfmap,mot T step/gr,gr*inputl(il),im);
GN I=isfinite(mot-eff);
dischg current=-inputl(il).*mot T step(GNl)./(moteff(GN1).*14.4); % 14.4 V is nominal

voltage
bateff=-interp2(current, SOCess eff map,dischgcurrent+5,input3(i3),im); % Includes 5 A for

accessories
path2_eff=-bateff.*moteff(GN1);
Pengl=inputl(il)*engTstepl(GNI)./pathl eff(GN1); % Power for Path 1
Pmotl=inputl(il)*mot T step(GN1)./path2_eff; % Power for Path 2
Pmotchgl=zeros(1,sum(GN 1));

214

clear('pathl eff,'motT step','mot eff,'dischg_current',bat-eff,'path2_eff);
% Engine torque more than the demanded torque
eng_T step2=[input2(i2):0.02:engmaxT];
% Path 1
pathl eff-interp2(Teng,weng,fc-effmap,eng_Tstep2,inputl(il),im); % Path 1 Eff.-ICE only
% Path 3
eng_Tavail=input2(i2)-eng_Tstep2; % Torque Available to charge at prop
mot chg eff=-interp2(Tmot,wmot,mc eftmap,eng Týavail/gr,gr*inputl(il),im);
chargecurrent=inputl (il).*engT_avail.*motchg eff./1 6.7; % Could substitute in Voltage
GN2=isfinite(chargecurrent);
bat chgReff=interp2(current,SOC,ess eftfmap,chargecurrent(GN2),input3(i3),im);
path3_ef--mot-chgeff(GN2).*bat-chg eff.*bat dischgeff.*motdischg eff; % Path 3 Eff.
Peng2=inputl(il)*input2(i2)./pathl-eff(GN2); % Power for Path 1
Pmot chg2=inputl (il)*(-eng_T_avail(GN2))./pathl_eff(GN2)-input 1(il)*

(-engTýavail(GN2)).*path3_eff; % Power for Path 3
Pmot2=zeros(1,sum(GN2));
% Calculate objective function
engT step=[engTstep 1 (GN1) engT step2(GN2)];
Peng=[Pengl Peng2];
Pmot=[Pmotl Pmot2];
Pmot__chg=[Pmot-chgl Pmot chg2];
J=Peng+alpha*Pmot+beta*Pmot_chg;
[x,index]=min(J);
eng_T=engTstep(index);

clear('eng_T_step 1 ','eng_T step2','pathl eff,'eng_Tavail','mot-chgeff,'charge_current','GNl ','GN2','bat
_chgeff,'path3 eff,'J','x','index','engTstep','Peng 1 ','Peng2','Pmotl ','Pmot2','Pmot chg 1 ','Pmot-chg2','Pe
ng','Pmot','Pmot chg');

% Demanded torque greater than max engine torque
else

engT step=[O.O1:0.02:eng_max_T];
% Path I
pathleff=-interp2(Teng,weng,fceff map,engTstep,inputl(il),im); % Path 1 Eff.-ICE only
% Path 2
motT step=input2(i2)-eng_T_step;
moteff=-interp2(Tmot,wmot,mc eftfmap,mot T step/gr,gr*inputl(il),im);
GN=isfinite(mot-eff);
dischgcurrent=inputl(il).*mot T step(GN)./(mot eff(GN).*14.4); % 14.4 V is the nominal

voltage
bateff=interp2(current, SOCess eft map,dischg current+5,input3(i3),im); % Includes 5 A for

accessories
path2_eff=bateff.*mot-eff(GN);
Peng=inputl(il)*engTýstep(GN)./pathl-eff(GN); % Power for Path 1
Pmotzinputl(il)*mot T step(GN)./path2_eff; % Power for Path 2
J=Peng+alpha*Pmot;
[x,index]=-min(J);
engTstep=engT step(GN);
engT=eng_Tstep(index);

clear('pathleff,'motT step','mot-eff,'dischg-current',"bat-eff',path2-eff,'Peng','Pmot'f,'J','x''index','GN','
eng_T_step');

end

motT=input2(i2)-engT; % Torque required from motor at prop

% Check motor max torque
if ((motT/gr)>motmaxT)

motT=gr*motmaxT; % Set motor torque to max torque

215

engT=input2(i2)-mot_T;
if engT>engmax_T

engT=engmaxT;
end

end

% Keep motor out of inefficient region
if (abs(mot_T)<(gr*0.02))

dT-motT;
motT=gr*0.02;
engT=engT-(gr*0.02-dT);

end

engTorque(il,i2,i3)=engT; % Engine torque at prop
mot Torque(il,i2,i3)=-mot_T; % Motor torque at prop

end
end

end

% Perform interpolation to smooth data
[wcg,Tcg,SOCcg]=ndgrd(transpose(input1),transpose(input2),transpose(input3));
w=transpose([190:10:880]);
T--transpose([0:0.05:2.5]);
SOC-[0.02:0.02:1];
[wfg,Tfg,SOCfg]=ndgrid(w,T,SOC);
Trql=zeros(length(w),length(T),length(SOC)); % Pre-allocate memory
Trql=interpn(wcg,Tcg,SOCcg,engTorque,wfg,Tfg,SOCfg,,*linear,);

% Plot commanded engine torque (SOC=10%)
figure; colormap([0 0 0]);
[w2D,T2D]=ndgrid(w,T);
mesh(w2D*(30/pi),T2D,Trql(:,:,5));
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Total Desired Torque (N \cdotm)'); zlabel('Commanded Engine Torque
(N\cdotm)');
title('Commanded Engine Torque, SOC=10%')

% Plot commanded engine torque (SOC=25%)
figure; colormap([0 0 0]);
mesh(w2D*(30/pi),T2D,Trql (:,:, 12));
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Total Desired Torque (N \cdotm)'); zlabel('Commanded Engine Torque
(N\cdotm)');
title('Commanded Engine Torque, SOC=25%');

% Plot commanded engine torque (SOC=50%)
figure; colormap([0 0 0]);
mesh(w2D*(30/pi),T2D,Trql(:,:,25));
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Total Desired Torque (N \cdotm)'); zlabel('Commanded Engine Torque
(N\cdotm)');
title('Conimanded Engine Torque, SOC=50%');

% Plot commanded engine torque (SOC=75%)
figure; colormap([0 0 0]);
mesh(w2D*(30/pi),T2D,Trql(:,:,37));

216

set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Total Desired Torque (N \cdotm)'); zlabel('Commanded Engine Torque
(N\cdotm)');
title('Commanded Engine Torque, SOC=75%');

% Plot commanded engine torque (SOC--90%)
figure; colormap([O 0 0]);
mesh(w2D*(30/pi),T2D,Trql(:,:,45));
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Total Desired Torque (N \cdotm)'); zlabel('Commanded Engine Torque
(N\cdotm)');
title('Commanded Engine Torque, SOC=90%');

% Plot commanded engine torque (SOC=100%)
figure; colormap([0 0 0]);
mesh(w2D*(30/pi),T2D,Trql(:,:,50));
set(gca,'GridLineStyle','--');
xlabel('\omega (rpm)'); ylabel('Total Desired Torque (N \cdotm)'); zlabel('Comnmanded Engine Torque
(N\cdotm)');
title('Commanded Engine Torque, SOC=100%');

% Save commanded engine torque data to a file
count=0;
quant=[length(w) length(T) length(SOC)]; % Number of cells in each direction
Trq2=zeros(quant(1)*quant(2)*quant(3),4); % Pre-allocate memory
for (il=l:quant(l))

for (i2=l :quant(2))
for (i3=1:quant(3))

count=count+ 1;
Trq2(count,:)=[w(il) T(i2) SOC(i3) Trql(il,i2,i3)];

end
end

end

% Write data to files
if (fcsel-=1) % 2-Stroke Engine

if (chgstrategy=1) % Charge-Sustaining
save Trq_CmdICEEMSOC_2SCS data.txt Trq2 -ascii -tabs
copyfile('TrqCmdICEEMSOC_2SCS data.txt','TrqCmdICEEMSOC_2SCS train.txt');
copyfile('Trq_CmdICEEMSOC_2SCS data.txt','TrqCmdICEEMSOC_2SCS test.txt');

else % Charge-Depletion
save TrqCmd ICE EM SOC 2S CD data.txt Trq2 -ascii -tabs
copyfile('TrqCmd_ICE_-EM_SOC 2S CD data.txt','TrqCmd_ICEEMSOC_2SCD train.txt');
copyfile('TrqCmd_ICEEMSOC_2SCD data.txt','Trq_Cmd_ICEEMSOC_2SCD test.txt');

end
elseif (fcsel-2) % 4-Stroke Engine

if (chgstrategy==l) % Charge-Sustaining
save TrqCmd ICE EM SOC 4S CS data.txt Trq2 -ascii -tabs
copyfile('TrqCmdICEEM_SOC 4SCS data.txt','Trq_Cmd ICEEMSOC_4SCS train.txt');
copyfile('TrqCmdICEEMSOC_4SCS data.txt','Trq_Cmd ICEEMSOC_4SCS test.txt');

else % Charge-Depletion
save Trq_Cmd ICE EMSOC 4S CD data.txt Trq2 -ascii -tabs
copyfile('Trq_CmdICE_EM_SOC_ 4S CD data.txt','TrqCmdICEEMSOC_4SCD train.txt');
copyfile('Trq_Cmd_ICEEMSOC_4SCD data.txt','TrqCmdICEEMSOC_4SCD test.txt');

end
else

217

disp('Data not saved.')
end

A.4 CMAC ANN C++ Code

The original CMAC code was developed at Clemson by Professor James K.

Peterson [159]. For the dissertation research, the code was formatted to allow it to run in

a Microsoft Visual C++ environment. Other modifications include the addition of

improved displacement vectors and improved cell width calculations for the CMAC

structure. The entire CMAC code with the modifications is listed in this section. An

input file is used to select options such as the function to approximate, type of engine,

and type of charging strategy.

A.4.1 Input File

// CMACFunction.cpp: Defines the entry point for the console application.

#include <stdafx.h>
#include "cmac.h"

#define DES FUNCT (3) //0-simple function, 1-sine function, 2-2 input controller, 3-3 input controller
#define ENGINETYPE (2)// 2-2-Stroke, 4-4-Stroke
#define CHGSTRATEGY (2)/I 1-Charge-Sustaining, 2-Charge-Depletion
#define STOPTOL (1.0e-4)
#define RUNMAX (100)
#define DISPLAYFREQ (10)
#define AMATRIX (0)//0-do not save A matrix, 1-save A matrix

int main(int argc,char *argv[])
{

H declare and initialize variables
int echoinput,dotrain;
int i,kcount,in sizeoutsize,runtrain size,testsizelevelsA_value;
float **in train,*intest,**outtrain,* *outtest,rmstrain,nmstest;
float u,v,w,x,y,z,rms_test2,*values;
float **in_test2,**out_test2;
char *file__name, *sourcefile,*destinationfile, *A_matrixfile;
FILE *in file-pointer, *out_filepointer, *fd, *A_file pointer;

echo input=-l;
dotrain=1;

H set up CMAC architecture
if(ENGINE_TYPE-2)
{ if (DES FUJNCT=1) file name="Sine Function.cfg";

218

else if(DESFTJNCT=2) file name="TrqCmdICEEM 2S.efg";
else if(DESFUNCT-3)
{

if(CHGSTRATEGYýI) file name="Trq_Cmd ICEEMSOC_2S5CS.cfg";
else file-name="Trq_Cmd.ICE EM SOC 2S CD.cfg";

S~}
else file_name="SimpleFunction.cfg";

}
else

S~{
if (DESFUNCT=--l) filename="SineFunction.cfg";
else if(DESFUNCT--2) file name="TrqCmdICEEM 4S.cfg";
else if(DESFUNCT-3)
{

if(CHGSTRATEGY--I) file name="Trq_CmdICEEMSOC_4S CS.efg";
else filename="TrqCmdICEEMSOC 4S CD.cfg";

S~}
else file_name="SimpleFunction.cfg";

' , }

CMAC cmac(file name);
cmac.readtrainingdata(&intrain,&out train);
cmac.readtestingdata(&intest,&outtest);
cmac.initializeo;
cmac.numbero;

H echo parameters to the screen
if(echoinput) cmac.echoo;

// get training and test size
cmac.gettrain_size(&train size).get test size(&test size);

H train the CMAC neural network, if desired
if(do train)
{

printf("\n\nTraining the CMAC neural network. Please be patient:)\n");

if((fd=fopen("RMS-data.txt","w"))=NULL)
{

printf("\nCan't open file %s\n","Training RMS");
exit(O);

} // save training rms data

for(run=O;run<RUN_MAX;++run)
{

H compute rms of CMAC neural net compared to training set
rmstrain=cmac.compute rrs(train size,in train, outtrain);
H compute rms of CMAC neural net compared to test set
rms_test=cmac.computerms(test_sizeintestout test);
if(rmstrain>STOPTOL)
{

cmac.train(l,trainsize,intrain,outtrain);
fprintf(fd,"% 14.1 Of \n",rms train);
if(run%/DISPLAY FREQ==O)
{

printf("rms train[%3d]=%12.6e '",run,rms train);
printf("trms test[%•3d]= 1 12.6ekn",run,rmns test);

219

}
}//rms train>STOPTOL loop

} H run loop
printf("rms train[%3d]=%12.6e ",run,rms_train);
printf("rms test[%3d]=% 12.6e\n",runrms test);
cmac.write wtso;
fclose(fd);

}
else
{

run=O;
H compute rms of CMAC neural net compared to training set
rms_train=-cmac.computerms (train_sizeintrain, outtrain);
H compute rms of CMAC neural net compared to test set
rmstest=cmac.computerms(test size,in-test,out-test);
printf("rms train[%3d]=%12.6e ",run,rins_train);
printf("rms test[%3d]=%l 2.6e\n",run,rms test);

// name files
printf("t nn");
if(ENGINE_TYPE=-=2)
{

if (DES FUNCT--1) source_file="SineFunctiondata.txt";
else if(DESFUNCT=2) source file="Trq_CmdICEEM_2S data.txt";
else if(DES_FUNCT=3)
{

if(CHGSTRATEGY--l) sourceefile="Trq_Cmd ICE EM SOC_2SCS data.txt";
else source_file="Trq_CmdICEEMSOC_2SCD data.txt";

}
else sourcefile="SimpleFunctiondata.txt";

}
else
{

if (DESFUNCT--) sourcefile="SineFunctiondata.txt";
else if(DES_FUNCT==2) source file="Trq_CmdICEEM_4S data.txt";
else if(DESFUNCT--3)
{

if(CHGSTRATEGYýI) sourcefile="Trq_CmdICEEMSOC_4SCS data.txt";
else source_file="TrqCmdICEEMSOC_4SCD data.txt";

}
else sourcefile="SimpleFunctiondata.txt";

}
printf("source file file=%s\n",source_file);

if(ENGINE_TYPE=2)
{

if (DESFUNCT=l) destinationfile="SineFunctionMATLABdata.txt";
else if(DES_FUNCT=2) destination file="Trq_CmdICEEM_2SMATLAB data.txt";
else if(DES_FUNCT--3)
{

if(CHGSTRATEGYl)
destination file="TrqCmd_ICEEMSOC_2SCSMATLAB_data.txt";

else destination file="TrqCmd_ICEEMSOC_2SCDMATLAB data.txt";
}else destination file="SimpleFunctionMATLAB_data.txt";

220

}
else
{

if (DESFUNCT-=-) destination file="SineFunctionMATLABdata.txt";
else if(DESFUNCTý2) destination file="TrqCmd ICEEM_4SMATLAB data.txt";
else if(DESFUNCTý3)
{

if(CHGSTRATEGYI)
destinationfile="TrqCmdICEEMSOC_4SCSMATLABdata.txt";

else destinationfile="Trq_CmdICEEMSOC_4SCDMATLABdata.txt";
}
else destinationfile="SimpleFunctionMATLAB_data.txt";

}
printf("destination file=%s\n",destination file);

// Open the source file
if4(in-filejpointer=fopen(sourcefile,"r"))-=NULL)
{

printf("\nCan't open file %s\n",source file);
exit(l);}

H Open the output file
if((out file_pointer=fopen(destination-file,"w"))-NULL)
{

printf("\nCan't open file $s\n",destination-file);
exit(l);

}

H initialize counters
count=O;

H count the number of samples in the source file
if(DESFUNCT==I) while(fscanf(in filepointer,"%f %f %f',&x,&y,&z)!=EOF) ++count;
else if(DES FUNCT-=2) while(fscanf(in file_pointer,"%f %f %f',&x,&y,&z)!=EOF) ++count;
else if(DES FUNCT==3) while(fscanf(in file_pointer,"%f %f %f %f',&u, &v,&w,&x)!=EOF)

++count;
else while(fscanf(in file_pointer,"%f %f %f',&x,&y,&z)!=EOF) ++count;
fclose(infile_pointer);
printf("Number of samples in input file=%d\n\n\n",count);
printf("Number of samples in output file=%d\n",count);

H reopen the source file with read only status
if((in filepointer=fopen(source file,"r"))==NULL)
{

printf("\nCan't open file %s\n",source file);
exit(l);

}
fclose(in-file_pointer);

H set up CMAC architecture and read in weights
if(ENGINETYPE=2)
{

if(DES FUNCT-I) filename="SineFunctionplot.cfg";
else if(DESFUNCT=2) file name="TrqCmdICEEM_2S plot.cfg";
else if(DESFUNCT=3)

221

{
if(CHGSTRATEGY-I) file name=-"Trq_CmdICEEMSOC 2S CS plot.cfg";
else filename="Trq_CmdICEEMSOC 2S CDplot.cfg";

else file_name="SimpleFunction_plot.cfg";
}
else

if(DESFUNCT--1) filename=-"SineFunction_plot.cfg";
else if(DESFUNCT=2) file name="Trq_CmdICEEM_4S_plot.cfg";
else if(DES_FUNCT=3)

if(CHGSTRATEGY=-1) file name-"Trq_CmdICEEMSOC 4S CSplot.cfg";
else filename="TrqCmdICEEMSOC 4S CDplot.cfg";

}

else filename="SimpleFunctionplot.cfg";

CMAC cmac2(file name);
cmac2.readtrainingdata(&intest2,&outtest2).initializeo.numbero;
cmac2.echoO;

/*

Generate a file of test inputs and cmac outputs for graphing and for HEUAV model:
Assume multiple inputs and I output.
*/

printf("The instantiation of the CMAC object is finished.\n");
cmac2.get output-size(&out-size);
cmac2.getinputsize(&in size);
values=new float[out_size];
for(k=0;k<count;++k)

H save CMAC values to output file
values=cmac2.cmaceval(1,in-test2[k]);
out.test2[k] [O]=values[0];
for(i=0;i<in-size;++i)
{

fprintf(out-file_pointer,"%8.4f ",intest2[k][i]);
It 0

fprintf(out-file_pointer, %8.4f\n",values[O]);

fclose(out-filepointer);

H save A matrix to a file, if desired
if(AMATRIX=I)

H name A matrix file
if(ENGINETYPE=2)
{

if(DES FUNCT-1) Akmatrixfile="Amatrix SineFunction.txt";
else if(DESFUNCT=2) A matrix file="Amatrix_ICEEM_2S.txt";
else if(DESFUNCT=3)
{

if(CHGSTRATEGYI)Akmatrix file="A matrixICE EMSOC_2SCS.txt";
else A matrix file="A matrixICEEMSOC_2SCD.txt";

222

else A_matrixfile="A matrixSimpleFunction.txt";
}
else
{

if(DESFUNCT-1) A matrixfile="AmatrixSineFunction.txt";
else if(DESFUNCT==2) A matrix file="A matrixICEEM_4S.txt";
else if(DESFUNCT=-3)
{

if(CHGSTRATEGY--)A matrix file="A matrixICEEMSOC_4SCS.txt";
else Amatrixfile="A matrixICEEMSOC_4SCD.txt";

}
else A matrixfile="A matrixSimpleFunction.txt";

}
printI("A matrixfile=%s\n",A matrix file);

H Open the A matrix file
if((Afile_pointer=fopen(Amatrix-file,"w"))-=ýNULL)
{

printf("\nCan't open file $s\n",A matrixfile);
exit(l);

}

H save the A matrix
cmac2.getlevels(O,&levels);
for(k-0;k<count;++k)
{

values=cmac2.cmaceval(1,in-test2[k]);
for(i=O;i<levels;++i)
{

cmac2.get.A value(O,i,&A value);
fprintf(Afile_pointer,"%d ",A-value);

}
fprintf(A_file__pointer,"\n");
}
felose(Afilepointer);

H compute rms on model data
rmstest2=cmac2.computerms(count,intest2,outtest2);

delete intest2;
delete outtest2;
return(l);}

A.4.2 CMAC ANN Program
/*

The header file for the CMAC class. A few auxiliary functions, primarily for allocating and
deallocating two-dimensional arrays of various data types, are defined outside of the class in
the file utility.h. Constants are defined in the file myconstants.h.

The CMAC class is designed to use a hashing function to calculate the working memory addresses
from the virtual addresses. The code allows for a separate hash function to be used for each
level of each output CMAC architecture. However, in practice, a single hash function is used

223

to initialize all the individual hash functions in the CMAC architecture. Also, in practice
for the HEUAV application, no hashing is used.
*/

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "myconstants.h"
#include "utility.h"

#define check (1)
#defme diagnostic (0)
#define AMATRIX (0)

typedef char file-name[MYTEXTSIZE];
typedef float *pfloat;
typedef int (* fhash)(int size,int *active-cells,int *numintervals,int hash-size);

typedef struct
{

char configfile[MY TEXTSIZE];
char structure_file[MYTEXTSIZE];
char trainingfile[MYTEXT SIZE];
char testingfile[MYTEXTSIZE];
char wts init file[MY TEXT SIZE];
char wts file[MY_TEXTSIZE];
int trainingset size;
int testing-set size;
int indimensions;
int outdimensions;
float learningrate;
float *inx;
float *max_x;
float *input resolution;
file name *file;
int autosize;
int echoinput;
int do training;
int read in wts;
float inflatebottom;
float inflate top;
float commonstart;
float common_end;

} CMACINPUT;

/*

The meaning of the given structure elements is explained below. The value of MYTEXTSIZE
is set in cmac.h to be 256.

char configfile[MY_TEXTSIZE]:
Configuration file for the CMAC object instantiation, typically named name.cfg.

char structure file[MYTEXTSIZE]:
File typically called namestructure.txt and is the name of the file which contains the
names of the files which initialize the structure of each output CMAC architecture.

char trainingfile[MY_TEXTSIZE]:

224

File that stores the training data.
char testingfile[MYTEXTSIZE]:

File that stores the testing data.
char wts init file[MYTEXTSIZE]:

File that stores the weights from a previous training run.
char wts file[MYTEXT SIZE]:

File in which the CMAC object parameters are stored, typically after they have been updated
by the CMAC training process.

int trainingset size:
Number of data items in the training set.

int testingjset size:
Number of data items in the testing set.

int in-dimensions:
Dimension of the input space.

int out dimensions:
Dimension of the output space.

float learning rate:
Learning rate used in the CMAC training algorithm.

float *min x:
The CMAC architecture focuses on a segment of the ith input which will be denoted by
[a i,b-i]. The exact values of a-i and b i are determined both by the training data and
whether the data is autosized or uses a common start and end value. Once these values
are set, a i is stored in minx[i].

float *max x:
The CMAC architecture focuses on a segment of the ith input which will be denoted by
[a i,b_i]. The exact values of ai and bi are determined both by the training data and
whether the data is autosized or uses a common start and end value. Once these values
are set, bi is stored in maxx[i].

float *inputresolution:
The resolution of the input space (currently calculated from the training data) for each
input dimension.

file-name *file:
Vector that stores the names of the files that determine the architecture of the IOMAP
structures for each output dimension. See the discussion for the class function
structure fileso.

int autosize:
This variable determines how the interval [ai,b i] is set up for the ith input dimension.
Setting autosize to 1 allows for a stretching or shrinking of the actual values obtained
via the training data. Setting autosize to 0 will force a common interval [a,b] to be used.

int echoinput:
A flag to allow for an automatic echoing of CMAC object parameters to the screen.

int do-training:
A flag to allow the CMAC architecture to train on the given training data.

int read in wts:
A flag to allow the CMAC object parameters to be read in from the external file
setup.wts init file in order to initialize the CMAC object.

float inflate-bottom:
A fudge factor to expand or shrink the a i value of the ith inputs interval.

float inflatetop:
A fudge factor to expand or shrink the bi value of the ith inputs interval.

float common start:
If a constant interval [a,b] is used for the input intervals, a is set to commonstart.

float common end:
If a constant interval [a,b] is used for the input intervals, b is set to commonend.

The basic computational unit of the CMAC architecture is the IOMAP structure. One IOMAP

225

structure is required for each output dimension in the CMAC architecture. Hence, the IOMAP
structure contains the information about the number of levels (layers), cell characteristics
such as offset and cell width, etc.
*/

typedef struct
{

int levels;
int hashsize_construct;
float offsetsize;
float width;
float **offset;
float **cellwidth;
int *hashsize;
fhash *hash_function;
int **num_intervals;
int *nurncells;
int totalcells;
int *activecells;
int *Avector;
int *working-address;
float **workingmemory;
float output;

} IOMAP;

/*

The individual field elements have the following meaning:

int levels:
Number of levels (layers, generalization factor), L, of cells used in the CMAC architecture.

int hash size construct:
The hash size, H, used in the construction of the working memory.

float offset size:
The offset is based on the number of inputs, the inputresolution, and L so the offsets can
be set as described in Appendix B in Brown and Harris. If desired, each level of cells can
be offset from the previous level by the constant value O=W/L.

float width:
The width is determined from the number of layers and the input resolution. If desired,
the width, W, of the cells for this architecture can be set to a constant.

float **cell-width:
A potentially different cell width for each level i and each input j may be required.
Hence, a two-dimensional array of size Lxn is required. Thus, iomap.cell-width[i][]
is the cell width for the ith level and jth input.

float **offset:
A potentially different offset for each level i and each input j may be required. Hence,
a 2-D array of size Lxn is required where n is the dimension of the input space. Thus,
iomap.offset[i][j] is the offset value for the ith level and jth input. If required, the
offsets may be set to the improved offsets determined by Parks and Militzer and listed in
Appendix B of Brown and Harris.

int *hash size:
A different hash size may be required for each level. Hence, iomap.hash_size is size L and
iomap.hash_size[i] is the hash size for the ith level.

fiash *hash function:
A different hash function can be used for each level. Thus iomap.hash function[i] is the
hash function for the ith level.

int **num intervals:

226

The number of intervals (cells) for each level i and input j. Thus, iomap.numintervals is
size Lxn and iomap.num intervals[i][j] gives the number of cells for level i and inputj.

int *num cells:
The number of cells for each level i. Thus, iomap.numcells is size L and iomap.num-cells[i]
gives the number of cells for the ith level.

int total cells:
The number of total cells (basis functions) for a CMAC architecture.

int *active cells:
A vector that stores the active cell list for a level for a given data vector x as the
array [a O,...,a _(n-1)], where aj is the index of the active cell for input j.

float A vector:
Association vector for data x-size is the number of levels. The entries are the basis
functions that are active for data x.

int *workingaddress:
Once the working address for data x for level i is computed via hashing, the address is
stored in the vector iomap.workingaddress. Hence, iomap.workingaddress has size L and
iomap.working_address[i] is the hashed address of data x for level i.

float **workingmemory:
Array that stores the values that are used to compute the output of the iomap architecture
for a given data x. Hence, iomap.workingmemory has L rows, where each row stands for a
level. Row i corresponds then to level i and has size iomap.hashsize[i]. Thus,
iomap.working_memory[i][j] gives the value of the CMAC weight for level i and memory
positionj.

float output:
The scalar ouput of the CMAC IOMAP architecture.

The CMAC class functions appear below. Note that the CMAC is instantiated using private elements:
a CMACINPUT structure and a pointer to the IOMAP structure.
*/

class CMAC
{

public:
CMAC(char *conflg_file);
CMAC(void);
CMAC(const CMAC&);
CMAC& CMAC::operator=(const CMAC&);
-CMAC(void);
CMAC& config(char *config file);
CMAC& structure files(void);
CMAC& allocate memory(void);
CMAC& initialize(void);
CMAC& virtualmemory(int k,float *x);
CMAC& readtrainingdata(float ***infloat ***out);
CMAC& readtestingdata(float ***in,float ***out);
CMAC& writewts(void);
CMAC& readwts(void);
CMAC& echo(void);
CMAC& get input-size(int *inputsize);
CMAC& get output size(int *output size);
CMAC& get train size(int *train-size);
CMAC& get test size(int *test-size);
CMAC& getlevels(int which output,int *levels);
CMAC& getnumberintervals(int which output,int whichlevelint which_input,int *number);
CMAC& get total cells(int which output, int *total_cells);
CMAC& get A value(int which output,int which_cell,int *value);

227

CMAC& get_minx(int whichinputfloat *nain);
CMAC& get maxx(int whichinputfloat *max);
CMAC& get width(int which output,int whichlevel,int whichbinput,float *width);
CMAC& get workingaddress(int which output,int *address);
CMAC& load_input size(int input size);
CMAC& load_output size(int output size);
CMAC& loadtrain size(int train-size);
CMAC& loadtest size(int test-size);
CMAC& number(void);
float compute rms(int sample_size,float **in,float **out);
float *cmac_eval(int do address,float *x);
CMAC& train(int doaddress,int sample_size,float **infloat **out);
private:
CMACINPUT setup;
IOMAP *iomap;

/*

The item listed below is the prototype for the common hash function used in the instantiation
of the architecture.
*/

int hhash(int size,int *activecells,int *numintervals,int hash-size);

/*

Generic hash function for the CMAC architecture. The variable size stores the value of n
(number of inputs). The activecells vector coming in represents the coarse encoding the CMAC
architecture gives to an input x. In other words, letting n denote the number of inputs and
a-i the active cell or subinterval that the ith input component resides in, the array
activecells stores the active cell list [a_0,al ,...,a (n-1)] for a level. Let the number
of cells or subintervals for input component i be denoted by Mi. The full list of the number
of cells per input component has been placed in the array num_intervals=[M_0,M_ 1,...,M_(n-1)].
Then, the list [a_0,al,...,a(n-1)] represents the location of an element in an n-dimensional
input space where the ith input component can take on at most Mi values. Alternately, an
n-dimensional array, B, can be visualized where the ith row has Mi elements. The list
[aO,al,...,a_(n-l)] then represents the array element B_(a0O,a_l,...,a_(n-l)) in an array
with unequal row sizes. Now this ragged array B can be converted into an equivalent
contiguous block of memory space by linearizing the elements array address.
(see original documentation)
*/

int hhash(int size,int *active-cellsint *numintervals,int hash-size)
{

int i,workaddress,accumulator;
unsigned long virtualaddress;

virtualaddress=O;
accumulator= 1;
for(i=O;i<size;++i)
{

virtualaddress=virtualaddress*(unsigned long)accumulator
+(unsigned long)active cells[size-l-i];

virtualaddress=virtual_address%(unsigned long)hash size;
if(i<size-1) accumulator=numintervals[size-i-2];

}
work_address=virtual_address%(unsigned long)hash size;

228

return(work address);
}

/*

Explicit constructor for the CMAC class. To use this function, type a source line like
CMAC S("application.cfg"); and all of the information stored in the file "application.cfg"
will be used in the instantiation of the CMAC object S. The function simply calls the
configuration function CMAC& CMAC::config(char *configfile).
*/

CMAC::CMAC(char *configfile)
{

printf("The explicit constructor was used to obtain the data below from the data file:\n");
config(configfile);

}

/*

Default constructor for the CMAC class. To use this function, type a source line like CMAC T[4];
and at compile time the default constructor is called. An example of the code use is as
follows:

CMAC S("application.cfg");
CMAC T[4];

for(i=0;i<4;++i)
{

T[i]=S;}

Line by line description of the code:
1. The explicit constructor is used to initialize the CMAC object S using the information
in the file "application.cfg". The file name "application.cfg" is stored as part of the
CMAC object creation process in S.setup.config\file.

2. The default constructor is called to instantiate four objects, T[4].

3. The overloaded = is then used to build the CMAC object T[i] by first copying the
configuration file S.setup.configfile into T[i].setup.config file. Then the configuration
file, which is simply "application.cfg", is used in the class function config0 to construct
the new CMAC object T[i] that will share the values of S. The overloaded = is automatically
invoked by the syntax of this line.

There are some subtle points here. During training of the CMAC architecture, critical parameters
are periodically written into a file whose name is stored in setup.wts file. Also, if the CMAC
architecture parameters are to be initialized using values stored in a file, the name of such an
initialization file is stored in setup.wts int file. The names of these files are simply
copied when the class equal is invoked. Hence, since it is not likely that different CMAC
architectures should share commom weight files and/or initialization files, a class function
is provided to set the names of these files.
*/

CMAC::CMAC(void)
{

printf("The default constructor has been called.\n");
iomap=NULL;

}

229

/*

Class copy constructor for the CMAC class. If the following source code is used:

CMAC S("application.cfg");
CMAC T=S;

then the following sequence of events takes place:
1. The explicit constructor is used to build the CMAC object S using the information in the
file "application.cfg". The file name "application.cfg" is stored as part of the CMAC
object creation process in S.setup.configfile.

2. The copy constructor is used to build the CMAC object T by first copying the config file
S.setup.configfile into T.setup.config_file. Then the configuration file, which is simply
"application.cfg", is used in the class function config0 to construct the new CMAC object T
that will share the values of S. The copy constructor is automatically invoked by the
syntax of this line.

*/

CMAC::CMAC(const CMAC& S)
{

strcpy(setup.config_file,S.setup.configfile);
config(setup.configfile);

}

/*

Class = operator. If the following source is used:

CMAC S("application.cfg");
CMAC T;
T=S;

then the following sequence of events takes place:
1. The standard constructor is used to build the CMAC object S using the information in the
file "application.cfg". The file name "application.cfg" is stored as part of the CMAC
object creation process in S.setup.config_file.

2. The default constructor is used to instantiate CMAC object T with the iomap private
element set to NULL.

3. The class = is then used to build the CMAC object T by first copying the config file
S.setup.configfile into T.setup.configfile. Then the configuration file, which is simply
"application.cfg", is used in the class function config0 to construct the new CMAC object T
that will share the values of S. The class = is automatically invoked by the syntax of this
line.

*/

CMAC& CMAC::operator=(const CMAC& S)
{

strcpy(setup.configfile,S.setup.config_file);
config(setup.configfile);

return *this;
}

/*

230

Default destructor for the CMAC object. Note that the private elements of a CMAC object contain
only one pointer, IOMAP *iomap. This pointer is explicitly freed in the destructor.
*/

CMAC::--CMAC(void)
{

delete iomap;
}

/*

This function is the core of the constructors for the CMAC class. When this function is called,
the appropriate allocations and initializations are performed.
*/

CMAC& CMAC::config(char *configfile)
{

FILE *fd;
char text[MY TEXTSIZE];

H store the name of the configuration file in the IOMAP structure
strcpy(setup.configfile,config file);
printf("%s\n",setup.config_file);

if((fd=fopen(config_file,"r"))=-NULL)
{

printf("\nCan't open file %s'n",configfile);
exit(O);}

H name of file containing structure information for all the IOMAP structures that will
H comprise the full CMAC
getmytext(setup.structurefile,fd, 1);

/ name of training file
getmytext(setup.training_file,fd, I);

H name of testing file
getmytext(setup.testing_file,fd, I);

// name of file that initializes the CMAC tunable parameters
get~mytext(setup.wts init file,fd, 1);

H name of file to which the CMAC tunable paramters will be written to during the training
H process
getmytext(setup.wts-file,fd, 1);

/ training set size
fscanf(fd,"%d",&(setup.trainingset size));
printf("setup.trainingsetsize=%d",setup.training_set size);
get mytext(text,fd,O);

H/testing set size
fscanf(fd,"%d",&(setup.testingset size));
printf("setup.testingsetsize=%d",setup.testingset.size);
getmytext(text,fd,O);

231

H number of input dimensions
fscanf(fd,"%d",&(setup.in dimensions));
printf("setup.in dimensions=%d",setup.in dimensions);
get mytext(text,fd,O);

H number of output dimensions
fscanf(fd,"%d",&(setup.outdimensions));
printf("setup.out-dimensions=%d",setup.outdimensions);
getmytext(text,fd,O);

H learning rate
fscanf(fd,"%f",&(setup.learningrate));
printf("setup.learningrate=%f',setup.leamingrate);
get mytext(text,fd,O);

H echo input
fscanf(fd,"%d",&(setup.echo input));
printf("setup.echoinput-=%d",setup.echoinput);
get mytext(textfd,O);

H do training
fseanf(fd,"%d",&(setup.dotraining));
printf("setup.dotraining=%d",setup.dotraining);
get mytext(textfd,O);

H read in weights
fscanf(fd,"%d",&(setup.read in wts));
printf("setup.read in wts=%d",setup.read-in wts);
get mytext(text,fd,O);

H autosize
fscanf(fd,"%d",&(setup.autosize));
printf("setup.autosize=%d",setup.autosize);
get mytext(text,fd,O);

if(setup.autosize-O) // do not autosize, use commonstart and commonend
{

fscanf(fd,"%f',&setup.commonstart);
printf("setup.commonstart=-%d",setup.common start);
get mytext(textfd,O);
fscanf(fd,"%f",&setup.commonend);
printf("setup.commonend=%d",setup.common end);
get mytext(textfd,O);

}
else H autosize using inflatebottom and inflate-top
{

H inflate bottom
fscanf(fd,"%f",&(setup.inflatebottom));
printf("setup.inflate bottom= %f',setup.inflate bottom);
get mytext(text,fd,O);
H inflatetop
fscanf(fd,"%f ",&(setup.inflate top));
printf("setup.inflate top=%f',setup.inflatetop);
getmytext(textfd,O);

232

H /allocate space for vector containing minimum input dimensions
setup.min_x=new float[setup.indimensions];

H allocate space for vector containing maximum input dimensions
setup.max_x=new float[setup.indimensions];

I allocate space for vector containing input resolution
setup.input_resolution=new float[setup.indimensions];

I fallocate memory for setup.outdimensions files to contain each output component's CMAC
// configuration information
setup.file=new file name[setup.outdimensions];

I allocate space for setup.outdimensions IOMAP structures
iomap=new IOMAP[setup.out-dimensions];

structurefilesO;
fclose(fd);

return *this;
}

/*

For each output dimension in the CMAC architecture, there is a separate IOMAP structure. The
individual field elements of this structure are set using information stored in a file whose
name is stored in the private CMAC class element setup.file[n] of structure CMACINPUT. The main
configuration file for the CMAC architecture is usually called name.cfg where name is chosen to
be pertinent to the application. The first item inside this file is the name of the file which
itself contains the names of the files used to initialize the IOMAP structures. This file is
typically called name structure.txt. The name namestructure.txt has already been stored in the
private CMAC class element setup.structurefile. Inside this file setup.structurefile is a
list of files with names of the form nameoutO.cfg, name outl.cfg, and so forth. The total

number of files is the same as the output dimension of the CMAC architecture. Hence, the file
containing the information to initialize the nth IOMAP structure is called nameoutn.cfg.

The structure files class function's purpose is to open the file setup.structure file and
extract the individual IOMAP structure file names, one for each output dimension. These file
names are then stored in the field elements setup.file[].
*/

CMAC& CMAC::structure-files(void)

int i;
FILE *fd;

// open structurefile
if((fd=fopen(setup.structurefile,"r"))=NULL)
{

printf("\nCan't open file %s\n",setup.structurefile);
exit(O);

H get CMAC structure file for IOMAP for ith output dimension

for(i=O;i<setup.out.dimensions;++i) get mytext(setup.file[i],fd, 1);

fclose(fd);

233

return *this;
}

/*

This function handles the primary allocation of memory for the CMAC object. The individual
allocation tasks are carefully documented in the code below.
*/

CMAC& CMAC::allocatememory(void)
{

FILE *fd;
char text[MYTEXTSIZE];
int ij;

H The IOMAP for the ith output dimension is initialized using the file name stored in
H setup.file[i]. The entries in setup.file[] are read in using the function
H structure fileo.
for0 =Oj<setup.out-dimensions;++j)
{

if((fd=fopen(setup.file[j],"r"))=NULL)
{

printf("\nCan't open file %s\n",setup.file[j]);
exit(O);

}

H number of levels
fscanf(fd,"%d",&(iomap[j].levels));
getmytext(text,fd, 1);

H hash size
fscanf(fd,"%d",&(iomapU].hashsizeconstruct));
get mytext(textfd, 1);

H offset-default size
iomap[j].offsetsize=(float)1.0/(float)iomaplj] .levels;

H width-default size
fscanf(fd,"%f',&(iomap[j].width));
getmytext(text,fd, 1);

fclose(fd);

H allocate space for iomap[j].offset, an array containing offsets for each level in
H iomap[j]. This is a 2D matrix having iomapj].levels rows and setup.indimensions
H columns.
get_2dmatrix float(&(iomaplj].offset),iomaplj].levels,setup.indimensions);

H allocate space for iomap[j].cellwidth, an array containing cell
/ widths for each level in iomap[j]. This is a 2D matrix having iomap[j].levels rows
H and setup.in_dimensions columns.
get_2dmatrix-float(&(iomap[j].cell-width),iomap[].levels,setup.inkdimensions);

H allocate space for vector containing hash sizeconstruct for each level of iomapU[].
iomap[j].hashsize=new int[iomap[j].levels];
for(i=O;i<iomapU].levels;++i) iomap[j].hash_size[i]=iomap[j].hashsize construct;

234

H allocate space for vector containing hash functions for each level of iomap[j].
iomap[j].hash_function=new fhash[iomapU].levels];

H allocate space for iomap[j].workingmemory, a 2D array storing working memory for
H each level in iomap[j]. This is a 2D matrix having iomap[j].levels rows and each
H row is length iomapU].hash_size[i].
iomap[j].workingmemory=new pfloat[iomap[j] .levels];
for(i--O;i<iomapUj].levels;++i) iomap[j].workingmemory[i]=new float[iomap[j].hash-size[i]];

H allocate space for a a vector to temporarily store the computed address for iomapUj]
iomap[j].workingaddress=new int[iomap[j].levels];

H allocate space for iomapUj].num intervals, a 2D array storing the number of intervals
H for each level and each input component in iomap[j]. This is a 2D matrix having
H iomap[j].levels rows and setup.in dimensions columns.
get_2dmatrix int(&(iomap[j].num-intervals),iomap[j].levels,setup.in_dimensions);

H allocate space for iomap[j].numcells, a vector that stores the number of cells in
H each layer.
iomap[j].numcells=new int[iomapUj].levels];

/allocate space for iomap[j].active-cells, a vector that stores the active cell list
H for a given input vector x.
iomap[j].activecells=new int[setup.in dimensions];

H allocate space for iomap[j].A_vector, a vector that stores the active cells for one
// x value.
iomap[j].Avector=new int[iomapUj].levels];

}//output dimension loop

return *this;
I

/*

This function sets the initial values of many of the important CMAC object parameters. For each
output dimension, there is a corresponding IOMAP structure, iomap[i]. The architecture
specified by iomap[i] consists of L=iomap[i].levels.

Each IOMAP structure iomap[i] is essentially a CMAC architecture to model a scalar-valued
input/output mapping from an input space of dimension n=setup.indimensions. Each of these
architectures consists of L i levels and on each of these levels the portion of the input space
on which the CMAC architecture focuses is divided up into hypercubes that function as binary
cells. Each of the hypercubes on level j is constructed from sides of length
wjk=iomap[i].cell_width[j][k].

Each of the cell widths can be set in several ways. The width can be set using a
common value stored in the IOMAP structure, W=iomap[i].width. This is certainly not the
best solution for all applications. This approach subdivides the input space into hypercubes of
fixed side length. Another way is to set the widths so a cell in a layer covers as many
input lattice cells in one input dimension as there are levels, L. This is discussed in Brown
and Harris (pg 623). To enable this approach for setting cell widths, set OPTION to 1.

The hypercubes for each level j and input k are staggered using an offset strategy. All of the
offsets are set to a common value, if desired:
Ojk=iomap[i].offset[j][k]=O=iomap[i].offsetsize.
The numerical value of the common offset parameter is set to be the reciprocal of the number of

235

levels L. The offsets are then staggered for the kth input as follows:

OOk=0.0
O lk--wlk*I/L=W/L
O-2k=2*w 2k*l/L=2W/L
O_3k=-3*w 3k*I/L=3W/L ...
O-(L-1),k=(L- 1)*w_(L- 1),k* 1/L=(L- 1)W/L

Hence, an additional offset term would give an offset value of W and then the same offset
strategy is repeated.

If OPTION is set to 1, the offset is determined based on the input resolution and the tables in
Appendix B in Brown and Harris.
*/

#defme OPTION (1)
CMAC& CMAC::initialize(void)
{

int ij,k;

allocatememoryo;
printf("CMAC architecture data (example-cell widths) for each level:\n");
for(i=O;i<setup.out-dimensions;++i)
{

for(j=0j<iomap[i].levels;++j)
{

H/initialize the hash function for each level of iomap[i]
iomap[i].hashfunction[j]=hhash;

// initialize cell widths
for(k=0;k<setup.indimensions;++k)
{

H cell width for level j, input k
if(OPTION)
{

iomap[i].cell widthU][k]=float(iomap[i].levels)*setup.inputresolution[k];
printf("Cell width [output=%d,level=%d,input=%d]=%12.6f\n",ij,k,

iomap[i].cellwidth[j][k]);
}
else
{

iomap[i].cell-width[j][k]=iomap[i].width;
}
// offset for level j and input k
if(OPTION)
{

H/Improved displacement vectors from Appendix B in Brown and Harris
H are programmed below for the more commonly used CMAC structures
//for the HEUAV application (n<=4 and L<=20 or 25 and high quality).

iomap[i].offset[j][k]--float(j+l)*setup.inputresolution[k];
H n=2
if(setup.in_dimensions=2 && iomap[i].levels=5 && k==l)
{

iomap[i].offsetj][1]--float(j+l)*2*setup.inputresolution[l];

}
if(setup.in~dimensions--=--2 && iomap[i].levels=8 && k==1)

236

{
iomap[i].offsetj] [1]=float(j+ 1)*3 *setup.input-resolution[1];

}
iffsetup.in dimensions-2 && iomap[i].levelsý1O && k==l)
{

iomap[i].offset[j][1]=float(j+ 1)*3*setup.input resolution[1];
}
iffsetup.in dimensions-=2 && iomap[i].levels==13 && k-=I)
{

iomap[i].offsetlj][l]=float(j+l)*5*setup.inputresolution[1];
S~}

if(setup.in-dimensions=2 && iomap[i].levels==15 && k==l)
{

iomap[i].offset[j][1]=float(j+1)*4*setup.inputresolution[1];
}
if(setup.in_dimensions=2 && iomap[i].levels-=17 && k==l)
{

iomap[i].offset[j][1]=float(j+1)*4*setup.input-resolution[1];
S}
if(setup.indimensions=2 && iomap[i].levels-=-8 && k==2)
{

iomap[i].offset[j][1]=float(j+ l)*5*setup.input resolution[1];}
// n=3

if(setup.indimensions=3 && iomap[i].levels=5 && k==2)
{

iomap[i].offset[j][2]=float(j+ 1)*2*setup.inputresolution[2];}
if(setup.in_dimensions-3 && iomap[i].levels==7 && k==I)
{

iomap[i].offsetlj] [1]=float(j+ 1)*2*setup.input resolution[1];
}
if(setup.indimensions=3 && iomap[i].levels=-7 && k=-2)
{

iomap[i].offsetlj][2]=float(j+ l)*3*setup.input-resolution[2];}
if(setup.in-dimensions-3 && iomap[i].levels-=9 && k=-l)
{

iomap[i].offsetlj][I]=float(j+l)*2*setup.inputresolution[1];}
if(setup.in-dimensions=3 && iomap[i].levels-=9 && k==2)
{

iomap[i].offsetlj] [2]=float(j+ 1)*4*setup.inputresolution[2];}
if(setup.indimensionsý3 && iomap[i].levels=14 && k--1)
{

iomap[i] .offset~jj] [1]float(j +1)*3 *setup.jinput resolution[1];
}
if(setup.in dimensions--=3 && iomap[i].Ievels==14 && k--=2)
{

iomap[i].offset[j] [2]=float(j+ 1)*5 *setup.input~resolution[2];
}
if(setup.indimensions-=-3 && iomap[i].levels==19 && k---=l)
{

iomap [i]. offsetUj] [1] floatOj+ 1)* 3* setup.input resolution[1];
}

237

if(setup.indimensions=3 && iomap[i].levels=19 && k==2)
{

iomap[i].offset[j][2]--float(j+l)*7*setup.inputresolution[2];
}
iffsetup.in_dimensions--3 && iomap[i].levels-=25 && k1l)
{

iomap[i].offset[j][1]=float(j+l)*3*setup.input-resolution[l];
}
if(setup.in_dimensions=3 && iomap[i].levels=25 && k-2)
{

iomap[i].offset[j][2]=float(j+l)*8*setup.input-resolution[2];
}
H Check offset using modulus function
if(iomap[i].offset[j][k]>iomap[i].cell-width[j][k])
{
iomap[i].offset[j][k]=float(fmod(iomap[i].offset[j] [k],iomap[i].cell-width[j][k]));
}

}
else
{

iomap[i].offsetU][k]=iomap[i].offset size;
iomap[i].offsetU][k]*=(float)(i)*(iomap[i].cellwidthij][k]);

}
}H input loop

} /level loop
}H output loop
printf("\n\n");

/*

If the option to read in existing weights from an already trained CMAC architecture is set,
then the readwtsO function is called; otherwise, all of the CMAC weights are initialized
to 0.0.
*/

if(setup.read in wts0O)
{

for(i=O;i<setup.out_dimensions;++i)
{

for(j=Oj<iomap[i].levels;++j)
{

for(k=O;k<iomap[i].hash-size[j];++k)
{

iomap[i].workingmemory[j][k]=O.O;
}

}
}

}
else
{ read wtsO;

}

/*

238

This function computes the hashed address containing the CMAC weight values in the working
memory array.

In the class implementation, let n be the dimension of the input space and a i and b i denote
the initial and final value, respectively, of the focus interval for input i. The following
auxiliary variables are then defined:

offset=O: the offset for output component k, level j, and input i, given by
iomap[k].offset[j][i]

width=W: the cell width for output component k, level j, and input i, given by
iomap[k].cellwidth[j][i]

init=-I: the ai value for the focus interval for input i, given by setup.minx[i]
final=F: the b i value for the focus interval for input i, given by setup.mnaxx[i]

For a given output component k, level j and input i, the first cell covers the interval
(-infinity, I + 0) or (-infinity, I + W) depending on whether the offset is nonzero. Hence, if
the ith component of x, x-i, satisfies xi<I, it is covered by the first cell.
Similarly, the last cell is interpreted as covering out to +infmity, so if x_i>F, it is
covered by the last cell. OFFSETZERO denotes the value under which the offset is treated
as zero. Two cases are described in detail in the original documentation.

This code has built-in diagnostic and check code which checks to see if the active cell
calculations are correct. For speed, these diagnostics are typically turned off. If the value
of the #defined variable check is set to 1, the built-in checking will be activated. This will
require a recompile of the CMAC class.
*/

CMAC& CMAC::virtual memory(int kfloat *x)
{

int i,j,previous cells;
float offset,width,init,fimal;
float down,up;

H routine finds the virtual memory address for output component k that corresponds to
H input vector x.
previouscells=O;
for(j=0j<iomap[k].levels;++j)
{

H/level loop
for(i=O;i<setup.indimensions;++i)
{

H input loop
offset=iomap[k].offset[j][i];
width=iomap[k].cellwidth[j][i];
init=-setup.min-x[i];
final=setup.max-x[i];

if(offset>OFFSETZERO)
{

if(x[i]<(init+offset)) iomap[k].active-cells[i]=O;
else iomap[k].active-cells[i]=(int)(ceil((x[i]-init-offset)/width));

}
else iomap[k].active-cells[i]=(int)(floor((x[i]-init)/width));

if(check=l)
{

239

/*

Check active cells (subinterval) calculation:
1. O>OFFSETZERO -> s=0 I<=x<I+O

s>O l+O+(s-1)W<=x<I+O+sW
2. O<=OFFSETZERO => I+sW<=x<I+(s+l)W
*/

if(offset>OFFSETZERO)
{

if(iomap[k].activecells[i]==O)
{

if(!(x[i]<init+offset+ 1.Oe-6)){
printf("x[%d]=% 1 2.8e\n",i,x[i]);
printf("offset=%12.8e\n",offset);
printf("init=% 12.8e\n",init);
printf("fmal=%12.8e\n",fmal);
printf("width=%12.8e\n",width);
printf("numintervals[level=%3d][input=%3d]=%3d\n"j,i,

iomap[k].numintervals[j] [i]);
printf("active-cells[%3d]=%3d\n",i,iomap[k].active-cells[i]);
printf("[% 12.8e,%12.8e,%12.8e]\n",init,x[i],init+offset);
exit(l);

}
}
else
{

down=offset+(iomap[k] .active cells[i]- 1)*width;
up=down+width;
if(!((init+down-l.Oe-6)<=x[i] && x[i]<(init+up+l.Oe-6)))
{

printf("x[%d]=% 1 2.8e\n",i,x[i]);
printf("offset=-%12.8e\n",offset);
printf("init--% 12.8e\n",init);
printf("fmal=%l 2.8e\n",fmal);
printf("width=%12.8e\n",width);
printf("numintervals[level=%3d][input=-%3d]=%3d\n"j,i,

iomnap[k].numnintervals[j] [i]);
printf("active-cells[%3d]=%3d\n",i,iomap[k].active-cells[i]);
printf("[% 12.8e,% 12.8e,%1 2.8e]\n",
init+offset+(iomap[k].active-cells[i]-)*width,x[i],
init+offset+iomap[k].active-cells[i] *width);

exit(l);
}

}
}H offset<OFFSETZERO
else
{

down=offset+iomap[k].activecells[i] *width;
up=down+width;
if(iomap[k].active-cells[i]--O)
{

if(!(x[i]<init+up+ 1.Oe-6)){
printf("x[%d]=% 12.8e\n",i,x[i]);
printf("offset=-% 12.8e\n",offset);
printf("init=% 12.8e\n",init);

240

printf("final=% I 2.8e\n",final);
printt("width=%12.8e\n",width);
printf("num.intervals[level=%3d][input=-%3d]=%3d\n",

j,i,iomap[k].numintervals[j] [i]);
printf("active-cells[%3d]=%3d\n",i,iomap[k].active-cells[i]);
printf(t "[% 12.8e,% 12.8e,% 12.8e]\n",

init+offset+iomap[k].activecells[i]*width,x[i],
init+offset+(iomap[k].activecells[i]+ 1)*width);

exit(l);
}

else
{

if(!(init+down- 1.0e-6<=x[i] && x[i]<init+up+ 1.Oe-6))
{

printf("x[%d]=%l 2.8e\n",i,x[i]);
printf("offset=% 12.8e\n",offset);
printf("init=% 1 2.8e\n",init);
printf("final=% 1 2.8e\n",t rmal);
printf("width=%12.8e\n",width);
printf("numintervals[level=%3d][input=%3d]=%3d\n",j,i,

iomap[k].numintervals[j][i]);
printf("active cells[%3d]=%3d\n",i,iomap[k].active-cells[i]);
printf("[%12.8e,%12.8e,%12.8e]\n",

init+offset+iomap[k].activecells[i] *width,x[i],
init+offset+(iomap[k].active_cells[i]+l)*width);

exit(l);
}

}
}

}H check activecells calculations
if(diagnostic•-l) printf("active-cells[%2d,%2d]=%3d\n",ij,iomap[k].active-cells[i]);
if(iomap[k].activecells[i]<0)
{

printf("BIG ERROR--NEGATIVE (ACTIVE CELLS) SUBINTERVAL
CALCULATION\n");

exit(l);
}

} /input loop
H routine finds the hashed memory address for output component k that corresponds to

H/input vector x for level j.

iomap[k].working-address[j]=iomap[k].hash-functionj](setup.in-dimensionsiomap[k].active-cells,
iomap[k].numintervals[j],iomap[k].hash_sizeU]);

if(diagnostic==l) printf("Working address [%d]=%d\n"j,iomap[k].workingaddressj]);
if(AMATRIX==-)
{

iomap[k].A_vector[j]=previous-cells+iomap[k].working address[j];
previous cells=previous_cells+ionmap[k].num-cellsj];
if(diagnostic-=l) printf(Association vector=%d\n",iomap[k].Avectorj]);

}
} /level loop for kth iomap

return *this;

241

H read and store training data in vectors in and out

CMAC& CMAC::read trainingdata(float ***infloat ***out)

int ij,in size,out-size,set size;
float *min,*max,diff;
FILE *fd;

insize=setup.in_dimensions;
out size=setup.out-dimensions;
setsize=setup.trainingset size;

H open file and read training data
if((fd=fopen(setup.trainingfile,"r"))=NULL)

printf("\nCan't open training file %s\n",setup.trainingfile);
exit(O);

}

get_2dmatrixfloat(in, set-size+ ,insize);
get_2dmatrixfloat(out,set size+l ,out_size);

for(j=0j<set:size;++j)
{

/ read and store ith component ofjth input vector
for(i=O;i<in-size;++i) fscanf(fd,"%f',&(*in)[j][i]);
H read and store ith component ofjth desired output vector
for(i=O;i<outsize;++i) fscanf(fd,"%f',&(*out)j] [i]);

}
fclose(fd);

min=new float[setup.in dimensions];
max=new float[setup.indimensions];

H find each input coordinate's interval
for(i=0;i<insize;++i)
{

max[i]=NEGATIVEINFIMTY;
min[i]=INFINITY;
for(j=0 j<set-size;++j)

{
if(max[i]<(*in)[j][i]) max[i]=(*in)[j][i];
if(min[i]>(*in)[j] [i]) miin[i]=(*in)[j][i];

}
}

H adjust endpoints of interval if autosize is desired
for(i=0;i<insize;++i)
{

if(setup.autosize--1)
{

setup.minax[i]=min[i]-setup.inflate_bottom*(max[i]-min[i]);
setup.maxx[i]-max[i]+setup.inflatetop*(max[i]-min[i]);

}
else
{

242

setup.min x[i]=setup.common start;
setup.max-x[i]=setup.commonend;

}
printf("Input widths (min/max, training data): Input[%d]=%12.6f/%12.6f\n",i,

setup.min-x[i],setup.maxx[i]);

H /determine input resolution
for(i=0;i<in size;++i)

S~{
diff=-O;
for(j=I j;<set-size;++j)
{

S~~if(((*in)U[] [i]-.(*in)[[-1] [i])>0) diff=(*in)[j] [i]-(*in)[j- 1] [i];
}
setup.inputresolution[i]=diff;
printf("Input resolution: Input[%d]=%12.6t\n",i,setup.inputresolution[i]);

H} /input loop

delete min;
delete max;

return *this;

}

H read and store testing data in vectors in and out

CMAC& CMAC::read testingdata(float ***in,float ***out)
{

int ij,in size,out-size,setsize;
float *min,*max;
FILE *fd;

in-size=setup.indimensions;
out_size=setup.outdimensions;
set_size=setup.testing set size;

H open file and read testing data
if((fd=fopen(setup.testingfile,"r"))==NULL)
{

printf("\nCan't open testing file %s\n",setup.testingfile);
exit(O);

}

get_2dmatrixfloat(in,setsize+1 ,in_size);
get_2dmatrixfloat(out,set size+l,out-size);

for(j=0j<set-size;++j)
{

H read and store ith component ofjth input vector
for(i=O;i<insize;++i) fscanf(fd,"%f',&(*in)[j][i]);
H read and store ith component ofjth desired output vector
for(i=O;i<out-size;++i) fscanf(fd,"%f',&(*out)[j] [i]);

}fclose(fd);

243

min=new float[setup.in dimensions];
max=new float[setup.in dimensions];

H find each input coordinate's interval
for(i=O;i<setup.in_dimensions;++i)
{

max[i]=NEGATIVEININITY;
min[i]=INFINITY;
for(j=O;j<setup.testing_setsize;++j)
{

if(max[i]<(*in)[j][i]) max[i]=(*in)[j][i];
if(m~in[i]>(*in) [j][i]) min[i]=(*in)[U][i];

}
printf("Input widths (min/max, test data): Input[%d]=%12.6f/%12.6f\n",i,min[i],max[i]);

if(min[i]<setup.min-x[i] 11 max[i]>setup.maxx[i])
{

printf("\nError!\n");
printf("[minTrain,nminTest, maxTrain,maxTest][%d]=[% 10.6f,% 10.6f,%10.6f,%10.6f1\n",i,

setup.min_x[i],min[i],setup.maxx[i],max[i]);
}

}
delete min;
delete max;

return *this;

}

I/print out weights both to console (if desired) and to file name-weights.txt

#defme write-to console (0)
CMAC& CMAC: :write-wts(void)
{

FILE *fd;
int ij,k;

H open file to write weights to
if((fd=fopen(setup.wtsfile,"w"))=--NULL)
{

printf("\nCan't open file %s\n",setup.wtsfile);
exit(0);

}

H write data to file and console, if desired
for(i=0;i<setup.out_dimensions;++i)
{

if(write to console-l) printf("\nListing of iomap[%d] weights:\n",i);
for(j=0j<iomap[i].levels;++j)
{

if(write to console-l) printf("\nlevel %3d\n"j);
for(k=-0;k<iomap[i].hash_size[j];++k)
{

iffwrite to console=l)
printf("workingmemory[level=%d][element=-%d]=%12.6f\n",

j,k,iomap[i].workingmemory[j][k]);
fprintf(fd,"% 14.10f ",iomap[i].workingmemory[j][k]);

244

if((k+ I)%4A--0)
. {

if(write to console•l) printf("\n");
fprintf(Td,"Xn");

}
}H cells loop
if(writetoconsole=1) printf("\n");
fprintf~fd,"\n");

}H/levels loop
}H output dimensions loop

fclose(fd);
return *this;

}

H read in weights from file and output to console (if desired)

CMAC& CMAC::read-wts(void)
{

FILE *fd;
int ij,k;

H open file
if((fd=fopen(setup.wts init file,"r"))-=NULL)
{

printf("\nCan't open input file %s\n",setup.wts init file);
exit(O);}

H read data from file and write to console, if desired
for(i=O;i<setup.outdimensions;++i)
{

if(write to console==l) printf("\n iomap[%d] weights \n",i);
for(j=O j<iomap[i].levels;++j)
{

if(write to console-=l) printf(' t\nLevel %3d\n",j);
for(k=O;k<iomap[i].hashsize[j];++k)
{

fscanf(fd,"%f\n",&(iomap[i].workingmemory[j] [k]));
if(write to console-=l) printf("workingmemory[level=%d][element=%d]=%12.6f\n",

j,k,iomap[i].working_memory[j] k]);
}/I cells loop

}H/levels loop
}//output dimensions loop

fclose(fd);
return *this;

}

/*

This function echoes to the screen the critical parameters of the CMAC architecture. Since
there can be many such parameters for each choice of output dimension, this code defaults to
printing the required data for output component 0. This choice can be changed by altering the
#defined variable WHICHOUTPUTCOMPONENT to whichever index is needed. This, of course,
implies a recompile of the class.

245

*/

#defme WHICHOUTPUTCOMPONENT (0)
CMAC& CMAC::echo(void)

{
int totalflattened cells,ij,kmn;
float temp;

// print configuration data to the screen
printf("\n\n\n");
printf("The data below is an echoing of the data stored in the instantiated CMAC object:");
printf("setup.configfile=%s\n",setup.configfile);
printf("setup.structure-file=%s\n",setup.structurefile);
printf("setup.trainingfile=%s\n",setup.trainingfile);
printf("setup.testingfile=%s\n",setup.testing_file);
printf("setup.wts init file=%s\n",setup.wtsinit file);
printf("setup.wts_file=%s\n",setup.wts file);
printf("setup.training setsize=%3d\n",setup.training set size);
printf("setup.testing set size=%2d\n",setup.testingset size);
printf("setup.learning rate=%8.6f\n",setup.leamingrate);
printf("setup.indimensions=%1d\n",setup.in dimensions);
printf("setup.outdimensions=% ld\n",setup.out dimensions);

for(i=0;i<setup.indimensions;++i)
{

printf("input interval[% 1 d]=[% 1 2.6f,% 1 2.6fl\n",i,setup.min x[i],setup.max-x[i]);
}
print"W'n");

H/print data for the CMAC structure of one output dimension
for(i=O;i<setup.out_dimensions;++i)
{

printf("\n");
printf("\n");
printf("CMAC output [%ld] parameters:\n",WHICHOUTPUTCOMPONENT);
printf("setup.file[% 1 d]=%s\n",i,setup.file[i]);
printf("number levels=%2d\n",iomap[WHICHOUTPUTCOMPONENT].levels);
printf("hash=%2d\n",iomap[WHICHOUTPUTCOMPONENT].hashsize construct);
printf("LEVEL INPUT OFFSET CELL WIDTH HASHSIZE\n");
for(j=Oj<iomap[WHICHOUTPUTCOMPONENT].levels;++j)
{

for(k--0;k<setup.in dimensions;++k)
I
printf("%3d %3d %12.6f%12.6f %3d\n"j,k,

iomap[WHICHOUTPUTCOMPONENT].offsetj][k],
iomap[WHICHOUTPUTCOMPONENT].cell width[j] [k],
iomap[WHICHOUTPUTCOMPONENT].hash_size[j]);

}
}

printff"\n");

/*

This block of code computes the total number of cells that the CMAC architecture would
have if the level structure would be collapsed or "flattened" from L levels to one level.

246

Essentially, if there are 0 output components, then for output component i, there are Li
levels in the architecture with a fixed cell width Wi and an interval [ai,b i]
where the CMAC cells are active. Thus, the number of cells on a given level is given by
S_i=(bji-a-i)/Wi and the total number of cells for the output component i is T i=S ixL i.
This number must be converted to the nearest integer--call this integer M i. The total
number of flattened cells for the full CMAC architecture is then the sum of M i from 0 to
(o-1).
*/

total_flattened_cells=O;
printf("\n");
for(i=O;i<setup.outdimensions;++i)
{

n=l;

for(k=O;k<setup.indimensions;++k)
{

temp=(setup.max x[k]-setup.min-x[k])*iomap[i].levels/iomap[i].cell width[1][k];
m=(int)temp;
if((temp-m)>0.0) m+=l;
printf("flattened cells[output=-%d, levels=%d] [%d input]=%d\n",i,iomap[i].levels,k,m);
n*--m;

}
totalflattenedcells+=n;
printf("Total flattened cells estimate for %d output=%d\n",setup.out dimensions,

totalflattenedcells);
printf("Memory savings using training set size (CMAC vs. look-up table, use! !)=%f\n",

setup.trainingsetsize/float(iomap[i].total cells));
printf("Memory savings using flattened cells estimate (CMAC vs. look-up table)=%fln",

float(totalflattened cells)/float(iomap[i].total cells));

return *this;

}

H The following functions used to obtain various data are self-explanatory.

CMAC& CMAC::getinput size(int *input-size)
{

*inputsize=setup.indimensions;

return *this;
}

CMAC& CMAC::get-outputsize(int *output size)
{

*output_size=setup.outdimensions;

return *this;
}

CMAC& CMAC::get trainsize(int *train_size)
{

*train-size=setup.training_set size;

return *this;
}
CMAC& CMAC: :get test size(int *test size)
{

247

*test size=setup.testing_set size;

return *this;
}

CMAC& CMAC::get levels(int which outputint *levels)
{

*levels=iomap[which output].levels;

return *this;
}

CMAC& CMAC::getnumber-intervals(int which_output,int whichlevel,int which input,int *number)
{

*number-iomap[which output].num intervals[which level] [whichinput];

return *this;
}

CMAC& CMAC::gettotalcells(int which-output,int *total-cells)
{

*total-cells=iomap[which output].total-cells;

return *this;
}

CMAC& CMAC::get.A value(int which_output,int whichlevel,int *value)
{

*value=iomap[which output].A vector[which-level];

return *this;
}

CMAC& CMAC::getmin x(int which input,float *min)
{

*min=setup.minx[which_input];

return *this;
}

CMAC& CMAC::get-max)x(int whichinput,float *max)
{

*max-setup.maxx[which-input];

return *this;
}

CMAC& CMAC::get width(int which outputint which_level,int whichinput,float *width)
{

*width=iomap[which output].cell width[which level] [which input];

return *this;
}

CMAC& CMAC::get workingaddress(int which outputint *address)
{

int i;
for(i=O;i<iomap[which-output].levels;++i) address[i]=iomap[which output].working_address[i];
return *this;}

CMAC& CMAC::loadinput.size(int input size)
{ setup.in_dimensions=input size;

248

return *this5 ;
}

CMAC& CMAC::load output size(int output size)
{

setup.out_dirnensions=output size;
return *this~;

}

CMAC& CMAC::load_train_size(int train size)
{

setup .training_set size=train size;
return *this~;

}

CMAC& CMAC::load_test_size(int test size)
{

setup.testing_set_size--test_size;
return *this;

}

CMAC& CMAC: :number(void)
{

int i~j,k,p,n,nmax;
float offset, width, init,f'mal,temp;

/1..

Case 0: no degeneracies: (offset>OFFSETZERO)
I-...... +0.....I+O+W-.... +O+2W-.../ /-....I+O+NW-...F
subintervals:
o 1 2 N N+I

Case 1: degeneracies: (offset<=OFFSETZERO)
I=I+O0.....I+W-..... +2W-----/ /---I+MW -.....F
subintervals:
o 1 2 M-1 M
*/

for(k=0;k<setup.out~dimnensions;++k)
{

for(j=0;j<iornap[k].levels;++j)
{

for(i=0;i<setup.in~dimensions;++i)
{

offset=-iomap[k].offsetUj] [i];
width=ionmap[k] .cell_width[j] [i];
init=setup.min~x[i];
final=setup.miax x[i];
temnp=(final-init-offset)/width;
if(temp<0.0)
{

printf("~iomap[%d] .num_intervals calculation negativekn",k);
printft" ffmal=% 1 2.6e init=% 1 2.6e offset=-% 12.6e~n"9,tmal,init, offset);

}
iomap[k].nurn~intervals[j][i]=(int)temp;
if((temnp-(int)temp-OFFSETZERO)>0) iornap[k].numn_intervalsUj] [i]+=1;

249

if(offset>OFFSETZERO) iomap[k].num_intervals[j] [i]+=l;
p=iomap[k].num_intervals[j][i];
if(check~l)

if(offset>OFFSETZERO)
{

if(!(init+offset+(p-2)*width-OFFSETZERO<=final&&final<=init+offset+
(p-l)*width+OFFSETZERO))

printf("init=-%12.8e\n",init);
printf("fmal=% 12.8e\n",fmal);
printf("offset=-%12.8e\n",offset);
printf("width=%12.8e\n",width);
printf("(F-I-O)/W=% 12.8e\n",temp);
printf("(int)temp=%3d\n",(int)temp);
printf("ceil(temp)=% 12.6e\n",ceil(temp));
printf("floor(temp)=% 12.6e\n",floor(temp));
printf("iomap[%d].numrintervals[level=%3d][input=%3d]=%3d\n",kj,i,p);
printf("[% 12.8e,%12.8e,%12.8e]\n",init+offset+(p-2)*width,fmal,init+

offset+(p-1)*width);
exit(l);

}

else
{

if(!(init+offset+(p- l)*width-OFFSETZERO<=final&&final<=init+offset+(p)*
width+OFFSETZERO))

printf("init=% 1 2.8e\n",init);
printf("offset=% 12.8e\n",offset);
printf("width=% 12.8e\n",width);
printf("iomap[%d].numintervals[level=%3d][input=%3d]=%3d\n",kj,i,p);
printf("[% 12.8e,% 12.8e,%12.8e]\n",init+offset+(p- l)*width,fmal,init+

offset+(p)*width);
exit(l);

}H check iomap[k].number calculation for level j, input component i
if(check~l)

printf("iomap[%d].num_intervals[level=%3d] [input=-%3d]=%3d\n",kj,i,p);
}/input loop

}/level loop
}H output component loop

H calculate number of cells per level and total cells
for(i=0;i<setup.out_dimensions;++i)

mnax=O;
iomap[i].total_cells=0;
for(j=0j<iomap[i].levels;++j)

n=l;

for(k=-O;k<setup.indimensions;++k)

printf("Cells for one input[output=-%d][level=%d][input=%d]=%d\n",ij,k,
iomap[i].num_intervals[j][k]);

250

n*=iomap[i].numintervalsU][k];

if(n>nmax) nmax=n;
}
iomap[i].numcells[j]=n;
printf("Number of cells in layer %d = %d.\n",j,iomap[i].num_cells[j]);
iomap[i].total_cells=iomap[i].totalcells+iomap[i].numcells[j];

}
printf("Total number of cells (memory requirement)=%d \n",iomap[i].total cells);
printf("Max number of cells in a level (minimum hash size for no hashing)=%d\n",mnax);

}
return *this;

float CMAC::compute rms(int sample size,float **in,float **out)
{

int i,k;
float rms, big;

rms=0.0;
big=-l.0;
for(k=0;k<sample_size;++k)
{

cmac eval(1,in[k]);
if(diagnostic1l)
{

for(i=0;i<setup.in dimensions;++i)
printf("in[%3d][%3d]=% 12.6f\n",k,i,in[k][i]);

}
for(i=0;i<setup.outdimensions;++i)
{

if(float(fabs(out[k][i]-iomap[i] .output))>big)
big=float(fabs(out[k][i]-iomap[i] .output));

}H output dimension loop
}H sample loop
rms=float(sqrt(rms/(float)sample-size/(float)setup.out-dimensions));
//printf("Largest absolute error: %12.6fin",big);
return(rms);

/*

This function evaluates the output of the CMAC architecture for a given input x. Note that if
the workingmemory structure holds current addressing information, the value of 0 for the
argument do-address can be passed in and the address calculation function virtmem0 will not be
called. If address information is required, setting the argument doaddress to 1 enables the
address calculation call to virtmemo.
*/

float *CMAC::cmaceval(int do address,float *x)
{

int i,p,base;
static float *value;

value=new float[setup.out dimensions];

if(diagnostic--l)

251

{
for(i=O;i<setup.in dimensions;++i) printf("x[%d]=% 1 2.6f\n",i,x[i]);

}
for(i=O;i<setup.outdimensions;++i)
{

if(do address--l) virtual memory(i,x);
iomap[i].output=-O.O;
for(p=O;p<iomap[i].levels;++p)
{

base=iomap[i].workingaddress[p];
iomap[i].output+=iomap[i].workingmemory[p] [base];

} /level loop
value[i]=iomap[i].output;

}H output dimension loop
if(diagnostic1l)
{

for(i=O;i<setup.out-dimensions;++i) printf("iomap[%d].output='%5.1 I-n",i,iomap[i].output);
}
return(value);

/*

The training algorithm uses the delta rule. The training algorithm is computationally
efficient, fast, and local.
*/

CMAC& CMAC::train(int do address,int sample size,float **infloat **out)
{

int ij,kbase;

for(k=O;k<samplesize;++k)
{

H evaluate address and compute cmac output
cmac-eval(1,in[k]);
for(i=O;i<setup.out-dimensions;++i)
{

for(j=0j<iomap[i].levels;++j)
{

base=iomap[i].working_address[j];
iomap[i].workingmemory[j] [base]

+=setup.learmingrate*(out[k][i]-iomap[i].output)/(float)iomap[i].levels;
} /levels loop

}H output component loop
}H sample loop

return *this;
}

252

BLANK

253

Bibliography

[1] C. C. Chan and K. T. Chau, Modern Electric Vehicle Technology. Oxford, New
York: Oxford University Press, 2001.

[2] E. C. Aldridge and J. P. Stenbit, "Unmanned Aerial Vehicles Roadmap: 2002-2027,"
Office of the Secretary of Defense, 2003.

[3] C. Perazzola, "Tomorrow's Ground Power Today," presented at SAE June TOPTEC
Conference, 2002.

[4] J. R. Wilson, "UAVs: A Worldwide Roundup," in Aerospace America, 2003, pp. 30-
35.

[5] S. B. Wilson, "Micro Air Vehicle Project," Defense Advanced Research Projects
Agency.

[6] A. Shalal-Esa, "Pentagon Gives Boeing UAV Contract," Reuters, 2003.
[7] J. Conrow, "The Helios Comes Down to Earth-A Winner," AeroVironment, 2001.
[8] J. J. Berton, J. E. Freeh, and T. J. Wickenheiser, "An Analytical Performance

Assessment of a Fuel Cell-Powered Small Electric Airplane," presented at
Symposium on Novel and Emerging Vehicle and Vehicle Technology Concepts,
Brussels, Belgium, 2003.

[9] J. E. Freeh, A. Liang, J. J. Berton, and T. J. Wickenheiser, "Electrical Systems
Analysis at NASA Glenn Research Center: Status and Prospects," presented at
Symposium on Novel and Emerging Vehicle and Vehicle Technology Concepts,
Brussels, Belgium, 2003.

[10] I. Husain, Electric and Hybrid Vehicles Design Fundamentals. Boca Rotan, FL:
CRC Press, 2003.

[11] M. C. Pera, D. Hissel, and J. M. Kauffhnan, "Fuel Cell Systems for Electrical
Vehicles: An Overview," in IEEE Vehicular Technology Society News, vol. 49,
2002, pp. 9-14.

[12] B. Johnston, et al., "The Continued Design and Development of the University of
California-Davis FutureCar," SAE Paper 980487, 1998.

[13] A. F. Burke, "Hybrid/Electric Vehicle Design Options and Evaluations," SAE
Document SP-915, pp. 53-77, 1992.

[14] C. Kim, E. NamGoong, S. Lee, T. Kim, and H. Kim, "Fuel Economy Optimization
for Parallel Hybrid Vehicles with CVT," SAE Paper 1999-01-1148, 1999.

[15] B. Kleback, S. Inman, and R. Noss, "Design and Development of the 2002 Penn
State University Parallel Hybrid Electric Explorer, the Wattmuncher," SAE Paper
2003-01-1258, 2003.

[16] N. Meyr, et al., "Design and Development of the 2002 UC Davis FutureTruck," SAE
Paper 2003-01-1263, 2003.

[17] C. Bond, et al., "Design and Development of the 2003 University of Alberta Hybrid
Electric Vehicle," SAE Paper 2003-01-1268, 2003.

[18] Honda, "2002 Honda Insight," American Honda Motor Company, Inc., 2001.
[19] Toyota, "Toyota Hybrid and Electric Vehicles," International Public Affairs

Department, 2000.
[20] I. Matsuo, S. Nakazawa, H. Maeda, and E. Inada, "Development of a High-

Performance Hybrid Propulsion System Incorporating a CVT," SAE Paper 2000-
01-0992, pp. 1-9, 2000.

254

[21] S. Sasaki, "Toyota's Newly Developed Powertrain," presented at International
Symposium on Power Semiconductor Devices and ICs, Kyoto, Japan, 1998.

[22] M. Harmats and D. Weihs, "Hybrid-Propulsion High-Altitude Long-Endurance
Remotely Piloted Vehicle," Journal ofAircraft, vol. 36, pp. 321-331, 1999.

[23] M. Alexander, et al., "Design and Development of the 2000 UC Davis
FutureTruck," SAE Document SP-1617, 2001.

[24] N. Meyr, et al., "Design and Development of the 2001 UC Davis FutureTruck," SAE
Paper 2001-01-1210, 2002.

[25] "First Place Engines, 1.3 Cubic Inch Gas Engine," First Place Engines, 2004.
[26] D. Palombo and G. D. Miller, "A High Efficiency Electric Motor Propeller

Propulsion System for Solar Powered UAVs," SAE Paper 981263, pp. 127-131,
1998.

[27] R. W. Schurhoff, "M.S. Thesis: The Development and Evaluation of an Optimal
Powertrain Control Strategy for a Hybrid Electric Vehicle," in Dept. of
Mechanical and Aeronautical Engineering. Davis, CA: University of California-
Davis, 2002.

[28] P. Drozdz and A. Zettel, "Method and Apparatus for Adaptive Hybrid Vehicle
Control," in U.S. Patent and Trademark Office Database. United States: Azure
Dynamics, Inc., 2001.

[29] F. H. Glanz, T. W. Miller, and L. G. Kraft, "An Overview of the CMAC Neural
Network," presented at IEEE Conference on Neural Networks for Ocean
Engineering, 1991.

[30] W. T. Miller, F. H. Glanz, and L. G. Kraft, "CMAC: An Associative Neural
Network Alternative to Backpropagation," Proceedings of the IEEE, vol. 78, pp.
1561-1567, 1990.

[31] H. Shiraishi, S. L. Ipri, and D. D. Cho, "CMAC Neural Network Controller for
Fuel-Injection Systems," IEEE Transactions on Control Systems Technology, vol.
3, pp. 32-38, 1995.

[32] L. C. Iwan and R. F. Stengel, "The Application of Neural Networks to Fuel
Processors for Fuel-Cell Vehicles," IEEE Transactions on Vehicular Technology,
vol. 50, pp. 125-143, 2001.

[33] W. T. Miller, R. P. Hewes, F. H. Glanz, and L. G. Kraft, "Real-Time Dynamic
Control of an Industrial Manipulator Using a Neural-Network-Based Learning
Controller," IEEE Transactions on Robotics and Automation, vol. 6, pp. 1-9,
1990.

[34] L. G. Kraft and J. Pallota, "Real-Time Vibration Control Using CMAC Neural
Networks with Weight Smoothing," presented at American Control Conference,
Chicago, IL, 2000.

[35] L. Li and C. Hou, "The Study of Application of FCMAC Neural Network in the
Industrial Process On-Line Identification and Control," presented at 9th
International Conference on Neural Information Processing, 2002.

[36] A. L. Kun and T. W. Miller, "Unified Walking Control for a Biped Robot Using
Neural Networks," presented at IEEE ISIC/CIRA/ISAS Joint Conference,
Gaithersburg, MD, 1998.

[37] A. L. Kun and T. W. Miller, "Control of Variable-Speed Gaits for a Biped Robot,"
in IEEE Robotics and Automation Magazine, vol. 6: IEEE, 1999, pp. 19-29.

255

[38] W. T. Miller, "Real-Time Neural Network Control of a Biped Walking Robot,"
IEEE Control Systems Magazine, vol. 14, pp. 41-48, 1994.

[39] W. T. Miller and C. M. Aldrich, "Rapid Learning Using CMAC Neural Networks:
Real Time Control of an Unstable System," presented at 5th International
Symposium on Intelligent Control, 1990.

[40] J. Nelson and L. G. Kraft, "Real-Time Control of an Inverted Pendulum System
Using Complementary Neural Network and Optimal Techniques," presented at
American Control Conference, Baltimore, MD, 1994.

[41] L. G. Kraft and D. Dietz, "Time Optimal Control Using CMAC Neural Networks,"
presented at American Control Conference, Baltimore, MD, 1994.

[42] J. Nelson and L. G. Kraft, "Using CMAC Neural Networks and Optimal Control,"

presented at IEEE International Conference on Neural Networks, 1995.
[43] A. B. Francisco, "M.S. Thesis: Implementation of an Ideal Operating Line Control

Strategy for Hybrid Electric Vehicles," in Dept. of Mechanical and Aeronautical
Engineering. Davis, CA: University of California-Davis, 2002.

[44] V. H. Johnson, K. B. Wipke, and D. J. Rausen, "HEV Control Strategy for Real-
Time Optimization of Fuel Economy and Emissions," SAE Paper 2000-01-1543,
2000.

[45] T. Mayer and D. Schroder, "Simulation and Hierarchical Controller Design for a
Special Hybrid Drivetrain," presented at 6th European Conference on Power
Electronics and Applications, 1995.

[46] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ:
Prentice Hall, 1991.

[47] A. Piccolo and L. Ippolito, "Optimisation of Energy Flow Management in Hybrid
Electric Vehicles via Genetic Algorithms," presented at IEEE/ASME
International Conference on Advanced Intelligent Mechatronics Proceedings,
Como, Italy, 2001.

[48] A. Kleimaier and D. Schroder, "An Approach for the Online Optimized Control of a
Hybrid Powertrain," presented at 7th International Workshop on Advanced
Motion Control, 2002.

[49] S. R. Cikankek, K. E. Bailey, R. C. Baraszu, and B. K. Powell, "Control System and
Dynamic Model Validation for a Parallel Hybrid Electric Vehicle," presented at
American Control Conference, San Diego, CA, 1999.

[50] S. R. Cikankek, K. E. Bailey, and B. K. Powell, "Parallel Hybrid Electric Vehicle
Dynamic Model and Powertrain Control," presented at American Control
Conference, Albuquerque, NM, 1997.

[51] B. K. Powell, K. E. Bailey, and S. R. Cikankek, "Dynamic Modeling and Control of
Hybrid Electric Vehicle Powertrain Systems," in Control Systems Magazine, vol.
18, 1998, pp. 17-33.

[52] Y. Yang, M. Parten, J. Berg, and T. Maxwell, "Modeling and Control of a Hybrid
Electric Vehicle," presented at IEEE Vehicular Technology Conference, 2000.

[53] X. He and J. W. Hodgson, "Modeling and Simulation for Hybrid Electric Vehicles,"
IEEE Transactions on Intelligent Transportation Systems, vol. 3, pp. 235-243,
2002.

256

[54] P. Bowles, H. Peng, and X. Zhang, "Energy Management in a Parallel Hybrid
Electric Vehicle with a Continuously Variable Transmission," presented at
American Control Conference, Chicago, IL, 2000.

[55] T. C. Chang, "A Logic-Based Switch Torque Control for Parallel-Type Hybrid
Electric Vehicle," Journal of Chinese Society of Mechanical Engineers, vol. 21,
pp. 527-536, 2000.

[56] D. L. Buntin and J. W. Howze, "A Switching Logic Controller for a Hybrid
Electric/ICE Vehicle," presented at American Control Conference, Seattle, WA,
1996.

[57] K. E. Bailey, S. R. Cikankek, and N. Sureshbabu, "Parallel Hybrid Electric Vehicle
Torque Distribution Method," presented at American Control Conference,
Anchorage, AK, 2002.

[58] N. Jalil, N. A. Kheir, and M. Salman, "A Rule-Based Energy Management Strategy
for a Series Hybrid Vehicle," presented at American Control Conference,
Albuquerque, NM, 1997.

[59] E. Biscarri, M. A. Tamor, and S. Murtuza, "Simulation of Hybrid Electric Vehicles
with Emphasis on Fuel Economy Estimation," SAE Paper 981132, pp. 1-8, 1998.

[60] R. W. Schurhoff, "M.S. Thesis: The Development and Evaluation of an Optimal
Powertrain Control Strategy for a Hybrid Electric Vehicle," in Mechanical
Engineering. Davis, CA: University of California, 2002, pp. 149.

[61] A. A. Frank, "Charge Depletion Control Method and Apparatus for Hybrid Powered
Vehicles," in USPTO Patent Database. USA: The Regents of the University of
California, 1998.

[62] A. A. Frank, "Control Method and Apparatus for Internal Combustion Engine
Electric Hybrid Vehicles," in USPTO Patent Database. USA: The Regents of the
University of California, 2000.

[63] D. S. Naidu, Optimal Control Systems. Boca Raton, FL: CRC Press, 2003.
[64] F. L. Lewis, Optimal Control. New York: John Wiley & Sons, 1986.
[65] G. Paganelli, G. Ercole, A. Brahma, Y. Guezennec, and G. Rizzoni, "A General

Formulation for the Instantaneous Control of the Power Split in Charge-
Sustaining Hybrid Electric Vehicles," presented at 5th International Symposium
on Advanced Vehicle Control, Ann Arbor, MI, 2000.

[66] G. Paganelli, M. Tateno, A. Brahma, G. Rizzoni, and Y. Guezennec, "Control
Development for a Hybrid-Electric Sport-Utility Vehicle: Strategy,
Implementation, and Field Test Results," presented at American Control
Conference, Arlington, VA, 2001.

[67] S. Delprat, T. M. Guerra, G. Paganelli, J. Lauber, and M. Delhom, "Control
Strategy Optimization for a Hybrid Parallel Powertrain," presented at American
Control Conference, Arlington, VA, 2001.

[68] S. Delprat, T. M. Guerra, and J. Rimaux, "Control Strategies for Hybrid Vehicles:
Optimal Control," presented at IEEE 56th Vehicular Technology Conference,
2002.

[69] G. Steinmauer and L. Re, "Optimal Control of Dual Power Sources," presented at
IEEE International Conference on Control and Applications, Mexico City,
Mexico, 2001.

257

[70] D. S. Bernstein, "Nonquadratic Cost and Nonlinear Feedback Control,"
International Journal of Robust and Nonlinear Control, vol. 3, pp. 211-229, 1993.

[71] S. E. Lyshevski, "Energy Conversion and Optimal Energy Management in Diesel-
Electric Drivetrains of Hybrid-Electric Vehicles," Energy Conversion and
Management, vol. 41, pp. 13-24, 2000.

[72] S. E. Lyshevski and C. Yokomoto, "Control of Hybrid-Electric Vehicles," presented
at American Control Conference, Philadelphia, PA, 1998.

[73] S. Lyshevski, "Constrained Optimization and Control of Nonlinear Systems: New
Results in Optimal Control," presented at Conference on Decision and Control,
Kobe, Japan, 1996.

[74] S. E. Lyshevski, "Optimal Control of Nonlinear Continuous-Time Systems: Design
of Bounded Controllers via Generalized Nonquadratic Functionals," presented at
American Control Conference, Philadelphia, PA, 1998.

[75] R. Saeks, C. J. Cox, J. Neidhoefer, P. R. Mays, and J. J. Murray, "Adaptive Control
of a Hybrid Electric Vehicle," IEEE Transactions on Intelligent Transportation
Systems, vol. 3, pp. 213-234, 2002.

[76] R. Zhang and Y. Chen, "Control of Hybrid Dynamical Systems for Electric
Vehicles," presented at American Control Conference, Arlington, VA, 2001.

[77] D. A. White and D. A. Sofge, Handbook of Intelligent Control: Neural, Fuzzy, and
Adaptive Approaches. New York: Van Nostrand Reinhold, 1992.

[78] U. Zoelch and D. Schroeder, "Dynamic Optimization Method for Design and Rating
of the Components of a Hybrid Vehicle," International Jounal of Vehicle Design,
vol. 19, pp. 1-13, 1998.

[79] A. Kleimaier and D. Schroder, "Optimization Strategy for Design and Control of a
Hybrid Vehicle," presented at 6th International Workshop on Advanced Motion
Control, 2000.

[80] R. Fellini, N. Michelena, P. Papalambros, and M. Sasena, "Optimal Design of
Automotive Hybrid Powertrain Systems," presented at First International
Symposium on Environmentally Conscious Design and Inverse Manufacturing,
1999.

[81] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press,
1957.

[82] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming. Princeton, N.J.,:
Princeton University Press, 1962.

[83] C. C. Lin, J. M. Kang, J. W. Grizzle, and H. Peng, "Energy Management Strategy
for a Parallel Hybrid Electric Truck," presented at American Control Conference,
Arlington, VA, 2001.

[84] K. J. Astr6m and B. Wittenmark, Adaptive Control, 2nd ed. Reading, MA: Addison-
Wesley, 1995.

[85] A. Brahma, Y. Guezennec, and G. Rizzoni, "Dynamic Optimization of
Mechanical/Electrical Power Flow in Parallel Hybrid Electric Vehicles,"
presented at 5th International Symposium on Advanced Vehicle Control, Ann
Arbor, MI, 2000.

[86] A. Brahma, Y. Guezennec, and G. Rizzoni, "Optimal Energy Management in Series
Hybrid Electric Vehicles," presented at American Control Conference, Chicago,
IL, 2000.

258

[87] W. C. Morchin, "Energy Management in Hybrid Electric Vehicles," presented at
Digital Avionics Systems Conference, 1998.

[88] H. Anton, Calculus with Analytic Geometry, 2nd ed. New York: John Wiley &
Sons, Ltd., 1984.

[89] M. Zahran, A. Hanafy, 0. Mahgoub, and M. Kamel, "FLC Based Photovoltaic
Battery Diesel Hybrid System Management and Control," presented at 28th
Photovoltaic Specialists Conference, 2000.

[90] J. Jantzen, "A Tutorial on Adaptive Fuzzy Control," www.eunite.org, 2002.
[91] S. Chiu, "Using Fuzzy Logic in Control Applications: Beyond Fuzzy PID Control,"

in Control Systems Magazine, vol. 18, 1998, pp. 100-104.
[92] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 3-11, 1965.
[93] L. A. Zadeh, "Fuzzy Logic," IEEE Computer, vol. 21, pp. 83-93, 1998.
[94] P. Singh, C. Fennie, and D. E. Reisner, "Logical Progression," in Electric and

Hybrid Vehicle Technology, 2000, pp. 72-74.
[95] B. M. Baumann, G. Washington, B. C. Glenn, and G. Rizzoni, "Mechatronic Design

and Control of Hybrid Electric Vehicles," IEEE Transactions on Mechatronics,
vol. 5, pp. 58-72, 2000.

[96] R. E. King, Computational Intelligence in Control Engineering. New York: Marcel
Dekker, Inc., 1999.

[97] L. X. Wang, "Design and Analysis of Fuzzy Identifiers of Nonlinear Dynamic
Systems," IEEE Transactions on Automatic Control, vol. 40, pp. 11-23, 1995.

[98] M. Salman, N. J. Schouten, and N. A. Kheir, "Control Strategies for Parallel Hybrid
Vehicles," presented at American Control Conference, Chicago, IL, 2000.

[99] N. J. Schouten, M. Salman, and N. A. Kheir, "Fuzzy Logic Control for Parallel
Hybrid Vehicles," IEEE Transactions on Control Systems Technology, vol. 10,
pp. 460-468, 2002.

[100] S. D. Farrall and R. P. Jones, "Energy Management in an Automotive
Electric/Heat Engine Hybrid Powertrain Using Fuzzy Decision Making,"
presented at 1993 International Symposium on Intelligent Control, Chicago, IL,
1993.

[101] E. S. Koo, H. D. Lee, S. K. Sul, and J. S. Kim, "Torque Control Strategy for a
Parallel Hybrid Vehicle Using Fuzzy Logic," presented at IEEE Industry
Applications Conference, New York, 1998.

[102] H. D. Lee and S. K. Sul, "Fuzzy-Logic-Based Torque Control Strategy for
Parallel-Type Hybrid Electric Vehicle," IEEE Transactions on Industrial
Electronics, vol. 45, pp. 625-632, 1998.

[103] N. Schouten, "Fuzzy Logic Control for Parallel Hybrid Vehicles using PSAT,"
presented at Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference,
Southfield, MI, 2001.

[104] J. S. Won and R. Langari, "Fuzzy Torque Distribution Control for a Parallel-
Hybrid Vehicle," presented at Joint ADVISOR/PSAT Vehicle Systems Modeling
User Conference, Southfield, MI, 2001.

[105] E. Cerruto, A. Consoli, A. Raciti, and A. Testa, "Energy Flows Management in
Hybrid Vehicles by Fuzzy Logic Controller," presented at Electrotechnical
Conference, 1994.

259

[106] S. Sakai, S. Onimaru, M. Inagaki, and H. Asa, "Generator Control System for a
Hybrid Vehicle Driven by an Electric Motor and an Internal Combustion Engine,"
in U.S. Patent and Trademark Office Database. United States: Nippon Soken,
Inc., 1998.

[107] S. Ibaraki, "Control System for Hybrid Vehicle," in US. Patent and Trademark
Office Database. United States: Honda Giken Kogyo Kabushiki Kaisha, 1999.

[108] C. P. Quigley, R. J. Ball, and R. P. Jones, "Fuzzy Modeling Approach to the
Prediction of Journey Parameters for Hybrid Electric Vehicle Control," Journal of
Automobile Engineering, vol. 214, pp. 875-885, 2000.

[109] C. Bourne, P. Faithfull, and C. Quigley, "Implementing Control of a Parallel
Hybrid Vehicle," International Journal of Vehicle Design, vol. 17, pp. 649-662,
1996.

[110] C. P. Quigley, R. J. Ball, A. M. Vinsome, and R. P. Jones, "Predicting Journey
Parameters for the Intelligent Control of a Hybrid Electric Vehicle," presented at
IEEE International Symposium on Intelligent Control, Dearborn, MI, 1996.

[111] A. Brahma, B. Glenn, Y. Guezennec, T. Miller, G. Rizzoni, and G. Washington,
"Modeling, Performance Analysis and Control Design of a Hybrid Sport-Utility
Vehicle," presented at International Conference on Control Applications, Hawaii,
1999.

[112] A. Rajagopalan and G. Washington, "Intelligent Control of Hybrid Electric
Vehicles Using GPS Information," SAE Paper 2002-01-1936, 2002.

[113] M. Agarwal, "A Systematic Classification of Neural-Network-Based Control,"
Control Systems Magazine, vol. 17, pp. 75-93, 1997.

[114] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural Networks for
Control Systems-A Survey," Automatica, vol. 28, pp. 1083-1112, 1992.

[115] K. S. Narendra, "Neural Networks for Control: Theory and Practice," Proceedings
of the IEEE, vol. 84, pp. 1385-1406, 1996.

[116] J. J. Hopfield, "Artificial Neural Networks," Circuits and Devices Magazine, vol.
4, pp. 3-10, 1988.

[117] G. A. Tagliarini, J. F. Christ, and E. W. Page, "Optimization Using Neural
Networks," IEEE Transactions on Computers, vol. 40, pp. 1347-1358, 1991.

[118] F. Yuan, L. A. Feldkamp, and G. V. Puskorius, "Neural Networks in Automotive
Control: Series Hybrid Electric Vehicle," Benelux Quarterly Journal on
Automatic Control, vol. 37, pp. 11-16, 1996.

[119] D. H. Swan, M. Arikara, and A. D. Patton, "Battery Modeling for Electric Vehicle
Applications Using Neural Networks," SAE Paper 931009, 1993.

[120] B. Baumann, G. Rizzoni, and G. Washington, "Intelligent Control of Hybrid
Vehicles Using Neural Networks and Fuzzy Logic," SAE Paper 981061, 1998.

[121] S. R. Bhatikar, R. L. Mahajan, K. B. Wipke, and V. Johnson, "Artificial Neural
Network Based Energy Storage System Modeling for Hybrid Electric Vehicles,"
SAE Paper 2000-01-1564, 2000.

[122] J. J. Hopfield and D. W. Tank, ""Neural" Computation of Decisions in
Optimization Problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.

[123] R. Saeks and C. Cox, "Design of an Adaptive Control System for a Hybrid Electric
Vehicle," presented at IEEE International Conference on Systems, Man, and
Cybernetics, 1999.

260

[124] R. W. Schmitz, T. F. Wilton, and J. J. Anderson, "Method and Apparatus for
Adaptive Energy Control of Hybrid Electric Vehicle Propulsion," in U.S. Patent
and Trademark Office Database. United States: Transportation Techniques LLC.,
2003.

[125] J. S. Albus, "Data Storage in the Cerebellar Model Articulation Controller
(CMAC)," Journal of Dynamic Systems, Measurement, and Control, vol. 63, pp.
228-233, 1975.

[126] J. S. Albus, "A New Approach to Manipulator Control: The Cerebellar Model
Articulation Controller (CMAC)," Journal of Dynamic Systems, Measurement,
and Control, vol. 63, pp. 220-227, 1975.

[127] M. Brown and C. Harris, Neurofuzzy Adaptive Modelling and Control. New York:
Prentice Hall, 1994.

[128] G. Burgin, "Using Cerebellar Arithmetic Computers," AI Expert, vol. 7, pp. 32-41,
1992.

[129] P. C. Parks and J. Militzer, "Improved Allocation of Weights for Associative
Memory Storage in Learning Control Systems," IFAC Design Methods of Control
Systems, pp. 507-512, 1991.

[130] T. W. Miller and F. H. Glanz, "Cerebellar Model Arithmetic Computer," in Fuzzy
Logic and Neural Network Handbook, C. H. Chen, Ed. New York: McGraw-Hill,
1996.

[131] G. Strang, Linear Algebra and Its Applications, 3rd ed. Fort Worth, TX: Harcourt
Brace Jovanovich College Publishers, 1988.

[132] P. C. Parks and J. Militzer, "Convergence Properties of Associative Memory
Storage for Learning Control Systems," Automation and Remote Control, vol. 50,
pp. 254-286, 1989.

[133] S. A. Lane, D. A. Handelman, and J. J. Gelfand, "Theory and Development of
Higher-Order CMAC Neural Networks," in Control Systems Magazine, vol. 12,
1992, pp. 23-30.

[134] A. Brooker, K. Haraldsson, T. Hendricks, V. Johnson, K. Kelley, and B. Kramer,
"ADVISOR Documentation," National Renewable Energy Laboratory, 2002.

[135] HEV-Center, "Visteon/UC-Davis HEV Simulation Documentation," University of
California-Davis, Davis, CA 2000.

[136] J. D. Anderson, Aircraft Performance and Design. Boston, MA: McGraw-Hill,
1999.

[137] J. D. Anderson, Introduction to Flight, 2nd ed. New York: McGraw-Hill, 1985.
[138] R. Von Mises, Theory of Flight. New York: Dover Publications, 1959.
[139] D. P. Raymer, Aircraft Design: A Conceptual Approach. Reston, VA: AIAA,

1999.
[140] D. Stinton, The Design of the Airplane, 2nd ed. Reston, VA: AIAA, 2001.
[141] T. C. Corke, Design ofAircraft. Upper Saddle River, NJ: Prentice Hall, 2003.
[142] P. Gelhausen, "ACSYNT-A Standards-Based System for Parametric Computer

Aided Conceptual Design of Aircraft," presented at 1992 Aerospace Design
Conference, Irvine, CA, 1992.

[143] D. P. Raymer and W. A. Crossley, "Variations of Genetic Algorithm and
Evolutionary Methods for Optimal Aircraft Sizing," presented at AIAA Aircraft
Technology, Integration, & Operation Meeting, Los Angeles, CA, 2002.

261

[144] C. M. E. Holden, R. Davies, and A. J. Keane, "Optimization Methodologies in
Conceptual Design," AIAA Paper 2002-5524, 2002.

[145] M. Ehsani, K. M. Rahman, and H. A. Toliyat, "Propulsion System Design of
Electric and Hybrid Vehicles," IEEE Transactions on Industrial Electronics, vol.
44, pp. 19-27, 1997.

[146] J. W. Youngblood and T. A. Talay, "Solar-Powered Airplane Design for Long-
Endurance, High-Altitude Flight," presented at AIAA 2nd International Very
Large Vehicles Conference, Washington, DC, 1982.

[147] M. S. Selig, J. F. Donovan, and D. B. Fraser, Airfoils at Low Speeds. Virginia
Beach, VA: H.A. Stokely, 1989.

[148] R. Eppler, Airfoil Design and Data. Berlin, Germany: Springer-Verlag, 1990.
[149] S. Siddiqi, R. Evangelista, and T. S. Kwa, "The Design of a Low Reynolds

Number RPV," presented at Low Reynolds Number Aerodynamics, Notre Dame,
IN, 1989.

[150] S. Weinzieri, R. Wildemann, and B. Hanula, "The Design and Development of a
Light-Weight, High Speed, Diesel Engine for Unmanned Aerial Vehicles," SAE
Paper 2002-01-0160, 2002.

[151] S. P. Dev, "JP-8/Battery Hybrid Propulsion and Power for Small UAVs and
UGVs," presented at AUVSI's 30th Annual Unmanned Systems Symposium and
Exhibition, Baltimore, MD, 2003.

[152] J. B. Heywood and E. Sher, The Two-Stroke Cycle Engine: Its Development,
Operation, and Design. Warrendale, PA: SAE, 1999.

[153] J. B. Heywood, Internal Combustion Engine Fundamentals. New York: McGraw-
Hill, 1988.

[154] "Mini 4-Stroke Engines," Honda, 2002.
[155] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained. New

York: John Wiley & Sons, 2002.
[156] J. S. Rohatgi and V. Nelson, Wind Characteristics. Canyon, TX: Alternative

Energy Institute, 1994.
[157] "Wind Energy Engineering Tool Box of MiniCodes," Beta Test Version 1.01c ed.

Amherst, MA: University of Massachusetts, 2000.
[158] J. P. Conner and A. S. Arena, "Advanced Dynamometer Designed to Fully

Characterize the Propulsion System for a UAV," SAE Paper 2002-01-2921, 2002.
[159] J. K. Peterson, "The Cerebellar Model Articulated Controller (CMAC): Neural

Architecture-Theory and Software Implementation." Clemson, SC: Department of
Mathematical Sciences, 2002.

262

BLANK

	Cedarville University
	DigitalCommons@Cedarville
	2005

	Neural Network Control of a Parallel Hybrid-Electric Propulsion System for a Small Unmanned Aerial Vehicle
	Frederick G. Harmon
	Recommended Citation

	tmp.1423594805.pdf.N2Z1W

