6,841 research outputs found

    Application of Single MEMS-accelerometer to Measure 3-axis Vibrations and 2-axis Tilt-Angle Simultaneously

    Get PDF
    This paper discusses a technique of developing an integrated sensor system, to measure the mechanical vibrations in 3-axis and the tilt-angle in 2-axis simultaneously, using only single MEMS-accelerometer. Type of MEMS-accelerometer that used in this experiment is MMA7361L, which is an analog-type acceleration sensor in the form of MEMS, with a maximum sensitivity of 800 mV/g. The MMA7361L has three outputs of voltage (Vx, Vy, Vz) in response to the acceleration value "g" of each working-axis corresponding vibrating (gx, gy, gz). By using certain techniques in the design of signal conditioning circuits, then the MMA7361L can be used to detect parameters of the vibration in 3-axis and the tilt-angle in 2-axis at the same time, simultaneously. To accommodate five output signal of the sensor system, used a data acquisition system that was built based on PIC16F876 microcontroller, which are already contained five internal ADC with 10 bits resolution. Thus, the resulting integrated sensor system becomes very simple, minimal components, and inexpensive. The experimental results show that the developed integrated sensor system has capability to measure the 3-axis vibrations and the 2-axis tilt-angle, with fairly good accuracy

    Accurate Telescope Mount Positioning with MEMS Accelerometers

    Get PDF
    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the sub-arcminute range which is well smaller than the field-of-view of conventional imaging telescope systems. Here we present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.Comment: Accepted for publication in PASP, 12 page

    Low weight additive manufacturing FBG accelerometer: design, characterization and testing

    Get PDF
    Structural Health Monitoring is considered the process of damage detection and structural characterization by any type of on-board sensors. Fibre Bragg Gratings (FBG) are increasing their popularity due to their many advantages like easy multiplexing, negligible weight and size, high sensitivity, inert to electromagnetic fields, etc. FBGs allow obtaining directly strain and temperature, and other magnitudes can also be measured by the adaptation of the Bragg condition. In particular, the acceleration is of special importance for dynamic analysis. In this work, a low weight accelerometer has been developed using a FBG. It consists in a hexagonal lattice hollow cylinder designed with a resonance frequency above 500 Hz. A Finite Element Model (FEM) was used to analyse dynamic behaviour of the sensor. Then, it was modelled in a CAD software and exported to additive manufacturing machines. Finally, a characterization test campaign was carried out obtaining a sensitivity of 19.65 pm/g. As a case study, this paper presents the experimental modal analysis of the wing of an Unmanned Aerial Vehicle. The measurements from piezoelectric, MEMS accelerometers, embedded FBGs sensors and the developed FBG accelerometer are compared.Ministerio de Economía y Competitividad BIA2013-43085-P y BIA2016-75042-C2-1-

    Low power wireless sensor network for building monitoring

    Get PDF
    A wireless sensor network is proposed for monitoring buildings to assess earthquake damage. The sensor nodes use custom-developed capacitive MEMS strain and 3D acceleration sensors and a low power readout ASIC for a battery life of up to 12 years. The strain sensors are mounted at the base of the building to measure the settlement and plastic hinge activation of the building after an earthquake. They measure periodically or on-demand from the base station. The accelerometers are mounted at every floor of the building to measure the seismic response of the building during an earthquake. They record during an earthquake event using a combination of the local acceleration data and remote triggering from the base station based on the acceleration data from multiple sensors across the building. A low power network architecture was implemented over an 802.15.4 MAC in the 900MHz band. A custom patch antenna was designed in this frequency band to obtain robust links in real-world conditions

    Development of a vibration measurement device based on a MEMS accelerometer

    Get PDF
    © 2017 by SCITEPRESS. Published under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)This paper proposes a portable and low cost vibration detection device. Enhanced vibration calculation, reduction of error and low storage memory are complementary accomplishments of this research. The device consists of a MEMS capacitive accelerometer sensor and microcontroller unit, which operates based on a novel algorithm designed to obtained vibration velocity, bypassing the usual time-based integration process. The proposed algorithm can detect vibrations within 15Hz-1000Hz frequencies. Vibration in this frequency range cannot be easily and accurately evaluated with conventional low cost digital sensors. The proposed technique is assessed and validated by comparing results with an industrial grade vibration meter

    Low power wireless sensor network for structural health monitoring of buildings using MEMS strain sensors and accelerometers

    Get PDF
    Within the MEMSCON project, a wireless sensor network was developed for structural health monitoring of buildings to assess earthquake damage. The sensor modules use custom-developed capacitive MEMS strain and 3D acceleration sensors and a low power readout application-specific integrated circuit (ASIC). A low power network architecture was implemented on top of an 802.15.4 media access control (MAC) layer in the 900MHz band. A custom patch antenna was designed in this frequency for optimal integration into the sensor modules. The strain sensor modules measure periodically or on-demand from the base station and obtain a battery lifetime of 12 years. The accelerometer modules record during an earthquake event, which is detected using a combination of the local acceleration data and remote triggering from the base station, based on the acceleration data from multiple sensors across the building. They obtain a battery lifetime of 2 years. The MEMS strain sensor and its readout ASIC were packaged in a custom package suitable for mounting onto a reinforcing bar inside the concrete and without constraining the moving parts of the MEMS strain sensor. The wireless modules, including battery and antenna, were packaged in a robust housing compatible with mounting in a building and accessible for maintenance such as battery replacement

    Microelectromechanical system gravimeters as a new tool for gravity imaging

    Get PDF
    A microelectromechanical system (MEMS) gravimeter has been manufactured with a sensitivity of 40 ppb in an integration time of 1 s. This sensor has been used to measure the Earth tides: the elastic deformation of the globe due to tidal forces. No such measurement has been demonstrated before now with a MEMS gravimeter. Since this measurement, the gravimeter has been miniaturized and tested in the field. Measurements of the free-air and Bouguer effects have been demonstrated by monitoring the change in gravitational acceleration measured while going up and down a lift shaft of 20.7 m, and up and down a local hill of 275 m. These tests demonstrate that the device has the potential to be a useful field-portable instrument. The development of an even smaller device is underway, with a total package size similar to that of a smartphone
    • …
    corecore