133 research outputs found

    Robotic Olfactory-Based Navigation with Mobile Robots

    Get PDF
    Robotic odor source localization (OSL) is a technology that enables mobile robots or autonomous vehicles to find an odor source in unknown environments. It has been viewed as challenging due to the turbulent nature of airflows and the resulting odor plume characteristics. The key to correctly finding an odor source is designing an effective olfactory-based navigation algorithm, which guides the robot to detect emitted odor plumes as cues in finding the source. This dissertation proposes three kinds of olfactory-based navigation methods to improve search efficiency while maintaining a low computational cost, incorporating different machine learning and artificial intelligence methods. A. Adaptive Bio-inspired Navigation via Fuzzy Inference Systems. In nature, animals use olfaction to perform many life-essential activities, such as homing, foraging, mate-seeking, and evading predators. Inspired by the mate-seeking behaviors of male moths, this method presents a behavior-based navigation algorithm for using on a mobile robot to locate an odor source. Unlike traditional bio-inspired methods, which use fixed parameters to formulate robot search trajectories, a fuzzy inference system is designed to perceive the environment and adjust trajectory parameters based on the current search situation. The robot can automatically adapt the scale of search trajectories to fit environmental changes and balance the exploration and exploitation of the search. B. Olfactory-based Navigation via Model-based Reinforcement Learning Methods. This method analogizes the odor source localization as a reinforcement learning problem. During the odor plume tracing process, the belief state in a partially observable Markov decision process model is adapted to generate a source probability map that estimates possible odor source locations. A hidden Markov model is employed to produce a plume distribution map that premises plume propagation areas. Both source and plume estimates are fed to the robot. A decision-making model based on a fuzzy inference system is designed to dynamically fuse information from two maps and balance the exploitation and exploration of the search. After assigning the fused information to reward functions, a value iteration-based path planning algorithm solves the optimal action policy. C. Robotic Odor Source Localization via Deep Learning-based Methods. This method investigates the viability of implementing deep learning algorithms to solve the odor source localization problem. The primary objective is to obtain a deep learning model that guides a mobile robot to find an odor source without explicating search strategies. To achieve this goal, two kinds of deep learning models, including adaptive neuro-fuzzy inference system (ANFIS) and deep neural networks (DNNs), are employed to generate the olfactory-based navigation strategies. Multiple training data sets are acquired by applying two traditional methods in both simulation and on-vehicle tests to train deep learning models. After the supervised training, the deep learning models are verified with unseen search situations in simulation and real-world environments. All proposed algorithms are implemented in simulation and on-vehicle tests to verify their effectiveness. Compared to traditional methods, experiment results show that the proposed algorithms outperform them in terms of the success rate and average search time. Finally, the future research directions are presented at the end of the dissertation

    Navigational Path Analysis of Mobile Robot in Various Environments

    Get PDF
    This dissertation describes work in the area of an autonomous mobile robot. The objective is navigation of mobile robot in a real world dynamic environment avoiding structured and unstructured obstacles either they are static or dynamic. The shapes and position of obstacles are not known to robot prior to navigation. The mobile robot has sensory recognition of specific objects in the environments. This sensory-information provides local information of robots immediate surroundings to its controllers. The information is dealt intelligently by the robot to reach the global objective (the target). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimisation problem and thus can be analyzed and solved using AI techniques. The optimisation of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A successful way of structuring the navigation task deals with the issues of individual behaviour design and action coordination of the behaviours. The navigation objective is addressed using fuzzy logic, neural network, adaptive neuro-fuzzy inference system and different other AI technique.The research also addresses distributed autonomous systems using multiple robot

    Multi Sensor Fusion Based Framework For Efficient Mobile Robot Collision Avoidance and Path Following System

    Get PDF
    The field of autonomous mobile robotics has recently gained the interests of many researchers. Due to the specific needs required by various applications of mobile robot systems (especially in navigation), designing a real-time obstacle avoidance and path following robot system has become the backbone of controlling robots in unknown environments. Therefore, an efficient collision avoidance and path following methodology is needed to develop an intelligent and effective autonomous mobile robot system. Mobile robots are equipped with various types of sensors (such as GPS, camera, infrared and ultrasonic sensors); these sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. A new technique for line following and collision avoidance in the mobile robotic systems is introduced. The proposed technique relies on the use of infrared sensors and involves a reasonable level of calculations, to be easily used in real-time control applications. In addition, a fusion model based on fuzzy logic is proposed. Eight distance sensors and a range finder camera are used for the collision avoidance approach, where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs (which are the eight distance sensors and the camera), two outputs (which are the left and right velocities of the mobile robot’s wheels), and twenty four fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and robot to show the ability of the robot to follow a path, detect obstacles, and navigate around them to avoid collision. It also shows that the robot has been successfully following extremely congested curves and has avoided any obstacle that emerged on its path. The proposed methodology which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real-time experiments. Various scenarios have been presented with static and dynamic obstacles, using one and multiple robots while avoiding obstacles in different shapes and sizes. The proposed methodology reduced the traveled distance of the mobile robot, as well as minimized the energy consumption and the distance between the robot and the obstacle detected as compared to a non-fuzzy logic approach

    Path Navigation For Robot Using Matlab

    Get PDF
    Path navigation using fuzzy logic controller and trajectory prediction table is to drive a robot in the dynamic environment to a target position,without collision. This path navigation method consists of static navigation method and dynamic path planning. The static navigation used to avoid the static obstacles by using fuzzy logic controller, which contains four sensor input and two output variables. If the robot detects moving obstacles, the robot can recognize the velocity and moving direction of each obstacle and generate the Trajectory Prediction Table to predict the obstacles’ future trajectory. If the trajectory prediction table which reveals that the robot will collide with an obstacle, the dynamic path planning will find a new collision free path to avoid the obstacle by waiting strategy or detouring strategy. . A lot of research work has been carried out in order to solve this problem. In order to navigate successfully in an unknown or partially known environment, the mobile robots should be able to extract the necessary surrounding information from the environment using sensor input, use their built-in knowledge for perception and to take the action required to plan a feasible path for collision free motion and to reach the goal

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Classifying intelligence in machines : a taxonomy of intelligent control

    Get PDF
    The quest to create machines that can solve problems as humans do leads us to intelligent control. This field encompasses control systems that can adapt to changes and learn to improve their actions—traits typically associated with human intelligence. In this work we seek to determine how intelligent these classes of control systems are by quantifying their level of adaptability and learning. First we describe the stages of development towards intelligent control and present a definition based on literature. Based on the key elements of this definition, we propose a novel taxonomy of intelligent control methods, which assesses the extent to which they handle uncertainties in three areas: the environment, the controller, and the goals. This taxonomy is applicable to a variety of robotic and other autonomous systems, which we demonstrate through several examples of intelligent control methods and their classifications. Looking at the spread of classifications based on this taxonomy can help researchers identify where control systems can be made more intelligent

    Ugrađivanje inteligencije u mehatroničke sustave

    Get PDF
    An autonomously operating mechatronic system is an instantiation of an intelligent system. Its functionality relies on numerous disparate sensors through which the system grasps a consistent image of what is going on inside and around it. The paper describes the ways of embedding intelligence based on the means of information fusion and learning. The process is exemplified by intelligent navigation of a mobile machine. The feasibility of the chosen approach is demonstrated by both the simulation and real experiment.Mehatronički sustav autonomnog djelovanja primjer je instantizacije inteligentnog sustava. Njegova funkcionalnost ovisi o brojnim i različitim senzorima pomoću kojih sustav prikuplja konzistentnu sliku o zbivanjima unutar samog sustava i u njegovom okruženju. Ovaj rad prikazuje načine ugrađivanja umjetne inteligencije utemeljene na sredstvima fuzije informacija i učenja na primjeru inteligentne navigacije pokretnog stroja. Primjenjovost odabranog pristupa potvrđena je simulacijom i eksperimentom u realnim uvjetima

    A fuzzy logic approach to localisation in wireless local area networks

    Get PDF
    This thesis examines the use and value of fuzzy sets, fuzzy logic and fuzzy inference in wireless positioning systems and solutions. Various fuzzy-related techniques and methodologies are reviewed and investigated, including a comprehensive review of fuzzy-based positioning and localisation systems. The thesis is aimed at the development of a novel positioning technique which enhances well-known multi-nearest-neighbour (kNN) and fingerprinting algorithms with received signal strength (RSS) measurements. A fuzzy inference system is put forward for the generation of weightings for selected nearest-neighbours and the elimination of outliers. In this study, Monte Carlo simulations of a proposed multivariable fuzzy localisation (MVFL) system showed a significant improvement in the root mean square error (RMSE) in position estimation, compared with well-known localisation algorithms. The simulation outcomes were confirmed empirically in laboratory tests under various scenarios. The proposed technique uses available indoor wireless local area network (WLAN) infrastructure and requires no additional hardware or modification to the network, nor any active user participation. The thesis aims to benefit practitioners and academic researchers of system positioning
    corecore