
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 46 – 53

__

46
IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

Path Navigation for Robot Using Matlab

Prof. A. G. Andurkar
1
, Ms. Rupali Tankar

2
, Ms. Suvarna Patil

3

Assistant prof., E&TC, Govt.college of engineering , Jalgaon, India
 1

M.Tech, E&TC, Govt.college of engineering, Jalgaon, India
 2

M.Tech, E&TC, Govt.college of engineering, Jalgaon, India
 3

Abstract- Path navigation using fuzzy logic controller and trajectory prediction table is to drive a robot in the dynamic environment to a target

position, without collision. This path navigation method consists of static navigation method and dynamic path planning. The static navigation

used to avoid the static obstacles by using fuzzy logic controller, which contains four sensor input and two output variables. If the robot detects

moving obstacles, the robot can recognize the velocity and moving direction of each obstacle and generate the Trajectory Prediction Table to

predict the obstacles‟ future trajectory. If the trajectory prediction table which reveals that the robot will collide with an obstacle, the dynamic

path planning will find a new collision free path to avoid the obstacle by waiting strategy or detouring strategy.

A lot of research work has been carried out in order to solve this problem. In order to navigate successfully in an unknown or partially

known environment, the mobile robots should be able to extract the necessary surrounding information from the environment using sensor

input, use their built-in knowledge for perception and to take the action required to plan a feasible path for collision free motion and to reach

the goal.

Keywords-fuzzy logic controller,trajectory prediction table,matlab

___*****___

I. INTRODUCTION

Path navigation is important to robots, which is to find an

optimal collision-free path from a starting point to a target in a

given environment according to some criteria such as distance,

time or energy [7]. There are two main types of path planning:

Global Path Planning, which encompasses all the acquired

knowledge of a robot (i.e, environmental information is

known) to reach a goal; and Local Navigation, which is the

process of using only the robot's currently sensed information

(environmental information is unknown or partially unknown)

[10]. A number of studies have been done for global path

planning, such as visibility graph methods, grid method,

freespace method [1]. There have been many studies for local

path planning, such as neural networks, artificial potential field

method, and fuzzy logic algorithm [1]. There are two types of

obstacles in the environment: static and dynamic obstacles.

There are so many methods already developed for static

obstacle avoidance. Thus, recent interests aim at dynamic

obstacle-avoidance including avoidance of both static and

dynamic obstacles using fuzzy logic and trajectory prediction

table [7][10][4].

Robot navigation is a fundamental problem in robotics.

Navigation related to mobile robot is the ability of finding a

collision free path from its starting position to the goal position

by avoiding the obstacles. Moreover the selected path should

be optimized i.e. having smallest possible distance and

minimum number of turns to make sure that least amount of

energy and time are used by the robot in roaming from starting

point to its target

II. LITERATURE REVIEW

A. Potential Field Method

Andrews and Hogan (1983) and Khatib (1985) have been

suggested imaginary forces acting on a robot in such a way

that the robot has been attracted by its target and obstacle

exerts repulsive forces on it. Therefore resultant force governs

the following direction and speed of travel. Borenstein and

Koren (1991) have presented a systematic overview and

discussed about the inherent drawbacks of potential field

methods (PFMs). No passage between closely spaced obstacles

(when two obstacles are presents very near to each other, then

the robot may repelled away from the obstacles). Oscillations

in the presence of obstacles and Oscillations in the narrow

passages. Moreover they have developed a new method

namely vector field histogram (VHF) method which gives

smooth, non-oscillatory motion and can be used for fast

obstacle avoidance[1]. Cosio and Castaneda (2004) have

presented a new scheme for autonomous navigation of mobile

robot based on improved artificial potential field and genetic

algorithm (GA). They have used the concept of multiple

auxiliary attraction points so that the robot can overcome the

trap situation and avoid the closely spaced obstacles. The

intensity of attractive and repulsive forces along with the

position parameter of the auxiliary attraction point has been

optimized by the GA. Huang (2009) Addressed a new

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 46 – 53

__

47
IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

technique, derived from the classical potential filed method,

for the velocity planning of a mobile robot in a dynamic

environment where the target and obstacles are moving. The

method ensures that the robot successfully tracks the moving

target by avoiding the obstacles along its path, by providing

the direction and the speed of the robot. Olunloyo and

Ayomoh (2009) have presented a path planning and obstacle

avoidance approach for a mobile robot in a partially known 2-

D environment.

B. Neuro-Fuzzy Approach

The difficulties of constructing correct fuzzy rule base are

overcome by using neural network-based approaches [36].

Online learning method has been adopted and dynamic rule

generation is developed using neural fuzzy. The optimization

of rule construction is done in this paper. This has been found

to be good when applied to wall following control of omni

directional robot. The neuro-fuzzy algorithm for reactive robot

is proposed and developed [10]. This technique can effectively

deal with imprecise coordinate conflicts among multi-behavior

contexts. RAM-based neural network is used to supervise the

FLC. The benefit in using RAM based neural network

approach is that it requires very less memory and less

computation time maintaining the ability to handle imprecise

and complex data.

Heuristic method of reasoning is adopted instead of analytical

solution. The proposed behavior-based navigation strategy

using fuzzy rules has major benefits compared to the

mathematical model. Even though the fuzzy-based reasoning is

easy to implement but for multibehavior coordination, it‟s

difficult to find out optimized rules to overcome all sorts of

destructions. Artificial neural network is combined along with

fuzzy logic reasoning method, and this maps the inputs and

outputs in optimized way. The fuzzy logic and back

propagation neural network been used for road traffic signs

detection and classification [5]. Fuzzy logic has been used for

the sign detection and classification, for back propagation

neural network technique is used to display the right task. The

purpose of the paper is to make walking safer and easier. The

system is divided in to three different stages-first stage

detection and improving raw sign image, second is shape

analysis with continuous thinning algorithms and the image

coding algorithm, finally, image recognition and decision by

fuzzy logic and back propagation neural network technique to

display the right task.

The application of mobile robot navigation with obstacle

avoidance has been done using polynomial neural network.

This polynomial neural network is built from some selected

starting location to reach the goal. The efficient technique

based on associative retrieval is applied to robot to follow

minimal cost polynomial path. This has advantage of

interpolating capability with moderate size of data space. Use

of new adaptation block for mobile robot to learn new

behavioral actions and scripts based-soft computing techniques

[10].

C. Fuzzy Logic Based Navigation

Barret, Benreguieg, and Maaref (1997) have proposed a

sensor-based navigation algorithm, combines two types of

obstacle avoidance behaviours, each for the convex obstacles

and the concave ones. To avoid the convex obstacles the

navigator uses either fuzzy tuned artificial potential field

(FTAPF) method or a behavioural agent, however an

automatically online wall-following system using a neuro-

fuzzy structure has been designed for the concave one. Xu

(2000) has proposed a virtual target approach for resolving the

limit cycle problem in navigation of a behaviour-based mobile

robot. The real target has been switched to a virtual location so

that robot can navigate according to the virtual target until it

detects the opening. The efficiency and effectiveness of the

refined fuzzy behaviour-based navigation are demonstrated by

means of both simulation and physical experiments. Aguirre

Eugenio and Gonzalez Antonio (2000) dealt with a hybrid

deliberative-reactive architecture for mobile robot navigation

for integrating planning and reactive control, and attention is

focused on the design, coordination and fusion of the

elementary behaviours. Saade and Khatib (2003) have

developed a data-driven fuzzy approach to provide a general

framework for solving the Dynamic motion problem (DMP)

problem of a mobile robot under some constraints[7]. The

main advantage of the current approach over recent fuzzy-

genetic one is that the robot can navigate successfully in the

presence of moving obstacles and independently of the number

of these obstacles. The proposed approach has also reveals the

reduction in the travel time. The proposed algorithm has

shown good results as compared to ANFIS on robot trajectory

in terms of their length and the time required by the robot to

reach the goal. The superiority of the new algorithm can be

helpful in building fuzzy models without any compulsion of

planting effort in gaining accurate and enormous number of

data points. Li and Hseng (2003) have designed and

implemented a new fuzzy controller for a car-like mobile robot

(CLMR) that holds autonomous garage-parking and parallel-

parking capacity by using real time image processing. The

system consists of a host computer, a communication module,

a CLMR, and a vision system. Fuzzy garage parking control

(FGPC) and fuzzy parallel parking control (FPPC) have been

used in order to control the steering angle of the CLMR.

Cuesta et al. (2003) have presented a new method for the

intelligent control of the nonholonomic vehicles. Fuzzy

perception has been directly used, both in design of each

reactive behaviour and solving the problem of behaviour

combination in order to implement a fuzzy behaviour based

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 46 – 53

__

48
IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

control architecture. The capabilities of the control system

have been improved by considering teleoperation and planned

behaviour, together with their combination with reactive ones.

Experimental results have shown the robustness of the

suggested technique. Abdessemed Foudil, Benmahammed

Khier, and Monacelli Eric (2004) have used the fuzzy logic

controller in the development of complete navigation

procedure of a mobile robot in a messy environment. An

evolutionary algorithm has been implemented in order to solve

the problem of extracting the IF-THEN rule base. The validity

of the proposed method has been demonstrated through

simulation results. Demirli and Molhim (2004) have presented

a new fuzzy logic based approach for dynamic localization of

mobile robots. The proposed approach uses sonar data

obtained from a ring of sonar sensors mounted around the

robot. The angular uncertainty and radial imprecision of sonar

data are modelled by possibility distributions.

The information received from the adjacent sonar sensors are

united, which helps in the reduction in the uncertainty in sonar

impressions. In the beginning a local fuzzy map has been

constructed with help of reduced models of uncertainty, and

then fitted to the given global map of the environment to

identify robot‟s location. This fit offers either a unique fuzzy

location or multiple candidate fuzzy locations. Since the

coordinates (x, y) and orientation of the identified locations are

represented by possibility distribution, these locations are

referred to as fuzzy locations. To reduce the number of

candidate locations, a new set of candidate fuzzy location is

obtained by moved the robot to a new position. By considering

the robot‟s movement, a set of hypothesized locations is

identified from the old set of candidate locations. The

hypothesized locations are matched with the new candidate

locations and the candidates with low degree of match are

eliminated. This process is continued until a unique location is

obtained. The matching process is performed by using the

fuzzy pattern matching technique. The proposed method is

implemented on a Nomad 200 robot and the results are

reported. Parhi (2005) has described a fuzzy logic based

control system for the navigation of multiple mobile robots in

a cluttered environment, such that the robots do not collide to

each other. For this he has used fuzzy logic controller to

combine the fuzzy rules in order to direct the steering of the

robot to avoid the obstacles present in its path. Moreover Petri

Net model has been used by implementing crisp rules to avoid

the collision between the different mobile robots. Simulation

and test results validate the system functions by enabling the

robots to reach their goal without hitting the static obstacles or

colliding with other robots[7]. Fatmi et al. (2006) have

demonstrated a successful way of constructing the navigation

task in order to deal with problem of autonomous navigation of

mobile robot. Issues of individual behaviour design and action

coordination of the behaviours were addressed using fuzzy

logic. They have designed the individual behaviours like goal

reaching; emergency situation, obstacle avoidance, and wall

following are presented using fuzzy if-then rule base.

Moreover they have introduced a coordination technique to

overcome the problem of activation of several behaviours

independently or/and simultaneously. Mendez and Madrigal

(2007) have proposed a user adaptive fuzzy based navigation

system for the autonomous navigation of mobile robot in

unknown environments. They have tested their system in a

pioneer mobile robot and on a robotic wheel chair, equipped

with PLS laser sensor for the detection of obstacles and

odometry sensors for the localization of the robot and the goal

positions. The proposed system has a learning algorithm that

can quickly adapt to different users[5][7]. They have found

that the proposed system takes 90% less computation time for

the task as compared to others reactive control tested in the

same platform for the previous system. Hassanzadeh, Ghadiri,

and Dalayimilan (2008) have used a simple fuzzy controller

for obstacle avoidance of mobile robot navigation.

Summary

The use of fuzzy logic for local navigation of robots is a much

discussed topic in literature. Various implementations have

been shown to be effective and efficient. The ability of fuzzy

techniques to deal with imprecise data allows for smooth

trajectory execution while their low computational complexity

allows them to react quickly to dynamic environments without

the need to alter the robot‟s end-to-end path. Because

algorithms based on fuzzy logic depend on sensory data to

make navigational corrections, they are essentially reactive in

nature. This quality can elicit suboptimal behaviors including

shortsightedness and the local minima problem. A knowledge

of longer range obstacles as from long-range sensory

instruments or conventional model-based planning algorithms

could allow the reactive behavior of a fuzzy controller to make

quick trajectory adjustments while still approximating the most

preferred path. Despite the limitations and non-deterministic

nature of fuzzy algorithms, they have been shown to produce

robust local navigation control for robots in unknown and

noisy environments. The literature reviewed here shows that,

with modest differential complexity, fuzzy algorithms can be

used practically in both 2D and 3D environments as well as

with industrial manipulators. As such, they represent a

complement to rather than a replacement for conventional

motion planners across a wide range of applications where real

time, autonomous obstacle avoidance is needed.

III. SYSTEM DESCRIPTION

A. Concept

Table 1. List of Rules for Static Robot Navigation

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 46 – 53

__

49
IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

a) NB: Negative Big, NS: Negative Small, ZE: Zero, PS:

Positive Small, PB: Positive Big.

b) θ
o
: Angle indicates the included angle between the robot

and target.

Table 2. shows a trajectory prediction table. In this, A robotic

path planning method containing the robot navigation for static

obstacles and dynamic path planning for moving obstacles, as

shown in Fig.1. The task of the robot is to move from a start

position to target position without collision. We assume that

the static and dynamic obstacles are unknown. There are two

kinds of sensors for the robot. The sonar sensors with a

maximum of 130 cm detect the stationary obstacles in left,

front, and right of the robot. The laser range finder with a

maximum of 250 cm used to detect the omnidirectional

moving obstacles. As listed Line 1 of Algorithm of the robotic

path planning, the robot moves forward until it reaches the

target. The robot firstly detects if there exists any dynamic

obstacle around it. If the dynamic obstacles are recognized, the

algorithm will generate the Trajectory Prediction Table, e.g.,

TABLE 2. From the current time step, e.g., t, to several future

time steps, e.g., t + 9, we predict the positions of the robot and

detected obstacles, and estimate if the robot has a collision or

not at each time step. This table will be used to plan a short-

term path to avoid the moving obstacle. In Lines 6-11, if there

is no dynamic obstacle detected by the robot‟s sensor within a

range, i.e., 250 cm in this paper, or there exists dynamic

obstacles but without collision, the robot will move toward to

the target directly if it does not detect any static obstacle as

well. Otherwise, the robot have to avoid the stationary

obstacles by using the fuzzy logic control. In Lines 12-14, if

the robot detects dynamic obstacles which will collide with

that robot, the dynamic path planning, by using Trajectory

Prediction Table, is used to find a short-term path to avoid the

obstacle.

 Algorithm of the proposed robotic path planning.

1 while (the robot does not reach the target),

2 Detect whether exist any dynamic obstacle around the robot;

3 if dynamic obstacles are detected then

4 Generate the Trajectory Prediction Table;

5 end if

6 if (no dynamic obstacle) or (exist obstacles but no collision)

then

7 if no static obstacle around the robot then

8 The robot directly moves toward the target;

9 else

10 Do the static navigation by fuzzy logic control;

11 end if

12 else

13 Do dynamic path planning using Trajectory Prediction

Table;

14 end if

15 end while

Fig 1. Algorithm of the Proposed Robotic Path Planning.

B. Fuzzy Logic for Static Navigation

Fig 1. illustrates the sensing range of sonar sensors of the robot

which is inspired by [10], and the sensing range is divided into

three sectors, Left, Front, and Right. We apply the fuzzy logic

controller to derive the robot avoiding the static obstacles. The

input variables are: the distances between the static obstacle

and the Left, Front, Right sides of robot (the ranges are [0,

130]cm), and the included angle between the robot and the

target (its range is [0°, 180°]). The output variables Δθ and ν

denote the increment of the robot‟s steering angle (whose

range is [-120°, 120°]) and the velocity of the robot (whose

range is [10, 40] cm/sec). We assume that each discrete time

step corresponds to one second. The membership functions of

input variables Left, Front, and Right are same as shown in

Fig.2.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 46 – 53

__

50
IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

Fig.2 The Membership Function of Input Variable Left, Front, and Right.

Figure.3 The membership function of output variable ν.

Fig.4 The membership function of output variable Δθ.

We can use the crisp membership function for input variable

included angle. If the degree of that angle is less than 90, it

belongs to “Right” linguistic term; otherwise, it belongs to

“Left”. The membership functions of ν and Δθ are shown in

Figs.3 and 4, respectively[13].

C. Dynamic Path Planning

If the robot detects dynamic obstacles, the Trajectory

Prediction Table will be generated to predict the trajectories of

moving obstacles and the robot in next several time steps.

 Algorithm of Dynamic Path Planning

1 for time = 1 to nTraj, // nTraj: number of time steps in

trajectory table

2 for each dynamic obstacle,

3 if the collisions start at time = tc then

4 tS = tc – 1;

5 tG = the first time step without collision after time = tc;

6 newPath = FindNewPath(trajTable, tS, tG);

7 end if

8 break; // exit the inner for loop

9 end

10 if newPath is not empty then break; end if

11 end

12 path = path (1 → tS – 1) ∪ newPath;

13 procedure FindNewPath(trajTable, tS, tG)

14 rTraj = robot‟s trajectory in trajTable;

15 waitTime = tG – tS – 1; //waiting time: no. of time steps

should wait

16 if (waitTime < hWait or tG = nTraj + 1) and no collision

during

waiting then

17 newPath = rTraj(1 → tS – 1) ∪ [repeat rTraj(tS) waitTime

+ 1];

18 else

19 if tS > 1 then tS’ = tS – 1; end if

20 rS’ = rTraj(tS’); rG = rTraj(tG);

21 time = tS’;

22 newPath = rTraj(1 → tS’);

23 while (rG is not reached),

24 rNext = GetSuccessors(newPath(time));

25 for each rNext,

26 if a collision occurs in the moving to rNext then

27 g(rNext) = ∞; f(rNext) = ∞;

28 else

29 g(rNext) = distance from newPath(time) to rNext;

30 h(rNext) = distance from rNext to rG;

31 f(rNext) = g(rNext) + h(rNext);

32 end if

33 end for

34 time =time + 1; newPath(time) = the rNext with minimal f;

35 end while

36 end if

37 return newPath;

38 procedure GetSuccessors(r)

39 θ = included angle between robot‟s current position r and

target rG;

40 φ = the moving angle of obstacle;

41 if φ < 180° then

42 if θ < φ + 180° then φLow = φ;

43 else φLow = φ + 180°;

44 end if

45 else

46 if θ < φ then φLow = φ − 180°;

47 else φLow = φ;

48 end if

49 end if

50 v = {vSlow, vMedium, vFast}; // robot‟s velocity

51 ϕ = {φLow, φLow + 10°, φLow + 20°, …, φLow + 180°};

// robot‟s direction

52 r = (rx, ry); rNext = null;

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 46 – 53

__

51
IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

53 for i = 1 to 3,

54 for j = 1 to 19,

55 rx

‟ = rx + v(i)cos(ϕ (j)); // x coordinate

56 ry

’ = ry + v(i)sin(ϕ (j)); // y coordinate

57 rNext = rNext ∪ (rx

‟, ry

‟);

58 end for

59 end for

60 return rNext;

According to the Trajectory Prediction Table (such as Table

2), if the robot will collide with moving obstacle in the future,

the proposed dynamic path planning will be used to find a

short-term path for avoiding the obstacle. There are two

strategies to avoid dynamic obstacle in this paper, i.e., waiting

(degree) μ or detouring around the moving obstacle.

Table 2. An Illustration of Trajectory Prediction Table

Collision 1 indicates whether a collision occurs with obstacle 1

at time step t.

Fig 5. An Illustration of Dynamic Path Planning.

The algorithm of dynamic path planning is listed, and an

illustration is shown in Fig.5. At time step t = 1, the robot

detects two dynamic obstacles, and thus the Trajectory

Prediction Table, as shown in Table 2, is generated to predict

the obstacles‟ positions at each time step (see Lines 2 to 5,

algorithm Algorithm of the proposed robotic path planning).

The numbers located within the circle and rectangular

represent the time step. nTraj (see Line 1, Algorithm of

Dynamic Path Planning) denotes the number of time steps in

trajectory table, and it is the maximal moving steps of the

robot (one time step indicates the robot moving one step

forward) within the maximal sensing range of laser range

finder, i.e., 250 cm. As shown in Table 2. and Fig. 5, nTraj =

9. At time steps 6, 7, and 8, the robot will collide with obstacle

1. Lines 2 and 9 in Algorithm of Dynamic Path Planning are to

find which obstacle will collide with robot, and that is the

obstacle 1. As listed from Lines 3 to 7 in Algorithm of

Dynamic Path Planning, if the collisions start at time step 6 (tc

= 6), as shown in Fig. 5, and then we let tS = 6 – 1 = 5. The

collisions end at time step 8, and thus tG = 8 + 1 = 9. rS and

rG are the start and target positions of the robot at time step tS

and tG, respectively. In Line 6 of Algorithm of Dynamic Path

Planning, newPath = FindNewPath(trajTable, tS, tG) means

that use the trajTable (Trajectory Prediction Table), tS, and tG

as input parameters for FindNewPath procedure to discover a

short-term path, storing to newPath, to avoid obstacle 1.We

assume that the robot will have only one collision at most.

Once we obtain the newPath by using FindNewPath

procedure, exit for-loop to go to Line 12. Finally, the planned

path is to merge the new path (newPath) with the first half of

the original path which starts from time step 1 to time step tS –

1 (see Line 12,)[13].

The core of dynamic path planning is the FindNewPath

procedure as shown in Lines 13 to 37. Firstly, the robot has to

choose the avoiding strategy, waiting strategy or detouring

strategy. The premise of Line 16 means: The waiting time

(wait until the obstacle moves away) is less than hWait (a

tolerable threshold for wait; hWait = 2 in this paper) or tG =

nTraj + 1 (it means a collision occurs at the last time step, i.e.,

nTraj), and there is no any collision if the robot waits at time

step tS (the robot stays on rS, e.g., (rx, ry)(5) in Fig.5). If the

premise is satisfied, the robot will adopt the waiting strategy to

wait waitTime steps; otherwise, it will use the detouring

strategy. In Fig.4, the waitTime = 9 – 5 – 1 = 3. Since

waitTime > 2 (hWait = 2), the robot will plan a path to detour

the obstacle. In Line 17 of Algorithm of Dynamic Path

Planning, rTraj(1 → tS – 1) specifies the first tS – 1

coordinates of rTraj. For an example of Table 2., if the robot

adopt the waiting strategy, tS = 5 and waitTime = 3. rTraj(1 →

tS – 1) = 4 () 1 (,) tt rx ry = , and [repeat rTraj(tS) waitTime

+ 1] = 4 (5) t 1 (rx , ry) = . Thus, newPath = 4 ()1 (,) t t rx

ry = [4 (5) t 1 (rx , ry) =].

Lines 19 to 35 of Algorithm of Dynamic Path Planning are the

process for finding a path to detour the obstacle. Before

starting the main procedure shown in Lines 23 to 35, we have

to settle the parameters. The action of line 19 let the robot

move back one step to give a wider moving space. In Lines 19,

20, and 22, for an example of Table 2. and Fig. 5, tS’ = 5 – 1 =

4, rS’ = (rx, ry)(4), rG = (rx, ry)(9), and newPath = 4 () 1 (,) t

t rx ry = .

Similar to the A* algorithm [4], Lines 23 to 35 intend to obtain

a shortest path, from rS’ to rG, without collision. As shown in

Fig.3, the moving positions of new path are labeled by the

flowchart symbol, “delay.” The new trajectory consists of

three coordinates occurring at time steps 5, 6, and 7, denoted

by (r’x, r’y)(5), (r’x, r’y)(6), and (r’x, r’y)(7). In order to

obtain the short and safety path, the robot has to move faster.

Thus, the new path only requires four moving steps, but the

original path requires five steps from t = 4 to t = 9. Within the

while-loop, from Lines 23 to 35, the robot will choose the next

position rNext to move with minimal cost f(rNext) = g(rNext)

+ h(rNext) until it reaches or very close to the target rG.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 46 – 53

__

52
IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

g(rNext) and h(rNext) are the distances defined in Lines 29 and

30. If the robot collides with an obstacle in the moving from

current position to rNext, we let g(rNext) = ∞ and f(rNext) = ∞

(infeasible).

Line 24: rNext = GetSuccessors(newPath(time)) is to get all

next possible positions given the current (x, y) coordinate

newPath(time) of the robot by using the GetSuccessors

procedure, shown in Lines 38 to 50. Lines 39 to 49 are to

obtain φLow which is the smallest steering angle of the robot

among all angles and is parallel to the moving angle of

obstacle. For example of Fig.5, the moving angle of obstacle 1

is 0°. To get the next position to move, there are three possible

velocities (shown in Line 50) and 19 possible steering angles

(shown in Line 51) for the robot to choose. Lines 53 to 59 are

to calculate all 3 × 19 (= 57) combinations, (x, y) coordinates,

to store into rNext[10][13[9].

D. Simulation Code

clc

clear all

% The starting direction is found from the start point and the

end point

% The inputs are three sensors for detection of obstacle which

fuzzified

% on the basis of far, close or very close and the output is the

navigation

% i.e. straight, soft right, hard right, soft left, hard left.

% The distance of the obstacle is sensed from the sensor and

depends on the

% current position and orientaion of the moving bot.

range=[0 40];% sensor data distance range for simulation it

can be the pixel distance

vclose=[8 0];%very close

close=[5 15];%close

far=[5 25];%far

fuzzy_img_struct = newfis('path');%Fuzzy inference system

%% fuzzy variable for input

fuzzy_img_struct =

addvar(fuzzy_img_struct,'input','SR',range);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',1,'low','gaussmf',vclose);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',1,'medium','gaussmf',close);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',1,'high','gaussmf',far);

figure,plotmf(fuzzy_img_struct,'input',1), title('Sensor Right');

fuzzy_img_struct =

addvar(fuzzy_img_struct,'input','SS',range);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',2,'low','gaussmf',vclose);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',2,'medium','gaussmf',close);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',2,'high','gaussmf',far);

figure,plotmf(fuzzy_img_struct,'input',2), title('Sensor

Straight');

fuzzy_img_struct =

addvar(fuzzy_img_struct,'input','SL',range);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',3,'low','gaussmf',vclose);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',3,'medium','gaussmf',close);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'input',3,'high','gaussmf',far);

figure,plotmf(fuzzy_img_struct,'input',3), title('Sensor Left');

%% fuzzy variable for output

%In degrees of navigation

range=[-120 120];

m1val=[-80 -120];

m2val=[-90 -20];

m3val=[-40 40];

m4val=[20 90];

m5val=[60 120];

%In terms of membership normalized for gaussmf

t=max(range-min(range));

range1=(range-min(range))/max(range-min(range));

m1val=(m1val-min(range))/t;

m2val=(m2val-min(range))/t;

m3val=(m3val-min(range))/t;

m4val=(m4val-min(range))/t;

m5val=(m5val-min(range))/t;

fuzzy_img_struct =

addvar(fuzzy_img_struct,'output','Dir',range1);

fuzzy_img_struct = addmf(fuzzy_img_struct,'output',1,'Hard

Right','gaussmf',m1val);

fuzzy_img_struct = addmf(fuzzy_img_struct,'output',1,'Soft

Right','gaussmf',m2val);

fuzzy_img_struct =

addmf(fuzzy_img_struct,'output',1,'Straight','gaussmf',m3val);

fuzzy_img_struct = addmf(fuzzy_img_struct,'output',1,'Soft

Left','gaussmf',m4val);

fuzzy_img_struct = addmf(fuzzy_img_struct,'output',1,'Hard

Left','gaussmf',m5val);

figure,plotmf(fuzzy_img_struct,'output',1), title('Direction');

REFERENCES
[1] Koren, Y. Borenstein, J. (1991),„Potential Field Methods and their

Inherent Limitations for Mobile Robot Navigation‟, In the
Proceedings of the IEEE Conference on Robotics and Automation,

April 7-12, 1991. Sacramento, California. pp. 1398-1404.

[2] Huang, L. (2009), „Velocity Planning for a Mobile Robot to Track
a Moving Target - A Potential Field Approach‟, Robotics and

Autonomous Systems, 57, 55-63.

[3] L. Sun, Y. Luo, X. Ding and L. Wu, “Path planning and obstacle
avoidance for mobile robots in a dynamic environment,” The Open

Automation and Control Systems Journal, vol. 6, pp. 77-83, 2014..

[4] M. Faisal, K. Al-Mutib, R. Hedjar, H. Mathkour, M. Alsulaiman,
and E. Mattar, “Multi modules fuzzy logic for mobile robots

navigation and obstacle avoidance in unknown indoor dynamic

environment,” in Proceedings of 2013 International Conference on
Systems, Control and Informatics, pp. 371-379, 2013.

[5] M. K. Singh, D. R. Parhi, S. Bhowmik, and S. K. Kashyap,

“Intelligent controller for mobile robot: Fuzzy logic approach.,” in
Proceedings of 12th International Conference of International

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 4 Issue: 12 46 – 53

__

53
IJRITCC | December 2016, Available @ http://www.ijritcc.org

__

Association for Computer Methods and Advances in

Geomechanics, pp. 1-6, 2008.
[6] M. Phillips and M. Likhachev, “Sipp: Safe interval path planning

for dynamic environments,” in Proceedings of 2011 IEEE

International Conference on Robotics and Automation (ICRA), pp.
5628-5635, 2011.

[7] M. Wang and J. N. K. Liu, “Fuzzy logic-based real-time robot

navigation in unknown environment with dead ends,” Robotics and

Autonomous Systems, vol. 56, pp. 625-643, 2008.

[8] N. T. Thanh and N. V. Afzulpurkar, “Dynamic path planning for a
mobile robot using image processing,” Journal of Computer

Science and Cybernectics, vol. 24, no. 4, pp.358-373, 2008.

[9] P. Raja and S. Pugazhenthi, “Path planning for a mobile robot in
dynamic environments,” International Journal of the Physical

Sciences, vol. 6, no. 20, pp. 4721-4731, 2011.

[10] R. Kala, A. Shukla, and R. Tiwari, “Dynamic environment robot
path planning using hierarchical evolutionary algorithms,”

Cybernetics and Systems: An International Journal, vol. 41, no. 6,

pp. 435-454, 2010.
[11] Y. Lu, X. Huo, O. Arslan, and P. Tsiotras, “Incremental multi-scale

search algorithm for dynamic path planning with low worst-case

complexity,” IEEE Transactions on Systems, Man, and
Cybernetics— Part B: Cybernetics, vol. 41, no. 6, pp. 1556-1570,

2011.

[12] Yang, Simon X. and Meng, Max (2000), „An Efficient Neural
Network approach to Dynamic Robot Motion Planning‟, Neural

Networks, 13, 143–148.

[13] Z. Wu and L. Feng, “Obstacle prediction–based dynamic path
planning for a mobile robot,” International Journal of

Advancements in Computing Technology, vol. 4, no. 3, pp. 118-

124, 2012.Z..

