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Abstract- Path navigation using fuzzy logic controller and trajectory prediction table is to drive a robot in the dynamic environment to a target 

position, without collision. This path navigation method consists of static navigation method and dynamic path planning. The static navigation 

used to avoid the static obstacles by using fuzzy logic controller, which contains four sensor input and two output variables. If the robot detects 

moving obstacles, the robot can recognize the velocity and moving direction of each obstacle and generate the Trajectory Prediction Table to 

predict the obstacles‟ future trajectory. If the trajectory prediction table which reveals that the robot will collide with an obstacle, the dynamic 

path planning will find a new collision free path to avoid the obstacle by waiting strategy or detouring strategy. 

A lot of research work has been carried out in order to solve this problem. In order to navigate successfully in an unknown or partially 

known environment, the mobile robots should be able to extract the necessary surrounding information from the environment using sensor 

input, use their built-in knowledge for perception and to take the action required to plan a feasible path for collision free motion and to reach 

the goal. 
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I. INTRODUCTION 

Path navigation is important to robots, which is to find an 

optimal collision-free path from a starting point to a target in a 

given environment according to some criteria such as distance, 

time or energy [7]. There are two main types of path planning: 

Global Path Planning, which encompasses all the acquired 

knowledge of a robot (i.e, environmental information is 

known) to reach a goal; and Local Navigation, which is the 

process of using only the robot's currently sensed information 

(environmental information is unknown or partially unknown) 

[10]. A number of studies have been done for global path 

planning, such as visibility graph methods, grid method, 

freespace method [1]. There have been many studies for local 

path planning, such as neural networks, artificial potential field 

method, and fuzzy logic algorithm [1]. There are two types of 

obstacles in the environment: static and dynamic obstacles. 

There are so many methods already developed for static 

obstacle avoidance. Thus, recent interests aim at dynamic 

obstacle-avoidance including avoidance of both static and 

dynamic obstacles using fuzzy logic and trajectory prediction 

table [7][10][4]. 

Robot navigation is a fundamental problem in robotics. 

Navigation related to mobile robot is the ability of finding a 

collision free path from its starting position to the goal position 

by avoiding the obstacles. Moreover the selected path should 

be optimized i.e. having smallest possible distance and 

minimum number of turns to make sure that least amount of 

energy and time are used by the robot in roaming from starting 

point to its target 

II. LITERATURE REVIEW 

A. Potential Field Method 

Andrews and Hogan (1983) and Khatib (1985) have been 

suggested imaginary forces acting on a robot in such a way 

that the robot has been attracted by its target and obstacle 

exerts repulsive forces on it. Therefore resultant force governs 

the following direction and speed of travel. Borenstein and 

Koren (1991) have presented a systematic overview and 

discussed about the inherent drawbacks of potential field 

methods (PFMs). No passage between closely spaced obstacles 

(when two obstacles are presents very near to each other, then 

the robot may repelled away from the obstacles). Oscillations 

in the presence of obstacles and Oscillations in the narrow 

passages. Moreover they have developed a new method 

namely vector field histogram (VHF) method which gives 

smooth, non-oscillatory motion and can be used for fast 

obstacle avoidance[1]. Cosio and Castaneda (2004) have 

presented a new scheme for autonomous navigation of mobile 

robot based on improved artificial potential field and genetic 

algorithm (GA). They have used the concept of multiple 

auxiliary attraction points so that the robot can overcome the 

trap situation and avoid the closely spaced obstacles. The 

intensity of attractive and repulsive forces along with the 

position parameter of the auxiliary attraction point has been 

optimized by the GA. Huang (2009) Addressed a new 
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technique, derived from the classical potential filed method, 

for the velocity planning of a mobile robot in a dynamic 

environment where the target and obstacles are moving. The 

method ensures that the robot successfully tracks the moving 

target by avoiding the obstacles along its path, by providing 

the direction and the speed of the robot. Olunloyo and 

Ayomoh (2009) have presented a path planning and obstacle 

avoidance approach for a mobile robot in a partially known 2-

D environment.  

B.  Neuro-Fuzzy Approach 

The difficulties of constructing correct fuzzy rule base are 

overcome by using neural network-based approaches [36]. 

Online learning method has been adopted and  dynamic rule 

generation is developed using neural fuzzy. The optimization 

of rule construction is done in this paper. This has been found 

to be good when applied to wall following control of omni 

directional robot. The neuro-fuzzy algorithm for reactive robot 

is proposed and developed [10]. This technique can effectively 

deal with imprecise coordinate conflicts among multi-behavior 

contexts. RAM-based neural network is used to supervise the 

FLC. The benefit in using RAM based neural network 

approach is that it requires very less memory and less 

computation time maintaining the ability to handle imprecise 

and complex data.  

Heuristic method of reasoning is adopted instead of analytical 

solution. The proposed behavior-based navigation strategy 

using fuzzy rules has major benefits compared to the 

mathematical model. Even though the fuzzy-based reasoning is 

easy to implement but for multibehavior coordination, it‟s 

difficult to find out optimized rules to overcome all sorts of 

destructions. Artificial neural network is combined along with 

fuzzy logic reasoning method, and this maps the inputs and 

outputs in optimized way. The fuzzy logic and back 

propagation neural network been used for road traffic signs 

detection and classification [5]. Fuzzy logic has been used for 

the sign detection and classification, for back propagation 

neural network technique is used to display the right task. The 

purpose of the paper is to make walking safer and easier. The 

system is divided in to three different stages-first stage 

detection and improving raw sign image, second is shape 

analysis with continuous thinning algorithms and the image 

coding algorithm, finally, image recognition and decision by 

fuzzy logic and back propagation neural network technique to 

display the right task.  

The application of mobile robot navigation with obstacle 

avoidance has been done using polynomial neural network. 

This polynomial neural network is built from some selected 

starting location to reach the goal. The efficient technique 

based on associative retrieval is applied to robot to follow 

minimal cost polynomial path. This has advantage of 

interpolating capability with moderate size of data space. Use 

of new adaptation block for mobile robot to learn new 

behavioral actions and scripts based-soft computing techniques 

[10]. 

 

 

 

C.  Fuzzy Logic Based Navigation 

Barret, Benreguieg, and Maaref (1997) have proposed a 

sensor-based navigation algorithm, combines two types of 

obstacle avoidance behaviours, each for the convex obstacles 

and the concave ones. To avoid the convex obstacles the 

navigator uses either fuzzy tuned artificial potential field 

(FTAPF) method or a behavioural agent, however an 

automatically online wall-following system using a neuro-

fuzzy structure has been designed for the concave one. Xu 

(2000) has proposed a virtual target approach for resolving the 

limit cycle problem in navigation of a behaviour-based mobile 

robot. The real target has been switched to a virtual location so 

that robot can navigate according to the virtual target until it 

detects the opening. The efficiency and effectiveness of the 

refined fuzzy behaviour-based navigation are demonstrated by 

means of both simulation and physical experiments. Aguirre 

Eugenio and Gonzalez Antonio (2000) dealt with a hybrid 

deliberative-reactive architecture for mobile robot navigation 

for integrating planning and reactive control, and attention is 

focused on the design, coordination and fusion of the 

elementary behaviours. Saade and Khatib (2003) have 

developed a data-driven fuzzy approach to provide a general 

framework for solving the Dynamic motion problem (DMP) 

problem of a mobile robot under some constraints[7]. The 

main advantage of the current approach over recent fuzzy-

genetic one is that the robot can navigate successfully in the 

presence of moving obstacles and independently of the number 

of these obstacles. The proposed approach has also reveals the 

reduction in the travel time. The proposed algorithm has 

shown good results as compared to ANFIS on robot trajectory 

in terms of their length and the time required by the robot to 

reach the goal. The superiority of the new algorithm can be 

helpful in building fuzzy models without any compulsion of 

planting effort in gaining accurate and enormous number of 

data points. Li and Hseng (2003) have designed and 

implemented a new fuzzy controller for a car-like mobile robot 

(CLMR) that holds autonomous garage-parking and parallel-

parking capacity by using real time image processing. The 

system consists of a host computer, a communication module, 

a CLMR, and a vision system. Fuzzy garage parking control 

(FGPC) and fuzzy parallel parking control (FPPC) have been 

used in order to control the steering angle of the CLMR. 

Cuesta et al. (2003) have presented a new method for the 

intelligent control of the nonholonomic vehicles. Fuzzy 

perception has been directly used, both in design of each 

reactive behaviour and solving the problem of behaviour 

combination in order to implement a fuzzy behaviour based 
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control architecture. The capabilities of the control system 

have been improved by considering teleoperation and planned 

behaviour, together with their combination with reactive ones. 

Experimental results have shown the robustness of the 

suggested technique. Abdessemed Foudil, Benmahammed 

Khier, and Monacelli Eric (2004) have used the fuzzy logic 

controller in the development of complete navigation 

procedure of a mobile robot in a messy environment. An 

evolutionary algorithm has been implemented in order to solve 

the problem of extracting the IF-THEN rule base. The validity 

of the proposed method has been demonstrated through 

simulation results. Demirli and Molhim (2004) have presented 

a new fuzzy logic based approach for dynamic localization of 

mobile robots. The proposed approach uses sonar data 

obtained from a ring of sonar sensors mounted around the 

robot. The angular uncertainty and radial imprecision of sonar 

data are modelled by possibility distributions. 

The information received from the adjacent sonar sensors are 

united, which helps in the reduction in the uncertainty in sonar 

impressions. In the beginning a local fuzzy map has been 

constructed with help of reduced models of uncertainty, and 

then fitted to the given global map of the environment to 

identify robot‟s location. This fit offers either a unique fuzzy 

location or multiple candidate fuzzy locations. Since the 

coordinates (x, y) and orientation of the identified locations are 

represented by possibility distribution, these locations are 

referred to as fuzzy locations. To reduce the number of 

candidate locations, a new set of candidate fuzzy location is 

obtained by moved the robot to a new position. By considering 

the robot‟s movement, a set of hypothesized locations is 

identified from the old set of candidate locations. The 

hypothesized locations are matched with the new candidate 

locations and the candidates with low degree of match are 

eliminated. This process is continued until a unique location is 

obtained. The matching process is performed by using the 

fuzzy pattern matching technique. The proposed method is 

implemented on a Nomad 200 robot and the results are 

reported. Parhi (2005) has described a fuzzy logic based 

control system for the navigation of multiple mobile robots in 

a cluttered environment, such that the robots do not collide to 

each other. For this he has used fuzzy logic controller to 

combine the fuzzy rules in order to direct the steering of the 

robot to avoid the obstacles present in its path. Moreover Petri 

Net model has been used by implementing crisp rules to avoid 

the collision between the different mobile robots. Simulation 

and test results validate the system functions by enabling the 

robots to reach their goal without hitting the static obstacles or 

colliding with other robots[7]. Fatmi et al. (2006) have 

demonstrated a successful way of constructing the navigation 

task in order to deal with problem of autonomous navigation of 

mobile robot. Issues of individual behaviour design and action 

coordination of the behaviours were addressed using fuzzy 

logic. They have designed the individual behaviours like goal 

reaching; emergency situation, obstacle avoidance, and wall 

following are presented using fuzzy if-then rule base. 

Moreover they have introduced a coordination technique to 

overcome the problem of activation of several behaviours 

independently or/and simultaneously. Mendez and Madrigal 

(2007) have proposed a user adaptive fuzzy based navigation 

system for the autonomous navigation of mobile robot in 

unknown environments. They have tested their system in a 

pioneer mobile robot and on a robotic wheel chair, equipped 

with PLS laser sensor for the detection of obstacles and 

odometry sensors for the localization of the robot and the goal 

positions. The proposed system has a learning algorithm that 

can quickly adapt to different users[5][7]. They have found 

that the proposed system takes 90% less computation time for 

the task as compared to others reactive control tested in the 

same platform for the previous system. Hassanzadeh, Ghadiri, 

and Dalayimilan (2008) have used a simple fuzzy controller 

for obstacle avoidance of mobile robot navigation.  

Summary 

The use of fuzzy logic for local navigation of robots is a much 

discussed topic in literature. Various implementations have 

been shown to be effective and efficient. The ability of fuzzy 

techniques to deal with imprecise data allows for smooth 

trajectory execution while their low computational complexity 

allows them to react quickly to dynamic environments without 

the need to alter the robot‟s end-to-end path. Because 

algorithms based on fuzzy logic depend on sensory data to 

make navigational corrections, they are essentially reactive in 

nature. This quality can elicit suboptimal behaviors including 

shortsightedness and the local minima problem. A knowledge 

of longer range obstacles as from long-range sensory 

instruments or conventional model-based planning algorithms 

could allow the reactive behavior of a fuzzy controller to make 

quick trajectory adjustments while still approximating the most 

preferred path. Despite the limitations and non-deterministic 

nature of fuzzy algorithms, they have been shown to produce 

robust local navigation control for robots in unknown and 

noisy environments. The literature reviewed here shows that, 

with modest differential complexity, fuzzy algorithms can be 

used practically in both 2D and 3D environments as well as 

with industrial manipulators. As such, they represent a 

complement to rather than a replacement for conventional 

motion planners across a wide range of applications where real 

time, autonomous obstacle avoidance is needed. 

III. SYSTEM DESCRIPTION 

A.  Concept 

Table 1. List of Rules for Static Robot Navigation 
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a) NB: Negative Big, NS: Negative Small, ZE: Zero, PS: 

Positive Small, PB: Positive Big. 

b) θ
o
: Angle indicates the included angle between the robot 

and target. 

Table 2. shows a trajectory prediction table. In this, A robotic 

path planning method containing the robot navigation for static 

obstacles and dynamic path planning for moving obstacles, as 

shown in Fig.1. The task of the robot is to move from a start 

position to target position without collision. We assume that 

the static and dynamic obstacles are unknown. There are two 

kinds of sensors for the robot. The sonar sensors with a 

maximum of 130 cm detect the stationary obstacles in left, 

front, and right of the robot. The laser range finder with a 

maximum of 250 cm used to detect the omnidirectional 

moving obstacles. As listed Line 1 of Algorithm of the robotic 

path planning, the robot moves forward until it reaches the 

target. The robot firstly detects if there exists any dynamic 

obstacle around it. If the dynamic obstacles are recognized, the 

algorithm will generate the Trajectory Prediction Table, e.g., 

TABLE 2. From the current time step, e.g., t, to several future 

time steps, e.g., t + 9, we predict the positions of the robot and 

detected obstacles, and estimate if the robot has a collision or 

not at each time step. This table will be used to plan a short-

term path to avoid the moving obstacle. In Lines 6-11, if there 

is no dynamic obstacle detected by the robot‟s sensor within a 

range, i.e., 250 cm in this paper, or there exists dynamic 

obstacles but without collision, the robot will move toward to 

the target directly if it does not detect any static obstacle as 

well. Otherwise, the robot have to avoid the stationary 

obstacles by using the fuzzy logic control. In Lines 12-14, if 

the robot detects dynamic obstacles which will collide with 

that robot, the dynamic path planning, by using Trajectory 

Prediction Table, is used to find a short-term path to avoid the 

obstacle. 

 Algorithm of the proposed robotic path planning. 

1 while (the robot does not reach the target), 

2 Detect whether exist any dynamic obstacle around the robot; 

3 if dynamic obstacles are detected then 

4 Generate the Trajectory Prediction Table; 

5 end if 

6 if (no dynamic obstacle) or (exist obstacles but no collision) 

then 

7 if no static obstacle around the robot then 

8 The robot directly moves toward the target; 

9 else 

10 Do the static navigation by fuzzy logic control; 

11 end if 

12 else 

13 Do dynamic path planning using Trajectory Prediction 

Table; 

14 end if 

15 end while 

 
Fig 1. Algorithm of the Proposed Robotic Path Planning. 

 

B. Fuzzy Logic for Static Navigation 

Fig 1. illustrates the sensing range of sonar sensors of the robot 

which is inspired by [10], and the sensing range is divided into 

three sectors, Left, Front, and Right. We apply the fuzzy logic 

controller to derive the robot avoiding the static obstacles. The 

input variables are: the distances between the static obstacle 

and the Left, Front, Right sides of robot (the ranges are [0, 

130]cm), and the included angle between the robot and the 

target (its range is [0°, 180°]). The output variables Δθ and ν 

denote the increment of the robot‟s steering angle (whose 

range is [-120°, 120°]) and the velocity of the robot (whose 

range is [10, 40] cm/sec). We assume that each discrete time 

step corresponds to one second. The membership functions of 

input variables Left, Front, and Right are same as shown in 

Fig.2.  
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Fig.2 The Membership Function of Input Variable Left, Front, and Right. 

 

 
Figure.3 The membership function of output variable ν. 

 
Fig.4 The membership function of output variable Δθ. 

 

We can use the crisp membership function for input variable 

included angle. If the degree of that angle is less than 90, it 

belongs to “Right” linguistic term; otherwise, it belongs to 

“Left”. The membership functions of ν and Δθ are shown in 

Figs.3 and 4, respectively[13]. 

 

C.  Dynamic Path Planning 

If the robot detects dynamic obstacles, the Trajectory 

Prediction Table will be generated to predict the trajectories of 

moving obstacles and the robot in next several time steps. 

 

 Algorithm of Dynamic Path Planning 

1 for time = 1 to nTraj, // nTraj: number of time steps in 

trajectory table 

2 for each dynamic obstacle, 

3 if the collisions start at time = tc then 

4 tS = tc – 1; 

5 tG = the first time step without collision after time = tc; 

6 newPath = FindNewPath(trajTable, tS, tG); 

7 end if 

8 break; // exit the inner for loop 

9 end 

10 if newPath is not empty then break; end if 

11 end 

12 path = path (1 → tS – 1) ∪  newPath; 

13 procedure FindNewPath(trajTable, tS, tG) 

14 rTraj = robot‟s trajectory in trajTable; 

15 waitTime = tG – tS – 1; //waiting time: no. of time steps 

should wait 

16 if (waitTime < hWait or tG = nTraj + 1) and no collision 

during 

waiting then 

17 newPath = rTraj(1 → tS – 1) ∪  [repeat rTraj(tS) waitTime 

+ 1]; 

18 else 

19 if tS > 1 then tS’ = tS – 1; end if 

20 rS’ = rTraj(tS’); rG = rTraj(tG); 

21 time = tS’; 

22 newPath = rTraj(1 → tS’); 

23 while (rG is not reached), 

24 rNext = GetSuccessors(newPath(time)); 

25 for each rNext, 

26 if a collision occurs in the moving to rNext then 

27 g(rNext) = ∞; f(rNext) = ∞; 

28 else 

29 g(rNext) = distance from newPath(time) to rNext; 

30 h(rNext) = distance from rNext to rG; 

31 f(rNext) = g(rNext) + h(rNext); 

32 end if 

33 end for 

34 time =time + 1; newPath(time) = the rNext with minimal f; 

35 end while 

36 end if 

37 return newPath; 

38 procedure GetSuccessors(r) 

39 θ = included angle between robot‟s current position r and 

target rG; 

40 φ = the moving angle of obstacle; 

41 if φ < 180° then 

42 if θ < φ + 180° then φLow = φ; 

43 else φLow = φ + 180°; 

44 end if 

45 else 

46 if θ < φ then φLow = φ − 180°; 

47 else φLow = φ; 

48 end if 

49 end if 

50 v = {vSlow, vMedium, vFast}; // robot‟s velocity 

51 ϕ = {φLow, φLow + 10°, φLow + 20°, …, φLow + 180°}; 

// robot‟s direction 

52 r = (rx, ry); rNext = null; 
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53 for i = 1 to 3, 

54 for j = 1 to 19, 

55 rx 

‟ = rx + v(i)cos(ϕ (j)); // x coordinate 

56 ry 

’ = ry + v(i)sin(ϕ (j)); // y coordinate 

57 rNext = rNext ∪  (rx 

‟, ry 

‟); 

58 end for 

59 end for 

60 return rNext; 

According to the Trajectory Prediction Table (such as Table 

2), if the robot will collide with moving obstacle in the future, 

the proposed dynamic path planning will be used to find a 

short-term path for avoiding the obstacle. There are two 

strategies to avoid dynamic obstacle in this paper, i.e., waiting 

(degree) μ or detouring around the moving obstacle. 

 

Table 2. An Illustration of Trajectory Prediction Table 

 
Collision 1 indicates whether a collision occurs with obstacle 1 

at time step t. 

 
Fig 5. An Illustration of Dynamic Path Planning. 

  

The algorithm of dynamic path planning is listed, and an 

illustration is shown in Fig.5. At time step t = 1, the robot 

detects two dynamic obstacles, and thus the Trajectory 

Prediction Table, as shown in Table 2, is generated to predict 

the obstacles‟ positions at each time step (see Lines 2 to 5, 

algorithm Algorithm of the proposed robotic path planning). 

The numbers located within the circle and rectangular 

represent the time step. nTraj (see Line 1, Algorithm of 

Dynamic Path Planning) denotes the number of time steps in 

trajectory table, and it is the maximal moving steps of the 

robot (one time step indicates the robot moving one step 

forward) within the maximal sensing range of laser range 

finder, i.e., 250 cm. As shown in Table 2. and Fig. 5, nTraj = 

9. At time steps 6, 7, and 8, the robot will collide with obstacle 

1. Lines 2 and 9 in Algorithm of Dynamic Path Planning are to 

find which obstacle will collide with robot, and that is the 

obstacle 1. As listed from Lines 3 to 7 in Algorithm of 

Dynamic Path Planning, if the collisions start at time step 6 (tc 

= 6), as shown in Fig. 5, and then we let tS = 6 – 1 = 5. The 

collisions end at time step 8, and thus tG = 8 + 1 = 9. rS and 

rG are the start and target positions of the robot at time step tS 

and tG, respectively. In Line 6 of Algorithm of Dynamic Path 

Planning, newPath = FindNewPath(trajTable, tS, tG) means 

that use the trajTable (Trajectory Prediction Table), tS, and tG 

as input parameters for FindNewPath procedure to discover a 

short-term path, storing to newPath, to avoid obstacle 1.We 

assume that the robot will have only one collision at most. 

Once we obtain the newPath by using FindNewPath 

procedure, exit for-loop to go to Line 12. Finally, the planned 

path is to merge the new path (newPath) with the first half of 

the original path which starts from time step 1 to time step tS – 

1 (see Line 12,)[13]. 

The core of dynamic path planning is the FindNewPath 

procedure as shown in Lines 13 to 37. Firstly, the robot has to 

choose the avoiding strategy, waiting strategy or detouring 

strategy. The premise of Line 16 means: The waiting time 

(wait until the obstacle moves away) is less than hWait (a 

tolerable threshold for wait; hWait = 2 in this paper) or tG = 

nTraj + 1 (it means a collision occurs at the last time step, i.e., 

nTraj), and there is no any collision if the robot waits at time 

step tS (the robot stays on rS, e.g., (rx, ry)(5) in Fig.5). If the 

premise is satisfied, the robot will adopt the waiting strategy to 

wait waitTime steps; otherwise, it will use the detouring 

strategy. In Fig.4, the waitTime = 9 – 5 – 1 = 3. Since 

waitTime > 2 (hWait = 2), the robot will plan a path to detour 

the obstacle. In Line 17 of Algorithm of Dynamic Path 

Planning, rTraj(1 → tS – 1) specifies the first tS – 1 

coordinates of rTraj. For an example of Table 2., if the robot 

adopt the waiting strategy, tS = 5 and waitTime = 3. rTraj(1 → 

tS – 1) = 4 ( ) 1 ( , ) tt rx ry =  , and [repeat rTraj(tS) waitTime 

+ 1] = 4 (5) t 1 (rx , ry ) =  . Thus, newPath = 4 ( )1 ( , ) t t rx 

ry =   [ 4 (5) t 1 (rx , ry ) =  ]. 

Lines 19 to 35 of Algorithm of Dynamic Path Planning are the 

process for finding a path to detour the obstacle. Before 

starting the main procedure shown in Lines 23 to 35, we have 

to settle the parameters. The action of line 19 let the robot 

move back one step to give a wider moving space. In Lines 19, 

20, and 22, for an example of Table 2. and Fig. 5, tS’ = 5 – 1 = 

4, rS’ = (rx, ry)(4), rG = (rx, ry)(9), and newPath = 4 ( ) 1 ( , ) t 

t rx ry =  . 

Similar to the A* algorithm [4], Lines 23 to 35 intend to obtain 

a shortest path, from rS’ to rG, without collision. As shown in 

Fig.3, the moving positions of new path are labeled by the 

flowchart symbol, “delay.” The new trajectory consists of 

three coordinates occurring at time steps 5, 6, and 7, denoted 

by (r’x, r’y)(5), (r’x, r’y)(6), and (r’x, r’y)(7). In order to 

obtain the short and safety path, the robot has to move faster. 

Thus, the new path only requires four moving steps, but the 

original path requires five steps from t = 4 to t = 9. Within the 

while-loop, from Lines 23 to 35, the robot will choose the next 

position rNext to move with minimal cost f(rNext) = g(rNext) 

+ h(rNext) until it reaches or very close to the target rG. 
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g(rNext) and h(rNext) are the distances defined in Lines 29 and 

30. If the robot collides with an obstacle in the moving from 

current position to rNext, we let g(rNext) = ∞ and f(rNext) = ∞ 

(infeasible). 

Line 24: rNext = GetSuccessors(newPath(time)) is to get all 

next possible positions given the current (x, y) coordinate 

newPath(time) of the robot by using the GetSuccessors 

procedure, shown in Lines 38 to 50. Lines 39 to 49 are to 

obtain φLow which is the smallest steering angle of the robot 

among all angles and is parallel to the moving angle of 

obstacle. For example of Fig.5, the moving angle of obstacle 1 

is 0°. To get the next position to move, there are three possible 

velocities (shown in Line 50) and 19 possible steering angles 

(shown in Line 51) for the robot to choose. Lines 53 to 59 are 

to calculate all 3 × 19 (= 57) combinations, (x, y) coordinates, 

to store into rNext[10][13[9]. 

 

D. Simulation Code 

clc 

clear all 

 

% The starting direction is found from the start point and the 

end point 

% The inputs are three sensors for detection of obstacle which 

fuzzified  

% on the basis of far, close or very close and the output is the 

navigation 

% i.e. straight, soft right, hard right, soft left, hard left. 

 

% The distance of the obstacle is sensed from the sensor and 

depends on the 

% current position and orientaion of the moving bot. 

 

range=[0 40];% sensor data distance range for simulation it 

can be the pixel distance 

vclose=[8 0];%very close 

close=[5 15];%close 

far=[5 25];%far 

 

fuzzy_img_struct = newfis('path');%Fuzzy inference system 

 

%% fuzzy variable for input 

fuzzy_img_struct = 

addvar(fuzzy_img_struct,'input','SR',range); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',1,'low','gaussmf',vclose); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',1,'medium','gaussmf',close); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',1,'high','gaussmf',far); 

figure,plotmf(fuzzy_img_struct,'input',1), title('Sensor Right'); 

 

fuzzy_img_struct = 

addvar(fuzzy_img_struct,'input','SS',range); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',2,'low','gaussmf',vclose); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',2,'medium','gaussmf',close); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',2,'high','gaussmf',far); 

figure,plotmf(fuzzy_img_struct,'input',2), title('Sensor 

Straight'); 

 

fuzzy_img_struct = 

addvar(fuzzy_img_struct,'input','SL',range); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',3,'low','gaussmf',vclose); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',3,'medium','gaussmf',close); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'input',3,'high','gaussmf',far); 

figure,plotmf(fuzzy_img_struct,'input',3), title('Sensor Left'); 

 

%% fuzzy variable for output 

%In degrees of navigation 

range=[-120 120]; 

m1val=[-80 -120]; 

m2val=[-90 -20]; 

m3val=[-40 40]; 

m4val=[20 90]; 

m5val=[60 120]; 

 

%In terms of membership normalized for gaussmf 

t=max(range-min(range)); 

range1=(range-min(range))/max(range-min(range)); 

m1val=(m1val-min(range))/t; 

m2val=(m2val-min(range))/t; 

m3val=(m3val-min(range))/t; 

m4val=(m4val-min(range))/t; 

m5val=(m5val-min(range))/t; 

 

fuzzy_img_struct = 

addvar(fuzzy_img_struct,'output','Dir',range1); 

fuzzy_img_struct = addmf(fuzzy_img_struct,'output',1,'Hard 

Right','gaussmf',m1val); 

fuzzy_img_struct = addmf(fuzzy_img_struct,'output',1,'Soft 

Right','gaussmf',m2val); 

fuzzy_img_struct = 

addmf(fuzzy_img_struct,'output',1,'Straight','gaussmf',m3val); 

fuzzy_img_struct = addmf(fuzzy_img_struct,'output',1,'Soft 

Left','gaussmf',m4val); 

fuzzy_img_struct = addmf(fuzzy_img_struct,'output',1,'Hard 

Left','gaussmf',m5val); 

figure,plotmf(fuzzy_img_struct,'output',1), title('Direction'); 
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