707 research outputs found

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    Communications protocols for wireless sensor networks in perturbed environment

    Get PDF
    This thesis is mainly in the Smart Grid (SG) domain. SGs improve the safety of electrical networks and allow a more adapted use of electricity storage, available in a limited way. SGs also increase overall energy efficiency by reducing peak consumption. The use of this technology is the most appropriate solution because it allows more efficient energy management. In this context, manufacturers such as Hydro-Quebec deploy sensor networks in the nerve centers to control major equipment. To reduce deployment costs and cabling complexity, the option of a wireless sensor network seems the most obvious solution. However, deploying a sensor network requires in-depth knowledge of the environment. High voltages substations are strategic points in the power grid and generate impulse noise that can degrade the performance of wireless communications. The works in this thesis are focused on the development of high performance communication protocols for the profoundly disturbed environments. For this purpose, we have proposed an approach based on the concatenation of rank metric and convolutional coding with orthogonal frequency division multiplexing. This technique is very efficient in reducing the bursty nature of impulsive noise while having a quite low level of complexity. Another solution based on a multi-antenna system is also designed. We have proposed a cooperative closed-loop coded MIMO system based on rank metric code and max−dmin precoder. The second technique is also an optimal solution for both improving the reliability of the system and energy saving in wireless sensor networks

    Polar codes combined with physical layer security on impulsive noise channels

    Get PDF
    Ph. D. ThesisThe need for secure communications is becoming more and more impor- tant in modern society as wired and wireless connectivity becomes more ubiquitous. Currently, security is achieved by using well established encryption techniques in the upper layers that rely on computational complexity to ensure security. However, processing power is continu- ally increasing and well-known encryption schemes are more likely to be cracked. An alternative approach to achieving secure communication is to exploit the properties of the communication channel. This is known as physical layer security and is mathematically proven to be secure. Phys- ical layer security is an active research area, with a significant amount of literature covering many different aspects. However, one issue that does not appear to have been investigated in the literature is the effect on physical layer security when the noise in the communication channel is impulsive. Impulsive noise adds large spikes to the transmitted signal for very short durations that can significantly degrade the signal. The main source of impulsive noise in wireless communications is electromag- netic interference generated by machinery. Therefore, this project will investigate the effect of impulsive noise on physical layer security. To ensure a high level of performance, advanced error-correcting codes are needed to correct the multiple errors due to this harsh channel. Turbo and Low-Density Parity-Check (LDPC) codes are capacity-approaching codes commonly used in current wireless communication standards, but their complexity and latency can be quite high and can be a limiting fac- tor when required very high data rates. An alternative error-correcting code is the polar code, which can actually achieve the Shannon capacity on any symmetric binary input discrete memoryless channel (B-DMC). Furthermore, the complexity of polar codes is low and this makes them an attractive error-correcting code for high data rate wireless commu- nications. In this project, polar codes are combined with physical layer security and the performance and security of the system is evaluated on impulsive noise channels for the first time. This project has three contributions: Polar codes designed for impulsive noise channels using density evo- lution are combined with physical layer security on a wire-tap chan- nel experiencing impulsive noise. The secrecy rate of polar codes is maximised. In the decoding of polar codes, the frozen bits play an important part. The posi- tions of the frozen bits has a significant impact on performance and therefore, the selection of optimal frozen bits is presented to opti- mise the performance while maintaining secure communications on impulsive noise wire-tap channels. Optimal puncturing patterns are investigated to obtain polar codes with arbitrary block lengths and can be applied to different modu- lation schemes, such as binary phase shift keying (BPSK) and M- ary Quadrature Amplitude Modulation (QAM), that can be rate compatible with practical communication systems. The punctured polar codes are combined with physical layer security, allowing the construction of a variety of different code rates while maintaining good performance and security on impulsive noise wire-tap chan- nels. The results from this work have demonstrated that polar codes are ro- bust to the effects of impulsive noise channel and can achieve secure communications. The work also addresses the issue of security on im- pulsive noise channels and has provided important insight into scenarios where the main channel between authorised users has varying levels of impulsiveness compared with the eavesdropper's channel. One of the most interesting results from this thesis is the observation that polar codes combined with physical layer security can achieve good perfor- mance and security even when the main channel is more impulsive than the eavesdropper's channel, which was unexpected. Therefore, this thesis concludes that the low-complexity polar codes are an excellent candidate for the error-correcting codes when combined with physical layer security in more harsh impulsive wireless communication channels

    Waveforms and channel coding for 5G

    Get PDF
    Abstract. The fifth generation (5G) communication systems are required to perform significantly better than the existing fourth generation (4G) systems in data rate, capacity, coverage, latency, energy consumption and cost. Hence, 5G needs to achieve considerable enhancements in the areas of bandwidth, spectral, energy, and signaling efficiencies and cost per bit. The new radio access technology (RAT) of 5G physical layer needs to utilize an efficient waveform to meet the demands of 5G. Orthogonal frequency division multiplexing (OFDM) is considered as a baseline for up to 30 GHz. However, a major drawback of OFDM systems is their large peak to average power ratio (PAPR). Here in this thesis, a simple selective-mapping (SLM) technique using scrambling is proposed to reduce the PAPR of OFDM signals. This technique selects symbol sequences with high PAPR and scrambles them until a PAPR sequence below a specific threshold is generated. The computational complexity of the proposed scheme is considerably lower than that of the traditional SLM. Also, performance of the system is investigated through simulations and more than 4.5 dB PAPR reduction is achieved. In addition, performance of single carrier waveforms is analyzed in multiple-input multiple-output (MIMO) systems as an alternative to OFDM. Performance of a single carrier massive MIMO system is presented for both uplink and downlink with single user and multiple user cases and the effect of pre-coding on the PAPR is studied. A variety of channel configurations were investigated such as correlated channels, practical channels and the channels with errors in channel estimate. Furthermore, the candidate coding schemes are investigated for the new RAT in the 5G standard corresponding the activities in the third generation partnership project (3GPP). The schemes are evaluated in terms of block error rate (BLER), bit error rate (BER), computational complexity, and flexibility. These parameters comprise a suitable set to assess the performance of different services and applications. Turbo, low density parity check (LDPC), and polar codes are considered as the candidate schemes. These are investigated in terms of obtaining suitable rates, block lengths by proper design for a fair comparison. The simulations have been carried out in order to obtain BLER / BER performance for various code rates and block lengths, in additive white Gaussian noise (AWGN) channel. Although polar codes perform well at short block lengths, LDPC has a relatively good performance at all the block lengths and code rates. In addition, complexity of the LDPC codes is relatively low. Furthermore, BLER/BER performances of the coding schemes in Rayleigh fading channels are investigated and found that the fading channel performance follows a similar trend as the performance in the AWGN channel

    Emulation of Narrowband Powerline Data Transmission Channels and Evaluation of PLC Systems

    Get PDF
    This work proposes advanced emulation of the physical layer behavior of NB-PLC channels and the application of a channel emulator for the evaluation of NB-PLC systems. In addition, test procedures and reference channels are proposed to improve efficiency and accuracy in the system evaluation and classification. This work shows that the channel emulator-based solution opens new ways toward flexible, reliable and technology-independent performance assessment of PLC modems

    Coded-OFDM for PLC systems in non-Gaussian noise channels

    Get PDF
    PhD ThesisNowadays, power line communication (PLC) is a technology that uses the power line grid for communication purposes along with transmitting electrical energy, for providing broadband services to homes and offices such as high-speed data, audio, video and multimedia applications. The advantages of this technology are to eliminate the need for new wiring and AC outlet plugs by using an existing infrastructure, ease of installation and reduction of the network deployment cost. However, the power line grid is originally designed for the transmission of the electric power at low frequencies; i.e. 50/60 Hz. Therefore, the PLC channel appears as a harsh medium for low-power high-frequency communication signals. The development of PLC systems for providing high-speed communication needs precise knowledge of the channel characteristics such as the attenuation, non-Gaussian noise and selective fading. Non-Gaussian noise in PLC channels can classify into Nakagami-m background interference (BI) noise and asynchronous impulsive noise (IN) modelled by a Bernoulli-Gaussian mixture (BGM) model or Middleton class A (MCA) model. Besides the effects of the multipath PLC channel, asynchronous impulsive noise is the main reason causing performance degradation in PLC channels. Binary/non-binary low-density parity check B/NB-(LDPC) codes and turbo codes (TC) with soft iterative decoders have been proposed for Orthogonal Frequency Division Multiplexing (OFDM) system to improve the bit error rate (BER) performance degradation by exploiting frequency diversity. The performances are investigated utilizing high-order quadrature amplitude modulation (QAM) in the presence of non-Gaussian noise over multipath broadband power-line communication (BBPLC) channels. OFDM usually spreads the effect of IN over multiple sub-carriers after discrete Fourier transform (DFT) operation at the receiver, hence, it requires only a simple single-tap zero forcing (ZF) equalizer at the receiver. The thesis focuses on improving the performance of iterative decoders by deriving the effective, complex-valued, ratio distributions of the noise samples at the zeroforcing (ZF) equalizer output considering the frequency-selective multipath PLCs, background interference noise and impulsive noise, and utilizing the outcome for computing the apriori log likelihood ratios (LLRs) required for soft decoding algorithms. On the other hand, Physical-Layer Network Coding (PLNC) is introduced to help the PLC system to extend the range of operation for exchanging information between two users (devices) using an intermediate relay (hub) node in two-time slots in the presence of non-Gaussian noise over multipath PLC channels. A novel detection scheme is proposed to transform the transmit signal constellation based on the frequency-domain channel coefficients to optimize detection at the relay node with newly derived noise PDF at the relay and end nodes. Additionally, conditions for optimum detection utilizing a high-order constellation are derived. The closedform expressions of the BER and average BER upper-bound (AUB) are derived for a point-to-point system, and for a PLNC system at the end node to relay, relay to end node and at the end-to-end nodes. Moreover, the convergence behaviour of iterative decoders is evaluated using EXtrinsic Information Transfer (EXIT) chart analysis and upper bound analyses. Furthermore, an optimization of the threshold determination for clipping and blanking impulsive noise mitigation methods are derived. The proposed systems are compared in performance using simulation in MATLAB and analytical methods.Ministry of Higher Education in Ira

    Frequency-domain receiver design for doubly-selective channels

    Get PDF
    This work is devoted to the broadband wireless transmission techniques, which are serious candidates to be implemented in future broadband wireless and cellular systems, aiming at providing high and reliable data transmission and concomitantly high mobility. In order to cope with doubly-selective channels, receiver structures based on OFDM and SC-FDE block transmission techniques, are proposed, which allow cost-effective implementations, using FFT-based signal processing. The first subject to be addressed is the impact of the number of multipath components, and the diversity order, on the asymptotic performance of OFDM and SC-FDE, in uncoded and for different channel coding schemes. The obtained results show that the number of relevant separable multipath components is a key element that influences the performance of OFDM and SC-FDE schemes. Then, the improved estimation and detection performance of OFDM-based broadcasting systems, is introduced employing SFN (Single Frequency Network) operation. An initial coarse channel is obtained with resort to low-power training sequences estimation, and an iterative receiver with joint detection and channel estimation is presented. The achieved results have shown very good performance, close to that with perfect channel estimation. The next topic is related to SFN systems, devoting special attention to time-distortion effects inherent to these networks. Typically, the SFN broadcast wireless systems employ OFDM schemes to cope with severely time-dispersive channels. However, frequency errors, due to CFO, compromises the orthogonality between subcarriers. As an alternative approach, the possibility of using SC-FDE schemes (characterized by reduced envelope fluctuations and higher robustness to carrier frequency errors) is evaluated, and a technique, employing joint CFO estimation and compensation over the severe time-distortion effects, is proposed. Finally, broadband mobile wireless systems, in which the relative motion between the transmitter and receiver induces Doppler shift which is different or each propagation path, is considered, depending on the angle of incidence of that path in relation to the direction of travel. This represents a severe impairment in wireless digital communications systems, since that multipath propagation combined with the Doppler effects, lead to drastic and unpredictable fluctuations of the envelope of the received signal, severely affecting the detection performance. The channel variations due this effect are very difficult to estimate and compensate. In this work we propose a set of SC-FDE iterative receivers implementing efficient estimation and tracking techniques. The performance results show that the proposed receivers have very good performance, even in the presence of significant Doppler spread between the different groups of multipath components

    5G無線通信における誤り訂正符号化方式の評価に関する研究

    Get PDF
    早大学位記番号:新8267早稲田大

    Robust wireless sensor network for smart grid communication : modeling and performance evaluation

    Get PDF
    Our planet is gradually heading towards an energy famine due to growing population and industrialization. Hence, increasing electricity consumption and prices, diminishing fossil fuels and lack significantly in environment-friendliness due to their emission of greenhouse gasses, and inefficient usage of existing energy supplies have caused serious network congestion problems in many countries in recent years. In addition to this overstressed situation, nowadays, the electric power system is facing many challenges, such as high maintenance cost, aging equipment, lack of effective fault diagnostics, power supply reliability, etc., which further increase the possibility of system breakdown. Furthermore, the adaptation of the new renewable energy sources with the existing power plants to provide an alternative way for electricity production transformed it in a very large and complex scale, which increases new issues. To address these challenges, a new concept of next generation electric power system, called the "smart grid", has emerged in which Information and Communication Technologies (ICTs) are playing the key role. For a reliable smart grid, monitoring and control of power system parameters in the transmission and distribution segments are crucial. This necessitates the deployment of a robust communication network within the power grid. Traditionally, power grid communications are realized through wired communications, including power line communication (PLC). However, the cost of its installation might be expensive especially for remote control and monitoring applications. More recently, plenty of research interests have been drawn to the wireless communications for smart grid applications. In this regard, the most promising methods of smart grid monitoring explored in the literature is based on wireless sensor network (WSN). Indeed, the collaborative nature of WSN brings significant advantages over the traditional wireless networks, including low-cost, wider coverage, self-organization, and rapid deployment. Unfortunately, harsh and hostile electric power system environments pose great challenges in the reliability of sensor node communications because of strong RF interference and noise called impulsive noise. On account of the fundamental of WSN-based smart grid communications and the possible impacts of impulsive noise on the reliability of sensor node communications, this dissertation is supposed to further fill the lacking of the existing research outcomes. To be specific, the contributions of this dissertation can be summarized as three fold: (i) investigation and performance analysis of impulsive noise mitigation techniques for point-to-point single-carrier communication systems impaired by bursty impulsive noise; (ii) design and performance analysis of collaborative WSN for smart grid communication by considering the RF noise model in the designing process, a particular intension is given to how the time-correlation among the noise samples can be taken into account; (iii) optimal minimum mean square error (MMSE)estimation of physical phenomenon like temperature, current, voltage, etc., typically modeled by a Gaussian source in the presence of impulsive noise. In the first part, we compare and analyze the widely used non-linear methods such as clipping, blanking, and combined clipping-blanking to mitigate the noxious effects of bursty impulsive noise for point-to-point communication systems with low-density parity-check (LDPC) coded single-carrier transmission. While, the performance of these mitigation techniques are widely investigated for multi-carrier communication systems using orthogonal frequency division multiplexing (OFDM) transmission under the effect of memoryless impulsive noise, we note that OFDM is outperformed by its single-carrier counterpart when the impulses are very strong and/or they occur frequently, which likely exists in contemporary communication systems including smart grid communications. Likewise, the assumption of memoryless noise model is not valid for many communication scenarios. Moreover, we propose log-likelihood ratio (LLR)-based impulsive noise mitigation for the considered scenario. We show that the memory property of the noise can be exploited in the LLR calculation through maximum a posteriori (MAP) detection. In this context, provided simulation results highlight the superiority of the LLR-based mitigation scheme over the simple clipping/blanking schemes. The second contribution can be divided into two aspects: (i) we consider the performance analysis of a single-relay decode-and-forward (DF) cooperative relaying scheme over channels impaired by bursty impulsive noise. For this channel, the bit error rate (BER) performances of direct transmission and a DF relaying scheme using M-PSK modulation in the presence of Rayleigh fading with a MAP receiver are derived; (ii) as a continuation of single-relay collaborative WSN scheme, we propose a novel relay selection protocol for a multi-relay DF collaborative WSN taking into account the bursty impulsive noise. The proposed protocol chooses the N’th best relay considering both the channel gains and the states of the impulsive noise of the source-relay and relay-destination links. To analyze the performance of the proposed protocol, we first derive closed-form expressions for the probability density function (PDF) of the received SNR. Then, these PDFs are used to derive closed-form expressions for the BER and the outage probability. Finally, we also derive the asymptotic BER and outage expressions to quantify the diversity benefits. From the obtained results, it is seen that the proposed receivers based on the MAP detection criterion is the most suitable one for bursty impulsive noise environments as it has been designed according to the statistical behavior of the noise. Different from the aforementioned contributions, talked about the reliable detection of finite alphabets in the presence of bursty impulsive noise, in the thrid part, we investigate the optimal MMSE estimation for a scalar Gaussian source impaired by impulsive noise. In Chapter 5, the MMSE optimal Bayesian estimation for a scalar Gaussian source, in the presence of bursty impulsive noise is considered. On the other hand, in Chapter 6, we investigate the distributed estimation of a scalar Gaussian source in WSNs in the presence of Middleton class-A noise. From the obtained results we conclude that the proposed optimal MMSE estimator outperforms the linear MMSE estimator developed for Gaussian channel
    corecore