429 research outputs found

    Video adaptation for mobile digital television

    Get PDF
    Mobile digital television is one of the new services introduced recently by telecommunications operators in the market. Due to the possibilities of personalization and interaction provided, together with the increasing demand of this type of portable services, it would be expected to be a successful technology in near future. Video contents stored and transmitted over the networks deployed to provide mobile digital television need to be compressed to reduce the resources required. The compression scheme chosen by the great majority of these networks is H.264/AVC. Compressed video bitstreams have to be adapted to heterogeneous networks and a wide range of terminals. To deal with this problem scalable video coding schemes were proposed and standardized providing temporal, spatial and quality scalability using layers within the encoded bitstream. Because existing H.264/AVC contents cannot benefit from scalability tools, efficient techniques for migration of single-layer to scalable contents are desirable for supporting these mobile digital television systems. This paper proposes a technique to convert from single-layer H.264/AVC bitstream to a scalable bitstream with temporal scalability. Applying this approach, a reduction of 60% of coding complexity is achieved while maintaining the coding efficiency

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Improved quality of experience of reconstructed H.264/AVC encoded video sequences through robust pixel domain error detection

    Get PDF
    The transmission of H.264/AVC encoded sequences over noisy wireless channels generally adopt the error detection capabilities of the transport protocol to identify and discard corrupted slices. All the macroblocks (MBs) within each corrupted slice are then concealed. This paper presents an algorithm that does not discard the corrupted slices but tries to detect those MBs which provide major visual artefacts and then conceal only these MBs. Results show that the proposed solution, based on a set of image-level features and two Support Vector Machines (SVMs), manages to detect 94.6% of those artefacts. Gains in Peak Signal-to-Noise Ratios (PSNR) of up to 5.74 dB have been obtained when compared to the standard H.264/AVC decoder.peer-reviewe

    Robust error detection methods for H.264/AVC videos

    Get PDF
    The 3rd generation of mobile systems is mainly focused on enabling multimedia services such as video streaming, video call and conferencing. In order to achieve this, the Universal Mobile Telecommunications System (UMTS), is the standard that has been developed by the 3rd Generation Partnership ect (3GPP) in Europe, including the baseline profile of H.264/AVC in the specification. With the union of both technologies a great improvement on video transmission over mobile networks, and even modification of the user habits towards the use of the mobile phone is expected. Nevertheless, video transmission has always been related to wired networks and unfortunately the migration to wireless networks is not as easy as it seems. In real time applications the delay is a critical constraint. Usually, transmission protocols without delivery warranties, like the User Network Protocol (UDP) for IP based networks, are used. This works under the assumption that in real time applications dropped packets are preferable to delayed packets. Moreover, in UMTS the network needs to be treated in a different way, thus the wireless channel is a prone error channel due to its high time variance. Typically, when transmitting video, the receiver checks whether the information packet is corrupted (by means of a checksum) or if its temporal mark exceeds the specified delay. This approach is suboptimal, due to the fact that perhaps the video information is not damaged and could still be used. Instead, residual redundancy on the video stream can be used to locate the errors in the corrupted packet, increasing the granularity of the typical upper-layer checksum error detection. Based on this, the amount of information previous to the error detection can be decoded as usually. The aim of this thesis is to combine some of the more effective methods concretely, Syntax check, Watermarking and Checksum schemes have been reformulated, combined and simulated

    A robust error detection mechanism for H.264/AVC coded video sequences based on support vector machines

    Get PDF
    Current trends in wireless communications provide fast and location-independent access to multimedia services. Due to its high compression efficiency, H.264/AVC is expected to become the dominant underlying technology in the delivery of future wireless video applications. The error resilient mechanisms adopted by this standard alleviate the problem of spatio-temporal propagation of visual artifacts caused by transmission errors by dropping and concealing all macroblocks (MBs) contained within corrupted segments, including uncorrupted MBs. Concealing these uncorrupted MBs generally causes a reduction in quality of the reconstructed video sequence.peer-reviewe

    Resilient Digital Video Transmission over Wireless Channels using Pixel-Level Artefact Detection Mechanisms

    Get PDF
    Recent advances in communications and video coding technology have brought multimedia communications into everyday life, where a variety of services and applications are being integrated within different devices such that multimedia content is provided everywhere and on any device. H.264/AVC provides a major advance on preceding video coding standards obtaining as much as twice the coding efficiency over these standards (Richardson I.E.G., 2003, Wiegand T. & Sullivan G.J., 2007). Furthermore, this new codec inserts video related information within network abstraction layer units (NALUs), which facilitates the transmission of H.264/AVC coded sequences over a variety of network environments (Stockhammer, T. & Hannuksela M.M., 2005) making it applicable for a broad range of applications such as TV broadcasting, mobile TV, video-on-demand, digital media storage, high definition TV, multimedia streaming and conversational applications. Real-time wireless conversational and broadcast applications are particularly challenging as, in general, reliable delivery cannot be guaranteed (Stockhammer, T. & Hannuksela M.M., 2005). The H.264/AVC standard specifies several error resilient strategies to minimise the effect of transmission errors on the perceptual quality of the reconstructed video sequences. However, these methods assume a packet-loss scenario where the receiver discards and conceals all the video information contained within a corrupted NALU packet. This implies that the error resilient methods adopted by the standard operate at a lower bound since not all the information contained within a corrupted NALU packet is un-utilizable (Stockhammer, T. et al., 2003).peer-reviewe

    Padding Block Based DVC Coding Scheme with Mutual Bi-directional Frame Coding at Decoder

    Get PDF
    [[abstract]]In this paper, we apply the mutual bi-directional frame coding (MB-frame coding) to our previous proposed padding block based Distributed Video Coding (DVC) scheme for performance improvement. Basically, in the MB-frame coding approach, we adopt the mutual forward and backward video sequence frames to process within reference frames in each individual Group of Pictures (GOP) until no skip blocks could be padded at decoder. It is worth to noting that with this approach the computation complexity does not increase at encoder side, which is consistent with the basic concept to meet the low complexity DVC requirement. Indeed, it achieves the overall system performance improvement with the cost of increasing for average 30 % of computation complexity at decoder side. Via computer simulation we show that the experimental results with the MB frame coding approach has about 0.2 dB gain over the one which does not employ the MB-frames coding s[[sponsorship]]ISPACS[[incitationindex]]EI[[conferencetype]]朋際[[conferencedate]]20121104~20121107[[booktype]]é›»ć­ç‰ˆ[[iscallforpapers]]Y[[conferencelocation]]Taiwa
    • 

    corecore