
Universitat Politecnica de Catalunya - EPSC

Technical University of Vienna - INTHFT

Institute of Communications and Radio-Frequency Engineering

Master of Telecommunications

Robust Error Detection Methods

for H.264/AVC Videos

by

Eva Rodriguez Rodriguez

Supervisors

Markus RUPP, Univ.Prof.

Olivia NEMETHOVA, Dr.techn.

Luca SUPERIORI, Dipl.-Ing.

Vienna, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41802215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Contents i

1 Introduction 3

1.1 Motivation . 3
1.2 H.264/AVC standard . 4

1.2.1 Video sampling . 5
1.2.2 Prediction and motion compensation 7
1.2.3 Transformation . 8
1.2.4 Quantization and Entropy coding 8

1.3 Network abstraction layer (NAL) 10
1.4 Video streaming over wireless networks 10
1.5 Overview of previous error detection methods and new approaches 12

1.5.1 Principles of Syntax check 12
1.5.2 Principles of Watermarking 12
1.5.3 Principles of Checksum . 13

1.6 Simulation, software, and performance indicators 14
1.6.1 Reference software and simulation settings 14
1.6.2 Performance indicators . 15

2 Direct concealment of previous MBs with Syntax check 19

2.1 Introduction to Syntax check principles 19
2.2 Implementation . 20
2.3 Simulations and results . 22

3 Watermarking 25

3.1 Introduction and theoretical approach 25
3.2 Implementation . 28

3.2.1 WM encoder . 28
3.2.2 WM decoder . 29

3.3 Simulations and results . 29

i

ii CONTENTS

3.3.1 Distortion evaluation . 30
3.3.2 Distortion over bitrate analysis 33
3.3.3 Error detection probability and error detection delay 37

4 Checksum 41

4.1 Introduction and theoretical approach 41
4.1.1 Motivation . 41
4.1.2 Characteristics of mb skip run and coded block pattern . 42
4.1.3 Checksum encoding . 44
4.1.4 Channel and network considerations 45

4.2 Implementation and performance 47
4.3 Simulations and results . 48

4.3.1 Distortion evaluation . 48
4.3.2 Distortion over bitrate analysis 50
4.3.3 Error detection probability and error detection delay 52

5 Conclusions 55

Bibliography 57

List of Abbreviations 59

List of Figures 61

List of Tables 63

Acknowledgements

A mi familia,

por el apoyo de todos estos años

To Luca,

for the priceless daily support

To Olivia,

for the motivating conversations

and the effective “remote corrections”

To Prof. Markus Rupp,

for providing all the facilities and an

excellent working environment at the Institute

Finally, “a la gente del lab”,

for helping me to laugh when frustration arose

1

Chapter 1

Introduction

1.1 Motivation

Nowadays, there is an increasing number of services and transmission media, like

Cable Modem, xDSL or UMTS, that provide lower data rates when compared with

broadcast channels like HDTV or DVB-T. These, together with the advances in pro-

cessing power and memory, and in video coding technology, claim for an efficient

video compression representation with increased coding efficiency and robustness to

support different network environments [1][2][3]. As a response to these needs, the

International Telecommunication Union (ITU) together with the ISO/IEC (Interna-

tional Electrotechnical Commission) created the Joint Video Team (JVT) of experts,

that defined the H.264 or Advanced Video Coding standard [1], as an evolution of

previous standards (H.263 [4] and MPEG-4 part 2 [5]). Therefore, H.264/AVC main

features are, on the one hand to provide high compression for a wide range of ap-

plications: from videoconferencing to Internet streaming; and on the other hand to

bring flexibility over different network environments.

The 3rd generation of mobile systems is mainly focused on enabling multimedia

services such as video streaming, video call and conferencing. In order to achieve

this, the Universal Mobile Telecommunications System (UMTS), is the standard that

has been developed by the 3rd Generation Partnership Project (3GPP) in Europe,

including the baseline profile of H.264/AVC in the specification. With the union of

both technologies a great improvement on video transmission over mobile networks,

and even modification of the user habits towards the use of the mobile phone is ex-

pected. Nevertheless, video transmission has always been related to wired networks

and unfortunately the migration to wireless networks is not as easy as it seems.

In real time applications the delay is a critical constraint. Usually, transmission

3

4 CHAPTER 1. INTRODUCTION

protocols without delivery warranties, like the User Network Protocol (UDP) for IP

based networks, are used. This works under the assumption that in real time appli-

cations dropped packets are preferable to delayed packets. Moreover, in UMTS the

network needs to be treated in a different way, thus the wireless channel is a prone

error channel due to its high time variance. Typically, when transmitting video, the

receiver checks whether the information packet is corrupted (by means of a check-

sum) or if its temporal mark exceeds the specified delay, and if affirmative, the whole

packet is discarded. Nevertheless, this approach is suboptimal, due to the fact that

perhaps the video information is not damaged and could still be used.

Instead, residual redundancy on the video stream can be used to locate the errors

in the corrupted packet, increasing the granularity of the typical upper-layer check-

sum error detection. Based on this, the amount of information previous to the error

detection can be decoded as usually. In [2] several error detection methods are pre-

sented and evaluated through simulation.

The aim of this thesis is to combine some of the more effective methods pro-

posed in [2], and define a common set of simulation to exhaustively compare they

performance. Concretely, Syntax check, Watermarking and Checksum schemes have

been reformulated, combined and simulated. The rest of this first chapter is devoted

to explain the basics of the H.264/AVC, the problems encountered when it is used

in a wireless environment, the parameters used in simulation and the performance

indicators used to evaluate the obtained results.

1.2 H.264/AVC standard

H.264/AVC [1] is the newest standard for video coding. Its last version was published

on November 2007 by the ITU-T as Recommendation H.264 [1] and for the ISO/IEC

as International Standard ISO/IEC 14 496-10 (MPEG-4 part 10) in December 2005

[6]. Compared to its predecessors, ITU-T H.261, H.262 (MPEG-2), and H.263,

H.264/AVC has been created in response to the growing need for higher compression

of moving pictures, comprising applications such as digital storage media, television

broadcasting, Internet streaming and real-time audiovisual communication. It has

also been designed to enable the use of the coded video representation in a flexible

manner for a wide variety of network environments. To achieve these, the design

of the system is split into the Video Coding Layer (VCL), that represents the video

content in an efficient way, and the Network Abstraction Layer (NAL), responsible of

the format of the VCL representation and that provides header information to have

a proper interaction with different transport layers and/or storage media. Figure 1.1

shows the mentioned structure. After the encoding process, the video content is

1.2. H.264/AVC STANDARD 5

grouped in NALUs (NAL Units) to be sent over the determined network.

Control Data Video Coding Layer (VCL)

Network Abstraction Layer (NAL)

NALU NALU NALU

coded macroblock / slice

Figure 1.1: H.264/AVC structure. Coexistence of Video Coding Layer (VCL)
and Network Abstraction Layer (NAL)

Although the standard just specifies the decoding process, the encoding process

works in a similar way. The steps followed by the H.264/AVC encoder are described

in Figure 1.2. To understand the process, the next subsections are devoted to explain,

at a high level, the different parts of this encoding process.

Q
-1

current

frame

reference

frame

reconstructed

frame

motion

estimation

motion

compens.

intra

prediction

mode

choice

QT
entropy

coding

T
-1filter

+

+

+

-

Figure 1.2: H.264/AVC encoder structure

1.2.1 Video sampling

To obtain a video stream, video cameras sample in the temporal and spatial domain.

In the temporal domain, the result is a set of pictures per second. These pictures are

called frames, thus the frame rate (frequency) of a video is expressed as the number

6 CHAPTER 1. INTRODUCTION

Table 1.1: Common picture resolutions for internet and mobile video applications

Name Resolution Description

VGA 640x480 Video Graphics Array
QVGA 320x240 Quarter Video Graphics Array

CIF 352x288 Common Intermediate Format
QCIF 176x144 Quarter Common Intermediate Format

of frames per second (f/s), or can also be expressed in Hertz (Hz). In the spatial

domain, the sampling provides the the number of pixels in each of the frames (pic-

ture resolution). Depending on the type of picture, different types of pixels can be

found. Pixels of intensity, for black and white videos, are scalar values; whereas pixels

of color pictures are represented by coordinates in the relevant color space. Finally,

the output of the digital video camera consists in a series of RGB (red-green-blue)

frames, represented by M ×N color component matrices. The samples of the three

color matrices are typically represented by 8 or 16 bits. Depending on the number of

pixels, different resolutions are obtained. Some of the more common resolutions for

internet and mobile video are found in Table 1.1.

The input video to the H.264/AVC encoder is a YUV signal, created from an

RGB source. As the human eye is less sensitive to color than to brightness, an initial

reduction in size can be achieved by storing more luminance than color information.

To create the YUV signal, the video signal is divided into luminance (denoted as

Y, and called luma) and two color difference (chrominance) components, denoted

as U and V (or Cb and Cr, respectively), called chroma. The most common way of

subsampling, called 4:2:0 reduces the number of samples in both the horizontal and

vertical dimensions by a factor of two, i.e., for four luma pixels there is only one

blue and one red chroma pixel. Unfortunately, the rate of compression achieved at

this point is not sufficient for much applications. The H.264/AVC encoder is able to

highly increase the compression of the information. The steps followed to do this can

be seen on Figure 1.3, and are explained in the following subsections.

Video

ENCODER
Prediction

+

Motion

compensation

Transformation Quantization Entropy coding

Figure 1.3: H.264/AVC encoder compression steps

1.2. H.264/AVC STANDARD 7

1.2.2 Prediction and motion compensation

The first step of encoding is to divide the frame in a squared grid. Each subdivision

is called macroblock (MB) and has 16x16 luma, and 8x8 of each chroma samples,

respectively (prediction in H.264/AVC also performs for non squared blocks of 8x16

pixels, or smaller sub-blocks). Subsets of macroblocks that can be decoded indepen-

dently are organized in slices. There are different types of frames, depending on how

they are predicted:

• Intra-coded frames: encoded either using spatial prediction, just using the

information contained in the picture itself, or non prediction at all. Intra-coded

frames are shortly called I frames.

• Inter-coded frames: encoded using temporal prediction, using the information

contained in previous encoded pictures.

Typically, the first picture of a video sequence is intra-coded. Each macroblock in

an intra- coded frame is predicted using spatially neighboring samples of previously

coded macroblocks (but macroblocks without encoded neighbours, like the first mac-

roblock, that are directly encoded). The encoder decides which and how neighboring

samples are used for intra prediction, and the selected mode is then signalized within

the stream. A group of pictures (GOP) can be configured at the encoder, and deter-

mines the periodicity of intra-coded frames, i.e., in a GOP of 10, every 9 inter-coded

frames, 1 frame is intra-coded.

Different inter-coded frame types are defined, depending on how the prediction

is performed. In this work, the type of frames used are I and P.

• Predictive (P) frames: coded as a prediction of the last I or P image.

• Bi-predictive (B) frames: coded as a prediction of last I/P image and the

next I/P.

• Switching P (SP) slice: provides efficient switching between different pre-

coded pictures.

• Switching I (SI) slice: allows exact match of a macroblock in an SP slice.

For the inter-coded frame process a motion estimation of each block is performed

by searching the best matching region from the previous frame, and taking it as

a prediction of the encoded block. The comparison is made pixel by pixel over

the quantized and filtered block (thus preventing artifacts during the reconstruction

process). The information about motion (motion vector) is also signalized, to have a

proper reconstruction at the decoder. When there is no movement between pictures,

or some static parts, no information needs to be sent. For this reason, a SKIP mode

8 CHAPTER 1. INTRODUCTION

allows for skipping a signalized number of P macroblocks. In this case, at the decoder,

the corresponding macroblock information for the previous frame is taken.

After this procedure, the luma and chroma samples of each MB are spacially or

temporally predicted. The differences between the actual macroblock samples and

the prediction are called prediction residuals, this values are the ones encoded and

further transmitted.

1.2.3 Transformation

In the obtained prediction residuals stream, a lot of correlation can still be found. To

compress the information, a de-correlation needs to be performed. The Karhunen-

Loève Transform (KLT) is optimal to this purpose, nevertheless the pre-training for

the specific content as well as the computational complexity make it complicated to

use it. The Discrete Cosinus Transform (DCT) is a very good approximation to it,

and therefore, is the one used in H.264/AVC. Its basic property is that it is able to

concentrate the energy of a given set of values in a region. After applying the DCT to

the residuals of each sub-macroblock (each of the four 4x4 blocks within a MB), the

resulting is a matrix of coefficients that represent the different frequencies. The DC

coefficient corresponds to the lower frequency, it is located on the left upper corner

of the matrix, and concentrates the most important information. The remaining

coefficients are denoted as AC coefficients, and represent the high frequencies. The

result of the transformation is strongly dependent on the content, i.e.; in pictures with

a lot of edges, and fast movement, AC information is predominant; whereas pictures

with smooth transitions and low movement have the energy mainly concentrated

around the DC value. At this point, no compression has been performed yet, but

information has been prepared for it.

1.2.4 Quantization and Entropy coding

At this step, for each macroblock, the obtained matrix of coefficients is quantized.

Basically, and speaking at a high level, the values of the matrices are divided by the

quantization parameter (QP), rounded to integer values, and later ordered in a vector

following a zig-zag scan order. The quantization parameter can have a value from 0

to 52. The level of compression is directly dependent on the value of QP; higher QP

values imply higher compression, but also higher distortion on the resulting video.

This procedure is illustrated in Figure 1.4, and consists in a preparation for further

entropy coding.

The entropy coding in H.264/AVC can be performed in two ways:

• Contex-Adaptive Binary Arithmetic Coding (CABAC): provides better

coding efficiency than CAVLC. Even though, due to its complexity and the

1.2. H.264/AVC STANDARD 9

fact that it is not efficient for small block sizes, it is not supported by all

profiles.

• Context-Adaptive Variable-Lenght Coding (CAVLC): does not perform as

good as CABAC, but it is supported by all profiles. At the moment just the

baseline profile is accepted for the 3GPP, therefore this work is focused on it

and just refers to the CAVLC.

7

- 6

2

3

- 4 - 2

4

0

5 -1

0

1

0

0 0

127

- 6

2

3

- 4 - 2

4

0

5 -1

0

1

0

0 0

12

DC coefficient

Highest frequency

coefficient

12 7 - 6 2 3 - 4 - 2 0 4 5 - 1 00 1 0 0

zig-zag scan

Figure 1.4: Zig-zag scan on a sub-macroblock and vector storage of the coefficients

The basic idea of CAVLC is to use Variable Length Codes (VLC), with a universal

exponential Golomb code (exp-Golomb). Nevertheless, an important point, that

will be referred in further sections, is the encoding of the transformed residuals.

The resulting vector after the zig-zag scan has all the important values at the first

positions, and for high frequencies, typically zero coefficients and trailing ones are

founded at the last positions. These values, the number of zero coefficients and

trailing ones (up to three of them, if more trailing ones are founded, those are

encoded as normal coefficients), are encoded specially, chosing one of four look-up

tables. The sign of the trailing ones is encoded separately. Then the rest of nonzero

coefficients are encoded choosing one of the seven VLC tables, context adaptively

selected. After this point, the compression is finished. The resulting H.264/AVC

video stream, is then transformed in the NAL.

10 CHAPTER 1. INTRODUCTION

1.3 Network abstraction layer (NAL)

Once the video is encoded, in order to be efficiently sent through the network, the

NAL is defined. Video data is encapsulated in NAL units (NALU). The format of a

NALU is shown in Figure 1.5. The first byte is the header, and the rest is payload.

On this first byte, the first bit is always a zero; the second and thirds bits are the NRI

(NAL Reference Identification) that signalizes the importance of the NAL unit for

reconstruction purposes. The remaining bits determine the type of NALU, and have

up to 32 different values, that depend on the type of data contained into the NALU.

NALUs can be encapsulated into different transport protocols and file formats, this

work is related to NALUs encapsulated into RTP (Real-Time Protocol) packets.

Type

2 bits

0 NRI NALU payload

5 bits

1 byte

Figure 1.5: NAL Unit packet format

1.4 Video streaming over wireless networks

Typically, video streaming has been used in wired networks, in which bandwidth is

abundant and the transmission channel provides very low bit error rates. Nevertheless,

the wireless channel is a prone error channel, and because of that, the received video

can be damaged after a transmission. On the other hand, both the compression

scheme in H.264/AVC, and the transmission system, do not help to improve the

effect of the errors, but the opposite.

Because of the encoding system in H.264/AVC a single bit error can cause error

propagation, thus affecting more than its actual MB, but slices, and frames. The

three possible sources of error propagation are the following:

• Spatial prediction: as the encoded MBs require information from their spa-

tially neighbors, if those are wrong, also the reconstructed MB will be distorted.

• Temporal prediction: because of the temporal prediction, if an error occurs

in a frame,the following frames using the erroneous frame as reference will be

affected by the error.

• Entropy coding: as variable length codes are used, an error in a codeword

can have impact in the following codewords, if the codeword boundaries are

1.4. VIDEO STREAMING OVER WIRELESS NETWORKS 11

determined incorrectly. Then desynchronization when reading the next words

appears, with the decoder being unable to distinguish among codewords.

Another thing that affects the amount of information lost when errors, is the

transmission system. Typically, NALUs are encapsulated on RTP, over UDP and IP

packets. The use of UDP makes sense in real-time applications because it provides

less overhead than TCP and less delay, as it does not have acknowledgment packets.

Usually, error detection is performed at the UDP level, by the correctness of the

checksum field, computed over the whole UDP packet. When this value is wrong,

the whole packet is discarded. Nevertheless, this approach is not optimal. In case

the error is located within the NALU, the information located before the error is not

damaged, and thus could be recovered, decreasing the amount of lost information.

As illustrated in Figure 1.6.

IP RTP NAL UNIT

H.264/AVC Encoder

fixed size

headers

UDP

Error

occurrence

Correct

information

Invalid

information

Figure 1.6: Stream structure with protocols and uncorruped information when
having errors within the video payload

To improve the degradation caused by errors at the receiver three steps can be

followed. Error detection, trying to detect errors on the NALU and extracting the

possible correct content. Error concealment, determines the error visibility in the

decoded stream, i.e.; even though the error cannot be corrected, the method tries

to reconstruct the image using the information it has. Finally, Cross-layer dessign,

that proposes improvement for H.264/AVC video transmission over UMTS, by means

12 CHAPTER 1. INTRODUCTION

of sharing the error information between layers. The presented thesis is focused on

error detection methods, therefore neither error concealment nor cross-layer design

strategies will be explained.

1.5 Overview of previous error detection methods and

new approaches

Error detection methods are designed to efficiently locate errors, in this case, within

the video stream. Hence, the more errors found and the faster, the better performance

the method has. Previous work on error detection methods as well as references to

alternative error detection methods can be found in [2]. Among those, the methods

studied here are the proposed Syntax check on [7] and Watermarking [8].

1.5.1 Principles of Syntax check

Syntax check takes advantage of the residual redundancy existing in the video stream

after encoding. Concretely, exploiting the variable length code codewords, range and

significance of the H.264/AVC information elements. As briefly explained previously in

Section 1.2.4, due to the use of CAVLC, a bit error can easily cause desynchronization

making impossible to distinguish the boundaries of the following codewords. When

this happens, it may even be impossible to decode the video stream, and if possible,

visual impairments are recognized at the decoded video.

Regarding the results obtained in [2] and [7], Syntax check seems to be a good

method when detecting errors. Nevertheless, its performance may be improved when

combined with other strategies. In previous work, it was shown that typical detection

delay for I frames was one or two MBs. Considering those results, an easy way to

improve quality at the receiver might be a direct previous concealment of one or two

macroblocks before error occurrence. This approach is implemented and tested in

Chapter 2. Moreover, as Syntax check provides a low implementation complexity,

all the different methods that are proposed in this work are implemented on top of

Syntax check.

1.5.2 Principles of Watermarking

Watermarking consists in adding a hidden redundancy into the video at the encoder

side, in order to locate errors at the receiver. When a video sequence is watermarked,

different information values can be changed: pixel values, coefficient values, residuals,

etc. A Force Even Watermarking (FEW) scheme was first introduced for H.263 in

[9]. In this work, a fragile watermark is forced onto quantized DCT coefficients at

the encoder; the decoder checks the correctness of this mark and is able to detect

errors at the MB level. The main problem of this approach though, is that even

when invisible Watermarking is used, an initial distortion is introduced in the video

1.5. OVERVIEW OF PREVIOUS ERROR DETECTION METHODS AND NEW
APPROACHES 13

sequence. Lately, the watermarking scheme was introduced also in [8], applying FEW

to H.264/AVC and proposing a Relation Based Watermarking (RBW) approach.

The results obtained in both approaches showed great improvement in the final

quality obtained at the receiver. Taking these into account, this work proposes

a combination of Syntax check together with different Watermarking schemes, to

see the grade of enhancement that can be achieved when both methods cooperate.

Moreover, different scenario conditions are simulated, applying more realistic error

patterns to the video transmission. Chapter 3 describes the implementation of the

method.

1.5.3 Principles of Checksum

The basic idea of checksum consists in adding redundancy bits to a content in order

to be able to detect errors. Typically, some function is calculated over the whole

content to protect, or over part of it; this result is also transmitted to the receiver, that

performs the same operation over the content, if the results differ, an error is assumed.

Checksums can be implemented in several ways, by changing the amount of content

to protect, the operation performed over it, and the in or out-band transmission.

Depending on these, the error detection probability is higher or lower. Unfortunately,

the overhead introduced by the additional checksum information is strongly related

with the good performance of the detection, i.e. the amount of information sent by

a checksum that applies over a whole frame is less than applying a checksum per

macroblock, nevertheless, with the second approach the granularity of the detection

is higher.

A method applying parity bits over a group of MBs in H.264/AVC videos is

already proposed in [10]. In this work, based on the results obtained in Chapter 3,

an alternative Checksum scheme, considering the protection of critical information

elements is proposed, implemented together with Syntax check and evaluated with

simulation in Chapter 4.

A comparison of the methods, by comparing the simulation results, can be found

on Section 3.3 for WM and on Section 4.3 for Checksum. To sum up, Figure 1.7

shows at which level of the encoding/decoding scheme the different methods are

applied. Syntax check works on the bitstream domain and is applied directly at the

entropy decoding. Watermarking works adding redundancy at the pixel domain and

is applied both in the encoder and decoder, after quantization and before inverse

quantization, respectively. Finally, Checksum is applied after the whole encoding

process, sent out-of-band, and checked just when the decoding starts.

14 CHAPTER 1. INTRODUCTION

Insert
Watermarking

Check

Checksum

Insert

Checksum

Check

Watermarking

Video

ENCODER

Prediction

+

Motion

compensation

T Q
Entropy

coding

DECODER

Picture

reconstruction
T

-1
Q

-1 Entropy

decoding

Received

video

Wireless

channel

Syntax check

Figure 1.7: Error detection methods studied. Position of application at the
encoder / decoder system. Syntax check, Watermarking and Checksum

1.6 Simulation, software, and performance indicators

All the methods proposed in this work have been first programmed, then simulated

with predefined chosen parameters, and finally the results have been evaluated. The

exception is Syntax check, that has just been simulated because it had already been

successfully programmed in [7]. The Force Even Watermarking implemented in [8]

had to be programed together with the Syntax check, thus just the programing of

the combination was considered at first. Nevertheless, some modifications had to

be done over that watermarking approach, and finally a new FEW was reprogramed

together with Syntax check.

1.6.1 Reference software and simulation settings

The different error detection methods for H.264 have been programed by modifying

the Joint Model (JM) reference software [11]. The software is distributed for free,

and includes both the encoder and the decoder, compliant with the H.264/AVC.

The different settings are passed to the program from the command line and/or the

configuration files encoder.cfg and decoder.cfg.

In order to be able to compare the simulation results in a proper way, common

simulation scenarios need to be defined. In this work, the simulations are performed

with the parameters described in Table 1.2. Table 1.3 shows the different Bit Error

Rates simulated, and the number of simulations performed for each one. Errors are

generated using a Binary Symmetric Channel (BSC) model.

1.6. SIMULATION, SOFTWARE, AND PERFORMANCE INDICATORS 15

Table 1.2: Common simulation parameters

Parameter Value Description

Video sequence foreman.yuv (400
frames)

Common reference sequence
used in video compression

Resolution QCIF (176x144) Applicable to mobile phone
screens

Frame rate 30 f/s and 10 f/s 30 f/s applied to method tests,
and 10 f/s to provide more re-
alistic results in the methods
comparative

Quantization parameter
(QP)

20, 26, 30 26 used as standard. 20 and
30 for the rate-distortion tests

Group of pictures
(GoP)

10 One I frame, every nine P
frames

Packet size 800 bytes The packet size correspond as
well to the size of the slice,
thus one packet containing a
whole slice

Concealing method Copy paste Conceals erroneous MBs by
copy-pasting the correspon-
dent spatial MB of the previ-
ous uncorrupted frame.

Table 1.3: Bit Error Rates (BER) and number of simulations (N)

BER 10−3 10−4 10−5 10−6 10−7

N 60 100 130 170 200

Note that, given a frame rate, simulations for each QP are performed, and for

each QP, all Bit Error Rates are simulated. Moreover, the concealing method in this

work is the most simple: a simple copy-paste of the last uncorrupted frame, for a

given MB, is performed.

1.6.2 Performance indicators

In order to objectively evaluate the performance of the proposed error detection

methods, performance indicators need to be defined. In the proposed work, the end-

user distortion in transmission with errors, the error detection probability and the

error detection delay are evaluated.

• Distortion

16 CHAPTER 1. INTRODUCTION

To measure the distortion caused by errors on the received video, the Mean Square

Error (MSE) and the Peak Signal to Noise Ratio (PSNR) can be used. The MSE

measures the distortion comprised within the nth video frame F
n

and the distortion-

free reference frame R
n

, as stated in:

MSE[n] =
1

M ·N · |C|
∑
c∈C

N∑
i=1

M∑
j=1

[F (n)
n

(i, j)−R(n)
n

(i, j)]2, (1.1)

where N×M corresponds to the size of the frame and C are the color components

(for example, for YUV, C = {Y,U, V }). Indexes i and j determine the individual

elements of the color component matrix, per row and column respectively.

Nevertheless, for image distortion it is more common to use the PSNR, defined

for one frame as:

PSNR[n] = 10 · log10

(2q − 1)2

MSE[n]
[dB], (1.2)

where q represents the number of bits used to express the color component values.

For a decoded video sequence, the JM typically provides the PSNR value for each

color component (luminance, and two chrominance). As chrominance is usually

smoother than luminance, and specially considering the Watermarking method (that

changes luminance coefficient), just luminance distortion is compared in this work.

In consequence, C = {Y }. Luminance PSNR is denoted as Y-PSNR[n].

Distortion can be studied by analyzing the evolution over time or over BER. The

distortion over time is calculated by obtaining the average value of distortion for

each frame, of the whole set of simulations. To obtain the final distortion values for

each BER, the average over the whole sequence first, and over the whole batch of

simulations later, is performed. The formally correct is to average over linear values,

for this reason the given PSNR values per frame are transformed to MSE, using

Equation 1.2 with q = 8. Having the results of MSE per frame, then averaging can

be performed using Equation 1.3. The final averaged value can be then transformed

to PSNR for comparison, by means of the Equation 1.4.

MSE =
1
F

F∑
n=1

MSE[n], (1.3)

PSNR = 10 · log10

(2q − 1)2

MSE
[dB], (1.4)

1.6. SIMULATION, SOFTWARE, AND PERFORMANCE INDICATORS 17

• Error detection probability

Due to desynchronization, a single error on a video stream can cause several errors

while decoding. To compute the number of error detections it is important to have

a correspondance between the inserted error and the actual detection. To do this,

simulations introducing one error per slice are performed. To compute this value the

Equation 1.5 is used.

Error detection probability =
Number of errors detected by method

Number of inserted errors
(1.5)

Detection error probabilities can be extracted for the different methods alone

and for the combination of them with Syntax check. The focus in this work is

the combination of methods, thus the error detection probability of Syntax check

interacting with each of the methods is analyzed. When an error is detected, by one

of the combined methods in the simulation, the concealment starts, and from this

point the whole slice is concealed.

• Error detection delay

Because of the fact that errors can propagate, they can affect more than one

MB. Thus errors are detected at the same MB where they occur, or some MBs later.

As explained, once the error is located, and because of a possible desynchronization,

the rest of the MBs of the slice are concealed. This applies specifically to this work,

because the payload of one NALU is a slice.

To compare the performance of the different methods in terms of error detection

delay, the number of macroblocks from the error occurrence until the error detection is

stored. In order to compare the methods, a cumulative distribution function (CDF)of

the detection delay is used, and computed as a cumulative histogram Mi as:

Mi =
i∑

j=1

mj , (1.6)

where given a normalized histogram mi, Mi counts the accumulated amount

of times that a certain detection delay has occurred. For example, considering the

normalized vector of detection delays V = [0.75, 0.15, 0.10] and assuming detection

delay values are within zero to two macroblocks, the resulting cumulative distribution

function is M = [0.75, 0.90, 1]; meaning that 75% of the detections are on the actual

macroblock where the error ocurrs, 90% within the actual or first MB, and 100%

within the two first MBs.

Chapter 2

Direct concealment of previous

MBs with Syntax check

2.1 Introduction to Syntax check principles

At the end of the encoding process, the obtained H.264/AVC bitstream has a de-

termined structure, formed from different information elements. Considering this,

invalid bit structures (due to errors) can be located by exploiting the codewords,

range and significance of the H.264/AVC information elements. An approach based

on this concept for H.263 was presented in [9]; later, a proposal for error detection

on H.264/AVC based on syntax analysis was presented in [7]. The examined bit-

flows in [7], refer to encoding sequences using QCIF, file mode RTP, and the JM

codec in baseline profile. The work presented in this thesis completely relies on that

implementation.

Syntax check for H.264/AVC, also encounters the limitations already present on

the syntax analysis for H.263, that depends on the encoding scheme itself. Entropy

coding and a lack of synchronization words between macroblocks cause the errors

to propagate until the end of slice, if not detected previously. As most codewords

are entropy encoded and can be decoded without the need of a look-up table, a

contextual analysis of each information element is needed in order to detect errors.

The structure of the VCL NALU payload is composed by the Slice Header (SH)

and coded macroblocks. The slice header contains basic information about the slice,

thus errors affecting the header might make it impossible to decode the entire slice.

The H.264/AVC decoder is differentiated in two steps; a reading phase, that reads and

partitions the raw bitstream into codewords, and the decoding phase, that transforms

the codewords into information elements, used to reconstruct the slice. Depending

on the information they represent, parameters are encoded in the following different

19

20
CHAPTER 2. DIRECT CONCEALMENT OF PREVIOUS MBS WITH SYNTAX

CHECK

ways:

• Fixed Length codewords (FL): composed by a known number of bits.

• Exp-Golomb coded codewords (EG): exponential Golomb Codes, adopted

by H.264/AVC, characterized by a regular logical structure consisting of a pre-

determined code pattern and no requirement of decoding tables.

• Tabled codewords (TE): the VLC words to be found in a look-up table.

H.264/AVC defines several VLC tables for different syntax elements and con-

texts.

• VLC level codewords (VL): context adaptive coding style, characteristic for

the residual levels encoding.

In order to decide that a codeword is erroneous, the characteristics of the code-

word are exploited. Based on this, erroneous codewords are classified as follows:

• Illegal Codeword (IC): the codeword does not find correspondence in the

look-up table. IC occurs during the reading process for tabled, exp-Golomb

coded and fixed length codewords.

• Out of Range Codeword (OR): decoded values are outside the specified

range. This is identified during the reading process, and applies to all type of

codewords.

• Contextual Error (CE): the decoded word causes the decoder to perform

illegal actions. It arises during decoding, for tabled, exp-Golomb coded and

fixed length encoded parameters.

According to the simulations performed in [2] and [7], the detection distance is

higher for P than for I frames; and about 65% of the errors are detected within two

macroblocks after the error occurrence for I frames when using Syntax check, as

shown in Figure 2.1. Considering this, a direct previous macroblock concealment,

of 1MB or 2MBs, is implemented and tested respectively. It is important to notice

that this approach does not represent an error detection method itself. The direct

concealment of macroblocks, previous to the error detection, might also conceal

correct macroblocks, thus degrading the quality at some points.

2.2 Implementation

The implementation of the method is performed at the decoder and unified with the

Syntax check code. Concretely, the code is added to the function decode one slice,

located in the image.c file. The procedure for the concealment of two macroblocks

previous to the error detection (2MB Prev.Conc.) is illustrated in Figure 2.2. When

2.2. IMPLEMENTATION 21

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay [MB]

Normalized Histogram

Cumulative Density Function

(a) I frames detection delay for Syntax check

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay [MB]

Normalized Histogram

Cumulative Density Function

(b) P frames detection delay for Syntax check

Figure 2.1: Detection delay for I and P frames, with Syntax check. Normalized
histogram and Cumulative Density Function

the first error in a slice is detected by Syntax check, the MB number in which the

error is detected, N , is stored (being N = 1 the first macroblock number in a slice);

and from that point, the rest of the slice is concealed. At the end of the process,

the concealment of two macroblocks previous to the error detection (in case N > 2)

New MB

New Slice

Error

detection?

N = MB number

Conceal MBs until

end of Slice

N > 2 ?Conceal MB = N - 2

Conceal MB = N - 1 N = 2 ?

NO

YES

NO

YES

YES

N = 1, first

MB in Slice

Apply PrevConc

End of

Slice?

NO

YES

Figure 2.2: Concealment of two macroblocks previous to the error detection
occurrence (2MB Prev.Conc.)

22
CHAPTER 2. DIRECT CONCEALMENT OF PREVIOUS MBS WITH SYNTAX

CHECK

is performed. If the error detection occurs in the second macroblock of the slice

(N = 2) the concealment of one previous macroblock is still possible, and thus the

first MB of the slice is concealed.

Note that the method only conceals the previous macroblocks, and the conceal-

ment of the slice from the error occurrence until the last MB is performed by the

Syntax check function. This can be done independently because the concealment

method is the copy paste of the corresponding block of the previous image, and the

concealment of a macroblock does not depend on the actions taken on the conceal-

ment of the neighboring macroblocks. The concealment of one macroblock previous

to the error detection (1MB Prev.Conc.) follows the same steps shown in Figure 2.2,

but just checking if N = 1, and in that case, as the detection is in the first MB of

the slice no previous concealment is performed.

2.3 Simulations and results

Simulations are performed with the initial settings described in Section 1.6, for Syntax

check alone, and together with one or two previous macroblock concealment.

−3 −4 −5 −6 −7
15

20

25

30

35

40
PSNR over BER. I Frames. 30fps

log
10

 (BER)

Y
−

P
S

N
R

 [d
B

]

1MB Prev.Conc.
2MB Prev.Conc.
Syntax Check

(a) Quality over BER for I frames

−4 −5

26

28

30

32

34

36

Zoom PSNR over BER. I Frames. 30fps

log
10

 (BER)

Y
−

P
S

N
R

 [d
B

]

1MB Prev.Conc.
2MB Prev.Conc.
Syntax Check

(b) Detail for BER from 10−4 to 10−5

Figure 2.3: Received quality over BER for I frames. Comparison of Syntax check,
1MB Prev.Conc. and 2MB Prev.Conc.

Figure 2.3 and Figure 2.4 show the results of simulations performed in this work,

where the distortion at the receiver versus the BER is plotted for I frames and P

frames respectively. The quality over BER for I frames is higher than for P frames.

This can be explained by the fact that detection distances for P frames are bigger than

for I frames, thus the effect of concealing one or two macroblocks is slightly perceived.

Moreover, for all the methods the quality improvement for I frames is bigger than for

P frames. This is derived from the fact that P frames are inter-coded, so the initial

quality after encoding is lower than for I frames.

When comparing the performance of each of the methods, different behaviors are

observed depending on BER values, as illustrated on Figure 2.3 for I frames. On the

2.3. SIMULATIONS AND RESULTS 23

−3 −4 −5 −6 −7
15

20

25

30

35

40
PSNR over BER. P Frames. 30fps

log
10

 (BER)

Y
−

P
S

N
R

 [d
B

]

1MB Prev.Conc.
2MB Prev.Conc.
Syntax Check

(a) Quality over BER for P frames

−4 −5
22

24

26

28

30

32

34
Zoom PSNR over BER. P Frames. 30fps

log10 (BER)

Y−
PS

N
R

 [d
B]

1MB Prev.Conc.
2MB Prev.Conc.
Syntax Check

(b) Detail for BER from 10−4 to 10−5

Figure 2.4: Received quality over BER for P frames. Comparison of Syntax
check, concealment of 1MB Prev.Conc. and 2MB Prev.Conc.

one hand, for higher values of BER (10−3) the concealment of the two macroblocks

previous to the error (2 MB PrevConc) achieves the worse performance. At this point,

as a great amount of errors are placed on the stream, the number of detections is

also higher. In most of the cases the errors are detected on the MB where they occur,

thus the concealment of previous MBs is actually the concealment of non erroneous

MBs. On the central zone, when the BER equals 10−5, an improvement of 0.3dBs

over Syntax check alone is achieved for 1MB PrevConc. For low BER (10−7), all

three methods achieve approximately the same quality. In this case, as the amount

of errors is really small nearly no concealment is performed, thus the decoded quality

is comparable to the quality of the error-free transmission.

Chapter 3

Watermarking

3.1 Introduction and theoretical approach

Watermarking (WM) consists in adding redundancy at the pixel level in the encoder

in order to locate errors at the receiver. A Force Even Watermarking (FEW) scheme

was first introduced for H.263 in [9]. In this work, a fragile watermark is forced onto

quantized DCT coefficients at the encoder; the decoder checks the correctness of this

mark and is able to detect errors at the MB level. The main problem of this approach

though, is that even when invisible Watermarking is used, an initial distortion is

introduced in the video sequence. Lately, a watermarking scheme was used also in

[8], applying FEW to H.264/AVC and proposing a Relation Based Watermarking

(RBW) approach.

The results obtained in both approaches shown great improvement in the final

quality obtained at the receiver. Taking these into consideration, a combination

of Syntax check together with different Watermarking schemes is proposed, to see

the grade of enhancement that can be achieved when both methods cooperate.

One of the most important differences when comparing the presented work with

the mentioned before, is the type of errors. In [9] and [8] errors are introduced

directly and exclusively on DCT coefficients, whereas in the presented work errors

are randomly distributed over the whole H.264/AVC video. This represents a more

realistic approach, since also effects like desynchronization are considered.

FEW consists in changing the values of one or more AC coefficients, from a given

position p inside a sub-macroblock, and following the zig-zag scan until the end of

the given sub-macroblock. Considering a sub-macroblock of size N×N (4×4 in our

case) with DCT coefficient an, n ∈ [2, N2]1, each ai with i = p . . . N2, the resulting

a
(w)
i watermarked coefficient follows

1The first coefficient corresponds to the DC value, and this is never watermarked in this
work.

25

26 CHAPTER 3. WATERMARKING

aw
i =

{
ai ; |ai|mod 2 = 0

ai − sign(ai) ; |ai|mod 2 = 1;
(3.1)

where mod 2 stands for the operation modulo 2 and sign(ai) for

aw
i =

{
1 ; ai ≥ 0
−1 ; ai < 0.

(3.2)

This study is focused on the combination of Watermarking techniques together

with Syntax check. As Syntax check achieves good error detection results in I frames,

and because of the fact that watermarking I frames causes high distortion on the

encoder, the watermark is only applied to P frames. Even when just watermarking P

frames, FEW with low values of p still causes a high initial degradation. Theoretically,

the lower the value of p, the higher the error detection probability is; nevertheless, if

the initial distortion is too high, it is hard for the concealing methods to overcome

it. An example of this initial distortion when watermarking with FEW and different

values of p is show in Figure 3.1.

0 50 100 150 200 250 300 350 400
32

33

34

35

36

37

38

39

40
Encoder. QP26. 30fps

Frame Nr.

Y
−

P
S

N
R

 [d
B

]

few p=2
few p=7
few p=11
few p=14
no wm

Figure 3.1: FEW initial distortion at encoder for values of p = 2, 7, 11, 14 vs.
non-watermarked sequence

3.1. INTRODUCTION AND THEORETICAL APPROACH 27

The effect of the initial degradation is mainly caused by the fact that forcing

coefficients to even numbers in P frames, most of the time is the same as turning

the trailing ones of the sub-macroblock to zero. This has also the implication that

the compression is higher, indirectly reducing the size of the final compressed video.

Considering these, a Force Odd Watermarking (FOW) scheme is also implemented

together with Syntax check and evaluated. FOW performs exactly in the same way

as FEW, but changing DCT coefficients to odd values (thus preserving the trailing

ones). Considering a sub-macroblock of size N × N with DCT coefficient an, n ∈
[2, N2], each ai with i = p . . . N2, and a 6= 0, the resulting a

(w)
i watermarked

coefficient follows what is stated in Equation 3.3, with sign(ai) defined in Equation

3.2. Coefficients with 0 value are not modified.

aw
i =

{
ai ; |ai|mod 2 = 1

ai − sign(ai) ; |ai|mod 2 = 0;
(3.3)

Using FOW, under the same considerations of Figure 3.1 decreases the initial

encoding distortion considerably, as show in Figure 3.2. On the other hand, FOW

does not achieve the higher compression that FEW is able to provide. An evaluation

in terms of distortion over bitrate is to be found in Section 3.3.

0 50 100 150 200 250 300 350 400
32

33

34

35

36

37

38

39

40
Encoder. QP26. 30fps

Frame Nr.

Y
−

P
S

N
R

 [d
B

]

fow p=2
fow p=7
fow p=11
fow p=14
no wm

Figure 3.2: FOW initial distortion at encoder for values of p = 2, 7, 11, 14 vs.
non-watermarked sequence

28 CHAPTER 3. WATERMARKING

The differences between both FEW and FOW watermarking are shown in Figure

3.3

7

- 6

2

3

- 4 - 2

4

0

4 0

0

0

0

0 0

12

FEW p=7

0

0

00

0

0

12 7

- 6

2

3

- 4 - 2

4

0

5

FEW p=11

7

- 6

2

3

- 4 - 2

4

0

5 -1

0

1

0

1 0

12

Original

(a) Watermarking with FEW

7

- 6

2

3

- 4 - 2

4

0

5 -1

0

1

0

1 0

12

Original

7

- 6

2

3

- 4 - 1

3

0

5 - 1

0

1

0

0 0

12

FOW p=7

1

0

01

0

-1

12 7

- 6

2

3

- 4 - 2

4

0

5

FOW p=11

(b) Watermarking with FOW

Figure 3.3: Watermarking differences of FEW and FOW. Example using values
of p = 7 and p = 11, for the same original sub-macroblock

3.2 Implementation

The implementation of FEW and FOW is performed at the encoder and decoder,

unified with the Syntax check code. At the encoder, the functions dct luma and

dct luma 16x16, in the file block.c are modified. The function dct luma performs

the transformation, and quantization; moreover, it performs an optimization to se-

lect the most appropriate coefficient levels, discarding expensive values. The function

dct luma 16x16 does the same but for intra coded macroblocks.

At the decoder, the functions decode one slice, in the file image.c as well as the

function readCBPandCoeffsFromNAL, in the file macroblock.c are modified. The

function readCBPandCoeffsFromNAL is responsible for the extraction and interpre-

tation of the values received from an H.264 NALU, and decode one slice decodes

a slice, reading macroblock per macroblock.

3.2.1 WM encoder

The implementation of the JM encoder has an inner-decoder, used for the predic-

tion. When calculating the DCT coefficients, the values are stored both in the final

3.3. SIMULATIONS AND RESULTS 29

H.264/AVC file but also in the buffer of the inner-decoder. The modification of the

coefficients because of the watermarking is performed together with the optimiza-

tion, meaning that the decisions on the prediction consider the already watermarked

coefficients, and in consequence, WM can be applied to the same coefficient more

than once. For this reason, all the modifications made by WM are applied to both

to the H.264/AVC file and to the inner-decoder buffers.

The implementation on dct luma uses a loop for the 16 coefficients of a 4 × 4
sub-macroblock. Each time, a level (DCT coefficient) is calculated, and stored into a

vector called ACLevel. ACLevel contains all the non-zero values for a sub-macroblock,

following the zig-zag order. In order to know where the zeros are placed, the vector

ACRun is defined. ACRun is synchronized with ACLevel. The positions where ACRun

has a positive value (non-zero) determine the number of zeros to insert until the next

value; i.e. ACRun[1] with value 2, means that after value of ACLevel[2], 2 zeros

must be inserted. This is signalised with the variable run. In the case of FEW, some

coefficients can be turned to zero, then the correct modifications of these variables

is crucial to assure that all the coefficients are correctly stored and signalized. This

procedure is shown for FEW in Figure 3.4.

3.2.2 WM decoder

The procedure at the decoder is more simple than the one at the encoder. In the

function readCBPandCoeffsFromNAL, a check is performed after each DCT coeffi-

cient extraction. For P frames, and when the coefficient positions is equal or bigger

than p, if the value received differs from even (for FEW) or odd (for FOW), an er-

ror detection is signalized for the given MB. The errors detected by WM are at the

macroblock reading step. The management of the errors is performed in the function

decode one slice. When an error is detected in a MB, either by Syntax check

or by WM, the concealment procedure for the whole slice starts. At this step, the

computation of the number of error detections as well as the detection distance, is

also performed.

3.3 Simulations and results

This section evaluates the results obtained through simulation using the parameters

described in Section 1.6. First, an evaluation in terms of degradation (Y-PSNR) de-

pending on the BER and depending on time, is performed. Then, results of distortion

over bitrate are presented, comparing FEW and FOW. The final part of the section

is devoted to analyze the results obtained for error detection probability and for error

detection delay.

30 CHAPTER 3. WATERMARKING

run = -1

level calculation

 ACRun = run

 ACLevel = wm_level

 run = -1

level = 0?
YES

NO

for (coeff = 0, coeff < 16, coeff ++)

run = run +1

NO

Apply FEW

wm_level

= 0?

YES

P frame

coeff >= p

Figure 3.4: Encoder procedure for implementation of the watermarking with
FEW at the JM

3.3.1 Distortion evaluation

Simulations are performed for different BER values, for both FEW and FOW. The

results shown are for 30 f/s.

In Figure 3.5 and Figure 3.6, the received quality depending on the BER, for

different values of p and compared with Syntax check alone, is shown for FEW and

FOW respectively. In both cases, the quality improves gradually as the number of

errors is reduced (as the BER is decreased). When taking a look to high BERs

(10−3, 10−4) FEW with small values of p is able to improve the quality, compared

to Syntax check alone and to FOW. The opposite occurs for low values of BER

(10−6, 10−7): the effect of the initial degradation for low BERs in FEW is predominant

and therefore FEW is not able to overcome Syntax check alone nor FOW for any value

of p. As the initial watermarking degradation is not that severe in FOW, the received

quality for low BERs with FOW is similar for the different values of p, and in some

cases overcomes the received quality for Syntax check alone.

In order to take a deeper look at the mentioned performances of FEW and FOW

3.3. SIMULATIONS AND RESULTS 31

−3 −4 −5 −6 −7
15

20

25

30

35

40
FEW PSNR over BER. QP26. 30fps

log
10

 (BER)

Y
−

P
S

N
R

 [d
B

]

few p=14
few p=11
few p=7
few p=2
sc

Figure 3.5: FEW distortion over BER at the decoder

−3 −4 −5 −6 −7
15

20

25

30

35

40
FOW PSNR over BER. QP26. 30fps

log
10

 (BER)

Y
−

P
S

N
R

 [d
B

]

fow p=14
fow p=11
fow p=7
fow p=2
sc

Figure 3.6: FOW distortion over BER at the decoder

depending on the BER, a comparison of the received video quality over time for the

three methods (Syntax check, FEW and FOW), depending on p, for a high BER

(10−4) and for a lower BER (10−6) is provided in Figure 3.7 and Figure 3.8 respec-

tively.

When comparing quality over time, the instant quality per frame can be seen.

In the chosen sequence, for example, the quality experience a great decrease at the

frames from 250 to 350 due to a fast camera movement. The methods can achieve

32 CHAPTER 3. WATERMARKING

0 50 100 150 200 250 300 350 400
16

18

20

22

24

26

28

30

32

34
PSNR over time. BER = 10−4. QP=26. 30fps.

Frame Nr.

P
S

N
R

 [d
B

]

few p=2
fow p=2
sc

Figure 3.7: Distortion over time. BER = 10−4. Comparison of Syntax check,
FEW and FOW with p = 2

better or worse results depending on the frame but in order to be evaluated, the

mean quality is considered. In Figure 3.7 for a high BER (10−4) FEW with p = 2
overcomes the performance of Syntax check and FOW, in terms of mean received

0 50 100 150 200 250 300 350 400
31

32

33

34

35

36

37

38

39

40
PSNR over time. BER = 10−6. QP=26. 30fps.

Frame Nr.

Y
−

P
S

N
R

 [d
B

]

few p=14
fow p=14
sc

Figure 3.8: Distortion over time. BER=10−6. Comparison of Syntax check, FEW
and FOW with p = 14

3.3. SIMULATIONS AND RESULTS 33

quality, with an increase of 0.34dB with respect to Syntax check. For a BER of 10−6

and with a high value of p (Figure 3.8), FOW achieves the best results, with a little

improvement of 0.04dB with respect to Syntax check. Considering the results, the

general conclusion consists in FEW performing better with high BERs and low values

of p and FOW sometimes improving the quality for low BERs and high values of p.

3.3.2 Distortion over bitrate analysis

FEW provides a higher level of compression due to the conversion of the trailing ones

to zero. Considering this, it is interesting to compare the distortion over bitrate for the

different watermarking (FEW and FOW) with Syntax check, with and without errors.

To do this, the video sequence is encoded with different quantization parameters QP

= [20,26,30]. Results for both 30f/s and 10f/s are shown.

100 200 300 400 500 600 700
32

34

36

38

40

42
Encoder Bitrate over distortion. 30fps

Y
−

P
S

N
R

 [d
B

]

100 200 300 400 500 600 700
32

34

36

38

40

42
Encoder Bitrate over distortion. 30fps

100 200 300 400 500 600 700
32

34

36

38

40

42

Bitrate (kbit/s)

Y
−

P
S

N
R

 [d
B

]

100 200 300 400 500 600 700
32

34

36

38

40

42

Bitrate (kbit/s)

few p=2
fow p=2
no wm

few p=7
fow p=7
no wm

few p=11
fow p=11
no wm

few p=14
fow p=14
no wm

Figure 3.9: Encoder distortion over bitrate for different values of p and 30f/s.
Comparison for FEW, FOW and the non-watermarked sequence

Figure 3.9 shows a comparison of the distortion over bitrate, depending on the

value of p. The method achieving best results is encoding without watermarking,

because in this case the original video content is not changed. In contrast, FEW

achieves the worse results for lower values of p, where the initial distortion is more

severe. The interesting aspect as this point is to see whether this behavior can change

at the decoder.

34 CHAPTER 3. WATERMARKING

100 200 300 400 500 600 700
15

20

25

30

35

40

45
Distortion over bitrate. BER=[10−3,10−4,10−5,10−6,10−7]. 30fps.

Rate (kbit/s)

Y
−

P
S

N
R

 [d
B

]

fow p=14
fow p=11
fow p=7
fow p=2
sc

Figure 3.10: Distortion over bitrate for FOW and Non-WM videos for all BERs
and 30f/s

When introducing errors, the overall behavior for both FEW and FOW is the

same and varies depending on the BER. This is shown in Figure 3.10, for FOW. This

figure needs to be read from upside-down, the upper plots corresponding to lower

BERs (higher quality at the decoder) until higher BERs at the bottom. For high

BERs (10−3 and 10−4) low bitrates achieve higher quality than higher bit rates. This

behavior does not look coherent at first sight, and could explained by the fact that

fixed length packets are used. Lower bitrates mean higher QPs, thus more MBs for

a given packet, or a higher granularity. When having the same amount of errors per

packet in average, but more and smaller MBs, the amount of information lost is also

smaller, thus slightly increasing the quality at the receiver. In contrast, for lower

BERs the errors affect a bigger area, thus having the same shape observed at the

encoder side in Figure 3.9, where the quality increases along with the bitrate.

Nevertheless, in order to see the differences within the methods, an analysis for

different BER is performed. Figure 3.11 shows the distortion over bitrate for different

p values with a BER of 10−3 and 30f/s. It can be observed that the best results are

obtained for FEW when p = 2, and the differences of FEW with respect to FOW

and Syntax check are reduced as p is increased; to the point that, when p = 14
all the methods have a similar behavior. When the frame rate is reduced to 10 f/s

(Figure 3.12) FEW performance overcomes FOW and Syntax check, in this case with

independence on the value of p.

3.3. SIMULATIONS AND RESULTS 35

0 200 400 600 800
15.4

15.6

15.8

16

16.2
Distortion over bitrate. BER=10−3. 30fps

Y
−

P
S

N
R

 [d
B

]

few p=2
fow p=2
sc

0 200 400 600 800
15.4

15.6

15.8

16

16.2
Distortion over bitrate. BER=10−3. 30fps

few p=7
fow p=7
sc

0 200 400 600 800
15.4

15.6

15.8

16

16.2

Y
−

P
S

N
R

 [d
B

]

Bitrate (kbit/s)

few p=11
fow p=11
sc

0 200 400 600 800
15.4

15.6

15.8

16

16.2

Bitrate (kbit/s)

few p=14
fow p=14
sc

Figure 3.11: Distortion over bitrate depending on p for BER=10−3 and 30 f/s

20 40 60 80 100
14.4

14.6

14.8

15
Distortion over bitrate. BER=10−3. 10fps

Y
−

P
S

N
R

 [d
B

]

few p=2
fow p=2
sc

20 40 60 80 100
14.4

14.6

14.8

15
Distortion over bitrate. BER=10−3. 10fps

few p=7
fow p=7
sc

20 40 60 80 100
14.4

14.6

14.8

15

Y
−

P
S

N
R

 [d
B

]

Bitrate (kbit/s)

few p=11
fow p=11
sc

20 40 60 80 100
14.4

14.6

14.8

15

Bitrate (kbit/s)

few p=14
fow p=14
sc

Figure 3.12: Distortion over bitrate depending on p for BER=10−3 and 10 f/s

When considering low values of BER, for 30f/s (Figure 3.13) the general trend is

that FOW improves the behavior of FEW and Syntax check, specially for p = 14. For

the case of 10f/s (Figure 3.14), the superiority of FOW is predominant, overcoming

the results of the other two methods, with independence of p. This effect is the same

as observed with high BER for 10f/s (Figure 3.12).

36 CHAPTER 3. WATERMARKING

0 200 400 600 800

34

36

38

40
Distortion over bitrate. BER=10−6. 30fps

Y
−

P
S

N
R

 [d
B

]

few p=2
fow p=2
sc

0 200 400 600 800

34

36

38

40
Distortion over bitrate. BER=10−6. 30fps

few p=7
fow p=7
sc

0 200 400 600 800

34

36

38

40

Y
−

P
S

N
R

 [d
B

]

Bitrate (kbit/s)

few p=11
fow p=11
sc

0 200 400 600 800

34

36

38

40

Bitrate (kbit/s)

few p=14
fow p=14
sc

Figure 3.13: Distortion over bitrate depending on p for BER=10−6 and 30 f/s

20 40 60 80 100
32

34

36

38
Distortion over bitrate. BER=10−6. 10fps

Y
−

P
S

N
R

 [d
B

]

few p=2
fow p=2
sc

20 40 60 80 100
32

34

36

38
Distortion over bitrate. BER=10−6. 10fps

few p=7
fow p=7
sc

20 40 60 80 100
32

34

36

38

Y
−

P
S

N
R

 [d
B

]

Bitrate (kbit/s)

few p=11
fow p=11
sc

20 40 60 80 100
32

34

36

38

Bitrate (kbit/s)

few p=14
fow p=14
sc

Figure 3.14: Distortion over bitrate depending on p for BER=10−6 and 10 f/s

Considering these, the results obtained for the distortion-bitrate comparative with

30f/s support the already observed with the distortion over BER and time; in general,

FEW provides better quality for high BERs and low values of p, whereas FOW does

it for low BERs and high values of p. When having 10f/s, this behavior is also

accomplished, but with independence on the value of p. It is important to notice,

that the results are strongly dependent on the placement of errors; thus simulations

3.3. SIMULATIONS AND RESULTS 37

with different errors could lead to fluctuations in these results.

In order to provide realistic results, several simulations are performed and aver-

aged. Moreover, errors need to be generated in a random way (in this work, this

is achieved with a BSC); and this implies that some errors can be placed in critical

parts of the H.264/AVC file, causing great fluctuations in the final quality at the

decoder. Finally, it is important to consider that Watermarking introduces an extra

compression, thus each watermarked video has different size depending on the value

of p and on the content itself; for this reason, even if the same error traces were

considered in all the experiments, the effect of the errors would be different in each

H.264/AVC file.

3.3.3 Error detection probability and error detection delay

The error detection probability permits to compare the percentage of errors detected

for a given error detection method. In this case, the interest is focused on the

error detection probability of the combination of watermarking and Syntax check,

resulting in the methods FEW and FOW. In the simulations for the error detection

computation, one single error per slice is introduced. On the one hand, because in this

way an easier computation of the detected and undetected errors can be performed,

and on the other hand because once an error is located, the concealment is performed

until the end of the slice. Table 3.1 shows the error detection probability results.

Table 3.1: Error detection probabilities for FEW and FOW (QP = 26)

Error detection probabilities (QP=26)
30 f/s 10 f/s

p FEW FOW p FEW FOW

2 65.6% 57.96% 2 64.39% 62.93%
7 65.33% 52.48% 7 62.21% 53.28%
11 59.1% 53.49% 11 51.44% 49.23%
14 50.87% 51.47% 14 50.36% 49.80%

Considering the error detection probabilities for 30f/s and for FEW, the smaller

the value of p, the higher is the error detection probability. Achieving the the best

result for p = 2 with an error detection probability of 65.6%. The error detection

probabilities for FOW and 30f/s are lower, achieving a 57.96% as the maximum,

for p = 2. Moreover, FOW seems not to be dependent on the p value for p > 2,

thus achieving better results for p = 11 than for p = 7, for example. This behavior

can be explained by the fact that for higher p values the watermarked coefficients

are mainly trailing ones, and thus the odd watermarking in this region introduces a

random component strongly dependent on the content.

38 CHAPTER 3. WATERMARKING

The results obtained for 10f/s are comparable to ones the obtained for 30f/s and

follow the same trend. For FOW with p = 2, a detection probability of 62.93% is

achieved, overcoming the result obtained for 30f/s. Nevertheless, the most probable

explanation to this are the fluctuations of the results depending on the type of errors

inserted. In any case, and comparing the results with the error detection probability

of Syntax check (that lies around the 50%), to use watermarking together with Syn-

tax check represents a great improvement in terms on error detection, specially for

FEW with low values of p.

The cumulative distribution function (CDF) of the detection delay shows which

of the method is able to locate more errors sooner. Figure 3.15 shows the CDF

obtained for FEW and FOW, for all p values, and compared with the results obtained

with Syntax check alone.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

CDF of detection delay. P frames. QP=26. 30fps

Detection distance [MB]

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

few p=2
few p=7
few p=11
few p=14
sc

(a) FEW detection delay

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

CDF of detection delay. P frames. QP=26. 30fps

Detection distance [MB]

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

fow p=2
fow p=7
fow p=11
fow p=14
sc

(b) FOW detection delay

Figure 3.15: Cumulative distribution function (CDF) of the detection delay.
Comparison of watermarking with Syntax check alone, for all values of p. Results
for P frames, QP=26 and 30f/s

The results for FEW tally with the observed for the error detection probability:

the lower the value of p, the shorter is the detection distance. When p = 2 FEW

achieves the best result, with an 85% of error detections with detection distance

below 10 MBs, compared with the 65% of Syntax check alone. As p increases, the

detection delay probability for FEW decreases gradually as well. In FOW, the decrease

in error detection delay when comparing p = 2 with higher values of p is blunter.

FOW with p = 2 achieves similar results to the observed by FEW, as shown in Figure

3.16.

The results of the CDF for 10f/s are shown in Figure 3.17, for the compared

methods and different values of p. In this case, the best result is achieved for WM

when p = 2, with more than 90% of error detections with detection distance below

3.3. SIMULATIONS AND RESULTS 39

20 40 60 80 100
0

0.5

1

CDF of detection delay. QP=26. 30fps

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

few p=2
fow p=2
sc

20 40 60 80 100
0

0.5

1

CDF of detection delay. QP=26. 30fps

few p=7
fow p=7
sc

20 40 60 80 100
0

0.5

1

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

Detection distance [MB]

few p=11
fow p=11
sc

20 40 60 80 100
0

0.5

1

Detection distance [MB]

few p=14
fow p=14
sc

Figure 3.16: Cumulative distribution function (CDF) of the detection delay.
Comparison of FEW, FOW and Syntax check alone for different p values and
30f/s.

20 40 60 80 100
0

0.5

1

CDF of detection delay. QP=26. 10fps

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

few p=2
fow p=2
sc

20 40 60 80 100
0

0.5

1

CDF of detection delay. QP=26. 10fps

few p=7
fow p=7
sc

20 40 60 80 100
0

0.5

1

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

Detection distance [MB]

few p=11
fow p=11
sc

20 40 60 80 100
0

0.5

1

Detection distance [MB]

few p=14
fow p=14
sc

Figure 3.17: Cumulative distribution function (CDF) of the detection delay.
Comparison of FEW, FOW and Syntax check alone for different p values and
10f/s.

40 CHAPTER 3. WATERMARKING

10 MBs, compared to the 70% of Syntax check. Nevertheless, it is interesting to

notice that in this case the differences between FEW and FOW are reduced; thus in

general for a given p both methods have approximately the same performance.

Considering the presented results of distortion, error detection probability and

detection delay it is possible to state that WM together with Syntax check improves

the performance of Syntax check alone. In general, FEW provides better results

with high BERs and using low values of the parameter p; whereas FOW is able to

outperform FEW and Syntax check with lower BERs and specially with higher values

of p. When the frame rate is reduced from 30 f/s to 10 f/s, two effects are observed:

the results for WM in terms of distortion and detection delay seem to be independent

of the value of p and the results of FEW and FOW become very similar. Taking

these into account, FOW could be a good candidate when working with low frame

rates, because it is able to reach the performance of FEW but reducing the initial

degradation cost.

Chapter 4

Checksum

4.1 Introduction and theoretical approach

Checksum (CH) consists in adding redundancy bits to a content transmitted over

an error prone channel, in order to be able to detect errors on reception. At the

encoder side, some function is calculated over some of the data bits to be send; the

obtained result is also transmitted to the receiver, that performs the same operation

over the same bits. An error is detected if the results (checksum received and value

obtained for the decoder) differ. Checksums can be implemented in several ways, by

changing the amount of content to protect, the operation performed over it, and the

in or out-band transmission. Depending on these, the error detection probability is

higher or lower. Unfortunately, the overhead introduced by the additional checksum

information is strongly related with the good performance of the detection, i.e. the

amount of information sent by a checksum that applies over a whole frame is less

than applying a checksum per macroblock, nevertheless, with the second approach

the granularity of the detection is higher. A method applying parity bits over a group

of MBs in H.264/AVC videos is already proposed in [10]. In this chapter, based on

the results obtained in Chapter 3, an alternative Checksum scheme is implemented

together with Syntax check and evaluated through simulation.

4.1.1 Motivation

The Checksum implementation proposed in this chapter responds to a behavior ob-

served on the simulations performed with Watermarking, in Section 3.3. Both the

H.264/AVC encoder and decoder output the files trace enc.txt an trace dec.txt

respectively. The trace files contain all the values that the encoder writes on the

H.264/AVC file and the decoder reads. In an error-free transmission, written and

read values are the same. In presence of errors, the decoder interprets some values

41

42 CHAPTER 4. CHECKSUM

wrongly, and thus trace files at the encoder and decoder are different at some points.

In order to analyze in which cases the Watermarking failed to detect errors on

the Luma field, a brief analysis of the trace files both in encoder and decoder was

performed. The main conclusion was that the method was able to recognize errors,

when any detectable change on the Luma coefficients happens. Nevertheless, two

more effects made some errors undetectable by Watermarking:

• The effect of errors caused the decoder not to decode some macroblocks, thus

the WM information contained on those MBs was useless.

• Luma values were decoded as other type of information, like Chroma values,

for example.

These behaviors happened due to errors affecting the elements mb skip run and

coded block pattern (cbp) respectively. Analyzing the codification of these el-

ements, and the important repercussion of errors on them, an specific Checksum

scheme to protect these values is defined. In this chapter, Subsection 4.1.2 de-

scribes the encoding of these two elements, and the repercussions of errors on them;

whereas Subsection 4.1.3 describes the method, the information protected and the

chosen encoding method for the Checksum values.

4.1.2 Characteristics of mb skip run and coded block pattern

The mb skip run field is defined in [1] as:

“mb skip run specifies the number of consecutive skipped macroblocks for which,

when decoding a P or SP slice, mb type shall be inferred to be P Skip and the mac-

roblock type is collectively referred to as a P macroblock type. {...} The value of

mb skip run shall be in the range of 0 to PicSizeInMbs - CurrMbAddr, inclusive”.

The skip mode is useful in frames using prediction (P frames), as explained in

Section 1.2.2. The value of mb skip run determines the number of MBs to skip, and

is present in every MB of P frames. For non-skipped MBs, the value of mb skip run

consists in one bit with value 0. Considering desynchronization, the probability of

error in this field for MBs containing information is very high. In consequence, signal-

izing the presence of the skip mode makes special sense to improve the error detection

capabilities.

The field coded block pattern (also know as “cbp”) determines which submac-

roblocks contain coded coefficients and the type of these [12]. The coded block pattern

is encoded using a variable length Exp-Golomb entropy coding, where shorter code-

words are assigned to the most frequently values. The most common values are

assigned one bit with value 1.

4.1. INTRODUCTION AND THEORETICAL APPROACH 43

(a) Correct MB skip without errors (trace enc.txt)

(b) Correct MB skip without errors (trace dec.txt)

Figure 4.1: Example of a correct mb skip run of two macroblocks (MB = 71 and
72) at the P frame 2 (Pic: 2).

The illustration of this behavior is shown in Figure 4.1 and in Figure 4.2 for the

case of the mb skip run. Figure 4.1 shows the desired behavior for the traces of

both encoder and decoder1 for frame 2, where macroblocks 71 and 72 are skipped.

The format at encoder and decoder differs a bit: at the encoder side, no information

is written for the two skipped MBs, and this is signalized in the following MB with

data (MB: 73); at the decoder side the skip is signalized at the first MB that is

actually skipped (MB:71).

Figure 4.2 shows the case in presence of errors. At the encoder trace, a short-

ened version of the MBs 87, 88, and 89 are shown. These MBs are non-skipped

MBs containing Luma and other information corresponding to the MB. Observing

the decoder side, due to errors in the transmission, the mb skip run value at the

macroblock 87 indicates that 10 MBs need to be skipped, and so does the decoder.

Inserting redundancy inside the video content results useless in these cases, for this

reason, and taking the described effects into consideration, a specific Checksum to

protect the mb skip run and coded block pattern is presented.

1At the encoder, the number of frame appears as POC: 4. This actually refers to frame 2
(the same as the encoder), and just responds to a different format of the trace dec.txt.

44 CHAPTER 4. CHECKSUM

(a) Sequence of MBs containing valid information at the encoder
(trace enc.txt)

(b) Wrong skip of 10 MBs at the decoder due to errors in the trans-
mission (trace dec.txt)

Figure 4.2: Example of wrong interpretation of mb skip run at the decoder due
to errors

4.1.3 Checksum encoding

Considering the particularities of H.264/AVC, a specific Checksum for this codec is

defined. A Checksum code is generated for each macroblock for all frames. A variable

4.1. INTRODUCTION AND THEORETICAL APPROACH 45

length encoding is used, as described in Table 4.1.

In the encoding, the first bit (Bit1) determines wheter the MBs is skipped or

Table 4.1: Checksum encoding

Bit1 Bit2 coded block pattern Otherwise

0 0 Nr. of 1’s = odd mb type nr. of 1’s = odd
0 1 Nr. of 1’s = even mb type nr. of 1’s = even
1 Macroblock skipped

not. In the case it is not skipped, a field of the MB is protected; the value of Bit2
indicates the parity of the field to protect. At MBs where the coded block pattern

value is not present, the mb type is protected instead. The encoding of the parity of

mb type introduces a random component, because depending on the video content

this value is protected in more or less MBs. This provides a more robust protection

than just signalizing the presence of the coded block pattern because it restricts

the possibilities of missing detections. It is important to remark that the usage of

two bits for the signalization of non-skipped macroblocks is necessary. Otherwise the

parity of the field could not be computed, and moreover, the distinction between

skipped and non-skipped macroblocks would not be possible.

4.1.4 Channel and network considerations

Once defined the encoding procedure for the Checksum values, the placement of

these values needs to be considered. It is important to notice that it makes no sense

to include the Checksum values on the H.264/AVC stream because, on the one hand

it would imply to break the standard, and on the other hand the Checksum infor-

mation would suffer the effect of the errors. Considering the second statement, and

the fact that the Checksum coding has been designed using a variable length code,

transmitting the redundancy over a prone error channel could result in a decrease in

the final performance, because the effect of errors and desynchronization would also

be present in the Checksum information.

Taking the previous into consideration, the need to use an error-free channel

arises. A simple approximation to this is encapsulating the Checksum information in

TCP packets, instead of using UDP. These packets would be synchronized with the

UDP transmission of the H.264/AVC, and as TCP allows retransmission, possible

losses of Checksum information could be recovered. To have an error-free channel,

theoretically infinite retransmission should be allowed, and this is not the case in

TCP. Nevertheless, the use of a TCP channel is sufficient to provide a lower error

probability for the presented implentation. Moreover, depending on the protocol used

to send the information, the following issues need to be considered:

46 CHAPTER 4. CHECKSUM

• Overhead: there is an explicit overhead due to the Checksum information

itself. Even though, an extra overhead due to the transmission protocol in

packetizing needs to be considered. The amount of overhead depends on both

the protocols used to encapsulate the information and on the periodicity with

which the information is sent.

• Delay: although Checksum can be generated on the fly, it is not possible to

avoid a certain buffering delay in the packet construction. Moreover, two

different delays need to be considered at the decoder side. These consist

of the waiting time for Checksum packets to arrive (and thus to be able to

decode the H.264/AVC file); and in case of errors on the Checksum packets,

the retransmission delay.

Both overhead and delay are directly related at the encoder side. In order to

reduce the delay the frequency of Checksum transmitted packets can be increased,

although this causes an increase in the overhead. The delay due to retransmissions

on the decoder side is complicated to control, nevertheless, the buffering time for

decoding can be reduced by smartly synchronizing the data path (transmission of the

H.264/AVC packets) and the control path (transmission of the Checksum packets).

In this document a simple approach just considering layering overhead is used. Even

though, a detailed analysis of the protocol configurations in order to have an equilib-

rium between overhead and delay, and a further evaluation through simulation should

be performed in order to define the optimal format packet and periodicity. This last

part is left for further investigation.

TCPIP Checksum payload

32 bytes

20 bytes 1450 bytes

Figure 4.3: Checksum packet format. Encapsulation over IP and TCP.

The chosen implementation considers the data to be directly encapsulated in TCP

over IP packets, by dividing the total number of Checksum bits by the MTU and thus

obtaining the number of packets. The packet format is shown in Figure 4.3. In this

case, the MTU (Maximum Transfer Unit) is that of an Ethernet network, thus 1500

bytes, although a final value of 1450 bytes of payload is adopted. Typical headers

values, of 20 bytes for IP and 32 bytes for TCP are considered. This values are used

on Subsection 4.3.2 for the rate calculation in the distortion over rate simulations.

This implementation is too optimistic in terms of overhead, thus the maximum TCP

4.2. IMPLEMENTATION AND PERFORMANCE 47

payload size is used; but results pessimistic in terms of delay at the decoder, because

the Checksum information of several frames is grouped together.

4.2 Implementation and performance

In the presented implementation, the Checksum values are generated from a trace

file of an already encoded video. Considering this, no modifications need to be done

at the encoder side. Nevertheless, an implementation ”on the fly” is totally feasible;

this, together with a detailed analysis of the introduced delay, is left for further in-

vestigation.

New MB

skip MB?

YES

write codeword à 1

cbp?
NO

YES

NO
Encode

mb_type

Nr. 1's

==

even?

write codeword à 01

write codeword à 00

YES

NO

Figure 4.4: Process for the Checksum file generation, values generation from trace
file

The generation of the Checksum values is achieved by processing the trace file

with a simple MATLAB R©program, that outputs a text file with the result. The block

diagram describing the generation process is shown in Figure 4.4. The information

for each macroblock is read, if the MB is skipped, the codeword “1” is written.

When the MB is not skipped, the parity of the coded block pattern is coded; if

the coded block pattern field is not present in the MB, the same procedure is

performed for the mb type field.

The process for the decoding is shown in Figure 4.5. While decoding the H.264/AVC

file, the decoder reads the textfile with the Checksum values. For each MB one Check-

sum bit is read, in case it is “1”, the decoder checks if the MB is said to be skipped

on the H.264/AVC file, if they differ, an error is detected. When the first read value

is a “0”, a second bit is read. In this case, if the coded block pattern is present,

the parity is checked; if the coded block pattern is not present, then the parity

48 CHAPTER 4. CHECKSUM

Read MB

read 1 CH bit

1?

read 1 CH bit

MB

skip?

YES
NO

YES NO

Error

detected

01?
cbp && Nr.

1's even?

YES

00?
cbp && Nr.

1's odd?

NO

YES

mb_type nr.

1's even?

YES

mb_type nr.

1's even?

YES

NO
NO

NOYES

NO

NO

YES

Figure 4.5: Process for Checksum decoding

of the mb type is checked; if some incongruence is found, an error is detected and

signalized.

4.3 Simulations and results

In this section an evaluation of the results obtained through simulation is performed.

The simulation parameters are described in Section 1.6. Due to timing issues, the

evaluation for Checksum is just performed for 30 f/s. First, an evaluation in terms

of degradation (Y-PSNR) depending on the BER and depending on time, is per-

formed. Then, results of distortion over bitrate are presented. Finally, an analysis

of the results obtained for error detection probability and for error detection delay is

performed. In all the sections, the obtained results are compared with the obtained

for Watermarking.

4.3.1 Distortion evaluation

Considering different values, and for 30 f/s, the distortion over BER for Checksum

compared with Syntax check alone is plotted in Figure 4.6. It can be observed, that

the Checksum improves the performance obtained for Syntax Check alone; the major

improvement is achieved for a BER of 10−5.

4.3. SIMULATIONS AND RESULTS 49

−3 −4 −5 −6 −7
15

20

25

30

35

40
Checksum PSNR over BER. QP26. 30fps

log
10

 (BER)

Y
−

P
S

N
R

 [d
B

]

ch
sc

Figure 4.6: Checksum distortion over BER at the decoder.

0 50 100 150 200 250 300 350 400
24

26

28

30

32

34

36

38
PSNR over time. BER=10−5. QP=26. 30fps

Frame nr.

Y
−

P
S

N
R

 [d
B

]

ch
fow p=14
few p=11
sc

Figure 4.7: Distortion over time. BER=10−5. Comparison of Syntax check, FEW
p = 11, FOW p = 14 and Checksum

A comparison, plotting distortion over time for a BER of 10−5, for Checksum,

Watermarking and Syntax check is shown in Figure 4.7. In this case, the best results

obtained for a BER= 10−5 for FEW and FOW are plotted; corresponding to FEW

with p = 11 and FOW with p = 14. In this case, the quality achieved by Checksum

overcomes the other methods; and it is followed by FOW and FEW.

50 CHAPTER 4. CHECKSUM

4.3.2 Distortion over bitrate analysis

The use of Checksum implies an increase on the amount of information sent, for this

reason it is specially interesting to perform a distortion over bitrate analysis. With

the use of Checksum an extra amount of information (Checksum values plus headers

associated to the Checksum packets) needs to be computed in order to provide real

result. The bitrate provided by the JM is computed as shown in Equation 4.1.

Bitrate =
Total number of bits× Frame rate

Number of frames
(4.1)

Considering Equation 4.1, the real bitrate can be defined as:

Real bitrate =
(H.264/AVC bits + Checksum bits + IP/TCP headers)× Frame rate

Number of frames
(4.2)

Table 4.2: Overhead size considering Checksum information

QP Bits video Bits Checksum Nr. IP packets Bits total overhead

20 8876360 77115 7 84112
26 3791528 71775 7 84112
30 2108056 67250 6 72096

In order to calculate the bitrate as stated in Equation 4.2, the number of bits of

the H.264/AVC file, Checksum file, and IP/TPC headers is computed. The values are

summarized in Table 4.2. These values are obtained considering the “foreman.yuv”

of 400 frames encoded sequence, payload of 1450 bytes for the Checksum packets

and IP/TCP packets with 52 bytes of headers each. The field “Bits total overhead”

considers the sum of the bits due to Checksum and the bits due to headers, for each

QP.

Table 4.3: Checksum rates comparison

QP Ideal rate (kb/s) Real rate (kb/s) Increase (%)

20 665.73 672.04 0.95%
26 284.36 290.67 2.21%
30 158.10 163.51 3.42%

4.3. SIMULATIONS AND RESULTS 51

The differences between the ideal and the real bitrates are summarized on Ta-

ble 4.3. The ideal rate is the one obtained directly from the encoder, thus exactly

the same that is obtained for Syntax check alone; whereas the real rate, considers

the overhead introduced by the Checksum values and their encapsulation in IP/TCP

packets.

Figure 4.8 shows the difference between the ideal and real distortion over bitrate

at the decoder, for a transmission with errors and a BER of 10−5. It is shown that

the differences are not very significative, and for this reason, the remaining distortion

over bitrate results consider the ideal case.

100 200 300 400 500 600 700
31.5

32

32.5

33

33.5

34
Checksum. Distortion over rate. BER = 10−5. 30fps.

Rate (kbit/s)

Y
−

P
S

N
R

 [d
B

]

Checksum real
Checksum ideal
Syntax check

Figure 4.8: Distortion over bitrate. Ideal and Real Checksum compared with
Syntax check

Figure 4.9 compares the distortion over bitrate for Checksum, Watermarking and

Syntax check, for values of BER = 10−3, 10−4, 10−5, 10−6. The chosen Watermark-

ing values are those that achieved the best results for FEW and FOW, depending

on the BER. For a BER of 10−3 the best results are achieved for FEW with p = 2
and Checksum, where FEW performs better for rates between 150-180kb/s and 280-

350kb/s; when the BER is 10−4 the behavior is similar, in general Checksum improves

the performance of the rest of the methods, but for the range between 280 and 350

kb/s, FEW with p = 2 achieves better results. For 10−5, Checksum achieves a great

improvement in the quality, improving in 0.67dB the results of Syntax check alone.

Finally, when the BER is equal to 10−6, Checksum outperforms the results of Wa-

termarking for bit-rates higher than 400 kb/s; for lower rates, FOW with p = 14
behaves slightly better than Syntax check alone.

52 CHAPTER 4. CHECKSUM

100 200 300 400 500 600 700
15.4

15.6

15.8

16

16.2
Distorsion over bitrate. 30fps. BER=10−3

Y
−

P
S

N
R

 [d
B

]

Rate (kbit/s)

few p=2
fow p=2
ch
sc

100 200 300 400 500 600 700
23.5

24

24.5

25

25.5
Distorsion over bitrate. 30fps. BER=10−4

Rate (kbit/s)

few p=2
fow p=14
ch
sc

100 200 300 400 500 600 700
31.5

32

32.5

33

33.5

34
Distorsion over bitrate. 30fps. BER=10−5

Y
−

P
S

N
R

 [d
B

]

Rate (kbit/s)

few p=2
fow p=14
ch
sc

100 200 300 400 500 600 700
32

34

36

38

40
Distorsion over bitrate. 30fps. BER=10−6

Rate (kbit/s)

few p=2
fow p=14
ch
sc

Figure 4.9: Distortion over bitrate. Comparison of Checksum, Watermarking
and Syntax check for different BERs

4.3.3 Error detection probability and error detection delay

The error detection probability for the Checksum method (Syntax check together with

a cheksum computation) is computed in the same way as done in the Watermarking.

Error detection probability for Checksum, is compared with the best results obtained

for FEW and FOW with 30 f/s and QP=26. This is summarized in Table 4.4.

Table 4.4: Error detection probability. Comparison of Checksum and Water-
marking (30f/s)

Error detection probabilities (QP=26)
Checksum 64.54%
FEW p = 2 65.6%
FEW p = 7 65.33%
FOW p = 2 57.96%
FOW p = 7 52.48%

The error detection probability achieved for the Checksum method is compara-

ble to the best error detection probabilities achieved with Watermarking. FEW with

p = 2 and p = 7 achieves an error detection probability of about 65.5%, whereas the

obtained error detection probability for Checksum is around the 64.5%.

4.3. SIMULATIONS AND RESULTS 53

In order to compare the error detection delay, the cumulative distribution function

(CDF) is used. In Figure 4.10 the best CDFs of Watermarking (when p = 2) are

compared with the results obtained for Checksum, and with Syntax check alone.

The simulations are performed with QP=26 and 30 f/s; and results for P frames are

shown.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Cumulative distribution function of detection delay. P frames. QP=26. 30fps

Distance from error occurrence until error detection [MB]

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

ch
few p=2
fow p=2
sc

Figure 4.10: Cumulative distribution function (CDF) of the detection delay.
Comparison of Checksum, Watermarking and Syntax check alone with 30f/s.

The obtained results show a great improvement of Checksum over the rest of the

methods. Watermarking is able to provide an 85% of error detections with detection

distance below 10 MBs, compared with the 65% of Syntax check alone. With Check-

sum, 99% of the errors detections are performed within the 10 first macroblocks.

Considering this last experiment, it is possible to state that Checksum results are

comparable to the best results obtained for Watermarking, with the difference that

Checksum does not alter the video information. Checksum is able to overcome the

rest of the methods in most of the simulations, specially in the case of error detection

delay. This points out Checksum as a good error detection method candidate to be

considered.

Chapter 5

Conclusions

The presented master thesis investigates different error detection methods for H.264/AVC

videos. All the presented methods are combined with the already proposed Syntax

check [7], e.g. “FEW” stands in this work for an implementation of a Force Even Wa-

termarking on top of Syntax check. In particular, two types of approaches are defined,

implemented and tested: Watermarking based methods and Checksum. Experiments

are performed using a Binary Symmetrical Channel (BSC) considering different bit

error rates, and results of received quality at the decoder (PSNR), distortion over

bitrate, error detection probability and error detection delay are evaluated.

Taking as a reference the Watermarking approach presented in [8], an improved

Watermarking has been implemented together with Syntax check, and tested. Apart

from the Force Even Watermarking (FEW) a Force Odd Watermarking (FOW) is pre-

sented. In contrast to existing literature analyzing watermarking as an error detection

method, this thesis considers transmission errors in all parts of the video stream, i.e.

also in information elements other than coded coefficients. Such scenario corresponds

better to typical transmission conditions for video streaming, and thus provides more

realistic performance evaluation of the proposed and tested error detection methods.

As an observed result, the BSC channel causes desynchronization at the decoder. This

effect turned out to be especially harmful for some of the H.264/AVC video fields,

concretely for the elements containing information about the skipped macroblocks

(mb skip run) and the type of coefficients (coded block pattern). Considering

this, a specific Checksum protecting these fields was defined. The presented Check-

sum method is based on a variable length coding, and it is sent out of band using

a TCP connection, which can be seen as a type of nearly error free channel. For a

given rate, comparison of the methods in terms of quality has been performed.

Analyzing the obtained results for Watermarking, it is possible to state that for

55

56 CHAPTER 5. CONCLUSIONS

high values of BER, FEW is able to recover the video stream with better quality at

the receiver than Syntax check alone, but fails to overcome the initial degradation

for low bit error rates. The opposite behavior is observed in FOW, which is able

to provide good results for low BERs. Watermarking overcomes the performance

of Syntax check alone in terms of error detection probability and delay; the highest

error detection probability and error detection delay for Watermarking are achieved

for FEW when watermarking is performed for all AC coefficients.

The obtained results for Checksum point out that the method is comparable to

the best configurations of Watermarking. Checksum is capable of overcoming the

Watermarking in terms of distortion over bitrate at the decoder. In terms of error

detection probability, Checksum is a 1% below the best results obtained for Water-

marking; whereas it really improves the error detection delay, achieving around a 15%

of improvement over the best configuration of Watermarking, and more than a 30%

compared to Syntax check alone.

Taking the previous results into consideration, both Watermarking and Check-

sum resulted capable of overcoming the performance of Syntax check alone. More

specifically, Checksum appears to be a good solution as an error detection method,

because it provides an error detection probability close to the best results achieved by

Watermarking (but without an initial video degradation) and strongly improves the

error detection delay compared to the other methods. Nevertheless, it is important

to notice that other Checksum configurations, protecting a different number or set of

elements, should be tried and compared with the proposed configuration. Moreover,

and in order to provide an optimal configuration of Checksum, a detailed study about

the introduced delay (Checksum generation, packet encapsulation and process at the

decoder) and overhead should be performed. This last point is not covered in the

presented thesis and thus is left for further investigation.

Bibliography

[1] ITU-T H.264. Series H: Audiovisual and multimedia systems, Infrastructure of audiovi-

sual services - coding of moving video. Advanced video coding for generic audiovisual

services, November 2007. URL http://www.itu.int/rec/T-REC-H.264. [cited at p. 3,

4, 42]

[2] Olivia Nemethova. Error Resilient Transmission of Video Streaming over Wireless Mo-

bile Networks. PhD thesis, Institut für Nachrichten- und Hochfrequenztechnik, 2007.

[cited at p. 3, 4, 12, 20]

[3] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøtegaard, and Ajay Luthra. ”Overview of

the H.264/AVC video coding standard”. IEEE Transactions on Circuits and Systems for

Video Technology, 13(7):560–576, July 2003. [cited at p. 3]

[4] ITU-T H.263. Series H: Audiovisual and multimedia systems, Infrastructure of audiovi-

sual services - coding of moving video. Video coding for low bit rate communications,

January 2005. [cited at p. 3]

[5] ISO/IEC-14496-2. Coding of Audio-Visual Objects, part 2: visual, 2001. [cited at p. 3]

[6] ISO/IEC. International Standard ISO/IEC 14 496-10. Information technology – Cod-

ing of audio-visual objects – part 10: Advanced Video Coding (MPEG-4 part 10),

2005. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=43058. [cited at p. 4]

[7] Luca Superiori, Olivia Nemethova, and Markus Rupp. ”Performance of a H.264/AVC

Error Detection Algorithm Based on Syntax analysis”. 4th Int. Conf. on Mobile Com-

puting and Multimedia (MoMM) Yogiakarta, Indonesia,, pages 49–58, December 2006.

[cited at p. 12, 14, 19, 20, 55]

[8] Olivia Nemethova, Gonzalo Calvar Forte, and Markus Rupp. ”Robust Error Detec-

tion for H.264/AVC Using Relation Based Fragile Watermarking”. Proc. of 13th Int.

Conf. on Systems, Signals and Image Processing, Budapest, Hungary, September 2006.

[cited at p. 12, 13, 14, 25, 55]

[9] Minghua Chen, Yun He, and R.L.Lagendijk. ”A Fragile Watermark Error Detection

Scheme for Wireless Video Communications”. IEEE Transactions on Multimedia, 7(2):

201–211, April 2005. [cited at p. 12, 19, 25]

57

58 BIBLIOGRAPHY

[10] Olivia Nemethova, Jacob Canadas, and Markus Rupp. ”Improved Detection for H.264

Encoded Video Sequences over Mobile Networks”. Proc of Int. Symp. on Communication

Theory and Applications (ISCTA), Ambleside, UK, July 2005. [cited at p. 13, 41]

[11] H.264/AVC Software Coordination, ”Joint Model Software”, ver. 13.0, availabe at

http://iphome.hhi.de/suehring/tml/. [cited at p. 14]

[12] Iain Richardson. H.264 Variable Length Coding tutorial. URL http://www.vcodex.

com/h264.html. [cited at p. 42]

List of Abbreviations

Abbreviation Description

3GPP 3rd Generation Partnership Project
AC Alternating Current
dB Decibel
BSC Binnary Symmetrical Channel
BER Bit Error Rate
CABAC Context-Adaptive Binary Arithmetic Coding
CAVLC Context-Adaptive Variable-Length Coding
cbp Coded Block Pattern
CDF Cumulative Distribution Function
CE Contextual Error
CH Checksum
CIF Common Intermediate Formate
DC Direct Current
DCT Discrete Cosine Transform
DVB-T Digital Video Broadcasting - Terrestrial
EG Exp-Golomb codeword
exp-Golomb Exponential-Golomb code
FEW Force Even Watermarking
FL Fixed Length codeword
FOW Force Odd Watermarking
GOP Group Of Pictures
HDTV High-Definition television
IC Illegal codeword
IP Internet Protocol
ISO/IEC International Organization for Standardization /

International Electrotechnical Commission
ITU International Telecommunication Union
JM Joint Model
JVT Joint Video Team
KLT Karhunen Leve Transform
MB Macroblock

59

60 LIST OF ABBREVIATIONS

Abbreviation Description

MPEG Motion Picture Expert Group
MSE Mean Square Error
MTU Maximum Transfer Unit
NAL Network Abstraction Layer
NALU Network Abstraction Layer Unit
NRI NAL Reference Identication
OR Out of Rage codeword
Prev.Conc. Concealment of macroblocks previous to the error

detection
PSNR Peak to Signal-to-Noise Ratio
QCIF Quarter Common Intermediate Format
QP Quantization Parameter
QVGA Quarter Video Graphics Array
RBW Relation Based Watermarking
RGB Red, Green, Blue
RTP Real Time Protocol
SH Slice Header
TCP Transmission Control Protocol
TE Tabled codeword
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications System
VCL Variable Coding Length
VGA Video Graphics Array
VL VLC level codeword
WM Watermarking method
xDSL Digital Subscriber Line technologies
Y-PSNR Luminance PSNR

List of Figures

1.1 H.264/AVC structure. Coexistence of Video Coding Layer (VCL) and
Network Abstraction Layer (NAL) . 5

1.2 H.264/AVC encoder structure . 5
1.3 H.264/AVC encoder compression steps 6
1.4 Zig-zag scan on a sub-macroblock and vector storage of the coefficients 9
1.5 NAL Unit packet format . 10
1.6 Stream structure with protocols and uncorruped information when

having errors within the video payload 11
1.7 Error detection methods studied. Position of application at the en-

coder / decoder system. Syntax check, Watermarking and Checksum . 14

2.1 Detection delay for I and P frames, with Syntax check. Normalized
histogram and Cumulative Density Function 21

2.2 Concealment of two macroblocks previous to the error detection oc-
currence (2MB Prev.Conc.) . 21

2.3 Received quality over BER for I frames. Comparison of Syntax check,
1MB Prev.Conc. and 2MB Prev.Conc. 22

2.4 Received quality over BER for P frames. Comparison of Syntax check,
concealment of 1MB Prev.Conc. and 2MB Prev.Conc. 23

3.1 FEW initial distortion at encoder for values of p = 2, 7, 11, 14 vs.
non-watermarked sequence . 26

3.2 FOW initial distortion at encoder for values of p = 2, 7, 11, 14 vs.
non-watermarked sequence . 27

3.3 Watermarking differences of FEW and FOW. Example using values
of p = 7 and p = 11, for the same original sub-macroblock 28

3.4 Encoder procedure for implementation of the watermarking with FEW
at the JM . 30

3.5 FEW distortion over BER at the decoder 31
3.6 FOW distortion over BER at the decoder 31

61

62 LIST OF FIGURES

3.7 Distortion over time. BER = 10−4. Comparison of Syntax check,
FEW and FOW with p = 2 . 32

3.8 Distortion over time. BER=10−6. Comparison of Syntax check, FEW
and FOW with p = 14 . 32

3.9 Encoder distortion over bitrate for different values of p and 30f/s.
Comparison for FEW, FOW and the non-watermarked sequence . . . 33

3.10 Distortion over bitrate for FOW and Non-WM videos for all BERs
and 30f/s . 34

3.11 Distortion over bitrate depending on p for BER=10−3 and 30 f/s . . . 35
3.12 Distortion over bitrate depending on p for BER=10−3 and 10 f/s . . . 35
3.13 Distortion over bitrate depending on p for BER=10−6 and 30 f/s . . . 36
3.14 Distortion over bitrate depending on p for BER=10−6 and 10 f/s . . . 36
3.15 Cumulative distribution function (CDF) of the detection delay. Com-

parison of watermarking with Syntax check alone, for all values of p.
Results for P frames, QP=26 and 30f/s 38

3.16 Cumulative distribution function (CDF) of the detection delay. Com-
parison of FEW, FOW and Syntax check alone for different p values
and 30f/s. 39

3.17 Cumulative distribution function (CDF) of the detection delay. Com-
parison of FEW, FOW and Syntax check alone for different p values
and 10f/s. 39

4.1 Example of a correct mb skip run of two macroblocks (MB = 71 and
72) at the P frame 2 (Pic: 2). 43

4.2 Example of wrong interpretation of mb skip run at the decoder due
to errors . 44

4.3 Checksum packet format. Encapsulation over IP and TCP. 46
4.4 Process for the Checksum file generation, values generation from trace

file . 47
4.5 Process for Checksum decoding . 48
4.6 Checksum distortion over BER at the decoder. 49
4.7 Distortion over time. BER=10−5. Comparison of Syntax check, FEW

p = 11, FOW p = 14 and Checksum 49
4.8 Distortion over bitrate. Ideal and Real Checksum compared with

Syntax check . 51
4.9 Distortion over bitrate. Comparison of Checksum, Watermarking and

Syntax check for different BERs . 52
4.10 Cumulative distribution function (CDF) of the detection delay. Com-

parison of Checksum, Watermarking and Syntax check alone with 30f/s. 53

List of Tables

1.1 Common picture resolutions for internet and mobile video applications 6
1.2 Common simulation parameters . 15
1.3 Bit Error Rates (BER) and number of simulations (N) 15

3.1 Error detection probabilities for FEW and FOW (QP = 26) 37

4.1 Checksum encoding . 45
4.2 Overhead size considering Checksum information 50
4.3 Checksum rates comparison . 50
4.4 Error detection probability. Comparison of Checksum and Water-

marking (30f/s) . 52

63

	Contents
	1 Introduction
	1.1 Motivation
	1.2 H.264/AVC standard
	1.2.1 Video sampling
	1.2.2 Prediction and motion compensation
	1.2.3 Transformation
	1.2.4 Quantization and Entropy coding

	1.3 Network abstraction layer (NAL)
	1.4 Video streaming over wireless networks
	1.5 Overview of previous error detection methods and new approaches
	1.5.1 Principles of Syntax check
	1.5.2 Principles of Watermarking
	1.5.3 Principles of Checksum

	1.6 Simulation, software, and performance indicators
	1.6.1 Reference software and simulation settings
	1.6.2 Performance indicators

	2 Direct concealment of previous MBs with Syntax check
	2.1 Introduction to Syntax check principles
	2.2 Implementation
	2.3 Simulations and results

	3 Watermarking
	3.1 Introduction and theoretical approach
	3.2 Implementation
	3.2.1 WM encoder
	3.2.2 WM decoder

	3.3 Simulations and results
	3.3.1 Distortion evaluation
	3.3.2 Distortion over bitrate analysis
	3.3.3 Error detection probability and error detection delay

	4 Checksum
	4.1 Introduction and theoretical approach
	4.1.1 Motivation
	4.1.2 Characteristics of mb_skip_run and coded_block_pattern
	4.1.3 Checksum encoding
	4.1.4 Channel and network considerations

	4.2 Implementation and performance
	4.3 Simulations and results
	4.3.1 Distortion evaluation
	4.3.2 Distortion over bitrate analysis
	4.3.3 Error detection probability and error detection delay

	5 Conclusions
	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables

