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Abstract—The transmission of H.264/AVC encoded sequences 
over noisy wireless channels generally adopt the error detection 
capabilities of the transport protocol to identify and discard 
corrupted slices. All the macroblocks (MBs) within each 
corrupted slice are then concealed.   
This paper presents an algorithm that does not discard the 
corrupted slices but tries to detect those MBs which provide 
major visual artefacts and then conceal only these MBs. Results 
show that the proposed solution, based on a set of image-level 
features and two Support Vector Machines (SVMs), manages to 
detect 94.6% of those artefacts. Gains in Peak Signal-to-Noise 
Ratios (PSNR) of up to 5.74 dB have been obtained when 
compared to the standard H.264/AVC decoder. 

I. INTRODUCTION 
The demand for real-time and location-independent 

multimedia services is experiencing a steady increase 
requesting larger data volumes to be transmitted within the 
limited bandwidths available. This, together with restrictions 
in transmission power, makes compression efficiency a major 
concern in wireless multimedia applications [1].   

H.264/AVC is a promising solution and is expected to 
become an essential component in emerging wireless 
applications due to its excellent compression efficiency and 
network friendly design [2]. However, like all other video 
compression standards, H.264/AVC is extremely vulnerable to 
transmission errors. This results in annoying visual artefacts 
which will propagate in both the spatial and temporal 
domains, significantly degrading the perceptual quality of the 
decoded video sequences.  

In order to alleviate the spatio-temporal propagation of 
distorted macroblocks (MBs), the checksum of the transport 
layer protocols is used to identify corrupted slices. The 
standard decoder generally applies slice level concealment 
(SLC) on the erroneous slices and conceals all the MBs 
contained within each corrupted slice.  

Macroblock level concealment (MLC) was considered in 
[3]. However, this method only manages to detect 57% of the 
corrupted MBs leaving artefacts which significantly reduce 
the quality of the recovered video sequences. The method 
proposed in [4] utilizes synchronization markers and parity 
bits to enhance the error resilience of H.264/AVC coded 
bitstreams. Yet, this is achieved at the cost of reducing the 

compression efficiency of the codec. In a different approach, 
the authors in [5] applied watermarking for the detection of 
corrupted MBs. This method however introduces additional 
complexities in both the encoder and decoder. The authors in 
[6], [7] have adopted Sequential Decoding in order to recover 
the most-likelihood bitstream. Although these solutions 
provide additional robustness to the transmitted bitstream, 
they do not discriminate between annoying and imperceptible 
artefacts, and thus resources are wasted in correcting 
unnoticeable artefacts. In [8] the authors have detected 
corrupted MBs in the pixel domain using heuristic thresholds 
but this method requires a change in threshold for each video 
sequence. In [9] and [10] a Probabilistic Neural Network 
(PNN) was adopted to detect corrupted MBs at image level for 
H.263 and H.264/AVC encoded sequences, respectively. 

In this paper we present a robust error-resilient 
mechanism which applies the checksum present in the 
transport protocol to detect corrupted slices. A set of image-
level features in conjunction with a pair of Support Vector 
Machines (SVMs) are then applied to the corrupted slices to 
identify the visually distorted MBs to be concealed. This 
provides a good compromise between the SLC and MLC 
methods with Peak Signal-to-Noise (PSNR) gains of 14.46 dB 
and 5.74 dB being observed when compared to the MLC and 
the standard decoder respectively. 

This paper is organized as follows: The proposed error 
detection algorithm is presented in section II together with the 
detail on the components that need to be added to the standard 
decoder. Section III discusses the support vector machine 
followed by simulation results highlighting the gain in both 
subjective and objective quality in section IV. The final 
conclusions are presented in Section V. 

II. PROPOSED ERROR DETECTION ALGORITHM 
The proposed error detection algorithm is incorporated 

within the modified standard H.264/AVC decoder, as shown 
in Fig. 1. The protocols adopted to deliver real-time 
multimedia content, such as RTP/UDP/IP, employ bit-level 
checksums to detect any corrupted segments [1]. The 
checksum of the User Datagram Protocol (UDP) was used in 
the proposed system to detect the corrupted slices. All the 
MBs contained within corrupted slices are flagged as being 
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potentially corrupted. The proposed algorithm is applied only 
on these flagged MBs, thus no additional delay is introduced 
in the system when the transmitted video content is 
uncorrupted. 

Each potentially corrupted MB passes through the first 
stage of the algorithm where a set of image level features are 
extracted. These features exploit the inherent redundancies 
within the MB, neighbouring MBs and with temporally 
corresponding MBs. Following this, the set of potentially 
corrupted MBs is reduced by the first SVM (SVM1) while 
detection of false positives is suppressed by the second SVM 
(SVM2). 

 
 

 
Fig. 1 Proposed Error Detection Algorithm 

A set of eight image-level features was found to provide 
enough information to the classifiers to discriminate between 
corrupted and uncorrupted MBs. These are: 

• Average Inter-sample Difference across Boundaries 
(AIDB) [9] which describes the spatial fitness of an 
MB with its neighbouring MBs. 

• The mean and standard deviation of the Internal 
AIDB of the Block (IAIDBBlock) [9] which describes 
the fitness of the internal 4x4 blocks in space with its 
neighbouring blocks. 

• The vertical and horizontal Internal AIDB (IAIDB) 
which describe the consistency across the boundaries 
of an MB. 

• The mean and standard deviation of the Average 
Internal Difference between Subsequent Blocks 
(AIDSB) [9] which describes the temporal 
consistency of each 4x4 block. 

• Texture Consistency (TC) [10] which describes the 
texture consistency between temporally 
corresponding MBs. 

These features are summarized in the following 
subsections. 

A. Average Inter-sample Difference across Boundaries 

In natural video sequences there exists sufficient 
similarity across MB boundaries. Given a set of neighbouring 
MBs X ∈ {N, S, E, W} as shown in Fig. 2a, the sum of 
Euclidean distance across each MB boundary is computed 
using: 

( ) 2

1  if X  
:

0                       otherwise  

in outp p is available
AIDB M X K

⎧ −⎪= ⎨
⎪⎩

           (1) 

 

where K is the size of the MB and || ||2 is the L2 norm 
computed in the CIELUV colour space model. The AIDB 
feature is then computed by evaluating the average AIDB(M:X) 
over the available neighbouring MBs. The larger the value of 
this feature the less the considered MB fits in space. 

B. Internal Average Inter-sample Difference across 
Boundary Blocks 

Each MB is divided in a grid of sixteen 4x4 blocks. The 
sum of Euclidean distances at each block boundary is 
computed using (1), where X ∈ {N, S, E, W} now correspond 
to the neighbouring 4x4 blocks and K = 4. The IAIDBBlock 
dissimilarity metric is then derived by averaging the 
AIDB(M:X) for each 4x4 block. The mean and standard 
features are then computed over all sixteen IAIDBBlock 
dissimilarity metrics. 
 

 
 

 
 

Fig. 2 (a) AIDB (b) IAIDBBlock and IAIDB features  

(a) 

(b) 
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This feature describes the fitness of each 4x4 block with 
its neighbouring blocks. Large values of this feature represent 
potentially corrupted regions within the considered MB while 
small values generally correspond to uncorrupted regions. 

C. Internal Average Inter sample Difference across 
Boundaries 
The IAIDB feature is computed by averaging the sum of 

Euclidean distances between internal vertical and horizontal 
boundary pixels, as shown in Fig. 2b, using: 

 

1

0 2

K
in out
i i

i
IAIDB p p

−

=

= −∑                                                              (2) 
 

where K = 16 and || ||2 is the L2 norm computed in CIELUV 
colour space model. 

D. Average  Internal Difference between Subsequent Blocks 
Generally, the pixel transition of an MB and the 

corresponding MB in the previous frame varies smoothly. 
Each MB is dissected into sixteen 4x4 blocks and the AIDSB 
dissimilarity metric for each block is computed using: 

 

12 2

1
t tAIDSB p p

K −= −                                                             (3) 
 

where pt and pt-1 represent the corresponding pixels within the 
current and previous MB respectively. The mean and standard 
deviation are computed over all 16 AIDSB metrics. Large 
values of AIDSB generally describe corrupted regions within 
MBs. 

E. Texture Consistency 
The spatial structure of the local texture of a potentially 

corrupted MB is computed using the Local Binary Pattern 
(LBP) on the luminance colour component [11]. The original 
3x3 neighbourhood (Fig. 3a) is thresholded by the centre pixel. 
The values obtained (Fig. 3b) are multiplied by the binomial 
weights (Fig. 3c) and the resulting values (Fig. 3d) are 
summed for the LBP texture unit. 

  

 
             (a)                            (b)                           (c)                           (d) 

Fig. 3 Computation of the Local Binary Pattern 

The LBP histogram for the current ht and the 
corresponding MB in the previous frame, ht-1, is then 
computed. The TC feature is derived by using the histogram 
intersection method; 

 

( )1
0

min ,
B

t t
i

TH h h −
=

= ∑                                                                  (4) 
     

where B is the number of bins. A large value of TC signifies 
textural difference between the two temporally neighbouring 
MBs and thus a possible distorted MB. 

III. SUPPORT VECTOR MACHINE (SVM) 
The SVM [12] is a classifier which implicitly maps the data to 
a high dimensional feature space via a positive semi-definite 
kernel K(x,y). The SVM was trained using a modified version 
of the Sequential Minima Optimization (SMO) [13] algorithm 
in order to derive the maximal separating hyperplane. 

The discrimination between corrupted and uncorrupted 
MBs is based on the following rule: 

 

( ) ( ),i i i
i sv

f x sign y K x z bα
∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ r r                                                (5) 

 

where α are the Lagrange multipliers, x and y are the training 
vectors and targets, z is the vector under test and b is the bias. 
The support vectors (SV) solely determine the optimal 
hyperplane and therefore their impact on the complexity of the 
system results only in a minimal increase, making the 
adaptation of the SVM algorithm applicable in real-time 
applications like the one considered in this work.  

Both SVMs adopted by the proposed system utilize the 
Gaussian Kernel given by: 
 

( )
2

2, exp
2
x y

K x y
σ

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

                                                         (6) 

 

where σ is the smoothing parameter. 
The eight features described in the previous section were 

applied to SVM1 which manages to detect 95.4% of the 
corrupted MBs. In order to suppress false detections, the 
AIDB feature is compared to a threshold T, where, after 
extensive simulations, a value of 0.25 was found to provide 
the best performance. Only those MBs which have AIDB < T 
are considered as potential false detections and thus passed to 
SVM2, while the others are concealed. The eight features are 
concatenated together with the probabilistic output of SVM1 
[14] to form the input feature vector of SVM2 which decides 
whether the inputted MB is corrupted or not. 

IV. SIMULATION RESULTS 
The proposed error detection algorithm was integrated within 
the Jointed Model (JM) software [15]. The raw video was 
encoded at QCIF resolution using 5 slices per picture with 
dispersed Flexible Macroblock Ordering (FMO). Each slice 
was encapsulated within RTP/UDP/IP packets and transmitted 
over a binary symmetric channel (BSC). The proposed 
algorithm was tested on two video sequences: Miss-America 
representing a typical conversational application with minimal 
movements and Foreman a typical application containing 
camera movements.  

The support vector machines need training before they can 
be applied to a problem. The set of vectors that was supplied 
to both SVM1 and SVM2 during the training and the 
recognition phases consisted of 1000 feature vectors each (500 
uncorrupted MBs and 500 corrupted MBs). These MBs were 
selected at random from a set of five video sequences at QCIF 
resolution: Foreman, Car-phone, Mobile, Coastguard, and 
News. Four other video sequences Miss-America, Container, 
Salesman and Akiyo were adopted for cross-validation. The 
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overall recognition rate achieved by the proposed system is 
94.6%. This recognition rate was registered when testing was 
performed on a wide range of video sequences, confirming the 
flexibility of our solution.  

Fig. 4 and 5 further summarize the performance of the 
proposed algorithm when compared to the MLC and the 
standard SLC techniques. It can be immediately noticed that 
the proposed algorithm outperforms the other two approaches, 
with gains in PSNR that go up to 14.46 dB relative to MLC 
and 5.74 dB when compared to the standard SLC.  

 

 
Fig. 4 (a) Miss-America (b) Foreman sequences at a BER of 1.00E-004 
 
The superiority of our algorithm is even more evident 

subjectively. The MLC (Fig. 6a) does not manage to detect a 
number of corrupted MBs, some of which provide major 
visual distortions that will be propagated in both the spatial 
and temporal domains. On the other hand, the SLC algorithm 
(Fig. 6b) is pessimistic, and although it manages to detect 
most of the errors at slice level, it conceals the whole slice 
even when only one MB is corrupted. This generally results in 
spatio-temporal propagation of unnecessarily concealed 
regions (e.g. the mouth of Miss-America in Fig. 6b is different 
from that in Fig. 6a because that MB was concealed even 

though it was not corrupted) which significantly reduce the 
perceptual quality of the reconstructed video sequence. The 
proposed algorithm detects only those MBs which provide 
major visual distortion at pixel level and thus ensures that only 
the severely corrupted MBs are concealed. 

 

 

 
Fig. 5 (a) Miss-America (b) Foreman sequences at a BER of 5.00E-004 
 

 

 
This paper has proposed a novel solution which enhances the 
error detection capabilities of the standard H.264/AVC video 
decoder. This new technique provides a good compromise 
between the MLC and SLC methods by actually locating 
those MBs which provide major artefacts in order to conceal 
them. In this way, uncorrupted MBs are not concealed, 
eliminating any unnecessary concealment and thus improving 
the quality of the reconstructed video. 
The proposed solution significantly outperforms the SLC 
method generally adopted by the standard H.264/AVC 
decoder where PSNR gains of up to 5.74 dB were observed.  
Furthermore, the proposed solution manages to detect most of 
the visually distorted MBs and the ones that are not detected 
generally provide minimal visual distortions. This occurs 

(a) 

(b) 

(a) 

(b) 

V. COMMENTS AND CONCLUSION 
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because the SVMs were optimized to detect the major 
artefacts. The SVMs included by the system introduce 
minimal complexity to the system since the optimal 
hyperplane is represented by a small set of support vectors. 
Moreover, the proposed algorithm is only applied when there 
are errors on the channel and its computational complexity is 
low (less than 10% at high error rates) making it practical for 
applications such as video telephony and multicast/broadcast 
systems.   
 

 
Fig. 6 Miss-America using (a) MB level concealment, (b) Slice Level 

Concealment, and (c) Proposed Error Detection method 
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