275 research outputs found

    An effective method for the determination of the locking range of an injection-locked frequency divider

    Get PDF
    The paper proposes a methodology for the determination of the locking range of an Injection-Locked Frequency Divider. The technique involves the use of the Warped Multi-time scale model and is applicable to oscillators in general. The ability to determine, in an efficient manner, the locking ranges of Injection Locked Frequency Dividers is of great importance to design engineers as ILFDs are suitable for lower-power wireless applications

    Analysis, simulation and design of nonlinear RF circuits

    Get PDF
    The PhD project consists of two parts. The first part concerns the development of Computer Aided Design (CAD) algorithms for high-frequency circuits. Novel Padébased algorithms for numerical integration of ODEs as arise in high-frequency circuits are proposed. Both single- and multi-step methods are introduced. A large part of this section of the research is concerned with the application of Filon-type integration techniques to circuits subject to modulated signals. Such methods are tested with analog and digital modulated signals and are seen to be very effective. The results confirm that these methods are more accurate than the traditional trapezoidal rule and Runge-Kutta methods. The second part of the research is concerned with the analysis, simulation and design of RF circuits with emphasis on injection-locked frequency dividers (ILFD) and digital delta-sigma modulators (DDSM). Both of these circuits are employed in fractional-N frequency synthesizers. Several simulation methods are proposed to capture the locking range of an ILFD, such as the Warped Multi-time Partial Differential Equation (WaMPDE) and the Multiple-Phase-Condition Envelope Following (MPCENV) methods. The MPCENV method is the more efficient and accurate simulation technique and it is recommended to obviate the need for expensive experiments. The Multi-stAge noise Shaping (MASH) digital delta-sigma modulator (DDSM) is simulated in MATLAB and analysed mathematically. A novel structure employing multimoduli, termed the MM-MASH, is proposed. The goal in this design work is to reduce the noise level in the useful frequency band of the modulator. The success of the novel structure in achieving this aim is confirmed with simulations

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Investigation on Locking and Pulling Modes in Analog Frequency Dividers

    Get PDF

    Nonlinear Circuits For Signal Generation And Processing In Cmos

    Full text link
    As Moore's law predicted, transistor scaling has continued unabated for more than half a century, resulting in significant improvement in speed, efficiency, and integration level. This has led to rapid growth of diverse computing and communications technologies, including the Internet and mobile telephony. Nevertheless, we still face the fundamental limit of noise from transistors and passive components. This noise limit becomes more critical at higher frequencies due to the decrease in intrinsic transistor gain as well as with voltage scaling that accompanies the transistor scaling. On the other hand, insufficient transistor gain and breakdown in silicon limits high-power signal generation at sub-millimeter frequencies that is essential in many security and medical applications, including detection of concealed weapons and bio/molecular spectroscopy for drug detection and breath analysis for disease diagnosis. To go beyond these limits, we propose a new circuit design methodology inspired by nonlinear wave propagation. This method is closely related to intriguing phenomena in other disciplines of physics such as nonlinear optics, fluid mechanics, and plasma physics. Based on this, in the first part of this study, we propose a passive 20-GHz frequency divider for the first time implemented in CMOS. This device has close to ideal noise performance with no DC power consumption, which can potentially reduce overall system power and phase noise in high-frequency synthesizers. Next, to achieve sensitivity toward the thermal noise limit, we propose a 10-GHz CMOS noise-squeezing amplifier. This amplifier enhances sensitivity of an input signal in one quadrature phase by 2.5 dB at the expense of degrading the other quadrature component. Lastly, we introduce an LC lattice to generate 2.7 V p[-] p , 6 ps pulses in CMOS using constructive nonlinear wave interaction. The proposed lattice exhibits the sharpest pulse width achieved for high-amplitude pulses (>1 V) in any CMOS processes

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201

    Low jitter phase-locked loop clock synthesis with wide locking range

    Get PDF
    The fast growing demand of wireless and high speed data communications has driven efforts to increase the levels of integration in many communications applications. Phase noise and timing jitter are important design considerations for these communications applications. The desire for highly complex levels of integration using low cost CMOS technologies works against the minimization of timing jitter and phase noise for communications systems which employ a phase-locked loop for frequency and clock synthesis with on-chip VCO. This dictates an integrated CMOS implementation of the VCO with very low phase noise performance. The ring oscillator VCOs based on differential delay cell chains have been used successfully in communications applications, but thermal noise induced phase noise have to be minimized in order not to limit their applicability to some applications which impose stringent timing jitter and phase noise requirements on the PLL clock synthesizer. Obtaining lower timing jitter and phase noise at the PLL output also requires the minimization of noise in critical circuit design blocks as well as the optimization of the loop bandwidth of the PLL. In this dissertation the fundamental performance limits of CMOS PLL clock synthesizers based on ring oscillator VCOs are investigated. The effect of flicker and thermal noise in MOS transistors on timing jitter and phase noise are explored, with particular emphasis on source coupled NMOS differential delay cells with symmetric load elements. Several new circuit architectures are employed for the charge pump circuit and phase-frequency detector (PFD) to minimize the timing jitter due to the finite dead zone in the PFD and the current mismatch in the charge pump circuit. The selection of the optimum PLL loop bandwidth is critical in determining the phase noise performance at the PLL output. The optimum loop bandwidth and the phase noise performance of the PLL is determined using behavioral simulations. These results are compared with transistor level simulated results and experimental results for the PLL clock synthesizer fabricated in a 0.35 ”m CMOS technology with good agreement. To demonstrate the proposed concept, a fully integrated CMOS PLL clock synthesizer utilizing integer-N frequency multiplier technique to synthesize several clock signals in the range of 20-400 MHz with low phase noise was designed. Implemented in a standard 0.35-”m N-well CMOS process technology, the PLL achieves a period jitter of 6.5-ps (rms) and 38-ps (peak-to-peak) at 216 MHz with a phase noise of -120 dBc/Hz at frequency offsets above 10 KHz. The specific research contributions of this work include (1) proposing, designing, and implementing a new charge pump circuit architecture that matches current levels and therefore minimizes one source of phase noise due to fluctuations in the control voltage of the VCO, (2) an improved phase-frequency detector architecture which has improved characteristics in lock condition, (3) an improved ring oscillator VCO with excellent thermal noise induced phase noise characteristics, (4) the application of selfbiased techniques together with fixed bias to CMOS low phase noise PLL clock synthesizer for digital video communications ,and (5) an analytical model that describes the phase noise performance of the proposed VCO and PLL clock synthesizer

    A study of phase noise and jitter in submicron CMOS phase-locked loop circuits

    Get PDF
    Phase-locked loops (PLLs) are widely used in communication systems. With the continuously expanding of market for high speed, portable communication devices, low noise CMOS submicron integrated circuit designs of PLL for different applications are in large demand. In this dissertation, phase noise and jitter properties of PLL and its building blocks are investigated both at the physical and system levels. At the physical level, hot carrier effect in submicron MOSFETs has been considered. As one of the most dominant noise sources of PLL, the voltage-controlled oscillator (VCO) is considered when investigating the noise degradation induced by the hot carrier effect. Experimental results of jitter degradation due to hot carrier effects are presented for different ring oscillator types VCOs designed in 0.5 micron n-well CMOS technology. An increase in RMS jitter by 25% and 10% decrease in oscillation frequency of VCO can be observed after 4 hours hot carrier stress. The hot carrier induced noise degradation on PLL is also presented based on the performance degradation in VCO. Simulation results show 40% decrease in VCO gain after 4 hours stress and a 23% decrease in damping factor and loop bandwidth. Moreover, degradation on PLL noise performance includes a left shift peak in phase noise and a 17% increase in RMS jitter. At the system level, noise sources in a PLL system are investigated including the input reference noise, VCO noise and the frequency divider noise. Phase noise prediction method for PLL is developed. Experimental phase noise measurement results on 0.5 micron CMOS PLL systems based on different types of VCOs are in close agreement with the predicted phase noise. Therefore, the phase noise prediction method is verified. On the other hand, a 3 GHz adaptive bandwidth PLL based on LC-VCO is designed in 0.25 micron n-well CMOS technology to investigate the phase noise and jitter performance by varying the loop parameters. By considering the noise simulation results based on the adaptive bandwidth feature and the quality factor of the on-chip inductor, PLL loop parameters can be carefully chosen at the design phase to achieve an optimal noise performance

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor
    • 

    corecore