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Abstract-The paper proposes a methodology for the 
determination of the locking range of an Injection-Locked 
Frequency Divider.  The technique involves the use of the 
Warped Multi-time scale model and is applicable to 
oscillators in general.  The ability to determine, in an 
efficient manner, the locking ranges of Injection Locked 
Frequency Dividers is of great importance to design 
engineers as ILFDs are suitable for lower-power wireless 
applications. 

 
I. INTRODUCTION 

 
In many branches of science, the phenomenon of 

injection locking is of importance.  This phenomenon occurs 
when the natural frequency of an oscillator changes to become 
identical to an external perturbating frequency.  In wireless 
communications, the phenomenon has been exploited for very 
beneficial purposes in applications such as frequency synthesis.  
In the feedback loop of a frequency synthesiser, a frequency 
pre-scaler is employed to divide the frequency by a fixed 
number.  Injection Locked Frequency Dividers (ILFD) 
consume less power than static dividers [1] and hence are 
preferable for low-power wireless applications.  Unfortunately, 
the bandwidth over which locking occurs for ILFDs is limited.  
However, they are usually employed in LC-VCO-based Phase 
Locked Loops (PLL) which have a limited tuning range.  
Consequently, the restriction on the bandwidth of the ILFDs is 
not an impediment to their usefulness.  However, the ability to 
determine it to an adequate level of accuracy is an important 
requirement for the electronic design industry [1-2]. 
  The present contribution proposes a novel simulation 
technique for the determination of the locking range of an 
Injection-Locked Frequency Divider (ILFD) or any general 
oscillator circuit.  The approach involves two options.  The first 
involves determining an estimate of the locking based on 
experimental knowledge of ILFDs. The second provides a 
more accurate prediction if a high degree of accuracy is 
required. 

The simulations involved in determining the locking 
range employ the warped multi-time scale model which is a 
variant of the standard multi-time scale model [3].  However, 
unlike the standard multi-time scale model, it is capable of 
handling variations in the input and local frequency of the 
oscillator circuit [3].  For the determination of the locking 

range, three time scales are considered in the warped multi-
time scale model.  The first time scale is for the oscillator 
autonomous solution.  The second time-scale is for the input 
signal to which the oscillator circuit synchronises when locking 
occurs.  The third time scale is for the transient evolution of the 
system.  The use of the warped multi-time scale model enables 
identification of the natural frequency of the ILFD which may 
then be compared with the input frequency. 

Section 2 will briefly describe the ILFD and give 
experimental results for the locking range.  Section 3 will 
describe the warped multi-time scale model.  Section 4 will 
present the method for the determination of an estimation of 
the locking range.  Section 5 will then detail the accurate 
method for the determination of the locking range.  Finally, 
results and a brief conclusion will be given.  

 
II. INJECTION-LOCKED FREQUENCY DIVIDER 

 
 The ILFD under consideration is the popular 

topology shown in Fig. 1.  A simplified circuit model is shown 
in Fig. 2.  Equation (1) gives the governing equations for the 
circuit in Fig. 2: 
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When a signal is injected into the circuit in Fig. 1, the 
parameter a varies and this is modelled by expanding a about 

 as follows: GSV
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When the expansion in (3) is inserted into (1), the result is: 
     (3) 
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Fig. 1 Circuit schematic of ILFD 
 

 

 
Fig. 2 Simplified circuit model 
 
 
III. WARPED MULTI-TIME SCALE MODEL 
 
Transient simulation of oscillators using standard 

numerical integration techniques requires a very long 
simulation time and thus, the Warped Multi-time scale model 
(WaMPDE) was proposed in [3] in order to speed up the 
computation process.  In this method, the system of ordinary 
differential equations (ODEs) governing the oscillator 
behaviour is converted to a system of partial differential 
equations with different time axes to account for the fast and 
slow time scales involved in the response of the oscillator to an 
excitation.  Furthermore, the WaMPDE explicitly involves the 
natural/autonomous frequency of the oscillator and this enables 
subsequent determination of the locking range of the oscillator. 

Consider the following general ODE system: 
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Eqn. 1 is an example of this type of system.  The p+1 
dimensional WaMPDE corresponding to eqn. 5 is: 
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pττ L1 correspond to the warped time scales and is the 

time-scale of the original system in (5).  and  are 
multivariate functions of the p+1 time variables.  The 
relationship between (5) and (6) stems from the fact that: 
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Thus, if a solution to eqn. 6 is found, a solution to eqn. 5 is 
automatically found. 

For the determination of the locking range of the 
ILFD, three time-scales are considered.  The autonomous 
solution is considered in the 1τ time scale.  The input signal is 
considered in the 2τ  time scale and the third time scale 
corresponds to real-time.  Thus, for the simulations in this 
paper, the WaMPDE is: 
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0ω is the oscillator natural frequency and is the input 

frequency.  The WaMPDE may be solved with time-domain 
methods or with a mixture of time-domain and frequency-
domain methods.  For this contribution, time-domain methods 
were employed as in [4].  The derivatives with respect to the 
warped variables are calculated using the five-point centred 
difference formula in [4].  The Backward Euler Method is used 
for the transient evolution in the 

injω

3τ  time-scale.  The resultant 
nonlinear algebraic equations are solved using Newton’s 
Method [6]. 
 

IV. ESTIMATION OF THE LOCKING RANGE 
 

To determine an estimate of the locking range of the 
ILFD, some prior knowledge of the behaviour of the ILFD 
with respect to a varying input frequency is employed.  This 
can be obtained from experimentation. Repeated performance 
of such experiments is time-consuming.  However, for this 
estimation technique, all that is required is a general knowledge 
of the type of behaviour of the ILFD and consequently, an 



experimental setup is not required each time that the method is 
applied.  From the experimental results on an ILFD performed 
in [5] and as shown in Fig. 3, it is noted that the relationship 
between 0ωωinj and is approximately linear between 
locking intervals (the ILFD locks at multiples of its natural 
frequency – the nth locking range is when the ILFD locks 
with

injω

ninj =0ωω ).  During the locking intervals, the slope is 
obviously zero.  Consequently, two simulations are performed 
with at values known not to lock the ILFD and to be below 
the lower limit of the particular nth locking range.  From this, 
an estimate of the start of the nth locking range can be 
obtained.  For example, the start of the divide-by-one locking 
range is when 

injω

10 =ωωinj . Thus: 
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where m is the slope of the line connecting the two points 
determined from simulations.  10 )( ωωinj is the value of one of 

the simulations and is the corresponding input 
frequency. 

1_injω

 Similarly, an estimate for the upper limit of the 
locking range can be determined by performing two 
simulations above the upper limit in regions known not to lock 
the ILFD. 
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  For each divide-by-n locking zone, a similar 

procedure would be performed to obtain an estimate of the 
corresponding locking range. 
 

V. ACCURATE DETERMINATION OF THE LOCKING 
RANGE 

 
In [4], a procedure was detailed for the determination 

of the Locking Range of an oscillator.  The procedure is 
summarised as follows:  An input frequency known NOT to 
lock the ILFD but close to the locking range limit is injected 
into the ILFD.  Eqn. 9 is then solved until steady-state 
conditions are obtained.  At each time step, the Jacobian matrix 
employed in Newton’s method is noted.  If the column of the 
Jacobian that corresponds to the local frequency is near–zero, 
then the implication is that the system has become almost 
independent of the local frequency and only forced oscillations 
are present.  Hence, locking is deemed to have occurred. 

 
VI. RESULTS 

 
Fig. 3 shows the experimental results obtained in [5] for the 
relationship between 0ωωinj and .  With the techniques 

described in the previous sections, the locking range for 

injω

20 =ωωinj is obtained as [0.87MHz 1.03MHz].  Similarly, 

the locking range for 40 =ωωinj is [1.69MHz 1.89MHz].  
This shows the efficacy of the approach. 
 

 
Fig. 3 Experimental results 

 
VII. CONCLUSIONS 

The paper has presented a simulation strategy for the 
determination of the locking range of an ILFD.  The strategy 
involves the use of the WaMPDE.  Firstly, an estimate of the 
locking ranges may be obtained using linear extrapolation.  
Secondly, a more accurate technique for fine-tuning the 
estimate is proposed.  Results confirm the efficacy of the 
approach.   

  Computer simulation for the determination of the 
locking range is advantageous in avoiding the need for time-
consuming experiments.  It also greatly aids in design work 
involving ILFDs and their use as lower power frequency 
dividers in PLLs for wireless systems.   
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