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Analysis, Simulation and Design of Nonlinear RF
Circuits
Tao Xu

Abstract

The PhD project consists of two parts. The first part concerns the development of
Computer Aided Design (CAD) algorithms for high-frequency circuits. NovekePad
based algorithms for numerical integration of ODEs as arise in high-frequency circuits
are proposed. Both single- and multi-step methods are introduced. A large part of this
section of the research is concerned with the application of Filon-type integration tech-
niques to circuits subject to modulated signals. Such methods are tested with analog
and digital modulated signals and are seen to be very effective. The results confirm that
these methods are more accurate than the traditional trapezoidal rule and Runge-Kutta
methods.

The second part of the research is concerned with the analysis, simulation and
design of RF circuits with emphasis on injection-locked frequency dividers (ILFD)
and digital delta-sigma modulators (DDSM). Both of these circuits are employed in
fractional-N frequency synthesizers. Several simulation methods are proposed to cap-
ture the locking range of an ILFD, such as the Warped Multi-time Partial Differen-
tial Equation (WaMPDE) and the Multiple-Phase-Condition Envelope Following (MP-
CENV) methods. The MPCENV method is the more efficient and accurate simulation
technique and it is recommended to obviate the need for expensive experiments. The
Multi-stAge noise Shaping (MASH) digital delta-sigma modulator (DDSM) is simu-
lated in MATLAB and analysed mathematically. A novel structure employing multi-
moduli, termed the MM-MASH, is proposed. The goal in this design work is to reduce
the noise level in the useful frequency band of the modulator. The success of the novel
structure in achieving this aim is confirmed with simulations.
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Chapter 1

Introduction

Computer Aided Design (CAD) techniques are widely used in all branches of engi-
neering from construction engineering to mechanical and electronic engineering. Con-
struction and mechanical engineers draw both 2-Dimensional (2D) vector-based ren-
dering and 3-Dimensional (3D) solid models with the aid of CAD software such as
Auto CAD and Pro/E. Electronic engineers, on the other hand, use CAD software for
for the design, analysis and optimisation of circuits and systems and also for drawing
drafts such as Printed Circuit Boards (PCB) and circuit layouts. For electronic engi-
neering applications, CAD software tools are termed Electronic Design Automation
(EDA) tools. The earliest EDA tools were developed in Universities and are presented
as open source. “Berkeley VLSI Tools Tarball” was one of the most popular software
tools empoloyed by engineers to design VLSI in the 1940sIh the 1980s, industry
began developing EDA tools. A lot of traditional electronic companies began their
research on EDA internally, such as Hewlett Packard, Tektronix and Intel. However,
attracted by the bright future of EDA development, companies specifically for EDA
development were also founded in this period. For example, Mentor Graphics was
founded by managers from Tektronix, Daisy Systems was founded largely by design-
ers from Intel, and Valid Logic Systems was founded by developers from Lawrence

Livermore National Laboratory and Hewlett Packad§l Because of competition and



mergers over the the next 30 years, only a few EDA companies are still in existence
and these companies occupy the whole market. For example, Cadence and Mentor
Graphics share most of the market for physical IC design, Synopsys occupies the logic
synthesis area and Agilent provides good high-frequency simulation software. The
market value of the top five EDA businesses is shown in Tald¢4]. Note that the

EDA division is only part of Agilent Technologies. The market value ($11 billion)
comes from all of its products such as EDA software (ADS), electronic measurement

tools and life science applications.

Table 1.1:The market value of the top 5 EDA companies.

Company Location Market Value (March 2009
Agilent Technologies Santa Clara, California $11 billion
Synopsys Mountain View, California $2550 million
Cadence Design Systems San Jose, California $990 million
Mentor Graphics San Jose, California $410 million
Zuken Inc. Yokohama, Japan $149 million

The development and advancement of CAD tools is extremely important in to-
day’s electronic and RF industry. The complexity, diversity and level of integration of
electronic circuits has grown exponentially in recent times and CAD tools need to be
redeveloped for these new and multifarious applications. In this thesis, two areas of
CAD development shall be addressed. The first is on the numerical integration tech-
niques that are employed. The second is on the modelling approaches for fractional-N
frequency synthesisers and the components of such synthesisers. The basic numerical
integration techniques of the earliest CAD tools are totally inappropriate for the ad-
vanced modulation formats in current communication applications. Hence, the thesis
shall address the development of novel approaches that are suited to modulated signals

and highly stiff systems.



In Chapter2, the background to numerical integration methods is introduced. Both
of the advantages and disadvantages of these methods are described. Some important
concepts are also explained in detail such as stability and stiffness.

In Chapter3, novel Paé-based algorithms are proposed for the discrete-time in-
tegration of stiff non-linear differential equations. The basic single-step-Faylor
method and its form as a predictor corrector was introduce8]inHowever, in this
thesis, a new condition is introduced to ensure that the method is always A- and L-
stable. Furthermore, the use of a novel @&ponential method and Richardson ex-
trapolation are recommended for increasing efficiency and accuracy. Multi-step meth-
ods are also suggested. The efficacy of the methods is shown using two examples. The
results are compared with those from the Adam-Moulton and Runge-Kutta techniques.
The methods are suitable for application in any field of science requiring efficient and
accurate numerical solution of stiff differential equations.

An effective Filon-type numerical integration scheme is introduced in Chdpter
This novel technique is proposed for an efficient numerical solution of systems of
highly oscillatory ordinary differential equations that arise in electronic systems sub-
ject to modulated signals. Olveg][has shown that such a technique is beneficial if
the system oscillates at a very high frequency. He also demonstrated that asymptotic
expansion is helpful to bound the error to a small value. We extend his work and apply
it to a rectifier circuit. The Filon-type method and waveform relaxation techniques
are combined to solve nonlinear implicit systems of ODEs. The proposed method is
compared with the traditional methods such as the trapezoidal rule and Runge-Kutta
methods. This comparison shows that the proposed approach can be very effective
when dealing with systems of highly oscillatory differential equations.

In many branches of science, the phenomenon of injection locking is of impor-
tance. This phenomenon occurs when the natural frequency of an oscillator changes

to become identical to or an integer multiple of an external perturbing frequency. In



wireless communications, the phenomenon has been exploited for very beneficial pur-
poses in applications such as frequency synthesis. In the feedback loop of a frequency
synthesiser, a frequency pre-scaler is employed to divide the frequency by a fixed num-
ber. Injection Locked Frequency Dividers (ILFD) consume less power than static di-
viders [7] and hence are preferable for low-power wireless applications. Unfortunately,
the bandwidth over which locking occurs for ILFDs is limited. However, they are usu-
ally employed in LC-VCO-based Phase Locked Loops (PLL) which have a limited
tuning range. Consequently, the restriction on the bandwidth of the ILFDs is not an
impediment to their usefulness. However, the ability to determine it to an adequate
level of accuracy is an important requirement for the electronic design indu${i8j [

The Devil's Staircased] was introduced as agxperimentatechnique to measure the
locking range of an ILFD. Since it requires expensive equipment and takes a long time,
some analysis and simulation techniques were introduced to predict the locking range.
For example, Ye introduced a method using expressions derived by Harmonic Balance
analysis 8] to predict the locking range and Razat(] captured the locking range
from phasor diagram.

In Chapters, several simulation techniques are proposed for the determination of
the locking range of an Injection-Locked Frequency Divider (ILFD) or any general
oscillator circuit. The first approach is based on the Warped Multi-time Partial Dif-
ferential Equation (WaMPDE[]. This is a variant of the standard multi-time scale
model [L1]. For the determination of the locking range, three time scales are consid-
ered in the warped multi-time scale model. The first time scale is for the oscillator
autonomous solution. The second time-scale is for the input signal to which the oscil-
lator circuit synchronises when locking occurs. The third time scale is for the transient
evolution of the system. The use of the warped multi-time scale model enables iden-
tification of the natural frequency of the ILFD which may then be compared with the

input frequency to enable locking to be identified. The Multiple-Phase-Condition En-



velope Following (MPCENYV) technique is another technique that is proposed for the
prediction of the locking range. This method is based on the envelope following sim-
ulation. The simulation is repeated to determine the output frequencies of an ILFD
corresponding to the increasing input frequencies. The Devil's Stair6gseplot of
winj/wo againstw;,;, can be created from the obtained data. Then the locking range
may be measured from the staircase.

As with the ILFD, the digital delta-sigma modulator (DDSM) is also employed
in the feedback of an Fractiondl- Frequency SynthesizerdZd] [13]. However, it
works as the controller of a static frequency divider in order to ensure that the division
ratio is the required fractional value. In Chapgethe behaviour of the DDSMs shall
be analysed mathematically. DDSMs have unwanted quantization noise in the desired
frequency band. The goal is therefore to find a technique or a structure for DDSMs that
reduces this noise. Multi-stAge noise Shaping (MASH) digital delta-sigma modulators
(DDSM) shall be investigated with the goal being to obtain a structure that has the best
noise performance.

It has been proved that a longer sequence length could reduce the noise effect
in useful band 3]. Several methods are proposed to maximise the sequence length.
Borkowski [14] obtains the maximum sequence length for the conventional DDSMs
by setting the initial condition of registers. Hosseif] [ntroduced a new structure
to maximise the sequence length. We propose a novel architecture to further lengthen
the sequence lengti}] [16]. The multi-moduli technique is employed in this struc-
ture. Hence, it is termed the MM-MASH. Simulations shall confirm its superior noise

performance to existing structures.



Chapter 2

Background to Computer Aided
Design (CAD) Algorithms

2.1 Numerical Integration Methods

Electronic systems are modelled using ordinary differential equations (ODESs), differ-
ential algebraic equations (DAESs) or partial differential equations (PDEs). Thus the
aim of circuit simulation is to find the numerical solution to these systems of equa-

tions. To start with, consider the following ODE:

e R (0) 2.1)
wheref(t,y(t)) is a function of timet, andy is a variable such as capacitor voltage or
inductor current. Newton, Leibniz and Euler found that there may be more than one
solution that satisfie(1) [17]. Thus an initial value condition is required to make the
solution unique 19:

y(to) = yo. (2.2)

If there aren variables, the system may be expressed as

Y= [t y1y2, - Yn)s  Y1(to) = Y10

Yy = fz(t,yll,yz, e Un), ?/2(?50)': Y20 2.3)

Y = Fa(t,y1,92, s Un)s Un(to) = Yno



2.1 Numerical Integration Methods

(2.3) is usually written as

y'(t) = f(t,y®)), y(to) = yo (2.4)

wherey is a vector-valued function ands a scaler:

Y =(Y1,Y2s s Yn) " (2.5)

F=(f1for o fu)" (2.6)

Hence, the PDEs fat variables are transformed to a system of ODEs.

In order to find the numerical approximation &4), the differential equations are
solved in a step by step manner and the techniques employed are termed step-by-step
methods or difference methods. With this approach, a sequengg )adlong thet

coordinate are produced. The time sequence is defined as:

t1 =to+ h
to =to + 2h
(2.7
t, =to +nh
tni1 =to + (n + 1)h.
or alternatively, in the form:
tht1 =tn +h (2.8)

wherel is the time-step sizey € {0,1, ..., N — 1} andN is the number of steps in the
algorithm. A small time-step size results in a biggerwhich decreases the simulation
speed. Consequently, there has been extensive research into the development of meth-
ods that achieve a balance between accuracy and efficiency for numerically integrating

ODEs or PDEs. In this Chapter, for the purposes of this explanation, a fixed step size



2.1 Numerical Integration Methods

shall be assumed. Then the approximate valug®fat different time states are

Yo =y(to)
y1 =y(t1)
Yn :y(tn)
YUn+1 :y<tn+1)- (29)

wherey(t) represents all the variables iR.9), y,, refers to the value aof(¢) at timet,,,
andyy is the initial value as introduced above.

There are two types of errors introduced in the numerical calculation: round-off
error and truncation error. The round-off error results from the limit of the computer
representation of a number. For example, an infinite decimal fractiomay be ap-
proximated as 3.14. On the other hand, the truncation error is caused by the algorithm
itself. For instance, the most accurate Taylor series expansion has an infinite number
of terms, while the computer calculation has a finite number of terms.

The numerical methods to solve ODEs and PDEs can be divided into two groups,

explicit methods and implicit methods. An explicit method is of the form:

Yn+1 = f(tna Yn,s tn—l; Yn—1y -+ tn—ka yn—k> (210)

wherek € {0,1,...,n}. It uses the state of the system at the current timendy,,,
and at previous time steps to define the system state at the latey,timeThe right
hand side can be explicitly calculated. On the other hand, an implicit method involves

yn+1 IN both the left and right hand sides. It is defined as:

Yn+1 = f(tn—‘rlv Yn+1, tn7 Yny ooy tn—]f; yn—k) (211)

The advantage of implicit methods is that they permit a larger time-step size owing to

improved stability qualities. However, their evaluation is more difficult.
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Explicit methods and implicit methods can be further subdivided into single-step
and multi-step methods. Single-step methods require only one previous value of the
functionf(), i.e.,y,, to calculatey, . ;. On the contrary, multi-step methods use several
previous values such as, v,,_1 andy,,_s.

The concept of stability is an important property of the numerical approximation.
BIBO stability is what concerns us in this thesis. A bounded signal is any signal whose
absolute value never exceeds a finite positive valie, R. If the output is bounded
for all bounded inputs to the system, the system is termed BIBO stable system.

In this Chapter, the explicit and implicit numerical methods that are later used in
this thesis for comparative purposes are briefly described. Detailed derivations and

descriptions are given in numerous reference text-books¥/p[.19].

2.2 Euler Methods
2.2.1 Forward Euler Method

The Euler method is a first-order single-step explicit algorithm for numerically inte-
grating the ordinary differential equations (ODES).
Recall the ODEZ.1) introduced in Sectiog.l:

y'(t) = f(t,y(t)) (2.12)
where
y(to) = Yo
y(t) = u (2.13)
Y(tn) = Yn
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The time sequence is definedtgst; = to + h, ty = tg + 2h,...,t, = to + nh andh is
the time-step size. The differentigl(¢) is approximated as irp):

Substituting 2.14) into (2.12), it is obtained:
y(t+ ) = y(t) + hf(ty(t) (2.15)
wheret is assumed as the current timje Thus @.15 can be also expressed as
Ynt1 = Yn + 1f (tn, Yn) (2.16)

2.2.2 Backward Euler Method

The Backward Euler method is derived in a similar manner to the Forward Euler

method. Instead ofX(14), the differential is expressed by

Substitute 2.17) into (2.12), it yields
y(t) = y(t —h) + hf(t,y(t)). (2.18)
It may also be expressed in the form:
Yn = Yn—1 + hf(t, yn). (2.19)

In order to compare it with the Forward Euler method, the Backward Euler method is

usually expressed as:
Yn+1 = Yn + hf(tn-l—la yn+1>' (220)

Itis an implicit method and therefore, it is more stable than the Forward Euler method.

10



2.3 Trapezoidal Method

2.3 Trapezoidal Method

Sometimes the Trapezoidal method is also called the Trapezoidal Rule. The solution

of the ODE @.12) is obtained by approximating the area under the curve using a trape-

zoid.
tni1
Yok = Yo + / £t y)dt. (2.21)
t’IL
where
Yn = y(tn) (2.22)
Yn+1 ::y(tn+1>' (2'23)

[
Lt

t

Tf(t, y)dt

t

n

>t
t tn+1

n

Figure 2.1: The integral fron,, to ¢, ;.

As seen in Fig2.1, the area of the trapezoid is obtained by:

tn+1

/ Syt = (s — )

f(tn-I-l) + f(tn)
2

= —(f(tnsr) + f(tn)) (2.24)

NS

11



2.4 Runge-Kutta Method

whereh = t,,.1 —t, is the time-step size. Hence, the approximation(of is obtained

as:

() + 100, (2.25

Again, the Trapezoidal Rule is an implicit method.

Ynt1 = Yn +

2.4 Runge-Kutta Method

The Runge-Kutta method was developed around 1900 by the German mathematicians
C. Runge and M.W. KuttaZ0]. The basic idea of the Runge-Kutta method is that if
the slopes at several points betwegrandt, ., are found, the average value of them

is assumed as the slopetat
Ynt1 = Yn + h - (average_slope). (2.26)

Mathematically, 2.26) is expressed as:

Ynt1l = Yn + hz bik; (2.27)

=1
wherek; represent the slopes at the points in the interval betwgemdy,,.... They

are defined as:

ko =f(tn + coh, yn + axhk:) (2.29)
ks =f(tn + csh, yn + azihky + azahks) (2.30)
ks =f(tn + csh,yn + asihky + asphky + - - + ag s_1hks_y) (2.31)

There are a lot of choices for the number of stagaad the coefficients;;, b, andc,,
wherel < j <i<s,p€{l,2,..,s} andq € {2,3,...,s}. To obtain specific values

for the parameterg,, ., is expanded in powers @fsuch that it agrees with the Taylor

12



2.4 Runge-Kutta Method

series expansion of the solution of the differential equation to a specified number of
terms.
The Forward Euler method is the simplest one-stage Runge-Kutta with the corre-

sponding coefficients:

s = (2.32)
by =1. (2.33)

Then the statg,, ., is obtained as:
Ynt1 = Yn + Ik (2.34)

The classical fourth-order Runge-Kutta method (RK4) is the most popular one. It

is:
h
where
kv =f(tn, yn) (2.36)
h h
h h
ks =f (tn + 57 Yn + §k2) (2.38)

k1 is the slope at the beginning of the interval;

ko is the slope at the midpoint of the interval. The sldpas used to determine the
value ofy at the point,, + % using Euler's method;

ks is again the slope at the midpoint, but now the slépes used to determine the
y-value;

k4 is the slope at the end of the interval, with jtssalue determined using;. Then,
the average slope is determined as:

_k1—|—2k’2+2]€3—|—k‘4

- (2.40)

slope

13



2.5 Adams’ Methods

Thus,y, ., is determined from the previous statg the time-stegh and an estimated

slope.

2.5 Adams’ Methods
2.5.1 Adams-Bashforth Method

The Adams-Bashforth metho@1] is an explicit multi-step method. The major advan-
tage of the Adams-Bashforth method over the Runge-Kutta methods is that only one
unknown function needs to be evaluated for each step. All the other functions such as
f(tx—1,yr_1) andy,_; have been obtained from the previous time-step.

The solution to 2.12 may be written as

tn+1

y(tn+1> = y(tn) + / f(t,y)dt. (2.41)

tn
The functionf is replaced by a Lagrange interpolation polynom2][at £ points

tn7 tnfb ) tn7k+1:

fpoly(t) :fn + (t - tn)f[tny tn—l]

+ (t —tn)(t — tno1) fltn, tn1,tno] + -

+ (t - tn)(t - tn—l) e (t - tn—k—i—?)f[tna tn—la ) tn—k-i—l} (242)
where
1
f[tnu tnflu s tn7k+1] = —(f[tTH tnfly s} tn,k+2] - f[tnfh e tn7k+1]>~
t— tn—k—l—l
(2.43)

As an example, the derivation of the 2nd-order Adams-Bashforth method, .,

2, is shown as below. First, the second-order Lagrangian polynomial is obtained

(1) = =3 (¢ =) (ta,y(te ) + 10— )yt (249)

14



2.6 Stiff Systems and Stability Definitions

Substituting 2.44) into (2.41) and integrating yields
tit1

1 1
y(tivr) = y(t:) + _E(tQ/z —tit) f(tio1, y(tio1)) + ﬁ(t2/2 —tiat) f(ti, y(te))
t;
(2.45)
Then the final expression for the 2nd-order Adams-Bashforth method is obtained by

inserting the limits.
h
Yir1 = Yi + 5[3f(ti7 i) — 1f(tic1, yi-1)]. (2.46)

2.5.2 Adams-Moulton method

The Adams-Moulton method is an implicit multi-step method, which follows from the
Adams-Bashforth method. The key difference between them is that with the Adams-
Moulton method, the functiolfi(¢, y) is replaced by the polynomial at the 1) points

tnit, tny s tnki1. Then the polynomial function is

fpoly(t) :fn—H + (t - tn-i-l)f[tn-i-la tn]
+ (t - tn-‘rl)(t - tn)f[tn+17 ln, tn—l] +e
+ (t - tn+1>(t - tn) T (t - tn—k-I—Q)f{tn-i-la Lay ey tn—k+1} (247)

where

1
f[tn+17tn7 .-.,tn—k+1] - —<f[tn+l7tn7 ceny tn—k+2] - f[tn7 "‘Jtn—k+1])'

bny1l — tn—ky1
(2.48)
The value off(t,+1, y»+1) may be predicted using the Adams-Bashforth method be-
fore the evaluation 0fA.47). This combined procedure is termed a predictor-corrector

method.

2.6 Stiff Systems and Stability Definitions

A system of differential equations is said to be stiff when it is the interval of absolute

stability rather than a requirement to keep the truncation error small that constrains the

15
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step-size. It generally arises when components of the solution of the differential equa-
tion system undergo changes of a similar magnitude over very different time intervals.
Consequently, any ODE solver in an RF simulation package must be able to handle
stiff systems in order to avoid the numerically instability and inefficiency.
In order to analyse the stability qualities of a numerical method, the methods are
applied to the test equation:
y =Xy (2.49)

where)\ is a constant. The solution is

Ynt1 = O(A)yn (2.50)

whereg is a function of\. The numerical method is said to be A-stable, if the solution
is stable for all\ < 0, i.e., the solution satisfie®?) for YA < 0 [23]. A numerical

method is L-stable if it satisfies the two conditions given belad]:[
1. Itis A-stable.

2. 1t satisfiesklim ¢ =0.

2.7 Conclusions

Since a small time-step size results in expensive and time-consuming computations,
many CAD techniques have been developed to achieve a balance between stability
and efficiency. The majority of circuit simulators such as SPIZH (ise implicit nu-
merical integration techniques with adaptive time stepping. These methods have the
advantages of good stability and accuracy control properties, but a solution to a set of
non-linear algebraic equations is required at each time-step and this can be computa-
tionally expensive. An alternate approach is to employ predictor-corrector methods.
The traditional predictor-corrector methods such as the Adams Moulton method em-

ploy polynomial extrapolation to provide an estimate of the solution at the next time

16



2.7 Conclusions

step. The estimate is subsequently corrected using one or several iterations of an im-
plicit formula. However, for stiff problems, the maximum allowable time-step that can
be used with the traditional predictor-corrector techniques may be unacceptably small.
Thus, novel numerical methods utilising the Bagproximation will be introduced in
Chapte3. With these methods, a larger time-step gizepermitted without deceasing

the accuracy.

17



Chapter 3

Pade-Based Algorithms for Numerical
Integration of Ordinary Differential
Equations (ODE)

As mentioned in the previous chapter, there is an on-going need for improved numer-
ical integration algorithms for solving stiff differential systems. To this end, several
novel ODE solvers are proposed in this Chapter. In particular, severattresd al-
gorithms p] [26] [27] are proposed.

Recall the ODE system:

dy
- = Tty() (3.1)
where
Yo = y(to)- (3.2)

In order to solve 3.1), a sequence of Padipproximations tg;(t) are provided:
Z ajhj
j=0

== , m<n (3.3)
S bkt
k=0

yi(t)

whereb, = 1 andy;(¢) is theith element of the(t) vector. The order of this system is

defined asn + n.

18



3.1 Single-Step Pad-Based Algorithms

The Paé approximation3.3) can be represented in the form of an+ nth order
polynomial:

yi(t) = co + crh 4+ cah® + -+ 4 copppnh™ ™. (3.4)

Equating 8.3) and @.4),

m .
m4n ‘ (ljhj
Cihi = ]:0
b,
=0

i=0 >

k

(3.5)

hk

wherei € {0,1,....m+n}, 7 € {0,1,...,m} andk € {0,1,...,n}. The coefficients
a; andb,, are obtained by equating the coefficients:af (3.5). Once the coefficients
a; andb, are obtained, the value fgr at the next time step is obtained fro®J).

The Paé-based algorithm is advanced in time by using the solution at/tesehe
initial condition for the next time-step. The use of Bddnctions of the form 0f3.3)
with m < n results in and-stable and_.-stable method as shown in the Appendix
The central element of the Padlgorithms is the determination of This shall be

discussed in what follows.

3.1 Single-Step Pad-Based Algorithms
3.1.1 Pad-Taylor Method

To determine the coefficientg, consider a Taylor series fg(¢). If (3.1) has an unique

solutiony(t), thepth order Taylor series af(t) aboutt,, is

) =p(t) + (£ = )5 () + 10 = (1) 4o+ (0= 150 (1) (3

wheret is in the required intervdD, T'|. By assuming that = ¢,,,; andh = t,,,1 — t,,,

(3.6) is then in the form of

2 P
VIE) = y(tn) B () + 0 (8) 4o+ ) 37)

19



3.1 Single-Step Pad-Based Algorithms

Substituting 8.1) into (3.7) yields

h? h? .
Yot = Yo+ 1f (bns ) + 5pF (b ) + oo 22O (tasn) - (38)

By comparing 8.8) and @.4), the coefficients; are obtained as

Co =Yn
&1 :f(trw yn)
/
¢y =1 {2 Yn) (3.9)
2!
O, yn)
Cmdn ="

p!

Substituting 8.9) into (3.5), the coefficients:;; andb,, are found.

3.1.2 Pac-Exponential Method

In this method, the solution oB(1) is formed as the composition of a Fadpproxi-

mation and an exponential function as below:

Z aihi
Yilther) = =2 + dye®" (3.10)

n

S b
=0

whereby = 1, h = tx.1 — tx, m < nandd, < 0. The rationale for this choice is
that the exponential term extracts the fast-varying part of the solution and that a lower-
order Paé expression suffices for the slow-varying part of the solution. The method
is A-stable and gives an exact solution for the test functiol, A > 0, if m < n and

dy < 0. Lety;(tx+1) be approximated as the sum of a polynomial and an exponential
function

Yi(tkr1) = Pu(tir) + die™". (3.11)

20



3.1 Single-Step Pad-Based Algorithms

where

Pi(tps1) = co + cth 4+ cah® + -+ 4 ¢ b, (3.12)

Substituting 8.12) into (3.11) yields

Yi(ter1) = PE(tg41)
=co+ crh 4+ coh® + -+ + cpht 4 dye®". (3.13)
To determine the coefficients, a systen’of 3 algebraic equations is formed from
y(t) and its derivativeg ") (¢), which is shown as below
yilt) = PE(t)
fi(t) = PE/(t)
fit) = PE"(t) (3.14)

FEN @) = pEE(1),

2

From @3.14), the L + 3 unknowns in 8.13 are obtained, i.eq, ¢1, ..., c;, anddy, ds.
From these, the coefficients andb; in (3.10 can be found from3.5).
As an example, the first-order Raftxponential method is described here, i.e.,

m=0,n=1andL =m+n = 1. Then 3.10 and @.13 become

Q

yi(tk+1) = 1 —|—(;)1h + d1€d2h (315)
Yi(tri1) = co + cih + dye®". (3.16)

Thus by solving the equation

ap
T o =co+cih (3.17)
it is obtained

ag = Co (318)
by = —Z—;. (3.19)
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3.1 Single-Step Pad-Based Algorithms

Now (3.14) is in the form

fl(ter) = didse™” (3.20)
f (o) = dydye™"
Hence, the solution 0f3(18), (3.19 and 3.20 ath =0 is
S (1)
dy = = 3.21
S0 (3.2)
!/
(T
dy = fz (dk;rl) (3.22)
2
ap = Yi(trt1) — da (3.23)

_Jiltgs1) — dady
Yi(ter1) — da

Finally, the the value foy;. is obtained by substitutin@(21)—(3.24) into (3.15.

by = (3.24)

3.1.3 Pac-Richardson Method

In the Paé-Richardson method, one of the methods introduced above, i.e., the Pad
Taylor method or the P&dExponential method, is combined with Richardson extrap-
olation [28]. With this method, the accuracy is improved without having to evaluate
higher-order derivatives of in equation 8.1).

Let the initial approximation of the solution 08.(1) be given byy(t;1).
Yea(tet1) = Y(tis1) + O(h). (3.25)
If the errorO(h) is approximated by a polynomial of ordér
O(h) = ch* + O(h**) (3.26)

(3.25 becomes
Yeu(th1) = y(terr) + ch® + O(R"). (3.27)
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3.1 Single-Step Pad-Based Algorithms

By evaluating 8.27) with two different time-stepsi and /2, the approximation of

y(tr41) is expressed by two equations:

Yo (1) =yn(tri1) + ch® + O(h*T) (3.28)

Yew (trt1) =yny2(tes1) + ¢ (g) ’ + O(hF ). (3.29)
Multiplying (3.29 by 2% gives

25ea(tir1) = 25yna(ti) + ch® + O(REH). (3.30)

Subtracting 8.28 from (3.30 , it is obtained

(2% = Dyeur (trr1) = 2"ynjo(terr) — yn(tes)- (3.31)
Hence,
2L t — ypn(t
eoltir) = 22002, ’“;Ll)_ 1‘%( k1), (3.32)

Suppose that the two approximationg(t,+1) andyy (tx+1) are obtained with
a Pa@ method of order., the Paé approximation for the solution at,, can be

improved by forming:

2Ly, /2<tk2+Ll>__1 Yn(tei1) . (3.33)

Up(tes1) =
The improved estimate in equatioB.83 combines twal th-order expansions and is
thus computationally more expensive than a sidgle-order expansion. For example,
consider a first-order Padnethod. If Richardson extrapolation is employed with two
first-order methods, then the total computational effort is equivalent to a second-order
expansion around a single point. (This is shown in the AppeBdigr the specific
case of the exponential function). However, the results in the next section show that
the Richardson’s Extrapolation in conjunction with Bashsed methods gives better
results than a basic second-order expansion for the same time step. The conclusion is

that a much larger time step may be employed to achieve a specific accuracy tolerance.
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3.1 Single-Step Pad-Based Algorithms

Thus, savings are obtained from a computational viewpoint by utilising the Richardson
extrapolation as although two function evaluations are required at each time step, there

are fewer time steps involved.

3.1.4 Pace Approximation with Predictor-Corrector

With the predictor-corrector method, the accuracy of theeRgubroximation is further
increased and it is not necessary to calculate the higher-order derivatives. The basis to
form a corrector stage for the single-step method is as follows: @ &aproximation

of order p matches the firsp + 1 coefficients (time-domain moments) of a Taylor
series expansion. It also provides additional terms. Considering the test fusiction

Its Taylor series about= 0 is:

h: B
=l (3.34)

A first-order Paé approximation foe—* aboutt = 0 is given by:

1

yapp = 1 + h (3.35)

This function matches the first two coefficients of a Taylor series expansienfoit

also produces additional terms, the first of which is:
Ty p = h% (3.36)

However, the correct third coefficient in a Taylor series expansior foas seen in
equation 8.39) is:

Tyr = (3.37)

Now, a corrector is chosen so as to mafgHor the particular test function; = e,
without requiring a higher-order derivative. So for this test case, the corrector would

be:
h? h?
0 _

X (3.38)
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3.2 Multi-Step Pade-Based Algorithms

where f(0) = —1. Bearing this in mind, the choice of corrector for a general single-

step first-order Padmethod is selected as follows:

i(ths) = ltir) + 52 (tesn). (339)

Ui(tx41) is the corrected estimate 9f(tx.1). f(tr+1) is the estimate of the first deriv-

ative ofy;(tx+1). For higher-order methods, a similar procedure is followed:
. _ 1 Fp—
Ji(tr+1) = Ui(te+1) + ahpﬂf(p Y (tps1)- (3.40)

wherel/« is the amount required to correct tle + 2)th coefficient in apth order

Pacdk approximation for~! aboutt = 0.

3.2 Multi-Step Padé-Based Algorithms
3.2.1 Explicit Multi-Step Padée Approximation

To derive a multi-step formula, recall again:

Y(te) = ylt) + / " Fy). . (3.41)

In this case, a P&dapproximation is used to interpolate the functibnthroughm +
n + 1 interpolation points starting from and finishing at,. m + n is the order of the

Pacdk approximation:

> pjt =ty
fly,t) = == . (3.42)
L4+ >0 q(t =)
j=1
The functionf(y, t) can also be approximated by &n + n)th order polynomial
as below
fly,t) =cot+ et —t;) + ot —t)* + -+ - + Cogn (t — 1) (3.43)
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3.2 Multi-Step Pade-Based Algorithms

Then the values of (y, t) at the different times are

m—+n

fr. = Z ¢i(ti —t;)’
=0

m—+n

frio = Y ¢t — i)’

J=0

(3.44)

m-+n

foo = cilte —ti)?

j=0
The coefficients:; are obtained by solving3(44). Then the coefficientp,; and ¢,

are determined by equating the Baapproximation in equatior8(42 with the series

expansion in equatior8(43:

=) et -ty (3.45)

wheret = {t;, tii1, ..., tx }.

Replacingf in equation 8.41) by the expression in equatioB.42 and performing
the integration analytically yields a multi-step formula idt,1). This is an explicit
formula fory(tx.1). For example, if a first-order Pade approximation is employed with

atime step oh = ¢, — t;, the resulting explicit formula is:

o Po d 3.46
ta) = y(t +/ . .
y( k—‘rl) y( k) " 1 + Q1(t — tkz—l) ( )

In this casem = 0 andn = 1.

2h
DPo
t =y(t dt 3.47
Y(trs1) = y( k)+/h 1+ it ( )

which results in

y(teer) = y(ty) + %aog(l + 2hq1) — log(1 + hay)). (3.48)
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3.2 Multi-Step Pade-Based Algorithms

The first-order polynomial approximation is:

f(y, t) =Cy + Cl(t - to)

=cy + c1t. (349)
Thusf at different times are
f(to) =co + cito = o (3.50)
f(tl) =Cy + Cltl =cCy+ Clh. (351)
Then the coefficients; are obtained:
co =f(to) (3.52)
AV () . f(to) (3.53)

Substituting 8.52 and @.53 into (3.45, when the order is 1, yields

Po f(t) — f(to)t.

o= )+ T (3.54)
The values op, andg; are obtained by solving3(54):
po =f(to) (3.55)
_ f(t) — f(to)
G = foh (3.56)

By substituting 8.55 and @.56 into (3.48, the Paé& approximation to3.1) is ex-

pressed as:

Y(tes1) =y(te)

(3.57)

27



3.3 Application and Validation

3.2.2 Implicit Multi-Step Padé Approximation

In a similar manner to the derivation of the Adam’s Moulton predictor-corrector method,
a corrector for the multi-step method in equatioBg{)-(3.57) may be formed by in-
terpolatingf through points including,.;. When the resultant formula fqgf(¢, y) is
inserted in equatior8(41), the outcome is an implicit formula fof(t; .1 ). The key dif-
ference from the explicit multi-step Padpproximation is that the implicit multi-step
Pack approximation uses the following equations to find

m-+n

frin = Y ¢t — ;)
=0

(3.58)

m-+n

Jo =) ciltu —t:)
§=0

m-+n

ftk+1 = Z Cj(tk?'f‘l - ti)j

7=0
In order to solve .58, f;, ., has to be predicted first. If the functighis nonlinear,
then a nonlinear solver is required to solve §@t,.,) and this step can be compu-
tationally expensive. Hence, rather than solving the nonlinear equation set directly,
the value fory(t,.1) in the right-hand side of the implicit formula is replaced with
its estimate from use of the explicit predictor formula—the explicit multi-ste & Rad
proximation. This is the standard procedure in predictor-corrector methods such as the

Adams-Moulton method.

3.3 Application and Validation
3.3.1 Classic Test System

The following well-known classic equation syste®] is chosen as the first illustra-

tive example. Its analytical solution is known, equatiodi$8 and (3.64) are an exact
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reference solution. In addition, since it constitutes a stiff system of differential equa-
tions, the accuracy and efficiency of new methods can be thoroughly investigated. The

system equations are:

Cfl—;‘ =998 + 1998v (3.59)
Z—: = — 999u — 1999v (3.60)
where
uy =1 (3.61)
vy =1. (3.62)

The exact analytical solution is given by:

u(t) =de™" — 371000 (3.63)

v(t) = — 2e7" + 37100, (3.64)

Figure 3.1 shows, superimposed on the analytical solution, the result computed
with the standard third-order Adams-Moulton predictor-corrector method for a step-
size of 0.001s. Figurg.2illustrates the simulation results from the third-order Runge-
Kutta method. Figure3.3 shows the corresponding result computed with the basic
third-order Pad single-step method of equatic® ). As evidenced by these results,
the new technique is in fact more accurate than the standard Adams-Moulton and
Runge-Kutta method of the same order. To compare methods, the root mean squared
(RMS) error is evaluated. The third-order Adams-Moulton technique yields an error of
1.53 x 107! for the given step size. The third-order Runge-Kutta method has an error
of 6.65 x 10~2 for the same step size. The basic third-orderéPsidgle-step method
yields an error oft.94 x 10~2 for the same step size.

When the combined third-order Radnd exponential function method is used, the

error is dramatically reduced 893 x 10~!2. When a first-order Pé&dand exponential
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3.3 Application and Validation

function is employed the error is45 x 10~*. Thus, the addition of the exponential

term enables a specific error tolerance to be met with a lower-ordérfadtion.

4 ———

[ R¥]
T
o ———

0 0.005 0.01 0.015 0.02
time sec

os] _

of ]

)5 \ 1
—1r \

~1.5} \ 1

0 0.005 . 0.01 0.015 0.02
time sec

|
3%}

Figure 3.1: The comparison of the simulation results from Adams Moulton (—) and
exact analysis (**).

Finally, Richardson extrapolation is applied to the basic third-ordee Rasthod.
The error now isl.4 x 103, This goal of the Richardson extrapolation method is to

eliminate the higher-order errors. When the method is applied to the third-order Pad
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4 T A & L e . e T — T S
35— Ilﬂ‘ .
3r | h
L]
o 25F ll —
a} | .
15; .
Y 0002 0004 0006 0003 001 0012 0014 0016 G018 002
time sac
05k |
of | |
> .05 | ]
At d
Y
15F \ 4
.
al i -+ 4
D 000C 0004 0006 0003 001 0012 D04 0016 0018 002
tima s=c

Figure 3.2: The comparison of the simulation results from Runge-Kutta (—) and exact

analysis (**).
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Figure 3.3: The comparison of the simulation results from abproximation (—)
and exact analysis (**).
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method, the aim is to eliminate fourth-order errors. However, the basic fourth-order
Taylor series approximation results in an erroRafl x 10~2. Thus, the Richardson
extrapolation achieves greater accuracy and consequently, would enable the use of a
significantly larger time-step for the same level of accuracy as a basic fourth-order
method. Although use of Richardson extrapolation requires an extra function evalua-
tion at each time-step, the time-step chosen can be considerably greater than that for
the basic method to achieve comparable accuracy. Thus, the total number of function
evaluations for a simulation is reduced. For example, if the time-step size is doubled
when the Richardson extrapolation is applied to the basic third-ordériathod, the
erroris1.3 x 1072,

All of the Padk-based methods result in an RMS error that is less than the Adams-
Moulton method. This means that for a fixed accuracy tolerance, a larger step size can
be employed if the new methods are used as the ODE solver.

Figure 3.4 shows the result computed with the Bashsed multi-step predictor-
corrector method of Sectia®2 Again, a step size o = 0.001 s is employed. The
RMS error when first-order Padapproximants are useddsl x 10~2. Thus, Paé-
based predictor-corrector methods are effective and efficient when compared to the

standard Adams Moulton method.
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3.3 Application and Validation

The total simulation time of different methods, which simulate the example system
(3.59 and @.60 for 0.2 s with the same time-step size= 0.001s, is illustrated in Ta-
ble 3.1 The Paé-Exponential method costs the least time, while the 3rd-Order Adam-
Moulton method is the slowest one. Note that the third-order Runge-Kutta method is

not accurate enough, though it is faster than theePeaylor method.

Table 3.1:Total simulation time of different methods

Numerical Integration Methods | Simulation Time §)
Pack-Taylor 0.017
Pack-Exponential 0.0016
Pacde-Exponential-Predictor-Corrector 0.0037
3rd-Order Adam-Moulton 0.041
3rd-Order Runge-Kutta 0.009

3.3.2 MESFET Amplifier

As a second example to further confirm the utility of the @bdsed methods, Fig-
ure3.5shows a simple single-ended MESFET amplifier. The amplifier is described by
ten non-linear differential equations which are stiff in nature. The complete details of
the amplifier circuit and the model employed in it are given in the Appefdikig-
ure3.6shows a short segment of the output voltage v(t) obtained with the fourth-order
Adams-Moulton predictor-corrector. The input is a 2 GHz cosine wave.

A time-step of~0.12ps was required to solve the given system of equations with
this technique. Figur8.6 also shows the corresponding result obtained with the new
Pack technique of Sectio.1.1and the single-step corrector of Secti®ri.4 The
new technique permits the use of a step-size ten times larger than the Adams Moulton
technique, i.e., 1.2ps, for a comparable level of accuracy. This constitutes a remarkable

saving in computing time.
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Figure 3.5: Schematics of the MESFET amplifier.

v(t)
w IS

()

1+

0 1 1 L 1
29.5 29.6 29.7 29.8 299 30
time ns

Figure 3.6: The comparison of the simulation results from Adams-Moulton (—) and
Padé method (**).
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3.4 Conclusions

Several Pag-based algorithms are proposed to improve the accuracy and efficiency
when solving the stiff systems. The Radlaylor method is the basic one which obtains

the parameters by comparison with the Taylor series. Thé-eadonential method is

used to increase the efficiency if the system has exponential components. The Richard-
son method is applied to Padnethod to avoid the computation of higher-order deriv-
atives. The predictor-corrector method is also used to further reduce the error. The
simulation results for the examples in question show thaéfaethod is better than

the Adams-Moulton technigue in terms of both accuracy and efficiency.
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Chapter 4

Filon-Type Numerical Quadrature for
Highly-Oscillatory Systems.

4.1 Background to Highly Oscillatory Quadrature

High-frequency signals abound in Radio Frequency (RF) communication systems.
This is a consequence of modulation: the imposition of a lower-frequency information
signal onto a high-frequency carrier. The goal is to enable antennae of a manageable
size to be employed for information transmission. Antennae of an impractical size
would be required if modulation was not performed. In RF communication systems,
signals in the MHz frequency range and higher are common. Furthermore, nonlineari-
ties abound in RF transmission systems owing to the presence of solid-state amplifiers,
mixers and so on30].

Most RF systems involve a linear part and a nonlinear part with the linear part due
to the presence of linear resistors, inductors and capacitors and the nonlinear part due
to amplifiers, mixers or nonlinear and controlled resistors and capacitors. A typical

equation system is of the form:

Y = Ay +g(t,y) (4.1)

Yo = y(0) (4.2)
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4.1 Background to Highly Oscillatory Quadrature

wheret > 0. The general solution o#4(1) may be written in the form:

t

y(t) = e yo + /GA(tT)g(T,y<T>>dT (4.3)
0

The recent explosion of developments in the RF and telecommunications indus-
try has put pressure on circuit designers for faster simulations, faster designs and faster
product output and the existing Computer Aided Design (CAD) tools have struggled to
keep pace. In addition, the growing complexity of the modulation formats is rendering
software tools unacceptably slow and consequently, unsatisfactory. There is there-
fore, an urgent need for a complete revamp and update of the fundamental numerical
processes within these CAD packages taking into account the modern developments
and formats.

Most numerical simulators of electric and electronic circuits, such as SRAGE [
as well as general-purpose solvers of ordinary differential equations (ODES), like those
in MATLAB, use either multi-step or Runge-Kutta methods. This is perfectly ade-
guate for a great majority of ODESs in applications, yet falls woefully short for systems
subject to modulated signals or RF oscillators. In this setting, traditional quadrature
approaches can necessitate the use of minute step-sizes with the consequent outcome
of great inefficiencies and often impractical simulation times.

Modulation is the process whereby information is transmitted at a high frequency
to enable antennae of practical dimensions to be employed. In amplitude modulation
(AM), the information signal (envelope) has a low frequency content relative to the
carrier, A,, sinw,,t. The resultant amplitude-modulated signal is therefdrél +
msinw,,t) sinw.t, wherem = A,,/A.. Another variation of amplitude modulation
is the Double-Sided Suppressed Carrigysinw,,tsinw.t. w. = 2r f. is the carrier
frequency in rad/s and. is its amplitude. In general AM, the information signal is in

the kHz range, while the carrier signal is in the MHz or GHz range.
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4.2 Filon-Type Numerical Approximation

In digital modulation, the information to be transmitted is a sequence of ones and
zeros, termed bits. The amplitude, frequency or phase of a carrier signal is varied
dependent on the bit value. For example, in Binary Phase Shift Keying (BPSK) the
modulated signal is of the fori(t) = cos(w.t)z(t), wherex(t) is +A or —Aifa ‘1’
or a ‘0’ bit is to be transmitted, respectively. In digital technologies involving more
complex formats, such as EDGE, the information/envelopes have bandwidths in the
kHz range, while the carriers are 800MHz and 1800MHz. For evaluation of a bit-
error ratio of such an RF transmission, several information envelope time periods are
required, but the step size is governed by the underlying carrier frequency which is
significantly higher than the envelope frequency.

This chapter will address the issue of simulating ODEs involving very high fre-
guencies and widely varying frequency ranges using Filon-type methods, applied in
tandem with exponential integrators. This results in increased efficiencies for systems
involving signal of widely varying frequencies. Similar techniques have been already

investigated for different models of highly oscillatory ODEs 31].

4.2 Filon-Type Numerical Approximation

The following equation
b
Flf] = / FOG( w)dt (4.4)

is assumed as a highly oscillatory integral: in particular, the oscillétascillates
rapidly when the oscillatory parameter is large, i.e.,w > 1, while f itself is
nonoscillatory. A typical example of an oscillator (&=, w) = ¢“9®) whereg is

some given smooth function. The calculation 44 for largew by classical meth-

ods (e.g. Gaussian quadrature) is prohibitively expensive, but such integrals can be

calculated with relative ease using Filon-type integrat8g [
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4.2 Filon-Type Numerical Approximation

The idea behind Filon-type methods is to replace the fungtion(4.4) by a poly-

nomial interpolation. Specifically, let
a=c <cp<---<cg=0b (4.5)

be given nodes, each has a multiplicitym, > 1. Thus, a polynomiap of degree

r=>y{_,my — 1is constructed as:
P () = f9(c) (4.6)

wherej =0,1,...,my—1andk = 1,2,...,q. The Filon-type method for the integral

(4.4 is
b

Qrlf] = / p(H)G(t, w)dt @.7)

a

It is based on the assumption that the integdadh(can be calculated explicitly for
function f.
The interpolating polynomial can be written explicitly in the form:

mk—l

Pt =" i (t) 9 (cr) (4.8)

k=1 j=0
where eachy; is the cardinal polynomial of Hermite interpolationy’)(c.) = 1,
otherwisea,(%(cl) =0foralli =0,1,....m; — 1,andl = 1,2, ...,q. Therefore 4.7)

can be written in the form

Qrlf] = b (w) f9) (cr) (4.9)
k=1 j=0
where ,
b j(w) = /am(t)G(t,w)dt. (4.10)

Then the suitable nodes and multiplicities are chosen by the Filon-type methods so as

to increase the accuracy and efficiency.
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4.3 Example

4.3 Example

Here, the diode rectifier circuit shown in Fifg.1is chosen as an example to verify the
accuracy and efficiency of the Filon-type numerical quadrature, because its model is in

the form of 4.1).

Figure 4.1: Diode rectifier circuit.

The governing equation for the circuit in Fig.1is

do(t)  o(t) v
o2 )y ke an

whereC' is the capacitor valueR is the resistor valuel, andk are constants(t) is
the input signal and the unknowit) is the voltage.
In order to modify 4.11) to be in the form of the variation constants formula3,

each side of4.11) is multiplied bye=4!, whereA = —1/RC.

et/Rod?Zl(tt) + et/RC R(é)« _ et/RC% [ek(b(t)—v(t)) _ 1} _ (4_12)

Since the left side

du(t) (t) d
t/RC t/RCO\Y) t/RC
e o +e 20 = @t (e v(t)) (4.13)
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(4.12 becomes

d RC RCIU k(b(t)—v
(o) = HOF [T 1] (4.14)
If (4.14 is integrated front,, to ¢, 1, it is obtained
tn+1
n+41 n+1 I t
et/Rcv(t)};t = —Rloet/RC‘Z Q=" / exp | == — kv(t) + kb(t) |dt. (4.15)
n n C RC
tn
Thus
etn+1/RC,Un+1 _ etn/RC'Un :RIQ [etn/(RC) _ etn+1/(RC)j|

tni1
Iy t
+ c / exp (% — ku(t) + kb(t))dt. (4.16)
t’!L
By rearranging4.16) with the time-stegh = ¢,,., — t,,, we get

tn+1

- - Iy L —1lns1
Uni1 = Une h/(RC) + RI, [6 h/(RC) _ 1} + E / exp ( o k’U(t) + kb(t))dt
tn
= v, D 4 RIG [ 1] 4 %F[g] (4.17)
where
(1) = exp (2t ) + kb(e) (4.18)
= X —_— .
g P RC
(2}
Ilgl = / g()dt. (4.19)
tn
If b(t) = £ cos¥(t), then the integral in4.17) is of the form
tnt1
T[g] = / f(t,v(t))er e Oat (4.20)
t7L
where
z = ke (4.21)
F(t0(8)) = exp {t _Rtg“ - k;v(t)} . (4.22)
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From [33],
e =To(2) + 2 ) (=1) a1 (2) sin(2m + 1)) +2)  (=1)"Iyy (2) cos 2ma)
m=0 m=1
(4.23)
e*Y = To(2) + 2 Z I, (z) cosmv (4.24)
m=1

wherel,, is themth modified Bessel function.
Consequently, the integr&lg| can be written in the form
lni1

Mg = / £t v(t))e =" Ot

tn
tn+1 tn+1

~T(2) / Flto@®)dt+23 " L(2) / (£, 0(t)) cos(md($))dt (4.25)

tn n
thereby expressing it as an infinite sum of integrals. However, the highly oscillatory
integrals on the right of4.25 are amenable to very rapid and efficient numerical cal-
culation with Filon-type methods3p].

Applying the Filon-type method4(7) to (4.29), it follows that:

tnt1 tn+1

T'rlg] = Io(2) / p(t)dt +2) " T,u(2) / p(t) cos(md(t))dt (4.26)

tn n
wherep(t) interpolates the functiorfi(t, v(t)).
As shown in B3]:

Ln(z) =1""Jn(iz) (4.27)
Jm(2) = % (4.28)

it is true that
L(2) ~ ;m (=) (4.29)
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wherez € R andm > 1. Thus the infinite series iM(26) converges very rapidly such
that

Trlg] = Io(2) / p(t)dt +2 " Ln(2) / p(t) cos(md(t))dt (4.30)

tn n

for a relatively small value oiV.
Due to the fact that the unknowr{t) features inside the integral sign—the ODE
is nonlinear. Hence, the variation of constants formdld ) is implicit. To this
end, waveform relaxation (WR) is employed to solve it. Several waveform relaxation
methods have been developed in the last few decades, see for exadhpRo[ [ 36].

The standard form of WR foi(3) is

?J[O] (t) =wo
t

yl(E) = eyo + / AT g(r,yt () dr (4.31)
0

wheres = 1,2, 3, ....

Combining the Filon-type quadrature with.81) results in the following iterative
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scheme, that is executed for each time step.

'U[O] =0
n+1 —Y0

tpy1 — ¢ t—1t,
00(8) = = —vn + "o (= o)

T tn+1
vy =vae M 4RIl 1] + / Op(t, o (t))dt
tn
- tn 1 — t t— 2fn 2
() = 2, + — 0l

T, tn+1
Uq[f—]i-l —y, e MRC 4 Rlo[e_h/RC 1]+ _0/ ekb(t)p(t,f}[s—” (t))dt
tn

C

(1) = t“*}l_ o+ _ht” ol (4.32)

Thus, the Filon nodes arg = t,, andc, = t,, 1, with unit multiplicities at both points:

the linear polynomiap agrees withf (¢, 5l (¢)) att = ¢, andt,,,. The iteration is

terminated onc%u,[f]+1 - vif;” < tol, hence we let,,; = vﬂl.

The next example to consider is the more complicated case of analogue amplitude

modulation, whereby(t) = sin(w;t)sin(wyt). The first step is to rewrité(t) in the

form
1
b(t) = §[cos(djlt) — cos(wat)] (4.33)
where
(:Jl = W1 — Wy (434)
(IJQ = w1 + wo. (435)
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This enables the integrélg] to be expressed as a product of two infinite series,

tn+1

[[g] = / f(t,v(t)) exp <%z cos it — %z cos@2t> dt

ln

+4 i f: (—1)'T,, (%z) ’ (5,2) / F(£, 0(8)) cos(midnt) cos(lDt)dt.

tn

(4.36)
Following the same procedure as before, the Filon-type method corresponding to
(4.37is

tnt1 0o tn+1

Plgl = [IO <§z>]2 / p(8)dt + 21, (%z) 3 / p(#) cos(mant)dt

tn m=1

ln

tn+1

P33 (L, (%z) I (%z) / p(#) cos(mant) cos(lant)dt. (4.37)

n

wherep(t) is the interpolating polynomial of .

4.4 Numerical Results

The proposed method will be illustrated with two input signals, one is amplitude mod-

ulated and the second is digitally modulated. The values of the parameters are specif-
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ically chosen to emphasise both the highly oscillatory nature of the responses and the

important features of the algorithm presented before.

4.4.1 Amplitude Modulation

For this caseh(t) = sinw;tsinwst, with w; = 100 rad/s andv, = 107 rad/s. There is
a difference of five orders of magnitude between the two oscillation scales. The values

aresetasiy = 14,C =1f, R = 1Q andk = 40.

1

0.98F

0.96F

0.94F

0.92F

Voltage

09}
0.88}
086} |' |' |

084

0.82 . . r
0 0.05 0.1 0.15 02

time t

Figure 4.2: The exact solution of the amplitude-modulated equation Wjth= 1,
C =1,R=1andk = 40.

Figure4.2 depicts the ‘exact’ solution of the ODE—(this was formed using a nu-
merical solution with an exceedingly small step size). It is clear that the solution is a
slow-varying wave and the extraordinarily large frequesngys not visible. Nonethe-
less, the presence of high oscillation is enough to render traditional numerical methods
inefficient. In Figs4.3-4.5we exhibit the outcome of integrating the ODE in the inter-

val [0, 0.2] with the constant step size= 2.5 x 10~* with three numerical methods.
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4.4 Numerical Results

In each case, the numerical solution is denoted by solid line while, for comparison, the
exact solution from Figd.2features as a dashed line.

The standard approach to increase accuracy is to use a higher-order method. To this
end, the trapezoidal rule is of order 2, while the Runge-Kutta method employed is of
order 3. The improvement in accuracy is tangible but neither method gives satisfactory
results.

In comparison, the Filon-type method from FHig5, using just linear interpolation,
produces a result which is visually hardly distinguishable from the exact solution.

It should be noted that the waveform relaxation converged fairly rapidly and letting

N = T7in (4.37) our simulations produced perfectly satisfactory results.

Waollage

o 0.2 0.04 0.08 0.08 0.1 0.12 0.14 0.18 0.18 02
time 1

Figure 4.3: The solution for the amplitude-modulated case with the trapezoidal rule.
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0.82 1 I 1 1 I 1 1 L 1
] 0oz 0.04 0.08 D.os 0.1 (1 b 0.14 (DR ] o.1g 02

time 1

Figure 4.4: The solution for the amplitude-modulated equation with the third-order
explicit Runge-Kutta method.
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Figure 4.5: The solution for the amplitude-modulated case using the Filon-type
method, combined with waveform relaxation.

50



4.4 Numerical Results

The values for the first example shown above are selected to emphasise various
gualities of the Filon-method. Here, an example with realistic values will be imple-
mented.l, = 107124, C = 107%f, R = 10092 andk = 1/0.0259. The input signal
is the same as the one in the first example, b@), = sinw,tsinwst, with w; = 100
rad/s andv, = 107 rad/s. As seen from Figh.6, the results from the Filon-method and

exact solution match well.

0.4f ——Exact Solution

----Filon Approximation

Figure 4.6: The solution for the amplitude-modulated case with realistic values using
the Filon-type method combined with waveform relaxation.

4.4.2 Digital Modulation

As an example of digital modulation, we have takéhn = x(¢) coswnt, wherew =
4 x 10° rad/s, whilez(t) is an alternating sequence of +1 and -1 with a bit period of
133 nst This is an example for the Binary Phase Shift Keying modulation technique.

We letl, = 1004, C = 107*f, R = 1Q andk = 1.

In a realistic modek(t) is random, rather than alternating. However, introducing stochastic com-
ponent would have made the comparison of different methods considerably more difficult.
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Figure 4.8: A very small time sub-interval of Fig.7
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The exact solution of the digitally-modulated equation with the above parameters is
displayed in Fig4.7and4.8. Fig.4.8zooms in on a small time window to show that the
solution exhibits exceedingly rapid, small-amplitude oscillations. Such oscillations are
invisible in less detailed plots but, defeat traditional ODE solvers or further decrease
the step size.

In Figs.4.9-4.11, we display the errors committed by three numerical methods, all
with a constant step size = 2.5 x 107!, applied to the digital-modulation equa-
tion: the (second-order) trapezoidal rule, the standard explicit, third-order three-stage
Runge-Kutta method and the Filon-type method with piecewise-linear approximation
and waveform relaxation. The reason for the choice of the minute step size, roughly
of the order of magnitude ad(w '), is that traditional methods require it. Even tak-
ing such a tiny step size, it is evident how the numerical solution (solid line) rapidly
departs from the exact solution, denoted by a dashed line. All accuracy is lost in even
such a short interval. In comparison, the Filon-type method produces an outcome vi-
sually indistinguishable from the exact solution. Of course, with Filon-type method,
an accurate solution would be obtained with a larger step size: in methods designed
using asymptotic principles the size of the step plays a minor role insofar as accuracy
is concerned.

This Chapter presents a preliminary study into an alternative technique for numer-
ical integration suitable for systems subjected to high-frequency signals. Numerical
examples confirm the theoretical expectations of the significant potential of Filon-type

methods.

4.5 Comparison with the Envelope Simulation

As stated in Chaptet, Advanced Design System (ADS) from Angilent Technologies

is the EDA tool which is often employed for the simulation of high frequency circuits.

53



4.5 Comparison with the Envelope Simulation
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Figure 4.9: The solution of the digital-modulated equation by the trapezoidal rule.

Tha Runge-#utta metnod
T T T

Figure 4.10: The solution of the digital-modulated equation by third-order explicit
Runge-Kutta method.
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The Flion-type metnod
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Figure 4.11: The solution of the digital-modulated equation by the Filon-type method,
combined with waveform relaxation.

Thus the diode rectifier circuit shown in Figy1is simulated with the envelope simula-
tor in ADS in order to compare it in terms of accuracy and efficiency to the Filon-type
method.

The Envelope Transient Harmonic Balance technique (ETIBH)[[38] is used in
the envelope simulator. This is a mixed-mode simulation technique which performs the
analysis in both the time- and the frequency-doma]nBriefly, the RF carrier signal
is represented in the frequency domain and the modulation envelope is represented in
the time domain.

Consider the fast oscillation signal shown as below:
u(t) =Y U(t)el> (4.38)
k

whereUy(t) and f represent the amplitudes and frequencies ofttheperiod of the
envelope andis the time scale. Note tha},(¢) must vary slowly relative tg; because

when the bandwidth of is greater th#g/2 then the sidebands of adjacent harmonics
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begin to overlap39]. If there is anf,, which satisfies;, = K fo, thenu(t) is one tone
signal, and the corresponding analysis is a single carrier ETHB envelope simulation.
Otherwiseu(t) is a multi-tone signal, and the corresponding analysis is a multi-carrier
ETHB envelope simulation. As shown in Fig.12the output of the ETHB envelope
simulation is a time-varying spectrum for time poirtst,,.... The HB analysis is
performed at each time points. Also, the spectrum is converted to time domain

waveforms in each clock cycle.

Amplitude &

Circuit e Phase
V(L)*e J2rfet T

Circuit Freq

Envelope
Ougpuc

Time

Time

Figure 4.12: A Modulated signal and its simulated time-varying spectijm [

The circuit in Sectiont.4is simulated in ADS using the same values for the capac-
itance, resistance and input signal. The schematic is shown in AppBnéirwever,
ADS is NOT able to do the simulation with the same time-step stated in Settdah
and4.4.2as used in Filon-type method. The simulation can only be done in ADS
when the time-step size is decreased to a suitable value. This means that the Filon-type
method is more efficient than the ADS ETHB envelope simulation for the selected

system.
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4.6 Conclusions

4.6 Conclusions

We have presented a preliminary study into an alternative techniques for numerical
integration of systems subject to high-frequency signals. We applied the basic theory
to a rectifier diode circuit. Two cases are considered - when the input signal to the
circuit is amplitude modulated and when it is digital modulated. Numerical results
confirm the theoretical expectations of the significant potential of Filon-type methods
in this setting. The simulation of the frequency-modulated signals will be addressed in

future research.
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Chapter 5

Simulation Techniques to Capture the
Locking Range of an Injection-Locked
Frequency Divider

5.1 Introduction to the Injection-Locked Frequency Di-
vider (ILFD)

Phase-locked loops (PLL) are widely used in wireless communication applications
such as frequency synthesis. The frequency divider (FD) is used in the feedback of a
frequency synthesizer in order to divide the frequency by a fixed number. Frequency
dividers are categorized into two groups, i.e. injection-locked (ILFD) and stic [
frequency dividers. Static dividers offer a wide-bandwidth but with a high power con-
sumption. On the contrary, ILFDs consume less power but at the expense of a narrow
locking range. One of the drawbacks to the use of injection locking as a method of fre-
quency division is that there is a limited input bandwidth (locking range) over which
frequency division occurs. Therefore, the locking range is one of the most important
concerns in designing ILFDs. Hence, an efficient and accurate method for its deter-
mination from simulation is essential. Locking occurs when the oscillator locks into
or tracks the phase and frequency of an injected signal. The output frequency is either

equal to the input frequency or a submultiple or harmonic of it. Hence, the term “fre-
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5.2 Background to the LC-Oscillator Based ILFD

quency divider”. In this work, the LC-oscillator based ILFD shall be considered so the
first section of this chapter describes it. Then several existing modelling approaches
for injection-locked oscillators are presented. The chapter proceeds to review some
techniques for determining the locking ranges of oscillators. Finally, some novel ap-

proaches and numerical results for determination of locking ranges are presented.

5.2 Background to the LC-Oscillator Based ILFD
5.2.1 Effect of Negative Resistance on LC Oscillators

The concept of negative resistance is used to understand the operation of an oscillator.

Figure5.1shows a model of a simple tank circuit.

0 Vout J\ﬂ,

~(p ng ng

J;E’
S
11

Figure 5.1: Decaying impulse responses of a tank.

Consider the tank circuit being stimulated by a current impulse. The tank responds
with decaying oscillatory behaviour because, in every cycle, some energy is lost in
the form of heat dissipated in the resist®s. Now suppose that a resistor equal to
—R, is placed in parallel with the tank, then sinBg|| — R, = oo, the tank oscillates
indefinitely, as illustrated in Figh.2

Thus, if a circuit exhibiting a negative resistance is placed in parallel with the
lossy tank, then the combination may oscillate. Such a topology is called a one-port

oscillator. In practice, a negative resistance is provided by using an active circuit, as
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5.2 Background to the LC-Oscillator Based ILFD

0 Vout J\M
—Cp %Lp gRlJ g'RP

‘LE’
S
11

Figure 5.2: Addition of negative resistance to cancel tank losses.

shown in Fig.5.3. The following quote is taken fromé4fl], which remarks on the
confusing decision of whether an oscillator is of the negative resistance type or not:
“As a final comment, it should be clear that many (if not all) oscillators may be con-
sidered as negative resistance oscillators since, from the point of view of the tank, the
active elements cancel the loss due to the fifitef the resonators. Hence, whether to
call an oscillator a “negative resistance” oscillator type is actually more a philosophical

decision than anything fundamental.”

Active
~Cp Zlp Sh Circuit

-RP

Figure 5.3: Use of an active circuit to provide negative resistance.

5.2.2 LC Oscillator with Cross-Coupled Negative Resistor

Due to their relatively good phase noise performance, ease of implementation, and
differential operation, cross-coupled inductance—capacitance (LC) oscillators play an

important role in high—frequency circuit desigd?]. This topology uses both NMOS
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V_Outl  O— b—0  V_Out2?

Figure 5.4: Cross-coupled CMOS LC Oscillator.
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and PMOS cross-coupled pairs to provide the negative resistance necessary to cancel
the losses in the tank circuit.

As shown in Fig.5.4, two cross-coupled CMOS inverters, consisting\éf to
M4, are used to generate the negative resistance needed to cancel the losses in the tank
circuit. The resonant circuit comprising &f, L andC' is connected in parallel with
the negative resistance. The differential output of the oscillator is available between
the nodes labeled, ;; andV,,;>. A current source is used to provide a bias curignt

for the transistors.

5.3 Overview of the Existing Models of Injection-Locked
Oscillators

5.3.1 Adler's Model

Adler [2] introduced the mechanism of injection-locking for a small injected signal.
Figure5.5[43] shows a simple, popular model which can describe the injection-locked

oscillator.

[ . Aot
" @ 0 ﬂ ¢ products H(jo) » V0 @ 0

Figure 5.5: Adler's model for the injection-locked oscillator.

In this model, the two inputs; andv, simply add before being operated on by
the nonlinearityf. The nonlinearity is required both for amplitude stability and to
enable frequency mixing. The linear filtéf(jw) rejects all frequencies far from the

frequency of the free-running oscillatoy,.
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5.3 Overview of the Existing Models of Injection-Locked Oscillators

The expression for the nonlinear devités derived as a polynomial series, which

flvi+v,) = Z A (0 4+ v,)™. (5.1)
m=0

By settingv, = V,, cos(w,t + ¢) andv; = V; cos(w;t), the products off (v; + v,) are

obtained as:

products = f(v; + v,)

oo 0

= Z K cos(nwit) cos(mw,t + ny). (5.2)

m=0 n=0
For some integers andn, when|mw, +nw;| = w,, the corresponding output terms in
(5.2 will exist atw,, the frequency of the free-running oscillator. The outpuf dias
a phase shift with respect to the input. For oscillation, Barkhausen'’s criterion must be
satisfied. Hence, the phase shift contributeddfyw) must adjust so that the net phase
around the loop igk~. If the input frequency is too large, then this is not possible and

locking fails. The locking range is the set of frequencies for which locking is possible.

5.3.2 Miller's Model

The injection-locked oscillator (ILO) can be modeled with a generalized Miller-type
model §4] [45], as shown in Fig5.6. The filter H(jw) is assumed to reject all fre-
guencies except,.

As seen from Fig5.6, there are two memoryless nonlinear functiofig;,) and

g(v;), in this model:

fv,) = Zam -~ (5.3)
n=0

g(v;) = Z by, - v (5.4)
n=0
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pure multiplier

nduct . i
v @ (0 — gvy) —b@ products H(jo) > 1)@y

fvo)

Figure 5.6: Miller-type model for the injection-locked oscillator

Setwv, = V, cos(w,t + ) andv; = V; cos(w;t). The output of the mixer is then

obtained by a product of Fourier series foandg.

product = f - g
= Z B, - cos(nwit)] : Z A, - cos(mwot +me) |, (5.5)
n=0 m=0

where the coefficient®, are functions of the input amplitudé only, while A,, are
functions of the output amplitudé,. We can then determine which products lievat

This model has its limitations when predicting the sub- and superharmonic injection
locking. In particular, the expression for the products is not accurate enough because

the coefficients4,,, and B,, may be functions of botk; andV/, in practice.

5.3.3 Verma's Model

Verma 6] introduced a more general model for the injection-locked frequency divider
shown in the block diagram in Fi§.7.

Here, f(v;, v,) is assumed as a memoryless nonlinear function of bpndv,,.
The linear filterH (jw) filters out all the frequencies other thapn The expression for
fis given as:

f(vi,v,) = Z A (0;) - O (5.6)
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Vin' @ win'
v, @,

1 Vs ) prodhcts I (]a))

Figure 5.7: General model for the injection-locked frequency divider.

Using a Taylor series expansion@faround aic pointV,,, f is obtained as:

[e.9]

U'L;Uo Z VVdC : [i a_;am(vi)
m=0 ?

n=

UZ”] . (5.7)

vi=Vic
It is assumed that the magnitude of the injection is weak compared to the static bias
point, i.e. v; is close toV,.. In this case, only the terms with < 2 in Eq. 6.7) are

considered.

Uu o Zam ‘/dc U + Vdc

Zam (Vae) - ] (5.8)

where

dm(vdc) =

(5.9)

—a (V5)
ayi vi=Vie

The coefficients:,,, and their derivatives can be determined either from the analytical
form of f or extracted by measuring the effect of slight perturbations on the nonlinear-
ity about the bias point,.

If both v; andwv, are sinusoidal and of the form = V. + V; cos(w;t) andv, =

V, cos(w,t + ), the full output of 6.7) can be written as:

Fonv.) :im [i "

n= m=0 Y

(Vocos(wot +¢))™| . (5.10)

v;=Vge
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5.3 Overview of the Existing Models of Injection-Locked Oscillators

The terms may be regrouped to express the bracketed quantByli®) &s a sum of

harmonics ofu,

o0 o0
Z (V; cos wl Z o
Ul? UO 77/

n= m=0 Yi

cos(mw,t + myp) (5.11)

vi=Vgec

where the coefficient,,, is a function of all of the:,,, andV,,. Assuming weak injection

and simplifying @ < 2)

o0 1 o0 5
f(vi,v,) = Z A, cos(mw,t + mep) + Z Vi Ay, cos[(mw, £+ w;)t + my)], (5.12)

where

(5.13)

Note that the first term irg( 12 represents the nonlinearity for a free-running oscillator
while the second term shows the mixer products due to the presence of the injected

signal.

5.3.4 Xu's Model

Xu’s model [7] is a specialised model for an LC-oscillator based injection-locked fre-
quency divider (LC-ILFD). This model proves that the LC-ILFD behaves like a Phase-
Locked Loop (PLL) when it is locked.

The circuit schematic of the LC-ILFD under consideration has been described
in [47], [48], and is shown in Fig5.8.

It can be simplified to the ideal circuit shown in F§9. Ny represents the non-
linear resistor comprising the components in Bd@other thank;, L andC.

When there is no injected signal, the state equations that describe this circuit are:

AV

C—C =1 — (Vo) (5.14)
d]

Ld—tL = —ILRs — V¢ (5.15)
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: —

Vi Crvr

Figure 5.8: Circuit schemattic.

f(Ve)
I
1+ L
v + Nn
R
_|_

Figure 5.9: The simplified circuit.
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5.3 Overview of the Existing Models of Injection-Locked Oscillators

where f(V¢) is the driving point characteristic of the non-linear resistor which can be
obtained by experiment and/or by Spice simulation. The schematic used in PSpice to
capture the driving point characteristics is illustrated in BFig.0 The RLC tank is
replaced by a DC source, whose value is increased from -9V to 9V during the simula-

tion.

+ | W H MbreakP
9y —— 3 ‘
<! =] MbreakP 1
] vz 7]
0 ) M1 ]

RS =1k

L ma ‘ M3 ]

=t

=

J7 | MbreakM MbreakM ‘ J7
0 J 0

LM11 R4 M0

= A M

e

| 10 !
+_l MbreakN MbreakN \_T

\VD ‘\./'CI

Figure 5.10: The schematic used in PSpice to capture the driving point characteristics.

The driving-point characteristics derived from Spice simulations and experiments

are shown in Fig5.11, together with a cubic approximation. The cubic approximation

is:
f(Vo) = aVo + bVE + eV (5.16)
where
c= -2 (5.17)
VE '

and the parameter(Vs) is a function of the bias voltage of the tail transisfa,

shown in Fig5.8. Note that the second harmonic teb¥ is so small as to be ignored.
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I
— Experimental
-+ Cubic Fit To Experiment
PSpice

f (V) (mA)

-3

I L
& —4 =2 2 1 6

Ve V)

Figure 5.11: Driving point characteristics: Solid: Experimental; Dotted: Cubic Fit
To Experiment; Dashed: PSpice.

Thus the cubic approximatio® (L6 is expressed in the form:
fVo)=aVo — V& (5.18)

This free-running oscillator can be viewed as a feedback system; its model is shown
in Fig.5.12 In this model, the RLC tank is represented by its transfer fundi¢w).
When a signal is injected into the circuit shown in Fig8, the parameteu is

modified to:
da

dVas |yug

a(Vas + vas) =~ a(Vgs) + vas, (5.19)

whereVg is the bias voltage af /.

By varyingVss,,,,» @ number of different driving point characteristics are found and
thus a number of different cubic expressions foV) [48]. Then several values fot
are extracted and plotted as shown in Eid.3 The slope around the bias pOi@%’

can be estimated analytically after fitting a quadratic talthe, —Ves,,, Characteristic.
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' RLC Tank
H(j @)

Nonlinear Device

V., <1 v 44—

2
DD

Figure 5.12: Model of the free-running oscillator.

X
-3.2

Figure 5.13: I againstVggs.
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5.3 Overview of the Existing Models of Injection-Locked Oscillators

Substituting .19 into (5.18, the governing equations for the ILFD are obtained

as:
dV, A+ daVi,
CEC I~ (A daVi) Vo + Sy (5.20)
dt Vi
drl
L—= = I} R — Vg, (5.21)
dt
whereA andda are used to represedtVs) and d“ﬁzs in (5.19, respectively.
Vas
Equation .20 may be rearranged by collecting the factdranddaV;,, to obtain:
dVe % 1%
C— =L —-A|(Vo——— | —daVi, | Vo — — | . 5.22
== (Voo g ) -aavh (vo- g 622

The difference betweel (14 and 6.22) is the additional feedback termsiaV;, (VC — VVTg)
The injection-locked system described ByA2 can be modeled as shown in Figl4
As evident from Fig5.14 the negative feedback is composed of two loops in this

case. Both paths pass through the nonlinear device but the inner loop has a gain of

vi?? (C_z)/ (0,'?1[}’.' @lmj ;r/T\m > RLC Tank vO ((_ﬁ 0)0 .‘:
- | H)
[da\ | [A\
Nonlinear Device !
_C A .
’/Free—running \\_ﬁ " VDD2 |
. 0sC !

Figure 5.14: The loop enhanced model of the ILFD.
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5.3 Overview of the Existing Models of Injection-Locked Oscillators

and the outer loop has a gaindf. The nonlinear device is governed by the expression:

U2

Voa =1 — VD;D. (5.23)

The input signaly;,, is first multiplied by the output of the outer loop to forky;.

I;,j then combines with the output of the inner loop and the output is passed through
the RLC tank. This model is specific to an LC-ILFD unlike previous modédk [The
RLC tank in the oscillator can be expressed as:

Rs + jwlL

H(jw) = .
() 1+ jwRsC + (jw)2LC

(5.24)

A N
Acosmt > ) }— » AB(cosmt)*cos(wt+9)
I\_/ ? ,

Beos(mt +9)

Figure 5.15:Analog Multiplier as a phase detector.

As seen in Fig5.15 if the two inputs of the analog multiplier até cos wt and

B cos(wt + ¢), the output can be expressed as

AB cos(wt) cos(wt + ¢) = ATB(COS(@ — cos(2wt + ¢)). (5.25)

The average value of the output is

AB cos(wt) cos(wt + ¢) = ATB cos(¢). (5.26)

Then the phase difference between the two input signals can be obtained. Thus an
analog multiplier acts as a phase detecdi.[ It can be concluded that the injection-
locked frequency divider is equivalent from a mathematical perspective to a dual-
loop phase-locked-loop (PLLY], when the injected frequency approximates the free-

running oscillator frequency.
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5.4 Existing Methods to Obtain the Locking Range of
Oscillators

5.4.1 Adler Approach

This method was described i8][ It is assumed that the free-running oscillation gives
an angular frequency,. The injected signal has the frequengywhich forces a beat
frequency:

Awy = wy — wy. (5.27)

Because of the effect of the injected signal, the output frequency changeartd the

instantaneous beat frequency is termed as:

_do
Codt
=w—w (5.29)

Aw (5.28)

where as shown in Fid.16 « is the angle between the input and output signal in the
excited system.

As seen in Fig5.16and Fig.5.17, E;, and E, are the amplitude of the input and
output signals in the excited systet, is the amplitude of the output signal of the
free-running circuit. If the amplitude of the injected signal is much smaller than that

of the free-running output signal, i.&; < F, then:

E; sin(— E
= 15%(04) = _El sin av. (5.30)
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Figure 5.16:Vector diagram of the instantaneous voltages.

vy Ry
- c—ﬂ- S Ty o
¥ E
—
E, 3

Figure 5.17:Sample oscillator circuif2].
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5.4 Existing Methods to Obtain the Locking Range of Oscillators

Figure 5.18:Phase versus frequency for a simple tuned circuit

Figure5.18shows thep versusv curve. The slope of it is

) (5.31)
dw

The angle between the free-running output signal and the resultant signal can be cal-

culated as:
o = A(w — wp). (5.32)

Now rearrange.32 and substituteq.27) and 6.29:

v =A(w — wp)
= Al(w —w1) — (wo — w1)]
= A(Aw — Awy). (5.33)

After substituting $.30 on the left side andy(28 on the right side,

E, . do
— fl sina = A <_dt — Aw0> . (5.34)
Then
dCY El 1 .
= ="F 7 sin o + Awy. (5.35)
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5.4 Existing Methods to Obtain the Locking Range of Oscillators

The quality factor) is defined as in41]:

Q=2._0 (5.36)
2 w—wy
Merging (.32 and 6.36),
2
A= —Q (5.37)
)
Substituting $.37) into (5.39), yields:
do . E1 wWo .
E = E E sin o + AWO. (538)
If the system is in steady statéy/dt must be zero. Hence,
B wo
0= 7 @ sin v + Awy (5.39)
or
sina = 2@£ : %. (5.40)
Er wo

Becausein o can only assume values betweghand—1, the right side of%.40

must be within this range.

‘QQE . Bwo <1. (5.41)
E1 Wo
So the locking range is
E1 wo
< = —. :
|Awo| < 20 (5.42)

For an RLC tank, th&) factor may be expressed as:

Q= R\/g (5.43)

Hence, in an RLC circuit, the locking range is:

E1 wWo

I
Awg| < 22 20 2 44
Bl < op g (5.44)
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5.4 Existing Methods to Obtain the Locking Range of Oscillators

5.4.2 Graphical Analysis of the Phase Characteristic

In this second method, the locking range is determined graphically, as descrittéd in [
For example, consider Fi§.19, the frequency of the free-running oscillator is defined
aswy = 1/v/L1C,. (Neglecting all of the parasitics). As illustrated in Fig19b),
when a phase shitt, is inserted into the system, the oscillator no longer oscillates at
the frequencyv,. Thus, as shown in Figh.19c), the output frequency deviates from
wq to a new valuev, so as to cancel the effect of and satisfy Barkhausen'’s criterion.

If a current sourcé,,,; is added to the drain af/;, as shown in Fig5.19d), and if the

frequency ofl,,,; is within the locking range, the output frequency of the system will

be at the injected frequenay,,;. The oscillator is then injection-locked.

< -1 ° Vout

do

° Vout

Figure 5.19:(a)Conceptual oscillator.(b) Frequency shift due to additional phase shift.
(c) Open-loop characteristics.(d)Frequency shift by injection.
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Finj

Figure 5.20:Phasor diagram.

In order to determine the locking range, the phasor diagram for the oscillator sub-
jectto an external signal is shown in Fig20Q ¢, is the angle between the free-running
output signall,,. and the resultant output signal of the injected sysfem¥ denotes
the phase difference betweép. and I;,;. The relationship between them can be

expressed as:

nj

sin ¢ = sin 6 (5.45)
T
I;,;sin 6
_ j St , (5.46)
\/ 12, + 12, + 2l sl cOS 0
The maximum value dofin ¢ is
. Iinj
S ¢07ma:p = I_ (547)
when the condition
Iin‘
cosf = —". (5.48)

osc

is achieved.
As shown in Fig5.21, the angle betweeh- and/;,; has to ber/2 so as to satisfy

the condition $.48. Hence, the maximum angle betwekp, and,,. is 7/2 + ¢.
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5.4 Existing Methods to Obtain the Locking Range of Oscillators

I inj
Figure 5.21:Phasor diagram with maximum angle betwdgpn and .

A second-order parallel tank consisting of L, C, aigd exhibits a phase shift of

m Lo W
a = — —tan (— 3 2).
2 Rp wj—w

Sincew? — w? ~ 2wy(wy —w), Lw/Rp = 1/Q, andr /2 — tan~! x = tan~!(z 1),

(5.49)

tan o ~ @(wo —w). (5.50)

Wo ]mj

20 T (5.51)

Wo — Winj =

If the maximum value ofu, — w;,,; iS set asvy,, the overall locking range is obtained
as+wy, aroundw,. Herew;, is “one-sided” locking range.

Note that the locking range depends on the amplitude of the injected signalf
I;,; increases, the phase difference betwggnand/;,; must become greater so as to

maintain the angle betwedn and/,. at ¢,.

5.4.3 Analysis with Harmonic Balance

In this section, the locking range is obtained by analysing an ILFD using Harmonic

Balance 8]. The general model of an ILFD is shown in B2 f(v;,,;, v,) represents
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Vi @ 0, )
v, @0

out
>

) prochicts 1 H(jo)

f .(Vinj ? vo

Figure 5.22: General Circuit Model for ILFD.

the nonlinear resistor whil# (jw) is the RLC tank.

The first step is to define the input and output voltages of the IL49D [

Vtmj

Vinj = T[ej(wi“jt+¢) + e_j(winjt+¢)] (5.52)
| A .
Vp = 7[€]W0utt + e_JWoutt]‘ (553)

A third-order approximation is derived for the nonlinear blgdl;,,;, v,)
Jwingwo) = (Ving ) Vo + b(Ving )3 + ¢(Ving Vg (5.54)
where the parametets b andc are the functions ofy,,,; which are shown as below:

CL(Umj) =A + davmj,
b(Uinj) =B + db’l]mj, (555)

c(Vinj) = C + dcvyy,;.

Then by substituting equationS.62), (5.53 and 6.55 into equation %.54), it is
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obtained:

fO(Uinjy 'U0> :(A + dCL’lJinJ')UO + (B + db’l]inj>?}§ + (C + dCUinj)Ug
‘/inj j(Winjt+¢ —J(Winjt+¢ ‘/0 jwoutt —Jwoutl

‘/inj

+ (B +db 5 [ej(winjt+¢) + ej(winjter))})

‘/02 JWout —2jWout
XI[€2] outt L 9 4 7% O“t}

+ (C 4 dc@ [ej(winjt+¢) + ej(winjt+¢>)])
2

V3o . . .
X ?O [esjwoutt + Sejwoutt + 36_]Woutt _|_ 6_3]Woutt:| . (5-56)

From the many terms generated 156, the terms of interest are those that fall close
to w,y as the resonatadi (jw) attenuates the components far fragy,. The bandpass

filter response can be expressed%® |

RpHy

H(jwy) = m

(5.57)
wherew; is the free-running frequency is the one-sided locking range defined as

Sw = Wout — Wo- (5.58)
Q is the quality factor of the free-runningC' tank, which is given by

_ Yol (5.59)

H, is the coefficient to make the terRy, H, represent the net resistance acrosdthe

tank. It can be found by using impedance transformation:
Hy=@Q*+1. (5.60)

The following components at,,; are generated. Fronv,:

AV,

5 [e7@ont) | g=i(wout)] (5.61)
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Frombv?:
(%ViTM(%J(wmjw) + el (i dt2iont) 4 gemi@mtte) | it Ho=2uont)) (5 62)

Fromev?:
3CV) (7ot 4 g=isouty (5.63)

Next, these components pass through the resonator back to the input, which results

2
RLH [A‘/O e]woutt + db ‘/7,1’1,] ‘/OUt (2€](wznjt+¢) + e](2woutt Winjt— d’)) +

BCV3
8

Vv, .
e]woutt] — Eejwoutt (564)

and

R.H, AV, ViiVZ 1 it (— .
1 L2Q6w0 |: 2 e_]woutt + db é o (26 J(wlnjt+¢) _l_ 6.7( 2W0utt+wmjt+¢)) _l_
+7 (55)

3
+ 361—‘/;6_j“)0l1tti| —
8

%e—jwoutt(s.es)

Where% models the frequency selective block (an RLC tank in this analysis).
w0

Thene/«t js eliminated from both sides of Ecb.64) * and one gets:

Ry H, [AV,  Vi.V2 Ving Vo 3CVau] _ Vo
1+3L(2Q6°J> g T b  dbmet ]8out e+ 801”}_? (5.66)

Since elimination of the exponential terms on both sides of £§4and Eq. 5.69
gives the same result, in the following analysis, only the teritiss are considered.

¢? is expanded and the top and bottom of the left-hand side of the equation are
multiplied by the quantity [ — j2Q%].

The resulting equations for the real and imaginary are as follows:

Real Part:
R;H, AV, SCVO3 demjVoz 2Qd0w Rz
(1 n (2Q5W) ) [ 5 + 3 + g (3008¢+sm¢( o ))] =3 (5.67)

!Note that in fundamental locking/«eutt = eiwinit
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Imaginary Part:

1+(2Q5w Wo 2 ) + 8 OS¢ +

wo
RLHO db‘/inj‘/2 .
e =0 (5.68
+(1+(m>2) SN sing =0 (560

wo

_ 3 2
( R.H, )2> < 2Q6w> y [Avo L 30V) 3V Vi

The real and imaginary equations may be solved simultaneously to obtain the output
voltageV, and the locking rangé&v. Using the equation for the imaginary part, we can

get the normalized locking range as follows:

2Qd0w dbV;,;V, sin ¢

= 5.69
Wo 4A + 3CV2 4 3dbV;,,,;V, cos ¢ ( )
Wheng¢ = 90°, the maximum normalized locking range is:
2000 dbV;,i Vs,
Qow _ J (5.70)

wo  AA+3CV2

From this equation, it can be seen clearly that the locking range can be enlarged by
increasingV;,,; andV,.
Following a similar method, the locking range for other division ratios can be cal-

culated as well. For example, if the division ratio ise2init = g2iwoutt,

5.5 Novel Use of the Warped Multitime Partial Differ-
ential Equation (WaMPDE) to Determine the Lock-
ing Range

5.5.1 The Use of the WaMPDE for Modelling the Injection-Locked
Oscillator

Consider a fairly general nonlinear circuit which is described by:

(t) = f(z(t)) + b(¢) (5.71)
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out

whereb(t) is the excitation vector;(t) are the state variables ayfids a nonlinear func-
tion. Note that §.71) follows from (2.1) except that the input signalt) is separated

The (p+1)-dimensional multivariate variables are defined as:

x(t) = &(7, 72,

ey Ty ) (5.72)
where the different time scales are assumed as the functions of real time:
™n =T (t)
72 =7a(t) (5.73)
Tp = Tp(t).
Differentiatingz with respect ta, one gets:
dr  dx dr  dz dr dz dr, dz
— =t —— - —— + —. 5.74
a dndt Cdndt T ar (®.74)
Then the warped frequencies are introduced:
dT;
= 5.75
wi = (5.75)
wherei € {1,2, ..., p}.
Hence, 5.74) is rewrited to
dx dz dz dr  dz
— =w(t)— t)—— 4 - t)— + —. 5.76
g~ g e®)gs 4wl g (7€)
Then the p + 1)-dimensional WaMPDEIJ[1] corresponding tog.77) is:
p

~
A

+ T f(@) 4+ 0(r1, ..., 7y, )

i1 87'2-

S (W)@) 03

(5.77)
wherery, ..., 7, correspond to the warped time scales arskhe real time-scale: and

b are multivariate functions of the+ 1 time variables. Once the solution &.77) is
found, 6.71) can be solved from5(78 and 6.79.
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Equation b.72 can be represented in the form:

Ji(t) :£(¢1(t>7¢2(t>7'"7¢p(t)7t) (578)

where
t

le(t) = /wi(n)dn
0
The relationship between, t and¢, () for the case witlp = 1 is shown in Fig5.23

(5.79)

LY
2T

0V

f” 'r};'+1" r

Figure 5.23: Relation between,, ¢t and ¢, (t).

In the case of the ILFD, three dimensions are required. The equation becomes:

0z or 0z

wo(t)a_ﬁ + winjﬁ_rg + E

= f(&) +b(t) (5.80)

wherer; andr, are the free-running oscillation time scale and the injected signal time
scale, respectively, whiledenotes the real time. Note that bethand, are warped
time scales to enable the slow variation of the local and injected frequenis/output
frequency of the oscillator and,,; is the injected frequency.

The five-point centered difference formulal] is used for the derivatives with
respect to the warped time variables.

0%y, @9 — 8Tp—1 + 8Tpp1 — Tpyo

~

(97'1-

o0 (5.81)
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whereh; is the time-step in the; scale and: denotes the index in the same time scale.
The Backward Euler (BE) rule is used in théime scale for the transient evolution.
One useful characteristic of the BE rule is that it introduces artificial damping if the
time step is large. This helps to attenuate undesired oscillations alongithension.
One phase condition is required here to obtain the local frequency. This is solved
by making the derivative of one of the state variables equal to zero:
0o

9% _ 82
5 =0 (5.82)

The derivative of the solution has to be continuous for the state variable on which
the phase condition is imposed. Then, the phase condition is guaranteed to be sat-
isfied. When $.8]) is substituted into5.80 and the BE rule is used, the resulting
nonlinear algebraic equations are solved in conjunction WatBZ using Newton’s
method p1] [52)].

There are two methods introduced below, which utilise the WaMPDE to determine
the locking range. One of them determines the limit of the locking range diré&dy [
However, it has a relatively long simulation time. The second metbdfi§ pro-
posed to improve this problem. It produces the Devil's staircase first, which will be

introduced in Sectiob.5.3 Then the locking range is measured from the staircase.

5.5.2 The Determination of the Limit of the Locking Range

The lower and upper limit of the locking range are determined separately. Here, the
procedure to obtain the lower limit is describé8], and the upper limit can be de-
termined with the similar method. To be specific, the work is concerned with the
accurate determination of treequisition locking range. To illustrate the important
points of the method, results relating to a forced Van der Pol oscill&8piafe shown

in Figs.5.245.27.
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The process to obtain the lower limit is started by running a transient simulation
with the following initial condition: the free-running oscillation is set alongand
no oscillations along». The frequency of the excitation is set to a value known not
to lock the oscillator. .80 along with the boundary conditions is then solved for
several time-steps alortguntil the steady-state condition is achieved. Each step along
t involves the calculation of a bi-dimensional steady-state problem with a grid with
15 points in each dimension; and .. In order to minimize the number of time
steps necessary to achieve the steady-state condition (8lotige time step size in
this dimension is exponentially increased. When the difference between two steps
alongt is small enough, the analysis is switched from a 3-D transient analysis to a
2-D steady-state analysis by making the derivatives with respecetual to zero.
Fig. 5.24shows steady state solution when the oscillator is not locked. This procedure
results in an autonomous solution alangif it exists. At each time-step, but especially
when solving for the steady-state condition, the Jacobian matrix that is employed in
Newton’s method is noted. If the column that corresponds to the local frequency is near
zero, this implies the system is becoming independent of the local frequency because
there are no more oscillations along Thus, an autonomous solution alongis no
longer possible and only the forced oscillations are present. Locking has happened.
Note that at this condition the Jacobian matrix is singular and so the Newton iterations
are stopped. Thus, the locking condition can also be observed i®.2&g.The norm
of the Jacobian column approaches zero if the oscillator is locked. The steady state
solution when the oscillator is locked is illustrated in F3R6

After the steady-state solution is obtained (assuming no locking), the input fre-
guency {;,) is progressively incremented. For each increment, a transient analysis is
performed and followed by a steady-state analysis. If the oscillator is deemed locked,
further analysis may be necessary to determine the starting point of the locking range

to a certain degree of accuracy. The bisection metbafi$ used in this work. There-
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Figure 5.24: Steady state: Non-locked oscillator.

Morm of Jacobian Column

Figure 5.25: Comparison of the norm of the Jacobian column when the oscillator is
locked (continuous line) and non-locked (dashed line).
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1.5
1].
_ 084
= _0.64
=
-15

Figure 5.26: Steady state: Locked oscillator.

fore, the frequency step by whiely,, is incremented is halved and the procedure is
re-started with the initial conditions from the last frequency point at which there was
no locking. This progressive halving of the frequency step increment is repeated until
the lower limit of the locking range is attained to a certain tolerance.

Figure5.27 shows the variation of the forcing frequency and the norm of the Ja-
cobian column as a function of the iteration number. If no locking is detected, the
frequency is increased. Each time that locking is detected, a lower frequency is tried
and the initial conditions are reset to the last known oscillatory solution. This is the

reason for the peaks observed in the norm of the Jacobian column.
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Figure 5.27: Local frequency and norm of Jacobian column (dashed line) vs. iteration
number.
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5.5.3 Determination of the Locking Range from Use of the WaMPDE
in Conjunction with the Devil's Staircase

The Devil's Staircaseq] is a method to visualize the locking range of an ILFD. Nor-
mally, the ILFD is considered as an oscillator with an injected external signal. In order
to plot a Devil's Staircase, the frequencies of the oscillator and the injected signal must
be varied relative to each other. In practice, it is easier and more accurate to adjust the
injected frequencyy;,;, automatically. The output frequency of the ILFL,, is then
the only unknown variable. The Devil' Staircas® [s obtained by plottingui,;/w,
againstu;,;, as shown in Fig5.28

The locking range can be measured from the Devil's Staircase dia@jarfrpm
the staircase diagram in Fi§.28 it is clear that there are lockings (flat regions) at
division ratios of 2 and 4, as predicted experimentally7if¢r the LC-oscillator based
ILFD.

Devil's Staircase with Vin =1V

0.5 1 1.5 2
O, (rad/s) x10

Figure 5.28: Experimentally measured Devil’s staircase diagram showing lockings at
winj/wo =2 andwinj/wo =4,
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From the experimental results on an ILFD performe®irahd as shown in Figh.28
it is noted that the relationship between;/w, andw,; is approximately linear be-
tween the locking intervalsb] (the ILFD locks at multiples of its natural frequency
- the nth locking range is described hy,,;/w, = n). During the locking intervals,
the slope is obviously zero. Consequently, two simulations are performed with two
carefully selected input frequencies. The two selectgdare known not to lock the
ILFD and to be below the lower limit of the particulath locking range. In other
words, 6.80 is solved twice to obtain the values ©f corresponding to two values
of the manually pickedv,;. From this, an estimate of the start of thtéh locking
range can be obtained. For instance, the start of the divide-by-two locking range is

whenwi,;/w, = 2. The slope of the line connecting the two points below the start is

Winj2 — Winj1

()
Wol

Wstart — Winj1

determined as:

Mpelow =

The slope can be also calculated by

(5.84)

Myelow =

wherews,,, is the lower limit of the locking interval whew;,;/w, = 2. Hence, the

lower limit of the locking range is

) (=) (5.85)

Wstart = Winj1 + m
below

The upper limit of the locking range can be obtained with a similar procedure. In
this case, the two input frequencies are selected to determine the slope between the

divide by 2 and the divide by 4 locking ranges.
2w, < Winj1 < Winj2 < 4w, (586)

wherew,, is the natural frequency of the oscillator.
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5.6 A Novel Method Utilising the Multiple-Phase-Condition
Envelope Following Method (MPCENV) to Deter-
mine the Locking Range

5.6.1 Background to the Envelope Following Method

The circuit solution is assumed to be composed of fast oscillations whose amplitude
and frequency vary much more slowly than the oscillations themselves. Let the period
of the fast oscillation b&". In the case of oscillators, this will vary slowly. L&t be

the envelope time-step over which the response of the system can be extrapolated.

0.036 —————————
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Figure 5.29: Forward-Euler-based envelope-following method.

The Forward-Euler-based envelope-following method is illustrated in %R
Firstly, an accurate transient simulation is performed frgnfor one cycle of the fast
oscillationT'. This brings one to point;. If there arg(m — 1)7" cycles between; and
Zend, the following equation is obtained:

r1 —Ts Ty, —Is
= 5.87
mT T ( )

However, the Forward-Euler-based envelope-following method suffers from stabil-
ity problems, when the period of the enveldfig, is too large. To overcome this, the

Backward Euler method is preferred. This will be described in Seé&ti6r2

93



5.6 A Novel Method Utilising the Multiple-Phase-Condition Envelope Following
Method (MPCENV) to Determine the Locking Range

0.035F
0.031
- XO:X(tS+Tenv)

0.025¢ = Xlzx(ts+Tenv+T)

0.02

0.015¢

0.01

0.005 |

Capacitor Voltage

-0.005

-0.01f

0 2 4 6 8 10 12 14 16
time x10°6

Figure 5.30: Backward-Euler-based envelope-following method.

5.6.2 Multiple-Phase-Condition Envelope Following method

Here, a novel transient envelope following method, MPCENYV, is proposed to deter-
mine the output frequencies corresponding to different input frequergbs Con-

sider Fig.5.30 Letx, andz, be the state aty = ts + T, andt; = ts + Tony + T,
respectively, wheres is the ending time of the last envelope step. Using the implicit
Backward-Euler method for stability purposes, the envelope following process is de-

scribed by:
1 — X . g — IS
T T

wherexs = xz(ts) is known from a previous step, and is determined using the

(5.88)

trapezoidal integration method fromto ¢;. This means that, depends on, andT'.
Note that apart from the circuit variables, there are two extra unknoweasd7.,,.,
since the period of the oscillator is always changing, &nd has to vary in order to
remain equal to an integer number of periddsrlo solve for the extra unknowns, two
further equations are requirebld):

dru _ |,

> =
&:0 (5.89)
dt
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wherel denotes thé,, state variable. The two derivative-based phase conditm89)(
ensure thaty, andzxy; are the peaks or troughs of a fast cycle. In practice, value-based
constraints are better for numerical handling of certain circuits such as the ILFD:

{ ro = e (5.90)

{L‘”:d

wherec andd are constants.
Equations’$.88 and 6.90 are reorganized as a matrix and solved using the Newton—

Raphson methodb[7]:

[ f1($0,T, Tenv)
F= fz(lﬂo, T, Tenv)
L f3(20, T, Teny)
(r1 — 20)Tony — (xg — xs)T
= Tor — € (5.91)
T — d

If the circuit hasn state variables, this system consistsof 2 equations with + 2
unknowns.

The Jacobian matrix corresponding 8©972) is given by:

A dn ]
droy’ dT’ dTp.
J = df: dfy  df
dry’ dT’ dTp.
Ay Cdf
L dl’o’ dT’ dTenV d
_%T — (Teny + 1)1 %T (xo —xs), o1 —x
81‘0 env env ) oT env 0 s)s 1 0
= L, 0, 0 (5.92)
6m1 afL‘l
a_ |l ; a7 |l ) 0
L 8x0 oT

wherel,, is an identity matrix of sizex x n, I,,|;, (0x1/0x¢)|, and(dz,/0T)|, are the

Ith row of I,,, 0z, /0x¢ anddx, /0T, respectively.
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In this implementation, botx,/0x, and 0x, /0T are derived using the trape-
zoidal integration method, as introduced 58]. Setz, to be the state at., where
to <t,_1 <t,<t;. Then

d, hof(z,)\ " hof(z,_1)\ dz,_
dry <1 2 oz, ) 1+§ 0x,_1 dxg (5.93)

where f(z) is the expression to represent the derivative of the circuit variables:
f(x). The termdx,/dz, can be found by repeatedly evaluatirtg93 from ¢, to t,
with dzo/dzg = I, wherel is ann x 1 matrix with all ones.

In a similar mannerdz, /dT can be found by solving

da, _ (1 h 3f(rvr>>_1

dar D) ox,
h af(wr—l) dwr—l Ty —Tr
x [(1 5 ) e (5.94)

starting fromdzx /dT = 0.
Then the system irb(91) can be solved using the Newton-Raphson methai [

Zew =7 — JIF (5.95)

where Z,..,, and Z represent the current and previous states of all the variables, i.e.,
Z =[xy T T. | Inthe case of the ILFDy, represents the capacitance voltage
and the inductance current, i.ee,= [ Vo I |T.

As described ing], the Devil's Staircase is a plot @f;,;/wy againstw,;. For
simulation purposes, the injected frequenay; is increased from the minimum,;
with a fixed frequency step-sizey, is then determined from the MPCENYV solution
as:

27

wo = T (5.96)
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5.7 Numerical Results and Experimental Validation
5.7.1 Experimental Equipments Setup

Here we describe our experimental technic@]ed measure the locking range of ILFD.

In order to measure a Devil’s Staircase, we must vary the frequencies of the oscillator
and the injected signal relative to one another. In practice, it is easier and more accurate
to vary the injected frequency automatically. Hence we fix the natural frequency of the

ILFD, f,, and adjust the frequency,;, of the injected signal.

FUNCTION NONLINEAR FREQUENCY
GENERATOR OSCILLATOR COUNTER
/ P.C. WITH IEEE 488 /
/ CONTROLLER
IEEE 488 IEEE 488

Figure 5.31: Experiment setup

An automated measurement system has been developed which includes a personal
computer, a function generator, a frequency counter and the ILFD ci@uitThe
experimental setup is shown in Fi§.31 The driving voltagel;,; and the driving
frequencyw;,,; are produced by a precision frequency generator (Agilent 33220A) con-
nected to an IEEE-488 bus. The frequency of the driven oscillatgri§ obtained
through the use of a precision counter (Agilent 53131A) which is also under IEEE-488

control.
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5.7.2 Numerical Results

The LC oscillator-based ILFD (LC-ILFD) is selected as an example. It was introduced

in Section5.3.4 The schematic is shown again in Fig32

Voo

.

Cin.r

Figure 5.32: The schematic of the LC-ILFD.

The governing equations are:

CC I (A daVigy) Ve + 200 miys (5.97)
v

e - g
o L— Ve

where A andda are the coefficients obtained from the negative resistance character-
istic [7] shown in Fig.5.11and Fig.5.13 The value of the selected componérits
shown in Tablé. 1

The Devil’s Staircases obtained by simulation and experiment are shown b &zg.
The widths of the locking ranges agree whep) /w, is an even numbei7] i.e., 2 and

4, as shown in Fig5.28 and Fig.5.33 The staircase from MPCENYV is almost the

YWpp is supplied by a dry battery.
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Table 5.1: The value of the selected components used in both experiment and simula-
tion.

C L RS VDD A da
100pF | 220H | 3.06Q | 9V | —=2.5mA/V | —0.1mA/V?

Staircase with Amplitude of Vinj =1V

1r —Experiment
+ MPCENV
‘ ‘ ‘ ‘ . | ° WaMPDE
8.6 0.8 1 1.2 1.4 1.6 1.8 2
@ (rad/s) <10’

Figure 5.33: The staircase obtained from simulation and experiment.
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same as that from experiment, while the one from use of the WaMPDE described in
Section5.5.3has an appreciably bigger difference. However, it should be accepted that

this is a very basic method. It could be used to obtain an initial estimate.

Table 5.2:Locking range, wher#, E andW represenMPCENV, Experiment and

WaMPDE

winj/wo=2
Vinj | M (Mrad/s)| E (Mrad/s)| W (Mrad/s)
1V 0.63 0.62 0.63
1.5V 0.88 0.92 0.87
winj/wo:4
M (Mrad/s) | E (Mrad/s)| W (Mrad/s)
1V 1.1 1.04 1.12
1.5V 1.48 1.51 1.49

Table 5.2 shows the locking ranges captured from the staircases. The difference
between the MPCENV method and experimental results is less than 6%, while that
between the full WaMPDE method described in Secidn2and experimental results
is almost 8%. Therefore, it is sufficiently accurate to predict the locking range when
designing ILFDs of this type. The locking range captured from experiments is illus-
trated in Fig.5.34 As seen from it, if the amplitude of the injected signal is larger,

then the locking range is larger.
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LC Oscillator
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Figure 5.34: The locking range of the LC-ILFD captured from experiments.

5.8 Conclusions

Injection-locked frequency dividers (ILFDs) are normally used as the prescaler in the
feedback of a Phase-Locked-Loop(PLL). In comparison with the conventional static
frequency divider, they consumes less power, but their locking range is smaller. Hence,
its accurate determination is essential in design work. The WaMPDE method is used
to determine the acquisition range for locking. However, it requires quite a long sim-
ulation time when implemented in full. An improved method is proposed to reduce
the simulation time. However, it is less accurate. The MPCENV method is another
suggested method. It follows the envelope following technique. It is used to enable
a simple plotting of the Devil's Staircase from which the locking range can be deter-
mined. With this method, the simulation speed is increased and the error is reduced to

6%.
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Chapter 6

Analysis and Design of Digital
Delta-Sigma Modulators (DDSM)

6.1 Background to Delta-Sigma Modulation

The delta-sigma modulation (DSM) technique has become popular in very-large-scale
integration (VLSI) circuits in recent years, although it was first introduced in 1992 [

Its main use is in data converters and in frequency synthesis. Examples include analog-
to-digital converters (ADC), digital-to-analog converters (DAC), direct digital frequency
synthesizers (DDFS) and fraction&lfrequency synthesizers.

Delta-sigma modulation is based on delta modulation (DM), which is the sim-
plest form of the differential pulse-code modulation (DPCM). A simple example of
pulse-code modulation (PCM) is shown in FL As seen from Fig6.1, a signal,
represented by the sine wave, is sampled and quantized at fixed intervals. In other
words, the signal is discrete and can be expressed by digital words. For example, the
quantized values of it are 7, 9, 11, 12, 13, 14, 14, 15, 15, 15, 14,... These may then
be expressed in binary format as 0111, 1001, 1011, 1100, 1101, 1110, 1110, 1111,
1111,1111,1110,..., which can be used for digital signal processing. DPCM quantizes
the difference between successional samples of a continuous-time signal into an n-bit

binary word. Delta-modulation is 1-bit DPCM.
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Figure 6.2: Block diagram of the delta-modulation process.
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6.1 Background to Delta-Sigma Modulation

The block diagram of the delta-modulation process is illustrated in@z&). The
demodulation part is the inverse procedure of the delta-modulation. It converts the
digital data stream to a smooth analog signal.

Integration is a linear operation and hence has the following property

/a+/b—/(a+b) (6.1)

Consequently, the integrator in the demodulator can be moved to the position between
the input analog signal and the modulator, as shown in@=gy.Furthermore, the two
integrators in Fig6.3 (b) can be merged into one integrator as shown in &i4. This

resultant system is the so-called delta-sigma modul&@r [

1-bit quantizer

F‘Sﬂﬂbill Analog

ignal —, r Channe [ Lowpass | Signal

00 ey =2 = | Riter "
Modulation (a) Demodulation

Analog I-bit quantizer Analog

Signal J“ +I,/‘_“\I |_ .F(:hanﬂei Lowpass Slgf‘lﬁf

_"'kz_i' " Filter

(b)

Figure 6.3: Derivation of Delta-Sigma Modulation from Delta Modulation.
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Oversampling is one of the most popular techniques used in delta-sigma modula-
tion. The most attractive benefit of oversampling is that it reduces noise. Fadhre
illustrates the concepf.,, andf, represent the bandwidth and the sampling frequency,
respectively. In signal processing, if the sampling frequency is higher than twice of
the bandwidth, i.e.f, > 2f,,, this process is termed oversampling. If the sampling
frequency isN times of the bandwidth, the noise power in the useful band is reduced
to 1/N. That means the signal-noise ratio (SNR) is increased by a factdr dfhe
technigue of moving the noise power to higher frequencies is termed noise shaping.
The quantization noise is pushed to higher frequencies out of the useful band in a

delta-sigma modulator. Consequently, it can be simply filtered by a low-pass filter.

6.2 Introduction of Digital Delta-Sigma Modulators

Digital delta-sigma modulators (DDSM) perform delta-sigma modulation on a digital
input and produce a digital output. They takergnbit input signal and produce an
m-bit output signal. This results in a quantization error that is often modelled as an
addition of white noise. The modulator filters the spectrum such that its noise power is
concentrated at higher frequencies away from the signal band. They are widely used
in consumer entertainment and communication equipment such as Fractidhal-
quency Synthesizers, cellular telephones and MP3 players. FraclioRaéquency
Synthesizersl2] [13] in general, are employed as Local Oscillators (LO) to generate
exactly the required frequencies. A FractiodalFrequency Synthesizer is shown in
Fig. 6.7. It consists of a phase/frequency detector, a charge pump, a loop filter and
a voltage controlled oscillator in the forward path. The feedback path includes an
injection-locked frequency divider (ILFDY] [8] [53] [54] [55] which is chosen to be

the pre-scaler due to its low power consumption. The static frequency divider is con-
trolled by a fully-digital delta-sigma modulator (DDSM). It ensures that the division

ratio is the required fractional value. The input to the DDSM is a constant digital word
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6.2 Introduction of Digital Delta-Sigma Modulators

X. This is a high resolution value and it sets the fractional division ratio. The output is
a low resolution sequence which controls the static divider. The spectrum of the output

contains the desired input DC tone and the undesired quantization noise.

.)‘;)HI

MPhase/Frequency | Charge
f= Detector Pump
d

Loop Filte—— VCO

Static ‘
Frequency Divider

ILFD

" DDSM p——X

Figure 6.7: The Fractional-N Frequency Synthesizer.

Delta-sigma modulators (DSM) are attractive as they push most of the quantisation
noise to higher frequencies and hence out of the useful frequency band, which is so-
called noise shaping as introduced in Secioch Thus the quantisation noise power,
obtained from the DDSM appears at frequencies out of the pass-band of the fractional-
N frequency synthesizer and can simply be filtered without affecting the signals in the
frequency synthesizer.

DDSMs fall into two categories6[0]: single-loop delta-sigma modulators and
Multi-stAge noise SHaping (MASH) delta-sigma modulators. The architecture of an
Ith order single-loop delta-sigma modulator is shown in Bi§. It consists of stages
of 1st order modulators (DSM1) introduced in Sect@oh x[n] and y[n] represent the
ng-bit input andm-bit output binary word, respectively. The input of tih stage of
DSM1 is the output of thé — 1)th DSM1 where € {2,3,...,(}. , The input of the 1st
stage is the difference between x[n] and y[n]. The sum of the output dff&M1s

is quantized by a quantizer to produce the output of the complete modulator. The ad-
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Figure 6.8: The architecture of afth order single-loop delta-sigma modulator.

vantage of this arrangement is that it has the choice of either a single-bit or a multi-bit
output, i.e.,n = 1 orm > 2. The components receiving only a single-bit data stream
require less hardware than those receiving multi-bit data. However, the disadvantage
of the single-loop DSM is that it is prone to instability because of the feedback loop
inherent within this architecture&()]. In contrast, the MASH DDSM has has moh
order feedback and 1st order stages have been proven to be stable so that it is uncon-
ditionally stable $0]. However, now there is one quantizer in the DSM1 of each stage
instead of one quantizer after the last DSM1. This structure results in a multi-bit out-
puty(n], i.e.,m > 2. The architecture and characteristics of MASH DDSMs will be
described in detail later in this Chapter.

The DDSM is a finite state machine. Hence, when the input is a constant, the
output is always a repeating pattern (a cycle)|[61]. In particular, the quantization
noise is a periodic sequence. The period of the cycle is termed the sequence length.
Its length depends on the input, the initial conditions of the DDSM registers and the
DDSM architecture. Short sequence lengths result in unwanted frequency components
or spurs from quantisation noise in the output frequency spect@m ience, much
research has been done into detecting and removing the occurrence of a short sequence
length B3].
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MASH
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d[n]— F(z)

Figure 6.9: Model of a dithered MASH DDSM.

There are two classes of technique for whitening quantization noise, stochastic and
deterministic. The ditheringofl] [65] method is one of the most common stochastic
approaches employed. It uses a random dither sequence to disrupt the periodic cycle
and thereby effectively increase the sequence length. However, it requires extra hard-
ware and inherently introduces additional noise in the the useful frequency band. The
structure of a dithered MASH DDSM is illustrated in F&9. d[n] is an 1-bit pseudo-
random dither sequence. The probabilitydpi] = 0 andd[n] = 1 is set manually to
be equal.

P(d[n] = 0) = P(d[n] = 1) = 50%. (6.2)

The blockF'(z) represents a filter after the dither input. The power spectral density
of the output sequence of a 9-bit MASH 1-11DSM is shown in Fig6.10for three

cases:
1. F(z) =0, no dither
2. F(z) = 1, normal dither

3. F(z) = (1 — z71), shaped dither

IMASH m — n — I means that it consists of anth order error feedback modulator (EF), an
nth order EFM (EFM) and anith order EFM (EFM), cascaded.
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Figure 6.10: The power spectral density of a 9-bit MASH 1-1-1 DD

As seen in Fig6.10Q the spectrum from the MASH DDSM without dither has strong
tonal behaviour, while that from the dithered MASH DDSM is much smoother, be-
cause the dither lengthens the sequence length. TheHilteris used to improve the
noise performance at low frequencies.

Recently, some deterministic design methodologies have been proposed to max-
imise the sequence length. Borkowskd] gives a guaranteed minimum and maxi-
mum period obtained by setting the initial condition of the registers. Hoss@im-|
troduced a digital delta-sigma modulator structure termed the HK-MASH with a very
long sequence and the period of such a sequence is derived by mathematical analy-
sis [66] [67] [68]. They will be described in Sectioh 3. A novel design methodology
for the MASH DDSM employing multi-moduliI5] will be proposed in this Chapter.

The new structure is termed the MM-MASH. It can produce a longer sequence length

than that of HK-MASH.
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6.3 State-of-the-art Architectures of DDSMs

6.3 State-of-the-art Architectures of DDSMs
6.3.1 The Conventional DDSMs

There are two classes of structure for digital delta-sigma modulators: Multi-stAge
noise SHaping (MASH) and error feedback modulator (EFM). Normally, a MASH
modulator is comprised of several EFMs. The conventional structures of both of them

are introduced in this Section.

Noise Cancellation Networks

| 1
I
I 1 Z! 1z Z! :
il A o AT ] AT
A N W) :
L vl ] vl yinl,
x[n] e [n] e,[n] e,,[n]
—A EFM1 EFM1 —---— EFMI1 + EFM1
’ Rl R2 R.E 1 RI

Figure 6.11: MASH DDSM architecture.

6.3.1.1 The Conventional MASH

The architecture of afth order MASH digital delta-sigma modulator (DDSM) is il-
lustrated in Fig6.11 It containg! first-order error-feedback modulators (EFMz)x|
andy[n] are anng-bit input digital word and amn-bit output, respectively. The rela-
tionship between them is

X

mean(y) = % (6.3)

where X is the decimal number corresponding to the digital sequehce[69], i.e.,

z[n] =X € {1,2,..., M — 1}, andM is the quantizer modulus which is sets in
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6.3 State-of-the-art Architectures of DDSMs

the conventional DDSMmean(y) is the desired fraction in a fractional-frequency
synthesizer.

The model of the EFM1 is shown in Fi§.12 This is a core component in the
make-up of the MASH digital delta-sigma modulator (DDSM). The rectarifjié
represents the register which stores the etfof and delays it for one time sample.

Q(-) is the quantization function:

ot = Qi) ={ ¢ = 3] (6.4)
where
uln] = z[n] + e[n — 1]. (6.5)

In order to simplify the analysis, a linear model of the EFML1 is introduced here.
As seen in Fig6.13 an additive quantization noise sour¢g[n| is used to take the

place of the quantizer. The expression for the linear model can be writtedomain

as below:
Y(2) =U(2) + Eas(2) (6.6)
U(z) =X(2)+ E(2)z"". (6.7)
Substituting 6.7) into (6.6),
Y(2) = X(2)+ E(2)27 " + Eu(2). (6.8)

Consider the expression for the eredr| in the z-domain:

E(z)=U(z) = Y (). (6.9)

E(z) = —Eu(2). (6.10)
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Figure 6.13: The linear model of an EFML1.
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Combining 6.10 and 6.9),
Y(2) = X(2) + (1 — 271 E,(2). (6.11)

Thus it can be concluded that the EFM1 output consists of the input sequence and the
output quantization error. The output quantization error is the quantizer Br0r)
which is shaped by a filtdl — >~1). From .12, it follows that for the conventional

EFM1, the signal transfer function (STF) and the noise transfer function (NTF) are:

STF =1 (6.12)

NTF =1—z"1. (6.13)

They represent a measure of the output signal versus the input signal and versus the
noise in a system, respectively.

In a MASH DDSM, there is a cascade of several EFM1, as shown ing@=id.
The error of each stage;(n]) is fed to the next stage and the carry-out of each stage
(y:[n]) is fed to the noise cancellation network to eliminate the intermediate quantiza-
tion noises B]. Thus the spectrum of the final output depends only on the input signal

and the shaped quantization noise power of the last stage.
Y(Z)=X(2)+ (1 -2 Eu(z) (6.14)

whereFE,4/(z) is the quantization error of the last stage. Then the signal transfer func-

tion and the noise transfer function for a conventional MASH are:

STF =1 (6.15)
NTF =(1 -z (6.16)
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6.3.1.2 The Conventional EFM

The structure of arith order EFM (EFM) is illustrated in Fig.6.14 The symbols
R, Ry, ..., Ry and Ay, A,, ..., A; represent the initial conditions and gains of tiie
registers, respectively, whetec {1,2,...,(}. The expressions governing the linear

model of it as shown in Figs.15are

Y(z) =U(2) + Eus(2) (6.17)
U(z) =X (z) + Z Az E(2) (6.18)
E(z)=U(z) = Y(z). (6.19)

From the equations above, it is obtained

Y(2)=X(2)+ (1= ) Az ")Eu(2) (6.20)

=1
where

E.s(2) = —E(z). (6.21)
Thus the signal transfer function and the noise transfer function féthasrder EFM

are
ST Frpn =1 (6.22)

l
NTFgpy =1 ) Az (6.23)
=1
Since the higher-order EFMs used as the delta-sigma modulator, it should have the
same noise transfer function as a MASH composed of a cascade of first-order EFMs

given by 6.16). Then
l
L= A =(1—z") (6.24)
=1

Thus the value of the gaing; is obtained from:
l

dArt=1-(1-2"" (6.25)

i=1
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Figure 6.14: Higher-order error-feedback modulator.
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Figure 6.15: Linear model of higher-order error-feedback modulator.
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6.3.1.3 The Sequence Length of Conventional DDSMs

The sequence length of the two types of conventional DDSMs, the MASH and the
EFM, is controlled by the initial conditions of the registers, which are represented
by the symbols{ Ry, R,, ..., R;} shown in Fig.6.11and Fig.6.14 Borkowski [14]
proposed the so-called preferred initial conditions, which are shown in BablH the
DDSMs work with these initial conditions, the guaranteed minimum sequence length is
dependent only on the modulator bus widthand is not affected by the DC input any
more. The guaranteed minimum and maximum sequence lengths for these structures
have been found from simulation$4], and are as shown in Tabe2 The modulator
period varies between the guaranteed minimum and the maximum sequence length
dependent on the value of the input. Note that the sequence lengthl/tf arder

MASH and anith order EFM is the same. It is found that the conventional MASH
modulator period will always be approximately equal to the maximum sequence length

if the quantizer modulusy/, is set as a prime numbesq| [67] [ 68].

Table 6.1:The preferred initial conditions for the conventional DDSMs.

Modulator Order] MASH EFMI
2 R odd Ri + Ry odd
3 R, odd R, + R3 odd
4 Ry odd R+ Ry + R3 + Ry odd
5 R, odd R, + R5 odd

Table 6.2:The sequence length of the conventional DDSMs.

Modulator Order| Guaranteed Minimum PeriodMaximum Period
2 2n071 2n0+1
3 2n0+1 2n0+1
4 2n0+1 2n0+2
5 2n0+2 2n0+2
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6.3.2 HK-MASH DDSMs

The HK-MASH DDSM is the current MASH that produces the longest sequence
length. It has two advantages. First, it produces a much longer sequence length when
compared to the conventional MASH. Secondly, its maximum sequence length can be
achieved independent of the initial conditions described in Seéti®driand indepen-

dent of all constant inputs.

azZlle

X[n] ANuIn] o LYl
N, 1 Q)

*

en-1l——elnl N -
Al “ M
N

Figure 6.16: The modified EFM1 used in the HK-MASH.

The architecture of the modified EFM1 used in the HK-MASH (HK-EFM1) is
illustrated in Fig.6.16 The only difference between it and the conventional EFM1 in
Fig. 6.12is the presence of the feedback black . The effect of this block is that,
unlike the conventional DDSM, the quantizer is not reset to 0 again, bytvwden it
overflows. Equivalently, the effective quantizer mudulus is changaéd tea from M .

a 1s a specifically-chosen small integer to maké ¢ a) the maximum prime number
below2™ [3]. The value ofa chosen in 8] is shown in Table.3,

The sequence length of dth order HK-MASH is determined by the following
formula [3]:

N = (2™ —a)’. (6.26)
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Table 6.3:The specifically-chosenfor various modulator word lengths.

o a
5,7,13,17,19 1

6,9, 10,12, 14, 20, 22,24 3
8, 18,25 5

11,21 9

16, 23 15

15 19

The maximum sequence length of &h order HK-MASH is compared with that of
the conventional MASH DDSM in Tabl6.4 The maximum sequence length of the
HK-MASH is almost(2m)'~! times that of the conventional MASH DDSM. Note
that, since the input does not affect the period of HK-MASH output, the guaranteed

minimum sequence length of it is the same as its maximum sequence length.

Table 6.4:A comparison between the maximum sequence length of the conventional

MASH and the HK-MASH.
Modulator Orderl | Conventional MASH HK-MASH

2 2n0+1 ( )
3 27071 (27 —a)T~ (2%)
4 gm0+ (2% — )T ~ (270
5 7707 (27— ~ (27)

The linear model of the HK-EFML is illustrated in Fi§.17. As with the linear
model of conventional EFM1, the quantizer in the HK-EFML1 is replaced by an additive
noise sourced,s[n]). Since all of the signals shown in Fi§.17are normalized to 1 in

order to do the linear analysis, the coefficiens modified too:
a=—. (6.27)

The expression for the outpufn] in terms of the input:[n| and the quantizer error
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Figure 6.17: The linear model of the HK-EFM1.

eqs[n] in the z-domain is:

Y(2) = U(2) + Eu(2) (6.28)
E(z)=U(z) =Y (2). (6.29)

Thus it follows:
E(2) = —E.(2). (6.30)

After summing the input and the feedback,
U(z) = X(2) +az 'Y (2) + 2 1E(2). (6.31)
Substituting 6.30 into (6.31),
U(z) = X(2) + a2z 'Y (2) — 27 E(2). (6.32)

From (6.28), it follows
U(z) =Y (2) — Eus(2). (6.33)

Substituting it into 6.32),

Y (2) = Bus(2) = X(2) + az7 Y (2) — 27 E(2). (6.34)
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Then 6.32 can be modified to

Y(z) = X(z) 1—2z71

S l—azl 1 —az

- Eas(2). (6.35)

Therefore, the signal transfer function (STF) and the noise transfer function (NTF) of

the HK-EFM1 are

1
STFyg = ——— (6.36)
1—az!
1 _ 1
NTFyp = —> (6.37)
1 —az1

In comparison with the STF and NTF of the conventional EFMaL19 and 6.16),
there is a pole at = . However, the value o is such that the pole is close to the
origin in the z-plane and hence does not affect the in-band operation of the modulator

to any significant level.

Nose Cancellation Networks

I ]
| — Zl — Zl — Zl 1
Py R == R =] |
:‘ m N/ \/ \l/ :
2 i I 2. S yin]!
x[n] e,[n] &,[n] e, [n]
—nh HK-EFM1 » HK-EFM1 t—=---—| HK-EFM1 » HK-EFM1
0
RI RZ RH R.J

Figure 6.18: The structure of the HK-MASH.

The structure of the HK-MASH is shown in Fi§.18 The difference between
the HK-MASH and the conventional MASH DDSM is that the HK-MASH utilises
the HK-EFM1 introduced above instead of the conventional EFM1. U&IRp), the
expression for the first stage of HK-EFM1 in a HK-MASH is obtained:

X(z) 1—2z7t
Yi(z) = l—az!  1—az

1Easl (Z) (638)
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Combining 6.30), (6.38 is modified to

X(2) 1—z7t
Yi(z) = -
1(2) l—az! 1—az!

Ei(z). (6.39)

Similarly, for the other stages of HK-EFM1 are expressed as:

E1<Z) 1-— Z_l

Ys(2) e e Ey(2) (6.40)
Ei1(2) 1—2z71
Yi(e) = — o Ei(2). (6.41)
From Fig.6.18 it is derived that
Y(2) =Y1(2) + Ya(2)(1 — 27 4+ - + V(2)(1 — 27 1)L (6.42)

Substituting 6.39—(6.41) into (6.42),

X U= g (6.43)

Yi(z) =
(Z> 1 —az= 1 —az™

Alternatively,

X 0= o). (6.44)

Y(z) =

1l —az! 1—az

6.4 Mathematical Analysis of the MASH DDSMs em-
ploying Multi-Moduli

A novel structure for the MASH DDSMs which employ Multi-Moduli (MM-MASH)

is proposed in this section. The advantage of this structure will be that it increases the
modulator period. Itis proposed that the modulus of each quantizer is set as a different
value from each other. Note that each quantizer has only one modulus. Furthermore,
all of the moduli are co-prime numbers. The difference between a a prime number and

co-prime numbers/[Q] is stated as follows:

1. A prime number is a natural number which has exactly two divisors: 1 and itself.
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2. If the greatest common divisor of any two numbers is 1, they are co-prime num-
bers. They do NOT have to be prime numbers, for example 8 and 9 are co-prime

but 8 or 9 are not prime numbers.

(N /]
N%

e[n-1] o e[n]@- 0 -

Figure 6.19: MM-EFM1: The modified first-order error-feedback modulator used in
the MM-MASH.

Q() y[n];

w

The structure of the modified EFM1 used in the MM-MASH (MM-EFM1) is shown
in Fig. 6.19 The key difference between the proposed MM-MASH and the existing
structures described in Secti6érBis that the quantizer modulus of each EFM1 is dif-
ferent from each other. The quantizer modulus ofithestage EFML1 in aiith order
MASH-DDSM is denoted by/;, where: € {1,2, ..., (}. It shall first be shown that the
MM-MASH is an accurate modulator and that the use of a different modulus for each
stage has not affected its output. Then the effect of the multi-moduli on the sequence
length shall be investigated mathematically. In Sec@hland6.4.2 a MM-MASH
consisting of only first-order EFMs (MM-EFM1s) is mathematically analysed. The
use of higher-order EFMs in the MM-MASH (MM-EFM) will be investigated in Sec-
tion 6.4.3
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6.4.1 The Suitability of the Multi-Modulus MASH-DDSM

In a fractionalV frequency synthesizer, the static frequency divider, shown ingerg.

is controlled by the average value of the delta-sigma modulator output; (y). For
example, if the static frequency divider divides the output frequency of the frequency
synthesizer by the factor.89, the average delta-sigma modulator output should be
0.89, i.e.;mean(y) = 0.89. The goal of this section is to show that in an MM-MASH,
mean(y) is affected only by the quantizer modulus of the first stage EFMi,and

is independent of the moduli in other stages. With this being true, having a multi-
modulus architecture does not affect the accuracy of the digital delta-sigma modulator.

Hence, it is a suitable digital delta-sigma modulator. So it is required to prove:

mean(y) = % (6.45)

Proof. The structure of MM-MASH consists of only MM-EFM1 is shown in Fg20
As seen in Fig6.20Q at the output of the last adder,

vi-1[1] =y 1] + w[1] — w[0] (6.46)
UZ,I[Q] :yl,1[2] + yl[2} — yl[l] (647)
O[N] =yia [N] + yi[N] = p[N — 1] (6.48)

whereN is assumed as the sequence length of the complete MASH delta-sigma mod-

ulator. Adding all of the above equations yields:

D valk] =) S wak D> wlk] - i yi[k] (6.49)

where the period ofy;, is assumed ad/;. As seen from Fig6.20 the output of the
MASH modulator is obtained by simply summing and/or subtracting the output of

each EFM1. Hence, the period of the MASH DDSM is the least common multiple of
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Noise Cancellation Networks
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Figure 6.20: The MM-MASH consists of only MM-EFM1.

the sequence length of each stage. In other wa¥dis, a multiple of N;, whereN; is

the period of theéth stage EFM1 ande {1,2,...,1}. It follows that

N N-1
D ulk] =) ulk] (6.50)
k=1 k=0
Thus 6.49 becomes:
N N
> vkl =) wialk]. (6.51)
k=1 k=1
Similarly, each output of the other adders is obtained as:
N N
> vk =) yiafK] (6.52)
k=1 k=1
N N
D valk] =) golk] (6.53)
k=1 k=1
N N
D ylk] =D ikl (6.54)
k=1 k=1
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6.4 Mathematical Analysis of the MASH DDSMs employing Multi-Moduli

Each side of§.54 may be expressed as:

WE

ylk] = N - mean(y) (6.55)
% "
Yownlkl =K wilH (6.56)
k=1 k=1

whereN; is the sequence length ¢f, K is an integer andN = K - N;. Sincey; is

the output of a first-order delta-sigma modulator EFM1,

Ny
Zyl (k] = N1 - mean(y;)
k=1
X
=N, - . 6.57
o (657)

_N. (6.58)

By substituting 6.55 and 6.58 into (6.54), the average value of the MASH DDSM
outputy is determined as:
mean(y) = —. (6.59)

]

6.4.2 The Effect of the Multi-Moduli on the Modulator Sequence
Length

Itis required to prove that the sequence length of the MASH modulator depends on the
product of all the quantizer moduli. The expression for #ieorder MASH DDSM

sequence length is:

M- M- M,

N
A

(6.60)
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where) is a parameter to mak® the least common multiple of the sequence length

of each stagev,.

In addition, if the following two conditions are satisfied:
Condl: X andM,; are co-prime numbers
Cond2: {M;, M, ..., M,} are different co-prime numbers
then the sequence length of the MASH DDSM attains the maximum value:
Nonaw = My - My - ... - M,. (6.61)
Proof. In the first-stage EFM1 shown in Fi§.12

er[1] =u[l] — y1[1]M;

=X +ea[0] — 1M, (6.62)
er[2] =X + e1[1] — i [2]My (6.63)
e1[N1] =X + ei[Ny — 1] — 31 [N1]| M, (6.64)

wheree, [0] is the initial condition of the register. The sum of all of the above equations

IS: N1 Ni—1 N1
ekl = MX+ > eilk] = >yl M. (6.65)
k=1 k=0 k=1
Since in the steady state, the first EFM1 is periodic with a peNp§67],
Ny N1—1
S ekl =) ekl (6.66)
k=1 k=0

Hence, 6.65 may be modified to

Ny
CNX
> ulk =T (6.67)
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6.4 Mathematical Analysis of the MASH DDSMs employing Multi-Moduli

In practice, the input DCX is set af) < X < M;. So in order to make the right side
of (6.67) an integer, the minimum nonzero solution/éf has to be:

M,

Ny = —
1 N

(6.68)

where )\, is the greatest common divisor 8f; and X. If M; and X are co-prime
numbers)\; equals to 1.

If the process of§.62—(6.67) is repeated with the second EFM1, the sum of its
output, which has a perioly,, is obtained as:

No

Na Z 61[]{?]
> walk] == — (6.69)
k=1 2

If the relationship between the sequence length of the first and second stages is

N, = K1\ (6.70)
(6.69 becomes
K1 Ny
N2 E el[k]
k== 6.71
;yz[ ] YA (6.71)

Sincee; is periodic with a sequence length [3],

Ny

Ny Ky ) elk]
;yz[k] - (6.72)
where .
> ei[k] = Ny - mean(es). (6.73)
Recalling 6.69), -
jzllel[k:] _ M niia”(el). (6.74)
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On substitution of§.74) into (6.72), the following expression is obtained:

Ky - My - mean(ey)

N2
>l = = (6.75)
k=1

Normally, mean(e; ) is a decimal fraction. However, if both sides 6f74) are multi-

plied by A\, the result is:

Ny
A1 Zel[k] = M, - mean(ey). (6.76)
k=1
Ny
Since)\; Y e;[k] has to be an integei/; - mean(e;) is always an integer.

k=1
Then the minimum solution ak; so that the right-hand-side @.(’5 is an integer

is obtained as:
A M-
K, =22 (6.77)
A2

where \, is the greatest common divisor of M, and M;mean(e;). Substituting

(6.68 and 6.77) into (6.70), the sequence length of the second stage is:

N, = MM (6.78)
A2

If M, andM, are co-prime numbers, the greatest common divisa df; andM;mean(e;)

IS A1, i.e., \a=\;. Hence,
M M.
N, = —="2 (6.79)
A1

When X and M; are also co-prime numbers; equals to 1. Thus the maximum

sequence length fay, is obtained as:
NZ,maa: — MlMQ. (680)

Continuing in this manner, the sequence length ofitheffective stage EFML1 in
an/th order MASH modulator is:

MM, M,

N;
Ai

(6.81)
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6.4 Mathematical Analysis of the MASH DDSMs employing Multi-Moduli

wherei € {1,2,3,...,l} and \; is the maximum common divisor of;_;M; and

MiM,...M;_ymean(e;_1). Note that when = 1, mean(eg) = X and\g = My = 1.
If {M;, M, ..., M;} are co-prime numbersy/; and (M, - Ms - ... - M;_;) have to

be co-prime numbers as well. Thas= \;, ;. SinceM, ; and(M; - My - ... - M;_5)

are also co-prime numbers;, ; = \;_,. Repeating this manner, it is follows that
A=Al = ... =\ (6.82)

Then the sequence length of thie EFM1 becomes

M Ms... M,

N;
A

(6.83)

where)\; is the greatest common divisor &f and M;. In practice, if the inpufX and
M are set as co-prime numbers, the maximum sequence lengthiti $tage EFM1
Is:
N; maz = My Ms... M;. (6.84)
Since N is the least common multiple dfNy, Ns, ..., N}, as was stated in Sec-
tion 6.4.], the sequence length of the MASH DDSM is obtained as

My - Ms-...- M,
N=_"1 "2 l (6.85)
A
where) is the least common multiple ¢f\;, \s, ..., \; }.
When{M,, M, ..., M, } are co-prime numbers682) is true. Then
My - My -...- M,
N==2 i L (6.86)
1

In addition, if X and M; are co-prime numbers as well; becomes 1. Thus the

maximum sequence length is:
Nopaz = My - My - ... - M,. (6.87)

]
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6.4 Mathematical Analysis of the MASH DDSMs employing Multi-Moduli

6.4.3 A Mathematical Analysis of Higher-Order MM-EFMs

The structure of am:th order MM-EFM (MM-EFMm) is illustrated in Fig.6.21 It

is similar to the conventional EFM except that the quantizer modul$; imstead of

M, since the modulus in each EFM is assumed to be different from each other. The
symbolsR;, R, ..., R,, andA;, A,, ..., A,, represent the initial conditions and gains of

theith registers, respectively, where {1,2,...,m}. The noise transfer function is
(Z-1"

NTF =
Zm

(6.88)
The value of the gaind; are:

> AZ7=1-NTF, (6.89)
=1

Since the EFM2 is the most popular higher-order EFM in practidg [he calcu-

lation of its sequence length shall be selected as an example. The structure of EFM2 is
shown in Fig.6.22 The coefficient$A;, A,] are obtained fromg.89 as[2, —1]. The
pth stage of the MASH DDSM is considered. Thus the state varialidedependent
on the output of previous stage:

up[l] = ep—1[1] + 2Ry — Ry. (6.90)
Using 6.90, the error is expressed as

ep(1] =up[1] = M - yp[1]

—=e, 1[1] + 2R, — Ry — M, - y,[1] (6.91)

After several time steps, the values of the registers are changed from their initial con-

ditions toe,, since steady-state has been established. Then

epl2] =ep—1[2] + 2¢,[1] — Ry — M, - y,[2] (6.92)
ep[3] =ep1[3] + 2¢,[2] — ep[1] — M, - y,[3] (6.93)
epNp| =ep—1[Np| + 2€,[ N}, — 1] — €,[N, — 2] — M), - yp [K]. (6.94)
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Figure 6.21: Higher order error-feedback modulator.
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Figure 6.22: Structure of the 2nd order error-feedback modulator.
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The sum of all of the above equatior41)-(6.94) is

Np Np Np_1
D ekl =D epalk] 42D elk]
k=1 k=1 k=0
Np—2 Ny
- Z eplk] — M, - Zyp[k] (6.95)
k=-1 k=1

Sincee, is periodic with the periodV,, [66] in the steady state,

Np Np—l Np—2
doalkl =) ekl =) elk] (6.96)
k=1 k=0 k=—1
Then 6.95 becomes
N, 1 Ny
Z Yp = Mp Z €p—1- (6.97)
k=1 k=1

If the relationship between the sequence length opthend(p — 1)th stage EFM is

N,=K-N,, (6.98)
(6.97) is modified to
N, % Np—1
> = i > e (6.99)
k=1 k=1

In comparison with§.72), it is obtained that the sequence length of the EFM2 is
same as that of the EFML, if they both constituteyttiestage in dth stage DDSM16].
In other words and the crucial point, the sequence length of a MASH DDSM does not
depend on the order level, but on the number of EFMs. For example, the period of

MM-MASH 1-2 is
M, - My
A

where\ is a parameter to mak® the least common multiple @¥; andNs. If the two

N = (6.100)

conditions stated in Sectidh4.2are satisfied, the maximum sequence length is
N = M, - M. (6.101)

This is same as the period of the MM-MASH 1-1.
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6.5 The Proposed Structure of the MASH DDSM

The novel structure for the MASH digital delta-sigma modulator (DDSM) employing
multi-moduli (MM-MASH) shall now be confirmed in this section. The structure of a
MM-MASH consisting of/ stages of MM-EFM is illustrated in Figs.23 Note that

the block MM-EFM represents either a first-order or a higher order MM-EFM. The

crucial points to note about this structure are:
1. Every MM-EFM has a different modulus

2. Each MM-EFM still only has ONE quantizer modulus.

Noise Cancellation Networks

| |
| — Zl — Zl Zl |
AT AT |
Aav) U |
T . N L I /2. i,
x[n] g,[n] e,[n] ¢, (1]

—nt‘f MM-EFM MM-EFM }—---—| MM-EFM MM-EFM

0
R R, R, R,

Figure 6.23: The structure of the MM-MASH.

M; is set as a prime number arou2®. This is to makeX and M always co-
prime numbers and therefore satisfy the first condit@ondl stated at the begin of
Section6.4.2 This condition must be satisfied to maximise the sequence length of
the MASH DDSM and to make the sequence length independent of the value of input.
In order to maintain the modulator output accuracy, the value of the inpukD€
adjusted to

X = M; - mean(y) (6.102)
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wheremean(y) is the required output to control the static frequency divider in a
fractional<V frequency synthesizer.

In an/th order MM-MASH, there aré co-prime numbers arourzf® that need to
be found in order to satisfy the second condit@and2. The higher the modulator
order, the greater the difficulty in finding suitable values for these moduli. Fortunately,
the most popular MASH DDSM in modern communication systems is MASH 1-1-
1 [14]. Note that all of the quantizer moduli should be chosen no bigger 2iato
avoid necessitating extra hardware. Some quantizer moduli chosen by the author for

MM-MASH 1-1-1 are given in Tablé.5.

Table 6.5:Some sample moduli of the 3rd order MM-MASH.
Word length| M, M, Ms

5 bit 31 32 29
6 bit 61 64 63
7 bit 127 | 128 | 125

8 bit 251 | 256 | 255
9 bit 509 | 512 | 511
10 bit 1021 | 1024 | 1023
11 bit 2039 | 2048 | 2047

6.6 The Simulation Results

All of the models of the EFM1 and MASH DDSM are built and simulate@imulink.
They are shown in Appendik. All of the simulations in this section are performed
with the input constanX = 1. The simulations confirm that the average value of the
outputmean(y) equals toj\%. The sequence length of the MASH DDSM is determined
using the autocorrelation functio@4], which is defined as

N—-m+1

Ryz(m) = % Z z(n)z(n+m —1) (6.103)
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wherem = 1,2, ..., N andN is the number of samples. As atypical example, 6ig4
shows that the sequence length of a 3rd-order 5-bit MM-MASH is 28768 and this
equalsiM, - M, - Ms as given in Tablé.5. The sequence length is only 64 from a
3rd-order 5-bit conventional MASH. The sequence lengths of the HK-MASH and the
MM-MASH are compared in Tablé.6, since the HK-MASH has the longest sequence
length of current structures of DDSMs. The MM-MASH achieves a longer sequence
when the word lengths are 6, 8, 9, 10 and 11. Thus the choice between MM-MASH
and HK-MASH depends on the word length. However, the MM-MASH produces a
longer sequence length,if; # 2™ — 1, where); is the biggest prime number below
2" as described in Sectiof.5. Hence, it has a greater probability of producing a

longer sequence length.

1.45%10,

1.4f 8

=
w
8]
T
|

1.3 §

Autocorrelation
P
N
a

1.2 .

-3 -2 -1 0 1 2 3
Lag Index x 10*
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Figure 6.24: The autocorrelation result for the 5-bit MM-MASH 1-1-1.
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Table 6.6:A comparison of the sequence lengths for the HK-MASH and MM-MASH.

Word length| HK-MASH | MM-MASH Difference
5 bit 32768 28768 -4000
6 bit 0.227 x 10° | 0.246 x 10° | +0.019 x 10°
7 bit 2.048 x 10° | 2.032 x 10° | -0.016 x 10°
8 bit 15.81 x 10° | 16.39 x 10° | +0.58 x 10°
9 bit 131.87 x 10° | 133.17 x 10° | +1.3 x 10°
10 bit 1.06 x 10° 1.07 x 10° +10 x 10°
11 bit 8.48 x 10° 8.55 x 10° +70 x 10°

The ultimate goal in the novel design is to improve the quality of the power spec-
trum, i.e to reduce noise power in the useful band. Hence, the power spectrum is now
examined. The power spectral density for 5-11 bit MASH DDSMs are compared and
in all cases the performance of the MM-MASH is better. As an example, the power
spectral density7q1] of the MM-MASH 1-1-1 and dithered conventional MASH 1-1-1
are compared in Fig6.256.31 The dithering is applied to the DDSM by adding a
1-bit pseudorandom dither sequence to the LSB of the dc iglitlt is evident from
the figures that the MM-MASH is significantly more effective than the conventional
MASH DDSM at lower frequencies.

Also, the power spectral density of the 11-bit MM-MASH 1-1-1 and 11-bit HK-
MASH 1-1-1 are compared in Fi§.32 since it produces the biggest sequence length
difference as shown in Tab.6. The noise power performance of MM-MASH is
a little better than that of HK-MASH. Thus the noise power difference results from
the MM-MASH and HK-MASH with a smaller word length can be even neglected.
However, MM-MASH is a better choice in high-end products, since they desire the
noise to be the lower the better.

The power spectral density]] of the MM-MASH 1-1-1 and MM-MASH 1-2 is
compared in Fig6.33-6.39 Both of the DDSMs are 3rd order. It is evident from the
figure that the MM-MASH 1-1-1 has a better noise performance than the MM-MASH
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1-2. This is expected as the sequence length of the former is longer than that of the lat-
ter as shown in Sectiof.4.3 However, the MM-MASH 1-2 has the advantage of less
hardware requirements and so a balance between hardware cost and noise performance

is required in the selection of the most suitable structure.

6.7 Conclusions

Digital delta-sigma modulators have been widely used for years. The benefit of their
use is that the quantisation noise is pushed to the higher frequencies out of the useful
bandwidth. Then the noise can be simply eliminated by a lowpass filter. Now with
DDSMs, the output sequence length is periodic and short. This is disadvantageous
as it results in spurs in the useful spectrum. To avoid this, one needs to whiten the
guantization noise. This can be done by dithering. However, in order to avoid the extra
noise and hardware requirements resulting from the dithering method, several novel
DDSM structures have been proposed to lengthen the sequence length. In this chapter,
it has been proved that MM-MASH produces the maximum sequence length for most
input word lengths. Expressions for the sequence length of the modulator are derived.
The simulation results confirm the results. Higher-order EFMs are also investigated as
previous research indicates that they yield hardware savitjsHowever, it has been
proved in this thesis that they are not able to increase the sequence length. Hence, as
a final note, a balance must be made between the noise performance and the hardware

requirements.
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Power Spectral Density Estimate
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Figure 6.25: The power spectral density of the dithered 5-bit conventional MASH
DDSM and non-dithered 5-bit MM-MASH.
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Figure 6.26: The power spectral density of the dithered 6-bit conventional MASH
DDSM and non-dithered 6-bit MM-MASH.
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Power Spectral Density Estimate
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Figure 6.27: The power spectral density of the dithered 7-bit conventional MASH
DDSM and non-dithered 7-bit MM-MASH.
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Figure 6.28: The power spectral density of the dithered 8-bit conventional MASH
DDSM and non-dithered 8-bit MM-MASH.

140



6.7 Conclusions

Power Spectral Density Estimate
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Figure 6.29: The power spectral density of the dithered 9-bit conventional MASH
DDSM and non-dithered 9-bit MM-MASH.
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Figure 6.30: The power spectral density of the dithered 10-bit conventional MASH
DDSM and non-dithered 10-bit MM-MASH.
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Power Spectral Density Estimate
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Figure 6.31: The power spectral density of the dithered 11-bit conventional MASH
DDSM and non-dithered 11-bit MM-MASH.
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Figure 6.32: The power spectral density of the 11-bit HK-MASH DDSM and 11-bit
MM-MASH.
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Power Spectral Density Estimate
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Power Spectral Density Estimate
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Figure 6.35: The power spectral density of different structures of 3rd order 7-bit MM-
MASH.
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Figure 6.36: The power spectral density of different structures of 3rd order 8-bit MM-
MASH.
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Power Spectral Density Estimate
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Figure 6.37: The power spectral density of different structures of 3rd order 9-bit MM-
MASH.
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Figure 6.39: The power spectral density of different structures of 3rd order 11-bit
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Chapter 7

Conclusions

Several novel CAD algorithms are proposed in this dissertation. The-Paskd ap-
proximation is proposed for the numerical integration of stiff differential equations.
lllustrative examples have shown that the &ddised techniques permit a significant
increase in step-size when compared to a traditional predictor-corrector such as the
Adams-Moulton technique. Both single-step and multi-step methods are proposed.
Multi-step methods have the advantage of obviating the need for the evaluation of high-
order derivatives. All of the techniques are particularly suitable for highly nonlinear
systems as there is no need for the solution of a non-linear set of algebraic equations
at each time step.

The Filon-type methods are explored for systems subjected to high-frequency sig-
nals. Numerical examples confirm the significant potential of Filon-type methods in
this setting. Futher research is required into issues of implementation and software
design, as well as detailed comparison with existing software for realistic differential
equations originating in RF and communications engineering.

Two simulation strategies have been presented for the determination of the locking
range of an ILFD. The first strategy involves the use of the WaMPDE in conjunction
with the bisection method to identify external frequencies to which the oscillator locks.

The WaMPDE enables identification of the natural frequency of the oscillator. Hence,

147



by examining the Jacobian matrix used in the transient evolution to steady state, it is
possible to ascertain when the system becomes independent of the local frequency and
can then be deemed locked. In addition, a technique for estimating the locking ranges
may be obtained using linear extrapolation if an accurate result is not necessary. Re-
sults confirm the efficacy of the approaches. The second technique is based on the
Multiple-Phase-Condition Envelope Following (MPCENYV) algorithm. The periods of
the carrier and envelope are set as variables. In order to solve for them, two extra con-
ditions are required. The output frequencies of the ILFD corresponding to the different
injected frequencies are then obtained. Thus the Devil’s staircase can be plotted from
the obtained data. Results for an LC-oscillator based ILFD confirm its efficacy. Com-
puter simulation for the determination of the locking range is advantageous in avoiding
the need for time-consuming experiments. It also greatly aids in design work involving
ILFDs and their use as lower power frequency dividers in PLLs for wireless systems.
A novel design methodology for a MASH DDSM aimed at increasing the sequence
length is introduced as well. Increasing the sequence length improves the noise perfor-
mance of DDSMs. The proposed method employs different moduli in each stage of the
EFML1. It is proven that the multi-modulus architecture is suitable because the output
of the MASH modulator is only dependent on the quantizer modulus of the first stage
EFM1 and independent of the others. Hence, having different moduli does not affect
the output of the modulator. The expressions for the sequence length of the EFM1
of each stage and for the complete MASH DDSM are derived. There are two condi-
tions given that must be satisfied to yield the maximum modulator period. A novel
structure for the MASH digital delta-sigma modulator employing the multi-moduli
(MM-MASH) is proposed. In most cases, the MM-MASHS produce an increased se-
guence length when compared to that of the current best DDSM, HK-MASH. Both of
the output accuracy and the predicted sequence length of the MM-MASH are validated

by simulation. The power spectral density spectra confirm that the proposed modulator
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architecture is, in most cases, more effective than the HK-MASH method at moving
noise from the lower frequencies.

Future work will involve investigation of ring-oscillator based injection-locked fre-
quency dividers. In particular, expressions for the locking range and the conditions for
locking will be explored. Deficiencies in previous work such as that by T3 ill

be addressed.
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Appendix A

A-stability and L-stability of Pade

approximations

In order to examine the stability of Padpproximations, consider the following stan-
dard test differential equation:
y = \y (A1)

where\ < 0. Now, consider the second-order Baapproximation wheré is the

time-step and;, is the estimate of the solutignat timet,:

1+ (hA/3)

I = T @2003) + (hn)2/6) 7 (A2)
The amplification factor is:
_ 1+ (hA/3)
RO = T =503) + ((h2/6)° (A3)
AsVhA < 0, itis obtained
|[R(AR)| < 1. (A.4)

Thus the method in equatioAQ) is A-stable. Similarly, higher-order Padnethods
are A-stablerh\ < 0.
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In addition, the Paél method in 8.1) is L-stable ifm < n. A numerical method
is L-stable if, in addition to4-stability, when applied to the scalar test equatiArij
with ®(\) < 0, |[R(Ah)| — 0 asR(Ah) — —oo [23]. Examining equation3.d), it is
evident that%(A}Lim_OO |R(AR)| = 0. This is true for higher-order methodsiif < n
andvh\ < 0.
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Appendix B

Richardson extrapolation and

Improvement of accuracy

Consider the test equation:
v = \y (B.1)
where\ < 0. Also, consider the first-order Pa@pproximation:

1
Ykt = T Yk (B.2)

Lety, be the estimate af; ., obtained with a time-step @f. Lety,, /2 be the estimate
obtained using a time-step &f/2. The second-order error i), is £, = \?/2. The

second-order error iy, 2 is £y, /o = A?/8. Now consider:
Yez = Yn + Exh* + O(h?) (B.3)

Yex = Yn/2 + Eh/2h2 + O(h3> (B4)

From B.3) and B.4), the second-order errors may be eliminated by evaluating:

_ 4.%/2 —Yn

Yex 3 + O(R%). (B.5)

152



In general, for anL — 1)th-order method, Richardson extrapolation eliminatés

errors as follows:
2%y —

S+ O(h ). (B.6)

Yex
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Appendix C

MESFET amplifier details

\_ A
- Lpg
GO!.'J’
Cpa %: L u(®
Rddi
VDP v
Figure C.1: Schematic of the MESFET amplifier.
dvgs _ 1 -Ugd — Ugs —+ Vgs + Rgdi<is — id — igs — igd)_ (C 1)
dt Cgs L Rgsi + Rgdi i .
dvgd _ L —Ugs — VUgd — VUds + Rgsi(is — id — igs — igd>— (C 2)
At Cuq | Rysi + Ryai '
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d'Uds 1 . Vgd — Vgs + vgs + Rgdi (Zs - id - Z'gs - igd) . Vds —

i Cp | Rysi + Ryai Tl T s T T
(C.3)
dvzx 1 Vds — Uzg
g [
Let:
iy = LgLS (Ud — Rdid> + LdLs (Ug — Ugd — Rgig) + LdLg(RS’iS + Uds) (C 5)
v LgLS + LgLs + LdLg '
dig 1 .
E = L_s(vdx — Uds — Rszs> (C6)
dig 1 .
—_ = — — e
@ I (Vg — Vaz — Ratq) (C.7)
% — (Cpga + Cpa)l(eg — vg)Gs — g — ig] + Cpga(=Givo — 1a — 1a) (C.8)
dt Opgcpd + Cpgd(cpg + de) .
dvg _ Cpgal(eg — v9)Gs — iy — 1g] + (Cpgd + Cpa) (=Givo — 1a — ia) (C.9)
dt Cpgcpd + Opyd(cpg + de) l
dilg Vg — Rggilg - VGG
e C.10
dt Ly, (€.10)
ding  vq— Raqing — Vpp
= C.11
dt Lbd ( )
. qvgs
iy = IS.GS [em - 1] (C.12)
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a(vgs—vgd)
iy = 1S.GS [em - 1}

(C.13)

The Curtice-Ettenberg model is employed for the MESFET shown in@&ig. Its

details are as follows:

o

Z.d _ AO + (%1 (A1 + U1 (A2 + UlAg)),
50 Ap + vpnax (A1 + vpvax (A + vpmaxAs)), v < vppax

where

UPMAX =

If vgs > 0 andigy < 0

else

Let¢ = F - V;. Then the capacitancés,, andC,, are given as:

Ugs(l + 5(Uouto - Uds)), Vgs > 0
Ugd(l + 6(U0ut0 - Uds)), Vgs < 0

—2A4, + \/4AZ — 124, A;

6A3
1gs = 0
X2 = —27V4s
21:€X2
. N
bds = Uds
d d01+z1

1_\1195 Ugs < ¢
VBI
_ vgs
Cys0 (1 1.5F04;0.5VBI) o> b
3 s
(1-Fc)2 g
ngO
Ugd Ugd < ¢

h

VB ey
Coyao (1—1.5FC+0.5%) o> &
3 d —
(1-Fc)2 g
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(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)



The following parameters are used:

Gs =0.02s
G;=0.02s
Ly, = 100nH
Liya = 100nH
Ryy = R4q =0
Cpg = 0.15pF
Cpa = 0.15pF
L, =0.35nH
Ly = 0.35nH
Ly =0.35nH
R, =T7.21W
Ry = 5.0686W
Ry = 3.6953W
Cpga = 0.01pF
Rgq; = 5.5W
Rysi = 3.18W
T = 300.15K

ISGS=10x10""A

IS.GD =0.0
N =1.0
Vpr = 1.5V
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(C.21)
(C.22)
(C.23)
(C.24)
(C.25)
(C.26)
(C.27)
(C.28)
(C.29)
(C.30)
(C.31)
(C.32)
(C.33)
(C.34)
(C.35)
(C.36)
(C.37)
(C.38)
(C.39)
(C.40)
(C.41)



Cyso = 0.7243pF

Cyao = 0.0197pF

Fo=0.5
C, =0.19pF
R, = 800W

Cys = 0.1037pF

b =0.05396/V

g =7.680735/V

Vouto = 19.996182V

Ap = 0.17229A
Ay = 0.093461A/V
Ay = —0.053499A/V?
Ay = —0.028237A/V?
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(C.46)
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(C.48)
(C.49)
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(C.51)
(C.52)
(C.53)
(C.54)



Appendix D

Schematics of the diode rectifier

circuit used in ADS

‘ ﬁ?} ENVELOPE

7 V_1Tone . | sinsin ™~ out
rl\ SRC1 PIN_diod = 21 ; 21 S
FEINGEITE - _diode g
e Fre'ﬁ?ﬂh”' hiered PinDiode? —=C=10F < R=10hm E::;m:m.), Bt N
i i Area= Wd= Trepi= Order{1]=3
Temp=27 Tau=  Trepi2= 3 l Stop=tstop
— Trise= lknee= Trlim= = = Step=tstep
; Tnom= Rho= Trlim2= v VAR
+7 V_TTone = Is=1A Eps= Tmi= VAR
/I SRC2 N=096525 Cj=  Tm2= my_Carrier_freq=1GHz
(~U) V=polar(1,0) v B= ViE o Thy= my_BB_fag=1.6 MHz
" Freq=16 MHz Ilf= M= K= BB_period=1/{my_BB_freq)
Bv= Fe= Af= num_cycles=5
Ihv= Eg= Ffe= tstop=0.2
T Rs= Xi=  Cpack= tstep=BB_period/10
Rp= Trs=  Lhond=
Repi= TrsZ2=  Imax=
Rlim= Tmp=
W= Tmp2=

Figure D.1: The diode rectifier circuit with amplitude modulated input signal.
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+I V_TTone
SRC1

3 Wi_BiiSeq
SRC3

l\-'-‘x, Viow=0V
Vhigh=5V
Rate=(1/133) GHz

—— Rise=1 nsec

~ Fall=1 nsec
BitSeq="10"
Tstari=0.0 sec
Tstop=tstop
Tstep=tstep

VMult
MULT1

‘ &% | enverore

sinsin I~
L1 C ; R Envelope
PIN_diode c R1 Envi
PinDiode1 :: C=0.1 mF < R=1 Ohm Freg[i]=my_Carrier_freg
Area= Wd= Trepi= Order{1]=3
Temp=27 Tau= Trepi2= i Stop=0.2 sec
Trise= lknee= " Trlim= — = Step=0.25 nsec
Tnom=  Rho=  Trlim2= il
l5=100A Eps= Tmi= :ig :
g:38_61 ?j: %1,2: my_Carrier_freq=1.0 GHz
e Mo Kk my_BB_freq=100/6.28 Hz
By= Fe= Af= BB_period=1/(my_BB_freq)
lhw= Eg= Ffe= num_cycles=5
Rs= Xti=  Cpack= tstop=0.2
Rp= Trs=  Lbond= 1step=133e-9
Repi= Trs2=  Imax=
Rlim= Trp=
W= Trp2=

Figure D.2: The diode rectifier circuit with digitally modulated input signal.
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Appendix E

Models of DDSMs used in Simulink

o Py " N
o>, ) =512 >(1)
Int win)
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To Constant
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o
efn}| 2

Figure E.1: The model of EFM1 used in Simulink.
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Figure E.3: The model of EFM2 used in Simulink.
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Figure E.2: The model of HK-EFM1 used in Simulink.
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Figure E.4: The model of MASH 1-1-1 used in Simulink.
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Figure E.5: The model of MASH 1-2 used in Simulink.
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Appendix F

List of relevant publications

Journal Papers:

[27] M. Condon, E. Dautbegovic and T. Xu, "Novel Rablased algorithms for numer-
ical integration of ODEsS,COMPEL: The International Journal for Computa-
tions and Mathematics in Electrical and Electronic Engineerimgl. 27, issue

6, 2008, pp. 1402-1417.

[74] M. Condon, A. Deé&o, A.Iserles, K. Maczynski and T. Xu, "On highly oscillatory
problems arising in electronic engineering,” AccepteddyMPEL: The Inter-
national Journal for Computations and Mathematics in Electrical and Electronic

Engineering

Conference Papers:

[16] T. Xu and M. Condon, "Comparative Study of the MASH Digital Delta-Sigma
Modulators,” inProc. IEEE Ph.D. Research in Microelectronics and Electronics
Cork, Ireland, July 2009, pp. 196-199.
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[15 T. Xu and M. Condon, "Design methodology for a maximum sequence length
MASH digital delta-sigma modulator,” iRroc. World Congress on Engineering

London, U.K., July 2009.

[55] T.Xuand M. Condon, "Accurate simulation of the Devil’s staircase of an injection-
locked frequency divider,” ifProc. International Conference on Scientific Com-

puting in Electrical Engineeringespoo, Finland, Sept. 2008, pp. 105-106.

[54] T. Xu and M. Condon, "An effective method for the determination of the locking
range of an injection-locked frequency divider,” ftoc. Emerging Trends in

Wireless CommunicationBublin, Ireland, April 2008, pp. 47-50.

[53] C. E. Christoffersen, M. Condon and Tao Xu, "A new method for the determi-
nation of the locking range of oscillators,” ifroc. European Conference on

Circuit Theory and DesigrSeville, Spain, Aug. 2007, pp. 575-578.

[7] T. Xu, Z. Ye and M. P. Kennedy, "Mathematical analysis of injection-locked fre-
guency dividers,” inProc. International Symposium on Nonlinear Theory and

its Applications Bologna, Italy, Sept. 2006, pp. 639-642.

[8] Z. Ye, T. Xu and M. P. Kennedy, "Locking range analysis for injection-locked
frequency dividers,” irfProc. International Symposium on Circuits and Systems

Island of Kos, Greece, May 2006, pp. 4070-4073.
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