
Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2013, Article ID 246742, 9 pages
http://dx.doi.org/10.1155/2013/246742

Research Article
Investigation on Locking and Pulling Modes in
Analog Frequency Dividers

Antonio Buonomo and Alessandro Lo Schiavo
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We compare the main analytical results available to estimate the locking range, which is the key figure-of-merit of LC frequency
dividers based on the injection locking phenomenon. Starting from the classical result by Adler concerning injection-locked
oscillators, we elucidate the merits and the shortcomings of the different approaches to study injection-locked frequency dividers,
with particular emphasis on divider-by-2. In particular, we show the potential of a perturbation approach which enables a more
complete analysis of frequency dividers, making it possible to calculate not only the amplitude and the phase of the locked
oscillation, but also the region where it exists and is stable, which defines the locking region. Finally, we analyze the dynamical
behaviour of the dividers in the vicinity of the boundary of the locking region, showing that there exists a border region where the
occurrence of the locking or the pulling operation mode is possible, depending on the initial conditions of the system.

1. Introduction

The phenomenon of injection locking [1], or frequency
entrainment, of an oscillator through an external sig-
nal underlies the operation of injection-locked frequency
dividers (ILFDs), which are nowadays realized on-chip, in
a number of ways suited for RF integrated circuits. The
self-oscillation that characterizes the operation of ILFDs is
responsible for the low power consumption, which makes
them a valuable alternative to digital frequency dividers,
and to Miller’s type dividers, in high-frequency low-power
applications.

The first, and more known, formulations of the injection
locking phenomenon date back to Van der Pol and to a
bright intuition of Adler, who obtained results very useful
for applications by using a pragmatic approach in the study
of a particular vacuum tube oscillator [2]. This phenomenon
has recently been considered in a number of papers aimed
at obtaining useful design guidelines for analog integrated
dividers based on the injection locking of LC differential
oscillators in MOS technology [3–13]. An ILFD operates
properly as a frequency divider only if the basic LC oscillator
tracks the input signal, and this occurs over a limited range

of frequency, called locking range (LR); its prediction is
the main issue of investigation. Predicting the LR can be
accurately performed through numerical simulations [14],
but analytical methods based on approximate models are
able to provide a better insight into the synchronization
mechanism which is useful for their design. As a lot of
formulas for predicting the locking range as a function of the
circuit parameters have been presented in the literature, this
often creates uncertainty in their use, especially if the validity
limits are not clear.

For the aforementioned reasons, first we present a tight
comparison among the main analytical results available for
the LR, highlighting for each of them the conditions under
which they were derived, thus, simplifying the comparison
and clarifying their applicability. Starting from the equiv-
alent circuit usually employed for describing the LC fre-
quency dividers and the classical result by Adler concerning
injection-locked oscillators, we present the models of ILFDs
with saturation-like nonlinearities and with polynomial-
like nonlinearities. Then, we show the potential of the
perturbation approach in [12], which provides analytical
results more complete than those in [5–11], as it results from
an analytical and numerical comparison. The perturbation
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approach allows us to determine not only the amplitude
and phase of the locked oscillation and the locking range,
but also the stability of the oscillation and its envelope
in transient. Finally, we study the dynamical behaviour of
the dividers in the vicinity of the boundary of the locking
region, showing that there exists a border region where the
occurrence of the locking or the pulling operation mode
is possible, depending on the initial conditions. Numerical
simulations are presented to validate the presented analytical
results.

2. Equivalent Circuit of ILFDs

In order to simplify the study of ILFDs aimed at obtaining
simple formulas relating the LR to the circuit parameters, the
actual ILFDs are usually reduced to a more simple equivalent
circuit. Taking into account that ILFDs are based on a
basic injection-locked LC oscillator, it is natural to represent
them through the equivalent circuit shown in Figure 1.
This can represent an injection-locked LC oscillator, if the
external forcing signal, Vin, has a frequency close to the tank
resonant frequency, while it can represent an injection-locked
frequency divider if the external signal has a frequency close
to an integer multiple of the tank resonant frequency.

The transfer function of the tank in Figure 1 is

𝐻(𝑗𝜔) =
𝐻
0

1 + 𝑗𝑄 ((𝜔2 − 𝜔
2

0
) /𝜔
0
𝜔)
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1 + 𝑗 (2𝑄/𝜔
0
) (𝜔 − 𝜔

0
)
,

(1)

where𝐻
0
= 𝑅 denotes the tank losses, 𝜔

0
= 1/√𝐿𝐶 denotes

the tank resonant frequency, and 𝑄 = 𝑅√𝐶/𝐿 denotes its
quality factor. The nonlinear two-terminal connected to the
LC tank in Figure 1 is represented by the function 𝑖 = 𝑖(V, Vin),
where V denotes the tank voltage and Vin = 𝑉in cos(𝑛𝜔𝑡)
denotes the input voltage, which is assumed to be purely
sinusoidal with a frequency 𝜔 close to an integer multiple 𝑛
of 𝜔
0
. In the case here treated of divide-by-2 ILFDs, we have

𝑛 = 2. Thus, the circuit in Figure 1 can be modeled by the
nonlinear differential equation
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Further approximations can be very useful to simplify
the study of the equivalent circuit shown in Figure 1 and
described by (2). The LC tank is usually assumed to filter out
all of the harmonics of the current 𝑖 = 𝑖(V, Vin) injected into
the LC tank, so that the output voltage can be assumed to
be purely sinusoidal, V = 𝑉 cos(𝜔𝑡 + 𝜃), and the amplitude
𝑉in of the injection signal is assumed to be sufficiently
small. Moreover, the nonlinear function 𝑖 = 𝑖(V, Vin) is
approximated by a saturation function or by a polynomial
function depending on the topology of the actual circuit.
In the following sections, we will treat separately these two
cases, and we will derive analytical expressions of the LR as a
function of the circuit parameters.
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Figure 1: Equivalent circuit of an injection-locked frequency
divider.

3. Analysis of ILFDs

Different approaches are available in the literature to derive
analytical expressions of the LR as a function of the circuit
parameters. The most widely used are presented here first by
considering the case of active nonlinearities of saturation type
and then the case of nonlinearities of polynomial type.

3.1. Saturation-Like Nonlinearity. Here, we investigate the
behaviour of the equivalent circuit shown in Figure 1, assum-
ing that the nonlinearity of the active part of the circuit,
𝑖 = 𝑖(V, Vin), can be represented by a saturation function. This
model describes the well-known topology of ILFDs based on
two cross-coupled MOS devices with a tail device, through
which the injection signal is applied [9, 12].

We start our investigation from the classical approach
of Adler to study injection-locked oscillators because Adler’s
results can be easily extended to injection-locked frequency
dividers, as we will show. The injection-locked oscillator
analyzed in [2] by Adler can be described by the equivalent
circuit in Figure 1, wherein the nonlinearity is of saturation
type; that is, 𝑖(V, Vin) = −𝐼

0
sgn(V + Vin) with Vin = 𝑉in cos(𝜔𝑡)

and 𝜔 close to 𝜔
0
. It is assumed that the injection amplitude

𝑉in is very small and the amplitude 𝑉 of the output voltage
V = 𝑉 cos(𝜔𝑡 + 𝜃) does not depend on the amplitude and
frequency of the injection signal.

Exploiting the assumption of very small injection ampli-
tude, the expression of the input voltage of the nonlinearity
Vnl = V + Vin can be written as

Vnl = [𝑉 + 𝑉in cos 𝜃] cos (𝜔𝑡 + 𝜃) + 𝑉in sin 𝜃 sin (𝜔𝑡 + 𝜃)

≈ 𝑉 cos (𝜔𝑡 + 𝜃) + 𝑉in sin 𝜃 sin (𝜔𝑡 + 𝜃) .
(3)

As the nonlinearity is memoryless, the phase of the first
harmonic of 𝑖, that is, 𝑖(1), is equal to that of Vnl, that is, ∠𝑖

(1)
=

arctan(𝑉in sin 𝜃/𝑉), while the amplitude is constant due to
the saturation nonlinearity. As the instantaneous frequency is
𝜔+ ̇𝜃, the phase shift due to the tank is equal to∠𝐻(𝑗(𝜔+ ̇𝜃)) =

− arctan[2𝑄(𝜔 + ̇𝜃 − 𝜔
0
)/𝜔
0
]. Imposing the current-voltage

phase relationship ∠𝐻(𝑗(𝜔 + ̇𝜃)) − ∠𝑖
(1)

= ∠V, a dynamic
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equation for the phase of the output voltage, the so-called
Adler equation, is obtained by

̇𝜃 = Δ −
𝜔
0

2𝑄

𝑉in
𝑉

sin 𝜃, (4)

where Δ = 𝜔
0
− 𝜔 represents the frequency detuning.

Considering that in steady state ̇𝜃 = 0 and sin 𝜃 lies between
+1 and −1, we can calculate the maximum and minimum
possible values of Δ, that is,

Δ
𝑀
= ±

𝜔
0

2𝑄

𝑉in
𝑉
, (5)

which define the boundaries of the LR, whose extension is
𝐿𝑅 = 2|Δ|

𝑀
.

An expression similar to (5) is obtained in [5] for a current
driven oscillator. Imposing 𝑖(V, Vin) = 𝑖nl(V) + 𝐼in cos(𝜔𝑡),
where 𝑖nl(V) is the oscillator nonlinearity, the perturbation
projection vector (PPV) of the oscillator is analytically cal-
culated and we obtain 𝐿𝑅 = (𝜔

0
/𝑄)(𝐼in/𝐼𝑅), where 𝐼𝑅 is the

current in the loss resistance.
The approach proposed by Paciorek [6] is equal to that

in [2], but it holds for injection amplitudes larger than those
considered in [2]. Repeating the same developments shown
before without making the approximation in (3), we get

Δ
𝑀
= ±

𝜔
0

2𝑄

𝑉in
𝑉

1

√1 − (𝑉in/𝑉)
2

. (6)

An expression similar to (6) for an LC tank with a
current injection, instead of a voltage injection, is obtained
in [7] using a graphical steady-state approach and in [8] by
resorting a complex low-pass filter equivalence. Imposing
𝑖(V, Vin) = 𝑖nl(V) + 𝐼in cos(𝜔𝑡), we obtain an expression similar
to that in (6), wherein 𝐼in/𝐼nl is in place of 𝑉in/𝑉, with 𝐼nl
denoting the amplitude of the current that is fed back by the
limiting amplitude nonlinearity 𝑖nl(V).

The presented approaches to study injection-locked oscil-
lators can be extended to analyze frequency dividers. A
divide-by-2 ILFD based on tail injection can be described by
the circuit in Figure 1, where the saturation nonlinearity is
slightly different from that considered in [2]; that is, 𝑖(V, Vin) =
−𝐼
0
sgn(V)(1+𝑘Vin)with V = 𝑉 cos(𝜔𝑡+𝜃), Vin = 𝑉in cos(2𝜔𝑡),

and 𝜔 close to 𝜔
0
.

In line with the approach in [2] and assuming a very small
injection amplitude, the following approximation is possible
for the first harmonic of the current:

𝑖
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(7)

Then, imposing the current-voltage phase relationship, a
dynamic equation for the phase of the output voltage is
obtained as follows:

̇𝜃 = Δ −
𝜔
0

𝑄

𝑘𝑉in
3

sin 𝜃. (8)

From (8), the expressions of the boundaries of the LR are
derived by

Δ
𝑀 AD = ±

𝜔
0

𝑄

𝑘𝑉in
3

, (9)

for an ILFD with saturation-like characteristic. Equation
(9), which is valid for an ILFD, was obtained using the
same approach used by Adler to study an injection-locked
oscillator and represents a reference for every study on the
locking range of ILFDs.

On the other hand, if the simplifying approximation in
(7) is not made in line with the procedure presented in [6],
we get

Δ
𝑀 PA = ±

(𝜔
0
/𝑄) (𝑘𝑉in/3)

√1 − (𝑘𝑉in/3)
2

. (10)

In the following section, we show that (9) provides an
estimate of the LR that is smaller than the actual one, while
(10) provides an estimate larger than the actual LR.

In line with Verma-Rategh-Lee’s approach [9], ILFDs are
studied approximating the nonlinear function 𝑖 = 𝑓(V, Vin) in
the form 𝑖(V, Vin) = 𝑖nl(V) + 𝑔(V)Vin with 𝑖nl(V) = 𝑖(V, 0) and
𝑔(V) = 𝜕𝑖/𝜕Vin. Then, applying the steady-state Barkhausen
criterion and assuming that the oscillation amplitude 𝑉 does
not depend on the frequency of the injection signal, we obtain
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where 𝑘
±
= 𝑉in𝐺2±1/(2𝐼nl), 𝐼nl is the cosine Fourier coefficient

of the first harmonic of 𝑖nl(𝑉 cos(𝜔𝑡 + 𝜃)), and 𝐺
2±1

is the
cosine Fourier coefficient of the harmonic of order 2 ± 1 of
𝑔(𝑉 cos(𝜔𝑡+𝜃)). Particularizing (11) for the case of saturation-
like nonlinearity, that is, 𝑖(V, Vin) = −𝐼

0
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3
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It is interesting to observe that in case of small injection
amplitudes, the arctan function can be approximated by its
argument and, hence, (12) is reduced to (9).

3.2. Polynomial-Like Nonlinearity. Let us now consider the
case that the nonlinearity of the current source in Figure 1
is represented by a polynomial function. This is the case
of injection-locked Colpitts oscillators [10], of ILFDs with
feedthrough, and of CMOS differential ILFDs with direct
injection [12, 13].

The model used in [10] for a divide-by-2 Colpitts ILFD
is shown in Figure 1 with a nonlinearity of cubic type; that is,
𝑖 = 𝑎
0
+𝑎
1
(V+Vin)+𝑎2(V+Vin)

2
+𝑎
3
(V+Vin)

3. Considering that
the complex expression of the first harmonic of 𝑖 is 𝐼 = 𝐼

𝑐
+𝑗𝐼
𝑠

with
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𝐼
s
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2
𝑉𝑉in sin (2𝜃) ,

(13)
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and applying the steady-state Barkhausen criterion (𝐼
𝑐
+

𝑗𝐼
𝑠
)𝐻
0
= 𝑉(1+𝑗2𝑄(𝜔−𝜔

0
)/𝜔
0
), the balance of the imaginary

components leads to the following:

Δ
𝑀 𝑅𝐿

= ±
𝜔
2

0
𝐿
𝑎2
 𝑉in

2
, (14)

which is obtained when considering that sin(2𝜃) lies between
+1 and −1.

It is interesting to observe that this expression is signif-
icantly different from those in (9) and (10), as it shows no
dependence on the tank losses. Thus, in this case the LR can
be widened without lowering the tank quality factor and,
hence, without increasing the phase noise of the output signal.

Polynomial nonlinearity is also used in [11]. The equiva-
lent circuit shown in Figure 1 with a cubic feedback nonlin-
earitymodels an ILFDbased on amixer, wherein the fed-back
output signal does feedthrough to the output of the mixer. In
this case, the nonlinear function is as follows:

𝑖 (V, Vin) = − [𝑉dc + 𝑉in cos (2𝜔t)] (𝑎1V − 𝑎3V
3
) , (15)

where 𝑉dc is a measure of the output feedthrough. Applying
the stroboscopic method, a first-order system of ordinary
differential equations in the amplitude and phase variables
is derived. Even if the resulting system cannot be solved in
closed form, by using simplifying assumptions it is possible
to obtain an estimate of the locking interval, that is,

Δ
𝑀 SBH = ±

𝜔
2

0
𝐿𝑎
1
𝑉in

4
[1 −

2

3

(𝑎
1
𝑅𝑉dc − 1)

𝑎
1
𝑅𝑉dc

] , (16)

in the assumption that 𝑎
1
𝑅𝑉dc > 1. It is interesting to observe

that 𝑎
1
𝑅𝑉dc = 1 is the limit condition that ensures a sustained

oscillation in absence of the input signal, and it is also the
condition that provides the maximum locking range.

4. The Perturbation Approach as Compared to
Previous Approaches

Injection-locked frequency dividers are analyzed in [12] by
considering that they are made of a basic LC oscillator,
whose active part is modelled by 𝑖nl(V), and of an injection
circuit modelled by the nonlinearity 𝑖in(V, Vin). Thus, they
can be modelled by the circuit in Figure 1 with 𝑖(V, Vin) =

𝑖nl(V) + 𝑖in(V, Vin). Then, the averaging equations are obtained
by approximating the nonlinearity in the form 𝑖(V, Vin) =

𝑖nl(V)+𝑖in(V, 0)+𝑔(V)Vin where 𝑔(V) = 𝜕𝑖/𝜕Vin and by applying
a perturbation method. It results in the following:

�̇� (𝑡) = −
𝜔
0

2𝑄

× [𝑉 + 𝑅(𝐼
𝑐

nl + 𝐼
𝑐

in0 +
𝑉in
2
(𝐺
2−1

+ 𝐺
2+1

) cos (2𝜃))] ,

̇𝜃 (𝑡) = Δ +
𝜔
0
𝑅𝑉in
4𝑄𝑉

(𝐺
2−1

− 𝐺
2+1

) sin (2𝜃) ,

(17)

where Δ denotes the frequency detuning 𝜔
0
− 𝜔, 𝐺

𝑘
denote

the Fourier coefficients of the function 𝑔(𝑉 cos(𝜔𝑡 + 𝜃)), and
𝐼
c
nl and 𝐼

c
in0 denote the first-harmonic coefficients of 𝑖nl(V) and

of 𝑖in(V, 0), respectively.
First-order dynamical system (17), which describes the

frequency dividers in terms of amplitude and phase, allows us
to determine not only the amplitude and phase in steady state,
and the locking range, but also the stability of the oscillation
and its envelope in transient. It should be highlighted that (17)
allows us to take into account the dependence of 𝑉 on the
frequency, differently from [2, 9]. Moreover, it is interesting
to observe that it is not sufficient to determine if a solution of
(17) does exist, as made in [2, 6, 9, 10], but it is also necessary
to establish if it is stable and, thus, observable in practice.

However, even if the model (17) is very comprehensive
and powerful, it is not exactly equivalent to that described
by the original nonlinear differential equation in (2) due
to the assumption of negligible harmonics on the tank
voltage. However, the latter is usually verified by the circuit
parameters of practical ILFDs.

Here, we show that the presented approach allows us
to obtain results more accurate than those presented in
Section 3.1 for the locking range of ILFDs with saturation-
like nonlinearities. Moreover, it allows us to obtain the same
results presented in Section 3.2 for the locking range of ILFD
with polynomial-like nonlinearities, but it enables us also to
obtain the amplitude and the phase of the oscillation.

4.1. Saturation-Like Nonlinearity. If the active part of the
frequency divider can be modelled by a saturation-like
nonlinearity [15–17], that is, 𝑖(V, Vin) = −𝐼

0
(1 + 𝑘Vin) sign(V),

the following coefficients are obtained for the harmonics 𝐼𝑐nl =
−4𝐼
0
/𝜋, 𝐼𝑐in0 = 0, 𝐺

1
= 𝑘
𝑝
𝐼
𝑐

nl, and 𝐺3 = −𝐺
1
/3, and model (17)

leads to the following:

�̇� (𝑡) = −
𝜔
0

2𝑄
[𝑉 − 𝑉

𝑠𝑠
(1 +

𝑘𝑉in
3

cos 2𝜃)] ,

̇𝜃 (𝑡) = Δ −
𝑉
𝑠𝑠

𝑉

𝜔
0

𝑄

𝑘𝑉in
3

sin 2𝜃,
(18)

with𝑉
𝑠𝑠
= 4𝑅𝐼

0
/𝜋. It should be highlighted that system (18) is

more general than the models presented in [2, 6, 9]. Actually,
if the output amplitude 𝑉 is assumed to be constant, system
(18) leads to a Paciorek-like equation. If the output amplitude
𝑉 is assumed to be constant and equal to the amplitude
in free-running mode of operation, that is, 𝑉 = 𝑉

𝑠𝑠
, then

system (18) leads to theAdler-like equation (8). Finally, if both
the output amplitude 𝑉 and the phase 𝜃 are assumed to be
constant, system (18) leads to the Barkhausen equations in
[9].

The steady-state solution of (18) is as follows:

𝑉 =
𝑉
𝑠𝑠

1 + Δ2𝑄2/𝜔
2

0

(1 +
𝑘𝑉in
3

√1 − (
9

𝑘2𝑉
2

in
− 1)

𝑄
2

𝜔
2

0

Δ2) ,
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𝜃 =

{{{{

{{{{

{

1

2
arcsin( 3Δ𝑄𝑉

𝜔
0
𝑘𝑉
𝑠𝑠
𝑉in
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𝑠𝑠
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2
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2
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𝜔
0
𝑘𝑉
𝑠𝑠
𝑉in

) + 𝑟 𝜋, 𝑉 < 𝑉
𝑠𝑠
.

(19)
From (19), we deduce that the steady-state solution of (18)

does exist in the frequency range |Δ| ≤ Δ EXIS, where

Δ EXIS =
(𝜔
0
/Q) (𝑘𝑉in/3)

√1 − (𝑘𝑉in/3)
2

. (20)

In order to determine the stability properties of the solution
(19), we calculate the eigenvalues of the system obtained by
the linearization of (18), obtaining the following:

𝜆
𝑎,𝑏

=
tr (𝑀)

2
±
1

2

√tr (𝑀)
2
− 4 det (𝑀), (21)

where 𝑀 is the Jacobian matrix, whose trace is tr(𝑀) =

−5/2 + 2𝑉
𝑠𝑠
/𝑉, and whose determinant is det(𝑀) = 1 +

(𝑄Δ/𝜔
0
)
2
− 𝑉
𝑠𝑠
/𝑉. By evaluating the sign of the quantities in

(21), we deduce the interval wherein the solution is stable by

Δ
𝑀 BL =

{{{{{

{{{{{

{

±Δ EXIS, 0 <
𝑘𝑉in
3

<
1

√5
,

±
𝜔
0

4𝑄

√25(
𝑘𝑉in
3

)

2

− 1,
1

√5
<
𝑘𝑉in
3

< 1.

(22)

It is interesting to observe that the frequency range in
(20) is equal to the LR obtained by the Paciorek-like approach
in (10), but the approach in [12] allows us to establish that
the range with locked oscillations is stable and, thus, can be
observed; that is, the LR is smaller than that in (20) and is
equal to that in (22).

In order to simplify the comparison among the formulas
that predict the locking range of dividers with saturation-
like nonlinearity, that is, (9), (10), (12), and (22), it is useful
to normalize the boundaries of the locking range Δ

𝑀
, that

is, Δ
𝑀𝑛

= Δ
𝑀
𝑄/𝜔
0
, and the injection amplitude, Vin, that

is, 𝑚 = 𝑘𝑉in/3. Figure 2, where the results obtained by
formulas and by SPICE simulations are reported, shows that
the considered formulas are equivalent for small injection
values; that is,𝑚 < 0.2. By increasing the injection amplitude,
the LRs in (9) and (12) are significantly smaller than the LR
predicted by (22), while the LR in (10) is wider. Comparing
these values with those obtained by numerical simulations,
we deduce that the best estimation of the LR is provided by
(22). Moreover, we observe that the boundaries of the LR
obtained by numerical simulations are not symmetric with
respect to Δ = 0, but are different from the boundaries
obtained by formulas, because they do not take into account
the presence of harmonics. In order to further compare the
results from analytical expressions of the LR and the results
from SPICE simulations, in Figure 3 we show the results
obtained for different values of the parameters of the passive
and active components. Results in Figure 3 confirm that the
best analytical estimation of the LR is provided by (22).
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Figure 2: Comparison of the boundaries of the locking range
(Arnold’s tongue) for a frequency divider with saturation-like
nonlinearity, obtained by formulas and by numerical simulations.
Δ
𝑀 PA is shown in (10), Δ

𝑀 BL in (22), Δ
𝑀 AD in (9), and Δ

𝑀 𝑉𝑅𝐿

in (12). Numerical simulations are obtained by using the following
parameters of the circuit in Figure 1: 𝐿 = 4 nH, 𝑅 = 400, 𝜔

0
=

1.8GHz, 𝐼
0
= 2mA, and 𝑘 = 2.6/𝑉.

4.2. Polynomial-Like Nonlinearity. The approach in [12]
allows us also to determine the locking range of ILFDs in case
of polynomial nonlinearity. Let us first consider the case that
the nonlinearity can be written as 𝑖 = 𝑎

1
V+𝑎
3
V3+𝑏|V|V+𝑘VVin.

This model applies, as an example, to CMOS ILFDs with
direct injection [12, 18–20]. In this case, the averaging system
(17) is reduced to the following:

�̇� (𝑡) = −
𝜔
0
𝑅

2𝑄
𝑉(

1

𝑅
+ 𝑎
1
+
8𝑏

3𝜋
𝑉 +

3

4
𝑎
3
𝑉
2
+
𝑘𝑉in
2

cos 2𝜃) ,

̇𝜃 (𝑡) = Δ +
𝜔
0

4𝑄
𝑅𝑘𝑉in sin 2𝜃,

(23)

whose steady-state solution is

𝑉 =
√
−
4

3

𝑎
1
𝑅 + 1

𝑎
3
𝑅

+ (
16𝑏

9𝜋𝑎
3

)

2

−
2𝑘𝑉in
3𝑎
3

√1 − (
4Δ

𝜔
2

0
𝐿𝑘𝑉in

)

2

−
16𝑏

9𝜋𝑎
3

,

𝜃 = −
1

2
arcsin( 4Δ

𝜔
2

0
𝐿𝑘𝑉in

) + 𝑟𝜋.

(24)

By calculating the frequency range where the solution (24)
does exist and it is stable, we deduce the boundaries of the LR
as follows:

Δ
𝑀
= ±𝜔
2

0
𝐿
|𝑘| 𝑉in
4

, (25)
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Figure 3: Normalized locking ranges for an ILFD with saturation-like nonlinearity. Parameters of the SPICE simulations of the circuit in
Figure 1 are the following: 𝐿 = 4 nH, and 𝑅 = 400, 𝜔

0
= 1.8GHz, 𝐼

0
= 2mA, 𝑘 = 2.6/𝑉.

which, differently from the case of ILFD with saturation-like
nonlinearity, do not depend on the circuit losses.

The approach in [12] is general enough to treat also the
cases of polynomial nonlinearities discussed in Section 3.2.
In the case that 𝑖 = 𝑎

0
+𝑎
1
(V+ Vin) + 𝑎2(V+ Vin)

2
+𝑎
3
(V+ Vin)

3,
the steady-state solution of the averaging system (17) gives the
following:

𝑉 =
√
−
4

3

𝑎
1
𝑅 + 1

𝑎
3
𝑅

− 2𝑉
2

in −
4𝑎
2
𝑉in

3𝑎
3

√1 − (
2Δ

𝜔
2

0
𝐿𝑎
2
𝑉in

)

2

,

𝜃 = −
1

2
arcsin( 2Δ

𝜔
2

0
𝐿𝑎
2
𝑉in

) + 𝑟𝜋.

(26)

Calculating the interval of existence of the solution (26) we
obtain the same boundaries of the LR reported in (14).

Finally, in the case that the nonlinearity is described by
(15), the averaging system (17) is reduced to the following:

�̇� (𝑡) = −
𝜔
0
𝑅

2𝑄

× 𝑉(
1

𝑅
− 𝑎
1
𝑉dc +

3

4
𝑎
3
𝑉dc𝑉
2
−
𝑎
1𝑐
𝑉in
2

cos 2𝜃) ,

̇𝜃 (𝑡) = Δ −
𝜔
0
𝑅

4𝑄
𝑎
1𝑠
𝑉in sin 2𝜃,

(27)

where

𝑎
1𝑐
= 𝑎
1
(1 +

𝑎
3
𝑉
2

𝑎
1

) , 𝑎
1𝑠
= 𝑎
1
(1 −

𝑎
3
𝑉
2

2𝑎
1

) . (28)

Simplifying the system through the following approxima-
tions:

𝑎
1𝑐
≈ 𝑎
1
(1 +

𝑎
3
𝑉
2

𝑠𝑠

𝑎
1

) , 𝑎
1𝑠
≈ 𝑎
1
(1 −

𝑎
3
𝑉
2

𝑠𝑠

2𝑎
1

) , (29)

where 𝑉
𝑠𝑠

= √4(𝑎
1
𝑉dc𝑅 − 1)/(3𝑎3𝑉dc𝑅) is the oscillation

amplitude in free-running oscillation, it is possible to obtain
the steady-state solution in closed form as follows:

𝑉 =
√ 4

3

𝑎
1
𝑅𝑉dc − 1

𝑎
3
𝑅𝑉dc

−
2𝑎
1𝑐
𝑉in

3𝑎
3
𝑉dc

√1 − (
4Δ

𝜔
2

0
𝐿𝑎
1𝑠
𝑉in

)

2

,

𝜃 = −
1

2
arcsin( 4Δ

𝜔
2

0
𝐿𝑎
1𝑠
𝑉in

) + 𝑟𝜋.

(30)

From (30), we deduce that the boundaries of the LR
are those reported in (16). It is interesting to observe that,
even if the system (27) can be practically handled, only if
the assumptions in (29) are made, the results are sufficiently
accurate, as shown in Figure 4, where analytical results
are compared with numerical results obtained by SPICE
simulation of the circuit in Figure 1.
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Figure 4: Boundaries of the locking ranges for an ILFD with the polynomial nonlinearity in (15) for different values of passive parameters
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From the aforementioned analysis, we conclude that the
approach in [12] allows us not only to obtain the same results
as in [10, 11] for the LR, but it allows us also to obtain closed
form solutions for the amplitude and phase as well as for the
stability analysis [13] and the transient behaviour using first-
order dynamical equations.

5. Operation Modes Near the Boundaries of
the Arnold Tongue

Outside the region which delimits the locked states in
Figure 2, as a rule called Arnold’s tongue, it is reasonable
to expect that the result of the interaction of the oscillator
with the forcing signal Vin changes radically, as it happens
in an LC oscillator driven by a signal at frequency near
to that of the free oscillation [2, 21, 22]. It is known that,
near the Arnold tongue, this interaction manifests as a
periodically repeated and incomplete frequency entrainment
process, known as periodic pulling. This process causes a
simultaneous modulation of amplitude and phase of the
system’s oscillatory response, which has a complex time
evolution and exhibits a power spectrum with very dense
sidebands. The occurrence of the periodic pulling, of course,
should be avoided for a proper operation of the circuit
as a frequency divider. In this section, we highlight that
the precise location of the boundary between locking and
pulling regions, that is, of the bifurcation points from
the quasiperiodic states to locked states, is uncertain dif-
ferently from that predicted by existing analytical mod-
els.

The periodic solution in the pulling mode can be found
from (18) by putting 𝑉(𝑡) = 𝑉

𝑠𝑠
+ Ṽ(𝑡) and by making the

0.5 1 1.5
0

1.57

3.14

𝜃
(r

ad
)

V/Vss

Figure 5: Phase portrait of system (18) in case of saturation-like
nonlinearity for 𝑘𝑉in/3 = 0.6 and 𝑄Δ/𝜔

0
= 0.68. The black dot

denotes a stable steady-state constant solution (locking), while the
thick line denotes a stable steady-state periodic solution (pulling).

simplifying assumption Ṽ(𝑡) ≪ 𝑉
𝑠𝑠
. This reduces (18) to the

system of decoupled equations as follows:

̇̃V (𝑡) =
𝜔
0

2𝑄
Ṽ +

𝜔
0

2𝑄
𝑉
𝑠𝑠

𝑘
𝑝
𝑉in

3
cos 2𝜃, (31)

̇𝜃 (𝑡) = Δ −
𝜔
0

𝑄

𝑘
𝑝
𝑉in

3
sin 2𝜃, (32)
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Figure 6: Time waveforms and frequency spectra obtained by SPICE simulations of the circuit in Figure 1 for 𝐿 = 4 nH,𝐶 = 2 pF, 𝑅 = 400Ω,
and 𝐼
0
= 1mA. Injection amplitude and frequency determine 𝑘𝑉in/3 = 0.6 and𝑄Δ/𝜔

0
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V
𝐶
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𝐿
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𝐶
(0) = 0.1𝑉 and 𝑖

𝐿
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waveform in (a). (d) Spectrum of the waveform in (b).

whose solution can be found in explicit form. According to
Adler [2], the periodic solution of (32) is given by

𝜃 (𝑡) = tan−1 [ 1
𝐾
+

√𝐾2 − 1

𝐾
tan(Δ

√𝐾2 − 1

𝐾
𝑡)] , (33)

where 𝐾 = 𝑄Δ/(𝜔
0
𝑚) and 𝑚 = 𝑘𝑉in/3, which is valid for

|𝐾| < 1, that is, for |Δ| > 𝑚𝜔
0
/𝑄.This latter condition defines

the lower bound of the periodic pulling [2]; that is,

Δ pull = ±𝑚
𝜔
0

𝑄
. (34)

The beat frequency 𝜔
𝑝
of (33) is 𝜔

𝑝
= 2Δ√1 − (Δ pull /Δ)

2.
The amplitude modulation Ṽ is obtained by solving the

linear equation (31) and knowing the Fourier series expansion
for the periodic function cos[2𝜃(𝑡)]. Here, we limit ourselves
to observe that this expansion can be derived by calculating
the frequency spectrum of exp 𝑗𝜃(𝑡) according to the proce-
dure given in [21].

Taking into account that Δ pull in (34) is smaller than
Δ
𝑀 BL in (22), it results that the pulling mode of operation

and the locking mode of operation coexist in the overlapping
intervals |Δ pull| < Δ < |Δ

𝑀 BL| and −|Δ𝑀 BL| < Δ < −|Δ pull|.
Numerical integration of system (18) and circuit simula-

tions of the circuit in Figure 1 were performed in order to
highlight the behaviour of the circuit near the boundaries
of Arnold’s tongues. Numerical integration of system (18)
allowed us to obtain the phase portrait of system (18) for
𝑘𝑉in/3 = 0.6 and 𝑄Δ/𝜔

0
= 0.68, as reported in Figure 5.

Considering the periodicity of the phase 𝜃 over 𝜋, Figure 5
shows that a stable equilibrium point (representative of the
locking mode) coexists with a stable equilibrium trajectory
(representative of the pulling mode).Thus, the phase portrait

confirms the analytical prediction that locking and pulling
modes can coexist.

Moreover, SPICE simulations of the circuit in Figure 1
were performed using 𝑘𝑉in/3 = 0.6 and 𝑄Δ/𝜔

0
= 0.74. The

waveforms reported in Figures 6(a) and 6(b) clearly show
that once the parameter set and the input signal are fixed,
the circuit can reach the locking or pulling mode, depending
on the initial conditions. Accordingly, when the transient is
finished, the spectrum of the steady-state waveforms, shown
in Figures 6(c) and 6(d), has a single tone or multiple tones.

Finally, numerical simulations of the circuit in Figure 1
were performed along all of the border of theArnold’s tongue,
in order to obtain a complete portrait of the phenomenon.
The regions wherein locking and pulling modes coexist, as
obtained by numerical simulations and by analytical results,
are reported in Figure 7. It shows that both numerical
methods and analytical methods predict the presence of a
coexistence region, even if there is a slight mismatch between
numerical and analytical results due to the effect of harmonics
that were neglected in analytical models.

6. Conclusions

We showed that the methodology of analysis of ILFDs, based
on the well-known asymptotic method of averaging, leads to
more general and complete analytical results than those in
previous approaches. It allows us to improve the calculation
of locking range and to predict the stability of the locked
oscillations and their transient behaviour preceding the syn-
chronization state. We investigated in depth the advantages
of the method in [12] with respect to previous ones and, at
the same time, we highlighted the limits of the analytical
approaches in estimating the locking range of ILFDs. The
method in [12] allowed us also to analyze the dynamical
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behavior of the dividers in the vicinity of the boundary of
the locking region, showing that there exists a border region
where the occurrence of the locking or the pulling operation
mode is possible, depending on the initial conditions of the
circuit.
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