896 research outputs found

    Correlation between pattern density and linewidth variation in silicon photonics waveguides

    Get PDF
    We describe the correlation between the measured width of silicon waveguides fabricated with 193 nm lithography and the local pattern density of the mask layout. In the fabrication process, pattern density can affect the composition of the plasma in a dry etching process or the abrasion rate in a planarization step. Using an optical test circuit to extract waveguide width and thickness, we sampled 5841 sites over a fabricated wafer. Using this detailed sampling, we could establish the correlation between the linewidth and average pattern density around the test circuit, as a function of the radius of influence. We find that the intra-die systematic width variation correlates most with the pattern density within a radius of 200 gm, with a correlation coefficient of 0.57. No correlation between pattern density and the intra-die systematic thickness variation is observed. These findings can be used to predict photonic circuit yield or to optimize the circuit layout to minimize the effect of local pattern density. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Nanoelectronic Design Based on a CNT Nano-Architecture

    Get PDF

    On Regularity and Integrated DFM Metrics

    Get PDF
    Transistor geometries are well into the nanometer regime, keeping with Moore's Law. With this scaling in geometry, problems not significant in the larger geometries have come to the fore. These problems, collectively termed variability, stem from second-order effects due to the small geometries themselves and engineering limitations in creating the small geometries. The engineering obstacles have a few solutions which are yet to be widely adopted due to cost limitations in deploying them. Addressing and mitigating variability due to second-order effects comes largely under the purview of device engineers and to a smaller extent, design practices. Passive layout measures that ease these manufacturing limitations by regularizing the different layout pitches have been explored in the past. However, the question of the best design practice to combat systematic variations is still open. In this work we explore considerations for the regular layout of the exclusive-OR gate, the half-adder and full-adder cells implemented with varying degrees of regularity. Tradeoffs like complete interconnect unidirectionality, and the inevitable introduction of vias are qualitatively analyzed and some factors affecting the analysis are presented. Finally, results from the Calibre Critical Feature Analysis (CFA) of the cells are used to evaluate the qualitative analysis

    Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects

    Get PDF
    New broadband applications are causing the datacenters to proliferate, raising the bar for higher interconnection speeds. So far, optical board-to-board and rack-to-rack interconnects relied primarily on low-cost commodity optical components assembled in a single package. Although this concept proved successful in the first generations of optical-interconnect modules, scalability is a daunting issue as signaling rates extend beyond 25 Gb/s. In this paper we present our work towards the development of two technology platforms for migration beyond Infiniband enhanced data rate (EDR), introducing new concepts in board-to-board and rack-to-rack interconnects. The first platform is developed in the framework of MIRAGE European project and relies on proven VCSEL technology, exploiting the inherent cost, yield, reliability and power consumption advantages of VCSELs. Wavelength multiplexing, PAM-4 modulation and multi-core fiber (MCF) multiplexing are introduced by combining VCSELs with integrated Si and glass photonics as well as BiCMOS electronics. An in-plane MCF-to-SOI interface is demonstrated, allowing coupling from the MCF cores to 340x400 nm Si waveguides. Development of a low-power VCSEL driver with integrated feed-forward equalizer is reported, allowing PAM-4 modulation of a bandwidth-limited VCSEL beyond 25 Gbaud. The second platform, developed within the frames of the European project PHOXTROT, considers the use of modulation formats of increased complexity in the context of optical interconnects. Powered by the evolution of DSP technology and towards an integration path between inter and intra datacenter traffic, this platform investigates optical interconnection system concepts capable to support 16QAM 40GBd data traffic, exploiting the advancements of silicon and polymer technologies

    FOCSI: A new layout regularity metric

    Get PDF
    Technical ReportDigital CMOS Integrated Circuits (ICs) suffer from serious layout features printability issues associated to the lithography manufacturing process. Regular layout designs are emerging as alternative solutions to reduce these ICs systematic subwavelength lithography failures. However, there is no metric to evaluate and compare the layout regularity of those regular designs. In this paper we propose a new layout regularity metric called Fixed Origin Corner Square Inspection (FOCSI). FOCSI allows the comparison and quantification of designs in terms of regularity and for any given degree of granularity. When FOCSI is oriented to the evaluation of regularity while applying Lithography Enhancement Techniques, it comprehends layout layers measurements considering the optical interaction length and combines them to obtain the complete layout regularity measure. Examples are provided for 32-bit adders in the 90 nm technology node for the Standard Cell approach and for Via-Configurable Transistor Array regular designs. We show how layouts can be sorted accurately even if their degree of regularity is similar.Preprin

    Asynchronous nanowire crossbar architecture for manufacturability, modularity and robustness

    Get PDF
    This thesis spotlights the dawn of a promising new nanowire crossbar architecture, the Asynchronous crossbar architecture, in the form of three different articles. It combines the reduced size of the nanowire crossbar architecture with the clock-free nature of Null Conventional Logic, which are the primary advantages. The first paper explains the proposed architecture with illustrations, including the design of an optimized full adder. This architecture has an elementary structure termed as a Programmable Gate Macro Block (PGMB) which is analogous to a threshold gate in NCL. The other two papers concentrate on mapping and placement techniques which are important due to defects involved in crossbars. These defects have to be tolerated and logic has to be routed appropriately for successful functioning of the circuit --Introduction, page 1
    • …
    corecore