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ABSTRACT 

The end photolithography as a driver of Moore’s Law is expected to end in seven 

to twelve years. Numerous nanoscale logic devices, crossbar-based computing architec-

tures based on Carbon Nanotubes (CNTs) and Silicon Nanowires (SiNWs) have been 

proposed and these emerging nanotechnologies are expected to continue the technologi-

cal revolution. To be a viable technological paradigm, several intrinsic issues with the 

nanowire crossbar architecture, such as high defect density and various parametric varia-

tions caused by imperfect nanoscale fabrication has to be overcome. In this work, we 

have proposed and validated a new asynchronous nanowire crossbar architecture based 

on Null Convention Logic (NCL) to address aforementioned issues with its clocked coun-

terpart. Since the newly proposed asynchronous architecture does not need a complex 

clock distribution network and is free from all timing-related failure modes and can be 

designed with much less timing analysis, it is anticipated to enhance the manufacturabili-

ty, modularity and robustness of the system. 

 This thesis is organized into three papers, describes the proposed architecture and 

evaluates related mapping and placement algorithms. 

The first paper describes the Asynchronous Crossbar Architecture in detail with 

illustrations of the Programmable Gate Macro Block (PGMB) which is complementary to 

a threshold gate in Null Conventional Logic (NCL).  

The second and third papers focus on four different mapping and placement tech-

niques which are evaluated on the basis of programmability. The algorithms were subject 

to extensive parametric simulations and their programmability yields are illustrated. 
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1. INTRODUCTION 

 

Novel nanotechnologies are being proposed to replace their CMOS counterparts and 

nanowire crossbar architecture is one of the most promising paradigms. These architec-

tures are similar to their CMOS counterparts due to their synchronous nature (i.e., the 

components in the circuit require a clock to run). For these newer architectures to be suc-

cessfully conceived by commercial manufacturers they should exhibit significant number 

of advantages over the present day technologies.  

The clock is an important part of a circuit in any computer architecture system and is 

a source of considerable issues which are to be addressed to ensure the continual of ad-

vancement in circuit technologies. Null Conventional Logic (NCL) is a delay-insensitive 

asynchronous paradigm which integrates data and control into a single signal and elimi-

nates the need of a clock.  

This thesis spotlights the dawn of a promising new nanowire crossbar architecture, 

the Asynchronous crossbar architecture, in the form of three different articles. It com-

bines the reduced size of the nanowire crossbar architecture with the clock-free nature of 

Null Conventional Logic, which are the primary advantages.  

The first paper explains the proposed architecture with illustrations, including the de-

sign of an optimized full adder. This architecture has an elementary structure termed as a 

Programmable Gate Macro Block (PGMB) which is analogous to a threshold gate in 

NCL.  The other two papers concentrate on mapping and placement techniques which are 

important due to defects involved in crossbars. These defects have to be tolerated and 

logic has to be routed appropriately for successful functioning of the circuit.  
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Paper I 

 

CLOCK-FREE NANOWIRE CROSSBAR ARCHITECTURE BASED ON 

NULL CONVENTIONAL LOGIC (NCL) 

Ravi Bonam, Shikha Chaudhary, Yadunandana Yellambalase and Minsu Choi 

Dept of ECE, University of Missouri-Rolla, MO, USA 

 

Abstract—There have been numerous nanowire crossbar architectures proposed till 

date, although all of them are envisioned to be synchronous (i.e., clocked). The clock 

is an important part in a circuit and it needs to be connected to all the components 

to synchronize their operation. Considering nondeterministic nature of nanoscale 

integration, realizing them on a nanowire crossbar system would be quite cumber-

some. Unlike the conventional clocked counterparts, a new clock-free crossbar ar-

chitecture is proposed to resolve the issues with clocked counterparts in this paper, 

where the use of clock is eliminated from the architecture. This has been done by 

implementing delay-insensitive logic encoding technique called Null Convention 

Logic (NCL). A delay-insensitive full adder has been implemented on the proposed 

architecture to demonstrate the feasibility in this paper. 

 

 

Index Terms — Nanowire crossbar, Asynchronous computing, Null conventional log-

ic (NCL), Manufacturability, Robustness, Scalability, Defect & fault-tolerance. 

 

1. INTRODUCTION 

 

 The end of photolithography as the driver for Moore’s Law is predicted within 

seven to twelve years and nanotechnologies are emerging that are expected to continue 

the technological revolution. Recently, numerous nanoscale logic devices have been pro-

posed based on nanoscale components such as CNTs and SiNWs; computing architec-

tures are also being proposed using them as primitive building blocks. One of the most 

promising nanotechnologies is the crossbar based architecture; a two-dimensional array 
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(i.e., nanoarray) formed by the intersection of two orthogonal sets of parallel and un-

iformly-spaced nanometer-sized wires, such as carbon nanotubes (CNTs) and silicon na-

nowires (SiNWs). Experiments have shown that such wires can be aligned to construct an 

array with nanometer-scale spacing using a form of directed self-assembly and the 

formed crosspoints of nanoscale wires can be used as programmable diodes, memory 

cells or FETs (Field-Effect Transistors); therefore, nanoscale logic devices can be rea-

lized. 

 Nanowire crossbars offer both an opportunity and a challenge. The opportunity is 

to achieve ultra-high density which has never been achieved by photolithography. The 

challenge is to make them simple enough to be manufactured and reliable enough to be 

used in everyday computing applications, since high-density systems consisting of nano-

meter-scale elements assembled in a bottom-up manner are likely to have many imperfec-

tions (much higher raw fabrication defect densities, as high as 10%, are expected [1, 2]) 

and parametric variations. A computing system designed on conventional design basis 

and top-down lithographic manufacturing would not be practical. Ultra-high density fa-

brication could potentially be very inexpensive if researchers can actualize a chemical 

self- assembly, but such a circuit would require laborious testing, repair and reconfigura-

tion processes, implying significant overhead costs. Also, all reconfigurable computing 

architectures based on nanowire crossbars are commonly envisioned to be used for syn-

chronous circuits and systems. Thus, a clock distribution network should be fabricated 

along with nanowire crossbars and precise timing control should be practiced to avoid all 

timing-related faults induced by physical design parameter variations caused by nanos-

cale non-deterministic assembly.  

 In order to be a viable nanotechnology, the nanowire crossbar based systems 

should be: 

 

1. Structurally simple and scalable enough to be fabricated by bottom-up manufac-

turing technique, 

2. Robust enough to tolerate extreme parametric variations, 

3. Defect and fault-tolerant enough to overcome the extreme defect densities, aging 

factors and transient faults, and 
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4. Able to support at-speed verification and reconfiguration. 

 

Unlike the conventional clocked counterparts, the proposed research is to propose a new 

asynchronous architecture for carbon nanotube (CNT) and silicon nanowire (SiNW) 

based reconfigurable nano computing systems and to address aforementioned issues in 

doing so. 

 The proposed asynchronous nano-architecture is based on a delay-insensitive data 

encoding and self-timed logic encoding scheme - therefore, it is totally clock-free. Thus, 

no clock distribution network is needed and all failure modes related to the timing will be 

also eliminated. Potential benefits from the proposed asynchronous architecture include 

enhanced manufacturability, scalability, robustness and defect and fault tolerance. 

 

2.  PRELIMINARES AND REVIEW 

 

2.1 Null Convention Logic 

 Most of the traditional Boolean circuits that we have been using are clock driven. 

The clock is one of the most important parts of the circuit and is also a parameter deter-

mining the speed and performance of the circuit. All the devices in a circuit have to be 

connected to the clock; hence the clock network is quite cumbersome. The traditional 

Boolean circuits do not check for input completion at the time of evaluating an expres-

sion i.e. whether all the inputs have arrived to start computation of the expression. Hence 

the Traditional Boolean circuits are symbolically incomplete in terms of evaluating ex-

pressions as they are dependent on the clock. Null Conventional Logic integrates data and 

control into a single signal thus yielding inherently clock less, delay insensitive circuits 

and systems [5]. This technology uses two states, DATA and NULL, which are used for 

synchronizing and I/O control. DATA wave front contains the data that has to be 

processed by the combinational circuit. The Null wave front is a non-data value used to 

reset the logic gates in the circuit and is also used as a delimiter between two DATA 

wave fronts [5]. Circuits communicate with each other using local hand shakes which 

provide synchronization. The concept of global clock is removed and this in turn removes 

the clock network that has to be circulated inside the circuit. The removal of clock reduc-
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es the power consumption and the circuit becomes data driven (i.e. data is processed as 

soon as it is available). In the DATA combinational evaluation period the combinational 

circuitry processes the data passed on by the register and the results are stored in the suc-

cessive register. The successive register generates the Request for NULL signal in the 

DATA completion Acknowledgement period and propagates the signal to the previous 

register. The previous register will then transfer a NULL to the combinational circuitry 

which is evaluated during the NULL combinational evaluation period. 

    

 The evaluated result is passed to the successive register which then generates a 

Request for DATA signal. If the output of a particular gate is NULL, it does not change 

until and unless all the inputs to the gate are DATA. When all the inputs receive DATA 

then the output changes to data and remains asserted as long as all the inputs do not 

change to NULL. This attribute of the threshold gates helps in achieving input complete-

ness feature enabling the circuits to function without the clock [7]. To achieve this prop-

erty the inputs to the gates are to be encoded using an encoding scheme. In a dual rail en-

coding scheme, each bit is represented using two rails. According to the representation in 

the Table 1 the combination of rails (rail1, rails0) represents a single Boolean value. The 

value ―00‖ is regarded as NULL state which resets the circuit and does not represent any 

Boolean value. The value ―11‖ is an undefined expression in the dual rail encoding 

scheme. NCL uses symbolic completeness [11] of expression to achieve self-timed beha-

vior. A symbolically complete expression is defined as an expression that only depends 

on the relationships of the symbols present in the expression without a reference to the 

time of evaluation. This is achieved by keeping the following conditions in mind [11]: 

 

1. The input-completeness criterion, which NCL circuits must maintain in order to 

be self-timed, requires that the outputs of a circuit may not transition from NULL 

to DATA until all inputs have transitioned from NULL to DATA or vice versa. 

2. In circuits with multiple outputs, outputs that are dependent on arrived inputs can 

make transition, but all outputs can change only when all inputs arrive which eli-

minates the possibility of a data cycle and null cycle overlapping. 
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3. No orphans may propagate through a gate. An orphan is defined as a wire that 

transitions during the current DATA wavefront, but is not used in the determina-

tion of the output. Orphans are caused by wire forks and can be neglected through 

the isochronic fork assumption, as long as they are not allowed to cross a gate 

boundary. This observability condition ensures that every gate transition is ob-

servable at the output. 

 

 The primary advantages of the use of NCL for the proposed clock-free nano-

architecture are as follows: 

 

1. Circuits are less complex and are large circuits can be designed in a bottom-up 

manner and integrated directly without any trouble of synchronizing each module 

[5]. 

2. In clock-driven circuits, major part of power is consumed by the clock and its 

network. By removing the clock from the circuit, cumulative power consumption 

decreases [5]. 

3. The use of NCL makes the circuit insensitive to delay and the circuits operate at 

the rate of the flow of data. The circuits can be called as delay insensitive and self 

timed circuits [5, 7]. 

4. The circuits become more reliable than the clocked circuits as the problems 

caused due to clock such as clock skew, race conditions etc. are eliminated [5].  

 

There are 27 threshold gate macros that are implemented in NCL. The significance of 

these 27 NCL gates is that any possible expression involving two or three or four va-

riables can be implemented using these functions. Inversion can be implemented by in-

terchanging the rail1 and rail0 in case of the dual rail encoding scheme. 
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2.2 Asynchronous Crossbar Architecture and its Advantages 

  

 Using the normal crossbar architecture is similar to the conventional Boolean cir-

cuits i.e. clock has to be circulated throughout the circuit for synchronizing various 

blocks. The normal crossbar circuit cannot decide when to receive or release data; there-

fore a clock must be added to control the flow of input   and output. In contrast, the asyn-

chronous crossbar architecture would be data driven; Instructions are acted upon the mo-

ment they are available and output is available the moment it is completed. This architec-

ture employs discrete threshold gates [5] that recognize only certain simultaneous combi-

nations of values. Each of the gate acts as ―synchronization node‖, making the circuit as a 

whole and symbolically complete. The DATA state follows the Null state and is 

processed by the gates and output is passed on to a register. The register contains comple-

tion circuitry that enables synchronization and checks the state of the output and gene-

rates an appropriate signal indicating the previous register to send the complementary 

state i.e. if the circuit is processing a Null state then the register on arrival of the output 

will send a request for data signal requesting for data to the previous register. The prima-

ry advantages of the Asynchronous architecture would be,  

 

1. Manufacturability 

 Asynchronous crossbar Architecture significantly increases the manufacturabili-

ty of the nanowire crossbar systems in large scale manufacture. Manufacturing of 

these kinds of circuits would be easier compared to their clocked counterparts. 

Clocked synchronous architectures are difficult to map on crossbars architectures as 

they require complex placement and routing algorithms. In case of Asynchronous 

crossbar architecture, discrete blocks of crossbars can be used to map gates onto 

them and there is no need of a global synchronous signal to coordinate all the 

blocks. All clock related hardware components can be removed from the overall 

hardware design. Circuits would be less complex and easier to design.  
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2. Scalability 

 The overall circuit is self time i.e. timing information is integrated with data in 

the encoding. As the timing of each circuit is handled locally, Scalability of these 

circuits would be higher. The timing complexity remains the same even though the 

size of the circuit gets larger i.e. time taken for any particular computation will not 

change on the basis of the size of the circuit.  

 

3. Robustness 

 Due to non-determinism of the directed self-assembly paradigm, nanowire 

crossbar circuits are anticipated to exhibit large variations in physical parameters. 

Since any physical variation in an electrical parameter may have its own negative 

effect on the timing behavior of the circuit, being able to design delay-insensitive 

circuits (i.e., correct operation of the circuit is independent of the timing) is a signif-

icant capability and it would greatly increase the robustness of the circuit to design 

parameter variations. As explained in Null Conventional logic for asynchronous 

logic subsection, there is no delay in processing data due to clock cycles as in 

clocked synchronous circuits, instead data would be processed as and when it is 

available.  

 

4. Defect and Fault Tolerance  

 As NCL circuits have a definite flow patter i.e. DATA or NULL and vice versa 

the output can be checked if it is a data or null. In addition to the complete removal 

of all timing-related failure modes, testing complexity is reduced in that stuck-at-1 

faults simply halt the circuit, since the NCL circuit cannot make a transition from 

DATA to NULL. Also, in case of dual-rail encoding, 11 is considered as an invalid 

code. So, any permanent or transient fault that results in this invalid codeword can 

be eventually detected. Only stuck-at-0 faults and some other transient faults need 

to be exercised with applied patterns. Design time and risk as well as circuit testing 

requirements are expected to be decreased because of the elimination of the com-

plexity of the clock with its critical timing issues. 
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In this paper we are going to implement Null Conventional Logic on Nanowire crossbar 

architecture to realize ―Asynchronous Crossbar Architecture‖. We also show the imple-

mentation of a full adder using the new crossbar architecture and discuss feasibility of a 

Multi-bit adder. 

 

3.  PROPOSED ARCHITECTURE 

 

3.1 Programmable Gate Macro Block 

 The basic unit of the proposed architecture is a programmable gate macro block 

(PGMB). Each block is made of an AND plane and a OR plane formed by the diode  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Basic Structure of PGMB 

Figure 2 TH23 realized on a PGMB 
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crossbars. Vertical nano wires with pull up resistors form product terms and horizontal  

wire with pull down resistor add them using OR logic. It also has a feedback loop which 

drives the output back to an input wire. The maximum number of inputs to any threshold 

gate is 4 and along with this it needs a feedback to implement any of the 27 threshold 

gates [7]. Figure 1 shows the basic structure of a Programmable Gate Macro Block. It is a 

6x10 crossbar structure which can take a maximum of 4 inputs as illustrated. Figure 2 

shows the implementation of TH23 gate in the programmable gate macro block. The out-

put of the TH23 gate is given by the logic Z = AB+BC+CA + (A+B+C)Z*. Z* is the pre-

vious output of the TH23 gate which is fed back to an input nanowire. 

 

3.2 Physical Structure 

 The new architecture consists of array of PGMBs which are interconnected in the 

form of 2D grid structure. These blocks are surrounded by nano wires which are used to 

route the signals inside the grid structure. The PGMB’s input and output nanowires cross 

these routing wires forming programmable cross points. By programming these cross 

points we can route the signals to any of the programmable gate macro blocks. The input 

stage consists of programmable resistor cross points formed by the micro wires and nano 

wires.  By programming relevant cross points we can route the signals to the required 

PGMB. Each block can in turn be programmed to implement any of the threshold gates 

[7]. These blocks can tap the input signals by programming corresponding cross point 

formed by the nanowire column carrying input signal and nanowire row which is an input 

to the macro block. The output of the implemented threshold gate [7] can be routed to the 

other gates in the similar fashion. Thus the number of columns of nanowires between 

programmable macro blocks determines the amount of cross points available for routing 

signals. This number has to be sufficient to route all the required inputs and outputs to the 

macro blocks. The number of rows and columns of PGMBs in the grid are limited by the 

amount of signal degradation caused by the propagation. Before the complete degradation 

of the signal, a buffering stage can be implemented to restore the strength. 
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4.  IMPLEMENTATION OF ONE BIT FULL ADDER 

 

 A full adder can be implemented using threshold gates as shown in Figure 3 [7]. 

Now, let us implement 1 bit full adder using the proposed architecture. The 1 bit full ad-

der can be implemented using two th23 gates and two th34w2 gates as shown in the Fig-

ure 3. This requires 3 input bits a, b for addition and c for carry encoded in dual rail logic. 

These bits are represented by a0, a1, b0, b1, c0 and c1 respectively. By programming re-

quired cross points at the input cross bar these signals routed to the programmable gates. 

 The complete implementation of the 1 bit full adder is shown in the Figure 5.  

 

The blocks present in row 1 and columns 1, 2 are programmed as th23 gates and blocks 

in row 2 and columns 1, 2 are programmed as th34w2 gates. The th23 gates require 3 in-

puts and therefore 1 input row is unused where as in th34w2 all the 4 input rows are used. 

The realized threshold gates on PGMB are shown in the Figures 1 and 4. Next we have to 

route required signal into the corresponding input rows. Outputs from the threshold gates 

should also be routed to the input of other gates or to the output block. This can be 

achieved by programming routing cross points and using free nano wires. 

 

 The NCL register stage consists of two TH22 and a TH12 gates that are used to 

generate a handshaking signal that helps in synchronizing the circuit. There are two kinds 

of signals, request for data and request for null, generated by the registers that are passed 

on to the previous register. The Ki (input from successive stage) and Ko (output to pre-

vious stage) are the handshaking signals and Do, D1 are input data rails and Q0, Q1 are 

the output rails. The single bit register stage is shown in the Figure 6. 

  

5. CONCLUSION 

 

 In this paper, we have proposed a new clock-free nanowire crossbar architecture 

based on delay-insensitive logic known as Null Convention Logic. The complex clock 

distribution network can be removed from the hardware and many clock related failure 

modes can be intrinsically eliminated by the proposed clock-free architecture. To demon-
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strate the feasibility, delay-insensitive full adder design has been implemented on the 

proposed clock-free architecture. Our future direction is to develop automated design op-

timization tools, testing schemes and defect-tolerant logic mapping techniques for the 

proposed architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 1-bit adder in NCL 

Figure 4 TH34w2 realized on PGMB 
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Figure 5 1-bit adder using proposed architecture 

Figure 6 NCL one bit register on proposed architecture 
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Abstract 

 

Recently, we proposed a new clock-free nanowire crossbar architecture based on a delay 

insensitive paradigm called Null Convention Logic (NCL). The proposed architecture has 

simple periodic structure that is suitable for non-deterministic nanoscale assembly and 

does not require a clock distribution network - so it is intrinsically free from timing-

related failure modes. Even though the proposed architecture offers improved manufactu-

rability, it is still not free from defects. This paper elaborates on the different program-

ming techniques to map a given threshold gate macro on a random PGMB (Programma-

ble Gate Macro Block) with predefined dimension. Defect-Aware and Defect Unaware 

approaches have been considered to map a given threshold gate onto a PGMB without 

affecting its functionality. Defect aware approach uses a defect map, gate table which 

help in efficient programming and also conservative use of resources. Defect unaware 

approach on the other hand is faster than defect aware approach, does not use defect maps 

and is not as efficient as defect aware approach. Parametric simulation results using 

MATLAB are used to show the programmability of these approaches under various cir-

cumstances. 
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1. INTRODUCTION 

 

 Many of the nanoscale computing architectures proposed in recent years are clock 

driven. These architectures are mainly based on the two-dimensional nanowire crossbar 

architecture. In this architecture two sets of parallel, doped silicon nanowires or carbon 

nanotubes, are crossed over each other orthogonally to form a grid-like structure [1, 2]. 

The crossing over of these nanowires forms programmable junctions called crosspoints 

[1, 2, 3, 4]. The primary challenge in designing clocked architectures is to route the clock 

to all the components of the circuit. Due to imperfections in nanowires fabricated using 

current manufacturing processes, high defect densities are anticipated and realizing com-

plex synchronous circuits on them is intricate. Hence, nanowire crossbars offer an oppor-

tunity and a challenge. 

 The opportunity is to achieve ultra-high density which has never been achieved by 

photolithography. The challenge is to make them simple enough to be manufactured and 

reliable enough to be used in everyday computing applications, since high-density sys-

tems consisting of nanometer-scale elements assembled in a bottom-up manner are likely 

to have many imperfections (much higher raw fabrication defect densities, as high as 

10%, are expected ([5, 6]) and parametric variations.  Asynchronous crossbar architecture 

efficiently helps utilize the opportunity and keep up to the challenge of fabricating relia-

ble complex circuitry.  

 

 The proposed asynchronous nano-architecture is based on a delay-insensitive data 

encoding and self-timed logic - therefore, it is totally clock-free. Thus, no clock distribu-

tion network is needed and all failure modes related to the timing will be also eliminated. 

Potential benefits from the proposed asynchronous architecture include enhanced manu-

facturability, scalability, robustness and defect and fault-tolerance.  
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2. PROPOSED MAPPING AND PLACEMENT TECHNIQUES 

 

 2.1 Defect Unaware Approach 

 

In this technique a predefined pattern of a gate is mapped on to a PGMB directly 

without the knowledge of any defects. We need not spend much time on generating the 

defect map of a given PGMB. The idea is to speed up the process of placement by com-

promising a few defective placements. The use of this technique is dependent on the con-

sumer and manufacturer’s capability to fabricate defect free PGMB’s. The values of m 

and n for the predefined gate pattern are accessed from a gate table database which con-

sists of all the required information (number of crosspoints, minimum rows and columns 

required to program the gate etc.) concerning a threshold gate. This table can be accessed 

by the algorithm while mapping and placement. The purpose of changing the dimensions 

of the predefined gate is to ensure precise placement of crosspoints. The algorithm is illu-

strated in Figure 1 using a flow chart.  

  

 The placed PGMB will be tested for functionality before it can be used in any of the 

circuits. Among the techniques mentioned in this paper the defect unaware approach is 

the fastest one because of the following reasons: 

 

1. It does not scan the entire PGMB for generating a defect map which reduces the 

time it takes to program. 

2. It does not use any kind of intelligence for tolerating defects which reduces the 

time it takes to program PGMB. 

3. The space complexity and time complexity are minimal because it does not utilize 

memory for storing any kind of data related to programming the gates and the 

time complexity is restricted to time taken to test the functionality of the gate. 
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 The drawback of this technique is that it does not yield significant programmability 

as defect rates of PGMB increases. Its programmability plummets as the defect rates in-

crease because of a single representable pattern of each of the threshold gates. 

 

 2.2 Defect Aware Approach 

 

 As most of the current fabrication techniques cannot guarantee on their defect rates, 

the defect unaware process of placement is not as efficient in utilizing the inherent redun-

dancy of a given PGMB. The defect aware approach on the other hand makes use of the 

available redundant crosspoints to program a given gate onto a PGMB. The main chal-

lenge associated with inherent redundancy is to use it without affecting the functionality 

of the gate. On observing the pattern of crosspoints of a gate we can infer that columns 

represent the intermediate product outputs and they can be interchanged in any fashion 

without affecting the functionality. A TH23 gate is represented in 6 ways with different 

Figure 1 Defect Unaware Approach Control Flow 
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patterns of crosspoint placement without affecting the functionality of the gate in Figure 

2. Figure 3 illustrates the Defect Aware Approach using a flow chart. 

 

 The defect aware technique utilizes the fact that any given gate can be represented in 

different ways without affecting the gate’s functionality. This coupled with the inherent 

redundancy would give us a good scope of being able to map and place crosspoints on 

highly defective PGMB’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The Defect aware approach generates a defect map of a given PGMB and compares 

the pattern of defect free crosspoints with the required crosspoint pattern. 

The algorithm for the defect aware approach is as follows: 

 

1. Get the dimensions of PGMB (i.e., m×n) and minimum required rows × columns 

for programming the required gate (i.e., p × q). 

2. If m > p and n > q proceed to step 3, else roll back to step 1 and get next PGMB. 

3. Get the count of defect-free crosspoints corresponding to each row on the PGMB, 

and also the required count of OR crosspoints for programming the Gate. 

4. Consider a row from the PGMB, if available crosspoints in the row are greater 

than the required crosspoints then proceed to step 5. Else rollback get next row. If 

Figure 2 TH23 represented in 6 different ways 
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there are no more rows with required crosspoints, then go to step 1 and get next 

PGMB. 

4. Tabulate available crosspoints of each column corresponding to the selected row. 

5. Get the programmability count of each of the required columns on each of the 

available columns for the selected row. 

6. Starting with least programmability count, start placing the crosspoints. 

7. If placed crosspoints is equal to the number of crosspoints to be placed then go to 

step 1 and start with next PGMB Else if columns are available go to step 7 and the 

next column. Else go to step 4 and select next row. 

 

The significance of using this defect aware strategy is that it starts programming with the 

column (of the gate to be programmed) having least programming capability on a given 

PGMB which will help in maximum utilization of the inherent redundancy. 

 

3. PARAMETRIC SIMULATION RESULTS 

 

The simulation results for Defect Unaware Approach algorithm are shown in Figure 

4. On analyzing the simulation results we can infer that as defect rate increases the pro-

grammability of the gate decreases. We can clearly observe that this method is suitable 

only for defect rates ranging from 0-10%. The simulations are performed by placing vari-

ous gates onto a 6x10 PGMB.  

 

The result of using the defect-aware approach for programming is illustrated in Fig-

ure 5. On analyzing the graph we can observe that almost all the gates are programmed 

even at 30% defect rate and then programmability (ratio of successfully programmed 

PGMB’s to the total number of PGMB’s) reduces which is inevitable. The simulation has 

been performed on a randomly generated defective 6x10 PGMB. 
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Figure 3 Defect Aware Approach control flow 



 

 

23 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

Figure 4 - Programmability of various gates at different defect rates - Defect Unaware Approach 

Figure 5 -Programmability various gates at different defect rates - Defect Aware Approach 
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Figures 6 and 7 illustrate the effect of increasing the size of the PGMB beyond 6x10. On 

analyzing the graphs we can infer that the programmability increases as inherent redun-

dancy increases. There is significant increase in programmability for the defect aware 

approach due the fact that it is more efficient in utilizing inherent redundancy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 6 - Programmability at varying dimensions of PGMB for various defect rates - 

Defect Unaware Approach 

Figure 7 - Programmability at varying dimensions of PGMB for various defect rates - 

Defect Aware Approach 
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4. FUTURE WORK AND CONCLUSION 

 

Even though the defect-aware approach is better than the defect-unaware approach 

especially when the defect rate is higher, it requires much more laborious testing (i.e., 

each PGMB and switch block should be tested to locate all defective crosspoints) and re-

configuration (i.e., all defective crosspoints should be avoided when the netlist is actually 

placed and routed) tasks. However, the defect-unaware approach can be simpler since the 

netlist is directly mapped without considering any defects. After that, PGMBs and switch 

blocks can be functionally tested to locate ones with faults. These faulty ones then can be 

tested and reconfigured to avoid defects.  
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Abstract 

 

To deal with photolithographic barrier of CMOS, numerous nanoscale devices have been 

proposed. Nanowire crossbar is one of the emerging nanotechnologies with considerable 

merits. There have been numerous nanowire crossbar architectures proposed till date, al-

though all of them are envisioned to be synchronous. The clock is an important part in a 

circuit and it needs to be connected to all the components to synchronize their operation. 

Considering non-deterministic nature of the nano-integration, realizing a clock distribu-

tion network on nanowire crossbar system would be difficult. Also, numerous timing-

related failure modes should be addressed to assure the correctness of operations. To deal 

with such clock-related issues, a new clock-free crossbar architecture has been recently 

proposed to resolve the issues with clocked counterparts. The proposed architecture is 

built around uniformly-sized programmable crossbar block, that can be configured to any 

given threshold gate function, called Programmable Gate Macro Block (PGMB). Al-

though the proposed clock-free architecture has simpler periodic structure that enhances 

manufacturability and provides robust operations by eliminating timing-induced failures, 

it is still not free from manufacturing defects caused by nondeterministic nature of nanos-

cale assembly. To address this issue, we have proposed numerous defect-tolerant gate 

mapping and reconfiguration algorithms, each with a unique performance profile. These 



 

 

28 

algorithms are evaluated on the basis of parametric simulations consisting of expected 

defect rates and the inherent redundancy. The observations made from these evaluations 

will help select the best one basing on a variety of fabrication parameters. 

 

*** This manuscript is an extension to paper II. 

 

1. MAPPING AND PLACEMENT TECHNIQUES 

  

1.1 Defect Unaware Approach – Shift Algorithm 

  

This approach is an extension of the Defect-Unaware approach and employs a circu-

lar shift procedure which shifts the columns in both the AND and OR planes collectively. 

Shifting the planes creates greater number of representable patterns of the gates which 

ensure successful mapping while maintaining proper functionality. This approach creates 

a better trade-off between the time required to program and programmability. This ap-

proach would yield better programmability when compared to the Defect-Aware Ap-

proach described in the previous section. The control flow for placement of crosspoints 

using the defect-unaware strategy is as illustrated in Figure 1. 

 

Detailed steps of the defect-aware-shift algorithm are as follows: 

 

1. Obtain the dimension of PGMB (i.e., p x q) and minimum required rows x col-

umns for programming the required gate macro (i.e., m x n). 

2. If p > m and q > n proceed to step 3, else go back to step 1 and proceed to the 

next PGMB. 

2. Map the threshold gate onto the PGMB and test for functionality. 

3. If functionality of the PGMB matches with that of the threshold gate being pro-

grammed proceed to step 7, else proceed to step 5. 

4. If shift counter is less than the threshold shift value then proceed to step 6, else 

proceed to step 8. The threshold value for shift counter is equal to the number of 

columns in the predefined gate pattern. 
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5. Shift columns in the threshold gate and generate a new pattern from the prede-

fined gate pattern and go to step 3. 

6. Increment the successfully programmed counter. 

7. Go on to next PGMB and reinitialize the shift counter. 

 

 This technique is a compromise between the pure defect-unaware and defect-aware 

approaches, but is partially a defect-unaware technique based on the fact that it does not 

generate a defect map of the PGMB - therefore, defect locations are unknown throughout 

the mapping procedure. As described in the flow chart in figure 1, it shifts the columns 

creating better logical representations of the threshold gate thereby increasing the proba-

bility of programming the PGMB successfully without affecting the functionality of the 

threshold gate. This technique compensates the limited representations of the threshold 

gate in aforementioned approach at the cost of tenuous increase in time complexity while 

having no effect on space complexity. 

 

1.2  Defect-Unaware Approach – Modified Shift Algorithm 

 

 This approach is an annexure to the Shift Algorithm and applies the shift algo-

rithm's property on the AND plane's rows and columns, which is a part of PGMB, in ad-

dition to the shifting the columns of the OR of the particular gate. This technique creates 

greater number of gate patterns than the previous methods which increases the probability 

of successfully programming a defective PGMB. This approach yields better program-

mability of the PGMB's when compared to the previous methods at noticeable defect 

rates. The control flow for placement of crosspoints using the defect-unaware strategy is 

as illustrated in Figure 2. 
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Figure 1- Defect Unaware with Circular Shift control flow 
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Figure 2- Defect Unaware with Circular Shift of AND and OR planes control flow 
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 This technique breaks up the construct of the PGMB into its basic parts, the AND 

plane and the OR plane, and applies the shift process to the rows and columns of the 

AND plane and shifts only columns in the OR plane. It is partially a Defect Unaware 

technique based on the fact that it does not generate a defect map of the PGMB, and uti-

lizes the fact that the expression of the gate is in the form of sum-of-product (SOP). As 

described in the flow chart in figure 2, it shifts the columns and rows in the AND plane 

and creates greater number of logical representations of the threshold gate thereby in-

creasing the probability of programming the PGMB successfully. This technique increas-

es the programmability considerably with a slight increase in time complexity while not 

effecting space complexity. These shift Algorithm approaches would use the same gate 

macro library as the Defect-Unaware Approach. 

 

2.  PARAMETRIC SIMULATION RESULTS 

Aforementioned gate macro mapping algorithms have been tested with various para-

meter sets to obtain parametric simulation data. Each of the results describes the variation 

of programmability of various TH gate macros. Six representative TH gates with various 

complexities, TH12 (Z = A+B), TH24 (Z = AB+BC +CD+AD+BD+CD), TH34 (Z = 

ABC+ABD+BCD+ACD), TH34w2(Z = AB+BC+AD+BCD),  TH44w322  (Z =AD+BC), 

TH54w322(Z = AB+AC +BCD) have been used in the simulations for testing their pro-

grammability at different defect rates on PGMB's with various dimensions.  

 

In this section programmability results for all the four mapping algorithms are pro-

vided (including the algorithms from paper II).  

  

2.1 Defect-Unaware Approach 

 

 Figures 3 and 4 illustrate the variation of programmability of the aforementioned 

six threshold gates with PGMB's of various dimensions at 5% and 10% defect rates re-

spectively. On analyzing the results from Figures 3, 4, we can observe the rapid decrease 

of programmability when the defect rate increases from 5% to 10%. Careful observation 

of each of the given figures shows us that the gates with lesser number of crosspoints, 
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which depend on the number of AND terms in their expression, have higher programma-

bility as the redundancy increases (e.g., a TH12 gate has high programmability compared 

to the TH24).  

 

 This method assures a profitable yield while manufacturing simple circuits at low 

PGMB defect rates. It will ensure lesser cost and faster mapping process rather than using 

the other complex techniques. We can also use this technique if manufacturers are able to 

manufacture PGMBs with lesser defect rate and also can tolerate the cost of higher re-

dundancy overhead. 

 

2.2 Defect-Unaware Approach – Shift Algorithm 

 Figures 5, 6 and 7 show the variation of programmability with change in PGMB 

dimensions at 5, 10 and 15% defect rates, respectively. Comparison of figures 5, 6, 7 in-

fers that this process is better than the initially shown defect unaware approach based on 

the programmability at similar defect densities. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
Figure 3 -Variation of Programmability with change in PGMB dimensions for various 

gates at 5 percent – Defect Unaware Approach 
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Figure 4 -Variation of Programmability with change in PGMB dimensions for various 

gates at 10 percent - Defect Unaware Approach 

Figure 5- Variation of Programmability with change in PGMB dimensions for various 

gates at 5 percent defect rate – Defect Unaware – Shift Approach 
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This can be used as an immediate upgrade if the manufacturer is not willing to tolerate 

high redundancy at similar defect rates. Table 1 shows the average column shifts pertain-

ing to a successfully programmed PGMB. Average Shift rates of six different gates at 

three different defect rates have been presented. These average numbers of shifts directly 

affect the time complexity of the algorithm since the overall time to program the given 

gate macro directly depends on the number of shifts in this algorithm. The average num-

ber of shifts per successfully-mapped gate is also directly proportional to the amount of 

inherent redundancy. Hence based on these results, this method can be considered as a 

compromise between the defect-aware and defect-unaware approaches which are at the 

two opposite extremes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Variation of Programmability with change in PGMB dimensions for various 

gates at 10 percent defect rate – Defect Unaware – Shift Approach 
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 2.3 Defect-Unaware Approach - Modified Shift Approach  

  Figures 8, 9 and 10 illustrate the variation of programmability with change in 

PGMB dimensions at 10%, 15% and 20% defect rates, respectively. Careful analysis of 

figures 8, 9, 10 indicates an improvement in programmability when compared to the De-

fect Unaware and the Shift approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The modified shift algorithm is considered to be an annexure for the shift ap-

proach which has a considerable increase in programmability at similar defect rates. The 

probable difference between the two approaches would be increase in time complexity 

which accounts for increased programmability in the latter approach.  

  

 Average shift rates of the AND plane's rows and columns for a successfully pro-

grammed gate are presented in tables II and III, respectively. The row and column shifts 

Figure 7 - Variation of Programmability with change in PGMB dimensions for various 

gates at 15 percent defect rate – Defect Unaware – Shift Approach 
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directly affect the time complexity of the algorithm similar to the shift approach. Shifts in 

rows and columns increase the time taken to program a gate, consequently increasing the 

programmability. Manufacturers can prefer this method while programming moderately 

complex circuits, which would yield considerably higher programmability compared to 

the Shift approach. 

 

 2.4 Defect-Aware Approach 

 This subsection illustrates the variation of programmability for the defect aware 

approach at different defect rates. Figures 11, 12 and 13 show variations in programma-

bility with change in PGMB dimension at 15 %, 20% and 30% defect rates, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Variation of Programmability with change in PGMB dimensions for vari-

ous gates at 10 percent defect rate – Defect Unaware – Modified Shift Approach 
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Figure 9 - Variation of Programmability with change in PGMB dimensions for vari-

ous gates at 15 percent defect rate – Defect Unaware – Modified Shift Approach 

Figure 10 - Variation of Programmability with change in PGMB dimensions for various 

gates at 20 percent defect rate – Defect Unaware – Modified Shift Approach 
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Parametric data shown in Figures 11, 12, 13 infer that the defect aware approach is far 

more superior to all the mentioned defect-Unaware techniques considering the fact that it 

has steady levels of significant programmability at high defect rates. This is due to the 

fact that it generates a defect map of the PGMB on which the gate has to be programmed. 

This algorithm can be used to program all kinds of realizable circuits on highly defective 

PGMBs with profitable programmability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - Variation of Programmability with change in PGMB dimensions for vari-

ous gates at 15 percent defect rate – Defect Aware Approach 
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Figure 13 - Variation of Programmability with change in PGMB dimensions for vari-

ous gates at 30 percent defect rate 

Figure 12 - Variation of Programmability with change in PGMB dimensions for vari-

ous gates at 20 percent defect rate 
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3. CONCLUSION AND FUTURE WORK 

 A new asynchronous nanowire crossbar architecture has been recently proposed by 

authors' research group. Even though the proposed clock-free architecture has various 

advantages over its clocked counterpart - such as improved manufacturability, robustness, 

scalability and defect-tolerance, it is still not free from issues caused by higher defect 

rates due to nondeterministic nanoscale assembly. In order to address these issues, a few 

defect-tolerant mapping techniques for TH gate macros are proposed and numerically 

evaluated in this work. 

 

 Defect-aware and defect-unaware approaches are considered to be the extreme cases 

for mapping and placement of threshold gate macros onto PGMB. The Shift approach 

and Modified Shift approach serve as compromised approaches, whose attributes seem to 

be in between the extremities. The manufacturer can decide whichever technique suits 

best based on various parameters such as programmability, defect rate and complexity of 

the circuit. Even though the defect-aware approach is better than the defect-unaware ap-

proach especially when the defect rate is higher, it requires much more laborious testing 

(i.e., each PGMB and switch block should be tested to locate all defective crosspoints) 

and reconfiguration (i.e., all defective crosspoints should be avoided when the netlist is 

actually placed and routed) tasks. However, the two variants of shift algorithms described 

in this paper will serve as compromised approaches. 

 

 A combination of these techniques based on the complexity of the circuit being pro-

grammed will prove advantageous and provide an excellent balance between time com-

plexity and space complexity, having maximum programmability. Efficient differentia-

tion of the complexity of the circuit will prove advantageous to the manufacturer to de-

cide the best technique suited for mapping and placement of the crosspoints. Each of the 

techniques illustrated in this paper have their own advantages and disadvantages and can 

be further analyzed on the basis of time complexity and space Complexity. These issues 

will give a comprehensive view of the techniques. We will be addressing these issues in 

future work. 
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Table 1 

Average Column shifts for various gates at different defect rates - Defect Unaware – Shift Approach 

Gate   Dimension  5% Defect Rate 10 % Defect Rate 15% Defect Rate 
Th12 6x10 2.4629 3.633 6.7 

      7x11 2.057 2.8572 4.5 

      8x12 1.8251 2.42 3.4 

      9x13 1.6596 2.0679 2.8 

      10x14 1.5258 1.8731 2.5 

 11x15 1.4348 1.719 2.2 

          

Th24  6x10 20.5164 87.0202 1070.8 

      7x11 12.5918 30.8044 127.8 

      8x12 8.9666 17.7316 47.6 

      9x13 7.0065 12.2701 27.6 

      10x14 5.8143 9.1379 17.6 

      11x15 4.8528 7.5191 13.5 

     

Th34  6x10 13.8244 54.8639 560.7 

      7x11 8.0084 19.8859 84.8 

      8x12 5.7581 11.3518 32 

      9x13 4.4042 7.832 17.5 

      10x14 3.6642 5.9707 11.8 

      11x15 3.2211 4.8621 8.6 

     

Th34w2 6x10 10.2226 31.8819 218.4 

     7x11 6.6096 14.4823 47.8 

     8x12 4.9699 9.1901 21.8 

     9x13 4.0001 6.6679 13.8 

     10x14 3.2657 5.0761 9.2 

     11x15 2.8779 4.3285 7.1 

     

Th44w322       6x10                9.7971 26.9044 153 

      7x11 6.1777 13.1715 40.9 

      8x12 4.7481 8.4291 19.4 

      9x13 3.751 6.1887 12.5 

      10x14 3.2664 5.0209 8.7 

  11x15 2.7991 4.1631 6.8 

     

Th54w322   6x10                7.3379  18.7533 89.3 

      7x11 5.1628 10.228 28.5 

      8x12 3.9452 6.78 14.8 

      9x13 3.1992 5.1192 9.6 

      10x14 2.7672 4.2462 7.1 

      11x15 2.4355 3.5746 5.6 
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Table 2 

Average AND plane(row) shifts for various gates at different defect rates – Defect Unaware – Mod-

ified Shift Approach 

Gate Dimension 10 % Defect Rate 15% Defect Rate 20% Defect Rate 

Th12  6x10 1.047 1.243 1.8 

      7x11 1.0163 1.0881 1.3 

      8x12 1.009 1.043 1.1 

      9x13 1.0041 1.026 1.1 

      10x14 1.0016 1.016 1 

 11x15 1.0016 1.007 1 

          

Th24  6x10 9.1258 106.413 2495.5 

      7x11 3.5232 13.4013 81.3 

      8x12 2.364 5.1738 16.1 

      9x13 1.8577 3.1962 6.4 

      10x14 1.6583 2.3156 4.2 

      11x15 1.4944 1.9906 3 

     

Th34  6x10 6.0487 48.5051 711.1 

      7x11 2.5073 8.2125 46.3 

      8x12 1.6886 3.5554 10 

      9x13 1.4009 2.278 4.6 

      10x14 1.2493 1.7823 2.8 

      11x15 1.1695 1.502 2.1 

     

Th34w2 6x10 3.6653 23.9323 197.9 

     7x11 1.9743 5.3141 18 

     8x12 1.4833 2.7503 6 

     9x13 1.3039 2.0113 3.3 

     10x14 1.1872 1.5217 2.2 

     11x15 1.1276 1.3611 1.8 

     

Th44w322  6x10 3.2297 15.2249 116.6 

      7x11 1.8539 4.7673 16.8 

      8x12 1.4554 2.5943 4.9 

      9x13 1.2777 1.7739 3 

      10x14 1.1704 1.489 2.1 

  11x15 1.1235 1.332 1.7 

     

Th54w322  6x10 2.3914 10.6571 55.8 

      7x11 1.5556 3.3607 10.3 

      8x12 1.2859 2.0582 3.8 

      9x13 1.177 1.516 2.5 

      10x14 1.1124 1.3654 1.8 

      11x15 1.074 1.2104 1.4 
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Table 3 

Average PGMB column shifts for various gates at different defect rates – Defect Unaware – Modified 

Shift Approach 

Gate Dimension 10% Defect Rate 15% Defect Rate 20% Defect Rate 

Th12  6x10    3.6927 6.6 13 

      7x11 2.8316 4.4 7 

      8x12 2.3675 3.5 5 

      9x13 2.0614 2.9 4 

      10x14 1.8289 2.6 3 

 11x15 1.7091 2.2 3 

     

Th24  6x10 86.5781 1060 24947 

      7x11 29.8115 129.3 808 

      8x12 17.5299 46.4 156 

      9x13 11.8936 26 58 

      10x14 9.4662 16.9 36 

      11x15 7.4874 13.2 23 

     

Th34  6x10 55.8607 480.1 7107 

      7x11 19.9413 77.7 458 

      8x12 11.1897 30.4 95 

      9x13 7.8451 17.4 41 

      10x14 6.011 12 23 

      11x15 4.8625 8.9 16 

     

Th34w2 6x10 31.8957 234.5 1974 

     7x11 14.3311 48.2 175 

     8x12 8.8342 22.3 55 

     9x13 6.6224 14.4 28 

     10x14 5.1097 9.3 17 

     11x15 4.2402 7.3 12 

     

Th44w322 6x10 27.3753 147.9 1162 

      7x11 13.0505 42.9 163 

      8x12 8.4621 20.7 45 

      9x13 6.362 11.9 25 

      10x14 4.9135 8.6 15 

  11x15 4.1094 6.9 11 

     

Th54w322  6x10 19.0009 102 554 

      7x11 9.9543 28.7 99 

      8x12 6.7085 15.1 33 

      9x13 5.1932 9.3 19 

      10x14 4.1919 7.6 12 

      11x15 3.5152 5.5 8 
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APPENDIX  

MATLAB CODE USED FOR SIMULATIONS 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Program used to generate a random defect matrix. This is a function used by all the 

mapping and placement algorithms to place defects onto a given PGMB at given de-

fect rate. 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

function def_mat = random_defect(m,n,defect_rate); 

defects = 0; 

def_mat = zeros(m,n);    % initialize the defect matrix 

max_defects = (defect_rate*6*10)/100;  % calculate the maximum defect tolerance  

      using the defect rate 

  

 d1 = ceil(m.*rand(100,1));    % generates uniform set of integers in the  

      interval of 1:m 

 d2 = ceil(n.*rand(100,1));    % generates uniform set of integers in the  

      interval of 1:n 

  

      %initialize variables 

 i=1;       %index of random defect location 

 j=1;      %index of random defect location 

%place defects onto the PGMB  

while(defects<max_defects) 

     

     if(i<100 && j <100) 

         if(def_mat(d1(i),d2(j))~=255) 

             def_mat(d1(i),d2(j)) = 255; 

             i = i+1; 

             j=j+1; 

             defects = defects + 1; 

          else 
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             i = i+1; 

             j = j+1; 

          end 

      else 

           disp('out of random defects'); 

      end 

  end 

end 
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+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Program used to simulate the Defect Unaware Approach. It programs logic of 6 

threshold gate’s logic onto a million gates each to effectively simulate the algorithm 

and plots the programmability against different dimensions.  

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++        

clear all; 

clc; 

th =  [1 0 1 0 0 0 0 0 0 0;  

 0 1 0 1 0 0 0 0 0 0;  

 0 0 1 1 0 0 0 0 0 0;  

 0 0 0 0 0 0 0 0 0 0;  

 0 0 0 0 0 0 0 0 0 0;  

 1 1 1 1 0 0 0 0 0 0];      % TH12 represented in a matrix  

       format 

th(:,:,2) =  [1 1 1 0 0 0 1 0 0 0;  

  1 0 0 1 1 0 0 1 0 0;  

  0 1 0 1 0 1 0 0 1 0;  

  0 0 1 0 1 1 0 0 0 1; 

  0 0 0 0 0 0 1 1 1 1;  

  1 1 1 1 1 1 1 1 1 1];    % TH24 represented in a matrix  

       format 

th(:,:,3) =  [1 1 1 0 1 0 0 0 0 0;  

  1 1 0 1 0 1 0 0 0 0;  

  1 0 1 1 0 0 1 0 0 0;  

  0 1 1 1 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH34 represented in a matrix  

       format 

th(:,:,4) =  [1 1 1 0 1 0 0 0 0 0;  

  1 0 0 1 0 1 0 0 0 0;  

  0 1 0 1 0 0 1 0 0 0;  
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  0 0 1 1 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH34w2 represented in a matrix  

       format 

th(:,:,5) =  [1 1 1 0 1 0 0 0 0 0;  

  1 0 0 1 0 1 0 0 0 0;  

  0 1 0 1 0 0 1 0 0 0;  

  0 0 1 0 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH44w322 represented in a  

       matrix format 

th(:,:,6) =  [1 1 0 1 0 0 0 0 0 0;  

  1 0 1 0 1 0 0 0 0 0;  

  0 1 1 0 0 1 0 0 0 0;  

  0 0 1 0 0 0 1 0 0 0;  

  0 0 0 1 1 1 1 0 0 0;  

  1 1 1 1 1 1 1 0 0 0];    % TH54w322 represented in a  

       matrix format 

  

rows_cols = [6 7 8 9 10 11; 

             10 11 12 13 14 15];     % Different dimensions of PGMBs 

gate_count = 1000000;     % million gates to be programmed 

       % variables for use in programming 

placed_PGMB = [];     %count of placed PGMBs 

gates = []; 

placed = [];      %count of placed crosspoints 

       %index variables for loops 

l = 0; 

m = 0; 

i = 0; 

j = 0; 
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k = 0; 

gate_placed = 0;     %count of placed gates 

cpoint_count = 0;     %count of crosspoints in threshold  

       gates 

acc = [];      %to store accuracy of each gate 

accuracy = [];      %to store cumulative accuracy of  

       gates 

 [size_rows,size_cols] = size(rows_cols); 

  

def_rate = 10; %[5 10 15 20 25];    %different defect rates  

[def_rate_rows def_rate_cols] = size(def_rate); 

     for k = 1:1:6 

         for j = 1:1:numel(def_rate) 

             for  n = 1:1:gate_count 

                def_mat = random_defect(rows_cols(1,1),rows_cols(2,1),def_rate(j)); 

                placed_PGMB = def_mat; 

                placed = 0; 

                cpoint_count = 0; 

                for l = 1:1:6 

                    for m = 1:1:10 

                        if(th(l,m,k) == 1) 

                            cpoint_count = cpoint_count + 1; 

                        end 

                        if(th(l,m,k) == 1 && def_mat(l,m) == 0) 

                            placed_PGMB(l,m) = 10; 

                            placed = placed + 1; 

                        end 

                    end 

                end 

                if(placed == cpoint_count) 

                     gate_placed = gate_placed + 1; 
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                end 

            end 

            acc = [acc gate_placed/gate_count]; 

            gate_placed = 0; 

             

        end 

    accuracy = [accuracy;acc]; 

    acc = []; 

    

    end 

cols = [0; 

    1; 

    2; 

    3; 

    4; 

    5]; 

 

bar(cols,accuracy');      % plots programmability against the  

       PGMB dimensions 

colormap(gray); 

title(sprintf('Defect Unaware approach - Programmability of various gates at various de-

fect rates for 6x10 crossbar')); 

legend('TH12','TH24','TH34','TH34w2','TH44w322','TH54w322'); 

xlabel('Defect Rate'); 

ylabel('Programmability'); 

 axis square; grid on 
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+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Program used to simulate Defect Unaware – Circular shift approach. It programs 

logic of 6 threshold gate’s logic onto a million gates each to effectively simulate the 

algorithm and plots the programmability against different dimensions. 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

clear all; 

clc; 

th =  [1 0 1 0 0 0 0 0 0 0;  

 0 1 0 1 0 0 0 0 0 0;  

 0 0 1 1 0 0 0 0 0 0;  

 0 0 0 0 0 0 0 0 0 0;  

 0 0 0 0 0 0 0 0 0 0;  

 1 1 1 1 0 0 0 0 0 0];      % TH12 represented in a matrix  

       format 

th(:,:,2) =  [1 1 1 0 0 0 1 0 0 0;  

  1 0 0 1 1 0 0 1 0 0;  

  0 1 0 1 0 1 0 0 1 0;  

  0 0 1 0 1 1 0 0 0 1; 

  0 0 0 0 0 0 1 1 1 1;  

  1 1 1 1 1 1 1 1 1 1];    % TH24 represented in a matrix  

       format 

th(:,:,3) =  [1 1 1 0 1 0 0 0 0 0;  

  1 1 0 1 0 1 0 0 0 0;  

  1 0 1 1 0 0 1 0 0 0;  

  0 1 1 1 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH34 represented in a matrix  

       format 

th(:,:,4) =  [1 1 1 0 1 0 0 0 0 0;  

  1 0 0 1 0 1 0 0 0 0;  

  0 1 0 1 0 0 1 0 0 0;  
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  0 0 1 1 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];     % TH34w2 represented in a  

        matrix format 

th(:,:,5) =  [1 1 1 0 1 0 0 0 0 0;  

  1 0 0 1 0 1 0 0 0 0;  

  0 1 0 1 0 0 1 0 0 0;  

  0 0 1 0 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];     % TH44w322 represented in  

        a matrix format 

th(:,:,6) =  [1 1 0 1 0 0 0 0 0 0;  

  1 0 1 0 1 0 0 0 0 0;  

  0 1 1 0 0 1 0 0 0 0;  

  0 0 1 0 0 0 1 0 0 0;  

  0 0 0 1 1 1 1 0 0 0;  

  1 1 1 1 1 1 1 0 0 0];     % TH54w322 represented in  

        a matrix format 

  

rows_cols = [6 7 8 9 10 11; 

             10 11 12 13 14 15];      %Different Dimensions of  

        PGMBs 

gate_count = 1000000;      % number of gates to be  

        programmed 

placed_PGMB = [];      % count of successfully  

        programmed PGMBs 

gates = []; 

placed = 0;       % count of placed   

        crosspoints. 

 

l = 0;        %index variables 



 

 

56 

m = 0; 

i = 0; 

j = 0; 

k = 0; 

gate_placed = 0;     %count of PGMBs placed 

cpoint_count = 0;      % count of number of crosspoints in  

       a particular gate. 

circ_shift_count = 0;     %count of circular shifts per   

       successfully programmed gate 

shift_count = 0;      

average_shifts = [];     %average shifts per programmed  

       gate 

acc = [];  

accuracy = [];      %to store cumulative accuracy of  

       gates 

[size_rows,size_cols] = size(rows_cols); 

  

def_rate = 10 %[5 10 15 20 25];    % defect rate for placing in the  

       PGMB 

[def_rate_rows def_rate_cols] = size(def_rate); 

cols = [0; 

    1; 

    2; 

    3; 

    4; 

    5]; 

     for k = 1:1:6 

        cpoint_count = 0; 

        placed = 0; 

        for l = 1:1:6 

             for m = 1:1:10 
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                 if(th(l,m,k) == 1) 

                       cpoint_count = cpoint_count + 1; 

                 end 

             end 

        end 

        for j = 1:1:size_cols 

            placed = 0; 

            for  n = 1:1:gate_count 

                circ_shift_count = 0; 

                def_mat = random_defect(rows_cols(1,j),rows_cols(2,j),def_rate); 

                while(placed < cpoint_count && circ_shift_count < 10) 

                    th(:,:,k) = circshift(th(:,:,k),[0,1]); 

                   

                    circ_shift_count  = circ_shift_count + 1; 

                    shift_count = shift_count + 1; 

                    placed_PGMB = def_mat; 

                    placed = 0; 

                    %cpoint_count = 0; 

                    for l = 1:1:6 

                        for m = 1:1:10 

                            if(th(l,m,k) == 1 && def_mat(l,m) == 0) 

                                placed_PGMB(l,m) = 10; 

                                placed = placed + 1; 

                            end 

                        end 

                    end 

                    if(placed == cpoint_count) 

                        gate_placed = gate_placed + 1; 

                        placed = 0; 

                        break; 

                    end 
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                end 

                 

            end 

            acc = [acc gate_placed/gate_count]; 

            average_shifts = [average_shifts ; (shift_count/gate_placed)]; 

            shift_count = 0; 

            gate_placed = 0; 

        end 

        accuracy = [accuracy;acc]; %  

        acc = []; 

   end 

 

bar(cols,accuracy'); 

colormap(gray); 

title(sprintf('Circular Shift Algorithm - Programmability of various gates at various defect 

rates for 6X10 crossbar')); 

legend('TH12','TH24','TH34','TH34w2','TH44w322','TH54w322'); 

xlabel('Defect Rate'); 

ylabel('Programmability'); 

  

  

              

 

 

 

 

 

 

 

 

 

 



 

 

59 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Program used to simulate Defect Unaware – Modified shift approach. It programs 

logic of 6 threshold gate’s logic onto a million gates each to effectively simulate the 

algorithm and plots the programmability against different dimensions. 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

clear all; 

clc; 

th =  [1 0 1 0 0 0 0 0 0 0;  

 0 1 0 1 0 0 0 0 0 0;  

 0 0 1 1 0 0 0 0 0 0;  

 0 0 0 0 0 0 0 0 0 0;  

 0 0 0 0 0 0 0 0 0 0;  

 1 1 1 1 0 0 0 0 0 0];      % TH12 represented in a matrix  

       format 

th(:,:,2) =  [1 1 1 0 0 0 1 0 0 0;  

  1 0 0 1 1 0 0 1 0 0;  

  0 1 0 1 0 1 0 0 1 0;  

  0 0 1 0 1 1 0 0 0 1; 

  0 0 0 0 0 0 1 1 1 1;  

  1 1 1 1 1 1 1 1 1 1];    % TH24 represented in a matrix  

       format 

th(:,:,3) =  [1 1 1 0 1 0 0 0 0 0;  

  1 1 0 1 0 1 0 0 0 0;  

  1 0 1 1 0 0 1 0 0 0;  

  0 1 1 1 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH34 represented in a matrix  

       format 

th(:,:,4) =  [1 1 1 0 1 0 0 0 0 0;  

  1 0 0 1 0 1 0 0 0 0;  

  0 1 0 1 0 0 1 0 0 0;  
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  0 0 1 1 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH34w2 represented in a matrix  

       format 

th(:,:,5) =  [1 1 1 0 1 0 0 0 0 0;  

  1 0 0 1 0 1 0 0 0 0;  

  0 1 0 1 0 0 1 0 0 0;  

  0 0 1 0 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH44w322 represented in a  

       matrix format 

th(:,:,6) =  [1 1 0 1 0 0 0 0 0 0;  

  1 0 1 0 1 0 0 0 0 0;  

  0 1 1 0 0 1 0 0 0 0;  

  0 0 1 0 0 0 1 0 0 0;  

  0 0 0 1 1 1 1 0 0 0;  

  1 1 1 1 1 1 1 0 0 0];    % TH54w322 represented in a  

       matrix format 

rows_cols = [6 7 8 9 10 11; 

             10 11 12 13 14 15];     %Different Dimensions of PGMB 

gate_count = 1000000;     % number of gates to be   

       programmed 

placed_PGMB = [];     %count of placed PGMBs 

th_temp = []; 

gates = []; 

placed = 0;      %count of placed crosspoints 

 

a = 0;       %index variables   

l = 0; 

m = 0; 

i = 0; 
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j = 0; 

k = 0; 

gate_placed = 0;      % count of gates programmed 

gate_placed_prev = 0; 

cpoint_count = 0;      %number of crosspoints in the gate 

circ_shift_count = 0;     % count of circular shifts 

acc = []; 

row_count = 0; 

col_count = 0; 

accuracy = [];       % to store programmability of each  

       of the gates 

  

[size_rows,size_cols] = size(rows_cols); 

  

def_rate = [5 10 15 20 25 30]; % defect rate 

[def_rate_rows def_rate_cols] = size(def_rate); 

% start with getting the crosspoint count 

for k = 1:1:6 

     th_temp = []; 

    cpoint_count = 0; 

    placed = 0; 

    for l = 1:1:6 

        for m = 1:1:10 

            if(th(l,m,k) == 1) 

               cpoint_count = cpoint_count + 1; 

            end 

            if(l<6) 

               th_temp(l,m) = th(l,m,k); 

            end 

        end 

    end 
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   % start placing crosspoints… 

 for j = 1:1:size_cols 

  

        placed = 0; 

       for n = 1:1:gate_count 

          for a = 1:1:5 

             if(gate_placed == gate_placed_prev) 

                      th_temp = circshift(th_temp, [1,0]); 

                    

                 for row_count = 1:1:5 

                     for col_count = 1:1:10 

                        th(row_count,col_count,k) = th_temp(row_count,col_count); 

                     end 

                 end 

                 circ_shift_count = 0; 

                  

                 def_mat = random_defect(rows_cols(1,j),rows_cols(2,j),def_rate); 

                 while(placed < cpoint_count && circ_shift_count < 10) 

                            th(:,:,k) = circshift(th(:,:,k),[0,1]); 

                   

                    circ_shift_count  = circ_shift_count + 1; 

                    

                    placed_PGMB = def_mat; 

                    placed = 0; 

                    %cpoint_count = 0; 

                    for l = 1:1:6 

                         for m = 1:1:10 

                            if(th(l,m,k) == 1 && def_mat(l,m) == 0) 

                               placed_PGMB(l,m) = 10; 

                                placed = placed + 1; 

                            end 



 

 

63 

                         end 

                     end 

                     if(placed == cpoint_count) 

                         gate_placed_prev = gate_placed; 

                         gate_placed = gate_placed + 1; 

                         placed = 0; 

                         break; 

                     end 

                 end 

             elseif (gate_placed > gate_placed_prev) 

                break; 

             end 

             

         end 

                

         gate_placed_prev = gate_placed;    

       end 

        acc = [acc gate_placed/gate_count]; 

       

        gate_placed = 0; 

  

    end 

    accuracy = [accuracy;acc]; 

    acc = []; 

    

end 

cols = [0; 

   1; 

   2; 

   3; 

   4; 
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   5]; 

gate = [10 10 10 10 10 10 20 20 20 20 20 20 30 30 30 30 30 30 40 40 40 40 40 40 50 50 

50 50 50 50 60 60 60 60 60 60]; 

bar(cols,accuracy');      %plots programmability  

        against size of PGMBs 

 

title(sprintf('Modified Circular Shift Algorithm - Programmability of Various Gates at 

various defect rate 6X10 crossbar')); 

legend('TH12','TH24','TH34','TH34w2','TH44w322','TH54w322'); 

xlabel('Defect Rate'); 

ylabel('Time'); 

colormap(gray); 
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+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Program used to simulate Defect Aware Approach algorithm. It programs logic of 6 

threshold gate’s logic onto a million gates each to effectively simulate the algorithm 

and plots the programmability against different dimensions. 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

clear all; 

clc; 

  

    l = 1;       %index variables  

    x = 1; 

    y = 1; 

    z = 1; 

    p = 1; 

 

    failed = 0;       %flag variable 

    row_watch = [];      %count watch variables 

    col_watch = []; 

    count_watch = []; 

    count_placable = [];     %to store available   

        crosspoints 

    accuracy_cumulative = [];     %stores cumulative   

        programmability 

    avail_rows = [];      %store available row indexes 

    th23_row = []; 

    temp = []; 

    gt = 0; 

    acc = 0; 

    th23_avail = []; 

    programmable = []; 
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    placed = 0;       %stores count of placed  

        crosspoints 

    placed_mat = []; 

    accuracy = []; 

    delim = [50;     

             50; 

             50; 

             50; 

             50; 

             50; 

             50; 

             50; 

             50; 

             50];       %Delimiter variable for  

        appending with available  

        rows 

rows = [6 7 8 9 10 11];     %row values for PGMB 

cols = [10 11 12 13 14 15];     % column values for PGMB 

prog = []; 

ones = 0; 

  

def_rate = 10; % [5 10 15 20 25 30 35 40 45 50]; 

total = 0; 

th_23 = [1 0 1 0 0 0 0 0 0 0;  

 0 1 0 1 0 0 0 0 0 0;  

 0 0 1 1 0 0 0 0 0 0;  

 0 0 0 0 0 0 0 0 0 0;  

 0 0 0 0 0 0 0 0 0 0;  

 1 1 1 1 0 0 0 0 0 0];      % TH12 represented in a matrix  

       format 

th_23(:,:,2) =  [1 1 1 0 0 0 1 0 0 0;  
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  1 0 0 1 1 0 0 1 0 0;  

  0 1 0 1 0 1 0 0 1 0;  

  0 0 1 0 1 1 0 0 0 1; 

  0 0 0 0 0 0 1 1 1 1;  

  1 1 1 1 1 1 1 1 1 1];    % TH24 represented in a matrix  

       format 

th_23(:,:,3) =  [1 1 1 0 1 0 0 0 0 0;  

  1 1 0 1 0 1 0 0 0 0;  

  1 0 1 1 0 0 1 0 0 0;  

  0 1 1 1 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH34 represented in a matrix  

       format 

Th_23(:,:,4) =  [1 1 1 0 1 0 0 0 0 0;  

  1 0 0 1 0 1 0 0 0 0;  

  0 1 0 1 0 0 1 0 0 0;  

  0 0 1 1 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH34w2 represented in a matrix  

       format 

Th_23(:,:,5) =  [1 1 1 0 1 0 0 0 0 0;  

  1 0 0 1 0 1 0 0 0 0;  

  0 1 0 1 0 0 1 0 0 0;  

  0 0 1 0 0 0 0 1 0 0;  

  0 0 0 0 1 1 1 1 0 0;  

  1 1 1 1 1 1 1 1 0 0];    % TH44w322 represented in a  

       matrix format 

Th_23(:,:,6) =  [1 1 0 1 0 0 0 0 0 0;  

  1 0 1 0 1 0 0 0 0 0;  

  0 1 1 0 0 1 0 0 0 0;  

  0 0 1 0 0 0 1 0 0 0;  
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  0 0 0 1 1 1 1 0 0 0;  

  1 1 1 1 1 1 1 0 0 0];    % TH54w322 represented in a  

       matrix format 

  

gate_count = 1000000;    %number of gates to be programmed   

    for g = 1:1:6    

        % Scans the gate to be programmed to get positions of crosspoints. 

        th23_avail = []; 

        cross_count = 0; 

 

        for i = 1:1:10 

            for j = 1:1:5 

                 if(th23(j,i,g) == 1) 

                    cross_count = cross_count + 1; 

                    th23_avail = [th23_avail i j]; 

                 end 

            end 

            th23_avail = [th23_avail 150];  

        end 

         

        

        for u = 1:1:6 

 

            if(((rows(1,u)*cols(1,u))-

((def_rate*rows(1,u)*cols(1,u))/100))>=(1.5*cross_count)) 

%               n = ceil((20*rows(1,u))/100) - 1; % uses 20% of the rows for OR plane 

                n = rows(1,u) - 5; 

                m = 5; 

                i = 1; 

    

                prgmd_gates = 0; 

                for gt = 1:1:gate_count 

                    def_mat = random_defect(rows(1,u),cols(1,u),def_rate);%(1,u)); 

                 

                    failed = 0; 
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                    row_watch = []; 

                    col_watch = []; 

                    count_watch = []; 

                    count_placable = []; 

                    avail_rows = []; 

                    th23_row = []; 

                    temp = []; 

                    programmable = []; 

 

                    placed = 0; 

 

                    for j = rows(1,u)-n+1:1:rows(1,u) 

                        for k = 1:1:cols 

                            if(def_mat(j,k) == 0) 

                                row_watch = [row_watch;j k]; 

                            end 

                        end 

                    end 

 

                    [row_watch_row row_watch_col] = size(row_watch); 

                    for j = 1:1:cols 

                        for k = 1:1:rows(1,u)-n 

                            if(def_mat(k,j) == 0) 

                                col_watch = [col_watch;j k]; 

                            end 

                        end 

                    end 

 

                    [col_watch_row col_watch_col] = size(col_watch); 

                    count = 1; 

                    j=0; 

                    while(count<row_watch_row) 

                        if(row_watch(count,1) == row_watch(count+1,1)) 

                            j = j+1; 

                        else 

                        count_watch = [count_watch;row_watch(count) j+1]; 

                        j = 0; 

                        end 

                        if(count == row_watch_row-2) 

                            count_watch = [count_watch;row_watch(count) j+2];    

                        end 

                        count = count+1; 

                    end 

                    [count_watch_rows count_watch_cols] = size(count_watch); 

                    k = 1; 

                    l = 1; 
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%                     placed = 0; 

                    for t = 1:1:count_watch_rows 

                        failed = 0; 

%                         placed = 0; 

                        if(count_watch(t,2)>=th23_OR && placed < cross_count) 

                            placed = 0; 

                            avail_rows = []; 

                            for k = 1:1:row_watch_row 

                                if(count_watch(t,1) == row_watch(k,1)) 

                                    for l = 1:1:col_watch_row 

                                        if(row_watch(k,2) == col_watch(l,1)) 

                                            avail_rows = [avail_rows col_watch(l,1) col_watch(l,2)]; 

                                        end 

                                    end 

                                    avail_rows = [avail_rows 150]; 

                                end 

                            end 

                            [avail_rows_rows avail_rows_cols] = size(avail_rows); 

                            [th23_avail_rows th23_avail_cols] = size(th23_avail); 

                            y=1; 

                            x=2; 

                            c=1; 

                            i=2; 

                            j=2; 

                            while(j<th23_avail_cols) 

                                while(th23_avail(1,y) ~= 150) 

                                    y = y + 1; 

                                end 

                                while(i<avail_rows_cols) 

                                    z = i; 

                                    while(avail_rows(1,z)~=150) 

                                        z = z+1; 

                                    end 

                                    p = z;  

                                    while(j<y && (avail_rows(1,z) ~= 150 || avail_rows(1,z-1) ~= 

150)) 

                                        for z = i:2:p 

                                            if(th23_avail(1,j) == avail_rows(1,z)) 

                                                th23_row(z) = 1; 

                                            end 

                                        end 

                                        j = j + 2; 

                                    end 

                                    if(avail_rows(1,i-1) == 150) 

                                        i = i - 1; 

                                    end 
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                                    while(avail_rows(1,i) ~= 150) 

                                        i = i + 1; 

                                    end 

                                    th23_row(i) = 150; 

                                    i=i+2; 

                                    j=x; 

                                end 

  

                                b = 1; 

                                k = 0; 

                                [th23_row_rows th23_row_cols] = size(th23_row); 

                                for a = 1:1:th23_row_cols 

                                    if(th23_row(a) == 1) 

                                        k = k + 1; 

                                    end 

                                    if(th23_row(a) == 150) 

                                        if(k<1) 

                                            k = 0; 

                                        end 

                                        if(k>1 || k == 1) 

                                            programmable(c) = avail_rows(a-2); 

                                            c = c + 1; 

                                            b = b + 1; 

                                            k = 0; 

                                        end 

                                    end 

                                end 

                                programmable(1,c) = 150; 

                                c = c+1; 

                                j = y+2; 

                                i = 2; 

                                y = y+1; 

                                x = j; 

                                th23_row = []; 

                            end  

                            [r s] = size(programmable); 

                            placed = 0; 

  

                            q = 0; 

                            for r = 1:1:s 

                                if(programmable(1,r) ~=150) 

                                    q = q + 1; 

                                end 

                                if(programmable(1,r) == 150) 

                                    count_placable = [count_placable q]; 

                                    q = 0; 
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                                end 

                            end 

      

                            [q count] = size(count_placable); 

                            for f = 1:1:10 

                                if(th23(6,f,g) == 1) 

                                    ones = ones+1; 

                                end 

                            end 

                            for q = 1:1:ones 

                                if(count_placable(1,q) == 0 || count_placable(1,q) == 150) 

                                    failed = 1; 

                                end 

                            end 

                            while(placed < cross_count && failed == 0) 

                                least = 1; 

                                for q = 1:1:ones 

                                    if(count_placable(1,least)>count_placable(1,q)) 

                                        least = q; 

                                    end 

                                end 

                                q = 1; 

                                found = 1; 

                                for q = 1:1:s 

                                    if(programmable(1,q)==150) 

                                        found = found + 1; 

                                    end 

                                    if(found == least) 

                                        while(programmable(1,q+1) ~= 150 && programmable(1,q+1) 

== 0) 

                                            q = q+1; 

                                            if(programmable(1,q+1) ==150) 

                                                failed = 1;                    

                                            end 

                                        end 

                                        l = programmable(1,q+1); 

                                        break; 

                                    end 

                                end 

                                if(failed == 0) 

                                    def_mat(count_watch(t,1),l)= 100; 

                                     

                                    for q = 1:1:5  

                                        if(th23(q,least,g) == 1) 

                                            def_mat(q,l)= 100; 

                                            placed=placed+1; 
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                                        end 

                                    end 

     

                                    for q = 1:1:s 

                                        if(programmable(1,q) == l) 

                                            programmable(1,q) = 0; 

                                        end 

                                    end 

%                                     placed = placed + 2; 

                                    count_placable(1,least) = 150; 

                                end 

  

                            end 

                            ones = 0; 

                        end 

                        if(placed >= cross_count) % failed == 0 

                            prog_failed = 0; 

                            break; 

%                             disp('programming failed');                      

                        end 

                    end % count_watch_rows for loop 

                    if(prog_failed == 0) 

                        prgmd_gates = prgmd_gates + 1; 

    

                    end % gate count for loop 

                    prog_failed = 1; 

                     

                end%def_rate end 

                acc = prgmd_gates / gate_count;  

  

            else 

                acc = 0; 

                disp('defect rate too high!'); 

                 

            end 

            accuracy = [accuracy; acc]; 

                 

        end 

        prog = [prog accuracy]; 

        accuracy = []; 

    end 

 

 

bar(def_rate,prog); 

colormap(gray); 
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title(sprintf('Defect Aware approach - Programmability of various gates at various defect 

rate 6X10 Crossbar')); 

legend('TH12','TH24','TH34','TH34w2','TH44w322','TH54w322'); 

xlabel('Defect Rate'); 

ylabel('Programmability'); 

  

axis square; grid on 
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