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ABSTRACT

NASICS: A ‘FABRIC-CENTRIC’ APPROACH TOWARDS
INTEGRATED NANOSYSTEMS

FEBRUARY 2013

PRITISH NARAYANAN

B.E. (Hons) Electrical and Electronics Engineering,

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, INDIA

M.Sc. (Hons) Chemistry,

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, INDIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Csaba Andras Moritz

This dissertation addresses the fundamental problem of how to build comput-

ing systems for the nanoscale. With CMOS reaching fundamental limits, emerging

nanomaterials such as semiconductor nanowires, carbon nanotubes, graphene etc.

have been proposed as promising alternatives. However, nanoelectronics research has

largely focused on a ‘device-first’ mindset without adequately addressing system-level

capabilities, challenges for integration and scalable assembly.

In this dissertation, we propose to develop an integrated nano-fabric, (broadly

defined as nanostructures/devices in conjunction with paradigms for assembly, inter-

connection and circuit styles), as opposed to approaches that focus on MOSFET re-

placement devices as the ultimate goal. In the ‘fabric-centric’ mindset, design choices

v



at individual levels are made compatible with the fabric as a whole and minimize

challenges for nanomanufacturing while achieving system-level benefits vs. scaled

CMOS.

We present semiconductor nanowire based nano-fabrics incorporating these fabric-

centric principles called NASICs and N3ASICs and discuss how we have taken them

from initial design to experimental prototype. Manufacturing challenges are mitigated

through careful design choices at multiple levels of abstraction. Regular fabrics with

limited customization mitigate overlay alignment requirements. Cross-nanowire FET

devices and interconnect are assembled together as part of the uniform regular fabric

without the need for arbitrary fine-grain interconnection at the nanoscale, routing

or device sizing. Unconventional circuit styles are devised that are compatible with

regular fabric layouts and eliminate the requirement for using complementary devices.

Core fabric concepts are introduced and validated. Detailed analyses on device-

circuit co-design and optimization, cascading, noise and parameter variation are pre-

sented. Benchmarking of nanowire processor designs vs. equivalent scaled 16nm

CMOS shows up to 22X area, 30X power benefits at comparable performance, and

with overlay precision that is achievable with present-day technology. Building on the

extensive manufacturing-friendly fabric framework, we present recent experimental ef-

forts and key milestones that have been attained towards realizing a proof-of-concept

prototype at dimensions of 30nm and below.
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CHAPTER 1

INTRODUCTION

As MOSFET critical dimensions have progressed through the deep-submicron to

nanoscale regimes, CMOS technology is facing new challenges across both device

characteristics as well as manufacturability and may in the near future reach funda-

mental barriers. With aggressive scaling, it becomes increasingly difficult to achieve

the manufacturing precision required to keep variability and defect rates within ac-

ceptable limits. For example, ITRS 2011 [26] projects 3σ = ±1.3nm Critical Dimen-

sion (CD) control and 3σ = ±3nm overlay control for 16nm CMOS, precisions for

which manufacturing solutions are not known. Optical system complexity and de-

sign rules for manufacturing are becoming increasingly intractable. These extremely

stringent manufacturing requirements are a consequence of the general fabric archi-

tecture of CMOS, which requires a high degree of customization, including arbitrary

placement and complex interconnectivity schemes. Furthermore, at the device-level

challenges include the need for complementary devices with precise sizing and ultra-

sharp doping profiles (1nm-2nm lateral doping abruptness [10]) for source-channel

and drain-channel junctions. Arbitrary layouts with complex interconnection also

imply increased power consumption, because of the need to switch large interconnect

load capacitances.

Emerging nanomaterials such as semiconductor nanowires [11, 12], carbon nan-

otubes [23, 24], graphene [22, 42], molecular devices [7], spintronic/spin-wave de-

vices [64] etc. have been suggested as alternatives to conventional CMOS technology.

However, research in the field of emerging electronics has largely concentrated on a
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‘device-first’ approach i.e. discovering and optimizing MOSFET replacement devices

with the assumption that CMOS circuit styles and paradigms for interconnection to

build logic gates/integrated systems will be preserved intact. However, at the present

time, there are no immediately obvious replacement devices/state-variables avail-

able [15].Furthermore, the device-first approach does not address the aforementioned

challenges. This implies that given several levels of logic and routing, system-level

capabilities may not necessarily scale in proportion to individual device performance.

By contrast, at the nanoscale, it would be desirable to minimize lithographic cus-

tomization requirements on devices and layouts (e.g. eliminating arbitrary sizing and

placement of devices and arbitrary routing between them) by moving towards sim-

ple device structures and regular layouts such as parallel arrays and grids that are

more easily realizable with both unconventional and photolithography-based man-

ufacturing approaches. Furthermore, ultra-dense nanosystems could be realized if

both devices and local interconnects could be formed at the same time as part of

these regular layouts, as opposed to requiring fine-grain arbitrary interconnections of

individual devices at nanoscale dimensions. This integrated approach across multiple

design levels including manufacturing, devices, circuits and architecture is called the

‘fabric-centric’ mindset. This mindset is anchored in a belief that at nanoscale de-

veloping a complete fabric framework, rather than focusing on devices alone, is how

significant progress could be made. The twin objectives of this fabric-centric approach

are reducing manufacturing requirements while concurrently improving system-level

capabilities.

The goal of this dissertation is to develop integrated nanoscale fabrics based on

the principles of the fabric-centric approach, validate core concepts at all fabric design

levels and explore manufacturing solutions towards demonstrating a proof-of-concept

prototype. Nanoscale Application Specific Integrated Circuits (NASICs) is a semi-

conductor nanowire-based fabric that implements logic and memory functionalities on
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regular 2-D semiconductor nanowire grids with crossed-nanowire field effect transis-

tors (xnwFETs) at certain crosspoints. Previous work on NASICs has focused more

on architectural and defect tolerance aspects. A simple general purpose processor

called WIre Streaming Processor version-0 (WISP-0) [35, 56] was built on the NA-

SIC fabric. Built-in defect tolerance schemes [35, 57] were also developed to provide

resilience against high levels of manufacturing defects. In this dissertation, we dis-

cuss key physical layer aspects, device-circuit co-design and experimental directions

towards realizing a nanowire fabric. The main technical contributions are:

• We show how manufacturing and device-level requirements can be significantly

alleviated through design optimizations including novel circuit style and control

schemes.

• We develop an integrated device-circuit methodology for evaluating nanodevice

behavior in-fabric and validating core physical fabric concepts. This method-

ology is generic and ties physical layer assumptions and accurate 3-D physics

based simulations of device structures with extensive circuit-level simulation and

validation. Using the device-circuit methodology, we evaluate noise, cascading

and functionality aspects that are apparent only when considering interacting

devices and associated control schemes.

• We extend the generic integrated device-fabric methodology to address param-

eter variability and present evaluations at device, circuit and system levels.

• We discuss scalable manufacturing pathways for NASICs and identify remaining

manufacturability challenges for integration.

• We present N3ASICs, a new 3D integrated nanoscale computing fabric which

combines unconventional manufacturing with CMOS design rules and can be

assembled with no special manufacturing requirements. We also present bench-
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marking of NASICs and N3ASICs WISP-0 processor designs vs. equivalent

16nm scaled CMOS.

• Building on this extensive theoretical framework and manufacturing-friendly

fabric design, we present recent progress towards fabrication and experimental

demonstration of N3ASICs in Cleanroom settings.

The rest of this dissertation proposal is organized as follows: Chapter 2 presents

a brief overview of the NASIC fabric. Chapter 3 discusses single-type FET NASICs.

Chapter 4 describes integrated device-fabric methodologies for validating cascading,

noise mitigation and functionality. The methodology for handling device parame-

ter variation and detailed evaluations at all fabric levels are presented in Chapter 5.

Chapter 6 discusses scalable manufacturing pathways. Chapter 7, presents a new 3-D

integrated fabric with no special manufacturing contraints. Chapter 8 describes re-

cent experimental efforts and demonstrations targeting a proof-of-concept prototype.

Chapter 9 concludes this dissertation.
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CHAPTER 2

NANOSCALE APPLICATION SPECIFIC INTEGRATED
CIRCUITS (NASICS): AN OVERVIEW

This chapter provides a brief overview of NASICs. NASICs are targeted as a

CMOS replacement technology for general purpose computing as well as special-

ized applications such as image processing. NASICs rely on regular 2-D grids of

semiconductor nanowires, motivated by the need for simpler manufacturability at

the nanoscale without arbitrary layouts or extensive nanoscale customization. Logic

and interconnect are achieved as part of the grid itself, without the need for arbi-

trary connections at nanoscale dimensions post device-formation. Devices and circuit

styles amenable to implementation on these grids are used. Computational stream-

ing/cascading is supported from external reliable circuitry. Built-in fault tolerance is

used to provide resilience against permanent manufacturing defects, transient faults

and parameter variations. More details are presented below.

2.1 NASIC Building Blocks: Semiconductor Nanowires and

Crossed Nanowire Field Effect Transistors

Semiconductor nanowires are nanostructures made of semiconductor material with

diameters typically between 2nm – 100nm. Nanowires can be grown to up to a

few microns in length and have been shown with a variety of materials including

Silicon [11, 31], Germanium [17, 61], Zinc Oxide [29], Indium Phosphide [13] and

Indium Antimonide [28]. By using non-conventional or self-assembly techniques [16,

21, 54], it may be possible to assemble these materials into regular arrays and grids.
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The NASIC fabric is built on these types of 2-D semiconductor nanowire grids

with crossed nanowire field-effect transistors (xnwFETs) at certain crosspoints. The

channel of a xnwFET is aligned along one NW while the perpendicular NW above it

acts as gate. A typical xnwFET behavior has been reported in Silicon NWs in [20].

2.2 NASIC Circuits

Fig. 2.1 shows an example of a NASIC circuit that implements a 1-bit full adder.

This consists of a semiconductor nanowire grid with peripheral microwires (MWs)

that carry VDD, VSS and dynamic control signals. Both n- and p-type xnwFETs

are shown at certain crosspoints in the diagram. Channels of xnwFETs are oriented

horizontally on the left plane, and vertically on the right. Inputs are received from

vertical nanowires in the left plane. These act as gates to n-type horizontal nanowire

FETs implementing an AND stage of a two-level logic. The outputs of the horizontal

AND plane act as gates to p-type xnwFETs whose channels are aligned in the vertical

direction (right OR plane). Multiple such NASIC tiles are cascaded together to form

more complex circuitry such as processors [56]. In keeping with the fabric-centric

mindset, all crossed nanowire devices used in one logic stage of the circuit are identical

with no arbitrary doping or sizing requirement. Customization of the grid is limited

to defining the positions of transistors and interconnect, which determines the logic

function implemented without arbitrary placement or routing.

NASICs use dynamic signals driven from external reliable CMOS circuitry. Con-

trol signals coordinate the flow of data through NASIC tiles: horizontal and vertical

signals are different, supporting cascading. Fig. 2.2 shows a typical NASIC control

scheme but other schemes are also possible. Horizontal nanowire outputs are initially

discharged to logic ‘0’ by asserting hdis. hdis is then switched off and heva is asserted

to evaluate inputs. If all inputs are ‘1’ an output of ‘1’ is achieved, realizing AND

logic. In the next phase, both hdis and heva are switched off, and the horizontal
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Figure 2.1. NASIC 1-bit Full adder using AND-OR 2-level logic
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Figure 2.2. Dynamic control scheme for NASIC 2-level AND-OR logic

nanowires are in hold phase, during which time vertical nanowires are precharged

(vpre is asserted) to ‘1’. veva is then asserted and outputs from the tile are evalu-

ated. The staggered evaluation of dynamic stages with inserted hold phases is critical

to NASIC operation. The hold phase enables implicit latching of the nanowire output

after evaluation without the need for expensive flip-flops, and is essential for cascading

multiple nanowire stages [37].

2.3 WISP-0 Architecture

NASIC tiles may be cascaded together to form large scale systems/architectures.

WIre Streaming Processor version 0 (WISP-0) is a stream processor that implements a

5-stage microprocessor pipeline architecture including fetch, decode, register file, exe-

cute and write back stages. WISP-0 consists of five nanotiles: Program Counter (PC),

ROM, Decoder (DEC), Register File (RF) and Arithmetic Logic Unit (ALU). Fig. 2.3

shows its layout. In WISP designs, in order to preserve the density advantages of the

fabric, data is streamed through the fabric with minimal control/feedback paths. All

hazards are exposed to the compiler. It uses dynamic circuits and pipelining on the

wires to eliminate the need for explicit flip-flops and therefore improve the density

considerably. WISP-0 is used as a design prototype for evaluating key metrics such

as area and performance as well as the impact of various fault-tolerance techniques
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on chip yield and process variation mitigation. A NASIC WISP-0 processor has been

shown to be up to 33X denser than an equivalent 16nm CMOS implementation.

2.4 Chapter Summary

This chapter presents a brief overview of the NASIC fabric. The rest of the dis-

sertation addresses key physical fabric issues in building integrated nanosystems in

general, and NASICs in particular, including integrated device-circuit explorations,

fabric-friendly design optimizations for functionality and reducing manufacturing re-

quirements, parameter variation, fabrication etc.
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Figure 2.3. WISP-0 Nanoprocessor layout
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CHAPTER 3

CMOS CONTROL ENABLED SINGLE-TYPE FET NASIC

In nano-systems based on semiconductor nanowires, it may be difficult to build

both p- and n-FETs using the same material. While complementary FETs have been

demonstrated in zinc oxide [41], silicon [11], and germanium [17] nanowires, in all cases

large differences in transport properties were found between the two types of FETs,

sometimes much greater than those seen in today’s traditional CMOS transistors. As

the transistor characteristics are certain not to be symmetric between n-FETs and

p-FETs, this would make timing closure more complicated thereby making it harder

to manufacture systems reliably. Consequently, when designing at the nanoscale, it

would be advantageous if only one type of device were required.

However, in general, conventional logic systems designed using mostly one type of

FETs, such as pseudo-NMOS, suffer from major power and performance drawbacks

as compared to CMOS [45]. This is one reason why such designs have not found

widespread applicability.

In NASIC designs, instead of using a scheme such as pseudo-NMOS, the dynamic

control from external CMOS can be modified such that the associated nanoscale

circuits could function with only one type of FET. The static power consumption can

be eliminated by ensuring that the control scheme never causes direct paths between

ground and the power supply voltage.

This chapter introduces new types of dynamic circuit styles utilizing only one type

of xnwFETs in the logic portions of the design. In keeping with the fabric-centric

mindset, this approach has the following key advantages:
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• It eases manufacturing requirements by eliminating one doping type.

• It reduces device design and optimization requirements, since characteristics of

dissimilar devices need not be balanced.

• By eliminating slower p-type devices, it enables system-level performance im-

provement.

Furthermore, as will be shown in this chapter, these benefits come with no loss in

the overall density of the fabric.

3.1 Modifications to the Control Scheme

It has been found that altering the CMOS control scheme obviates the need for two

types of devices to implement arbitrary logic functions on the nanogrid. The scheme

may thus be used with manufacturing processes where complementary devices are

difficult or impossible to achieve. A design using only n-type FETs will implement

a NAND-NAND cascaded logic whereas a design using p-type FETs will implement

a NOR-NOR logic. Fundamentally, these are equivalent with the original AND-OR

(Fig. 2.1).

Fig. 3.1 shows two NASIC stages implementing NAND-NAND functionality with

only n-type xnwFETs. Outputs from the horizontal NAND stage (do1a and do1b)

become gate inputs for the vertical NAND stage as part of the crossbar grid structure

without additional routing requirement. The associated timing scheme is shown in

Fig. 3.2. On comparison with the AND-OR timing scheme (Fig. 2.2), it is seen that

the dynamic scheme of precharge, evaluate and hold is still in place. However the

behaviour of the control signals has been modified. There is no predischarge phase;

all planes are precharged. Outputs are initially at logic ‘1’, and if all inputs are ‘1’,

they are evaluated to ‘0’, achieving NAND functionality. Also, all control signals are
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Figure 3.1. NASIC circuit with two dynamic NAND stages - Output of one stage
is cascaded to the next.

active high, since they gate only n-type FETs. Similar to the previous case, hold

phases are inserted for implicit latching and correct cascading.

3.2 NASIC Logic Implementation with One Type of Devices

Fig. 3.3 shows a 1-bit full adder built using only n-type devices. Fig. 3.3(a) shows

a 3-D physical fabric diagram with the crossed nanowire grid, xnwFET channels (blue

regions) and peripheral microwires for power rails and dynamic control. Fig. 3.3(b)

Figure 3.2. Control scheme for NAND-NAND NASIC logic with implicit latching
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shows the circuit equivalent implementing NAND-NAND logic. In comparison with

the previous implementation (Fig. 2.1) it may be noted that the relative positions

of the transistors in the NAND-NAND example is identical to the AND-OR imple-

mentation. The only change from AND to NAND is in the swapping of the control

signals, VDD and VSS. The output node is precharged rather than predischarged and

evaluated to ground as opposed to logic ‘1’, which results in the inversion of the

function. On the second plane, the change is more significant: from OR to NAND.

Both the type of the transistor and polarity of the control scheme have been changed.

Also, the inputs to the vertical NW are now inverted from their values in the AND-

OR scheme. The inversion of the inputs in conjunction with the change from OR

to NAND results in a transformation of the logic function. DeMorgan’s Laws tell

us that this transformation should produce the same result as the AND-OR scheme.

This allows us to maintain the transistors in their original positions, even though the

logic functions used have changed. It can thus easily be seen that there will be no

impact on the area of the overall design.

All WISP-0 tiles were implemented using the new control scheme and n-type

xnwFETs. Two examples are shown below.

3.2.1 WISP-0 Program Counter

The WISP-0 program counter is implemented as a 4-bit accumulator. Its output

is a 4-bit address that acts as input to the ROM. The address is incremented each

cycle and fed back using a nano-latch. Fig. 3.4 shows implementation of the Program

Counter using NAND-NAND. Diagonal FETs on upper NAND planes delay output

by one cycle and allow signals to turn the corner.

3.2.2 WISP-0 Arithmetic Logic Unit

Fig. 3.5 shows the layout of the WISP-0 ALU that implements both addition

and multiplication functions. The arithmetic unit integrates an adder and multiplier
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Figure 3.3. NASIC 1-bit full adder with NAND-NAND logic (a) 3-D physical fab-
ric view with nanowire grid, xnwFETs, oxide and peripheral control. (b) circuit-
equivalent implementation

Figure 3.4. WISP-0 Program Counter implemented using NAND-NAND logic
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Figure 3.5. WISP-0 Arithmetic Logic Unit implemented using NAND-NAND logic

together to save area and ease routing constraints. It takes the inputs (at the bottom)

from the register file and produces the write-back result. At the same time, the write-

back address is decoded by the 2-4 decoder on the top and transmitted to the register

file along with the result. The result is written to the corresponding register in the

next cycle.

3.3 Cascading and Noise Considerations for Single-Type FET

Designs

With single-type xnwFET schemes, n-type precharge devices are used to pull up

output nodes. If the gate voltage were VDD, this would lead to output potentials

below VDD, typically around (VDD - VTH) [45]. One important consideration is,

will cascading of multiple dynamic stages lead to accumulation of VTH drops, causing
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incorrect functionality? The NASIC logic style is designed such that this catastrophic

noise build-up scenario never occurs.

Firstly, the gate voltage for the precharge device is controlled from external CMOS

circuitry and not from logic. This implies that the driving voltage can be higher than

VDD, leading to a full voltage swing at the output node. Furthermore, NASICs use a

NAND-NAND logic style which, in addition to being able to implement any arbitrary

logic function, is also inverting in nature. Output nodes at any stage are always

cascaded to a xnwFET in the next stage that is part of a pull down network. In other

words, the logic style is such that logic ‘1’ inputs when evaluated will cause logic ‘0’

output at the next stage. Output signals at any stage do not gate xnwFETs in pull-

up networks; the pull-up is accomplished entirely by precharge signals. Therefore, a

combination of circuit and inverting logic style prevents noise accumulation in NASIC

designs. Extensive device-fabric noise simulations have shown that there is no noise

accumulation in cascaded dynamic circuits 40 stages deep. Detailed evaluations of

noise and cascading issues are presented in the next chapter.

3.4 Chapter Summary

A fabric-friendly approach towards elimination of dissimilar devices in the NA-

SIC fabric was presented. The new circuit-style is enabled by changes to the external

CMOS control scheme and is achieved with no loss of density and has benefits at man-

ufacturing, device, and architectural levels. The use of single-type FETs for NASIC

designs implies that manufacturing requirements are considerably eased since com-

plementary doped nanowire devices are not needed. Device-design and optimization

effort may be reduced since balancing device characteristics across dissimilar devices

through sizing or other approaches are not required. System-level performance bene-

fits are also achieved due to the elimination of slower devices. The next chapter will
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discuss detailed device and circuit level evaluations of the NAND-NAND circuit style

including noise implications and further improvements to the control scheme.
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CHAPTER 4

INTEGRATED DEVICE-FABRIC EXPLORATION AND
NOISE MITIGATION IN NANOSCALE FABRICS

Integration of nanofabrics requires extensive validation of device interactions.

Charge sharing and capacitance effects that cause glitches are apparent only when

considering multiple devices together and could cause loss of functionality and/or

performance. Therefore, while device choices and optimizations must target key elec-

trical parameters such as threshold voltage and intrinsic delay, in keeping with the

fabric-centric mindset, they should also i) be fully validated at the circuit/fabric level

for noise implications and functionality and ii) not impose insurmountable challenges

for the fabric manufacturing sequence.

In this chapter we present an integrated device-fabric exploration with simulations

at the circuit level built on accurate 3-D physics based simulations of nanodevice

electrostatics and operations. Using an integrated approach, co-design of devices and

circuits can be accomplished with accurate physics-based device models. We extract

device I-V characteristics, parasitic capacitances and key electrical parameters such

as threshold voltage and on/off current ratios for different xnwFETs. We then create

behavioral models of the data for a circuit simulator and use these to evaluate devices

in-fabric for noise resilience, signal integrity and validation of worst-case test circuits.

We also discuss implications of device and fabric choices for manufacturing. While

the work is focused on xnwFETs and NASICs, the approach and methodology are

fairly generic and may be applicable to other nanoscale fabrics.
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4.1 Methodology for Integrated Device-Fabric Exploration

The methodology for bottom-up integrated device-fabric explorations is detailed in

this section. It encompasses physical layer assumptions, device level explorations and

implications at higher design levels and is summarized in a flow diagram (Fig. 4.1).

A variety of physical layer assumptions such as choice of gate material and the

structure of devices can be made targeting device metrics such as the threshold volt-

age, on-currents and intrinsic delay. For example, the gate material used in NASIC

crossed nanowire field effect transistors (xnwFETs) could be composed of crystalline

silicon, nickel silicide or metals. Similarly, the structure of the device may be a top

nanowire gate or an Omega gated structure for tighter electrostatics. In accordance

with the fabric-centric mindset, these assumptions need to be evaluated in terms of

implications for manufacturing as well as for other design levels.

The electrical properties of individual xnwFETs may be characterized using ac-

curate 3-D physics based simulation of the nanostructures using Synopsys Sentaurus

Device [3]. Calibration of the tool against experimental data at similar dimensions

is required to account for nanoscale effects such as increased surface roughness and

interface trap states. These device-level simulations provide 3 sets of data: i) Current

data for different values of drain-source (VDS) and gate-source (VGS) voltages, ii) De-

vice capacitances at different values of VGS, and iii) key device parameters/metrics

that determine noise margins and performance of the devices such as the on-currents

(ION), threshold voltage (VTH) and the intrinsic delays of the devices. These de-

vice parameters may be adjusted by changing underlying physical layer assumptions

as well as the substrate bias (e.g. a higher threshold voltage may be obtained by

modifying the metal work function or using a more negative back gate bias).

The current data is fitted as a function of VGS and VDS using regression analysis

and curve fitting. This step expresses the current as a mathematical function of

VGS and VDS. The expression for the current, in conjunction with a piecewise linear
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Figure 4.1. Methodology for Integrated Device-Fabric Exploration and Noise Eval-
uation
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approximation for the device capacitances forms a behavioral model of the xnwFET,

which may be incorporated into a standard circuit simulator such as HSPICE to carry

out circuit level evaluations.

The circuit-level simulations take as inputs the behavioral models for individual

devices, circuit netlists with worst-case noise scenarios as well as fabric-specific con-

trol and sequencing schemes. As will be shown, different sequencing schemes have

different implications while considering noise margins and signal integrity; they con-

trol the flow of data and influence capacitive interactions and glitching in between

successive cascaded stages. Different cascading and noise scenarios are evaluated and

output waveforms are checked for signal integrity. Circuit-level delay and fabric per-

formance implications are also quantified from these simulations. The methodology

thus explores implications of physical layer and device assumptions on the fabric as a

whole. While it has been explored extensively for the NASIC fabric, this integrated

methodology is fairly generic and is applicable to other nano-fabrics as well.

4.2 Physical Layer and Device Explorations1

4.2.1 Devices Explored

We have considered three different xnwFET structures. Fig. 4.2 shows an image of

each nanowire transistor structure used for this study. The first structure considered

is the silicon gate xnwFET. This transistor consists of a bottom nanowire that acts

as the channel and a top nanowire, orthogonal to the bottom nanowire, which acts

as the gate electrode. These two nanowires are separated by a thin dielectric, which

acts as the gate insulator.

The second structure considered is the fully silicided (FUSI) gate xnwFET. This

structure is similar to the previous one, except that the gate nanowire has been fully

1Work done in UCLA by Prof. Chui’s group, included for completeness

22



Figure 4.2. Three xnwFET devices simulated (a) Si gate xnwFET (b) NiSi gate
xnwFET (c) Omega-gated xnwFET.

silicided. This eliminates some undesired effects such as gate depletion, and reduces

the resistance of the gate nanowire needed for fast evaluation of the previous logic

stage. Also NiSi gives a smaller gate-substrate workfunction difference and there-

fore, there is no need of applying large substrate biases or using large source/drain

underlaps to achieve the desired threshold voltage.

The third structure considered is the Omega-gated xnwFET structure with a metal

gate. This structure was chosen because it has a better gate to channel coupling than

the two previous structures. Therefore it should have a better ON current (ION) as

well as a higher on-to-off current ratio (ION/IOFF ).

4.2.2 Methodology

Due to the complex structure of xnwFETs, a 3D simulation is mandated. To study

the behavior of xnwFETs, Synopsys Sentaurus Device simulator was used. Before any

relevant simulation can be done, the simulation models have to be calibrated. To do

this, experimental data from well characterized nanowire channel FETs with similar

dimensions was employed [50, 47]. The calibrated models and parameters include the
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Table 4.1. Parameters used for xnwFET device simulations

Device Si 0.2 Si 0.3 NiSi
0.2

NiSi
0.3

Omega
0.2

Omega
0.3

Gate Material Si Si NiSi NiSi Metal Metal
Gate Workfunction (eV) n+ Si n+ Si 4.5 4.5 4.5 4.6
Gate NW diameter (nm) 10 10 10 10 - -
Channel NW diameter (nm) 10 10 10 10 10 10
Channel doping (cm−3) 1018 1018 1018 1018 1018 1018

Gate oxide material HfO2 HfO2 HfO2 HfO2 HfO2 HfO2

Gate Oxide thickness (nm) 3 3 3 3 3 3
Bottom oxide material SiO2 SiO2 SiO2 SiO2 SiO2 SiO2

Bottom oxide thickness (nm) 10 10 10 10 10 10
Source/Drain underlap (nm) 3 3 0 0 0 0
Back Gate Bias (V) -4 -5 -3 -4 -3 -3

drift-diffusion transport models, to include effects such as carrier scattering due to

surface roughness, and dielectric/channel interface trapped charges.

4.2.3 Simulation Results

For this study, six different devices have been simulated. For each of the structures

mentioned before, we simulated a device with a threshold voltage of around 0.2 V and

another device with a threshold voltage of around 0.3 V. The 0.2 V and 0.3 V values

for VTH were chosen for the noise resilience study purposes. A lower value for VTH is

expected to improve logic ‘1’ noise resilience, but lower the logic ‘0’ noise resilience,

whereas a higher value for VTH will do the opposite. To achieve the desired VTH

values, a source/drain underlap, as well as a back gate bias can be applied. Table 4.1

summarizes the basic device parameters used to achieve the desired VTH values.

Drain current vs. gate voltage (IDS-VGS), drain current vs. drain voltage (IDS-

VDS) and capacitance vs. gate voltage characteristics were simulated and important

electrical parameters such as on current (ION) and on-to-off current ratio (ION/IOFF )

were extracted. Fig. 4.3(a) shows IDS-VGS curves for the 6 devices simulated and
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Figure 4.3. Device simulation outputs: (a) ID − VGS curves (b) CG − VGS curves

Table 4.2. xnwFET Device simulation results

Si Gate xn-
wFET

NiSi Gate xn-
wFET

Omega-Gated
xnwFET

VTH (V) 0.21 0.32 0.22 0.31 0.21 0.31
ION (A) 1.31 0.69 5.37 3.95 18.5 12.9
ION/IOFF 6798 29831 1773 12046 10782 77875
Intrinsic delay (ps) 2.38 4.43 1.13 1.49 0.59 0.81
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Fig. 4.3(b) shows capacitance vs. VGS curves for the 6 devices simulated at VDS =

0.8 V (VDD). Similarly, data was obtained for other values of VDS and VGS to cover

the operating regions of the devices. Table 4.2 summarizes key parameters such as

ION , ION/IOFF and intrinsic delay for the different devices.

ION is defined as the current level when the gate to source voltage (VGS) and the

drain to source voltage (VDS) are both equal to 0.8 V (VDD). The off-state-current

is defined as the current level when VGS is equal to 0 V and VDS is equal to 0.8 V.

Various techniques is available for VTH extraction. We have chosen the square-root

IDS extrapolation method. To calculate the intrinsic delay, we computed the CV/I

ratio, where C is the total capacitance seen from the gate and IDS is the current value

at VGS = VDS = VDD.

4.2.4 Device Comparisons

The characteristics of the three nanowire transistor structures are compared as

follows. For a given threshold voltage, the silicon gate xnwFET has the smallest ION ,

followed by the NiSi gate xnwFET and the Omega-gated xnwFET has the highest

ION as expected. First the NiSi structure has a higher ION than the Si gate structure

because the ΦMS value is lower in the NiSi case. Therefore a smaller source/drain

underlap is needed to achieve the same VTH , which in turn reduces the effective

channel length, raising the drain current level. For the Omega-gated xnwFET, the

higher current level is due to the increased ability of the gate to modulate the channel

conductivity. In the Si gate or NiSi gate xnwFET structure, the inversion layer needed

to turn on the device is formed mostly on the top part of the channel nanowire, near

the gate nanowire, whereas in the Omega-gated xnwFET, the inversion layer can be

formed almost all around the channel nanowire and therefore, this can be thought as

increasing the effective channel width at the same gate voltage.
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Another figure of merit for these three devices is the on-to-off current ratio. For

a given threshold voltage, the Si gate xnwFET and the NiSi gate xnwFET devices

have similar ION/IOFF but the Omega-gated xnwFET has a higher ION/IOFF value

as expected. This is because the Omega-gated xnwFET has better gate to channel

electrostatic control than any of the other two structures. In other words, the Omega-

gated xnwFET is more effective at turning the device on and off than any of the

other xnwFET structures. The Omega-gated xnwFET, therefore, should have better

subthreshold slope than any of the other two devices leading to a higher ION/IOFF .

Also we can compare the capacitances for these three devices. For a given VTH

specification, it can be seen that the capacitance values are usually higher for the

Omega-gated xnwFET, followed by the NiSi gate device, and the Si gate xnwFET

has the lowest values. For example, the NiSi gate device has a higher gate-to-source

and gate-to-drain capacitance value than the Si gate device because the former has

a smaller junction underlap, which will thus increase the gate coupling to the source

and drain. In addition, the NiSi gate device does not have the gate semiconductor

depletion issue near the oxide interface further increasing its capacitance values. For

the Omega-gated xnwFET, since the gate is wrapped around the channel, it can be

easily seen that the gate is located closer to the source and the drain regions than

in the other two xnwFET devices. It will in turn increase the gate-to-source and

gate-to-drain coupling and thus the respective capacitances.

4.3 Circuit level simulation and noise evaluation in-fabric

Behavioral models for the devices examined in the previous section were created

using the methodology described in Fig. 4.1. This section describes a variety of circuit

level simulations carried out to identify and fully evaluate the impact of internal noise

and validate cascaded nanowire fabrics utilizing xnwFETs.
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DC Sweep analysis was done to verify that behavioral models accurately abstract

device data. For all devices, it was found that behavioral models accurately track

SentaurusTM current data within 5% error for the voltage ranges considered.

A single NASIC NAND stage was simulated using HSPICE to verify expected

functionality. Representative results are shown in Fig. 4.4 for the Omega 0.2 device.

Other devices exhibit similar behavior. From the signal waveforms we make the

following key observations: 1) the output precharges to logic ‘1’ when the pre signal

is asserted. Typically a value greater than VDD is used for pre to achieve rail-to-

rail voltage swing at the output node . 2) The output goes to ‘0’ only when all

inputs are ‘1’, achieving the required NAND logic. 3) Current dissipation occurs only

when the capacitances are charged or discharged, and there is no static current in

NASIC designs as one of pre or eva is always off. 4) During the hold phase, the

output does not change. However during this time, the output node has high output

impedance which makes it susceptible to switching events in its neighborhood while

considering cascaded NASIC designs. In the next set of circuit simulation experiments

these internal noise sources and switching events will be investigated in detail for the

different xnwFETs and two baseline control schemes.

4.3.1 Sequencing schemes for the NASIC fabric

Fig. 3.2 showed one possible sequencing scheme for cascaded NASIC designs. In

this baseline scheme, one stage is precharged and evaluated before the next stage with

signals repeating every two stages, i.e. stages 1, 3 and 5 may use the same control

signals (say pre1 and eva1) whereas stages 2, 4 would use pre2 and eva2. While any

one stage is being precharged or evaluated, its neighbors are in the hold phase, with

outputs implicitly latched on the nanowire for correct cascading and pipelining of

datapaths.
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Figure 4.4. Circuit simulations of single NASIC dynamic stage
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In general, since control signals are not driven from logic but from reliable ex-

ternal circuitry, they may be optimized to achieve specific targets. One example of

this is driving precharge signals to voltages greater than VDD, thereby achieving a

full VDD voltage swing at the output node of a nanowire for maximum logic ‘1’ noise

margin. In keeping with the fabric-centric mindset, modifying the control schemes

does not impose any new challenges at the physical layer or in terms of manufac-

turing requirements, since there is no additional customization requirement at the

nanoscale. Furthermore, noise implications and signal integrity considerations may

be very different depending on the sequencing scheme used, since the scheme decides

how logic nodes are switching relative to one another.

Another sequencing scheme used for the NASIC fabric is shown in Fig. 4.5. This

is a 3-phase sequencing scheme where signals are repeating every 3 stages. In a large

scale design, this would imply that stages 1,4,7 etc would use identical control signals.

In this scheme, evaluate of one stage is overlapped with the precharge phase of the

next. This scheme carries performance benefits in a pipelined design as compared

to the scheme described in Fig. 3.2, since output evaluation events occur at a higher

frequency.

4.3.2 Circuit Simulation and Analysis

The six devices described in Section 4.2 were evaluated for a worst-case circuit to

evaluate noise implications and functionality. Both baseline timing schemes described

in the previous sub-section were considered in this analysis.

The three-stage cascaded test circuit used in these noise evaluations is shown in

Fig. 4.6. Stage 1 generates imperfect outputs that drive input xnwFETs of stage

2. Output integrity is checked at output nodes do21 and do31. Due to high out-

put impedance during the hold phase, the output nodes at various stages may be

susceptible to noise effects across device parasitic capacitances.
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Figure 4.5. Three-phase timing scheme for the NASIC fabric. Note that signals
repeat every three stages, with pre4 and eva4 identical to pre1 and eva1 respectively.

For example, key sources of noise for the do21 node include the Miller capacitances

between this node and do11 and do31 nodes. If do11 evaluates to ‘0’ it might cause

a downward glitch (degradation of logic ‘1’) at do21 due to the CGD capacitance

between do11 and do21. Similarly, if eva3 is asserted, a downward glitch may occur

at do21 due to the CSG parasitic capacitance. Precharging of do31 could cause an

upward glitch at the do21 node. Other similar parasitic effects exist between outputs

and intermediate nodes in the design, leading to glitching and internal noise events.

Fig. 4.7 and Fig. 4.8 show the output waveforms for the NiSi 0.2 and Omega 0.2

devices for the basic sequencing scheme describe in Fig. 3.2. Logic ‘1’ glitching is a

very serious problem in this timing scheme. Due to parasitic coupling between the

pre2 signal and do21 through the CGS capacitor (see Fig. 4.6), there is a drop in the

do21 output when pre2 is deasserted. Furthermore, while do21 is holding logic ‘1’,

it may be severely affected by two sources of noise: the CGD capacitance between

do11 and do21 as well as the CSG capacitance of the input transistor of stage 3. If

eva1 is asserted and do11 simultaneously discharges, a severe downward glitch may

be experienced at the do21 node due to these capacitances. This implies that when
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Figure 4.6. Test circuit used for cascading evaluations - output integrity of stages 2
and 3 are affected by switching events in their neighborhood. The circuit represents
a worst-case scenario for noise since stage 3 has a single input, corresponding to the
least effective resistance and capacitance between its output node and VSS.
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Figure 4.7. Cascading evaluations for NiSi 0.2 Device - Due to poor driving voltage
at the input transistor and slow device, output node do31 does not properly discharge
leading to loss of signal integrity.

stage 3 is evaluated, the driving voltage at the do21 node could be significantly below

VDD.

Two scenarios may then be considered: the voltage of do21 may be below or above

VTH . In the former case the signal integrity test fails at do21, since it is effectively

at a logic ‘0’ voltage level. In the latter case, the circuit functionality depends on the

characteristics of the device. A fast device may be able to effectively switch even with

a low driving voltage, leading to a correct logic ‘0’ evaluation of node do31, whereas

a slower device may not be able to effectively discharge do31, leading to an erroneous

logic ‘1’ value on the node. As seen in Fig. 4.7, circuits with the slower NiSi gated

devices fail in this scenario despite the input voltage being within the logic ‘1’ noise

margin (i.e. > VTH ). However, the circuit with Omega 0.2 devices, which is the

fastest of the 6 devices considered in terms of intrinsic delay, is able to effectively
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Figure 4.8. Cascading evaluations for Omega 0.2 Device - Despite poor driving
voltage, signal integrity is preserved owing to faster device.
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discharge the output node even with a significantly degraded input voltage. In other

words, faster devices are more resilient to logic ‘1’ glitching effects. Of the 6 devices

considered for these simulations, only the fastest Omega 0.2 device achieves expected

behavior, the 5 slower devices do not work.

Fig. 4.9 shows output waveforms for the NiSi 0.2 (left) and Omega 0.2 (right)

devices for the 3-phase control scheme described in Fig. 4.5. In this control scheme,

logic ‘1’ glitching effects are not as severe as in the previous scheme. This is because

both neighboring stages are not simultaneously discharging during the stage 2 hold

phase. While there can be some downward glitching due to CSG between do21 and

do32, in this scheme the parasitic capacitance CGD to do11 does not hurt logic ‘1’

integrity, since do11 is actually precharging during the stage 2 hold phase. Therefore

the NiSi 0.2 device (Fig. 4.9 - left) is able to effectively discharge the do31 output

node, leading to correct functionality. As expected, the Omega 0.2 device works

correctly in the presence of logic ‘1’ glitches.

However, in this sequencing scheme, logic ‘0’ glitching is an important considera-

tion. Due to precharging of node do11, the output node do21 might have an upward

glitch from logic ‘0’ during its hold phase. For the Omega 0.2 device this upward

glitch might cause a logic ‘0’ value to reach above the threshold voltage of the device.

Given that this device has the lowest intrinsic delay of all devices considered, the

glitch may be sufficient to cause the stage 3 input xnwFET to operate in the linear

region, leading to loss of signal integrity (Fig. 4.9 – right). In other words, faster

devices are less resilient to logic ‘0’ glitching effects. Of the 6 devices considered, the

slowest NiSi 0.3 and Si 0.3 devices fail due to logic ‘1’ glitching effects, whereas the

Omega 0.2 fails due to the logic ‘0’ glitching. NiSi 0.2, Si 0.2 and Omega 0.3, which

are middle-of-the-road devices in terms of intrinsic delay, pass all signal integrity tests

and are correctly evaluated.
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Figure 4.9. Cascading evaluations for NiSi 0.2 and Omega 0.2 devices using 3-phase
sequencing scheme - Logic ‘1’ glitching effects are reduced in this scheme, and NiSi
0.2 device shows expected behavior. However, logic ‘0’ glitching is critical for faster
devices. Upward glitch on do21 during eva3 causes loss of signal integrity at do31
node.

36



As seen from these results, both sequencing schemes and device properties have

strong implications on noise. Glitching occurs due to switching events in the neigh-

borhood, which are influenced by the external control sequence. Therefore, while

device parameters such as VTH and intrinsic delay need to be adjusted for noise re-

silience, additional noise optimizations could be done at the fabric level by altering

the sequencing schemes and eliminating or isolating glitching events. For example,

the 3-phase scheme is resilient to logic ‘1’ glitching for 4 out of 6 devices owing to the

higher driving voltage at the input nodes, whereas the other baseline scheme works

only for 1 of 6 devices. We could then potentially design a new noise resilient timing

scheme that preserves the logic ‘1’ advantages of the 3-phase timing scheme while

providing tolerance against logic ‘0’ glitching such that the fastest devices may be

leveraged in NASIC designs.

4.4 Noise Resilient Sequencing Scheme for the NASIC Fabric

In this section, we present and evaluate a new noise-resilient dynamic control

scheme that provides resilience against both logic ‘1’ and logic ‘0’ glitches across a

variety of devices. The scheme is described and all devices are evaluated against it

for the test circuit (Fig. 4.6).

Fig. 4.10 shows the new noise resilient sequencing scheme. Similar to the 3-

phase scheme, eva phase of any stage overlaps with pre of the next stage. Also,

since both neighboring stages do not simultaneously discharge, logic ‘1’ glitching is

less severe than in the first scheme. However, the key difference for the noise resilient

scheme is the introduction of a second hold stage (labeled H2 in Fig. 4.10) to separate

evaluation events from noise events. For example, in the 3-phase scheme (Fig. 4.5),

do11 precharging can cause an upward glitch at do21, which affects logic ‘0’ integrity.

However, with the new scheme do21 has already been ’used’ as input for the next

stage, i.e. eva3 has completed before the noise event (i.e. pre1) occurs (shown by
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Figure 4.10. Noise resilient 4-phase sequencing scheme for the NASIC fabric -
Additional hold phase (H2) inserted to separate evaluation from noise event. Green
arrow shows do21 glitches only after eva3 has completed. Signals repeat every four
stages.

the green arrow in Fig. 4.10). In this new control scheme, signals repeat every four

stages.

Fig. 4.11 shows the output waveforms for the Omega 0.2 device with the new

noise resilient scheme. As expected, the logic ‘0’ at do21 is already consumed before

the glitching event occurs and does not affect do31. During eva3, stage 1 is in the

new H2 phase, which essentially isolates the noise event from the propagation event

preserving signal integrity. Thus, using the new noise resilient timing schemes, devices

with lower intrinsic delays may be made functional in the NASIC fabric.

4.5 Discussion

This section discusses implications of the 4-phase noise resilient timing scheme on

fabric performance, the effect of external noise sources (e.g. power supply droops)

and manufacturing implications.
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Figure 4.11. Cascading evaluations for NiSi (solid) and Omega (Dotted) devices
using the noise resilient 4-phase control scheme - Results show signal integrity and
sufficient noise margins for logic ‘1’ glitches for both devices. Logic ‘0’ glitches have
been isolated from evaluation events and are therefore not propagated. The new
sequencing scheme achieves noise resilience and correct functionality for 4 out of 6
devices.
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4.5.1 Performance Optimization and Evaluation

In general, it may be expected that the noise resilient 4-phase sequencing scheme

would run at slower frequencies than the 3-phase and basic schemes since additional

hold phases are inserted for noise resilience. However, since the 4-phase scheme

provides better logic ‘1’ values and isolates logic ‘0’ glitches, faster devices could be

leveraged with this scheme leading to significant performance improvements at the

system level.

However, even with faster devices, NASIC dynamic circuits need to be opti-

mized for performance. Specifically, due to noise cascading effects and high output

impedance, charge at driving nodes and the associated gate-drive voltages are typi-

cally expected to be lower than VDD. Since ION is strongly dependent on VGS, this

implies that even devices with low intrinsic delays (e.g. Omega 0.2) may be operating

at sub-optimal points, leading to large evaluation delays and poor circuit performance.

Therefore, circuits need to be optimized ‘in-fabric’ to improve VGS and performance.

CMOS dynamic circuits typically use keeper devices or domino logic [45] for

achieving low output impedance. A keeper device is part of a feedback network,

which is turned ON when the output node is ‘1’, and OFF when it is ‘0’. Keeper

configurations are typically achieved with an inverter and a PMOSFET. However,

this may be hard to achieve on a regular NW based fabric without a large density

impact, since it requires nanoscale customization and feedback, in addition to p-type

FETs and static inverters for every NASIC dynamic gate. Similarly, domino logic

would need insertion of static CMOS stages between tiles. These approaches cannot

be directly integrated into the NASIC fabric.

One promising technique for increasing charge at the driving nodes is capacitance

engineering. The key idea is to increase the overall capacitance (and consequently

the charge stored) at input nodes, thereby reducing the magnitude of noise glitch-

ing, thereby leading to higher gate voltages. While increased load capacitance at a
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Figure 4.12. Capacitance engineering of input gates: adding gate capacitance at
outputs of Stage 1 increases gate-drive voltages of Stage 2 xnwFETs.

node will have a linear impact on performance; the expectation is that a net bene-

fit will be achieved due to the better-than-linear relationship between ION and VGS.

Importantly, this technique does not impose new manufacturing challenges. A ca-

pacitance trench may be created at an input stage, increasing the net capacitance of

all input nodes in that stage (Fig. 4.12). This would be done at the granularity of a

NASIC stage (typically 10s – 100s of nm) using conventional photolithography steps

and would be easier to achieve than in a conventional DRAM process, which requires

isolated capacitors for every memory bit.

The test circuit used for performance evaluation with capacitance engineering is

shown in Fig. 4.13. Stage 1 generates imperfect outputs and is subject to noise effects

previously discussed. The time taken to fully discharge the output node of stage 2 is

measured as a function of fan-in. Stage 3 loads stage 2. Capacitors shown in green

are inserted at output nodes and improve drive voltages. It must be noted that these

capacitances improve logic ‘1’ noise margins, since more charge is stored on the nodes

and magnitude of downward glitching is reduced.

Experiments were done to characterize the evaluation delay of NASIC dynamic cir-

cuits as a function of fan-in. Maximum operating frequency is defined as 1/N ∗delay,

where N is the number of distinct evaluate phases in the control scheme (explicitly, N
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Figure 4.13. Test circuit for performance evaluation as a function of fan-in - The
time taken to discharge do21 through a xnwFET stack consisting of N inputs is
measured. Stage 3 provides constant capacitive loading.
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Figure 4.14. Graph showing frequency and drive voltage improvements against
capacitive loading for fan-in 4 NASIC dynamic circuits - 5X improvement in operating
frequency compared to no cap-loading is demonstrated.

is 4 for 4-phase). The reasoning is that the minimum duration of any single evaluate

phase has to be at least equal to the delay for completely discharging the output node

through the pull-down network.

Fig. 4.14 shows drive voltage and maximum operating frequency vs. capacitance

for fan-in 4 NASIC dynamic gates. Without any capacitive loading, a maximum

frequency of 1.68 GHz is obtained. However, increasing the capacitance leads to a

5X improvement performance. A key observation is that for smaller drive voltages,

significant improvements in performance are seen. However, at higher drive voltages,

the ION vs. VGS relationship becomes more linear, and the effect of better driving

voltages due to capacitance at the input node is negated by the linear impact of the

output load capacitance.

For capacitance loading between 9 aF and 30 aF, only a 5% standard deviation is

observed, implying that performance is not very sensitive to variations in the capaci-

tance values. Also, new techniques to mitigate the impact of variability in nanoscale

fabrics [39] may be leveraged to improve the performance further. Similar trends are

seen at other fan-ins.
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Figure 4.15. Maximum operating frequency with and without capacitance loading
vs. fan-in: a consistent 4.5X to 6X improvement in performance is seen for all fan-ins.

Fig. 4.15 shows the maximum operating frequency vs. maximum fan-in for the

Omega 0.2 device with and without capacitance engineering. A consistent 4.5-6X

performance improvement is seen for all fan-ins with capacitance engineering (e.g.

for fan-in 10, maximum operating frequency increases from 798 MHz to 3.34 GHz).

These results attest to the importance of achieving high drive voltages at input nodes.

4.5.2 Impact of Power Supply Droop on NASIC Fabric Functionality

The previous sections dealt exclusively with internal noise sources such as arising

from parasitic capacitances. Fundamentally, fabric design and optimizations have to

be validated for functionality by mitigating internal noise. However, external effects

such as power supply variation, clock skew, thermal vibrations and soft errors can also

be detrimental to nanoscale fabric functionality. The latter two effects may partially

be dealt with through built-in fault tolerance techniques incorporated in the NASIC

fabric [35, 57]. With regard to clock skew, NASIC designs employ local interconnec-

tions between neighboring dynamic stages. The control signals that ’clock’ NASIC
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stages are expected to be propagated on common rails from a Phase-Locked-Loop

with local phase shifters generating the four-phase clock. Given the local interactions

and the prescribed clocking structure, appreciable skew is not expected on control

signals. However, systematic effects such as fluctuations in VDD could still disrupt

functionality, especially when considered in conjunction with internal noise sources.

In this section, we examine how VDD changes may affect fabric functionality. The

test circuit in Fig. 4.6 was used and the four devices examined were: Si 0.2, NiSi 0.2,

Omega 0.3 an Omega 0.2. These devices were found to work correctly under nominal

VDD with the 4-phase noise resilient control scheme. VDD was varied systematically

for all the stages in the test design, because while across chip variation in VDD could

be large, little local variation is expected for smaller circuits using the same supply

rails. Up to 20% variation on either side of nominal (0.8 V) was considered.

Supply voltage spiking can be detrimental to logic ‘0’ outputs. However, these

upward glitches can be isolated using the 4-phase noise resilient scheme and our

simulations showed circuits with all four devices working correctly for up to a 20%

spike in VDD. Droops in supply voltage on the other hand affect logic ‘1’s. The

following results highlight the impact of power supply drooping.

The results are shown in Fig. 4.16 for the NiSi 0.2 (left) and Omega 0.2 (right)

devices. The trends for Si 0.2 and Omega 0.3 are very similar to NiSi 0.2. Omega 0.2

is extremely resilient to VDD noise (Fig. 4.16 - right) due to its smaller intrinsic delay.

Even when VDD drops to 0.65 V (∼20% droop), the logic ‘1’ values are evaluated

correctly and a strong ‘0’ is obtained at the do21 node. For NiSi 0.2, we see for

VDD = 0.65 V, the stage 2 input devices are not fully turned on and do21 is not

fully discharged. An ambiguous signal ≈ VTH is obtained and loss of signal integrity

occurs at do31. While the voltage at do21 for VDD = 0.65 V is only slightly higher

than for VDD = 0.7 V, the stage 3 xnwFET is much more strongly turned on, leading

to incorrect discharge at the do31 node.
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Figure 4.16. Impact of VDD drooping in conjunction with internal noise on cascaded
NASIC fabrics - Slower NiSi devices (left) do not discharge effectively and signal
integrity is lost for a 20% droop in VDD. Circuits using faster Omega 0.2 devices
(right) are resilient to VDD drooping.
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These results highlight that devices with smaller intrinsic delays are resilient to

logic ‘1’ glitching caused by both internal and external noise sources. In conjunction

with fabric level noise resilient sequencing schemes and capacitance engineering, faster

devices may be leveraged for noise tolerant, high performance computational fabrics

and systems.

4.5.3 Manufacturing Considerations

Reliable and scalable assembly of nanostructures and manufacturing pathways

towards integrated systems continue to pose significant challenges. Therefore two

objectives must be concurrently achieved: i) Device design and optimizations at de-

vice/circuit levels must target circuit functionality and fabric noise mitigation, and ii)

In keeping with the fabric-centric mindset physical layer assumptions targeting device

structures must not pose insurmountable challenges to the manufacturing sequence.

Silicidation of VLS grown nanowires with nickel for improved conductivity has

been shown in [60]. A similar silicidation process may be used to achieve NiSi gate

material as well as interconnect regions between xnwFETs. Since a final nickel silici-

dation step can be carried out after all ion implantation steps, thermal stability issues

for NiSi material do not arise.

Omega-gated structures could be achieved by nanolithography or other pattern

and etch techniques. For example, Superlattice Nanowire Pattern Transfer [34, 55] has

shown metal nanowires at sub-15nm pitches. Snider et al. [48] have shown nanoim-

print lithography based copper nanowires.

Two device engineering techniques discussed include the back-gate bias and the

underlap. The substrate bias is applied to all devices in the fabric and therefore does

not impose new manufacturing constraints. The underlap is envision to be created

using a self-aligned process without any masking and is described below.
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Self-aligned Underlap Formation: Source and drain junction underlap regions self-

aligned to the gate nanowire are formed using spacer technology (Fig. 4.17). This

process is similar to what is used to form highly doped drain and source (HDD) in

CMOS devices and does not need any extra lithographic masking or overlay. During

the anisotropic etch step (Fig. 4.17c), deposited material on nanowire sidewalls is not

completely etched owing to higher thickness (Fig. 4.17b).

Figure 4.17. Front view of the xnwFET during the formation of the source and
drain underlap. (a) Initial structure right after channel nanowire, gate dielectric and
gate nanowire have been placed into position. (b) A thin layer the spacer material
(oxide or nitride) is conformally deposited. (c) The spacer material is anisotropically
etched. (d) Ion implantation is performed to dope the source, drain and gate regions.

We believe that these physical layer choices carefully addressing manufacturing

considerations, in conjunction with manufacturing-friendly device and fabric opti-

mizations for noise and functionality may pave the way for future nanowire-based

integrated nano-fabrics.

4.6 Chapter Summary

A methodology for integrated device-circuit explorations of nanodevice based sys-

tems was presented. This methodology provides a fast and accurate way to create

behavioral models for circuit simulations from device data using regression analysis.

Furthermore, this approach is very generic, and can be applied to any nanodevice

based computing system.
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Cascaded crossbar dynamic circuits were validated using this integrated approach

that combines circuit simulations, regression analysis, and accurate 3-D physics based

device models. Three different xnwFETs were investigated; a xnwFET with 10 nm

gate, 10 nm channel, underlap of 7 nm and a substrate bias of -1 V was found to meet

circuit requirements including sufficiently high on/off ratios and a VTH of +0.23 V.

Circuit simulations show that this device combined with NASIC circuit and logic

styles can achieve correct cascading with adequate noise margins. Future work will

address implications for optimized devices such as based on cylindrical nanowires,

fully-silicided gates, omega-gated structures etc. as well as new noise mitigation and

performance enhancement techniques.
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CHAPTER 5

PARAMETER VARIATION IN NANOSCALE
COMPUTING FABRICS: BOTTOM-UP INTEGRATED

EXPLORATION

Reliable and deterministic manufacturing of integrated nanosystems continues

to be challenging. Self-assembly based approaches as well as photolithography at

features sizes of few tens of nanometers and below are expected to introduce significant

levels of permanent defects as well as large variations in physical parameters. While

permanent defects have been extensively analyzed at circuit and system levels through

approaches such as built-in defect tolerance [57, 35] and reconfiguration [49, 48], there

is little understanding of the impact of parameter variability for emerging nanoscale

fabrics.

Parameter variations arise due to imprecision in the manufacturing process as well

as fundamental atomic scale randomness. At nanometer dimensions where structures

typically consist of tens of atoms/molecules, even a small absolute variation in the

number of atoms causes a large shift in the electrical characteristics (e.g., random

dopant fluctuation and VTH [59] ). This could potentially lead to performance dete-

rioration and/or yield loss.

In this chapter, we explore a methodology for evaluating the impact of variabil-

ity on a nanoscale fabric. This methodology is integrative across device, circuit and

architectural layers. It builds on the core concepts of the device-circuit exploration

methodology described in the previous chapter including physics-based simulation of

device structures and regression-based behavioral models, but incorporates sources of

variation for xnwFETs as well as architectural-level evaluations using a custom simu-
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lator. We identify key sources of variability at the physical layer, such as channel and

gate dimensions of transistors and incorporate them into unified behavioral models

for circuit simulation. Extensive HSPICE based characterization of circuits may be

done and a library of gate delays incorporated into a high-level architectural simula-

tor to evaluate system-level variability impact. While there has been some previous

work in characterizing properties of nanomaterials (e.g., distributions of nanowire

diameters for a particular manufacturing setup [31, 12]), devices (e.g. on-current

variation [33]) or architecture, this is the first time that an integrated bottom-up ap-

proach evaluating implications of variability across multiple fabric levels is presented.

The variability framework, while discussed in the context of NASICs, is fully generic

and can be adapted to other nanofabrics as well.

5.1 Methodology for Addressing Variability in Nanoscale Sys-

tems

In this section we present the methodology for achieving integrated device-circuit-

architectural explorations considering parameter variability. This methodology, while

discussed in the context of the NASIC fabric, is fully generic and can be applied

to other emerging nanoscale computational fabrics for which analytical models of

device behavior considering variations are not available. This integrated approach

ties physical layer variability to circuit and system level metrics such as delay and

performance.

The overall methodology for integrated exploration is presented in the flowchart

on Fig. 5.1. The methodology for parameter variation builds on the integrated

device-fabric exploration methodology presented in the previous chapter but includes

sources of physical parameter variation (e.g. channel diameter, oxide thickness) as

independent variables in addition to gate-source and gate-drain voltages. Devices

are characterized extensively using Synopsys Sentaurus to extract current-voltage
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Figure 5.1. Methodology for evaluation of parameter variation integrating device,
circuit and architectural levels

52



Figure 5.2. Crossed Nanowire Field Effect Transistor (xnwFET) structure

and capacitance-voltage information. Different device configurations are investigated

based on values of physical parameters and their behavior quantified. If the device

does not meet circuit requirements for correct functionality, device design may be

iteratively carried out. Otherwise, the current and capacitance data are fitted using a

standard curve-fit tool to obtain mathematical expressions for the data. Using these,

a unified behavioral model is created for a circuit simulator such as HSPICE. The

unified behavioral model accurately describes the behavior of a single device across

a range of input voltages and physical parameter values. Circuit level simulations

incorporating Monte Carlo sampling of individual parameters may then be carried

out to obtain distributions of circuit delays with parameter variation. This infor-

mation is then used to create a library of delays and incorporated into a custom

nano-architectural simulator to quantify the critical path delays and performance

of large-scale designs. To our best knowledge, this framework is a first of its kind.

Subsequent sections describe each phase in more detail.
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5.2 Device Parameter Variability

Key sources of variability for a single xnwFET device were identified based on de-

vice structure (Fig. 5.2) and manufacturing sequence. These include channel diameter

and doping, gate oxide thickness, gate diameter as well as source-drain doping. Ta-

ble 5.1 summarizes all parameters and their extent of variability. Variations in these

parameters are dependent on the specific fabrication process used. For example, if a

Vapor-Liquid-Solid (VLS) growth method [31] is assumed for nanowire growth, the

gate and channel diameter parameters would be very strongly correlated to variations

in the catalyst nanoparticles used as seeds. The standard deviation in wire diameter

has been shown to be less than 10% in [31, 12]. Similar deviation is seen for Silicon

nanowires with SNAP [18]. Atomic Layer Deposition for gate oxide formation has

been shown to have spatial variability as low as σ=1% [32].

xnwFETs need to be engineered to meet NASIC circuit requirements (e.g., thresh-

old voltage, on-off current ratios [40]). Device level techniques such as gate underlap

and substrate bias were applied in conjunction to achieve these targets. However,

these techniques can be sources of additional variability. For example, variation in

the length of the underlap can significantly affect I−V characteristics. Since this pro-

cess step is identical to conventional spacer technology, the ITRS spacer requirements

table [25] defines the extent of variability allowed for underlap. For a 16nm CMOS

technology node this value is 3σ=±0.6nm which is 50% of the extent of variability

assumed in our work.

Large-scale integrated manufacturing of nanoscale computing systems is still in

its infancy, and for NASIC system fabrication, different approaches are currently

being investigated. Therefore, for our initial variability modeling, we conservatively

model 10% standard deviation (3σ=±30%) for all parameters1. Random variation

1For doping levels, each device simulation assumes a discrete number of dopants. 10% standard
deviation represents the average deviation over multiple device simulations
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Table 5.1. xnwFET Device parameters and extent of variation

Parameter Nominal Value Standard Deviation

Channel diameter (Cdiam) 10nm 10%
Gate diameter (Gdiam) 10nm 10%
Underlap (Ulap) 4nm 10%
Gate oxide thickness (Gox) 3nm 10%
Bottom oxide (Box) 10nm 10%
Channel doping (Cdop) 1018dopants/cm3 10%
Source-drain doping (Sddop) 1020dopants/cm3 10%

in all parameters is assumed Furthermore, physical parameters are expected to be

uncorrelated since they would be influenced by separate process steps. For example,

the gate oxide may be created using Atomic Layer Deposition (ALD) [46, 32]. There

is no dependence of this parameter on any other process step. Similarly, variation in

the underlap is purely dependent on the spacers used, and not on any other step.

As more experimental data on device characterization becomes available and de-

tailed process models developed, the modes and extent of variation can be suitably

altered.

Accurate 3D-physics-based simulations using Synopsys Sentaurus were carried

out to characterize the electrical behavior of the xnwFET device structures. Depend-

ing on extent of variability in individual parameters, multiple device configurations

were explored. Simulations were calibrated against published experimental data for

nanowire FETs at similar dimensions to account for effects such as carrier scattering

due to surface roughness and dielectric/channel interface trapped charges. Since pa-

rameters are assumed to be uncorrelaterd, in these simulations, each parameter was

varied one at a time for ±3σ and the I-V and C-V data were obtained for all device

configurations. This data was then used to construct unified behavioral models for

circuit simulations.
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5.3 Circuit-level Simulations

In order to represent the behavior of the device accurately in a circuit simulator

such as HSPICE [2], curve-fitting of the raw data obtained from device simulations

needs to be done. In this step, the current (and various parasitic capacitances)

are fitted as a function of independent variables, i.e., input voltages (drain-source

(VDS) and gate-source voltages (VGS)) as well as the physical parameters described

in Table 5.1. This step was accomplished using the statistical computing tool R [1].

Mathematical expressions describing the current (and capacitances) as functions of

the independent variables are then obtained for various regions (see Fig. 5.1 for flow).

An equivalent circuit for the xnwFET was then built into HSPICE incorporating

the current source and the parasitic capacitances using sub-circuit definitions. The

current and capacitance are calculated on-the-fly during simulations using the fitted

mathematical expressions. The subcircuit definition in conjunction with the expres-

sions for individual elements forms the unified behavioral model for the xnwFET

device.

NASIC dynamic circuits were extensively characterized for delay using these mod-

els. A typical NASIC dynamic circuit is shown in Fig. 5.3. It has N inputs, as well

as control xnwFET devices for precharge and evaluate. The output node is first

precharged to logic ‘1’, and then the pre signal is switched off and eva is enabled.

If all inputs are logic ‘1’, the output node will discharge to logic ‘0’ accomplishing

NAND gate functionality. The NAND gate is the universal building block for large

scale designs, and its delay behavior needs to be extensively characterized and a

library of delay distributions constructed for use in an architectural level simulator.

Delay characterization was done using NASIC dynamic NAND gates with number

of inputs varying from 1 to 30. The Monte Carlo simulation framework available

with HSPICE was used to vary parameter values and the delay to precharge and

evaluate the output node was obtained. Parameters are assumed to follow a Gaussian
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Figure 5.3. N-input dynamic NAND circuits characterized for delay distribution

distribution, with the mean and standard deviation values specified in Table 5.1.

They are varied independently for each device, except for the channel diameter which

is assumed to be the same across all devices, since all devices are along the same

nanowire. Since it may be very hard to do detailed circuit-level simulations on a

larger design such as the WISP-0 processor, the delay information is abstracted and

used in a higher level architectural simulator.

5.4 Architectural Simulations

The architectural simulations take as input the gate delay characterizations as

shown in Fig. 5.1. We use a custom-written simulator called FTSIM. FTSIM takes as

input a NASIC circuit definition, gate timing characterizations, and parameters for

defects and simulates the operation of the circuit on a cycle-by-cycle basis, tracking

values within the circuit logically.

FTSIM handles both parameter variations and permanent defects.For permanent

defects, the user specifies the type of defects (e.g. stuck-on, stuck-off devices, broken

nanowires) and individual defect rates. A Monte Carlo system is used for defect

injection and multiple trials carried out. Clustered defects may also be handled.

Additional information on defect tolerance can be found in [35, 57].

For parameter variations, timing characterization information for NAND gates

from HSPICE are used. Gate delay for any one stage is sampled from the distribution

of delays obtained from circuit simulation for each trial and the maximum frequency

at which correct outputs are obtained may be found.
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In this work, we ran 1,000 trials which produces sufficient working circuits to

give a sound idea of the performance distributions. The output of this stage is the

performance distributions for the test architectures considered.

5.5 Variability Impact on xnwFET Devices2

At the device level, variation in physical parameters affects the on-current (ION) of

the device3 and capacitances of xnwFETs. This implies variation in the on-resistance

leading to variations in delay and performance at higher levels.

In this study, physical parameters from Table 5.1 are varied one at a time, and the

sensitivity of ION to parameter variation is measured. Parameters are varied across a

±3σ range, assuming 10% standard deviation (i.e., parameters are varied from 70%

to 130% of their nominal value).

Not all parameters have equal impact on ION . The percentage change in on-

current between the lowest and highest sampled value for each physical parameter is

shown in Table 5.2. Channel diameter has the largest impact, with ION varying by

3.5X over a 7nm to 13nm range.

For four parameters, positive correlation exists between the parameter value and

ION . For example, as bottom oxide thickness increases, ION increases. The substrate

bias is used to deplete carriers in the channel for reducing leakage and improving

threshold voltage. However, the substrate bias also reduces ION due to a shift in

the threshold voltage. As the bottom oxide is made thicker, the electrostatic control

exerted by the back gate bias is reduced, producing a smaller positive VTH shift than

expected, leading to larger ION . As channel diameter increases, the channel resistance

2Work done in UCLA by Prof. Chui’s group, included for completeness

3Off-currents are also affected, but this is primarily a leakage issue. While variation in the off-
currents is captured in device simulations and in the circuit level model, it is not expected to affect
the delay and performance of NASIC designs that is the focus of this chapter.
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Table 5.2. Impact of physical parameter variation (3σ = ±30%) on device on-current

Parameter % Change in ION Correlation

Channel diameter 352.0 Positive
Underlap 181.2 Negative
Bottom oxide thickness 147.2 Positive
Gate oxide thickness 58.2 Negative
Source/drain doping 23.8 Positive
Gate diameter 16.2 Negative
Channel doping 11.7 Positive

decreases due to an increase in the cross-sectional area, leading to an increase in ION .

Increasing the source and drain doping reduces the series resistance. Lastly, as channel

doping increases, the short channel effects (SCE) are somewhat alleviated leading to

larger ION . The other parameters all correlate negatively with on current. Increasing

the underlap increases the effective channel length, resulting in a decrease in ION.

Similarly, increasing the gate oxide thickness decreases the gate capacitance and how

well the gate can turn on the channel. Increasing gate diameter increases the length

of the channel underneath, decreasing ION.

5.6 Variability Impact on Circuit Level Delay and System

Performance

5.6.1 Circuit Level Delay Characterization

NASIC N-input dynamic NAND gates (Fig. 5.3) were simulated in HSPICE using

unified behavioral models derived from device data. Delay characterization was done

for fan-in varying between 1 and 30, which is the maximum fan-in for the NASIC

WISP-0 processor, using the HSPICE Monte Carlo framework and Gaussian sampling

of individual parameters. A single channel diameter value was sampled per Monte

Carlo simulation for all devices, since all xnwFETs are on the same nanowire. Length-

wise variation has been shown to be negligible for the nanowire lengths considered [43]
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Figure 5.4. Delay distributions for physical parameters with maximum impact on
on-current for (a) 15 input and (b) 30 input NASIC dynamic NAND gates. Black
line represents nominal.

for a process such as VLS growth. All other parameters were varied independently

for each device.

The delay sensitivity of NASIC N-input dynamic gates to individual parameters

was studied. We show the impact on delay for the four parameters that have maximum

impact on ION at the device level. Representative results for fan-in of 15 and 30 are

shown. Other fan-in gates were investigated and found to show similar trends.

Fig. 5.4(a) and (b) show the delay distributions for 15 input and 30 input NASIC

dynamic NAND gates. The delay distribution due to channel diameter, underlap,

bottom oxide and gate oxide thickness is studied. The following key observations are

made -

Channel diameter has the maximum impact on delay distribution - 81% (71%)

change in delay with respect to nominal for 15 (30) input gate. This is due to the

high sensitivity of ION at the device level, and also due to the correlation of channel

diameter across all devices for a single NASIC dynamic NAND circuit. These effects

also imply a large percentage standard deviation - 18% (15%) for 15 (30) input gates

- leading to a wide spread of delay values.
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Underlap is negatively correlated with ION . This implies that delays will be less

than nominal for shorter underlaps. Furthermore, from device level sensitivity anal-

ysis ION variation is asymmetrical with underlap. 30% negative (positive) deviation

causes +74% (-43%) change in the ION . This would imply that in a circuit simu-

lation, where underlap values for individual devices are independently sampled, the

delay distribution should be left-shifted (majority of devices operating better than

nominal). However, the opposite trend is noticed. This is because increasing trend in

the ION with decreasing underlap is dominated by an increasing trend in the various

capacitances as distances between terminals shrink.

The evaluation delays for gate oxide and bottom oxide are tightly distributed

along the nominal, with mean values within 2% of nominal and standard deviation

of 3% for the 30 input gate. Since these parameters are sampled independently, and

there exist no appreciable asymmetries as compared to the underlap, variation in

delays of individual devices tend to cancel out especially in higher fan-in designs.

Fig. 5.5 shows delay distributions for the 15 input NASIC dynamic NAND gate

with all parameters varied simultaneously with 3σ=±30%. The mean is 20% higher

than the nominal due to the underlap asymmetry effect that skews the distribution

to the right. The same trend is observed in other fan-in gates as well. A 118% spread

with respect to the nominal is observed for 15 input gates. The relative spread was

found to be decreasing with increasing fan-in, as expected.

The gate delay distributions with all parameters varying for different fan-ins were

modeled as gamma distributions and used in an architectural simulator to evaluate

the process variation impact on a larger design.

5.6.2 System Level Performance

Architectural simulations of the NASIC WISP-0 processor [56, 58] were carried

out using the architectural simulation framework described in Fig. 5.1 and Section 5.4.
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Figure 5.5. Delay distribution for 15 input gate with all parameters simultane-
ously varied: Nominal value is 174ps. Distribution is right-shifted due to asymmetric
underlap effect

Gate delay distributions obtained from Monte Carlo simulations of NASIC dynamic

NAND gates were sampled for each gate in the design and the maximum operating

frequency at which the processor functioned without missed deadlines was estimated.

The probability density function of operating frequencies obtained is plotted in

Fig. 5.6(a). Also shown in the diagram is the nominal frequency for WISP-0 without

any process variation. From the diagram, parameter variation causes performance

deterioration in 67% of the samples investigated.

WISP-0 is not fully balanced with respect to timing and delay. The frequency

is therefore determined entirely by a small number of high fan-in data-paths. If the

delays sampled from these paths are lower than nominal then the performance of

the entire design is not affected or may even improve. However, in designs balanced

for timing, such as commercial processors where a lot of emphasis is typically put on

timing path optimizations, there will be a large number of paths with similar nominal

delay. The slowest path among these would determine the operating frequency. This

implies that for balanced designs with process variation, a much larger fraction of

chips will be slower than nominal, since data speed-up along some high fan-in paths

will be entirely offset by others.
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Figure 5.6. Distribution of WISP-0 operating frequencies showing impact of pa-
rameter variations: (a) With no built-in fault tolerance incorporated, 67% of chips
operate at frequency below nominal due to variations in device parameters (b) PDF
for 2-way and 3-way redundancy schemes, showing a majority of samples operating
at better-than-nominal frequencies (normalized frequency > 1).

Results in Fig. 5.6(a) are for designs with no built-in fault tolerance. However,

nanoscale fabrics based on self-assembly manufacturing processes tend to have very

high defect rates (in NASICs we assume 10 orders of magnitude higher than CMOS

or 100s of millions to billions of defective devices per cm2) that neccessitates the use

of built-in fault tolerance for achieving acceptable effective yield. These techniques

may also provide resilience against parameter variation related timing faults, since the

fault-tolerance is agnostic to the source of the fault (permanent defects or parameter

variation) and may be leveraged for parameter variation resilience.

Fig. 5.6(b) plots a distribution of maximum operating frequencies obtained for

2-way and 3-way redundant WISP-0 designs for 6% device level defect rate. The x-

axis is normalized to the respective nominal frequencies (no parameter variation). In

these cases, timing faults due to slower data-paths are masked by redundant fast data-

paths which implies that a majority of samples (75% for 2-way redundancy) operate

at frequencies better than nominal, proving that built-in fault tolerance can provide

resilience against parameter variations in conjunction with manufacturing defects. A

variety of new techniques based on FastTrack and biased voting schemes that carefully
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manage yield and performance tradeoffs and are optimized for parameter variation

as opposed to permanent defects have been developed for nanoscale fabrics [39].

5.7 Chapter Summary

A novel methodology for bottom-up integrated device-circuit-architectural ex-

plorations for analyzing the impact of parameter variability in nano-device based

computing systems was developed. The methodology builds on accurate 3D physics

based simulations of device structure to capture variations in on-current as a func-

tion of physical parameters. Circuit and architectural simulations can then be done

to evaluate the impact of this variability on gate delay and system level performance

respectively.

The methodology was evaluated on the NASIC computational fabric with xn-

wFETs, NASIC dynamic NAND gates and a processor design. Key sources of vari-

ation at the device level such as channel diameter were identified and sensitivity of

ION was evaluated. ION may vary by up to 3.5X with variations in the channel di-

ameter and by up to 1.5X with gate underlap. Circuit level simulations identified the

evaluate time in NASIC designs as the dominant component of the gate delay with

parameter variation incorporated. Gate delay simulations varying a single parameter

show up to ±40% variation from nominal gate delay.

For a processor with no fault tolerance, 67% of chips were found to operate at

frequencies below nominal due to parameter variation. However given high defect

rate for nanomanufacturing, nanoscale computing fabrics would incorporate built-in

fault tolerance that could also provide resilience against timing faults.
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CHAPTER 6

MANUFACTURING PATHWAYS AND ASSOCIATED
CHALLENGES FOR NASICS

Reliable manufacturing of large-scale nanodevice-based systems continues to be

challenging. Self-assembly based approaches, while essential for the synthesis and

scalable assembly of nano-materials and structures at very small dimensions, lack the

specificity and long-range control shown by conventional photolithography. Other

non-conventional approaches such as electron-beam lithography (EBL) provide the

necessary precision and control and are pivotal in characterization studies; but these

are not scalable to large scale systems. Examples of small nanoscale prototypes

include a carbon nanotube FET based ring oscillator [8] and an XOR gate using SNAP

assembled semiconductor nanowires and electron-beam lithography [54]. In all these

cases, the focus has been on creation of devices followed by arbitrary interconnections

to build logic gates, an approach that is not scalable to large-scale systems.

In general, a manufacturing pathway for integrated nanosystems needs to achieve

three important criteria:

• Scalability: Large scale simultaneous assembly of nanostructures/devices on a

substrate must be possible.

• Interconnect: Nanodevices must be interconnected in a prescribed fashion for

signal propagation and achieving requisite circuit functionality. While it may

be possible to integrate individual devices together after assembly, an approach

that simultaneously creates nanodevices and interconnections poses fewer chal-

lenges and is expected to achieve better density.
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• Interfacing: The nanosystem must be effectively interfaced with the external

world.

In this chapter we explore a manufacturing pathway for NASICs that realizes

the fabric as a whole including devices, interconnect and interfacing. This pathway

employs self-assembly/ unconventional patterning-based approaches for scalable as-

sembly of semiconductor nanowires, and conventional lithography based techniques

for parallel and specific functionalization of nanodevices and interconnects. While

individual steps have been demonstrated in laboratory settings, challenges exist in

terms of meeting specific fabric requirements and integration of disparate process

steps.

6.1 Fabric Choices Targeting Manufacturability

Before delving into the details of the manufacturing pathway, it is instructive to

look at certain aspects of the NASIC fabric that significantly mitigate requirements

on manufacturing. Design choices have been made at the device, circuit, and architec-

tural levels targeting feasible manufacturability while carefully managing constraints.

This is in direct contrast to other technologies such as CMOS which optimize designs

for performance and area, but place stringent requirements on the manufacturing

process.

• NASIC designs use regular semiconductor nanowire crossbars without any re-

quirement for arbitrary sizing, placement or doping. Regular nanostructures

with limited customization are more easily realizable with unconventional nanofab-

rication approaches.

• NASIC circuits require only one type of xnwFET in logic portions of the design.
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• Local interconnection between individual devices as well as between adjacent

crossbars is achieved entirely on nanowires; interconnection of devices does not

introduce new manufacturing requirements.

• NASICs use dynamic circuit styles with implicit latching on nanowires. Implicit

latching reduces the need for complex latch/flip-flop components that require

local feedback.

• Tuning xnwFET devices to meet circuit requirements is done in a fabric-friendly

fashion; techniques such as gate underlap and substrate biasing do not impose

new manufacturing constraints.

• NASICs use built-in fault tolerance techniques to protect against manufacturing

defects and timing faults caused by process variation. Built-in fault tolerance

techniques do not need reconfigurable devices, extraction of defect maps, or

complex micro-nano interfacing as required by reconfiguration based fabrics.

All fault tolerance is added at nanoscale and made part of the design.

These fabric choices reduce manufacturing requirements down to two key issues:

assembling nanowire grids on to a substrate and defining the positions of xnwFET

transistors and interconnect. The latter step, also called functionalization, is a price

paid for a manufacturing-time customization. The manufacturing pathway and asso-

ciated challenges are discussed in the next sub-section. Note that by adjusting the

nanowire pitch any manufacturing issue can be managed but the goal is to achieve

the smallest possible pitch.

6.2 Manufacturing Pathway

Key steps in the NASIC manufacturing pathway are shown in Fig. 6.1. Fig. 6.1(A)

shows a NASIC 1-bit full adder circuit. Horizontal nanowires are grown and aligned
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Figure 6.1. Scalable manufacturing pathway for NASICs

on a substrate (B). In general, nanowire alignment can be in-situ, ex-situ, or direct-

patterned. In-situ refers to techniques where nanowires are aligned in parallel arrays

during the synthesis phase itself. On the other hand, ex-situ refers to techniques where

nanowire synthesis and alignment are carried out separately. Lithographic contacts

for VDD and VSS as well as some control signals are created (B). A photolithography

step is used to protect regions where transistors will be formed while creating high

conductivity regions using ion implantation- elsewhere (C, D). Ion implantation cre-

ates n+ /p/n+ regions along the nanowires which under suitable electrical fields act

as inversion mode source/channel/drain regions.

Gate dielectric layer is then deposited (or oxide is grown) (E) followed by alignment

of vertical nanowires. The above steps are now repeated for the vertical nanowire layer

(F-H). During ion implantation on vertical nanowires (H), channels along horizontal

nanowires are self-aligned against the vertical gates.

Key individual steps and challenges are discussed in detail in the following sub-

sections.
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6.2.1 Nanowire Growth and Alignment

The ideal technique to form aligned nanowire arrays should guarantee an intrinsic

and concurrent control over three key parameters:

• the number of nanowires,

• the inter-nanowire pitch, and

• the nanowire diameter within the array.

State-of-the-art semiconductor nanowire array formation with alignment tech-

niques can be broadly classified into three categories:

• In-situ nanowire growth and alignment: In in-situ nanowire growth and align-

ment nanowires are directly synthesized in an aligned fashion on a substrate. For

example, [28] has shown MOCVD growth of InSb nanowires from gold precur-

sors in-plane using a InSb (111) substrate. Other representative techniques for

in-situ growth include gas-flow guiding [30] and electrical field guiding [52, 14].

This family of techniques is dependent on catalyst engineering and patterning as

well as compatibility of nanowires with the substrate. One approach to pattern

gold catalysts at sub-lithographic features is using oriented block-copolymer

films [51] as templates. The key advantage is that a separate transfer step for

nanowires is not required.

• Ex-situ nanowire alignment: In ex-situ nanowire alignment, nanowires are grown

separately and then transferred to substrate. Representative techniques include

fluidic alignment [62] and organic self-assembly etch [19, 27]. The key advan-

tages of ex-situ techniques are wide variety of material choice and nanowire

synthesis processes that are available. It is also possible to achieve a tighter dis-

tribution of nanowire diameters since the growth process can be separately con-

trolled. However, an effective transfer step is required to attach each nanowire

to pre-defined locations as well as control of orientation of transferred nanowires.
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• Nanolithography-based pattern and etch techniques: In these approaches, a

semiconductor material layer pre-formed on the target substrate surface is first

patterned by nanolithography and then anisotropically etched to create a pe-

riodic nanowire array. While the etching process is rather standard, there are

two very promising nanoscale patterning techniques including the nanoimprint

lithography (NIL) [9] and superlattice nanowire pattern transfer (SNAP) [54,

18]. These approaches in principle meet the aforementioned criteria in terms

of numbers, diameter and pitch of nanowires (e.g. since the reusable transfer

pattern can be precisely controled) but possess some subtle practicality con-

cerns. Since the surfaces of these nanowires are usually damaged during the

etching process, caution should be exercised to prevent significant degradation

in the resultant device performance. Also the choice of semiconductor nanowire

material is more limited compared to either the in-situ or ex-situ approach.

The construction of the 2D nanowire fabric for NASIC circuit applications consists

of two aligned nanowire array formation steps. The first (and bottom) semiconductor

nanowire array can be formed by either the nanolithography-based patterning-and-

etching technique or the ex-situ aligned assembly method. The former selection is

primarily driven by the material choice silicon. Since silicon-on-insulator (SOI) sub-

strates are readily available, the patterning-and-etching technique could be considered

due to its capability of achieving aligned parallel nanowires with long-range order as

long as the nanowire surface damage could be minimized. Alternatively, the ex-situ

method remains an attractive solution with the advantages and challenges discussed

above.

The second (and top) array is preferentially formed by the transferring of a pre-

aligned nanowire array assembled using either the ex-situ or in-situ approach. The

choice of a particular technique would depend on its ability to accomplish the key

specifications outlined above. Since the same material (silicon) with roughly the same
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nanowire diameter and pitch is required in both arrays, it is therefore beneficial to

employ the same method and repeat it.

6.2.2 Functionalization

In an n-type xnwFET, the gate, drain and source terminals are doped n+, whereas

the channel used p-type doping for inversion mode operation. Similar to conventional

FET devices, the potential applied at the gate controls the flow of electrons between

the source and drain terminals. Customization of nanowire arrays is required to

define the positions of transistors on the grid for achieving arbitrary logic functions,

and create high conductivity interconnects elsewhere.

Nanowires assembled on the substrate are initially doped uniformly along their

lengths. The doping type corresponds to the channel doping of the inversion mode

FET devices (for example, if n-type FETs are needed, the nanowires transferred to

the substrate will originally contain p-type dopants).

We propose to use ion implantation, a well controlled technique used in the semi-

conductor industry, to create: a) high conductivity regions on nanowires where tran-

sistors do not exist, b) gate material of NWs, and c) gate self-aligned FET channels.

The minimum feature size is calculated to be (2 × pitch – width) squares (Fig. 6.1(C)

and 6.1(G)). Simulations of overlay requirements for NASICs was carried out sam-

pling overlay imprecision for successive lithographic masks as Gaussian random vari-

ables. Results of overlay simulations show that 100% overlay-limited yield can be

obtained for a mask misalignment of 3σ = ±5.7nm [53], which is a considerable

improvement over 16nm CMOS (3σ = ±3nm)

Ion implantation of horizontal nanowires is shown in Fig. 6.1(C), (D). These steps

create high conductivity regions along the assembled horizontal nanowires. n+/p/n+

regions are formed on the left side of Fig. 6.1(D); these act as source/channel/drain

regions. The n+ regions on the right of Fig. 6.1(D) are gates for vertical nanowires
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that will be assembled in subsequent steps. An additional optional silicidation step

could be done to further improve the conductivity of the n+ regions defined in this

step.

Fig. 6.1(G), (H) show ion implantation steps applied to vertical nanowires. The

six vertical nanowires on the left are doped n+ and act as gates for underlying hori-

zontal nanowire channels. The four vertical nanowires to the right contain n+/p/n+

source/channel/drain regions and are gated by underlying horizontal nanowires. Fur-

thermore, this ion implantation step self-aligns the horizontal channels on the left

side of the figure against the vertical nanowire gates.

It must be noted that lithography is used to protect regions where FETs will

be formed, and not for complex patterning. In conjunction with self-alignment, this

implies that precise shapes with sharp edges are not needed. NASIC built-in defect

tolerance techniques [35, 57] further ameliorate requirements on lithography. Fewer

masks and NASICs built-in fault tolerance imply that it may be possible to build

NASICs at a much lower manufacturing cost and finer resolution than scaled CMOS.

The manufacturing pathway in Fig. 6.1 needs nanowires to be transferred on to

the substrate twice, once each for horizontal and vertical nanowires. This implies

that vertical xnwFET channels are not on the substrate, but placed above layers of

horizontal nanowires and oxide; this poses some challenges in terms of self-alignment

of these channels against horizontal nanowire gates.

This concern may be overcome by using an approach that uses 3 separate nanowire

transfers as shown in Fig. 6.2 A) vertical NWs in the output plane are first trans-

ferred, and ion implantation with lithographic masks is carried out; B) horizontal

NWs are transferred after gate dielectric deposition, these NWs are self-aligned with

the previously transferred verticals; and C) input plane verticals are transferred and

ion implantation self-aligns these with the underlying horizontals. This approach,

however, poses challenges in terms of alignment of input vertical nanowires in one
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Figure 6.2. Manufacturing pathway for NASICs with 3-step nanowire transfer

NASIC tile against output nanowires of the previous tile, as well as the requirement

of physical interconnections between nanowires assembled in separate steps.

6.3 Chapter Summary

One manufacturing pathway for the NASIC fabrics was discussed. The pathway

realizes the fabric as a whole with devices and interconnect formed as part of a regular

grid, as opposed to approaches focused on arbitrary interconnection of individual

nano-devices. Key challenges including nanowire alignment and functionalization

requirements were discussed.

73



CHAPTER 7

N3ASICS: DESIGNING NANOFABRICS WITH
REDUCED MANUFACTURING REQUIREMENTS

In this chapter, we present N3ASICs, a new nanoscale computing fabric that

eliminates the remaining manufacturing challenges for NASICs and can be built with

manufacturing solutions that are known today. In keeping with the fabric-centric

mindset, this reduction in manufacturing complexity is enabled by design choices at

multiple levels. While this new fabric trades-off some of the density advantages of

NASICs, it still achieves considerable improvements in area/power/performance over

scaled CMOS with reduced manufacturing requirements.

As discussed in the previous chapter, unconventional direct-patterning based man-

ufacturing techniques such as Nano Imprint Lithography (NIL) [38] and Superlattice

Nanowire Pattern transfer (SNAP) [55] [58], are able to produce ultra-high den-

sity nanostructures. For e.g., it has been shown that 7nm width with 13nm pitch

nanowires can be patterned with SNAP [18] on an SOI substrate. However these

and other unconventional techniques have poor overlay with respect to previously

formed patterns. Overlay imprecision reported for NIL was 3σ = ±105nm [44].

On the other hand photolithography has an excellent overlay and alignment pre-

cision. According to International Technology Roadmap for Semiconductors (ITRS)

[26] state-of-the-art photolithography has an overlay imprecision of 3σ = ±6.4nm.

However, overlay alignment is expected to become much more challenging with fur-

ther CMOS scaling (e.g. 16nm CMOS would require 3σ = ±3nm, manufacturing

solutions unknown).
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Our goal in this chapter is to develop an approach by which we can combine un-

conventional and conventional manufacturing approaches while retaining the benefits

of both. Unconventional nanomanufacturing is used in conjunction with conventional

CMOS lithography and design rules to build a new class of 3-D integrated nanofabrics

( N3ASICs: Nanoscale 3D Application Specific Integrated Circuits) with careful con-

sideration to manufacturing and overlay requirements. We present the overall fabric

design and show a layer-by-layer assembly sequence for N3ASICs depicting how the

complete fabric (including devices, interconnect and interfacing) may be realized on

a single Silicon-on-Insulator (SOI) wafer. We show how fine-grained integration be-

tween nanoscale and CMOS features can be achieved using standard area distributed

pins/vias and design rules. We also evaluate key system-level metrics such as density,

performance and power for N3ASICs and compare it against both NASICs and an

equivalent 16nm CMOS design.

7.1 Physical Fabric Vision

We propose a new physical fabric that consists of nanowire arrays at the bottom

(built using unconventional manufacturing) with a conventional CMOS metal stack

for interconnect (built using photolithography) on top. All active devices and logic

implementation is achieved on the ultra-dense nanowire arrays which can be direct-

patterned on an ultra-thin Silicon-On-Insulator (SOI) wafer. The patterning can be

achieved using techniques like NIL or SNAP that provide excellent control over the

number of nanowires, width and spacing. There is no second nanowire transfer step.

In this approach, patterning of high-density nanostructures is carried out prior

to all lithography steps without any overlay requirement. Furthermore if the defined

nanostructure pattern is regular (e.g. parallel arrays), the first lithographic mask

has overlay tolerance, i.e. it may be offset over the array without yield loss. Subse-

quent steps make use of conventional photolithography. The a priori assembly/direct-
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patterning of sub-lithographic features on the densest NW layer before any conven-

tional lithographic step (e.g., for contacts/vias) means 3D overlay alignment require-

ments exist only between subsequent lithographic masks.

Fig. 7.1 shows the envisioned N3ASICs fabric built on a standard Silicon-on-

Insulator (SOI) wafer. It consists of uniform parallel semiconductor nanowire arrays

on which logic/memory is implemented. Active devices in N3ASICs are single type,

doped dual channel crossed nanowire transistors (2C-xnwFETs). Area-distributed in-

terfaces or vias are used to connect outputs of nanowire stages to a standard CMOS

metal stack. Metal interconnections between vias achieve arbitrary routing. The

nanowire logic plane is surrounded by CMOS circuitry. The peripheral CMOS cir-

cuitry can be used for control logic, dynamic clocking, mixed signal etc. N3ASICs use

the same circuit styles as NASICs and previous explorations on device requirements,

cascading/noise issues and parameter variation are equally relevant.

To enable full and fine-grained integration with CMOS metal stack without new

manufacturing or functionalization requirements, lithographic design rules need to be

followed. Standard lithography design rules are used for lithographic functionaliza-

tion steps including defining positions of transistors, power and control rails, vias,

interconnect etc. Lithographically defined vias or area-distributed interfaces connect

the nanowire arrays through a CMOS metal stack. Metal interconnects are used for

routing the signals in 3D. Adherence to design rules imply functionalization require-

ments are mitigated.

Fig. 7.2 shows representative λ design rules applied to the N3ASICs fabric.

All design rule requirements like Metal-Metal spacing, Metal-via spacing and Via-

overhang are followed. C. Bencher et. al. [5] project that the metal 1(M1) pitch

for the 16nm technology node is 40nm. This is equal to 5λ where λ=8nm for 16nm

technology node.
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Figure 7.1. Nano-CMOS integrated N3ASICs fabric
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Figure 7.2. CMOS Design rules applied to N3ASICs
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Since metal vias are used to contact nanowires, the nanowire spacing should adhere

to CMOS design rules. Given that nanowires can have much smaller dimensions than

vias, more sub-lithographically patterned nanowires may be bundled within the same

via dimension without any density impact. Having more than one nanowire per

via allows for better contact, performance and inherent defect resilience (e.g against

stuck-open channels).

Fig. 7.2 shows how bundled pair of nanowires are contacted using a via. Metal 1

interconnects is used to connect the inputs of the transistors. Metal 2 interconnects

are used to connect the output on the nanowires to the subsequent stages.

7.2 Assembly Sequence

We present a simplified assembly sequence followed in building the N3ASICs fab-

ric.At the bottom of the fabric is a uniform semiconductor nanowire array. This can

be direct patterned on ultra-thin Silicon-On-Insulator. Nanowires can be bundled in

pairs in order to achieve better contact with the vias. Fig. 7.3A shows the uniform

dense nanowire array created a priori to any lithographic step.

Fig. 7.3B shows the contact creation for VDD and GND, precharge and evaluate.

This diagram depicts the scenario of two stages cascaded next to each other. This

can be treated as two logic planes as shown in the figure. We can use interconnects

to route signals across the logic planes. Logic plane 1 is on the left and logic plane 2

is on the right

Fig. 7.3C shows the metal gate deposition step. Metal gates (shown in green) are

deposited at certain positions to define 2C-xnwFETs using conventional lithography

and masks. Initially the nanowires are doped p-type. A self-aligning ion implanta-

tion is then used to create n+ /p/n+ source/channel/drain structures. This creates

enhancement mode 2C-xnwFETs similar to conventional MOSFETs in CMOS. All

device channels are oriented along the same direction and lie on the substrate itself.
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Figure 7.3. Assembly Sequence for N3ASICs fabric: A) Patterned Nanowires B)
Creation of Lithographic contacts and dynamic control rails C) Metal gate deposition
followed by self-aligned ion-implantation to define high-conductivity interconnect D)
Metal 1 vias and interconnects, and E) Creation of Lithographic contacts and dynamic
control rails.
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Fig. 7.3D shows the Metal 1 vias and interconnects. Metal lines and vias are laid

down for interconnection. Inputs are received through an M1 array (light blue lines)

and vias are dropped on to the nanowires to tap the outputs (blue dots).

As shown in Fig. 7.3E, outputs from the left logic plane are cascaded to the inputs

of the right plane using M2 (orange lines). The output of the second logic plane can

be routed to other tiles using higher metal layers in the metal stack. This allows us to

achieve arbitrary routing between two different tiles. All local routing within a single

stage is achieved on the nanowires themselves. This helps in reducing the routing

overhead of the design.

7.3 Overlay Requirement

As discussed previously, the initial nanowire patterning step with unconventional

manufacturing does not have any overlay requirement. In this section, the impact

of mask overlay misalignment for subsequent lithographic masks is addressed. The

WISP-0 [56] nanoscale processor design was mapped onto the N3ASIC fabric. Overlay

misalignment between successive masks were modelled as Gaussian random variables,

and Monte Carlo simulations were carried out in a custom simulator to determine the

number of functioning chips. The simulations were carried out for several 3σ overlay

misalignment values projected by ITRS 2011.

The contact creation and metal gate deposition steps involve alignment to the

smallest features, and hence they are most critical to mask overlay and contribute

significantly to the yield loss. Yield loss due to mask overlay during metal stack

creation is minimal (identical to conventional CMOS). Hence metal stacks higher

than M2 layer have not been considered in these simulations.

The results in Fig. 7.4 show that 100% mask overlay limited yield may be obtained

for 3σ = ±8nm overlay (manufacturing solutions known as per ITRS 2011) when

constructing a uniform nanowire bundle with λ=8nm (16nm technology node) in the
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Figure 7.4. Mask overlay limited Yield vs. Overlay for 3D integrated fabric

3D integrated fabric. Within a bundle the width of nanowires is 5nm each, with 6nm

spacing to accommodate 16nm vias. Fig. 7.4 shows that even with a pessimistic mask

overlay projection of 3σ=±16nm a mask overlay limited yield of 83% can be observed.

These numbers are a significant improvement over overlay precision requirement for

NASICs, where the equivalent number is 3σ = ±5.7nm for 100% overlay-limited yield.

It is evident from the results that the use of regular structure (like the nanowire

arrays in N3ASICs) does not impose stringent constraints on overlay precision re-

quirement. Further, fewer masks are required to manufacture this fabric compared

to a CMOS design which is beneficial from both yield and cost perspective. By con-

trast, irregular structures would have more stringent mask overlay requirements. For

example, the proposed approach also has considerably greater tolerance to overlay

imprecision than 16nm CMOS that requires a 3nm precision at 16nm node as per

ITRS 2011.
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7.4 N3ASICs Device, Circuits and Architectural Exploration

N3ASICs evaluations were carried out at device, circuit and architecture level. The

integrated device-fabric exploration methodology proposed for NASIC was adopted.

Physical fabric choices impact the structure and properties of N3ASICs devices.

For e.g. if SNAP is used to pattern the bottom most ultra-dense nanowire layer,

nanowires with square cross section will be obtained. Further, use of CMOS design

rules facilitates bundling of nanowires because of the larger via dimension compared

to nanowires. Hence, dual-channel devices can be used in N3ASICs. For this device

structure the electrical properties are obtained from Synopsys Sentaurus Device [3].

Using this data, behavioral model compatible with HSPICE [2] is created. This

behavioral model is used to carry out circuit and system level evaluations.

7.4.1 Device Simulations1

Dual-Channel Crossed Nanowire FETs (2C-xnwFETs, Fig. 7.5A) employ metal

Omega gate structures for tighter electrostatic control. Gate material work function

is 4.6 eV. 16nm channel devices were simulated given that it is the minimum feature

size for lithographically defined gates. The notation N3ASICs-16 represents N3ASICs

constructed with 16nm CMOS design rules, which implies λ the scale length, is equal

to 8nm. The channels are doped p-type of the order of 1018 cm−3 and the source/drain

regions were doped n-type of the order of 1020 cm−3. A substrate bias of -3V was

assumed to deplete the channel and adjust device parameters such as threshold voltage

and on/off current ratios for correct cascading. A high-κ HfO2 material is used for

gate oxide. The gate oxide thickness was 3nm. Table 7.1 summarizes the parameters

used for Device simulations.

Drain current vs. drain voltage (IDS-VDS), drain current vs. gate voltage (IDS-

VGS), and different parasitic capacitances vs. gate voltage (C vs VGS) were simulated.

1Device Simulations were done by other students in the group, but are included for completeness

83



Figure 7.5. 3D structure of N3ASICs device (2C-xnwFET)

Table 7.1. Device simulation parameters for 2C-xnwFET

Parameter Value

Gate Material Metal
Gate Workfunction(eV) 4.6
Channel Doping (cm−3) 1018

Gate Oxide Material HfO2

Gate oxide thickness (nm) 3
Bottom oxide material SiO2

Bottom oxide thickness (nm) 10
Back Gate bias (V) -3

Source/Drain doping (cm−3) 1020
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Table 7.2. 2C-xnwFET Device simulation results

Parameter N3ASICs-16 2C-xnwFET

VTH 0.27
ION 39.6µA

ION/IOFF 26218

On-current (ION) and on/off (ION/IOFF ) current ratio were extracted. Fig. 7.5B

shows the IDS-VDS curve for different VGS values. These simulations verify inversion

mode behavior for 2C-xnwFETs with a positive threshold voltage.

Table 7.2 shows key device simulation results for N3ASICs-16 2C-xnwFET. With a

high on current, VTH > 0.2, and ION/IOFF > 104 the devices meet circuit requirements

for correct functionality and noise.

7.4.2 Circuit and System Evaluation

Detailed system level evaluations were carried out using WISP-0 nanoprocessor as

the test case. 16nm CMOS equivalent of WISP-0 was developed in order to compare

the area, power and performance. NASICs are 22× and N3ASICs are 3× denser than

16nm CMOS equivalent design. It was seen that both fabrics are able to achieve

comparable performance at 30× and 5× lower power consumption. The density

advantage is due to the dense nanowire array at the bottom (implying the use of

devices with smaller dimensions when compared to conventional CMOS FETs), use

of single type FET to realize logic, implicit latching on the nanowires (which ensures

that there is no need for area expensive latches and flip-flops) and finally reduced

transistor count compared to CMOS.

N3ASICs trades-off some density benefits, since CMOS design rules are used for

pitch and spacing, but achieves ease-of-manufacturability. As the nanowire layer con-

firms to CMOS design rules, the spacing between the nanowires is greater compared

to a 2-D grid based NASIC fabric. The use of design rules, while alleviating manufac-
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Table 7.3. Comparison of key system-level metrics for WISP-0

Area(µm2) Performance(GHz) Power(µW)

CMOS Baseline(16nm) 66.24 6.25 77.90
NASICs 2.90 4.66 2.60

N3ASICs-16 22 6.32 14.36
Relative Improvement 22x,3x 0.75x,1x 30x,5.42x

turing requirements, reduces the density advantage of N3ASICs to 3X. The evaluation

results are summarized in the table.

Power and performance comparisons are shown in Table 7.3. We notice that

the performance of N3ASICs-16 is comparable to that of 16nm CMOS equivalent

WISP-0. These simulations do not consider key optimizations for xnwFETs and

2C-xnwFETs making comparisons pessimistic. For example, while the PTM models

employ strained silicon, no straining was assumed for nanowire FETs. It is expected

that a better mobility and hence better performance could be obtained when straining

techniques are employed in NASICs and N3ASICs.

7.5 Reducing Doping Requirements with Metal-Gated Junc-

tionless xnwFETs

Both conventional inversion-mode CMOS devices and 2C-xnwFETs for N3ASICs

require ultra-sharp source-channel and drain-channel junction with dopant concen-

trations changing several orders of magnitude within a span of 1nm-2nm. Achieving

this requires extremely precise control of spacer techniques and high temperature an-

nealing processes. Design choices can further be optimized to eliminate this require-

ment in N3ASICs. In this section, we propose and describe Metal-gated Junctionless

Nanowire FETs (MJNFETs) that are fully compatible with the N3ASICs fabric and

provide significantly reduced manufacturing complexity.

86



The device structure is shown in Fig. 7.6A. It consists of a uniformly doped chan-

nel nanowire without drain- or source- junctions, a high-κ dielectric material, and an

orthogonal metal gate. This junctionless channel scheme considerably simplifies man-

ufacturing by eliminating complex fabrication steps such as ultra-low energy impurity

implantation, and high thermal budget defect annihilation/dopant incorporation for

achieving extremely sharp lateral doping abruptness both of which are increasingly

prohibitive especially for non-planar semiconductor nanostructures. The principle of

operation is not based on inversion but on accumulation/depletion. Channel deple-

tion is induced by work-function difference between the metal gate and the doped

channel. n+ Silicon channels can be depleted by metals with higher work-function

than the Si-channel (e.g. Nickel), whereas p+ channels are depleted by materials with

lower workfunction (e.g. Titanium). Given the nanoscale dimensions of the channel

cross-section, the channel region can be completely depleted of carriers at zero gate

voltage, leading to normally OFF devices (necessary for cascading in NASICs and

N3ASICs). Applying a voltage bias on the metal gate eliminates the work-function

difference, turning ON the device.

MJNFET device behavior was validated through detailed 3-D Synopsys Sentau-

rus process and device simulations (Fig. 7.6B, C). For an n+ device with 16nm (gate

length) × 10nm (channel width) × 10nm (channel thickness) dimensions, HfO2 gate

dielectric with 2nm thickness, and channel doping of 2 × 1019 dopants/cm3) a thresh-

old voltage of ∼0.3V is achieved. Above the threshold voltage a conducting path is es-

tablished and the device is considered ON. Accumulation increases up to the flat-band

condition, when the channel concentration reaches the initial doping concentration.

ON-current for this device was found to be 14µA.
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Figure 7.6. Metal-gated Junctionless Nanowire FET (MJNFET) A) Structure, B)
Simulated IDS−VGS (log) plot C) Simulated IDS−VDS curve for different VGS showing
linear and saturation regimes of operation

7.6 Assembly Sequence for N3ASICs with MJNFETs

Fig. 7.7 shows the layer-by-layer assembly sequence for N3ASICs with MJNFETs.

Similar to the enhancement-mode device, the unconventional patterning step is car-

ried out a priori to all lithographic steps. However, a key distinction is the doping

requirement mitigation. Given that the circuit-style uses single-type FETs, and that

individual devices do not have complex or dissimilar doping profiles the only doping

step required is a single initial wafer-wide doping before any patterning. Function-

alization of MJNFET crosspoints is achieved by depositing metal gates with the

appropriate workfunction to achieve channel depletion in the required channel seg-

ments without additional alignment/processing. Self-aligned ion-implantation or lat-

eral doping abruptness across the nanowire length are not needed.

7.7 Chapter Summary

A 3-D integrated nanofabric N3ASICs was presented. A physical fabric vision

was developed to enable the self-assembly/unconventional manufacturing approach

and conventional photolithography, to be employed in conjunction while retaining

the benefits of both the approaches. To facilitate the use of photolithography CMOS

design rules were followed at all levels. No special manufacturing constraints were

introduced. A detailed layer-by-layer assembly sequence of the fabric was presented.
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Figure 7.7. Assembly Sequence for N3ASICs fabric with MJNFETs: A) SOI wafer
with wafer-wide top Silicon doping, B) Direct patterning of nanowires, C) MJNFET
creation by gate oxide + gate metal deposition, D) Power rail and via placement, E)
Metal1 for gate inputs and control signals, F) M2 for routing.
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Fabric evaluations were carried out at device, circuit and system levels. A nanopro-

cessor implemented using the proposed N3ASIC fabric was shown to be 3X denser

than equivalent CMOS design and 5X power efficient for a comparable performance.

Systematic yield implications due to mask overlay misalignment were analyzed. Re-

sults show that a yield of 100% was obtained with an overlay misalignement of 3σ =

±8nm (manufacturing solutions known and optimized). A yield of 83% was obtained

even for a pessimistic overlay misalignment of 3σ = ±16nm.

Junctionless xnwFETs with Metal-gates were discussed to further reduce man-

ufacturing requirements by eliminating complex doping profiles and high thermal

budgets. Sentaurus simulations show these devices to have the requisite I-V char-

acteristics to be made functional in NASIC and N3ASICs circuits. An assembly

sequence for N3ASICs was developed with these MJNFETs, where the only doping

requirements is an initial wafer-wide doping step of the top silicon.
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CHAPTER 8

EXPERIMENTAL PROTOTYPE DEVELOPMENT

A comprehensive theoretical framework for nanowire fabrics spanning device char-

acteristics, circuit behavior, architecture, fault-tolerance and assembly sequences was

explored. Through careful design choices at multiple levels, manufacturability re-

quirements were mitigated. Building on these fabric-centric explorations, a new re-

search effort was undertaken with the goal being to experimentally validate core fabric

concepts and demonstrate MJNFET devices and N3ASICs prototype at sub-35nm di-

mensions in Cleanroom settings.

8.1 Fabrication - Preliminaries

The starting material for prototyping is a Silicon Implanted Oxide (SIMOX)

Silicon-on-Insulator (SOI) wafer. The SOI has a 100nm top Silicon and 378nm buried

oxide layer. The initial doping is p-type 1015dopants/cm3. A wafer-wide ion im-

plantation step is used to increase the doping to achieve conducting channels with

sufficient on-currents. For the purpose of prototyping, all patterning steps are done

with Electron-Beam Lithography (EBL), which can achieve the requisite nanowire

channel and gate dimensions. EBL steps can be replaced by unconventional pattern-

ing or photolithography steps to achieve scalable manufacturing of the fabric with

assembly sequences shown in previous chapters. Standard processing steps such as

Evaporation, Reactive Ion Etch (RIE), Wet Chemical Etches, Atomic Layer Depo-

sition (ALD), Sputtering etc. are used. Where appropriate, process simulations are

used to determine critical process parameters for experiments.

91



The key milestones for this effort are:

• Demonstrate successful ion implantation of top SOI substrate

• Develop end-to-end process flow for the N3ASIC fabric and optimize individual

process steps

• Demonstrate individual conducting nanowires after EBL patterning and RIE

pattern transfer

• Show MJNFET devices that are normally OFF (fully depleted at zero gate bias

- required for cascading) with appropriate choice of gate material, gate oxide

and device dimensions

• Demonstrate small-scale N3ASICs tile

8.2 Ion Implantation of SOI Wafers

Ion implantation is required to achieve sufficiently high doping concentration that

can ensure high on-currents as well as high conductivity drain and source regions in

junctionless xnwFET devices. This is a two step process: the first step is the dopant

implant, which is followed by thermal annealing to diffuse and activate the dopants

in the lattice.

A combination of two simulation tools (SRIM and Sentaurus Process) is used to

simulate process characteristics and extract process parameters. SRIM (Stopping

Range of Ions in Matter) [63] simulations are used to extract ion implantation pa-

rameters such as acceleration voltage and implant dosage. Sentaurus Process [4] is

used to determine annealing temperature and annealing time.

SRIM Simulations are carried out for an SOI wafer with 100nm thick top device

layer (Si), 378nm middle buried oxide(SiO2) layer and and 500um bottom handle

layer (Si). The acceleartion voltage (28 keV) used in SRIM simulations is obtained

92



from stropping range table for Boron dopants and silicon substrate. Ion implantation

process is modeled using Monte Carlo (TRIM) simulation model. Fig. 8.1A shows Ion

(B+) distribution plot obtained. Ion implantation parameters (acceleration voltage 28

keV, implant dosage 1014atoms/cm2) obtained from SRIM are used in Sentaurus Pro-

cess [4] simulations to implant the SOI substrate. Diffusion and activation processes

are modeled using Charged Cluster model. Simulations show that Ion-implanted sub-

strates, if annealed at 1000◦C, for 60 minutes in N2 ambient will diffuse and activate

dopants. Fig. 8.1B shows process simulation with uniform dopant distribution in the

top silicon layer after annealing.

Figure 8.1. Simulations for Ion Implantation A) SRIM simulation plot showing ion
distribution in SOI wafer for 28keV implant B) Sentaurus process simulation plot
showing ion distribution in SOI wafer before and after thermal annealing at 1000◦C.

Process simulations were also used to construct the targeted junctionless xnwFET

structure. Combined with device-level simulations of charge transport, this approach

helps identify several key parameters including gate oxide thickness, impact of differ-

ent gate oxide materials, metal gate workfunction to achieve normally OFF devices,

impact of channel/gate geometry on device characteristics etc.
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8.3 Experimental Process Flow

An end-to-end process flow for small-scale fabric prototype was developed and

individual steps optimized. This pathway is based on direct patterning of silicon

nanowires from Silicon-on-Insulator (SOI) substrates with thin top silicon layers using

Electron-Beam Lithography (EBL). As previously mentioned, a key feature of the

fabric is that given an initial SOI wafer with the correct doping concentration, no

additional doping steps are necessary for realizing individual devices and functional

blocks. A scalable pathway for integrated systems can be envisioned along the same

lines as this prototyping approach, but using parallel processes for assembly and

functionalization.

The prototyping approach is shown schematically in Fig. 8.2. The starting mate-

rial is an SOI wafer where the top device layer is uniformly doped with p+ dopants.

The ion implantation and annealing steps for unifrom doping of Si device layer were

carried out using simulated process parameters (Acceleration voltage:28keV, Area

dosage: 1014dopants/cm2, Implant tilt: 7 degrees, Annealing Temperature: 1000◦C,

Annealing Duration: 60min, Annealing Ambient: N2). The substrate was thinned

down to 15nm with anisotropic RIE using SF6 + CHF3 etch recipie (Fig. 8.2B). Using

EBL and PMMA resist, sub-30nm features are patterned and a Nickel evaporation

and liftoff step is used to define Ni features on top of the substrate (Fig. 8.2C). The Ni

features act as an etch mask for defining nanowires on the SOI. Anisotropic RIE using

SF6 + CHF3 mixture is used to etch the surrounding Si, followed by Piranha (3:1

H2SO4:H2O2) treatment to remove Ni etch mask. This leaves Silicon nanowires di-

rectly patterned on the SOI substrate (Fig. 8.2D and E). Nanowires at widths as small

as 30nm, 20nm and 15nm have been successfully demonstrated using this approach.

Smaller dimensions imply better depletion, leading to normally off devices with higher

on/off current ratios. Atomic layer deposition tehcnique is used for Halfnium oxide

(HfO2) deposition (Fig. 8.2F), followed by alignment, patterning, evaporation and
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liftoff to define metal gate nanowires (Fig. 8.2G). Additional details are presented

below.

Figure 8.2. End-to-end prototyping process flow for N3ASICs fabric

8.3.1 Electron Beam Lithography

EBL is used for all patterning steps including defining contacts and alignment

markers, patterning nanowires and orthogonal gates. For all steps a positive resist

process is used with Poly-Methyl-MethAcrylate (PMMA), with a commercially avail-

able formulation in Anisole designated A2. The resist has excellent adhesion to Silicon

and fairly low thicknesses (less than 60nm) are achievable for small feature sizes. Ex-

posure to an electron-beam causes breakdown of polymer chains in PMMA, which

can be dissolved in a ketone developer solution (Methyl Iso-Butyl Ketone, MIBK).

Alignment routines available as part of the patterning system are used for locating

previously defined features (e.g. in the creation of metal gates over previously defined

channels).

8.3.2 Reactive Ion Etch

RIE steps are used in two steps of the process flow: i) to thin down the top silicon

layer from 100nm to ∼20nm and ii) to transfer EBL-defined nanowire patterns to the
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substrate to achieve Silicon nanowires. The recipe used to etch Silicon is adapted

from [6]. A combination of SF6 and CHF3 gases is used. SF6 achieves the actual

etching of Silicon; however the process is isotropic. To improve the anisotropy, CHF3

is used. Radicals from this gas ensure passivation of any exposed Silicon sidewalls,

ensuring that the process is entirely top-down from any exposed Silicon surfaces.

This ensures smooth thinning of the Silicon substrate in Fig. 8.2B as well as successful

pattern transfer in Fig. 8.2D. Nickel is used as a metal etch mask since it is completely

unreactive to this gas mixture, and can be easily removed using a piranha wet-etch

process that does not affect the substrate, channel or contacts/markers.

8.3.3 Oxide Deposition

Silicon dioxide, Aluminum oxide and Hafnium dioxide were considered as pos-

sible gate oxide materials. Silicon oxide was deposited using a standard PECVD

process with Silane gas and Oxygen, Aluminum oxide was sputtered, and Hafnium

oxide was deposited using ALD. The former two approaches were found to be unsuit-

able for MJNFETs: Dielectric constants were lower than HfO2 to begin with, and

oxide thicknesses could not be controlled to atomic precision. Characterization of

FET structures showed poor gate control, with dielectric breakdown occuring well

before full channel depletion. ALD HfO2 process at 150◦C was optimized to achieve

thicknesses between 1nm to 2nm. Characterization of oxide thickness was done using

ellipsometry.

8.3.4 I-V Measurements

I-V Measurements are done at various stages of the process flow. 4-pt probe

measurements of the substrate are used for determining if it has been succesfully

doped and dopants activated. 2-pt probe measurements are done after nanowire

patterning to determine if patterned nanowires conduct. 3-pt FET characterization

is done after creating MJNFET structures to determine ID − VGS and ID − VDS
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characteristics. A Keithley 4200 Semiconductor Parametric Analyzer was used for

these experiments.

8.4 Experimental Results

The aformentioned process steps and process simulations were used in fabricating

xnwFET structures and logic stage of the nanowire fabric. Extensive metrology was

done after each process step to verify expected results. Four point probe measure-

ments were carried out to determine doping concentration in Silicon substrate after

ion implantation. This was found to be ∼ 8×1018dopants/cm3 which is almost equal

to targeted concentration from simulations (1019dopants/cm3).

Atomic Force Microscopy (AFM) measurements were done to determine surface

roughness and Silicon thickness after RIE substrate thinning and pattern transfer

steps. As shown in Fig.4A (left), a thinned Silicon substrate has less than 1nm root-

sum-squared variation in surface roughness after anisotropic etching of top SOI layer

from 100nm to 15nm. Fig.4A (right) shows AFM image of 15nm thick patterned

Silicon nanowire on top of SiO2 buried oxide.

I-V measurements were carried out on individual junctionless xnwFETs to char-

acterize electrical properties. In order to determine on current and contact resistivity

in junctionless xnwFETs, two point probe I-V measurements were done on nanowire

channels, which were patterned in between source and drain contacts. Excellent

Ohmic behavior was achieved through these nanowires (contact metal stack: 5nm Ti

+ 30nm Au) since the substrate from which they are patterned was heavily doped.

Ellipsiometry measurements were done to determine HfO2 thickness after atomic

layer deposition at 150◦ C. We were able to deposit and measure HfO2 films down to

1nm, and the thickness was found to be uniform across the die.

Three point probe measurements were done on junctionless xnwFETs. Dimen-

sions for fabricated devices were 30nm wide and 15nm thick nanowire channel, 1.2nm
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Figure 8.3. AFM Images post-RIE A) Successful thinning of top Silicon to ∼15nm
with less than 1nm RMS deviation in surface roughness B) Successful pattern transfer
to Si followed by Nickel removal, showing anisotropic profile and smooth top surface.

Figure 8.4. Experimental MJNFET Device Characterization: A) Fabricated Device
Structure and B) IDS − VGS characteristics for normally off MJNFETs.
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thick HfO2 gate dielectric, 200nm long gate and 50nm thick gate metal stack. A

stack of 35nm Titanium layer and 15nm thick Gold layer served as gate metal stack;

Titanium provides the necessary work-function difference for depleting p+ doped Sil-

icon channel, and Gold is used for reducing the series resistance of the gate. Fig. 8.4

shows IDS − VGS characteristics of p-type junctionless xnwFETs when a metal gate

stack was put on top of silicon nanowire channel. The IDS − VGS characteristics in

Fig. 8.4 accurately depicts junctionless device characteristics, where the workfunc-

tion difference between Titanium/Au gate and p+ doped Silicon nanowire channel

depletes the channel and the device is normally OFF at 0V Vgs. As the negative

gate voltages (VGS < 0) are applied, the carriers are accumulated and the channel

conducts. These devices have an ION/IOFF > 103 and threshold voltage ∼ −0.3V .

These characteristics imply that MJNFET devices can be made functional in NASIC

and N3ASICs circuits, with sufficient noise margins and cascading capability.

We have also demonstrated a single logic stage of the nanowire fabric. As shown in

Fig. 8.5, nanowire grid with functional cross-points was fabricated using the process

flow desribed before. The bottom (horizontal) Si nanowires in the grid were 30nm

wide, 15nm thick and 100nm apart from each other; the top metal nanowires (vertical)

were 30nm wide, 50nm thick and 200nm spaced; Vias were placed at output of each

horizontal nanowires. Whille demonstration of a fully functional N3ASICs fabric will

require further effort, this work shows feasibility of the approach and validates the

process flow.

8.5 Chapter Summary

A prototyping process flow for demonstration of N3ASICs was presented. This

process flow uses EBL steps for patterning in conjunction with standard semiconduc-

tor processing steps including ion implant, RIE, evaporation etc. No special manu-

facturing requirements exist. The experimental approach was supported by process
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Figure 8.5. Fabricated N3ASICs Tile

simulations to determine key parameters for fabrication (e.g. ion implant dosage,

annealing time/temperature etc). Key milestones such as successful ion implanta-

tion, optimization of individual process steps, successful nanowire pattern transfer,

and demonstration of requisite MJNFET behavior with normally OFF p-type devices

(VTH ∼ −0.3V ) and three orders of magnitude ON/OFF current ratios were achieved.

An N3ASICs tile was also demonstrated. Further optimization of process and devices

will enable a fully functional prototype.
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CHAPTER 9

CONCLUSIONS

A fabric-centric approach towards building integrated nanosystems was presented.

Through careful design choices across device, circuit and architecture levels manu-

facturing requirements are reduced - regular arrays with limited customization imply

mitigated overlay precision requirements, novel circuit styles eliminate the need for

arbitrary fine-grain sizing and complementary doping, simple device strucutures are

used and device optimizations are done in a fabric-friendly manner. The fabric is

validated through an integrated bottom-up methodology with careful consideration

to physical layer assumptions and their implications for noise and parameter variation

at circuit and system levels. It is shown to have 22× density benefit and 30× power

benefit vs. CMOS for improved overlay imprecision tolerance (3σ = ±5.7nm).

A new 3D integrated fabric, N3ASICs, was proposed that combines unconven-

tional manufacturing with lithography and design rules for reduced manufacturing

requirements vs.scaled CMOS. This fabric achieves 3X area, 5X power at comparable

performance vs. 16nm CMOS for a processor design. Furthermore, these benefits may

be achieved with overlay imprecision of ±8nm, for which manufacturing solutions are

known today (vs. ±3nm for 16nm CMOS, manufacturing solutions unknown).

Experimental efforts towards building an N3ASICs prototype were discussed. An

end-to-end process flow was developed and individual steps optimized. Successful

doping of SOI substrates, pattern transfer to create nanowires at dimensions be-

tween 15nm to 30nm, and metal-gated junctionless nanowire FET structures were

demonstrated. I-V characterization of MJNFET devices show normally OFF behav-
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ior (through gate channel workfunction difference) and three orders of magnitude

on/off current ratios, implying that these devices meet circuit requirements for cas-

cading and noise, as per circuit evaluations. N3ASICs tiles with MJNFETs at the

crosspoints were also demonstrated. Thus through a combination of fabric design,

theoretical exploration and cleanroom fabrication, new nano-fabrics were developed

and shown to achieve the concurrent objectives of improved system-level benefits and

improved manufacturability.
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