78,894 research outputs found

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    Real-time detection of grid bulk transfer traffic

    Get PDF
    The current practice of physical science research has yielded a continuously growing demand for interconnection network bandwidth to support the sharing of large datasets. Academic research networks and internet service providers have provisioned their networks to handle this type of load, which generates prolonged, high-volume traffic between nodes on the network. Maintenance of QoS for all network users demands that the onset of these (Grid bulk) transfers be detected to enable them to be reengineered through resources specifically provisioned to handle this type of traffic. This paper describes a real-time detector that operates at full-line-rate on Gb/s links, operates at high connection rates, and can track the use of ephemeral or non-standard ports

    Interoperability in IoT through the semantic profiling of objects

    Get PDF
    The emergence of smarter and broader people-oriented IoT applications and services requires interoperability at both data and knowledge levels. However, although some semantic IoT architectures have been proposed, achieving a high degree of interoperability requires dealing with a sea of non-integrated data, scattered across vertical silos. Also, these architectures do not fit into the machine-to-machine requirements, as data annotation has no knowledge on object interactions behind arriving data. This paper presents a vision of how to overcome these issues. More specifically, the semantic profiling of objects, through CoRE related standards, is envisaged as the key for data integration, allowing more powerful data annotation, validation, and reasoning. These are the key blocks for the development of intelligent applications.Portuguese Science and Technology Foundation (FCT) [UID/MULTI/00631/2013

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    First experiences with Personal Networks as an enabling platform for service providers

    Get PDF
    By developing demonstrators and performing small-scale user trials, we found various opportunities and pitfalls for deploying personal networks (PNs) on a commercial basis. The demonstrators were created using as many as possible legacy devices and proven technologies. They deal with applications in the health sector, home services, tourism, and the transportation sector. This paper describes the various architectures and our experiences with the end users and the technology. We conclude that context awareness, service discovery, and content management are very important in PNs and that a personal network provider role is necessary to realize these functions under the assumptions we made. The PNPay Travel demonstrator suggests that PN service platforms provide an opportunity to develop true trans-sector services
    corecore