70 research outputs found

    Eye-gaze interaction techniques for use in online games and environments for users with severe physical disabilities.

    Get PDF
    Multi-User Virtual Environments (MUVEs) and Massively Multi-player On- line Games (MMOGs) are a popular, immersive genre of computer game. For some disabled users, eye-gaze offers the only input modality with the potential for sufficiently high bandwidth to support the range of time-critical interaction tasks required to play. Although, there has been much research into gaze interaction techniques for computer interaction over the past twenty years, much of this has focused on 2D desktop application control. There has been some work that investigates the use of gaze interaction as an additional input device for gaming but very little on using gaze on its own. Further, configuration of these techniques usually requires expert knowledge often beyond the capabilities of a parent, carer or support worker. The work presented in this thesis addresses these issues by the investigation of novel gaze-only interaction techniques. These are to enable at least a beginner level of game play to take place together with a means of adapting the techniques to suit an individual. To achieve this, a collection of novel gaze based interaction techniques have been evaluated through empirical studies. These have been encompassed within an extensible software architecture that has been made available for free download. Further, a metric of reliability is developed that when used as a measure within a specially designed diagnostic test, allows the interaction technique to be adapted to suit an individual. Methods of selecting interaction techniques based upon game task are also explored and a novel methodology based on expert task analysis is developed to aid selection

    An investigation into gaze-based interaction techniques for people with motor impairments

    Get PDF
    The use of eye movements to interact with computers offers opportunities for people with impaired motor ability to overcome the difficulties they often face using hand-held input devices. Computer games have become a major form of entertainment, and also provide opportunities for social interaction in multi-player environments. Games are also being used increasingly in education to motivate and engage young people. It is important that young people with motor impairments are able to benefit from, and enjoy, them. This thesis describes a program of research conducted over a 20-year period starting in the early 1990's that has investigated interaction techniques based on gaze position intended for use by people with motor impairments. The work investigates how to make standard software applications accessible by gaze, so that no particular modification to the application is needed. The work divides into 3 phases. In the first phase, ways of using gaze to interact with the graphical user interfaces of office applications were investigated, designed around the limitations of gaze interaction. Of these, overcoming the inherent inaccuracies of pointing by gaze at on-screen targets was particularly important. In the second phase, the focus shifted from office applications towards immersive games and on-line virtual worlds. Different means of using gaze position and patterns of eye movements, or gaze gestures, to issue commands were studied. Most of the testing and evaluation studies in this, like the first, used participants without motor-impairments. The third phase of the work then studied the applicability of the research findings thus far to groups of people with motor impairments, and in particular,the means of adapting the interaction techniques to individual abilities. In summary, the research has shown that collections of specialised gaze-based interaction techniques can be built as an effective means of completing the tasks in specific types of games and how these can be adapted to the differing abilities of individuals with motor impairments

    Challenges and Solutions on Assistive Technologies: Electronic systems design for people with disabilities

    Get PDF
    This work of PhD Thesis focuses on technology dedicated to persons with disabilities. This category of devices is known in the academic field and also on the market with the term of Assistive Technology. This name in fact indicates a series of technological solutions that can assist people with disabilities during everyday life and often return to the user one or more skills such as walk, talk, play or trivially change channels when watching television. In the elaborate some of the major contributions made by the candidate to the field of Assistive Technology are presented. However, to better understand the dynamics and the scene of the Assistive Technology worldwide, also the most important and current issues of this field, both technological and economics, are described

    Head-mounted displays and dynamic text presentation to aid reading in macular disease

    Get PDF
    The majority of individuals living with significant sight loss have residual vision which can be enhanced using low vision aids. Smart glasses and smartphone-based headsets, both increasing in prevalence, are proposed as a low vision aid platform. Three novel tests for measuring the visibility of displays to partially sighted users are described, along with a questionnaire for assessing subjective preference. Most individuals tested, save those with the weakest vision, were able to see and read from both a smart glasses screen and a smartphone screen mounted in a headset. The scheme for biomimetic scrolling, a text presentation strategy which translates natural eye movement into text movement, is described. It is found to enable the normally sighted to read at a rate five times that of continuous scrolling and is faster than rapid serial visual presentation for individuals with macular disease. With text presentation on the smart glasses optimised to the user, individuals with macular disease read on average 65% faster than when using their habitual optical aid. It is concluded that this aid demonstrates clear benefit over the commonly used devices and is thus recommended for further development towards widespread availability

    Non-Visual Representation of Complex Documents for Use in Digital Talking Books

    Get PDF
    Essential written information such as text books, bills, and catalogues needs to be accessible by everyone. However, access is not always available to vision-impaired people. As they require electronic documents to be available in specific formats. In order to address the accessibility issues of electronic documents, this research aims to design an affordable, portable, standalone and simple to use complete reading system that will convert and describe complex components in electronic documents to print disabled users

    Dwell-free input methods for people with motor impairments

    Full text link
    Millions of individuals affected by disorders or injuries that cause severe motor impairments have difficulty performing compound manipulations using traditional input devices. This thesis first explores how effective various assistive technologies are for people with motor impairments. The following questions are studied: (1) What activities are performed? (2) What tools are used to support these activities? (3) What are the advantages and limitations of these tools? (4) How do users learn about and choose assistive technologies? (5) Why do users adopt or abandon certain tools? A qualitative study of fifteen people with motor impairments indicates that users have strong needs for efficient text entry and communication tools that are not met by existing technologies. To address these needs, this thesis proposes three dwell-free input methods, designed to improve the efficacy of target selection and text entry based on eye-tracking and head-tracking systems. They yield: (1) the Target Reverse Crossing selection mechanism, (2) the EyeSwipe eye-typing interface, and (3) the HGaze Typing interface. With Target Reverse Crossing, a user moves the cursor into a target and reverses over a goal to select it. This mechanism is significantly more efficient than dwell-time selection. Target Reverse Crossing is then adapted in EyeSwipe to delineate the start and end of a word that is eye-typed with a gaze path connecting the intermediate characters (as with traditional gesture typing). When compared with a dwell-based virtual keyboard, EyeSwipe affords higher text entry rates and a more comfortable interaction. Finally, HGaze Typing adds head gestures to gaze-path-based text entry to enable simple and explicit command activations. Results from a user study demonstrate that HGaze Typing has better performance and user satisfaction than a dwell-time method
    corecore