264 research outputs found

    Experimental evaluation of synergy-based in-hand manipulation

    Get PDF
    In this paper, the problem of in-hand dexterous manipulation has been addressed on the base of postural synergies analysis. The computation of the synergies subspace able to represent grasp and manipulation tasks as trajectories connecting suitable configuration sets is based on the observation of the human hand behavior. Five subjects are required to reproduce themost natural grasping configuration belonging to the considered grasping taxonomy and the boundary configurations for those grasps that admit internal manipulation. The measurements on the human hand and the reconstruction of the human grasp configurations are obtained using a vision-based mapping method that assume the kinematics of the robotic hand, used for the experiments, as a simplified model of the human hand. The analysis to determine the most suitable set of synergies able to reproduce the selected grasps and the relative allowed internal manipulation has been carried out. The grasping and in-hand manipulation tasks have been reproduced bymeans of linear interpolation of the boundary configurations in the selected synergies subspace and the results have been experimentally tested on the UB Hand IV

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Mechanical implementation of kinematic synergy for continual grasping generation of anthropomorphic hand

    Get PDF
    The synergy-based motion generation of current anthropomorphic hands generally employ the static posture synergy, which is extracted from quantities of joint trajectory, to design the mechanism or control strategy. Under this framework, the temporal weight sequences of each synergy from pregrasp phase to grasp phase are required for reproducing any grasping task. Moreover, the zero-offset posture has to be preset before starting any grasp. Thus, the whole grasp phase appears to be unlike natural human grasp. Up until now, no work in the literature addresses these issues toward simplifying the continual grasp by only inputting the grasp pattern. In this paper, the kinematic synergies observed in angular velocity profile are employed to design the motion generation mechanism. The kinematic synergy extracted from quantities of grasp tasks is implemented by the proposed eigen cam group in tendon space. The completely continual grasp from the fully extending posture only require averagely rotating the two eigen cam groups one cycle. The change of grasp pattern only depends on respecifying transmission ratio pair for the two eigen cam groups. An illustrated hand prototype is developed based on the proposed design principle and the grasping experiments demonstrate the feasibility of the design method. The potential applications include the prosthetic hand that is controlled by the classified pattern from the bio-signal

    Control of posture with FES systems

    Get PDF
    One of the major obstacles in restoration of functional FES supported standing in paraplegia is the lack of knowledge of a suitable control strategy. The main issue is how to integrate the purposeful actions of the non-paralysed upper body when interacting with the environment while standing, and the actions of the artificial FES control system supporting the paralyzed lower extremities. In this paper we provide a review of our approach to solving this question, which focuses on three inter-related areas: investigations of the basic mechanisms of functional postural responses in neurologically intact subjects; re-training of the residual sensory-motor activities of the upper body in paralyzed individuals; and development of closed-loop FES control systems for support of the paralyzed joints

    Bio-Artificial Synergies for Grasp Posture Control of Supernumerary Robotic Fingers

    Get PDF
    A new type of wrist-mounted robot, the Supernumerary Robotic (SR) Fingers, is proposed to work closely with the human hand and aid the human in performing a variety of prehensile tasks. For people with diminished functionality of their hands, these robotic fingers could provide the opportunity to live with more independence and work more productively. A natural and implicit coordination between the SR Fingers and the human fingers is required so the robot can be transformed to act as part of the human body. This paper presents a novel control algorithm, termed “Bio-Artificial Synergies”, which enables the SR and human fingers to share the task load together and adapt to diverse task conditions. Through grasp experiments and data analysis, postural synergies were found for a seven-fingered hand comprised of two SR Fingers and five human fingers. The synergy-based control law was then extracted from the experimental data using Partial Least Squares (PLS) regression and tested on the SR Finger prototype as a proof of concept

    Synergy-Based Human Grasp Representations and Semi-Autonomous Control of Prosthetic Hands

    Get PDF
    Das sichere und stabile Greifen mit humanoiden Roboterhänden stellt eine große Herausforderung dar. Diese Dissertation befasst sich daher mit der Ableitung von Greifstrategien für Roboterhände aus der Beobachtung menschlichen Greifens. Dabei liegt der Fokus auf der Betrachtung des gesamten Greifvorgangs. Dieser umfasst zum einen die Hand- und Fingertrajektorien während des Greifprozesses und zum anderen die Kontaktpunkte sowie den Kraftverlauf zwischen Hand und Objekt vom ersten Kontakt bis zum statisch stabilen Griff. Es werden nichtlineare posturale Synergien und Kraftsynergien menschlicher Griffe vorgestellt, die die Generierung menschenähnlicher Griffposen und Griffkräfte erlauben. Weiterhin werden Synergieprimitive als adaptierbare Repräsentation menschlicher Greifbewegungen entwickelt. Die beschriebenen, vom Menschen gelernten Greifstrategien werden für die Steuerung robotischer Prothesenhände angewendet. Im Rahmen einer semi-autonomen Steuerung werden menschenähnliche Greifbewegungen situationsgerecht vorgeschlagen und vom Nutzenden der Prothese überwacht

    On neuromechanical approaches for the study of biological and robotic grasp and manipulation

    Get PDF
    abstract: Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.The electronic version of this article is the complete one and can be found online at: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0305-
    • …
    corecore