244 research outputs found

    Performance limits and robustness issues in the control of flexible link manipulators

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1992.Includes bibliographical references (leaves 179-186).by Carlos Eduardo Padilla Santos.Ph.D

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    Feedforward control for lightweight motion systems

    Get PDF

    Element and system design for active and passive vibration isolation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, February 2005.Includes bibliographical references (p. 277-294).This thesis focusses on broadband vibration isolation, with an emphasis on control of absolute payload motion for ultra-precision instruments such as the MIT/Caltech Laser-Interferometric Gravitational Wave Observatory (LIGO), which is designed to measure spatial strains on the order of 10-²¹. We develop novel passive elements and control strategies as well as a framework for concurrent design of the passive and active elements of single-stage and multi-stage isolation systems. In many applications, it is difficult to construct passive isolation systems compliant enough to achieve specifications on low-frequency ground transmission without introducing hysteresis as well as high-frequency transmission resonances. We develop and test a compliant support that employs a post-buckled structure in con- junction with a compliant spring to attain a low-frequency, low-static-sag mount in a compact package with a large range of travel and very clean dynamics. Most passive damping techniques increase ground transmission at high frequency, but tuned-mass dampers are decoupled from the ground. We explore the tuned-mass damper as a passive realization of the skyhook damper, obtain the optimal designs for multiple-SDOF systems of dampers, propose the concept of a multi-DOF damper, and show that MDOF dampers that couple translational and rotational motion have the potential to provide performance many times better than that traditional tuned-mass dampers. Active control can be used to improve low-frequency performance, but high-gain control can amplify sensor and actuator noise or cause instability. We study several control strategies for uncertain plants with high-order dynamics.(cont.) In particular, we develop a novel control strategy, "model-reaching" adaptive control, that drives the system onto a dynamic manifold defined directly in terms of the states of the target. The method can be used to robustly increase the apparent compliance of an isolation mount and maintain a -40 dB/decade roll-off above the resulting corner frequency.by Lei Zuo.Ph.D

    Superheat control for air conditioning and refrigeration systems: Simulation and experiments

    Get PDF
    Ever since the invention of air conditioning and refrigeration in the late nineteenth century, there has been tremendous interest in increasing system efficiency to reduce the impact these systems have on global energy consumption. Efficiency improvements have been accomplished through component design, refrigerant design, and most recently control system design. The emergence of the electronic expansion valve and variable speed drives has made immense impacts on the ability to regulate system parameters, resulting in important strides towards efficiency improvement. This research presents tools and methodologies for model development and controller design for air conditioning and refrigeration systems. In this thesis, control-oriented nonlinear dynamic models are developed and validated with test data collected from a fully instrumented experimental system. These models enable the design of advanced control configurations which supplement the performance of the commonly used proportional-integral-derivative (PID) controller. Evaporator superheat is a key parameter considered in this research since precise control optimizes evaporator efficiency while protecting the system from component damage. The controllers developed in this thesis ultimately provide better transient and steady state performance which increases system efficiency through low superheat set point design. The developed controllers also address the classical performance versus robustness tradeoff through design which preserves transients while prolonging the lifetime of the electronic expansion valve. Another notable contribution of this thesis is the development of hardware-in-the-loop load emulation which provides a method to test component and software control loop performance. This method alleviates the costs associated with the current method of testing using environmental test chambers

    Studies in performance monitoring of simple feedback control loops

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Comparative Analysis of Distillation Column Control Structure & Remote Controlling of a Robotic System

    Get PDF
    Now a days, everything is became automated. So, It is important to have a smart design which can control the system with in tolerance range and able to perform tasks in the timely manner In this project the process control of the entire plant by designing the different control systems PID, IMC and feed forward system and analyzing their performance. The advantages of the each system as individual have their own advantages like PID controller gives control over system without having much knowledge about the plant. While IMC controller gave superior response then the PID controller but IMC requires the insight of the system model Later part of the project involves the discrete control of the plant (robot) with the help of the data acquisition system, electrical drive & sensors in the system during this part the robot is controlled using a mobile phone using android OS with the help of the team viewer software this a mini version of the wireless control of the plant. The control of whole plant by understanding different aspects of the plant i.e.…. controllers, Actuators & sensors. All the simulations are done in the LabVIEW 2013 environment and SBRIO- 9632 with other tools altogether acted as a robot, Team viewer software is used for communicate between robot and mobile(Remote control)

    Active damping of lenstop vibrations

    Get PDF
    corecore