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Summary 
 

With the increasing emphasis on production geared towards a quality conscious 

market, chemical and related companies are relying more and more on their automatic 

control systems to maintain and improve product quality. This means that the control 

systems are expected to deliver high performance on a continuous basis. Even though 

a process control loop may function well at the time of commissioning, the 

performance is likely to degrade over time because of changes in the state of the 

equipment, feed conditions, plant throughput etc. This means that the health of the 

process controllers should be monitored on a frequent basis and corrective action such 

as controller tuning and hardware (e.g. control valve) checking must be initiated 

whenever necessary. Research work done in this thesis is motivated by the growing 

interest among control research community towards performance monitoring of 

control loops. 

 

The minimum variance benchmark for control loop performance that was first 

proposed by Harris (1989) and developed further by other researchers (e.g. 

Desborough and Harris (1992), Stanfelj et al. (1993), Huang et al. (1997) and 

Vishnubhotla et al. (1997)) is highly suited for this purpose. With only the knowledge 

of the process time delay, this monitoring methodology can estimate the performance 

index of a control loop on a scale of 0 to 1. A performance index close to 1 indicates 

that there is no scope for control performance improvement by retuning the existing 

controller, while a value close to 0 indicates that retuning the parameters of the 

current controller will very likely enhance control performance.  

 v



In the chemical process industries, well over 95% of the control loops employ PID 

type controllers. This heavy usage of PID type controllers is expected to continue in 

the near foreseeable future. The achievable performance possible with a PID type 

controller is therefore a very important piece of information for the process control 

engineer. Knowledge of the PID achievable performance will help in knowing when 

to stop tuning a PID controller in a chemical facility – one should not persist with 

tuning the PID controller in an attempt to reach a performance index of 1 because that 

limit might never be reached with a PID type controller. 

 

In this thesis, a method that can determine the PI achievable performance for control 

loops is proposed. No a priori knowledge of the open loop process model is assumed 

but experimental closed loop data (e.g. set point response data) are employed. It is 

shown that it is possible to estimate the PI achievable performance without having to 

determine the open loop process model. In addition to estimating the PI achievable 

performance, deterministic performance metrics and robustness margins for the “best” 

PID type controller are also provided.  The PID settings obtained are then utilized for 

tuning the controller and various controller-tuning guidelines are proposed. While 

performing the optimization to determine the “best” controller parameters, chances of 

getting trapped in a local optimal solution are rather high. To handle this situation, we 

advocate the use of multi objective optimization using Genetic Algorithm in the final 

chapter of this work. Formulation of the objective function and various other issues 

related to optimization are also discussed. 
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Nomenclature  
 
 
at   : White noise sequence 

d   : Time delay 

F   : First (d-1) parameters of closed loop output sequence 

G   : Closed loop process transfer function 

GM : Gain Margin 

H   : Closed loop disturbance transfer function 

Happrox : Approximate close loop disturbance transfer function 

IAEd : Normalized integral absolute error  

KR : Process gain of recycle loop 

L   : Remaining parameters after F 

N   : Open loop disturbance transfer function 

Nm  : Approximate open loop disturbance model  

PM : Phase margin 

Q   : Controller transfer function 

R   : Solution to Diophantine equation on open loop disturbance transfer function 

T   : Open loop process transfer function 

T~   : Delay free process transfer function 

Tm  : Approximate open loop process model 

TR   : Open loop recycle transfer function 

yt      : Process output  

2
aσ   : White noise variance 

2
mvσ   : Minimum variance 
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yσ   : Variance of process output 

η(d)  : Closed loop performance index 

η(d+h)  : Extended horizon closed loop performance index 

θR    : Time delay in recycle loop   

τR   : Time constant of recycle loop 
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Chapter 1. 

Introduction 
 

The activity of process control is to take information from the process using sensors 

located in the plant and provide commands to the actuators with a view to maintain 

the plant at desirable performance levels. Various control algorithms implemented 

using different control configurations are utilized in achieving this. This whole task 

may involve various steps starting from the selection and location of sensors, control 

valves, process modeling, control structure selection (e.g. loop pairing), controller 

design (type of controller e.g. PID), implementation and tuning. In this already long 

list of tasks, control loop performance monitoring, troubleshooting and maintenance 

are to be included as well. 

 

Various desirable performance specifications are provided for the control system. A 

few examples are: 

 

• Load rejection: Load disturbances and noises acting on the system should have 

minimum effect on the controlled variables.   

• Servo Response: Controller should closely follow the changes in output targets 

without undesirable levels of overshoot and oscillations.  

• Constraints on actuator moves: valve movement should not be excessively 

wild and should remain within allowable operating limits.  

• Robustness: Over the period, the process is susceptible to perturbations due to 

changes in operating conditions, equipment fouling, nonlinearities, sensor or 
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actuator failure etc. The control system must deliver satisfactory performance 

in any such eventuality.   

 

Other controller specifications are possible. Unfortunately many of these performance 

targets are conflicting in nature. Arbitrarily selected performance targets may not 

provide a feasible solution. If the selected solution is feasible, there should be an 

analytical technique to reach the solution in efficient and reliable manner. Also, 

simply specifying performance targets does not mean that they will be achieved in 

practice. Problems such as model-plant mismatch, nature of disturbances, 

nonlinearities etc. may limit the achievable performance.  

 

Coming to the issue of performance monitoring of control loops, it is easy to 

understand that a suitable benchmark is needed. The performance of a controller 

could be compared against the desired performance expected from it. Alternatively, 

its performance may be compared with a universal or theoretically “best” benchmark 

(like the Carnot engine in thermodynamics). Since the specifications are conflicting in 

nature, the benchmarks for each of the specifications are bound to contradict one 

another. Therefore a few questions need to be answered before developing the 

framework for performance monitoring of control loops.  

1) What should be the suitable performance benchmark (selection of 

benchmarks)? 

2) How to monitor performance with respect to benchmark (procedure)?  

3) How to tune the controller to achieve the best possible performance? 

4) How to formulate and solve the problem analytically for this purpose? 

5) What are the main constraints to the performance improvements? 
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This work aims to provide partial answers to some of these questions. Chapter 2 deals 

with questions 1 and 5. Chapter 3 focuses on the performance monitoring issue of PID 

type controllers (related to question 2). Chapter 4 deals with answering question 3 for 

PID type controllers. Chapter 5 provides discussion on formulation and global 

optimization issues of the loop monitoring and performance enhancement problem 

using genetic algorithm, which is the answer to question 4. 
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Chapter 2.  

Performance Monitoring of Control loops: a review 
 

2.1 Introduction 
 

Control loop performance monitoring (CLPM) has been a very active area in the last 

decade. The emergence of highly sophisticated data acquisition and control systems, 

development of various analysis tools and rapid growth in computational power has 

fuelled research and application activity in this area. It is well known that actual 

benefits from advanced process control (APC) implementations can be realized only 

if the base level control loops are performing well. Chemical industry’s growing 

dependence on MPC has raised the demand for including CLPM as a part of APC 

package. The quantum of interest by both academia and industry was seen at the 

Chemical Process Control VI Conference (CPC VI) (Tucson, 2001) where an entire 

session was devoted to the topic of controller performance monitoring. More insights 

of this topic can be gained from review papers and monographs such as Qin (1998), 

Harris et al. (1999), Huang and Shah (1999) and Kozub (2002).  The purpose of this 

chapter is to provide a discussion on the reasons for limitations to the controller’s 

performance, overview of the CLPM area, presently available methods and future 

challenges. This chapter also addresses questions 1 and 5 that were listed in the earlier 

chapter.  

2.2 Fundamental obstacles to the performance of controllers  
 

Any controller design procedure must take into consideration the different types of 

process dynamics, disturbances, uncertainties, actuator limitations, critical nature of 
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the process etc.  The controller is expected to achieve desired performance targets in 

the presence of these issues and difficulties. The full control design problem is quiet 

complicated and is beyond the scope of this work. There are various methods to 

estimate the optimal performance of any given control structure. Boyd and Barratt 

(1991) provide a good discussion of this problem. The question is: "For a given type 

of process, is it possible to say what is the best possible control performance 

(irrespective of the controller type) that can be achieved?" While this question cannot 

be answered so easily, it is obvious that the answer to this question can provide a very 

good performance benchmark for any control structure.  

 

The limitations to the control system performance can be factored into two 

components: limitations due to the inherent process structure and limitations due to 

the control structure. These two issues are discussed in turn below. 

 

2.2.1 Performance limitations due to inherent process structure  
 

Irrespective of the control structure, the process itself may pose formidable challenges 

to the performance of the controller. Generally, this issue is given very limited 

attention in the literature (e.g. Bode (1945), Freudenberg and Looze (1985), 

Meddleton (1991)). Aström (1995) provides a good review on these limitations and 

also discusses solution to several such problems, mainly based on the work by Bode. 

A few process inherent limitations are: non-minimum phase systems (system with 

zeros in right half plane or with dead time), system with poles in right half plane etc. 

These inherent limitations have always been a challenge for control engineer. 

Frequently, the best solution to the controller design desires the inverse of the process 
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transfer function. Taking inverse of process transfer function might lead to causality 

problem if these inherent limitations are present in process. In other words, phase 

lag/lead offered by above-mentioned limitations gives upper or lower bounds to the 

achievable bandwidth. 

 

2.2.2 Performance limitations due to controller structure 
 

Different processes and performance specification require different controller 

structures and controller tuning parameters. Each control structure imposes limitations 

to performance e.g. a proportional only controller cannot remove offset, a PID 

controller cannot provide high performance control on significantly nonlinear 

processes (some nonlinear control scheme is required). For a given type of process 

and performance requirements, what is the suitable control structure? This problem 

can be called the controller design problem if one was to take a broader view of 

“process control”. In practice, a very small number of processes require complicated 

control structures or control algorithms. Most often, linear time invariant (LTI) 

controllers such as the PID controller works fine (as long as they are properly tuned). 

Complicated control structures are not desired because while high performance is 

required, issues such as easy implementation, low maintenance requirements and high 

reliability are equally important. Discussion about controller structure design can be 

found in many standard control textbooks e.g. Marlin (1995) and Seborg et al. (1999). 

Various methods have been proposed to provide optimal solutions to the controller 

performance limitations e.g. Boyd and Barratt (1991), Newton et al. (1957). 
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Knowledge of the limits imposed by the control structure is very necessary while 

deciding the controller performance targets. It is important to know what set of 

specifications are achievable and what set of performance specifications are 

unrealistic while designing and assessing the performance of the controller. An 

analytical approach as opposed to the frequently employed trial-and-error approach 

should be preferred. Obtaining solution to full performance capabilities, tradeoff 

between various performance targets and the successful use of optimization methods 

are a major challenges. There is some classic work in this area: solutions to convex 

optimization problems are given by Boyd and Barratt (1991), integral theorem by 

Bode and further extension by Zames (1981), discussion on tradeoffs by Middleton 

(1991), optimal solution techniques by Skogestad (1996), etc. In this thesis, 

performance limitation of PID type controllers and algorithm to calculate PID 

achievable targets using closed loop data are the primary focus. Some of the issues 

related to performance tradeoffs and optimization techniques have also been 

investigated. 

 

2.3 Selection of a suitable benchmark  
 

Even though a process control loop may function well at the time of commissioning, 

its performance is likely to degrade over time because of changes in the state of the 

equipment, feed conditions, plant throughput etc. This means that the health of the 

process controllers should be monitored on a frequent basis and corrective action such 

as controller tuning and hardware (e.g. control valve) checking must be initiated 

whenever necessary. This is the area of control loop performance monitoring 

(CLPM). To initiate the CLPM, there is a need to have a suitable performance-
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monitoring framework. Various development stages and requirements for this 

framework are discussed below. 

 

2.3.1 Historical development of the CLPM 
 

Historically, for evaluating performance of control loops, analysis of qualitative 

trends in process data and human intuition have played a big role in the monitoring of 

control loops. This approach is no longer practical considering that a typical operator 

in the control room is responsible for about 200 (typical refinery) – 1000 (pulp and 

paper mills) control loops. Field check of control valve movement, step response of 

the control loop in closed and/or open loop condition are also used for monitoring 

control loop in question. These measures will be applied on demand to diagnose 

poorly performing controller, particularly when it pertains to a critical controlled 

variable. For regular CLPM, methods such as basic controller statistics are very 

frequently applied e.g. 

 

a) On / off time of the controller commonly referred to as the “percentage up 

time” of the controller.  

b) Percentage of time the control variable is inside or outside the constraints. 

c) Number of times the controlled variable crosses the set point. 

d)  Mean and variance of the process output. 

 

Quantitative analysis of process output variable is also considered. Aström (1970) 

employed the autocorrelation plot from closed loop process output data for loop 

performance monitoring. If the autocorrelation is significant even beyond the dead 
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time of the process and decays very slowly, then it represents poor controller 

performance. If the controller is unstable, except for the presence of integrators in 

disturbance, then the observed closed loop may appear to be a moving average 

process of order less than dead time (Foley and Harris (1992)). Except in these rare 

cases, autocorrelation test works very efficiently to check if the SISO process is 

working at minimum variance performance.  Devries and Wu (1978) used closed loop 

data to assess MIMO control performance. They used spectral analysis to diagnose 

the root cause of poor performance. They also estimated lower bound to the variance 

considering no delay in the process. Tyler and Morari (1995) proposed use of 

likelihood ratio to determine if control loop performance is acceptable or not. Kendra 

and Cinar (1997) discussed the use of frequency analysis approach for CLPM. 

 

The information generated from above mentioned methods is important and provides 

a lot of insight to the control loop performance. However, they do not offer any 

suitable approach to diagnose and improve the health of the controller. These methods 

provide no idea of the capability of the control system, quantitative performance 

statistic of the controller nor do they diagnose the root cause of the problem. Overall, 

it can be said above-mentioned techniques do not use statistics to explore the full 

potential of the available process data. The obvious question then is “how should the 

performance monitoring be performed?” 

 

2.3.2 CLPM Guidelines 
 

There are several thousand loops in a typical refinery. It is well known that in a 

typical process plant several control loops may be performing sub-optimally at any 
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given time. It is reported that as many as 60% of all the industrial controllers have 

some kind of problems. Please refer Bialkowski (1993), Ender (1993), Rinehart and 

Jury (1997) and most recently Van Overschee and De Moor (2000), Desborough and 

Miller (2001). Poor control performance directly transforms to reduced safety and 

profit and increased environmental losses. Manual monitoring of such control loops is 

virtually impossible considering the several ten thousand control loops in a typical 

chemical facility. It is necessary to have a quick, reliable and computationally 

effective method to provide the initial screening of these loops and isolate loops that 

are performing badly and need further attention. Very few control applications require 

sophisticated control schemes and hence more sophisticated scheme for performance 

monitoring. In most cases, process controllers are of PID type and a generally 

acceptable method for control loop performance monitoring can be implemented to 

handle most of the controllers in a typical plant.  

 

Based on the work done by various researchers over the past decade (e.g. Kozub and 

Garcia (1993), Kozub (1997)), Harris (1999) provides guidelines for an effective plant 

wide control monitoring and performance assessment package.  

1) Automated background operation, including scheduled remote collection of 

control loop data and data integrity checks. 

2) Theoretically sound, efficient, and automated computational procedure. 

3) Decision support (for example; problem reporting by exception) 

4) Technical support 

5) Suitable user interface. 
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Together, these properties form the basis of a comprehensive control performance 

monitoring and assessment system. The statistical tools chosen for performance 

monitoring should be compatible with the above guidelines. Methods that can provide 

control loop performance measure based on routine operating data alone are the most 

useful for this initial screening. The minimum variance benchmark for control loop 

performance that was first proposed by Harris (1989) is highly suited for this purpose. 

With only the knowledge of the process time delay, this monitoring scheme can 

estimate the performance index on a scale of 0 to 1. A performance index close to 1 

indicates that there is no scope for control performance improvement by retuning the 

existing controller while a value close to 0 indicates that retuning the parameters of 

the current controller is very likely to enhance the control performance.  

 

2.3.3 Minimum Variance Controller  
 

An approach that has become very popular in the determination of the control loop 

performance measure (e.g. Harris (1989), Desborough and Harris (1992), Stanfelj et 

al. (1993), Huang et al. (1997) and Vishnubhotla et al. (1997)) will now be outlined. 

This method uses the performance of the linear Minimum Variance Controller (MVC) 

as the benchmark against which the performance of the current controller is evaluated. 

It is generally undesirable to install a MVC in practical applications as it may result in 

excessive or aggressive control actions that can damage or limit the life length of final 

control elements. It also has very poor robustness characteristics. Also, if the process 

has non-invertible zeros (zeros outside the unit circle), it is not possible to design a 

minimum variance controller (most of these shortcomings can be overcome by 

suitable modifications to the basic MV control law). Despite these drawbacks, one can 
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exploit the property that the MVC provides a fundamental lower bound on the 

achievable process variance by linear feedback control alone. Armed only with the 

knowledge of the process delay, this minimum bound can be obtained in a non-

intrusive way through the application of time series analysis techniques. The MVC 

benchmark method constitutes a quick yet powerful tool in the screening and analysis 

of poorly performing control loops. 

• To begin with, let us consider a regulatory control system (see Figure 2.1) 

Figure 2.1 Block Diagram of a basic closed loop system 
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Let us factor the transfer function N as 

N = F + z-d  R                                                          (2.2) 

where F = Fo + F1 z-1 + …… + Fd-1 z-(d-1) and R is some appropriate transfer function. 

yt may now be written as  
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It is interesting to note that the polynomial F is independent of the controller Q and 

hence is termed as the controller invariant part of yt. L, among other things, depends 

on Q. It is easy to note that if 
FT

RQ ~= then L = 0 in which case yt = F at. This choice 

of Q gives us the Minimum Variance Controller (MVC); the output variance under 

MVC is: 

( ) ( ) 22
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2
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Notice that the variance of the signal at is denoted as . 2
aσ

For any other choice of Q, we have L ≠ 0 and 
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We then have 
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If the closed loop system is stable, the above series converges to a finite value. 

However, this finite value will be larger than or equal to . It is therefore 2
mvσ
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understandable why 
FT

RQ ~=  is called the minimum variance controller. Any other 

controller will result in an output variance that exceeds this minimum variance. The 

minimum variance controller thus qualifies as a theoretically sound benchmark for the 

performance monitoring of linear time-invariant feedback controllers. 

 

The closed loop performance index η using MVC as benchmark can be given as 

( ) 2

2

y

mvd
σ
σ

η =                                                         (2.9) 

where d represents the process delay (assumed to be known) and  represents the 

actual process output variance.  can be computed from a time series model for y

2
yσ

2
mvσ t 

once the time delay d is known. The control loop performance index η(d) is therefore 

the ratio of the sum of squares of the first d closed loop disturbance impulse response 

coefficients to the sum of squares of the complete closed loop disturbance impulse 

response coefficients. Knowledge of the closed loop disturbance impulse response is 

all that is needed to compute the performance index. 

 

2.3.4 Properties of CLP Index 
 

If the actual process variance is close to the theoretical bound , then one can 

conclude that the process output variance cannot be reduced by retuning the existing 

feedback controller. In such cases, improvement in process output variance can only 

be realized via process modifications, reduction of disturbances affecting the process 

etc. However, if the current performance is significantly poor compared to the MVC 

performance, this is a clear indication that the loop under question needs attention - 

2
mvσ

 14



this may be due to poor tuning, hardware problem (e.g. sticking valve), process 

constraints, large time delays, presence of non-invertible zeros etc. These kind of 

control loops should be carefully examined by suitable identification experiment and 

if loop retuning cannot or does not result in improved performance one must 

investigate the necessity for feed forward controllers, cascade control, sensor and 

actuator relocation, maintenance of hardware or even a process revamp.  

 

Huang and Shah (1997) and Harris (1999) reported various properties of the CLPI. 

Thornhill et al. (1999) provided discussion on issues such as selecting the data record 

length, sampling interval, model order, and an analysis of the effect of data 

compression on the computation and interpretation of CLPI.  Desborough and Harris 

(1992) provided crude bounds for the confidence interval of CLPI. They showed that 

the choice of various parameters such as data length and model orders affect the 

confidence interval of the CLPI. They also provided sampling properties and spectral 

interpretation of CLPI estimates. Since the equation for minimum variance controller 

requires the inverse of the delay free part of the process model, it is impossible to 

implement a minimum variance controller if the process transfer function is non-

invertible. For such cases, Bergh and MacGregor (1987), and Harris and MacGregor 

(1987) proposed a modified minimum variance controller using spectral factorization 

methods.  

 

Stanfelj et al. (1993) extended the MV benchmark to feed forward plus feedback 

systems. They point out an important limitation in diagnosing poor controller 

performance. Poor feedback controller performance can be attributed to modeling 

error or poor controller tuning or inadequate control structure if measured external 
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perturbations enter the feedback system. Normal operating data from a feedback 

system without any measured external perturbations cannot provide information for 

such a diagnosis. The issue of deterministic disturbances vs. stochastic disturbance 

still remains a challenge. Eriksson and Isaksson (1994) showed that it is possible to 

separately analyze the performance against stochastic and deterministic disturbance. 

This separate modeling can be done using intervention analysis (Box and Tiao (1975), 

Krishnamurthi et al. (1989)).  

 

Besides the well known definition of CLPI (η(d)), an extended horizon performance 

index  η(d+h), was also used by Desborough and Harris (1992,1993), Kozub (1997) 

and Thornhill et al. (1999): 

                     ( )
.......1

........1
1 22

1
2

1

2
1

2
1

2
1

+++++
+++++

−=+
−

−+−

dd

hdd

FFF
FFF

hdη                            (2.10) 

The extended horizon performance index decreases monotonically with (increase in) 

the horizon h.  Harris et al. (1996) provides a discussion on theoretical consequences 

of using positive values of h. It is shown by Thornhill et al. (1999) that calculation of 

the process dead time for each control loop may be time consuming and that the 

extended horizon performance index could instead serve as the engineering criteria. 

They also provide a discussion on interpretation of extended horizon performance 

index plots and show that these plots can help in solving many control performance 

problems.  

2.3.5 Extension of SISO CLPI (η) to MIMO systems 
 

While the derivation and concepts related to the SISO MVC is relatively 

straightforward, the multivariable extension of this problem is far more challenging 
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from both theoretical and practical viewpoints.  Several researchers have proposed 

methods for MIMO performance monitoring e.g. Harris et al. (1996), Huang et al. 

(1997), Huang and Shah (1999), Ko and Edgar (2001a) and Seppala et al. (2002). 

Huang and Shah (1999) have used weighted output error variance metric for MVC 

based benchmarking of MIMO loops. This is because such a strategy closely relates to 

the cost function employed in multivariate, unconstrained linear quadratic controller 

designs. This solution requires the computation of the unitary interactor polynomial 

matrix (the multivariate generalization of the univariate time delay) from the process 

transfer matrix (or from experimental closed loop data) and the solution of a 

polynomial, multivariable Diophantine equation. Ko and Edgar (2000) discussed 

CLPM for cascade control using multivariate time series modeling of primary and 

secondary measurements collected under normal operation.  Theoretical 

developments as well as industrial applications of MIMO controller monitoring is still 

fairly limited and the tools are still under development. Recently, Kozub (2002) 

discussed the limitations of MIMO CLPM. This work highlighted the fact that MIMO 

controller monitoring is far more involved relative to the SISO case and hence the 

methods and applications will take more time to reach a state of maturity. 

 

The performance monitoring of advanced process controllers is a very important 

problem for both academia and industry owing to the importance of model predictive 

control (MPC) implementation in the chemical industry.  Unfortunately, there is very 

limited work in monitoring performance with hard constraints of MPC system. Ko 

and Edgar (2001) showed some studies of performance monitoring of constrained 

MPC. Kozub (2002) discussed issues related to CLPM of MPC system in a MVC 

framework. Clearly, this area is still wide open for research. 
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2.3.6 PID achievable performance as a benchmark for CLPM 
 

The minimum variance benchmark provides a theoretical upper limit on control loop 

performance. However, a minimum variance controller is never implemented in 

practice owing to its poor robustness properties. In the chemical process industries, 

well over 95% of the control loops employ PID type controllers. This heavy usage of 

PID type controllers is expected to continue in the nearly foreseeable future – 

simplicity of the controller structure, vast amount of accumulated experience in using 

and tuning them, ability of the PID controller to provide a good quality of control in a 

majority of situations all make the PID the workhorse of the chemical industries. The 

achievable performance possible with a PID controller is therefore a very important 

piece of information for the process control engineer. Knowledge of the PID 

achievable performance will help in knowing when to stop tuning a PID controller in 

a chemical facility – one should not persist with tuning the PID controller in an 

attempt to reach a performance index of 1 because that limit can never be reached 

with a PID type controller. Eriksson and Isaksson (1994) discussed this point and 

recommended use of PID achievable performance as a benchmark. Their criticism of 

MVC was that if retuning were warranted in an industrial control loop, the control 

engineer would be reluctant to implement a PID controller knowing that its 

performance in presence of non-stationary disturbance would be very poor.   

 

Ko and Edgar (1998) developed a method called “Approximate Stochastic 

Disturbance Realization (ASDR)” to determine the PI achievable performance using 

routine closed loop data. Because routine operating data is employed to determine the 

limit of performance, they need to assume complete knowledge of the open loop 

process model.  Their method works well as indicated in the case studies considered 
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in their paper. However, knowledge of the open loop process model is often 

unavailable and this restricts their use in an industrial setting. Agrawal & 

Lakshminarayanan (2002a) proposed a method to determine the PI achievable 

performance for control loops without knowledge of open loop process model. 

Considering the practical importance of PID achievable performance limits, it has 

been chosen as performance benchmark in this thesis. Methods have been proposed to 

determine the PI achievable performance for control loops with / without knowledge 

of open loop process model and also in presence of recycle dynamics.  

2.4 Status of CLPM in industry  
 

Today’s industry slogan is “do more with less”. Higher quality and low cost driven 

market is forcing the control engineer to look for poorly performing control loops and 

fix them quickly. This task eats up most of the resources available with smaller and 

“rightsized”1 process control groups in plant. This situation emphasizes an immediate 

need for automated CLPM tools in the process industry. To fill this void, several 

business enterprises have come out with CLPM tools. MATRIKON Consulting Inc. 

developed and markets a tool called ProcessDoc (1997). Miller et al. (1998) described 

a comprehensive system for CLPM (LoopScoutTM ) developed by Honeywell HI-Spec 

Solutions (Thousand Oaks, CA). Harris et al. (1999) discussed many industrial 

applications and outlined the challenges for large-scale CLPM relevant to the 

industries. It was shown that any performance measure chosen for CLPM should 

match with the objectives for which the control system was implemented. The 

invasiveness required for obtaining the measure (off-spec production during dynamic 

                                                 
1 often employed as a euphemism for “downsized” 
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experimentation if the process model is required) and its complexity (computational 

effort and a priori process knowledge) are also very relevant issues to be considered. 

 

The MVC based CLPI benchmark fits these requirements very well and many 

industrial case studies have been reported in literature based on this theory. Kozub 

(1997) shared his experiences through an industrial case study. Thornhill et al. (1999) 

discussed implementation of CLPM in a refinery setting. Haarsma and Nikolaou 

(2000) discussed their experiences of MIMO CLPM on an industrial (snack food) 

process. Paulonis and Cox (2003) discussed their experiences in indigenous 

development of a large scale (14000 PID loops in 40 plants at 9 sites) CLPM system 

in Eastman Chemical Company, USA.  Besides user interfacing, networking, 

compatibility issues, the salient feature of their system are a) it ranks loops by 

performance b) it performs preliminary problem diagnosis for poorly performing 

loops. They reported that one Eastman site has been using CLPM system for over two 

years. In that site, over the last year, off-class production due to process control 

related causes has been reduced by 53%. The standard deviation of primary 

specification of main product has been reduced by 38%. That site has advanced from 

the 40th percentile to 75th percentile of all Eastman process plants worldwide in 

overall controller performance.  This is indicative of the fact that a well thought out 

and well-implemented CLPM program will yield benefits consistent with six sigma 

practices. 
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2.5 Future directions   
 

In the last decade, significant developments have happened in the area of control loop 

performance monitoring. With increasing number of publications from academia and 

industrial implementations being reported, future development in this area is bound to 

be very exciting. Process variability reduction has been identified as a main priority in 

evaluating performance at the base control layer level.  Harris and Seppala (2002) 

have summarized recent developments in controller performance monitoring and 

assessment techniques. There are enormous number of challenges left in theory as 

well as application of these methods.  

 

MIMO performance monitoring especially in the framework of MPC is still a major 

challenge. Many process plants have real time optimizer (RTO) and CLPM for RTO’s 

have not been studied properly. Suitable performance benchmarking method for MPC 

and RTO’s can be taken as active research area. How the active constraints affect the 

performance of MPC or RTO? How often does the optimization system shift the 

constraint set?  Are the outputs of the optimization (typically set points) being 

adjusted in a timeframe that the control system can respond? Is there cycling in the 

outputs of the optimization? How can one tell if the optimization algorithm is in fact 

helping the process enterprise realize an economic objective?  

 

Multi-loop PID controllers are most often used in practice. Their performance 

monitoring in MIMO environment needs to be done. Methods that can identify which 

loops should be tightly tuned and whether the controller structure is adequate or not 
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may prove very useful. How much performance improvement will be there if one 

shifts to higher-level control scheme? (e.g. from multi-loop PID to MPC, simple 

feedback loop to cascade control etc.) would be some of the immediate questions that 

need to be answered. 

 

Root cause analysis of the control loops needs to be explored in detail. When the 

controlled variability displays high variability it is important to know what is hurting 

the closed loop performance? Is it a tuning issue, the problem due to a sticking valve, 

control structure inadequacy or the impact of an external disturbance? Is it possible to 

locate the source of variability in process plant from routine data? It is of significant 

interest to know the common disturbances that impact the many control loops in a 

process unit. Is it possible to prioritize the control loops in the order of importance 

and shift the variability from the more critical to the less critical control loops? What 

is the effect of deterministic disturbances and how to resolve it from CLPI calculation 

without extensive modeling? What technique will work well for a regular 

deterministic disturbance - a feed forward controller or a cascade controller?  

  

The extension of the MVC based benchmarking scheme to nonlinear systems needs to 

be studied. Pattern of nonlinearities can offer important clues for root cause analysis 

of control system.  Statistics and qualitative shape analysis techniques (Rengaswamy 

et al. (2001)) for CLPM can be explored further. They might be utilized for proactive 

failure prediction in control loops.   

 

Variability is not the only performance specification for controller design. Under 

special circumstances (e.g. if disturbance is stationary), the controller can have CLPI 
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close to 1 but can exhibit poor deterministic performance (e.g. closed loop rise time or 

integral absolute error (IAE) etc.).  There is a clear tradeoff between these 

performances and both (performance against stochastic and deterministic 

disturbances) are required properties. A method that can give performance measures 

for stochastic as well as deterministic settings will be valuable for CLPM. Also well 

known is the tradeoff that exists between robustness and performance. A balanced 

approach needs to be taken while doing control loop benchmarking. Studies that can 

consider performance tradeoffs between different performance objectives during 

CLPM are necessary.  

 

There are practical challenges like development of a framework for automatic data 

collection, data filtering, suitable modeling, robust optimization, fault detection, 

reporting etc.  Issues like operator acceptance, reliability of the results, maintenance, 

and system integrity etc. will remain to be resolved.  

 

2.6 Conclusions 
  

It is visible that the success stories of implementation of control loop performance 

monitoring have started to come from industry. The process industry is close to 

adapting CLPM as a standard feature for the control systems. Theoretical 

developments are coming from the academia at a rapid pace.  Still there are many 

theoretical and practical challenges that need to be resolved. Minimum variance 

benchmark has been used extensively for CLPM in the existing commercial software 

but a more suitable benchmark like PID achievable targets should be used. This would 

be better and realistic in plants that are predominantly regulated using PID controllers. 
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Consideration for other performance tradeoffs e.g. robustness and performance should 

be given. Most of the problems are multivariable in nature and there is a lot of scope 

for developments in the MIMO domain. Automatic fault detection and PID tuning can 

reduce the load of process engineer considerably and proper framework including 

man machine interface MMI) should be developed.      

  

 
 
 
 
 
 
 

 24



Chapter 3.  

PID achievable performance of simple feedback control 
loops 

 

3.1 Introduction 
 

More than 90% of controllers in the chemical industry are of PID type without time 

delay compensation. Due to inherent controller structure limitation (chapter 2.2.2) no 

matter how much tuning is applied on PID controller under some conditions (high 

process time delays and non-stationary disturbance dynamics) they cannot perform 

exactly as minimum variance controller. Using MVC benchmark for performance 

monitoring of PID type controller may provide wrong impression of the health of 

controller (The idea discussed in the section 2.3.6). Therefore problem of calculating 

PID achievable performance target is of practical importance. Simple, efficient and 

non-invasive technique is required to monitor the PID achievable performance 

(Chapter 2.3.2 CLPM guidelines).   

 

Based on the information available from the process plant, we have divided this 

problem in to three parts a) When approximate information about open loop process 

model is known, b) when no information of open loop model is available (closed loop 

experiment is desired), and c) When known recycle dynamics is affecting the 

controller performance.   Each of these sub-problems is discussed in this chapter and 

suitable technique to calculate PID achievable performance for each case is proposed. 

A stochastic performance criterion has been used as the basis. The second problem is 

of utmost importance because availability of open loop process model is very rare in 
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practice. Using experimental closed loop data (i.e. data from a closed loop system 

excited by set point changes or dither signal), the second method is able to estimate 

the control loop performance achievable with PI or PID type controllers.  

 

The organization of the chapter is as follows. Section 3.2 provides a brief overview of 

performance assessment of PID controllers. Section 3.3 describes how approximate 

information about open loop process model can be used to calculate PID achievable 

performance targets. Section 3.4 discusses a method to calculate PID achievable 

performance with out apriori information of open loop process model. Robustness 

issues and deterministic performance measures are dealt with subsequently. Section 

3.5 discusses the effect of recycle dynamics on PID achievable performance targets. 

Several examples are considered in every section to show the efficacy of each 

technique and validate our theory. The paper concludes by highlighting the research 

work done in this chapter.  

 

3.2 Overview of PID achievable performance assessment  
 

Qin (1998) notes that only 20% of PID type controllers employed in a typical refinery 

can reach the minimum variance performance. For the rest of the controllers, 

minimum variance performance is not achievable because of significant dead times, 

non-stationary disturbances etc. In these cases, it would be of interest to know the 

maximum performance that is achievable with a PID type controller. Åström (1991) 

employed measures such as bandwidth, normalized peak error, etc. to characterize the 

performance of the PID type controllers. Swanda and Seborg (1999) used set point 

response data to assess the performance of PI controllers. They used two normalized 
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performance indices namely the normalized settling time (actual settling time divided 

by the apparent time delay) and the normalized integral absolute error (integral 

absolute error divided by the product of the apparent time delay and size of the set 

point change). Through exhaustive simulations they were able to show that the 

optimal value of the normalized settling time (Ts) was 2.3 and the optimal value of the 

normalized integral absolute error (IAEd) was 2.0 for a PI controller. This lower 

bound was found to be independent of both model type and model order. With PID 

controllers these optimal values are slightly lower. Swanda and Seborg (1999) also 

considered the important issue of robustness-performance tradeoff by relating the Ts, 

IAEd, gain margin and phase margin to the specified closed loop time constant for the 

IMC-PI controller and showed that the high performance controllers can indeed have 

acceptable gain and phase margins.   

 

Ko and Edgar (1998) estimated the achievable performance for PI controllers using a 

stochastic framework by utilizing routine closed loop data. Their results indicate that 

the PI controllers can deliver a performance greater than or equal to 60% of the 

minimum variance performance in most practical situations.  These results indicate 

that we may not lose much in terms of control performance by restricting the 

controller to be of PI / PID type for controllers in the regulatory layer. The 

Approximate Stochastic Disturbance Realization (ASDR) technique developed by Ko 

and Edgar (1998) for estimating the PI / PID achievable performance assumes that the 

process model is known. This assumption is needed owing to the fact that routine 

operating data were employed to determine the limits of performance. 
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Assuming that the open loop model (including time delay) is known, Ko and Edgar 

(1998) used routine closed loop operating data (no set point change is made to excite 

the process) to estimate the PI achievable performance. Using an ARIMA(p,1,1) 

model with 2 ≤ p ≤ 5,  they approximate the disturbance (noise) model N by matching 

the first few coefficients of the estimated closed loop disturbance impulse response 

model. Once, the process and noise models are known, Ko and Edgar (1998) employ 

a numerical optimization procedure to estimate the highest performance index 

reachable by restricting the feedback controller Q to a PI or PID structure. Their 

results indicate that for a first-order-plus-dead-time (FOPDT) process, a PID type 

controller can provide minimum variance performance as long as the noise (Nat) is 

stationary. Qin (1998) showed that for a FOPDT process, the PID controllers are able 

to achieve close to minimum variance performance when the process time delay is 

very small or very large. 

  

3.3 Computation of PID achievable performance with knowledge of 
open loop   process model 
 

The Approximate Stochastic Disturbance Realization (ASDR) technique developed 

by Ko and Edgar (1998) for estimating the PI / PID achievable performance assumes 

that the process model is known. If the open loop process model (including the delay) 

is not known, then an obvious procedure to calculate the PI achievable performance is 

to first obtain the open loop process model using closed loop experimental data. This 

experiment can involve a sequence of acceptable set point changes. Any of the closed 

loop identification methods can be used to obtain the open loop process model. In the 

second step, the identified process model can be employed in the ASDR method of 

Ko and Edgar (1998) to calculate the PI achievable performance.  
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Calculating a very good open loop process model is a very involved procedure. Even 

if open loop model are identified and employed in performance assessment 

framework chances are model parameters will change with time and may lead to 

unreliable results. There is a need for a method, which requires most approximate 

information about open loop process model but still provides reliable predictions. In 

other words, PID achievable performance targets calculation should be robust to 

process parameter changes. 

In this section, a technique is proposed to calculate PID achievable performance if 

approximate open loop process is known.  Consider a performance monitoring system 

shown in Figure 3.1. Dotted lines are the part of CLPM framework. Tm and Nm are 

approximate process and noise model respectively.  
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model-plant mismatch i.e. Tm = T then it can be shown easily Nm = N. It means if 

available plant model is very good match with process model then noise transfer 

function can be calculated very efficiently. For notation simplicity suffix t will not be 

used for now on. 

 

For a given controller Q, the relationship between the controlled variable and the set 

point under closed loop is: 
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In case of no set point change ysp=0, it can be shown using equations 3.1 and 3.2 
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For proof of equation 3.3 please see appendix A. If Nm is calculated, for some 

controller setting Q then this value can be used to calculate the close loop disturbance 

transfer function using Tm. Equation 3.3 is exact and provides correct estimates of 

CLPI. To calculate PID achievable targets, for any given controller Q* closed loop 

transfer function H* can be shown as 
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If the first two terms in equation 3.4 are ignored then approximate closed loop transfer 

function will be 
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Thus Nm calculated from one controller is being used for any other controller as if it is 

the actual noise dynamics.  

If Tm = T or Q*=Q then 
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This is a very useful result for estimating closed loop process transfer function 

approximately with help from closed loop data.  Given that the process delay d 

remains constant, it is possible to determine the optimal PID type controller Q* that 

“shapes”  in a manner that maximizes the performance index. There will be 

error in the results depending two factors a) how much away optimum PID 

predictions (Q

*
approxH

*) are from current controller values (Q), and b) how accurate is process 

model (Tm vs. T). Fortunately, if any of these factors are close to each other then 

prediction will be very close to the true value.  

3.3.1 Case studies     
 

To show the efficacy of the method proposed, several case studies were considered. 

Optimization was performed over several thousand combinations of process transfer 

functions, approximate open loop process models and disturbance transfer functions. 

Typical example: 
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Here the value of c represents various true process models in consideration. For each 

true process model (c value) various model approximations Tm are checked by 

 31



varying values of a and b corresponding to time constant and process gain 

respectively. For example: a=0.4, b=0.2 and c=0.8 means process gain is 

overestimated (b/a) by 100% and process time constant is underestimated. Ratio by 

which time constant is underestimated can be checked using continuous time true and 

approximate process model. See Figure 3.2 for results. 

 

Figure 3.2 Effect of model-plant mismatch on calculated CLPI for Example 1 
 
Ratio of calculated optimal CLPI with true optimal CLPI is shown in z-axis. X-axis 

represents how many times gain is away from true process gain. The true process gain 

is 0.1 and gain vector [-1 -0.5 0 0.5 1] in Figures 3.2 & 3.3 means approximate gain 

used is [0.05 0.07 0.1 0.14 0.2] respectively. Y-axis represents how many times time 

constant is away from true process time constant. If true process time constant is 0.6 

then tau vector [-2 -1 0 1 2] in Figures 3.2 & 3.3 means approximate tau used is [0.14 

0.37 0.60 0.78 0.88] respectively. Similarly if true process time constant is 0.8 then 
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tau vector [-2 -1 0 1 2] in Figures 3.2 & 3.3 means approximate tau used is [0.41 0.64 

0.80 0.89 0.95] respectively. Figure 3.3 shows similar case study with time delay 10 

and rest of the transfer functions same as before. 

Both of these Figures 3.2 and 3.3 show that exact estimate of optimal CLPI target can 

be obtained if knowledge of accurate open loop process model is provided. In case of 

approximate open loop process model, calculated optimal CLPI is very close to true 

optimal CLPI over a significant range. In most cases even if process gain is known 

with up to 2 times error and time constant is known up to 3 times error, optimum 

CLPI value can be calculated within +/-10% of true optimal CLPI. For many practical 

applications this range is satisfactory and can provide useful information about 

process. 

Figure 3.3 Effect of model-plant mismatch on calculated CLPI for Example 2 
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3.4 Direct assessment of PID achievable performance using 
experimental closed loop data       
 

In this section, an alternate way of determining the PI achievable performance from 

closed loop experimental data is presented. Such an assumption warrants the use of 

experimental closed loop data (e.g. set point response data) if one wants to determine 

the ‘best’ closed loop performance possible with a PID type controller. In this 

method, the identification of the open loop models for the process and disturbance are 

not needed. The relationship between the controlled variable and the set point under 

closed loop is: 
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Any closed loop identification method can be employed to determine the closed loop 

servo transfer function – the ARMAX (autoregressive moving average model with 

exogenous input) model serves the purpose very well. Using Equation (3.2), we may 

write 
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It was seen earlier that an estimate of the closed loop impulse response (H) and 

process delay d are enough to compute the control loop performance index. Equation 

(3.7) implies that with the knowledge of the current closed loop impulse response (H), 

closed loop servo transfer function (G) and the controller Q, it is possible to estimate 

the closed loop impulse response H* for any given controller Q*. Given that the 
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process delay d remains constant, it is possible to determine the optimal PID type 

controller Q* that “shapes” H* in a manner that maximizes the performance index. In 

summary, the maximum PID achievable control loop performance index can be 

computed from the knowledge of the current controller and current closed loop servo 

and disturbance transfer functions. 

3.4.1 Case Studies 
 

The computational results for Examples 1 through 5 are tabulated in Tables 3.1. The 

data employed in the studies are shown in Figures 3.4 through 3.8. In these Figures, 

the top left and top right plots, show the closed loop experimental data with the 

current controller and the bottom row plots show the set point (ysp), y and u 

trajectories with the estimated optimal controller controlling the true process. The 

results obtained for Example 1 will be described in detail; for Examples 2 through 5, 

only the salient features will be pointed out. 

 

Example 1. The first example is a simulation of the closed loop system for a first 

order plus time delay process regulated by a PI controller. In particular, the process, 

noise and controller transfer functions are given by 1

3
1

8.01
2.0)( −

−
−

−
=

z
zzT , 

1
1

95.01
1)( −

−

−
=

z
zN  and 1

1
1

1
12.014.0)( −

−
−

−
−

=
z

zzQ  respectively.  

If the closed loop system is simulated without any set point change and the resulting 

“routine operating data” is analyzed using the method described in Chapter 2 

(minimum variance benchmark) the performance index is calculated to be 0.4329. 

Assuming perfect knowledge of the process and the noise model, the PI achievable 

performance index is estimated to be 0.7896 using optimization routines in 
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MATLAB/SIMULINK. Thus, there is enough scope for improvement in control 

performance using the PI controller itself. The optimal PI controller Q* is determined 

to be 1

1
1*

1
06.141.1)( −

−
−

−
−

=
z

zzQ .  If we were to use Ko and Edgar’s method (which 

assumes perfect knowledge of the process alone), the PI achievable performance 

would be estimated to be very near the value calculated above. 

 

For the method proposed in this thesis, no a priori process knowledge is assumed. 

Therefore, the closed loop system needs to be excited by a dither signal which in most 

practical cases would be limited to a set point change of reasonable magnitude.  

       Figure 3.4 Closed loop data and results for Example 1 

 

The top left plot in Figure 3.4 shows the set point profile and the process response 

while the plot shown on top right displays the manipulated variable trajectory. It is 
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obvious that the controller is fairly detuned. Secondly, we have used a significant 

amount of noise in our simulation. This would render the direct application of the 

methods based on deterministic performance criteria e.g. settling time and IAE 

somewhat difficult.  

With the experimental closed loop data, we evaluate the performance index based on 

minimum variance benchmark to be 0.4354. Then the closed loop data is used to 

identify the controller (Q), closed loop servo transfer function (G) and the closed loop 

noise model (H). Standard tools from the MATLAB identification Toolbox are 

employed for this purpose. An ARMAX(3,4,4,3) model (the last index stands for the 

process delay) was found to be adequate (confirmed by diagnostic tests on residuals) 

to model the data. These identified models are used in Equation (3.7) to determine the 

“optimal” PI (or PID) controller Q* that maximizes the control loop performance 

(which is a function of the first d coefficients of H*). Using this approach, we obtain 

the achievable performance using PI controller to be 0.7810. This is very close to that 

calculated from a complete knowledge of the open loop process and noise models or 

via Ko and Edgar’s method.  

 

While complete knowledge of the open loop process and noise models and the 

controller yields the optimal PI controller as 1

1
1*

1
06.141.1)( −

−
−

−
−

=
z

zzQ ; our method 

predicts the optimal controller to be 1

1
1*

1
18.124.1)( −

−
−

−
−

=
z

zzQ (see row corresponding 

to Example 1 in Table 3.1). Compared to the current controller, the optimal controller 

is seen to have a significantly higher proportional action. 
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Table 3.1: Summary of results for Examples 1 to 5 
Theoretical Values Proposed Method  

Example 
No. 

ηpresent ηPI,achievable Optimal PI 
Controller 

ηpresent ηPI,achievable Optimal PI 
Controller 

 
ARMAX 

order 
1 0.4329 0.7896 1.41 1.06 0.4354 0.7810 1.24  1.18 [3 4 4 3] 
2 0.4106 0.6741 1.24 1.00 0.4085 0.6892 1.19  1.13 [3 4 4 3] 
3 0.9375 0.7896 1.41 1.06 0.9704 0.8036 1.38  1.27 [3 4 5 3] 
4 0.1543 0.5748 2.57 1.12 0.2407 0.6272 2.64  2.35 [3 4 7 5] 
5 0.0340 0.2431 3.99 1.03 0.0323 0.2274 3.99  3.90 [3 4 4 3] 

 

These results confirm that our estimates of the optimal controller PI achievable 

performance using the estimated models are accurate enough for practical 

applications. With a more persistent set point perturbation, the accuracy of our 

estimates can be improved considerably. However, the type of set point perturbation 

we have employed is suitable in an industrial setting and we chose to work with it. 
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Figure 3.5 Closed loop data and results for Example 2 
 

Example 2. To investigate the effect of having more complicated process transfer 

functions, we now choose a third order model for the process. The transfer functions 

for the noise and the controller remain as given in Example 1. 

Thus, 321

3
1

2746.02675.195.11
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1

1
1

1
12.014.0)( −

−
−

−
−

=
z

zzQ  for this example. Identification experiment is shown in 

Figure 3.5 and the results shown in Table 3.1 indicate that considerable increase in 

controller performance is possible with a PI controller.  

 

Example 3. This example is chosen particularly to illustrate the effect of controller 

tuning. All of the previous examples employed moderately tuned PI controllers. Here, 

we choose a highly tuned controller (actually a minimum variance controller) but 
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retain the process and noise models used in Example 1. We therefore consider 

1

3
1

8.01
2.0)( −

−
−

−
=

z
zzT ; 1

1

95.01
1)( −

−

−
=

z
zN  and 3

1
1

857.01
429.3287.4)( −

−
−

−
−

=
z

zzQ for this 

example. The current performance index turns out to be very high as expected (if 

offset is not taken into account). However, even with a very tight controller in place, 

we are still able to compute the PI achievable performance and the “optimal” PI 

controller fairly accurately. This is a case where the minimum variance controller is 

optimal for stochastic disturbances but not good enough to handle deterministic 

external inputs such as the set point change (please see the offset in Figure 3.6 top-left 

curve). A PI controller with slightly inferior performance is more suitable. 

 

Figure 3.6 Closed loop data and results for Example 3 
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Example 4. As pointed out earlier, PI controllers cannot reach minimum variance 

performance when the disturbance Nat is non-stationary. In this example, we will 

consider the following transfer functions for the process, noise and controller: 

1

5
1

8.01
1.0)( −

−
−

−
=

z
zzT , ( ) ( ) ( )111

1

6.013.011
1)( −−−

−

−−−
=

zzz
zN   

& 1

1
1

1
6.1)( −

−
−

−
−

=
z
zzQ . 

It is obvious from the top row of Figure 3.7 and from the values reported in Table 3.1 

that the performance of the current controller is poor. Also, the performance index 

achievable with a PI controller is not as high as those achieved in the earlier 

examples. The proposed method provides good estimates of the PI achievable 

performance. The results shown in the bottom row of Figure 3.7 indicates the 

improvement in performance obtained with the optimal PI controller Q*. 

Figure 3.7 Closed loop data and results for Example 4 
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Example 5. As a final example, we consider the control of an open loop unstable 

process. In this example the process, noise and controller transfer functions are given 

by 

1

3
1

1.11
1.0)( −

−
−

−
=

z
zzT , ( ) ( ) ( )111

1

6.013.011
1)( −−−

−

−−−
=

zzz
zN   

& 1

1
1

1
5.16.1)( −

−
−

−
−

=
z

zzQ . 

The unstable open loop process and the integrating noise model pose no new 

challenges since our method does not involve the determination of open loop models. 

The results obtained (Figure 3.8) are similar to those obtained with Example 4. 

Significant improvement in control loop performance is obtained by using the optimal 

controller but a final performance index of about 0.23 may motivate us to use a 

controller of higher complexity than a PI controller. 

Figure 3.8 Closed loop data and results for Example 5 
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3.5 PI / PID Achievable Control Loop Performance for Processes 
with Recycle 
 

3.5.1 Introduction 
 

Processes with material and energy recycles are very common in the chemical 

industry. The design of control schemes for processes with recycle of material and/or 

energy streams is presently an active research area. Controller design and tuning for 

such processes must be done carefully. Chodavarapu and Zheng (2001) provide some 

guidelines about the type of tuning (aggressive vs. conservative) that are appropriate 

for processes with recycles. Emoto and Lakshminarayanan (2002) developed 

guidelines to estimate the loss in control loop performance if the recycle dynamics is 

neglected in the design of the feedback controller. Another possible technique in the 

design of control systems for recycle processes involves the use of recycle 

compensators in addition to the traditional feedback controller. Scali and Ferrari 

(1999) demonstrated simulation based case studies using Taiwo’s (1986) recycle 

compensation technique.  

 

In the current work, we focus on the following questions: 

(1) Given that a process with recycles is to be regulated via feedback control, what is 

the control loop performance achievable with a PI controller?  

(2) If the performance achievable is low then how to improve it? 

To answer these questions, we make use of the stochastic performance monitoring 

criteria (CLPI).  PID achievable performance idea is extended to processes with 

recycle. Several examples are considered with a view to discuss the effect of recycle 

dynamics. Certain performance improvement guidelines are provided.  
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3.5.2 PI achievable performance for processes with recycle 
 

The idea of PI achievable performance can be similarly extended to the processes 

with recycle dynamics as well. The block diagram for this scheme is given in Figure 

3.9.  

 
N 

R 

T Q 

+  
- 

+ 

U 
+ 

+ Y
 

Plant 

+ 

PI Controller 

Ysp 

 
Figure 3.9  A Process with Recycle 

 

Here, Q denotes the feedback controller (PI), TzT d ~−=  denotes the transfer function 

of the forward path (where d is the time delay of the forward path), TR denotes the 

transfer function of the recycle path and N denotes the disturbance dynamics. 

Under these circumstances the process output yt can be expressed in terms of the 

transfer functions and the white noise signal at as: 

t
R

ddt
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−− ~~11
   (3.8) 

Using the long division as done in equation (2.5), output variance  and  can be 

calculated with equations (2.6) and (2.8).  This information can be used to calculate 

the present CLPI (closed loop performance index) with equation (2.9). 

2
yσ 2

mvσ
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To calculate the PI achievable targets, choosing Q in the form of a PI controller can 

optimize the CLPI. The controller parameters Kc and τI serve as decision variables.  

 Thus 

      CLPI achievable =  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
2

2

,
max

y

mv

IcK
σ
σ

τ
    (3.9) 

The resulting value provides the achievable performance for process with recycle 

dynamics. If this value is close to 1 we may conclude that the PI controller can 

provide superior control performance on a process with recycle if tuned optimally. A 

value of CLPIachievable close to 0 will indicate that the PI controller cannot provide 

good control performance on the recycle process and a more complicated controller 

(more complicated than a PI controller) or control structure (more complicated than a 

simple feedback control strategy) will be needed for performance enhancement. 

3.5.3 Case Studies 
 

In Figure 3.10, we show some representative results for a process with 
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The noise model has an integrator and would therefore corrupt the “noise-free” 

process output with a non-stationary signal. In Figure 3.11, we show similar results 

for a process with the same T and R but with different disturbance dynamics i.e.  

    

)7.01)(6.01)(5.01(
)6.01(
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=
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The results obtained from these two examples will provide information about the 

effect of noise dynamics on the PI achievable performance for a process with recycle. 

 

Figure 3.10 PI achievable performance for different values of KR, θR & τR, Example 1  
 

 From Figure 3.10, it can be interpreted that the  

(a) PI achievable performance can range between 0.35 and 0.7 depending on the 

values of KR, Rτ  and θR. 

(b) As the recycle loop gain KR increases the PI achievable performance tends to 

decrease in general (particularly at low values of τR and high values of θR) 

(c) PI achievable performance tends to decrease with increase in Rτ  at low values 

of θR and the trend becomes reverse at the higher values of θR where it decrease 

monotonically. 
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Figure 3.11 PI achievable performance for different values of KR, θR & τR, Example 2 

 

PI achievable performance depends on the disturbance model but the trends observed 

above still hold.  Similar results can be shown for performance with PID controller. 

Compared to a PI controller, improved performance is achieved with the PID 

controller. The trends, however, remain the same. 

 

From Figure 3.11 it is clear that, with a stationary noise dynamics, a much superior 

control loop performance is obtained. This means that with a stationary noise 

affecting the process, a process with recycle can be effectively controlled with a well-

tuned PI feedback controller. With a non-stationary disturbance, even an optimally 

tuned feedback PI controller may not be able to provide good control performance 

and more complex controllers or control structures may be needed. 
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3.5.4 Performance improvement guidelines 
 

We now present a scheme to monitor and improve the Control loop performance for 

processes with recycle. 

1) Estimate the process time delay (Lynch and Dumont, 1996). 

2) Collect the closed loop process output data and calculate the CLPI for existing 

controller settings (Harris, 1989). 

3) If CLPI is not satisfactory: Obtain the open loop transfer function for process and 

recycle dynamics. If disturbance model is available calculate PI/PID achievable 

performance for process with recycle with the method proposed. Otherwise use the 

method proposed in section 3.3 with modification for recycle system. 

4) If the PI/PID achievable performance is high enough, retune the controller and go 

to step 2. 

5) Otherwise, design a suitable recycle compensator for the process and check the 

CLPI. 

6) If performance improvement is still not achieved then it is a clear indication that 

the loop under question needs attention. Such loops, if critical, must be examined 

carefully by identification experiments, hardware inspection and so on.  Poor 

performance may be due to hardware problem (e.g. sticking valve), process 

constraints, big time delays, presence of non-invertible zeros etc. or due to measurable 

disturbances (that can be handled through feedforward controllers) or due to 

unmeasured disturbances (that can be handled by cascade control if appropriate 

secondary measurements are available).  
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3.6. Conclusions 
 

Methods are provided to calculate the PID achievable performance of control loops. A 

method that uses information of approximate open loop process model is shown to be 

very effective in calculating PID achievable performance. It calculates exact PID 

achievable performance if true open loop process model is known otherwise also very 

good estimate of PID achievable performance can be calculated. This method can be 

useful when open loop process model is approximately known and stable. 

  

In many situations open loop process model may not be available e.g. process is time 

varying, complex, open loop unstable etc. A method that uses closed loop 

experimental data to determine the maximum control loop performance achievable 

with a PID type controller has also been described. Though all the examples involved 

consider PI controllers, this method is equally valid for PID controllers. While some 

set point excitation is required, the method does not need the open loop process or 

noise models. This is a positive aspect of the proposed method. Furthermore, optimal 

PI settings are also obtained. The method enables the calculation of the values of the 

deterministic performance measures (Ts, IAEd) thereby leading to the estimation of 

robustness margins (GM and PM) for the current and the estimated optimal PI 

controller. Five examples using realistic data sets were employed to illustrate the 

workability of this strategy.  

 

It is shown that the recycle dynamics can lower the control performance particularly 

when the product of the gains of the forward and recycle paths approach the value of 

1. The noise dynamics play a crucial role – a process affected by non-stationary noise 
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can be controlled adequately using a well-tuned PI controller. Certain combinations of 

the parameters of the recycle dynamics (low value of the recycle time constant and 

high values of recycle time delay) can limit the quality of control obtainable from PI 

controllers. The effect of recycle dynamics needs to be identified in process plants and 

should be compensated properly to attain desired control targets.  A method to 

calculate the PI achievable targets for the process with recycle is described. A scheme 

is presented to systematically improve the control performance for processes with 

recycles. 
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Chapter 4. Tuning PID controllers using achievable 
performance indices 
 

4.1 Introduction 
 

PID type controllers continue to be the workhorse for process control in the chemical 

and related industries despite big advances such as MPC (Model Predictive Control) 

and its nonlinear variant i.e. NMPC (Nonlinear MPC).  Desborough and Miller (2001) 

surveyed the status of industrial process controllers and estimate that 98% of the 

controllers in a “median” chemical plant were PID controllers. This situation is not 

likely to change in the foreseeable future because successful advanced control 

implementation requires well-tuned PID controllers in the lower control layer. A 

recent survey by O’Dwyer (2000) indicates that there are more than 200 tuning 

methods for PID controllers including procedures such as gain scheduling, adaptive 

control, relay-based auto-tuning etc. Not withstanding the plethora of tuning rules, the 

current state of controller performance in the process industry appears to be far from 

adequate. Van Overschee and De Moor (2000) report that 80% of PID type controllers 

in the industry are poorly / less optimally tuned. They state that 30% of the PID loops 

operate in the manual mode and 25% of PID loops actually operate under default 

factory settings. More tragically, 30% of PID controllers actually increase the 

variability of the process variable being controlled thereby causing more harm than 

good. This has been attributed to excessive integral action in the controllers. These 

reported Figures mirror those provided by Ender (1993) and Desborough and Miller 

(2001). Very often, the performance of an “optimally” tuned controller may 

deteriorate due to changes in process dynamics and/or disturbance characteristics. It is 

therefore important to monitor the performance of a feedback controller on a 
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continuous basis and adapt its parameters if the performance deteriorates 

significantly.  

 

Åström et al. (1993) survey the different approaches for the automatic tuning of PID 

controllers. They indicate the scenarios under which different procedures such as gain 

scheduling and adaptive control should be used. Also described are the procedures 

used for automatic tuning in a few commercial controllers. In Foxboro’s EXACT 

controller, the controller starts adaptation when the error signal exceeds the user 

defined noise band by a factor of 2. In the Honeywell UDC 6000 controller, the 

adaptation is activated when the value of the controlled variable changes more than 

0.3% from the set point or if the set point changes more than a prescribed value (±5% 

to ±15%). In Yokogawa’s SLPC-181, 281, the performance of the system is 

monitored by computing the ratio of the variances of the actual process output and the 

output from a model (of the process). This ratio is expected to be close to 1; if this 

ratio happens to be lower than 0.5 or higher than 2 (indicative of model plant 

mismatch), the retuning of the controller is initiated. This ensures that the model-

based PID controller continues to perform “optimally” on the process. In these 

approaches, the open loop model of the process is obtained using an open loop step 

test or from a relay feedback experiment. 

 

In this work, we aim to exploit the significant developments made in the area of 

control loop performance assessment to determine the optimal tuning of PID type 

controllers (Agrawal & Lakshminarayanan 2002b). Using routine and experimental 

closed loop data from a process controlled by a PID type controller, we determine the 

current controller performance, the maximum achievable performance that can be 

 52



obtained with a PID type controller as well as the “optimal” PID tuning parameters. 

Any significant difference between these current and maximum achievable 

performance will indicate the need for retuning of the controller. The salient features 

of the proposed method are: 

a) Experiments are performed in closed loop and no external equipment is 

required. This may make the procedure more acceptable for industrial 

application.  

b) The signal to noise ratio can be low since graphical procedures are not 

employed. 

c) Robustness and achievable performance issues are dealt with explicitly. The 

engineer or operator will have an idea of what best to expect with respect to 

controller performance as well as the robustness margins. 

d) There is no attempt to determine the open loop model of the process. All the 

computations are based on the closed loop servo and disturbance transfer 

functions. 

The material of this chapter is organized in the following manner. In Section 4.2, an 

overview of the performance assessment literature for simple feedback loops as well 

as methods for computing the maximum performance achievable with a PID type 

controller is provided. A novel method that is capable of estimating the “optimal” PID 

parameter settings will be described in Section 4.3. We will also quantify the 

robustness and deterministic performance for the current controller and the “optimal” 

controller. Several examples are considered in Section 4.4 with a view to discuss, test 

and validate our methodology. We also include an example where we highlight the 

need to balance between the stochastic and deterministic performance measures. The 

chapter concludes by summarizing the key features of this study.  

 53



 

4.2 PID parameter calculations and guidelines  
 

From the previous chapter (section 3.4 Direct assessment of PID achievable 

performance using experimental closed   loop data), it is known that for time invariant 

process (T) and noise dynamics (N), we have for a new controller Q* the closed loop 

disturbance impulse response H* given as 
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It was seen earlier that an estimate of the closed loop disturbance impulse response 

(H) and process delay d are enough to compute the control loop performance index. 

Equation (3.7) implies that with the knowledge of the current closed loop disturbance 

impulse response (H), closed loop servo transfer function (G) and the controller Q, it 

is possible to estimate the closed loop disturbance impulse response H* for any given 

controller Q*. Specifically, in order to determine the optimal PI controller Q* 

(parameters and ), the objective function used is: *
cK *

Iτ

22
** )1()1(

,*
min

CLPI
KQ Ic

−=−=
=

ηφ
τ

                                 (4.1) 

One can change the decision parameters and  to get H* from equation 3.7. 

Using H* and the process delay ‘d’, the control loop performance index η can be 

obtained. The “fmincon” function available in the Optimization Toolbox (Matlab 

Version 6.5 Release 13) is employed to minimize φ = [1−η]

*
cK *

Iτ

2. The “fmincon” function 

implements a local optimization method, which performs constrained optimization 

using sequential quadratic programming. Constraint optimization method  was 
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employed because and  are greater than zero We have crosschecked the 

optimization results with various initial guesses and the method was seen to work 

very well.  

*
cK *

Iτ

It is important to note that, with the proposed method, the “optimal” PID parameters 

can be computed without estimating the open loop process or noise models and using 

only one set of closed loop experimental data.  The optimal controller settings will 

obviously depend on the data set used to determine the closed loop transfer functions. 

We therefore recommend using plant data that contains the disturbances that the 

controller is expected to negotiate. The “optimal” controller settings will ensure that 

these “typical” disturbances are regulated in the most effective manner by the control 

system. 

 

It is imperative that the controller not only provides exemplary performance in 

dealing with stochastic disturbances but also remains robust to process changes and 

model plant-mismatch. Also, the performance measures for stochastic and 

deterministic disturbances are different. Traditional deterministic performance 

assessment literature deals with measures such as settling time, overshoot, decay ratio, 

integral of absolute errors (IAE) etc. It has been well understood that achieving the 

best disturbance response does not guarantee good set point response with standard 

(one degree of freedom) PID controllers. When we try and tune the PI controller for 

maximizing its performance in handling stochastic disturbances, we must also 

consider its robustness and measures of deterministic performance. Under such 

circumstances, the objective function for the optimization problem should be suitably 

modified.  A modified objective function that considers the tradeoff between 

stochastic and deterministic performance measures is shown in Example 3; the 
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consideration of sufficient robustness margins is a more involved issue that requires 

posing the problem as a constrained multi-objective optimization problem that may be 

solved using heuristic optimization procedures such as genetic algorithms. 

 

Swanda and Seborg (1999) categorize a loop performance based on its 90% 

normalized settling time. The normalized settling time (Ts) is equal to the actual 90% 

settling time divided by the apparent time delay. They characterize the closed loop 

performance to be high if Ts ≤ 4.6, excessively sluggish if Ts > 13.3 and overshoot ≤ 

10% and poorly tuned if Ts > 13.3 and overshoot > 10%. They also showed that for a 

FOPDT process regulated by an IMC-PI feedback controller the following 

approximate relationship holds between Ts and the normalized integral absolute error, 

(IAEd): 

878.0
43.2

+= s
d

T
IAE                                           (4.2) 

The normalized integral absolute error is equal to the integral absolute error divided 

by the product of the apparent time delay and size of the set point change. 

They also relate the gain and phase margins to IAEd as follows: 

Gain Margin: dIAEGM *
2
π

=                                               (4.3) 

Phase Margin: 
dIAE

PM 1
2

−=
π                                            (4.4) 

Equations (4.2), (4.3) and (4.4) hold only if Ts ≥ 3.3. They are very accurate for 

overdamped, underdamped and critically damped closed loop servo responses; 

furthermore, these relationships work well with open loop process models such as 

FOPDT, higher order overdamped systems with time delays and RHP zeros. These 

equations are therefore of great practical utility in the sense that the knowledge of Ts 
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alone can throw light on the performance and robustness. Equations (4.2), (4.3) and 

(4.4) clearly indicate that if Ts is large, the gain and phase margins are large leading to 

better robustness at the cost of poor performance.  

 

To summarize our approach to determining the “optimal” PID tuning parameters, we 

follow the procedure outlined below: 

a) Use routine closed loop experimental data with the current controller (Q) to 

determine the control loop performance index relative to the minimum 

variance controller.  

b) If the performance index computed in (a) turns out to be low, we will then 

estimate the closed loop servo and disturbance transfer functions (i.e. G and 

H) using experimental closed loop data. A set point change is required for this 

purpose.  

c) Using the estimated ‘G’, we obtain the estimates for Ts and IAEd obtained 

with the current controller. The current robustness margins (GM and PM) are 

then obtained by using this IAEd value in Equations (4.3) and (4.4).  If the 

current control loop performance index is high and if the deterministic 

performance measures & robustness margins are satisfactory, we leave the 

loop alone.  If the control loop performance index is high but if the robustness 

margins are not satisfactory, we may consider detuning the current controller. 

This scenario is pursued in Example 3 later. 

d) If the current loop performance index is low, then with the knowledge of the 

current controller Q, the estimated models G and H, Equations (4.3) and (4.4) 

are used to obtain the parameters of the “optimal” PI / PID controller Q* that 

will maximize the loop performance index. This involves using the parameters 
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of the “optimal” PI / PID controller Q* as decision variables to get H* (from 

Equation 3.7) and consequently the PI / PID achievable performance index 

using the method discussed earlier in Section 3.  

e) With Q*, the expected (new) closed loop servo transfer function (G*) is 

determined from: 

                        
)1(*

*

G
Q
QG

GG
−+

=                                              (4.5) 

f) The expected Ts and IAEd values (for the “optimal” controller) are computed 

using G*. The expected robustness margins can be obtained by using 

Equations (4.3) and (4.4). 

g) The achieved Ts and IAEd values can be obtained by implementing Q* on the 

true process and making a set point change. These values will in general be 

different from the expected values because of model-plant mismatch. The 

achieved robustness measures can be obtained by using Equations (4.3) and 

(4.4). 

The above steps may have to be repeated a few times in order to reach the “optimal” 

performance. Our experience with simulated data (shown later) indicates that it is 

possible to achieve the “best” performance in one or two iterations. 

 

4.3 Illustrative Examples 
 

Example 1: Linear open-loop stable system

This example is a simulation of the closed loop system for a first order plus time delay 

process regulated by a PI controller. The process, noise and controller transfer 
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functions are given by 1
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With help of routine closed loop data, the current control loop performance index is 

calculated to be 0.33 relative to the minimum variance benchmark. This low value 

implies we can improve the loop performance via controller retuning. A set point 

change was made in order to generate experimental data and apply the method 

proposed here. This experimental data is shown in the top plots of Figure 4.1. Notice 

that we have added significant amount of noise in our simulation. An ARMAX (2, 3, 

2) model with 5 samples of delay was found to capture the essence of this 

experimental data. From the estimated closed loop servo response, it was determined 

that the current controller provided a Ts value of 12.4 and a IAEd value of 6.1. The 

gain margins were estimated to be 9.6 and 81o respectively. All these measures are 

indicative of a sluggish controller with more than necessary robustness margins. 

 

The proposed method was then used to determine the optimal control settings with a 

view to maximizing the performance index. This exercise revealed that a performance 

index of 0.91 is achievable with the PI controller 1

1
1

1
86.097.0)(* −

−
−

−
−

=
z

zzQ  and also 

predicted that, with the “optimal” controller, the Ts value would be 1.4. Since the Ts 

value is less than 3.3, equations (4.2), (4.3) and (4.4) are not applicable. When the 

controller Q* was implemented on the true process, the closed loop performance is as 

shown in the bottom plots of Figure 4.1. The performance is very tight as expected. 

With the routine closed loop data obtained with the new controller Q*, the control 

loop performance index achieved was 0.89. This is very close to the predicted value 
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of 0.91. Noise free simulation (not shown here) revealed that the normalized settling 

time with Q* was 2.2 which is somewhat higher than the predicted value of 1.4. This 

example indicates that the proposed method can provide reliable information for 

retuning the controller. 

 

Figure 4.1 Closed loop data and results for Example 1 

 

Example 2: Nonlinear level control system

In the second example, we consider the control of level in a spherical tank. A 

schematic of the tank is shown in Figure 4.2. The dynamics of the level ‘y’ in the tank 

is described by the differential equation 

dt
dy

R
yR

⎥
⎦

⎤
⎢
⎣

⎡ −
−= 2

2
2

0i
)(1R  Q - d)-(tQ π  

where R is the radius of the spherical tank, Qi is the inlet volumetric flow rate and Qo 

is the outlet flow rate. The delay from the manipulated input Qi to the controlled 
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output ‘y’ is indicated by ‘d’. The outlet flow rate Qo is related to the level ‘y’ via the 

Bernouli equation: 

)(2    Q 00 yyg −=  

where ‘g’ represents the gravitation constant, y0 represents the height of the outlet 

pipe as measured from the base of the column.  

Qi

Qoyo

y
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Qoyo

y
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R

 
Figure 4.2 Schematic of the Spherical Tank system 

 

We will use R = 1 m, d = 3 seconds and y0 = 0.1 m in our simulations. The nominal 

operating value of y is 0.5 m. The output y will respond faster at this nominal 

operating value than at situations when y is close to 1 (i.e. a half-filled tank). The 

noise dynamics and the current PI controller settings are given by 
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zzQ  respectively. The current 

control loop performance index is calculated to be 0.37. To enable the calculation of 

the optimum controller parameters that will deliver the optimum performance, a set 
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point change in level from 0.5 to 0.55 was made. The analysis revealed that with the 

controller 1

1
1*

1 1
42.112.2)( −

−
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−
−

=
z

zzQ , a performance index of 0.81 is obtainable. To 

see the effect of nonlinearity, another set of closed loop data was collected by 

changing the set point from 0.5 to 0.45. This data set predicted that a maximum 

performance of 0.75 was obtainable using the controller 1

1
1*

2 1
2.18.1)( −

−
−

−
−

=
z

zzQ . We 

see that the “optimum” controller settings are different with the two different data 

sets. In addition, the achievable performances with the PI controllers are also slightly 

different. In any case, it seems possible to improve the loop performance index 

significantly higher than the current value of 0.37. When the “optimum” controller 

is implemented on the true process, a performance index of 0.76 with T)( 1*
1

−zQ s = 

3.6, IAEd = 1.9, GM = 3 and PM = 60o was obtained. With the “optimum” controller 

implemented on the true process, a performance index of 0.70 with T)( 1*
2

−zQ s = 3 

and IAEd = 1.9 was obtained. These results indicate that significant improvement in 

control loop performance index is possible irrespective of the direction of the set point 

change for this system. With in place, the set point was changed from 0.5 to 

1; this represents a significant change in the process characteristics. For this set point 

change, the closed loop servo response had high overshoot and was quite oscillatory. 

At this operating point, the control loop performance index dropped to 0.57. If better 

control loop performance is required at this operating point, the data from the set 

point change could be employed immediately in order to determine the optimal 

controller setting. 

)( 1*
1

−zQ
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Example 3: Coupled FEHE/Furnace/Reactor Process 
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Figure 4.3 Block Diagram of Feed Effluent Heat Exchanger system 

 

Figure 4.3 shows a block diagram schematic of a typical chemical process in which a 

feed-effluent heat exchanger (FEHE) and a furnace are used to preheat the feed for an 

adiabatic exothermic reactor. Reyes and Luyben (2000) have used this process to 

examine the steady state and dynamic effects of alternative process designs. A portion 

of the fresh feed plus recycled material is preheated in the FEHE by the reactor exit 

stream (temperature Tout; transfer function GFE1) while the remaining bypasses the 

FEHE (flow rate FB; transfer function GFE2). A temperature controller manipulates the 

bypass flow to regulate the temperature of the mixed stream (the feed coming through 

the FEHE + the feed bypassing the FEHE) at Tmix. This stream is further heated in the 

furnace to a temperature Tin. The transfer function relating Tmix to Tin is denoted as 

GF2. The fuel flow to the furnace is denoted as QF and the transfer function relating 
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the fuel flow rate to Tin is denoted as GF1. For purposes of this study, QF is considered 

to be a disturbance. In practice, a feedback controller manipulates the fuel flow in the 

furnace to maintain constant Tin. This loop is not included in the present study. Here, 

we will demonstrate the tuning of the feedback controller that manipulates the bypass 

flow FB. The transfer functions for the different blocks in this study are: 
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Initially, the PID controller settings are Kc = 15, τI = 1.5 and τD = 0 (i.e. a PI 

controller). From routine closed loop data, the control loop performance index is 

determined to be 0.88. When a set point change is implemented, we find the following 

deterministic performance measures: Ts = 15.33, IAEd = 6.7, GM = 10.5 and PM = 

81.4o. The large Ts value indicates sluggish performance. We use the experimental 

data in conjunction with the proposed method to determine the “optimal” PI controller 

that maximizes CLPI. This results in a PI controller that provides a CLPI of 0.956 but 

results in a IAEd measure of 26.78. While the performance of the control loop has 

improved with respect to the regulation of stochastic disturbances, the deterministic 

performance measure for a set point change has worsened considerably. If we were to 

determine the “optimal” PI controller that minimizes the IAEd measure, we get the 

lowest possible IAEd to be 1.45; however the CLPI has decreased to about 0.63. The 

tradeoff between deterministic performance index measures and stochastic 

performance measure is clearly evident. 
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To resolve this conflict, we propose a modification to the objective function 

introduced in equation (4.1). The new objective function provides a tradeoff between 

the stochastic and deterministic performance measures as follows: 

2
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                                 (4.6) 

In Equation (4.6), ‘w’ represents the weight given to the deterministic performance 

measure (0 ≤ w ≤ 0). Notice also that the IAEd values are scaled down by a value of 

IAEd,0 (the value of IAEd obtained if one were to optimize based on CLPI alone i.e. 

with w  = 0) – this would make the two terms in equation (4.6) to be of comparable 

magnitude. For this example, IAEd,0  equals 26.78. The optimal controller will depend 

on the value of ‘w’ selected in equation (4.6). Figure 4.4 shows the values of CLPI 

and IAEd generated from the optimization of the objective function shown in equation 

(4.6). Note that these curves can be generated using just one set of experimental data. 

As expected, both the CLPI and IAEd decrease with increasing ‘w’. Choosing a value 

of w = 0.7 provides an acceptable tradeoff between stochastic and deterministic 

performance measures – the ‘optimal’ PI controller is determined to be Kc = 50 and τI 

= 1.83. This PI controller is expected to provide: CLPI = 0.8, Ts = 5.67, IAEd = 2.44, 

GM = 3.84 and PM = 66.54o. Indeed when the “optimal” PI settings were 

implemented, the achieved performance indices and robustness measures were very 

close to the predicted values. Figure 4.5 illustrates the set point tracking performance 

with: (a) the initial controller settings (b) the “optimal” controller settings obtained by 

optimizing CLPI alone and (c) the “optimal” controller settings obtained by 

optimizing a weighted combination of CLPI and IAEd (equation 4.6). It is evident that 

significant improvement can be obtained in deterministic performance with only a 

slight (yet acceptable) drop in stochastic performance.  
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Figure 4.4 Tradeoff curve in CLPI and IAEd values for Example 3 
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Figure 4.5 Closed loop data and results for Example 3 
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4.4 Conclusions 
 

In the present chapter, a systematic way for tuning PID type controllers has been 

described.  This method uses closed loop experimental data to determine the optimum 

controller settings for a PID type controller. Closed loop experimental data is used to 

determine the closed loop models for servo and disturbance transfer functions via time 

series modeling. These estimated transfer functions and knowledge of the current 

controller are then used to optimize a composite performance measure that takes into 

account both the deterministic and stochastic performance aspects. Tradeoff curves 

and robustness measures (gain and phase margins) can also be obtained.  The results 

from the three case studies included here indicate that the proposed method can be 

used to tune PID type controllers in order to realize their “optimum” potential for set 

point tracking and stochastic disturbance rejection. 
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Chapter 5.  

Multi-objective optimization of performance targets using 
Evolutionary Algorithm: A Study 

 

5.1 Introduction 

 

In the previous chapters estimation of stochastic and deterministic performance was 

presented. Both of these performance criteria are important for good performance of 

control loops. The tradeoff between different performances is clearly observed from 

Example 3 of the previous chapter. In this situation, the control engineer has to tune 

the controller so as to ensure the “best” stochastic and deterministic performance of 

the control loops. This is an example of decision making under conflicting objectives. 

In real world, multi-criteria decision-making forms an extensive field, where the best 

possible compromise should be found by evaluating several conflicting objectives. 

These optimization problems are very broad in character e.g. linear to nonlinear, 

convex to non-convex, continuous variable to discrete variable etc. These conflicting 

goals naturally yield a set of possible good solutions and human decision-making is 

often required to choose the solution for implementation. Before making any decision, 

all the possible good solutions should be available to decision maker. Classically, 

conflicting objective functions are combined to generate a scalar objective function 

and then optimized. Convex approximation of some of the control problems using 

linear matrix inequalities (LMIs) was proposed by Boyd et al (1994) but these 

solutions are limited to certain problems and do not provide true multi-objective 

solutions. Moreover, convexity is lost if the control structure is fixed as is the case in 

most industrial controllers. 

 68



 

The multi-objective optimization problem has drawn a lot of research attention in 

recent years.  There have been numerous efforts on solving the multi-objective 

problem in a deterministic way. The interested reader can refer to the monographs of 

Chankong and Haimes (1983), Hwang and Masud (1979), Keeney and Rai (1976), 

Steuer (1986), Vincke (1992) and in more detail from Miettinen (1999) to learn more 

about the deterministic approach to solve the multi-objective optimization problem. 

The potential of evolutionary algorithms to solve such problems has been only 

recently recognized by the researchers. An overview of the developments and 

applications of multi-objective evolutionary algorithm (MOEA) especially in context 

of process control applications will be presented in next section. Subsequently, a 

methodology (including problem formulation) for multi-objective optimization for 

controller tuning is proposed. The use of this methodology and the efficacy of MOEA 

in making decisions related to process control will be shown by case studies in the 

section prior to conclusions section of this chapter. 

 

5.2 Multi-objective Optimization for process control: An overview  

 

There is a very vast literature and related software available on multi-objective 

genetic algorithm owing to the fact that multi-objective optimization is a very hot 

research topic for both scientists and engineers. This is not only due to the multi-

objective nature of most real world problems but also because there are still many 

open research questions in this area. In operations research, more than 20 techniques 

(Coello et al., 2002) have been developed over the years to try to deal with functions 

that have multiple objectives, and many approaches have been suggested going all the 
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way from a naïve combination of objectives into a single one to the use of game 

theory to coordinate the relative importance of each objective. However, the challenge 

in this area lies on the fact that there is no accepted definition of optimum as in single 

objective optimization and it is therefore difficult to even compare results of one 

method to another. Only a human decision maker can pick the “best answer”.   

 

Evolutionary algorithms have their roots in the principles of natural selection and 

population genetics (Darwin, 1859; Fisher, 1930). Rosenberg (1967) hinted the 

potential of evolutionary algorithms for solving multi-objective problems. For almost 

25 years not much progress was made in this area. Advancement of computational 

power fueled the surge in research publications and monographs in the area of 

evolutionary algorithms. The key strengths of evolutionary algorithms are their robust 

search methodology, which is able to work on problems that are multimodal, 

discontinuous & time variant and data that are random and noisy.  

 

Genetic algorithm developed by Holland (1975) and co-workers was the seminal 

work in using the genetic algorithm as search technique. Genetic algorithm is the most 

frequently used method to search the solution space and find the global optimal 

solution using stochastic selection operators on a population of parameter values. The 

population is evolved, over generations, to produce better results by improving the 

fitness. The fitness value probabilistically determines how successful the individual 

will be at propagating its genes to subsequent generations. Better solutions are 

assigned higher values of fitness than worse performing solutions. Various operators 

are used to diversify the population in the search space before selecting the new 
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generation. Genetic algorithm search technique combined with Pareto based ranking 

methods forms the very established convergence characteristics. The interested reader 

is refered to selected recent monographs on multi-objective optimization using 

evolutionary algorithms - Deb (2001), Bagchi (1999), Collette and Siarry (2003), 

Coello et al (2002), Matthias and Xavier (2002), Masatoshi (2002), Osyczka (2002), 

Sarker et al. (2002), Vincent and Billaut (2002).  

 

MOEA have been applied to a wide range of design problems in many different 

fields. Zhang et al. (2003) used the GA for multi-objective optimization of SMB and 

Varicol process for chiral separation. Rajesh et al. (2001) studied multi-objective 

optimization of industrial hydrogen plants. Bhaskar et al. (2000) reviewed multi-

objective optimization on typical chemical engineering problems. Due to the 

availability of vast literature on this topic, this thesis does not intend to present the 

details and working principles of multi-objective optimization that employ genetic 

algorithms.  

 

Like various other applications, the use of multi-objective optimization for process 

control is not a new concept. Fleming and Purshouse (2002) provided a recent survey 

on use of evolutionary algorithm in control system applications. They 

comprehensively review the published literature on the use evolutionary algorithms 

(EA) in areas such as controller design, model identification, robust stability analysis, 

and fault diagnosis. They pointed out that online applications of EA tend to be quite 

rare because of the difficulty associated with using EA in real time to directly 

influence the operation of any system. Definition, uncertainty and human factors 
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hinder the use of automatic decision-making using MOEA techniques and continue to 

be the open challenge for the researcher. The following quote by Goel (1997) relating 

to creative design captures these aspects: 

“…problem formulation and reformulation are integral parts of creative design. 

Designers’ understanding of a problem typically evolves during creative design 

processing. This evolution of problem understanding may lead to (possibly radical) 

changes in the problem and solution representations. [….] in creative design, 

knowledge needed to address a problem typically is not available in a form directly 

applicable to the problem. Instead, at least some of the needed knowledge has to be 

acquired from other knowledge sources, by analogical transfer from a different 

problem for example. […] creativity in design may occur in degrees, where the 

degree of creativity may depend upon the extent of problem and solution 

reformulation and the transfer of knowledge from different knowledge sources to the 

design problem.” 

 

Offline applications in process control are proving to be the most popular and 

successful. The monograph by Liu et al. (2002) covers the central concepts of multi-

objective optimization and control techniques. It explains the fundamental theory 

along with a number of design methods and algorithms. In addition, applications of 

multi-objective optimization and control are presented by reporting on leading recent 

research work on this subject. Their monograph also includes a chapter dedicated to 

multi-objective PID Controller design. The strength of EA’s in robust search and 

optimization has made them especially useful for the control engineers. Fleming and 

Purshouse (2002) described the main features of EA’s that are beneficial to control 

systems engineering, together with the challenges that may limit their applications. 
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The main advantages of EA in process control advocated were its suitability to 

operate on ill-behaved landscapes with diverse types of variables. For example, the 

decision vector can be {sensor_type_A, 18.3o, blue, 2π). This does not pose any 

problem whatsoever to EA. The main disadvantages cited by Fleming and Purshouse 

(2002) were, 1) for problems that are well understood, that are approximately linear, 

and for which trusted solution exists, the EA is unlikely to produce competitive 

results. This is true for problems where analytical solutions exist with an acceptable 

set of assumptions.  2) mission-critical and safety-critical applications do not appear, 

initially to be favorable towards EA usage due to the stochastic nature of evolutionary 

algorithm. No guarantee is provided that the results will be of sufficient quality for 

on-line use. When EAs are evaluated on benchmark problems, they are commonly 

tested many (typically 20–30) times due to the stochastic nature of the algorithms. 

There is also the matter of how individuals will be evaluated if no process model is 

available (as may well be the case). Some supporting theory exists for evolutionary 

algorithms, but this is unlikely to prove sufficient to win the approval of standards and 

certification agencies. Much care would clearly be needed for critical systems. Real-

time performance is of particular interest to the engineer. However, EAs are very 

computationally intensive, often requiring massively parallel implementations in 

order to produce results within an acceptable timeframe. Hence, on-line application to 

real-time control is largely infeasible at present. Processes with long time-constants 

represent the most feasible application opportunities in the near future. 

 

Offline design application of the MOEA is finding successful applications in the field 

of process control. MOGA (multi-objective genetic algorithms) and genetic 

programming are being applied to design controllers. Various possible designs can be 
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generated with MOEA with the standard tradeoff (complexity vs performance) and 

the best design can be selected. Most control engineering problems are subject to 

constraints. For example, actuators have finite limits on their operation and control 

loops are required to be stable. EAs can handle constraints in a number of ways. The 

most efficient and direct method is to embed these constraints in the coding of the 

individuals. Where this is not possible, penalty functions may be used to ensure that 

invalid individuals have fitness that indicates they are low performers. However, 

appropriate penalty functions are not always easy to design for a given problem and 

may affect the efficiency of the search (Richardson et al., 1989). An alternative 

approach is to consider constraints as design objectives and recast the problem as a 

multi-objective one.  

 

Use of MOEA for generating best tuning coefficients is the most obvious problem 

(Vroemen and Jager, 1997), as control engineering very seldom requires the 

optimization of a single objective function. Instead, there are usually a number of 

competing design objectives that are required to be satisfied simultaneously. 

Conventionally, members of the Pareto-optimal solution set are sought through 

solution of an appropriately formulated nonlinear programming problem. With 

development of more robust and fast algorithms, MOEAs are finding numerous 

applications in control engineering. Patton et al. (1997), Kowalszuk et al. (1999) used 

the MOEA for fault diagnosis. Marrison and Stengel (1997), Schroder et al.  (2001) 

used the MOEA in robust control.  

 

It is clearly observed that MOEA applications are finding tremendous potential to 

solve process control problems. MOEA is finding good use in generating controller 
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parameters and searching for alternative structures. The control engineer in the 

process industry normally has to deal with conflicting performance criteria. MOEA 

could be of immense help in such situations by providing a Pareto of best results for 

difficult problems. As research work in this area gets more mature, MOEA can make 

a significant impact in the way optimization is done for process control problems. 

 

5.3 Pareto construction for controller tuning problem 

 

Problems in control engineering very seldom require the optimization of a single 

objective function. Instead, there are usually a number of competing design objectives 

that are required to be satisfied simultaneously. In order to tune controllers by 

parameter optimization using multi-objective functions, the knowledge about the set 

of compromises forms the basis of decision. Developing methods and tools for 

finding the entire set of compromises, the Pareto set, is the aim of the study. One must 

look closely at the contradictory properties of set of performance in the Pareto set 

before making any decision.  

 

Conventionally, members of the Pareto-optimal solution set are sought through the 

solution of an appropriately formulated nonlinear programming problem. A number 

of approaches are currently employed including the e-constraint, weighted sum 

(presented in chapter 4) and goal attainment methods (Hwang and Masud, 1979). 

However, such approaches require precise expression of a (usually not well 

understood) set of weights and goals. If the trade-off surface between the design 

objectives is to be better understood, repeated application of such methods will be 

necessary. In addition, nonlinear programming methods cannot handle multimodality 
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and discontinuities in function space well and can thus only be expected to produce 

local solutions. 

 

MOEA (Fonseca and Fleming, 1994) evolve a population of solution estimates 

thereby conferring an immediate benefit over conventional MO methods. Using rank-

based selection and niching techniques, it is feasible to generate populations of non-

dominated solution estimates without combining objectives in some way. This is 

advantageous because the combination of non- commensurate objectives requires 

precise understanding of the interplay between those objectives if the optimization is 

to be meaningful. The use of rank-based fitness assignment permits different non-

dominated individuals to be sampled at the same rate thereby according the same 

preference to all Pareto-optimal solutions. EAs have the potential to become a 

powerful method for multi-objective optimization. Including the control engineer in 

the optimization process as a decision maker, the EA can be guided, through the 

progressive articulation of preferences, to particular areas of interest. The trade-offs 

between design criteria and their interactions can be examined closely and the 

engineer’s knowledge and experience can be employed to make informed decision on 

the basis of design requirements rather than the properties of the objective functions. 

Guiding EA to particular tradeoff will be shown in the case study at the end of this 

chapter.  

 

In any typical chemical process industry, 95 % of the controllers are of PID type 

controller. We will therefore limit our treatment to the PID type structure and more 

specifically to the PI controller. There are various applications published in tuning 

PID parameters using genetic algorithms. Examples include Grefenstette (1986), 
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Porter and Jones (1992), Vlachos et al. (2002) etc. The selection of a suitable MOEA 

technique for PID tuning is not well established. Very few applications can be found 

in literature that uses MOEA for tuning PID controllers. A good example for such an 

application is Herreros et al. (2000). Comparing different MOEA methods for 

generating PID optimal parameters is beyond the scope of this work and we leave to 

reader to try and select best suited technique for generating Pareto solutions. 

 

Process control loop performance can be measured by minimum variance control 

performance (Harris, 1989). However, it is not advisable to tune the controller just for 

minimum variance performance and not to consider other important performance 

benchmarks like deterministic performance criteria and robustness. Tradeoff exist 

between 1) deterministic and stochastic performance, 2) robustness and stochastic 

performance. The control engineer cannot ignore the effect of these tradeoffs as was 

shown in Example 4.3.  

 

There is no previous work available on use of MOEA on Pareto decision-making on 

stochastic performance and deterministic performance criteria. Finding the tradeoff 

between these competing objectives is of great interest. Keeping the consistency from 

the previous chapters we have chosen normalized integral absolute error (IAEd) 

(Swanda and Seborg, 1999) as performance criteria to measure good set point 

tracking of process control loops. Thus, two conflicting performance criteria chosen 

for control loop tuning are control loop performance index (CLPI) and IAEd. The aim 

of the controller will be to give good performance on set point tracking as well as 

stochastic disturbance regulation. Prediction of optimal CLPI tuning parameters from 

experimental closed loop process data was presented in the previous chapter. Closed 
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loop transfer function models G and H were used to predict the closed loop transfer 

function for any other controller settings using equations 3.7 and 4.5. These equations 

are reproduced below for the reader’s convenience. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=

−
+

−
=

+
=

11)1(
1

)1(
1 *

*
*

*

Q
QG

H

QG
GQ

G
H

TQ
NH                      (3.7) 

 

       
)1(*

*

G
Q
QG

GG
−+

=                                                 (4.5) 

 

Equation 3.7 can be used to predict the CLPI value following the discussion in 

chapter 3 and equation 4.5 can be use to prediction IAEd value following the 

discussion in chapter 4.  This implies that a set of CLPI and IAEd values can be 

generated from a given set of PID parameters. 

The multi-objective objective function can be written as  

                                (5.1) }/1,{
,*

min
** CLPIIAE

KQ d
Ic

=
=

φ
τ

The second objective is written as 1/CLPI owing to the fact that a high CLPI value 

represents good stochastic performance; thus, 1/CLPI should be minimized 

(originally proposed definition for performance index by Harris (1989) was of the 

form of 1/CLPI and later it was inverted by Huang and Shah (1997) to make it 

between 0 to 1). This multi-objective optimization problem can be given user 

defined constraints like robustness (gain margin, phase margins) or weightings on 

control valve movements etc. Once the objective functions and constraints are 
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defined, they can be optimized using suitable MOEA technique in literature 

Coello (1998).  

 

In summary, the process of finding controller-tuning decision Pareto can be 

summarized as 

1) Select the control performance criteria’s (CLPI and IAEd are good choices for 

most industrial applications). 

2) Select any constraints required (e.g. gain margin or phase margin are readily 

interpretable parameters for robustness and qualify as constraints). 

3) Carry out system identification and calculate the closed loop process and 

disturbance transfer function (as per chapter 3). 

4)  Select a MOEA strategy to find Pareto between IAEd and CLPI calculated 

using equations 3.7, 4.5 and 5.1 (This process may require few trials in tuning 

MOEA parameters). 

5) Make decision for best tuning parameters from Pareto optimal solutions. 

 

5.4 Case Studies 

 

The multi-objective optimization is applied to one typical test problem of industrial 

relevance. The basic idea is to show the applicability and efficacy of methodology 

proposed on a problem of this kind. The MultiObjective Evolutionary Algorithm 

Toolbox developed by Tan et al. (2001a) was used. Information on this toolbox can be 

obtained from http://vlab.ee.nus.edu.sg/~kctan/.   This toolbox allows design trade-

offs for multi-objective scenarios to be examined aiding decision-making for a global 

solution that best meets specifications. In addition, the toolbox is capable of handling 
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problems with hard and soft constraints. Features include various graphical displays 

for problem and result analysis. The settings for the simulation are done through 

Graphical User Interfaces (GUIs). The toolbox also comes with comprehensive help 

files and demonstrations in HTM format. The main strength of the toolbox is the 

utilization of novel incrementing multi-objective evolutionary algorithm (IMOEA) 

with dynamic population size that is computed adaptively according to the online 

discovered tradeoff surface and its desired population distribution density (Tan et al., 

2001b). It incorporates the method of fuzzy boundary local perturbation with 

interactive local fine-tuning for broader neighborhood exploration. Armed with strong 

theoretical MOEA tools, friendly GUI and the power of MATLAB/SIMULINK 

codes, this toolbox is ideal for testing MOEA on control applications. The example 

presented below demonstrates tuning the PID controller using MOEA generated 

Pareto decision curve. 

 

Example 1 

In Example 3 of Chapter 4 tradeoffs between CLPI and IAEd was clearly observed. 

This problem was tested on MOEA. Keeping the initial PI settings and problem 

parameters same, a set point change is implemented on the system to capture the 

system dynamics. Using system identification, the closed loop process and 

disturbance transfer functions (G and H respectively) are identified. These transfer 

functions were used to generate a multi-objective optimization problem as proposed 

in equation 5.1.  

 

The problem was solved real coded in MOEA toolbox with parameter constraints on 

Kc and τI as [0 100], cross over probability 0.7, number of crossover points 2, 
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mutation probability 0.01, selection process tournament selection, population size 

150, number of generations 25, no constraints or preference on objectives, niching 

distance static 0.02 and sharing distance scale 1 for both objectives. Most of the 

values are taken from default values in toolbox and were found to be suitable when 

optimized.  

 

Figure 5.1 Pareto optimal curve for Example 1, with sharing distance scale 1:1 and 
sharing distance static 0.02 
 

Figure 5.1 shows the Pareto curve generated. It is observed that more optimal points 

are close to higher values of IAEd. This is clear indication of preference of population 

towards high IAEd compared to going towards high 1/CLPI values. To better spread 

the Pareto, the sharing distance scale on the first objective was adjusted to 22 = 

30/1.35 (maximum optimal value from the first objective/ maximum optimal value 

from the second objective). Pareto optimal curve for adjusted sharing distance scale 

22:1 is shown in Figure 5.2. There is clear improvement in the spread of population in 
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terms of covering the corners of Pareto. Despite this improvement, the Pareto is still 

not well dispersed and population still tends drift to certain areas of Pareto. This was 

further improved by increasing the niche sharing distance from static 0.02 value to 

dynamic (phenotype/cost, refer to Tan et al 2001b) and keeping rest of the parameters 

at their previous values. The resulting Pareto curve is shown in Figure 5.3. There is a 

clear improvement in spread as well as diversity of population on Pareto curve. This 

fine-tuning can be continued for some more trials but we reckon this Pareto to be 

satisfactory for practical use.  

 

Figure 5.2 Pareto optimal curve for Example 1, with sharing distance scale 22:1 and 
sharing distance static 0.02 
    

Four Pareto optimal solutions curves between Kc vs. IAEd, Kc vs. 1/CLPI, τI vs. IAEd 

and τI vs. 1/CLPI are shown in Figure 5.4. It is obvious from Figure 5.4 that CLPI and 

IAEd are more sensitive to the reset time and relatively insensitive to changes in 
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controller gain. The optimal pattern of input variables on optimal parameters can be 

used to develop correlation between them to fine-tune the controller for optimal 

performance. For example, with the help of Figure 5.4, the optimal controller gain can 

be fixed at about 50 and one-knob tuning by varying only integral action can be 

performed. The ‘optimal’ PI controller can be determined to be Kc = 50 and τI = 1.83. 

This PI controller is expected to provide: CLPI = 0.8, Ts = 5.67, IAEd = 2.44, GM = 

3.84 and PM = 66.54o. This is a very interesting finding and can be described as a 

strong advantage of MOEA compared to traditional optimization techniques in control 

applications. Population of the entire optimal parameters can be obtained at a time and 

can be used to understand more about the effects of inputs on optimization objectives.  

 

Figure 5.3 Pareto optimal curve for Example 1, with sharing distance scale 22:1 and 
sharing distance dynamic (phenotype/cost) 
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Figure 5.4: Effect of inputs on optimal parameters 
 

 
5.5 Conclusions 

An application of multi-objective evolutionary algorithm on generation of optimal 

Pareto decision curve was presented. MOEA methodology from the work of Tan et al 

(2001a) was adopted and was used for generating various optimal PID tunings. 

Despite the advances in research on MOEA, tuning of various parameters of MOEA 

to produce robust results is still a trial and error approach. An example for tuning few 

parameters for MOEA was presented. It was shown that the relationship between 

input parameters and Pareto optimal solutions can be very interesting. These 

relationships can be very informative in understanding the nature of control system 

and behavior of optimal control parameters for tuning purposes. It is clear from the 
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discussion and the case study that MOEA is a very strong tool for generating optimal 

solutions to process control problems.  
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Chapter 6. Conclusions and Future Directions 

 

In this research, methods are provided to calculate the PID achievable performance of 

control loops. A method that uses information of approximate open loop process 

model is shown to be very effective in calculating PID achievable performance. It 

calculates exact PID achievable performance if true open loop process model is 

known otherwise also very good estimate of PID achievable performance can be 

calculated. This method can be useful when open loop process model is 

approximately known and stable. 

 

In many situations open loop process model may not be available e.g. process is time 

varying, complex, open loop unstable etc. A method that uses closed loop 

experimental data to determine the maximum control loop performance achievable 

with a PID type controller has also been described. Though all the examples involved 

consider PI controllers, this method is equally valid for PID controllers. While some 

set point excitation is required, the method does not need the open loop process or 

noise models. This is a positive aspect of the proposed method. Furthermore, optimal 

PI settings are also obtained. The method enables the calculation of the values of the 

deterministic performance measures (Ts, IAEd) thereby leading to the estimation of 

robustness margins (GM and PM) for the current and the estimated optimal PI 

controller. Five examples using realistic data sets were employed to illustrate the 

workability of this strategy.  

 

It is shown that the recycle dynamics can lower the control performance particularly 

when the product of the gains of the forward and recycle paths approach the value of 
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1. The noise dynamics play a crucial role – a process affected by non-stationary noise 

can be controlled adequately using a well-tuned PI controller. Certain combinations of 

the parameters of the recycle dynamics (low value of the recycle time constant and 

high values of recycle time delay) can limit the quality of control obtainable from PI 

controllers. The effect of recycle dynamics needs to be identified in process plants and 

should be compensated properly to attain desired control targets.  A method to 

calculate the PI achievable targets for the process with recycle is described. A scheme 

is presented to systematically improve the control performance for process with 

recycles.  

 

In the chapter 4, a systematic way for tuning PID type controllers has been described.  

This method uses closed loop experimental data to determine the optimum controller 

settings for a PID type controller. Closed loop experimental data is used to determine 

the closed loop models for servo and disturbance transfer functions via time series 

modeling. These estimated transfer functions and knowledge of the current controller 

are then used to optimize a composite performance measure that takes into account 

both the deterministic and stochastic performance aspects. Tradeoff curves and 

robustness measures (gain and phase margins) can also be obtained.  The results from 

the three case studies included here indicate that the proposed method can be used to 

tune PID type controllers in order to realize their “optimum” potential for set point 

tracking and stochastic disturbance rejection. 

 

An application of multi-objective evolutionary algorithm on generation of optimal 

Pareto decision curve was presented. MOEA methodology from the work of Tan et al 

(2001a) was adopted and was used for generating various optimal PID tunings. 
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Despite the advances in research on MOEA, tuning of various parameters of MOEA 

to produce robust results is still a trial and error approach. An example for tuning few 

parameters for MOEA was presented. It was shown that relationship between input 

parameters and Pareto optimal solutions can be very interesting. These relationships 

can be very informative in understanding the nature of control system and behavior of 

optimal of control parameters for tuning purposes. It is clear from the discussion and 

the case study that MOEA is a very strong tool for generating optimal solutions to 

process control problems. Still there are challenges left in this area especially in 

making online application of these methods. Development of robust and fast 

algorithms will continue to be the key focus in process control related research. Issues 

of automatic decision making from optimal Pareto set will be another interesting 

challenge to the control engineer. 

 

It is visible that the success stories of implementation of control loop performance 

monitoring have started to come from industry. The process industry is close to 

adapting CLPM as a standard feature for their control systems. Theoretical 

developments are coming from the academia at a rapid pace.  Still there are many 

theoretical and practical challenges that need to be resolved. Minimum variance 

benchmark has been used extensively for CLPM in the existing commercial software 

but a more suitable benchmark like PID achievable targets should be used. This would 

be better and realistic in plants that are predominantly regulated using PID controllers. 

Consideration for other performance tradeoffs e.g. robustness and performance should 

be given. Most of the problems are multivariable in nature and there is a lot of scope 

for developments in the MIMO domain. Automatic fault detection and PID tuning can 
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reduce the load of process engineer considerably and proper framework including 

man machine interface (MMI) should be developed.      
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Appendix A 
 
Proof of theorem from Section 3.3 
 
If ysp = 0 then from equations 3.1 and 3.2; 
 

a
TQ

NyuTaN mm +
==+

1
  

Also, from closed loop relation: a
TQ

QNu
+

−=
1

  

Therefore, 

a
TQ

Na
TQ

QNTaN mm +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−+
11

 

 
Multiplying by (1+QT): 
 
  NQNTQTN mm =−++ )()1(  
 
Taking terms with N one side and with Nm other side 
 

)1()1( mm QTNQTN +=+  
 
Hence 

   a
QT

N
a

TQ
NHa

m

m

+
=

+
=

11
 

 
Proved 
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