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Chapter 1

Introduction

IN this chapter the research objectives are defined. The background and
the problem statement of this research are introduced. Subsequently,

feedforward techniques and related control methods are briefly discussed.
Moreover, existing control structures for feedforward control are discussed
and extended towards feedforward control of lightweight motion systems.

1.1 Towards lightweight advanced motion systems

In the semiconductor industry there is an ever increasing demand for higher pro-
duction speeds of integrated circuits (ICs). Moreover, miniaturization of electronic
devices and the desire for faster and more energy efficient ICs with more features
requires smaller chips. The production of such chips and more specifically shrink-
ing the dies of ICs requires higher accuracy. In 1965, Gordon Moore predicted that
the amount of transistors on a chip would double every year (Moore, 1965). Ten
years later, he predicted that the amount of transistors doubles between 1.5 and 2
years (Moore, 1975). This prediction proved to be accurate over the past decades
(Mack, 2011). Nowadays IC manufacturers use Moore’s law as a roadmap, such
that Moore’s law has become a self-fulfilling prophecy.

1.1.1 Production of integrated circuits

One of the fundamental steps in the fabrication of integrated circuits is photo-
lithography (Suzuki and Smith, 2007; Mack, 2007; Levinson, 2011), in which the
formation of three-dimensional relief images on a substrate is created. To this
end, a light sensitive layer, i.e. photo-resist, is applied to a silicon wafer with an
oxide layer. In the exposure step, the reticle mask containing the image is projected
onto the photo-resist (see Fig. 1.1). Subsequently, the photo-resist, which has been
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Figure 1.1: Schematic representation of a wafer-scanner. The position of the stage
is typically measured at the edges of the stage, which are indicated by (8). The
area to be exposed is indicated by (7). The numbers in the figure correspond to:
1) light source, 2) reticle, 3) reticle stage, 4) optical lens column, 5) wafer-stage,
6) wafer, 7) area to be exposed, 8) sensors.

exposed to light is developed and removed. This allows to etch the exposed oxide.
Finally, the remaining photo-resist is removed and post-processing is applied to
change the conductive properties of the silicon.

ICs are built through a sequence of such patterning steps, each creating a
new layer. For proper functioning of the IC it is required that new layers are
placed correctly on top of the existing structures. This lateral positioning of the
different layers is called overlay (Levinson, 2011). During the exposure step, the
wafer is positioned using a wafer-stage. The stage positioning accuracy, among
others, directly influences the overlay. Moreover, errors in the positioning of the
wafer-stage reduce the contrast created by the imaging process (Butler, 2011).

In the current generation of lithographic machines, i.e. wafer-scanners, the
reticle stage positions the reticle in synchronization with the wafer-stage. In the
previous generation, i.e. wafer-steppers, the wafer is positioned and the reticle
remains at a fixed position. When the wafer arrives at the correct position, the
exposure of the wafer starts. After the required amount of exposure to light, the
light source is turned off and the wafer is moved to the next die. This proces,
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i.e. step-expose, is repeated until the complete wafer is finished. The prescribed
movement of the wafer-stage, both during exposure and when moving from one
chip to the next, is called the motion profile or setpoint trajectory.

1.1.2 Challenges for miniaturization

The smallest element, which can be produced is called the critical dimension or the
minimum feature size. The smallest feature that can be printed using adequate
control is limited by the resolution of the optical system, which is proportional
to the wavelength of the imaging light divided by the numerical aperture of the
projection lens (Mack, 2007). To reduce the minimum feature size of the ICs, light
sources with smaller wavelengths are used, such as Deep Ultra Violet (DUV) or
Extreme Ultra Violet (EUV) lithography (Arnold, 2009; Wu and Kumar, 2009).
However, using EUV light sources is not straightforward for several reasons (Tal-
lents et al., 2010). First of all, since EUV light is absorbed by air, the entire
optical system must be contained in a near vacuum environment. Secondly, the
use of reflective optics is required instead of optical lenses which absorb EUV ra-
diation. Finally, a bright light source is required, since only a small percentage of
the light actually reaches the wafer (Wagner and Harned, 2010), which is directly
related to the production speed. Besides the resolution, the positioning accuracy
during exposure is of critical importance. This positioning accuracy is required at
the performance location, i.e. the area to be exposed. A measure for the minimum
feature size is the half-pitch, see Arnold (2009). For example, 38-nm half-pitch
lithography requires the positioning error to be lower than 1 nm moving average
and 7 nm moving standard deviation during exposure (Butler, 2011). Therefore,
accurate control is crucial to reduce the minimum feature size.

1.1.3 Advanced motion systems

Although photo-lithography is chosen as a carrier application throughout this the-
sis, there are many applications which suffer from very similar or even the same
problems. These advanced motion systems must satisfy speed and accuracy re-
quirements. These requirements keep increasing over and over again. The com-
bination of high speeds and high accuracy makes these control problems very
challenging. Besides wafer-scanners and -steppers, typical examples of such sys-
tems are pick-and-places machines and scanning probe microscopes, e.g. atomic
force microscopes and electron microscopes.

1.1.4 Next-generation motion systems

To obtain a higher production throughput, either more aggressive motion profiles
(i.e. higher acceleration) or larger wafer sizes (Mack, 2012) (i.e. higher mass) are
required. Both methods will lead to larger required forces to actuate the system.
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Higher bandwidths of the system are required to maintain the desired positioning
accuracy due to setpoint trajectories with increased acceleration. Therefore, a
system design with an increased stiffness is required, which possibly leads to more
mass of the system. Moreover, miniaturization leads to higher demands on the
positioning accuracy and thus the bandwidth of the system as well. These reasons
lead to higher specifications on the actuators, amplifiers and cooling systems. In
the rigid-body design paradigm (Soemers, 2001) this leads in an evolutionary way
to systems with an increasing mass, which is expected to become infeasible in the
near future due to thermal constraints.

Therefore, the next generation of advanced motion systems, e.g. wafer stages
and pick-and-place machines, are likely designed to be lightweight, which results
in significant internal flexibilities. The consequences will be discussed hereafter.

1.1.5 Control of advanced motion systems

GKfb

er ufb

uff

u y

−

Kff

Figure 1.2: Control structure with feedback controller Kfb and feedforward con-
troller Kff . The signals are denoted as: setpoint trajectory r, sensor output y,
tracking error e, total input u, feedback input ufb and feedforward input uff .

To produce ICs with feature sizes of tens of nanometers, positioning errors of
the wafer in the order of a few nanometers or even less are allowed during the
exposure. Furthermore, due to the desire for high production throughput, the
process time has to be minimized resulting in high accelerations. Nowadays, these
accelerations are 40 m/s2 (Butler, 2011) and will probably increase further in the
near future. These high accuracy requirements in combination with high acceler-
ations of these machines creates a challenging problem for control. To meet these
challenging specifications, advanced motion systems are typically controlled using
a combination of feedback- and feedforward control as shown in Fig. 1.2. Since
the dynamics of such systems are highly repeatable and the largest disturbance
is typically induced by the setpoint trajectory, feedforward control determines the
performance to a large extend for rigid-body designed systems. For example, in
Heertjes et al. (2010) feedforward control is responsible for 99.97% of the control
forces and associated performances. For a general introduction to the control of
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advanced motion systems see Clayton et al. (2009) and Steinbuch et al. (2010). Po-
sition control of lithographic equipment is for instance discussed in Butler (2011).
In Fig. 1.2 the measured variables are controlled such that the system follows
the setpoint trajectory with high accuracy. However, looking at the lithographic
process in Fig. 1.1 more closely, the following observation can be made:

Observation 1. the sensors are physically non-collocated with the performance
location.

For rigid-body designed systems, Observation 1 implies that the performance
location can be controlled by using simple geometrical transformation, as the de-
formations of the system are negligible. In the next section the consequences for
lightweight designed system will be explored.

1.1.6 Consequences of lightweight design

Lightweight motion systems pose several challenges for the control design:

1. flexible modes in the frequency region of interest, and

2. the relation between the measured variables and the performance variables
cannot be described by a static relation due to flexibilities and non-collocated
sensor- and performance-variables (see Observation 1). This implies that
the performance cannot be calculated or controlled using simple geometri-
cal transformations. Such a control problem is known as inferential control
(Parrish and Brosilow, 1985), and finally

3. the input sensitivity of the system is deteriorated.

As a consequence of lightweight design, the bandwidth of the system is often lim-
ited due to the reduced stiffness, such that flexible dynamical behavior appears
at lower frequencies. The limited bandwidth of the system leads to a reduced
disturbance rejection. Moreover, a lower moving mass leads to reduced input dis-
turbance rejection, which leads to higher requirements on the system bandwidth.
The second consequence is that the setpoint trajectory excites the resonant part of
the flexible modes, which leads to a deteriorated performance. Also, more aggres-
sive setpoint trajectories due to increased production speeds will lead to increased
excitation of the flexible modes. Therefore, it is expected that feedforward control
becomes increasingly important for control of lightweight motion systems.

The second aspect relates to Observation 1. Consider for example a wafer-stage,
where the position is measured at the edges of the stage, while the performance is
required at the area to be exposed at the center of the stage, see Fig. 1.1. Due to
the flexible dynamics, the relation between the measured- and performance vari-
ables is dynamic and cannot be calculated or controlled using a static geometric
transformation such as used in rigid-body designed systems. Therefore, control
methods which take this difference into account are required. Such methods are
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available for feedback control, i.e. indirect (Skogestad and Postlethwaite, 2005),
inferential control (Parrish and Brosilow, 1985) and (simultaneous) 2DOF infer-
ential control (Oomen, 2010). However, feedforward control design methods for
inferential systems which are independent of the existing feedback controller are
not available.

The last aspect is related to the system design of lightweight motion systems,
which is considered in Schneiders et al. (2003); Makarovic et al. (2004); Makarovic
(2006); van der Wielen (2009). One solution to compensate for the decrease of stiff-
ness due to lightweight construction is the use of over-actuation and over-sensing.
Traditionally, one would employ as many sensors and actuators as the number of
rigid-body degrees-of-freedom. In the case of over-actuation and -sensing more
actuators and sensors will be used compared to traditionally designed systems,
creating more design freedom in control to deal with flexibilities. This new class
of over-actuated and over-sensed systems offers design freedom to develop new
control methods.

Due to the fact that the bandwidth will be more limited in case of lightweight
motion systems, it is expected that feedforward becomes increasingly important.
Moreover, lightweight motion systems offer new challenges, such as non-collocated
sensor- and performance locations, which are yet unexplored. Furthermore, many
lightweight motion systems are equipped with additional actuators and sensors,
which offer new design freedom to explore. Therefore, this thesis will focus on
feedforward control for lightweight motion systems. The next sections will briefly
discuss the research goal and approach. In the subsequent section existing feed-
forward methods and their relation with the problem statement will be discussed.

1.2 Problem statement

In this section the research goal and approach will be discussed. First of all,
the class of motion systems is defined to limit the scope. The class of systems
considered in this thesis are motion systems characterized by,

1. intrinsically multivariable behavior due to flexibilities,

2. MIMO plant, which is possibly over-actuated and/or over-sensed,

3. the sensors and actuators of the plant are considered to be fixed at a given
location in the machine,

4. the sensors are typically non-collocated with the performance location, i.e.
the performance location cannot be measured during normal operation; more-
over, due to the photo-lithography production process the performance lo-
cation may vary in time,

5. the dynamics of the physical plant are assumed to be linear and time-
invariant,
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6. the setpoint trajectory for the performance location rz is assumed to be
known a priori; however, the setpoint trajectory may vary due to changes
in the production process, e.g. different size of ICs, different photo-reactive
properties or cycles with less acceleration,

7. other external disturbances are assumed to be small or compensated other-
wise, and finally

8. the plant is typically operated in feedback.

The goal of this thesis can be summarized as follows: develop feedforward control
methods for lightweight advanced motion systems, which can:

1. deal with immeasurable performance location(s), and

2. exploit the use of over-actuation and over-sensing.

To achieve this, a standard two degrees-of-freedom control structure of Fig. 1.2
is extended with a performance output as shown in Fig. 1.3. In this figure, the
plant to be controlled is denoted by Gi, i ∈ [y, z], i.e. the sensor- and (immea-
surable) performance output, which are typically physically non-collocated. As a
consequence of internal dynamics, differences between the sensor outputs y and
the performance outputs z exist, which cannot be calculated or controlled using a
(static) geometric transformation.

Furthermore, static transformations Ty and Tu,fb are included to transform
the sensor- to motion-coordinates and to decouple the rigid-body dynamics of
the system to allow for decoupled feedback design, respectively. The diagonal
feedback controller Kfb is required for stabilization and disturbance suppression.
For over-actuated systems it is possible to introduce a different decoupling matrix
Tu,ff in the feedforward path, since the goals of these decoupling matrices can
be different. In the feedforward path it is desirable to prevent the excitation of
flexible modes by making these modes uncontrollable or possibly take some energy
considerations into account. For the feedback path it is undesirable to make these
modes uncontrollable, since any disturbance which act in the direction of this mode
cannot be dealt with. Provided that there are extra sensors or some estimation of
these modes available, additional feedback loops can be employed to damp these
modes or increase the stiffness in these directions of the system.

The feedforward controller Kff is designed to enhance the performance. More-
over, the arrow with θ indicates the possibility to tune the parameters of the
respective elements. Finally, the setpoint trajectory prefilter F is present to pro-
vide a control structure, which can handle input shaping and different setpoint for
performance - and motion coordinates.

In the next section, existing feedforward solutions and their relation with the
problem statement will be presented.
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Kff Tu,ff
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Figure 1.3: Overview of the control structure and the design of the different ele-
ments in this thesis. The blocks Gy and Gz represent the plant with sensor outputs
and the plant with performance outputs, respectively. The other blocks represent
the feedback controller Kfb, the feedforward controller Kff and setpoint trajectory
prefilter F , the output transformation Ty and the input transformations Tu,fb and
Tu,ff for feedback and feedforward control, respectively. The signals are denoted
as: setpoint trajectory rz, sensor output y, motion coordinates m, tracking error
em, performance error ez and finally the feedforward parameter vector θ.

1.3 Feedforward control approaches

1.3.1 Model-based approaches

Perfect tracking of setpoint trajectories with only feedback control is generally not
possible for all frequencies due to the Bode sensitivity integral (Freudenberg and
Looze, 1985). However, with the use of a feedforward controller, i.e. an inverse
dynamic model (Silverman, 1969), it may be possible to achieve perfect tracking
under the assumption of solving the inverse dynamics problem. The presence of
non-minimum phase (NMP) zeros (Hoagg and Bernstein, 2007) renders the inverse
unstable. Due to sampled-data implementations, systems can have non-minimum
phase zeros (Aström et al., 1984), even if such NMP zeros are not present in
continuous time. Solutions have been proposed in terms of approximation of the
NMP zeros, e.g. ZPETC (Tomizuka, 1987) and EBZPETC (Torfs et al., 1992)
or preview-based approaches (Devasia et al., 1996; Hunt et al., 1996; Zou and
Devasia, 1999). These inverses are noncausal, but in Sogo (2008, 2010) it is shown
that these inverses approximate the continuous time inverses for a sufficiently small
sample time. Furthermore, to achieve exact tracking for systems with NMP zeros
an infinite preview time is required. However, the error introduced by a finite time
preview can be bounded (Zou and Devasia, 1999, 2004).

In de Roover and Bosgra (2000) a (nominal and robust) learning filter is de-
signed using a norm-based technique. Other examples for the design of a norm-
based feedforward controller are H2 model matching in Zhong and Pao (2013) and
H∞ feedforward design Boerlage et al. (2003).
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Norm-based feedforward controllers, i.e. feedforward controllers designed using
norm-based techniques such as H2 or H∞, always result in proper and causal
feedforward controllers. For strictly proper systems, having a relative degree larger
than one, the slope of the inverse system has to be larger than +1. Because norm-
based techniques will result in a proper controller, the resulting controller will be
an approximation of the inverse.

Model uncertainty

For model-based solutions, the amount of uncertainty associated with a model is
an inherent problem. In Devasia (2002) it is shown that feedforward improves the
performance in case the model uncertainty is sufficiently small. However, if the
model uncertainty is too large at a certain frequency, the feedforward controller
may deteriorate the performance at those specific frequencies. In this case, the
feedforward controller should not be used for these specific frequency (ranges).
For models with low uncertainty, it is required that:

1. the system has highly reproducible behavior, and

2. the system is contained in the model set and the identification procedure
does not introduce unnecessary conservatism.

The first is achieved by proper design (Soemers, 2010; Munnig Schmidt et al.,
2011; Schneiders et al., 2005) and manufacturing of the system, which is typically
the case for advanced motion systems. The second requirement is fulfilled using
reliable (parametric) system identification techniques (Pintelon and Schoukens,
2001; Oomen et al., 2013; Oomen, 2010; Van Herpen, 2014).

1.3.2 Data-based approaches

For systems which perform the same task repeatedly after starting from the same
initial conditions, Iterative Learning Control (ILC) (Moore, 1998; Longman, 2000;
Bristow et al., 2006; Ahn et al., 2007) is a suitable solution for performance im-
provement. To achieve this performance improvement, ILC iteratively updates the
control signal using data from previous experiments.

Repetitive control (RC) (Hara et al., 1988; Steinbuch, 2002; Steinbuch et al.,
2007) is based on similar ideas as ILC. However, for RC identical initial conditions
are not required as RC acts in feedback. Therefore, RC can affect the stability
of the closed-loop system. A memory loop is employed to generate a model of
the disturbance, such that according to the Internal Model Principle (Francis and
Wonham, 1975), perfect disturbance rejection is possible. Typical applications of
RC are rotating equipment, such as CD players. However, RC is not limited to
rotating equipment, as long as the disturbance is periodic. In Merry et al. (2011)
RC is applied to a metrological Atomic Force Microscope (AFM), which is used
for scanning of calibration sample with a repeating structure.
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Both ILC and RC have the same drawbacks, that is, the approaches are not
setpoint trajectory invariant, i.e. a new learning sequence is required for every new
setpoint trajectory. The setpoint trajectory varies with every different product,
due to different sizes of ICs, different photo-reactive properties, different desired
frequency contents or cycles with less accelerations. Feedforward control design
methods, which use data from one (or more) setpoint trajectory to optimize a
setpoint invariant feedforward controller are presented in the next section. Fur-
thermore, these approaches only guarantee performance at the measured sensor
locations. Therefore, these methods are not yet easily extendable to lightweight
motion systems.

In van de Wijdeven and Bosgra (2007, 2008) ILC for residual vibration suppres-
sion is presented. This method only aims at suppressing the residual vibrations
after a point-to-point motion by adapting the input signal during the deceleration
phase. However, in the intended application the tracking errors during the point-
to-point motion are important as well. In Avrachenkov and Longman (2003) ILC
for over- and under-determined systems is considered. However, the additional
design freedom is only employed to minimize the energy used by the input sig-
nal. An adaptive feedforward method to compensate for differences in the motor
constant is presented in Butler (2013). However, for adaptive approaches certain
persistence of excitation conditions are required, which puts undesired constraints
on the setpoint trajectory.

1.3.3 Fixed-structure feedforward control

Fixed structure feedforward methods such as inertia or snap feedforward (Lam-
brechts et al., 2005; Boerlage, 2006; Steinbuch et al., 2010) make assumptions on
the structure of the underlying model for feedforward control. This structure is
exact for 4th-order plants, but approximate for higher-order plants. For a small
number of parameters it is possible to use manual tuning. However, for a large
number of parameters this becomes tedious. Therefore, some fixed structure feed-
forward methods combine the fixed-structure with a data based tuning, which
has similarities with Iterative Feedback Tuning (Hjalmarsson, 2002). In van der
Meulen et al. (2007, 2008); Tousain and van der Meulen (2009) the parameters
of a fixed-structure feedforward controller are optimized based on the measured
tracking errors of the previous experiment. Since this fixed structure feedforward
method is based on the snap feedforward, it suffers from the same drawbacks.
Snap feedforward only compensates for the deformation during motion due to the
limited stiffness of the moving mass. The deterioration of the performance due to
resonant behavior, which is excited by the setpoint trajectory, is not compensated
for. Moreover, such methods only guarantee performance at the sensor locations.

A data-based method to optimize a MIMO FIR feedforward filter is presented
in Baggen et al. (2008); Heertjes et al. (2010). This approach is extended in
Bruijnen and van Dijk (2012), where a FIR setpoint prefilter is included, such



1.3 Feedforward control approaches 11

that theoretically zero errors can be obtained. Both methods result in setpoint
trajectory invariant solutions and optimize the performance with respect to the
actual plant. However, these approaches do not provide any means to exploit
over-actuation or to deal with non-collocated sensor- and performance locations.

In van de Wijdeven and Bosgra (2010) ILC with basis functions is introduced,
in which the parameters of (polynomial) basis functions are optimized, based on
measurement data. Furthermore, a general framework for analysis and design,
which includes the solutions in van der Meulen et al. (2007, 2008); Tousain and
van der Meulen (2009), Baggen et al. (2008); Heertjes et al. (2010) and Bruijnen
and van Dijk (2012), is presented. However, such solutions only provide perfor-
mance guarantees at the sensor locations.

In de Gelder et al. (2006) a feedforward method is discussed which mini-
mizes the settling time using a Linear Programming problem with Laguerre basis
functions. However, issues with numerical conditioning limit the applicability to
systems with a small number of in- and outputs. This makes the presented method
unsuitable for systems where the interaction between multiple degrees of freedom
becomes relevant, which is the case for lightweight motion systems. Also the ex-
tension towards the over-actuated (non-square) case is far from trivial given the
issues with numerical conditioning.

In Heertjes and van de Molengraft (2009), the input signal from a converged
ILC sequence is mapped into a FIR filter to take setpoint variation into account.
The presented methods show a good robustness against variations in setpoint tra-
jectories. However, it is not exactly clear how the choose the number of parameters.
Furthermore, the method only provides performance guarantees at the sensors.

Fixed-structure methods combine the advantages of model- and data-based
methods, i.e. the solution is setpoint trajectory invariant and is tuned based on
experimental data resulting in a good performance. However, the current fixed
structure methods do not exploit over-actuation nor do they take the difference
between the sensor- and performance location into account.

1.3.4 Input shaping

Input shaping (Singh, 2010) is a common method to reduce vibrations in motion
systems. The eigenfrequencies of the system are removed from the input signal by
convolving the input signal with an input shaper. Input shaping aims to suppress
the residual vibration after the point-to-point motion. Typical advantages of input
shaping are: 1) reduced vibration, 2) independent of setpoint trajectory, 3) robust
methods available. Furthermore, input shaping prevents the excitation of flexible
modes, such that the performance over the complete structure improves. Moreover,
positive input shapers have the property that the shaped input signals satisfy the
same bounds as the original input signals (Baumgart and Pao, 2007). However,
this is at the cost of extra delay, which is undesirable in the intended application.
This delay can be reduced by using negative input shapers (Singhose et al., 1995;
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Singh and Singhose, 2002), which provide no guarantees for the shaped input signal
as a consequence. Furthermore, there is trade-off in input shaping between shaper
length and parameter sensitivity (Cutforth and Pao, 2004). Therefore, an adaptive
input shaping method is presented in Cutforth and Pao (2004), which can adapt
the input shaping parameters. However, all input shaping approaches modify the
setpoint trajectory, which is undesirable for several reasons: i) due to the loss of
synchronization between the wafer- and reticle-stage, and ii) increased rise time,
i.e. decreased speed.

1.3.5 Setpoint trajectory design

Fourth order setpoint trajectory design for point-to-point motion is considered in
Lambrechts et al. (2005), where the setpoint trajectory satisfies a priori specified
bounds on the derivatives of the setpoint trajectory. These derivatives can directly
be used to compute the feedforward signal as in Boerlage (2006); Steinbuch et al.
(2010), which will be used throughout this thesis.

In Fleming and Wills (2009) periodic scanning trajectories with fixed linear
regions and minimal harmonic contents are designed using optimization, i.e. the
setpoint prevents the excitation of the parasitic resonances. However, solutions
involving setpoint trajectory redesign are considered outside the scope of this the-
sis, since the setpoint trajectory is determined by the intended application, e.g.
due to different size of ICs, different photo-reactive properties or cycles with less
acceleration,.

In de Caigny et al. (2007) the synthesis of feedforward input signal using an
optimization method is presented. The method results in smooth signal, which en-
sures accurate tracking. However, such an approach requires a new optimization
for every new setpoint trajectory. In van Loock et al. (2013) a combined approach
for setpoint trajectory design and setpoint tracking is presented for differentially
flat systems. A linear system is flat if, and only if, it is controllable Fliess et al.
(1995, Theorem 2). This approach can include geometric constraints and con-
straints on the state and input. However, this method requires a new optimization
for every new setpoint trajectory.

1.3.6 Indirect control and inferential control

Control of immeasurable performance variables by means of auxiliary measure-
ments is considered in the context of indirect (Skogestad and Postlethwaite, 2005)
and inferential control (Brosilow and Tong, 1978; Parrish and Brosilow, 1985;
Doyle, 1998). Such control structures can be regarded as special cases of the
two degrees-of-freedom (DOF) control configuration (Oomen et al., 2009, 2011;
Oomen, 2010). Specifically, in Oomen et al. (2009) and Oomen (2010, Ch. 3) the
identification of inferential motion systems is addressed. Moreover, Oomen et al.
(2011) and Oomen (2010, Ch. 7) present a model-based inferential control design.
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A multivariable inferential feedforward approach is presented in Zhang and
Agustriyanto (2003), which is applied to an application in the process industry.
The dominant disturbance, i.e. the disturbance with the largest effect on the
performance, is immeasurable. In this thesis the tracking of setpoint trajectories
is considered, which are assumed to be known a priori.

A related approach to inferential control is visual servoing (De Best, 2011;
De Best et al., 2012), in which the performance variables are measured by employ-
ing camera vision. However, due the resolution and sampling frequency this is not
yet suitable for advanced motion applications, such as photo-lithography.

1.3.7 LPV and LTV feedforward control approaches

As motivated in the previous section, it is typically not possible to measure at the
performance location during operation. In production processes, such as lithog-
raphy machines or pick-and-place machines, the performance location, i.e the lo-
cation where the tool operates or the area to be illuminated is changing in time.
Such systems can be modeled as linear time-varying (LTV) or linear parameter-
varying (LPV) systems. Model-based feedforward approaches for LPV systems
have been considered in Sato (2003, 2005, 2008) and Prempain and Postlethwaite
(2008). Such solutions boil down to the solution of a large or infinite number of
Linear Matrix Inequalities (LMIs), which might be computationally challenging
for practical systems due to numerical issues.

1.3.8 Over-actuation and over-sensing

In Schneiders et al. (2003) an integrated design approach for over-actuated systems
is presented. The freedom in actuator placement and control design is one of
the advantages of over-actuation (Schneiders et al., 2004a), i.e. the actuator can
be placed to optimize the controllability of the internal dynamics. In this way
the controllability of the internal dynamics for feedback can be maximized, while
simultaneously the controllability of the internal dynamics for feedforward can be
minimized. Finally, in Schneiders et al. (2004b) a method for analysis of over-
actuated systems in a modal framework is presented.

Another well-known example of over-actuated motion systems are planar mo-
tors, which are nowadays used in lithographic machines to position the wafer with
respect to the lens column. Classically, a short- and long-stroke stage were com-
bined to achieve the required positioning accuracy over the complete stroke. In
this case, the long-stroke motor consists of linear motors arranged in an H-bridge
configuration. Modern stages consist of a moving coil levitated planar actuator
with a short-stroke stage stacked on top. Due to the presence of forcer coils and a
short-stroke stage in the moving part, cables are required to deliver the required
power. State of the art planar motors are moving magnet planar actuators, such
as the actuators in Jansen (2007); van Lierop (2008); de Boeij (2009). The advan-
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tage of such actuators is the wireless operation of the moving part. Due to the
position dependent behavior of such machines, control and communication of such
machines is challenging. In Rovers (2013) the design of a lightweight moving mag-
net planar actuator is presented. For an extended overview of motor technologies
see Lomonova (2010).

In Rovers et al. (2009) the static deformation of a planar actuator is presented.
Moreover the deformation due to dynamic and compliant system behavior of such
actuators is characterized (Rovers et al., 2013). The presented simulations show
that the deformation due to the dynamic and compliant part of the system dy-
namics is of the same order of magnitude. A commutation method to reduce the
static deformations in planar actuators is presented in Achterberg et al. (2010). In
Ronde et al. (2012b) spatial feedforward for over-actuated systems is presented,
where it is shown that by employing over-actuation it is possible to prevent the
excitation of a flexible mode, i.e. both the compliant dynamics as well as the
resonant behavior.

1.3.9 Feedforward control in high-speed SPM

A related field are Scanning Probe Microscopes (Clayton et al., 2009), which are
typically driven by piezo-electric actuators over a range of several 100’s of mi-
crometers. These systems are different in the sense that no rigid-body modes are
present and since in general the motion degrees-of-freedom are well decoupled SISO
feedforward control is applied. Moreover, these piezo-electric actuators exhibit
non-linear and/or time-varying behavior such as hysteresis, creep and drift. Ex-
amples to deal with this non-linear behavior are hysteresis compensation (Merry,
2009; Merry et al., 2009) and non-linear feedforward for friction compensation
(Rijlaarsdam, 2012; Rijlaarsdam et al., 2012).

1.4 Research challenges and approach

From the perspective of system design, two types of systems can be considered:
1) traditional actuated systems, and 2) over-actuated systems. For which the re-
search challenges will be formulated.

1. Feedforward control design methods for traditional actuated, in-
ferential, lightweight motion systems.
In order to deal with the difference between the sensor measurements and
the actual performance variables control methods are required which ex-
plicitly take the difference in dynamic behavior into account. Moreover,
for lightweight systems feedforward control becomes increasingly important.
From Section 1.3.6 it is clear that feedback solutions for inferential perfor-
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mance variables exist. Moreover, simultaneous designs of the feedback con-
troller and feedforward controller exist. However, methods for independent
design of the feedforward controller are unavailable. Moreover, the existing
frameworks do not provide any means to deal with the time-varying nature
of the performance location. This leads to the following research challenges:

(a) develop a feedforward control design framework for inferential, lightweight
motion systems, which is independent of the feedback controller, and

(b) develop a framework to explicitly deal with the time-varying nature of
immeasurable performance locations

2. Feedforward control design methods for over-actuated and/or over-
sensed lightweight motion systems.
The next generation of motion system is designed to be relatively lightweight.
These system are possibly employed with additional actuators and sensors,
called over-actuation and over-sensing. Planar motors, such as Rovers (2013),
are a well known examples of over-actuated system. From Section 1.3.8 it
is clear that over-actuated and over-sensed systems have additional design
freedom for actuator placement and control design. However, the current
feedforward techniques are either unable to deal with non-square control
problems or do not exploit the additional design freedom. This leads to the
following research challenges:

(a) develop a feedforward control design method, which exploits the addi-
tional design freedom from over-actuation, and

(b) develop a control framework allows to employ the additional design
freedom to achieve different goals for feedback control and feedforward
control, and finally,

(c) develop a data-based feedforward control design method, which exploits
over-actuation and over-sensing.

Both the model-based and fixed-structure feedforward approach will be ex-
plored in this thesis, because the setpoint trajectories in the intended application
are known in advance. However, due to changes in the production process, e.g.
different size of the chips, different photo-reactive properties or cycles with less
accelerations, the setpoint trajectory may be changing. Data-based approaches,
such as ILC and RC, require a new learning sequence for every new setpoint trajec-
tory, which is undesirable in the intended application. Input shaping approaches
lead to performance over the complete structure, i.e. the flexible dynamics are not
excited. However, such approaches modify the setpoint, which is undesirable due
to the loss of synchronization between the wafer- and reticle-stage.
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1.5 Research contributions

This section will discuss the research contributions of each chapter in this thesis.
Firstly, in Chapter 2 feedforward design methods for lightweight motion systems
with physically non-collocated measurement and performance locations are inves-
tigated. To address research challenge 1a, the standard two degrees-of-freedom
control configuration of Fig. 1.2 is extended with a model of the performance out-
put of the plant as shown in Fig. 1.3. The scientific contribution described in this
chapter is,

Contribution 1. the analysis of inferential motion systems. First of all, it is
shown that different setpoint trajectories are required for the sensor- and perfor-
mance outputs. Secondly, the general two degrees-of-freedom control configuration
for inferential control is extended to facilitate the design of the feedforward con-
troller independent from the feedback control design.

Secondly, to address research challenge 1b the framework of Chapter 2 is
extended towards systems with time-varying performance locations. Therefore,
the scientific contribution of this chapter is,

Contribution 2. a novel feedforward design method to deal with system which
have physically non-collocated measurement and performance location, which are
time-varying due to the production process.

The second part of this thesis is related to research on over-actuated and over-
sensed lightweight motion systems. In Chapter 4 the additional design freedom
resulting from over-actuation is investigated to address research challenge 2a.
The following scientific contributions are described in this chapter,

Contribution 3. the analysis of the design freedom resulting from over-actuation
in a modal framework. First of all, this shows that input transformations exist,
which do not affect the rigid-body behavior but render the desired flexible modes
uncontrollable. Secondly, the formulation of conditions based on the system prop-
erties, which determine wether this design freedom is exploitable

Moreover, research challenge 2b is also addressed in this chapter, which
leads to the following scientific contribution,

Contribution 4. the investigation of control structures, which can reflect the
different control goals of the feedback and feedforward controller in over-actuated
system. This investigation leads to the presentation of a novel control structure,
which employs different input decoupling transformations for the feedback- and
feedforward controller.

In Chapter 5 a data-based framework is investigated to address research chal-
lenge 2c. The scientific contribution described in this chapter is,
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Contribution 5. the investigation of data-based method, which exploits the de-
sign freedom resulting from over-action, as investigated in Chapter 4. Secondly,
the data-based feedforward method identifies the controller parameters which are
optimal with respect to the actual plant. Additionally, it is investigated how to
exploit the additional sensors in case of over-sensing.

1.6 Outline of this thesis

The research presented in this thesis is based on the following articles.
Chapter 2

• Ronde, M. J. C., van de Molengraft, M. J. G., and Steinbuch, M. (2012a). Model
based feedforward for inferential motion systems, with application to a prototype
lightweight motion system. In American Control Conference, pages 5324-5329,
Montréal, Canada.

• Ronde, M. J. C., van de Molengraft, M. J. G., and Steinbuch, M. Model-based
feedforward for inferential motion systems. Submitted for journal publication.

Chapter 3

• Ronde, M. J. C., van den Bulk, J. D. J. M., van de Molengraft, M. J. G., and
Steinbuch, M. (2013a). Feedforward for flexible systems with time-varying perfor-
mance locations. In American Control Conference, pages 6045-6050, Washington,
DC, USA.

Chapter 4

• Ronde, M. J. C., Schneiders, M. G. E., van de Molengraft, M. J. G., de Haas, D.,
and Steinbuch, M. (2012b). Spatial feedfoward for over-actuated flexible motion
systems. In Scheidl, R. and Jakoby, B., (editors), The 13th Mechatronics Forum
International Conference, volume 1/3, pages 254-260, Linz. Trauner-Verlag.

• Ronde, M. J. C., Schneiders, M. G. E., Kikken, E. J. G. J., van de Molengraft,
M. J. G., and Steinbuch, M. (2013b). Model-based spatial feedforward for over-
actuated motion systems. Mechatronics, Article in press, http://dx.doi.org/10.
1016/j.mechatronics.2013.09.010

Chapter 5

• Ronde, M. J. C., Leenknegt, G. A. L., van de Molengraft, M. J. G., and Stein-
buch,M. Data-based spatial feedforward for over-actuated motion systems. Under
review for journal publication

This thesis consists of four research chapters. Three chapters are submitted for
journal publication, the remaining chapter is based on a conference publication.
Therefore, each chapter is self contained and can be read independently. The
outline of the remaining part of this thesis is as follows.

In Chapter 2, a model-based feedforward method for inferential motion systems
is presented, where a feedforward method is presented which provides performance
at the performance location. Moreover, the feedforward controller can be designed
independently from the feedback controller.

http://dx.doi.org/10.1016/j.mechatronics.2013.09.010
http://dx.doi.org/10.1016/j.mechatronics.2013.09.010
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In Chapter 3, an exploratory study towards systems with time-varying inferen-
tial performance locations is presented. The problem of time-varying performance
locations naturally occurs in many manufacturing systems, i.e. pick-and-place
machines or wafer stages.

In Chapter 4, a model-based spatial feedforward method for over-actuated mo-
tion systems is introduced. This chapter presents design methods and conditions
for the existence of spatial feedforward. Furthermore, this method has been ex-
perimentally validated on an industrial prototype lightweight motion system.

In Chapter 5, a data-based spatial feedforward method for over-actuated sys-
tems is introduced. In the data-based method the feedforward controller and
feedforward decoupling are tuned based on experimental data from previous task
trials. Therefore, the requirement of a complex MIMO plant model can be relaxed,
i.e. only a MIMO rigid-body model is required.

Finally, in Chapter 6 the conclusions of this thesis and recommendations for
future research will be presented.
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Chapter 2

Model-based feedforward for
inferential motion systems

IN high-performance motion systems, e.g. wafer-stages or pick-and-
place machines, there is an increasing demand for higher production

throughput and accuracy. In the current design paradigm of rigid-body
design, higher demands for production throughput and accuracy will lead,
in an evolutionary way, to larger motion drives. This paradigm does not
scale with a higher production throughput, i.e. a new paradigm is required.
The new paradigm is to design a lightweight machine and to deal with
the resulting flexibilities by employing control. The location where the tool
operates, e.g. the area to be exposed or the component to be placed, is
typically non-collocated with the sensor locations. This gives additional
problems to control the performance location if the system is flexible due
to the lightweight design. This chapter presents a model-based feedforward
method for lightweight motions systems, with non-collocated sensor and
performance locations. Inferential control is considered, because the point
of interest for performance is typically different from the location of the
measured feedback signals.

This chapter is based on: ”Michael Ronde, René van de Molengraft, Maarten Steinbuch.
Model-based feedforward for inferential motions systems”, Submitted for journal publication.
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2.1 Introduction

Driven by the fierce competition in the semiconductor industry, faster and more
advanced integrated circuits (ICs) are desired, which can be produced at lower cost
and consume less energy. This can be achieved by reducing the size of the features
of ICs. Moreover, increased production speed leads to additional cost reduction.
These ICs are manufactured in a process called photo-lithography (Mack, 2007)
in a wafer-scanner. A key part of a wafer-scanner is the wafer stage, responsible
for positioning the wafer with respect to the optical system. To increase the pro-
duction speed more aggressive motion profiles (i.e. higher accelerations) and/or
larger wafer sizes (i.e. higher mass) are required. Moreover, both miniaturization
and higher accelerations lead to higher bandwidth requirements, which require a
design with higher stiffness. This design paradigm, called rigid-body design, will
lead to systems with an increase of the moving mass. Therefore, the required
(acceleration) forces will become larger, resulting in stricter demands on actua-
tors, amplifiers and cooling. For Lorentz type actuators, the dissipated power is
quadratically proportional to the required force and thus to the required accelera-
tion (Rovers, 2013). Lorentz type actuator have reached their physical limits with
respect to the requirements on force on efficiency (Katalenic, 2013). Therefore,
this paradigm has reached the boundary of its scalability, and becomes infeasible
due to size requirements and thermal constraints (Oomen et al., 2013).

Lithographic and pick-and-place applications require accurate positioning at
the location where the processing is done, i.e. the area to be exposed (litho-
graphy) or the location of the component to be placed (pick-and-place). However,
measurements of the system are typically done at the edges of the moving mass, due
to the production process and placement constraints. Therefore, the performance
location is physically non-collocated with the sensor location and is immeasurable
during normal operation.

A new design paradigm is required that reduces the moving mass of the machine
and, consequently, allows for the presence of internal elastic deformations. This
has several consequences for control design:

1. resonances in the frequency region of interest, i.e. near to the objective
bandwidth of the control loop, and

2. the transfer between sensor output y and performance location z becomes dy-
namical due to internal elastic deformations and non-collocated sensor- and
performance variables. This implies that the performance cannot be calcu-
lated or controlled using simple geometrical transformations. Such control
problems are known as inferential control (Parrish and Brosilow, 1985).

Lower resonance frequencies limit the attainable bandwidth and thus the distur-
bance rejection is more limited. Increased performance specifications due to minia-
turization and more severe excitation of the flexible dynamics due to aggressive
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setpoint trajectories require higher levels of disturbance rejection. Due to these
conflicting requirements, it is expected that feedforward becomes increasingly im-
portant. The consequences for planar actuator design implied by the reduction of
the moving mass are investigated in Rovers (2013). As an alternative, other types
of actuators can be considered, such as reluctance actuators (Katalenic, 2013).
Furthermore, the excitation of the flexible dynamics by the setpoint trajectory
leads to significant internal deformations and undesired vibrations. For example,
it is shown in Butler (2011, Fig. 34) that the flexible modes in a wafer stage indeed
are excited by the setpoint trajectory. Moreover, it is suggested that this can be
solved by applying advanced feedforward control. Direct control at the sensors
does not lead to satisfactory performance at the performance location due to these
deformations. Therefore, it is required to explicitly deal with the performance out-
puts z. Furthermore, due to changes in the production process, such as different
IC sizes, different photo-reactive properties or cycles with less accelerations, the
setpoint trajectory may vary. The presence of disturbances also requires these ma-
chines to be operated in feedback control. The feedback controllers may be subject
to (re-)tuning and/or gain scheduling (Butler, 2011). Therefore, the feedforward
design method is required to be independent of the feedback control design and
the setpoint trajectory. Traditional design methods for feedforward control, such
as position, damping and inertia feedforward, do not take the flexible dynamics
into account and will not lead to satisfactory results for systems with resonances
in the bandwidth of interest, i.e. the setpoint trajectory will excite the flexible
dynamics leading to undesired vibrations. In order to deal with the presence of
significant elastic deformations, lightweight systems can be equipped with more
actuators than rigid-body modes, i.e. these systems can be over-actuated (OA),
see Schneiders et al. (2003, 2004a,b). Also the number of performance variables
is not necessarily equal to the number of sensors. Both over-actuation and the
number of performance variables itself can result in non-square system descrip-
tions (unequal number of inputs and outputs). However, feedforward design for
this class of systems has received little attention in literature yet.

Feedforward in nano-positioning (Butterworth et al., 2009; Clayton et al., 2009)
deals with resonances in the bandwidth of interest. However, these methods typi-
cally deal with diagonal feedforward design, since the scanning directions are well
decoupled. Furthermore, the performance variables are typically assumed to be
directly measurable in contrast to our application.

In Brinkerhoff and Devasia (2000) a feedforward design method for non-square
systems is presented using an optimal control approach. However, this approach
is not suitable for inferential problems, i.e. designing a feedforward will not result
in zero error on the performance variables due to the control structure.

The methods presented in Boerlage (2006) allow for a non-square system, but
only square systems are considered. Furthermore, the assumption that the flex-
ible dynamics occur far beyond the target bandwidth of the feedback controller
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is generally not valid for lightweight motion systems considered in this chapter.
Moreover, the jerk derivative feedforward from Boerlage (2006) only deals with the
contribution of the compliant part of the flexible modes. However, the setpoint
trajectory excites the resonant dynamics, which leads to performance deteriora-
tion.

Inferential control dealing with performance outputs z, that are different from
the sensor output y, is well known in process industry (Parrish and Brosilow, 1985),
but has only recently been introduced in the field of motion control (Oomen et al.,
2009; Oomen, 2010; Oomen et al., 2011). However, existing work deals with the
feedback part or simultaneous two degrees-of-freedom designs only.

In Zhang and Agustriyanto (2003), multivariable inferential feedforward is pre-
sented with an application in process industry, where the problem considered is
a regulation problem. The dominant disturbance, i.e. the disturbance with the
biggest effect on performance, is immeasurable in contrast to the servo-problem
considered in this chapter, where the dominant disturbance, i.e. the setpoint tra-
jectory, is known a priori.

Input shaping (Singer et al., 1999; Baumgart and Pao, 2007) is a suitable
technique to reduce vibrations in flexible systems. However, this results in extra
delays and thus an increased settling time, which is generally not acceptable in
high-performance motion systems.

Spatial feedforward (see Chapter 4 and Ronde et al. (2013b)) can prevent the
excitation of flexible modes for over-actuated systems. However, this method is
only suitable if additional actuators are present. Furthermore, if a single inferential
performance location is considered, this constraint might be too strict.

Learning-based approaches (Moore, 1998; Longman, 2000; Bristow et al., 2006),
such as Iterative Learning Control (ILC), require a measurement of the perfor-
mance variable during the learning process, which is not available in the consid-
ered class of inferential motion systems. Furthermore, ILC requires a new learning
phase for every different setpoint trajectory.

In Heertjes and van de Molengraft (2009) the learned feedforward signal from
ILC is approximated by a FIR filter, such that a setpoint-invariant feedforward
controller is obtained. Such methods only guarantee performance at the sensor
locations.

In van der Meulen et al. (2007, 2008) a fixed structure feedforward controller is
presented, which combines the benefits of model-based feedforward and ILC, i.e.
setpoint invariance and data-based tuning for performance, respectively. However,
the approach still relies on jerk derivative feedforward, i.e. only the deformations
due to the compliant dynamics of the flexible modes are compensated.

In Heertjes et al. (2010) the fixed-structure of van der Meulen et al. (2008)
is replaced by a generic FIR filter. Finally, in Bruijnen and van Dijk (2012) a
combination of two FIR filters is optimized, such that theoretically a zero error
can be obtained. However, only the performance at the sensors is considered in
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contrast to this chapter.
In van de Wijdeven and Bosgra (2007, 2008) an ILC approach for MIMO sys-

tems is presented. Although this approach does not explicitly deal with inferen-
tial feedforward problems, it is possible to do this in the presented framework.
However, the presented approach is not setpoint-trajectory-invariant, i.e. a new
learning sequence is required for every setpoint trajectory.

This chapter takes a different approach as (van de Wijdeven and Bosgra, 2007,
2008), resulting in a setpoint-invariant approach under the following condition:

Assumption 2.1. The (performance) error is assumed to be dominated by the
setpoint-trajectory disturbance. Other disturbances are assumed to be negligible or
compensated otherwise.

Under this assumption, model-based feedforward control can be used for infer-
ential motion systems. Compared to previous work (Ronde et al., 2012a),

1. the feedforward control design can be done independently of the feedback
control design, and

2. it is shown that different setpoint trajectories for the performance and sensor
locations are required for the formulation of consistent control goals, and

3. the implementation has been improved, such that generating a constant feed-
forward signal does not pose a problem.

The contribution of this chapter is a feedforward control design method for inferen-
tial, lightweight flexible motion systems, which are possibly over-actuated. System
resonances can be within the bandwidth of interest, the performance variable z is
not necessarily measured, and systems can be non-square due to over-actuation.
Moreover, the stability of the presented framework is investigated. Performance is
only enforced at the location of the performance variable z, i.e. local performance
is obtained. Moreover, the conditions formulated for inferential performance in the
indirect control structure are not limited to the lifted framework, but generalize
to other model-based methods for feedforward design.

The outline of the chapter is as follows, in Section 2.2 the problem formulation
is given. Subsequently, in Section 2.3 the indirect control structure is shown,
which provides a method to deal with y 6= z. The lifted framework which is used
to compute the feedforward controller is briefly discussed in Section 2.4. The
experimental validation is presented in Section 2.5. Furthermore, in the same
section the proposed method is compared to two other methods as a benchmark.
Finally in Section 2.6 the conclusions and recommendations for future research are
given.
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2.2 Problem formulation

Consider a flexible motion system described by the following discrete-time state
representation,

G :


x(k + 1) = Ax(k) +Bu(k)

y(k) = Cyx(k) +Dyu(k)
z(k) = Czx(k) +Dzu(k)
x(0) = 0

, (2.1)

in the feedback interconnection structure of Fig. 2.1. Here u(k) ∈ Rnu×1, y(k) ∈
Rny×1 and z(k) ∈ Rnz×1 are the inputs, sensor outputs and the performance
outputs, respectively. It is assumed that the performance output z(k) cannot be
measured during operation. The sensor outputs y(k) are used to generate the
feedback signal.

Remark 2.2. Note that x(0) = 0 is not a strict requirement for the method pre-
sented. Any non-zero initial condition x(0) can be absorbed into the setpoint
trajectory.

Furthermore, the servo- and performance-errors are defined as,

ey(k) = ry(k)− y(k),

ez(k) = rz(k)− z(k), (2.2)

where rz(k) is the setpoint trajectory for the performance output z(k). The set-
point trajectory ry(k) is related to rz(k) by ry(k) = Frz(k), where the prefilter F
takes the difference in dimensions and/or dynamics into account. Now the control
goal is defined as,

arg min
Kff

‖ez‖2 ,

where ez =
[
ez(0) . . . ez(N − 1)

]T
, i.e. the designed feedforward controller

should minimize the 2-norm of the performance error.

Definition 2.3 (Body modes Schneiders et al. (2004b)). The body modes are
defined as the set of rigid-body modes (ωr = 0) and suspension modes. The
suspension modes are defined as the modes where the moving parts can be regarded
as rigid, but are attached to the fixed world by elastic elements. The suspension
modes have, by design, a significantly lower resonance frequency than the internal
modes, i.e. the structural stiffness of the suspension system to the fixed world is
much smaller as the body stiffness. The number of body modes is denoted by nb .

Definition 2.4 (Internal modes Schneiders et al. (2004b)). The internal modes
are the modes where elastic deformation of the moving parts occurs. These internal
modes are the undesired behavior of the system due to the limited stiffness.
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Definition 2.5 (Indirect control). The indirect control of an immeasurable per-
formance variable by controlling an auxiliary measurement variable.

The class of motion systems considered in this chapter, can be characterized
by the following properties and assumptions:

1. linear time-invariant (LTI) system behavior,

2. lightweight system, i.e. resonances near the objective bandwidth,

3. sensor- and performance location are physically non-collocated (Gy 6= Gz),

4. number of sensor outputs ny ≥ nb. During operation ny = nb sensors are
required, during system identification extra sensor(s) at z are required to
obtain a model,

5. number of inputs nu ≥ nb,
6. number of performance outputs nz ≥ nb, and finally,

7. the setpoint trajectory rz is known in advance.

Remark 2.6. For the method presented in this chapter it is not required that
the system is over-actuated. However, it is beneficial due to the fact that zeros
and thus non-minimum phase (NMP) zeros are less likely to appear (Maciejowski,
1989), (Skogestad and Postlethwaite, 2005, Section 4.5).

Gy

Gz

z

y
F

ez

ry ey urz

−

−

Kfb

Kff

uff

Figure 2.1: Indirect control structure (Skogestad and Postlethwaite, 2005, Section
10.4) with additional feedforward controller Kff . The performance output z is
represented by a dashed arrow, showing that this signal may not be measurable
and is not used for feedback control.

2.3 Feedforward for indirect control structures

2.3.1 Motivating example

In this example it will be shown that different setpoint trajectories are required,
when considering different output of the same dynamical system. In general, the
dynamic response of the system to the sensors outputs and the performance out-
puts are different, leading to the requirement for different setpoint trajectories.
The following simple example will show that even in the steady-state situation
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m1 m2

f

y1 y2
k1k0

d1d0

Figure 2.2: Figure 2.2: Example system with two masses (m1,m2) and stiffness to
the fixed world (k0).

problems can occurs. Therefore, the following simple motion system in Fig. 2.2 is
considered. For this system, the equations of motion are given by,

Mq̈(t) +Dq̇(t) +Kq(t) =
[
0 f(t)

]T
, q =

[
y1 y2

]T
,

where M = diag(m1,m2) and,

D =

[
d0 + d1 −d1

−d1 d1

]
, K =

[
k0 + k1 −k1

−k1 k1

]
.

Now consider the static situation, i.e. q̈ = 0, q̇ = 0, then the equations of motion
reduce to, [

k0 + k1 −k1

−k1 k1

] [
y1

y2

]
=

[
0
f

]
.

Solving this system of equations leads to,

y1 =
k1

k0 + k1
y2, (2.3)

and

f = −k1y1 + k1y2 =
k0k1

k0 + k1
y2.

From (2.3) it follows immediately that y1 6= y2, except for the trivial solution
(y1 = y2 = 0), provided that k0 6= 0. This is even the case in static situations,
i.e. when there are no dynamics involved. This simple example shares the same
relevant properties with all motion systems, i.e any stiffness to the fixed world leads
to a stiffness matrix K � 0, which physically means that there are no rigid-body
modes present anymore. Thus, any other position than the equilibrium position
will involve internal deformations in the system. This shows that even for steady-
state (ω = 0) different setpoint trajectories are required in case of stiffness to the
fixed world. This motivates the requirements for different setpoint trajectories to
avoid conflicting control goals.
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2.3.2 Controller structures for inferential control

As motivated in the previous section, the standard feedforward control structure
from Fig. 1.2 is not suitable, since this structure cannot handle different setpoint
trajectories. Moreover, several other challenges exist for inferential control prob-
lems as motivated in Oomen (2010, Ch. 3&7) and Oomen et al. (2009, 2011):

1. in general dim y 6= dim z, i.e. the difference between the setpoint trajectory
rz and the measured output y cannot be computed, and

2. in case dim y = dim z, e.g. the outputs may be scaled arbitrarily, i.e. min-
imization of rz − y does not imply minimization of rz − z. Moreover, if
suspension modes are present then simultaneous minimization of rz − y and
rz − z is impossible in general.

Relation with the general two degrees-of-freedom configuration

The general two degrees-of-freedom controller structure for inferential control as
proposed in Oomen (2010, Ch. 3&7) and Oomen et al. (2009, 2011) is shown in
Fig. 2.3. The controller K admits the following structure,

u =
[
K1 K2

]︸ ︷︷ ︸
=:K

[
rz
−y

]
. (2.4)

Both extensions to the single degree-of-freedom control configuration to deal with
immeasurable performance variables, i.e. inferential control (Parrish and Brosilow,
1985) and indirect control (Skogestad and Postlethwaite, 2005, Section 10.4), can
be regarded as special cases of the general two degree-of-freedom control configu-
ration.

Gy

Gz

K

z

y

ez

u
rz

−

−

Figure 2.3: Two degrees-of-freedom controller structure for inferential control.
The dashed line indicates that the performance output z is immeasurable during
operation.

The proposed indirect control structure with additional feedforward controller
of Fig. 2.1 fits in the general two degrees-of-freedom controller structure for infer-
ential control. For the control structure of Fig. 2.1 the controller parametrization
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from (2.4) reads,

u =
[
KfbF +Kff Kfb

] [ rz
−y

]
. (2.5)

The controller from (2.5) is indeed over-parameterized, i.e. there are three ele-
ments to be designed (Kfb, Kff and F ) for two degrees-of-freedom. However,
this parametrization allows for independent design of the feedback controller and
feedforward controller. This will be shown in the next section.

2.3.3 Independent feedforward design for indirect control struc-
tures

To prevent the feedback controller from deteriorating the feedforward signal, the
servo-error ey and the performance error ez have to be zero simultaneously. From

ey = Si(F −GyKff )rz,

it follows that ey can be made small by choosing,

F = GyKff , (2.6)

assuming Gy is close to Gy. Here (.) indicates the use of a nominal model. The
transfer function from the setpoint trajectory rz to performance error ez is given
by,

ez = (I −GzSi(Kff +KfbF )) rz, (2.7)

where Si = (I +KfbGy)−1 is the input sensitivity. Inserting (2.6) in (2.7) results
in,

ez = (I −GzSi(Kff +KfbF )) rz,

=
(
I −GzSi(I +KfbGy)Kff

)
rz,

which reduces to,

ez = (I −GzKff ) rz, (2.8)

under the assumption that Gy = Gy. From (2.6) and (2.8) it follows that the ideal
feedforward controller is,

Kff = Gz
†
.

Here, (.)† indicates the use of a pseudo-inverse as Gz might be non-square as
nu ≥ nz, which coincides with the regular inverse if nu = nz.
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Remark 2.7. In the case of rigid-body modes, Gy in (2.6) might be approximated
by a constant at low frequencies, since at low frequencies the difference between
y and z is just a compliant effect. Hence if the setpoint trajectory has its main
frequency content at low frequencies, the pre-filter F can be approximated as the
feedforward controller times a static gain, see (2.6).

Discussion

Stability is required to obtain the desired behavior. The stability of this control
scheme is determined by:

1. the closed-loop stability, and

2. the stability of the feedforward controller Kff , and

3. the stability of the prefilter F .

The closed-loop stability is ensured by proper design of the feedback controller.
If the feedforward controller Kff is unstable either an approximation (Tomizuka,
1987) or stable-inversion (Zou and Devasia, 1999) technique can be used. The
stability of the pre-filter immediately follows from the stability of the feedforward
controller, which is shown in Lemma 2.9.

Remark 2.8. In Lemma 2.9 below, the proof is given for SISO transfer function Gy
and Gz for reasons of simplicity. The proof can be extended to MIMO by using
matrix fraction descriptions.

Lemma 2.9. The prefilter F = GyG
−1
z is stable if and only if G−1

z is stable.
Proof: Let Gy and Gz be the transfer function from a minimal realization of

G in (2.1), then

Gy =
b(ξ)

a(ξ)
, Gz =

c(ξ)

a(ξ)
.

Here, ξ can be replaced by s (continuous-time) or z (discrete-time). If no pole-zero
cancellation occur in either Gy of Gz the prefilter F is equal to,

F = GyG
−1
z =

b(ξ)

a(ξ)

a(ξ)

c(ξ)
=
b(ξ)

c(ξ)

Now let Gy and Gz be factorized such that φ(ξ) and ψ(ξ) contains all the pole-
zero pairs which cancel in Gy and Gz respectively, then

Gy =
b(ξ)

a(ξ)
=
b̄(ξ)φ(ξ)

ā(ξ)φ(ξ)
, Gz =

c(ξ)

a(ξ)
=
ĉ(ξ)ψ(ξ)

â(ξ)ψ(ξ)
.

Because Gy and Gz have the same poles, it holds that

ā(ξ)φ(ξ) = â(ξ)ψ(ξ).
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Then, the prefilter results in,

F = GyG
−1
z =

b̄(ξ)φ(ξ)

ā(ξ)φ(ξ)

â(ξ)ψ(ξ)

ĉ(ξ)ψ(ξ)
=
b̄(ξ)φ(ξ)

ĉ(ξ)ψ(ξ)
,

which shows that the poles of Gy exactly cancel, which is possible because both Gy
and Gz are models with the same underlying state-space description. Therefore,
the stability is determined by the zeros of the polynomial ĉ(ξ)ψ(ξ), i.e. the poles
of G−1

z .

Furthermore, to enforce a unique solution for the pose of the system nz ≥ nb,
i.e. the number of constraints must be larger or equal to the number of (rigid-)body
modes.

2.4 Lifted feedforward

Consider the system of (2.1) with output z(k) only. For an LTI system, the lifted
description (Bamieh et al., 1991; Dijkstra, 2004; van de Wijdeven, 2008) which is
a static map representing convolution, results in,

z(0)
z(1)
· · ·

z(N − 1)

 =


Dz 0 · · · 0
CzB Dz · · · 0

...
...

. . .
...

CzA
N−2B CzA

N−3B · · · Dz




u(0)
u(1)

...
u(N − 1)

 .
This can both represent an open- or closed-loop mapping, by taking the appro-
priate A, B, C, D. For MIMO systems, the convolution matrix becomes block-
Toeplitz, with nz × nu blocks and remains valid for both square and non-square
blocks. Also it is possible to include initial conditions, pre- and post-actuation and
different actuation and observation windows (van de Wijdeven, 2008). It is also
possible to model LTV systems in this framework (Dijkstra, 2004), which makes
it possible to use a varying C matrix to take into account the varying location of
the performance variable z. However, this is outside the scope of the chapter and
subject to future research, see Chapter 3 and Dijkstra (2004); Sato (2003, 2008);
Ronde et al. (2013a).

The class of systems considered here are typically strictly proper, i.e. with a
relative degree ρ > 0. As a consequence the direct feedthrough matrix Dz = 0
and the convolution matrix will be rank deficient. This can be solved by using a
shifted representation,

z(1)
z(2)
· · ·
z(N)

 =


CzB 0 · · · 0
CzAB CzB · · · 0

...
...

. . .
...

CzA
N−1B CzA

N−2B · · · CzB




u(0)
u(1)

...
u(N − 1)

 .
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The compact notation of this is

z = Jzu. (2.9)

If additional delays are present, subsequent terms of the convolution, CzB,CzAB, . . .,
are zero as well. This can be solved in a similar manner, i.e. by applying a larger
shift.

For square systems, designing a feedforward mapping as Kff = J−1
z , results

in z = JzJ
−1
z rz = rz. However for every non-minimum phase (NMP) zero of

the represented system, there is a singular value of Jz which is approximately
zero (Hashemi and Hammond, 1996; Dijkstra, 2004), resulting in an unbounded
feedforward signal. For non-square systems Jz is non-square and direct inversion
is not possible.

Proposition 2.10 (van de Wijdeven (2008)). Consider the singular value decom-
position of Jz from (2.9),

Jz = UΣV T,

=
[
U1 U2

] [ Σ1 0
0 Σ2

] [
V T

1

V T
2

]
,

where the singular values Σ2 ≈ 0 due to non-minimum phase zeros. The matrices
U and V are partitioned such that they match the dimensions of Σ1 and Σ2. Now
Jz can be approximated by,

Jz ≈ U1Σ1V
T
1 ,

and a bounded uff can be computed as,

uff = J†zrz =
(
U1Σ1V

T
1

)†
rz = V1Σ−1

1 UT1 rz,

which minimizes the 2-norm of the performance error ez = rz − Jzuff .

The resulting feedforward controllerKff = J†z is not necessarily LTI and causal,
i.e. (block)-Toeplitz and lower triangular respectively.

Remark 2.11. Note that causality of the feedforward controller is not considered
to be an issue, since the setpoint trajectory is assumed to be known in advance.
Constructing causal LTI feedforward controllers is outside the scope of this chapter.

2.5 Experimental validation

The prototype lightweight motion system, shown in Fig. 2.4, is made of a steel
beam, with a length of 0.5 m. The beam is constrained by 5 wire springs such that
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4 rigid-body modes are suppressed. The translation and rotation of the beam are
the remaining degrees of freedom (DOFs). The experimental setup is driven by 3
Akribis AVM19-5 voice-coils using current controlled amplifiers with ±2.5 V input
range, which is approximately proportional to the output current. The output
current is limited to 1.3 A. The position is measured contactless by three Philtec
D64-NQ fiberoptic sensors used at the far side, with a resolution of 1 µm at a
bandwidth of 20 kHz. The absolute accuracy of the specific sensor and target
combination is unknown. Data-acquisition is done using a Beckhoff EtherCAT
stack and real-time Linux at a sampling frequency fs = 2048 Hz. Furthermore,
the non-actuated equilibrium position is taken as the zero position of the sensor
coordinate system. For the feedback control design, the system is decoupled, such
that SISO controllers can be designed on the basis of the diagonal elements.

?

f1

?

f2

?

f3

6

y1

6

y2

6

y3

Figure 2.4: Prototype lightweight motion system, with actuators f1, f2 and f3 and
sensors y1, y2 and y3.

2.5.1 Performance variables and geometric decoupling

Consider the model shown in Fig. 2.5, where fi, i = 1, 2, 3 are the force inputs
and yi, i = 1, 3 are the measurable sensor outputs during operation. In this case,
the position of the center of gravity (COG) and the rotation around COG should
be controlled. Therefore, the performance variable is chosen as,

z =

[
yCOG
Rz

]
≈
[

y2
y3 − y1

L

]
, (2.10)

such that the orientation of the system is uniquely constrained. However, the
sensor y2 is assumed to be immeasurable during operation and there is no sen-
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sor present to directly measure Rz. Therefore, direct control of the performance
variables is impossible.

f1 f2 f3

L

y1

yCOG

y3

Rz

y2

Figure 2.5: Geometric model of the experimental setup of Fig. 2.4. Here, the black
dot indicates the center of gravity. Furthermore, the black arrows represent the
decoupled coordinate system.

To decouple the system for feedback, it is assumed that the system approxi-
mately behaves like a rigid-body at low frequencies. This assumption is valid, since
the suspension stiffness is by design much smaller than the internal stiffness of the
beam. The actuator forces in terms of the decoupled forces around the center of
gravity are defined by, f1

f2

f3

 =

1/3 −2
1/3 0
1/3 2


︸ ︷︷ ︸

Tu,fb

[
fz
TRz

]
.

The motion coordinates m(t), without the use of sensor y2, which is not measurable
during operation, results in,

m(t) = Tyy(t), (2.11)

with,

m(t) =

[
yCOG
Rz

]
, Ty =

[
1
2

1
2−1

L
1
L

]
, y(t) =

[
y1

y3

]
.

Therefore, the decoupled plant is equal to Gy,dec = TyGyTu,fb.

2.5.2 Setpoint trajectory

The setpoint trajectory for yCOG is a 4-th order motion profile using the algorithm
of Lambrechts et al. (2005) and the setpoint trajectory for Rz is zero. Both the
setpoint trajectories are shown in Fig. 2.6. The maximum snap (not shown), i.e.
jerk derivative equals s̄ = 500 m/s4.



34 Chapter 2 Inferential feedforward

0

0.5

1

1.5
x 10

−4

P
o
si

ti
o
n
 (

m
)

0

2

4

6

8
x 10

−4

V
el

o
ci

ty
 (

m
/s

)

0 0.1 0.2
−0.02

−0.01

0

0.01

0.02

Time (s)

A
cc

. 
(m

/s
2
)

0 0.1 0.2
−1

−0.5

0

0.5

1

Time (s)

Je
rk

 (
m

/s
3
)

Figure 2.6: Setpoint trajectory rz for yCOG ( ) and Rz ( ) and its derivatives
for prototype lightweight system.

2.5.3 Identification and feedback design

As a first step, a frequency response function (FRF) is measured in open-loop
(not shown). With this model, the amount of interaction after decoupling can
be evaluated using the Relative Gain Array (RGA) (Skogestad and Postlethwaite,
2005). Since the RGA is close to identity, SISO controllers can be designed based
on the diagonal terms of the plant.

The controller structure for the experiments is given byK = diag(K11(s),K22(s)),
where

Kii(s) = ki ·
s+ 2πfint,i

s
·

1
2πfz,i

s+ 1

1
2πfp,i

s+ 1
· 1

1
2πflp,i

s+ 1
·

1
(2πfnz,i)2

s2 +
2βnz,i
2πfnz,i

s+ 1

1
(2πfnp,i)2

s2 +
2βnp,i
2πfnp,i

s+ 1
,

with parameters and resulting bandwidths as shown in Table 2.1 and 2.2. This
feedback controller consists of the following elements: gain, integrator, lead-filter,
first-order lowpass and a notch-filter. The lead-filter is required to obtain the
correct phase at the zero crossing of the open-loop. The integrator is included to
improve the tracking at low frequencies. The notch-filter is included to prevent
additional zero-crossings of the open loop, which allows to increase the bandwidth
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without endangering stability. Finally, the lowpass filter is included to enforce
the desired roll-off and to prevent the amplification of noise. The stability of
the MIMO system is assessed by evaluating the characteristic loci (Skogestad and
Postlethwaite, 2005) (not shown). For implementation the controller is discretized
using a Tustin discretization scheme.

Axis i ki fint,i fz,i fp,i flp,i fBW
1 0.21 2.1 8/3 24 60 8
2 0.025 5 15/3 45 100 15

Table 2.1: Controller parameters and resulting bandwidth fBW (Hz). fBW is
defined as the zero dB crossing of the open-loop.

Axis i fnz,i βnz,i fnp,i βnz,i
1 33.5 0.15 50 0.5
2 - - - -

Table 2.2: Controller parameters of the notch-filter.

A non-parametric model of the prototype lightweight system is shown in Figs. 2.7
and 2.8. This model has been identified in closed-loop by subsequently exciting
each channel with zero mean white noise. As can be seen in Fig. 2.7, two suspen-
sion modes are present at 3 and 5 Hz, i.e. the stiffness to the fixed world, which is
caused by the wire springs to constrain the other DOFs. The first internal flexible
mode of the beam is located at 33 Hz.

2.5.4 Parametric model

Based on the non-parametric model as shown in Fig. 2.7, a parametric model
has been obtained by a MIMO complex curve fitting method. The model from all
inputs to all outputs has been obtained at the same time, such that the underlying
structure is equal to (2.1). The resulting order is 14, i.e. the two suspension modes
and the first five flexible modes. The estimated resonance frequencies and the
corresponding damping values are presented in Table 2.3. The model approximates
the non-parametric model with∑

‖GFRF(ωk)−Gmodel(ωk)‖2F = 0.5940,

where ωk ∈ [2π0.5, 2π500] is evaluated at the measurement frequency grid with a
resolution of 2π0.5 rad/s.

By visual inspection, it can be seen that the diagonal and off-diagonal terms
are modelled with a comparable deviation between model and FRF. The largest
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Figure 2.7: Bode magnitude diagram of the prototype lightweight motion system
(without decoupling), measured FRF ( ) and 14-th order parametric model ( ).

deviations at low frequencies, where the most energy of the setpoint trajectory
is concentrated, can be found around the resonance frequencies of the suspen-
sion modes. It is likely that improving the model quality also improves the final
performance.

Subsequently, the parametric model of G is used to extract Gy (from u1, u2, u3

to y1, y3) and Gz (from u1, u2, u3 to y2). The parametric model of Gz, with perfor-
mance output definition of (2.10), will be used to construct the impulse response
map Jz in (2.9). The parametric model of Gy and the feedforward controller from
(2.14) will be used to construct the prefilter F .
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Figure 2.8: Bode phase diagram of the prototype lightweight motion system (with-
out decoupling), measured FRF ( ) and 14-th order parametric model ( ).

2.5.5 Feedforward implementation aspects

Due to the suspension modes present in the system, a constant force is required to
keep the system at rest except at the initial position (type 0 system, see Franklin
et al. 2005). Although the suspension modes are included in the model, finite
time implementation aspects lead to undesired oscillatory effects for systems with
stiffness to the fixed world. A solution can be found by adding an integrator to
the inputs of the system (van de Wijdeven and Bosgra, 2007), which is used to
compute the feedforward controller. The integrator and the feedforward controller
will be combined to obtain a solution in terms of the physical inputs. The new
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i fi (Hz) ζi (−)
1 3.6 0.2094
2 6.1 0.1404
3 33.4 0.0198
4 97.5 0.0157
5 179.4 0.0040
6 286.2 0.0101
7 439.5 0.0022

Table 2.3: Resonance frequencies and damping of the parametric model.

feedforward inputs uff are related to the old feedforward inputs uff by,

uff = Jintuff , (2.12)

where

Jint =

Inu 0
...

. . .

Inu · · · Inu

 .
By combining (2.9) and (2.12) the new system description is obtained as,

z = JzJintuff = Jzuff . (2.13)

The feedforward controller for (2.13) can be computed as,

Kff = Jz
†
.

Finally, the feedforward signal for the physical inputs is computed as,

uff = JintKffrz. (2.14)

2.5.6 Results

In this section the results from three different methods for tracking the setpoint
trajectory of Fig. 2.6 are presented, which are:

1. no feedforward,

2. conventional feedforward, and

3. inferential feedforward.

All these methods will be used in conjunction with a feedback controller, which
is required to operate the system and to take disturbances and modeling errors
into account. Both the conventional and inferential feedforward controllers are
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Case Kff F max |ez| (µm) ‖ez‖2
1 − I 29.2 5.43 · 10−4

2 G†y I 13.7 3.40 · 10−4

3 G†z GyKff 13.8 2.39 · 10−4

Table 2.4: Summary and numerical values for the experimental results.

constructed in the lifted domain with the parametric model from Fig. 2.7. This
allows for a fair compression between the different methods. The experiment
without feedforward is included as a reference case. An overview of the feedforward
controllers and prefilters is presented in Table 2.4.

To construct the convolution matrix Jz, the first N = 1700 Markov parameters
of the model are used, which is equal to the number of samples in the setpoint
trajectory. This results in a convolution matrix of size 3400 × 5100. From this
convolution matrix, the feedforward controller is constructed using all singular
values, i.e. truncation is not required in absence of non-minimum phase zeros.
In the ideal case without any modelling errors, increasing the number of singular
values will increase the final performance in general.

The resulting feedforward signals for conventional and inferential feedforward
are shown in Fig. 2.9. The resulting feedforward signal from both methods resem-
ble the combination of inertia and position feedforward, which compensate for the
mass and suspension stiffness, respectively. The dip at t = 0.2 can be attributed
to the combination of position feedforward and the deacceleration of the system.
The differences between conventional - and inferential feedforward are due to dif-
ferences between the models of Gy and Gz. Furthermore, for both methods it holds
that there are less constraints than degrees-of-freedom (the convolution matrix is
fat), thus the minimum energy solution is taken. Moreover, it can be seen that the
feedforward controller is able to generate a constant force in contrast to previous
work (Ronde et al., 2012a).

In Figs. 2.10, 2.11 and 2.12 the position outputs of the three different exper-
iments are presented. For the experiment without feedforward and conventional
feedforward it can be seen in Figs. 2.10 and 2.11 that the motion system arrives
at the desired setpoint value. However, the difference between y1 and y3 on the
one hand and y2 on the other hand indicates that the beam is bent, which can be
attributed to the same reasons as in the example of Section 2.3.1. Moreover, con-
ventional feedforward significantly improves the settling time from approximately
0.6 s to 0.45 s. Nevertheless, for the translation of the performance location an
offset remains for both conventional and no feedforward, i.e. this is not an artifact
of the feedforward design method. In Fig. 2.12 the sensor outputs and their set-
point trajectories are shown for the proposed method. The setpoint trajectory ry
is calculated based on the model Gy and the feedforward controller Kff . It can
be observed that both the sensor- and performance output arrive at the desired
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setpoint values without any offsets.
The servo-errors are defined by, ey = ry −m(t), where ry = Frz and m(t) is

defined by (2.11). In Fig. 2.13 the translation servo-errors and its power spectral
density (PSD) are shown. Here it can be seen that the translation servo-error
is improved by applying feedforward. In the PSD only significant differences are
found at low frequencies. In Fig. 2.14 the rotation servo-errors and its power
spectral density are shown. For both feedforward methods and no feedforward
these servo-errors are approximately equal.

The translation error and its power spectral density at the performance location
are shown in Fig. 2.15. Both feedforward methods result in a peak error of ap-
proximately 13.7 µm compared to 29.2 µm without feedforward. Furthermore, in
the proposed method the steady-state offset has been removed by explicitly taking
the difference in dynamic behavior into account. This also leads to a lower energy
contents of the translation error at the performance location, see Table 2.4. For
both conventional and inferential feedforward control the remaining error during
motion can be attributed to model inaccuracies and small non-linearities in the
experimental setup.
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Figure 2.9: Feedforward signal uff , uff,1 ( ), uff,2 ( ) and uff,3 ( ) for con-
ventional feedforward (dashed) and inferential feedforward (solid).

2.6 Conclusions

In this chapter a novel method for feedforward design of a non-square inferential
motion systems is presented. The method presented is independent of the setpoint
trajectory and feedback control design. The sensor(s) at the performance location
z is only required to obtain the non-parametric and parametric models, but is not
required during operation.
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Figure 2.10: Position output (solid) and setpoint trajectory rz ( ) for Kff = 0
and F = I. Position outputs y1 ( ), y2 ( ) and y3 ( ).
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Figure 2.11: Position output (solid) and setpoint trajectory rz ( ) for Kff = G†y
and F = I. Position outputs y1 ( ), y2 ( ) and y3 ( ).

The proposed inferential feedforward method has been validated on a prototype
lightweight system showing an improvement of a factor 2 approximately, both
in terms of peak error and 2-norm, compared to no feedforward. Compared to
conventional feedforward the peak error of the proposed method is similar, but
the 2-norm of the error is approximately 40% smaller. The performance is limited
by disturbances, the repeatability of the system and the model quality, which is
the same for any other feedforward method.

The control structure of Section 2.3 can be used to design feedforward con-
trollers for this class of systems using other model based techniques as well, i.e.
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Figure 2.12: Position output (solid) and setpoint trajectory rz ( ) and ry ( and
) for Kff = G†z and F = GyKff . Position outputs y1 ( ), y2 ( ) and y3 ( ).
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Figure 2.13: Servo-error (translation) of the three different methods, i.e. no feed-
forward ( ), conventional feedforward ( ) and inferential feedforward ( ).

this method is not limited to the lifted system representation but generalizes to
other model-based techniques.

In the next chapter, the framework from this chapter is extended to inferential
motion systems with time-varying performance locations.
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Figure 2.14: Servo-error (rotation) of the three different methods, i.e. no feedfor-
ward ( ), conventional feedforward ( ) and inferential feedforward ( ).
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Figure 2.15: Performance-error (translation) of the three different methods, i.e. no
feedforward ( ), conventional feedforward ( ) and inferential feedforward ( ).
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Chapter 3

Feedforward for flexible
systems with time-varying

performance locations

INCREASING demands for higher throughput in high-performance mo-
tion systems, e.g. waferstages or pick-and-place machines, lead to more

aggressive motion profiles (higher accelerations), a stiffer design and/or
larger wafer sizes (higher mass). Therefore, larger actuation forces are re-
quired, which puts stricter demands on actuators, amplifiers and cooling.
However, this design paradigm has reached the boundary of its scalability.
Therefore, the next generation of high-performance motion systems are
designed to be lightweight. For this class of systems the location where the
tool operates, e.g. the area to be exposed or component to be placed, is con-
stantly varying. Due to the lightweight design and the changing position
of the performance output location, the system dynamics to be considered
for feedforward are changing as well, i.e. the flexible modes are observed
differently. This chapter presents a model-based feedforward method for
flexible systems with time-varying performance locations. This method is
experimentally validated on a two-mass setup with flexible shaft.

This chapter is based on: ”Michael Ronde, John van den Bulk, René van de Molengraft,
Maarten Steinbuch. Feedforward for flexible systems with time-varying performance locations”,
American Control Conference, p. 6045-6050, Washington, DC, USA.



46 Chapter 3 Time-varying performance locations

3.1 Introduction

Driven by Moore’s law (Moore, 1965) and the fierce competition in the semiconduc-
tor industry, a higher throughput is desired. This requires more aggressive motion
profiles (i.e. higher accelerations), a design with higher stiffness and/or larger
wafer sizes (i.e. higher mass). Therefore, the required forces will become larger
(F = m · a). This results in stricter demands on actuators, amplifiers and cooling,
e.g. the force density, required power and the generated heat respectively, which
is infeasible due to its scalability. Therefore, a new design paradigm is required,
which is to decrease the mass and to allow for internal flexibilities. However, this
has several consequences for control design:

1. lightly damped resonances within the region of interest, i.e. the bandwidth,
and

2. the transfer between sensor output y and performance location z, becomes
dynamical due to flexibilities, i.e. there is no static transformation of the
measurements possible anymore to calculate/control the performance vari-
able. Furthermore, the location where the tool is operating, i.e. the area to
be illuminated or the component to be placed is constantly varying. This is
illustrated in Fig. 3.1. Therefore, the dynamics to be considered for feedfor-
ward control need to be varying accordingly.

� 2

� -1

Figure 3.1: Example of a lithographic system with wafer-stage, with the sensors at
the edges of the stage (1), while the area to be processed (performance location)
is indicated by (2). Due to the production process, the performance location is
changing in time.

Mass or inertia feedforward, which is commonly used in industry, does not
take the flexible dynamics into account and will not lead to satisfactory results for
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lightweight systems with flexibilities within the bandwidth of interest.
Snap feedforward (Boerlage et al., 2004; Boerlage, 2006; Steinbuch et al., 2010)

additionally compensates for the quasi-static deformation during motion, which is
not sufficient to address the resonant behavior if lightly damped flexible modes are
present in the frequency band of interest.

Iterative learning control (ILC) (Van de Wijdeven, 2008; Dijkstra, 2004), which
uses the measured error from previous experiments to learn a better feedforward
signal, has the drawback that the solution is setpoint trajectory dependent, i.e.
a new learning sequence is required for every new setpoint trajectory. Also, it is
required that the errors are measured at the performance location, which may not
be achievable in practice.

Input shaping (Singer et al., 1999; Baumgart and Pao, 2007; Singh, 2010) can
be used to reduce residual vibrations for flexible systems that are subject to a
setpoint trajectory. However, only the vibrations after the rest-to-rest motion are
counteracted. Furthermore, these methods typically introduce delays, resulting in
longer settling times, which is generally undesired.

For over-actuated systems, i.e. systems with more actuators than rigid body
modes, spatial feedforward (see Chapter 4 and Ronde et al. (2013b)) can be used
to prevent excitation of the flexible modes. This method can suppress as many
flexible modes as there are additional actuators present. Therefore, the spatial
feedforward method is only suitable for over-actuated systems, in contrast to the
method presented in this chapter.

Both input shaping and spatial feedforward prevent the excitation of one or
more flexible mode(s), leading to performance over the complete structure, i.e.
global performance. However, these methods are not always suited for traditionally
actuated systems, due to the undesired longer settling times or the lack of extra
actuators.

In Sato (2003) a method is presented to design a gain-scheduled inverse of an
LPV system. The drawback of this method is that an infinite number of LMI’s
has to be solved. This is solved in Sato (2008), but the solution is based on LMI’s,
which might not lead to numerically tractable solutions for practical systems. Fur-
thermore, both methods require extensive modeling and obtain performance at the
sensor location only.

In the previous chapter, the extension towards systems with time-varying per-
formance (TVP) locations was suggested. However, direct application of the
method from Ronde et al. (2012a) for these systems leads to infeasible feedforward
signals, which can not be applied to any practical system. By including additional
weightings (actuator and amplifier models), a feasible feedforward signal can be
obtained.

Compared to Chapter 2 this chapter provides an extension towards systems
with time-varying performance locations. Furthermore, the expressions for the
feedforward design from Ronde et al. (2012a) are simplified, providing more in-
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sight and easier implementation. Therefore, the contribution of this chapter is to
provide:

1. a feedforward design for systems with time-varying (inferential) performance
locations, and

2. a method to include weightings on the input signal, and

3. a computationally tractable feedforward synthesis method.

This chapter is organized as follows, in Section 3.2 the problem is formulated.
Subsequently, in Section 3.3 lifted feedforward is briefly introduced. In Section
3.4 input weightings are introduced to include limits on actuators and amplifiers.
Subsequently, in Section 3.5 the experimental results are presented. Finally, in
Section 3.6 the conclusions and recommendations are presented.

3.2 Problem formulation

Consider a flexible system described by the following discrete-time state space
representation,

G :


x(k + 1) = Ax(k) +Bu(k)

y(k) = Cyx(k) +Dyu(k)
z(k) = Cz(k)x(k) +Dz(k)u(k)
x(0) = 0

, (3.1)

in the feedback interconnection depicted in Fig. 3.2. Here k, u(k) ∈ Rnu×1, y(k) ∈
Rny×1 and z(k) ∈ Rnz×1 are the discrete-time index, inputs, sensor outputs and
performance outputs of the system respectively. Cz(k) and Dz(k) denote a time-
varying output- and throughput matrix at index k, respectively, so z can be a
time-varying performance output.

Remark 3.1. Note that a zero initial condition x(0) = 0 is not a strict requirement
for the method presented. Any non-zero initial condition x(0) 6= 0 can be absorbed
into the setpoint trajectory.

Now the performance error can be defined as

ez(k) = rz(k)− z(k),

were rz(k) denotes the setpoint trajectory for the performance output. The control
goal is defined as

arg min
uff

‖ez‖2 ,

where ez =
[
ez(0) . . . ez(N − 1)

]T
, thus minimizing the energy in the perfor-

mance error signal by designing a feedforward signal.
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Remark 3.2. In this chapter a single-input multi-output (SIMO) system is pre-
sented as example for the sake of simplicity. However, the proposed method is
suitable for MIMO as well.

In this chapter it is assumed that y and z are represented in the same physical
unit. Additionally, it is assumed that Gy(0) = Gz(0), such that the solution is
equivalent to the solution of Chapter 2, see Appendix A.2.

Gy

Gz

z

y

ez

ey urz

−

−

Kfb

Kff

uff

Figure 3.2: Indirect control structure (Skogestad and Postlethwaite, 2005). The
performance output z is represented by a dashed line, indicating that it can not
be measured (at all times).

3.3 Lifted Feedforward

Consider the system (3.1) in the interconnection of Fig. 3.2 with input uff and
output z(k) only. For an LTV system in full generality, the lifted system description
(Dijkstra, 2004; Owens and Feng, 2003), which is a static convolution mapping,
results in,

z = Jzuff ,

where

z =
[
z(0) · · · z(N − 1)

]T
,

uff =
[
uff (0) · · · uff (N − 1)

]T
,

and Jz =  Dz(0) · · · 0
...

. . .

Cz(N − 1)
∏N−2
k=1 A(N − 1− k)B(0) · · · Dz(N − 1)


The lifted system description can both represent an open- or closed-loop map-

ping, by taking the appropriate A, B, C, D matrices. For MIMO systems, the
convolution matrix becomes block-diagonal with nz ×nu blocks and remains valid
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for both square and non-square blocks. Also it is possible to include initial con-
ditions, pre- and post-actuation and different actuation and observation windows
(Van de Wijdeven, 2008). This lifted system description makes it possible to take
into account the time-varying performance output z.

Typically, motion systems are strictly proper systems (Dz = 0) and/or delays
are present, resulting in Jz being rank deficient. This can be solved by shifting the
output vector by an appropriate number of samples, as presented in Section 2.4.

From Hashemi and Hammond (1996), it is well known that unstable poles and
non-minimum phase (system or sampling (Aström et al., 1984)) zeros are reflected
in the magnitude of the singular values of the lifted system matrix Jz. This
causes problems when inversion is used, i.e. a calculated feedforward signal may
be unbounded due to singular values close to zero. In order to solve this problem,
the Moore-Penrose pseudo-inverse (Ben-Isreal and Greville, 2003) is used.

Consider the singular value decomposition of Jz,

Jz = UΣV T,

=
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
.

where Σ2 contains the singular values close to zero. The dimensions of U2 and V2

are such that they match the dimension of Σ2. Then Jz can be approximated by
only taking into account the largest singular values contained in Σ1, giving,

Jz ≈ U1Σ1V
T
1 .

Now, a bounded feedforward uff can be computed as,

uff = J†zrz = V1Σ−1
1 UT

1 rz, (3.2)

which minimizes the 2-norm of the performance error ez = rz − Jzuff . The
resulting feedforward controller Kff = J†z is not necessarily LTI or causal, i.e.
(block-)Toeplitz or lower triangular respectively.

3.4 Lifted feedforward with input weightings

Directly using the pseudo-inverse in (3.2) to compute a feedforward signal for a
system with time-varying performance locations may result in undesired solutions,
i.e. the feedforward signal may have a large magnitude and frequency contents at
high-frequencies. In order to restrict high frequency contents, an extra weighting
can be added to the cost-criterion to obtain a feasible feedforward signal.

Typically, the input to a system is limited by the actuators and amplifiers in
both magnitude and frequency contents, therefore the resulting solution from Sec-
tion 3.3 is undesired in general. Also, the high-frequency and not modeled modes
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may be excited by the high-frequency contents of the input signal. Therefore, an
additional weighting W is added to the cost-criterion to reflect the limitations of
the actuators and amplifiers. This results in,[

z
0

]
=

[
Jz
Jw

]
uff = Jzwuff ,

where Jw is input-output mapping of W (z) and its dimension is compatible with
uff . Then the feedforward input can be computed as,

uff = J†zw

[
z
0

]
. (3.3)

The filter W (z) is typically chosen as a high-pass filter, penalizing the high-
frequency contents in the feedforward signal. An example of W (z) is given by,

W (z) = α
z − 1

z
, (3.4)

with convolution representation,

Jw = α


1

−1
. . .

. . .
. . .

−1 1

 ,
with scaling parameter α. The Bode diagram of (3.4) is shown in Fig. 3.3, where
it can be seen that W (z) indeed acts as a high-pass filter.

3.5 Experiments

The experimental setup shown in Fig. 3.4 consists of 2 masses connected by a flex-
ible shaft. The mass at one side is driven by a 10 Watt Maxxon DC-motor, which
is torque controlled. The positions of the two masses are measured by incremen-
tal encoders with a resolution of 2π

2000 = 0.0031 rad. Note that the encoder y2 is
only used to obtain a model, which is used to compute the feedforward controller.
During operation this encoder is not required and is only used to evaluate the
performance. The data-acquisition is done using a custom built EtherCAT device
using a real-time Linux distribution at a sample frequency of fs = 2048 Hz. The
input to the system is limited by ±2.5 V.

In this section the following methods will be presented:

1. the direct formulation in (3.2), and

2. the proposed method with additional weightings in (3.3).
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Figure 3.4: Experimental 2-mass system with flexible shaft. The position of the
left and right masses are measured by encoder y1 and y2 respectively.

3.5.1 Identification and modeling

The experimental setup from Fig. 3.4 has been identified in closed-loop by exciting
the system with noise and recording the responses of both outputs. The resulting
frequency response function (FRF) is shown in Fig. 3.5.

Subsequently, a model of the system is obtained by fitting the FRF-measurement
data in Fig. 3.5. The result is shown in the same figure in light-grey. The motor-
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Figure 3.5: Bode diagram of the measured FRF ( ) and model ( ) of the ex-
perimental setup, where y1 and y2 are the encoders at the motor and load side
respectively.

and load-side models are denoted by G1(s) and G2(s) respectively.

G1(s) =
Y1(s)

U(s)
=

6172s2 + 3193s+ 4.567e8

s4 + 6.145s3 + 1.327e5s2
,

G2(s) =
Y2(s)

U(s)
=

3193s+ 4.567e8

s4 + 6.145s3 + 1.327e5s2
.
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3.5.2 Feedback control design

The feedback controller for motor feedback, i.e. Gy = G1(s), is manually tuned
using loopshaping techniques using the FRF measurement data of Fig. 3.5. The
feedback controller structure is given by,

Kfb(s) = k · s+ 2πfi
s

·
1

2πfz
s+ 1

1
2πfp

s+ 1
·

1
(2πf1)2 s

2 + 2β1

2πf1
s+ 1

1
(2πf2)2 s

2 + 2β2

2πf2
s+ 1

· 1
1

(2πflp)2 s
2 +

2βlp
2πflp

s+ 1
. (3.5)

k fi fz fp f1 β1 f2 β2 flp βlp
0.9 2 5 45 57.95 0.008 200 0.5 400 0.7

Table 3.1: Controller parameters for the experiments.

The controller (3.5) with parameters given in Tab. 3.1 results in a bandwidth of
approximately 15 Hz, with sufficient stability margins (‖S‖∞ = 6 dB, PM = 31.9◦,
GM = 25.1 dB). The stability of the closed-loop is assessed by evaluating the
Nyquist plot (not shown).

3.5.3 Setpoint trajectory

The fourth order setpoint trajectory is designed using the algorithm of (Lambrechts
et al., 2005). The resulting trajectory is show in Fig. 3.6. At the left of the vertical
dash-dotted line, performance is required at the mass at the motor side. At the
right of the vertical dash-dotted line, performance is required at the load-side.
This will be formalized in the next section.

3.5.4 Feedforward control design

As shown in Chapter 2 and Ronde et al. (2012a), to obtain an error equal to zero
boils down to pre-filtering the setpoint trajectory or taking the closed-loop dy-
namics into account. In the intended application, changing the setpoint trajectory
is not desired. Therefore, the closed-loop dynamics are taken into account.

The performance error ez for the control structure of Fig. 3.2 is given by,

ez = (I −GzSi(Kff +Kfb)) rz, (3.6)

where Si = (I +KfbGy)−1 is the input sensitivity. Hence, the choice of

Kff = (GzSi)
† −Kfb, (3.7)
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Figure 3.6: Fourth-order setpoint trajectory, where after approximately 0.25 (s)
the position setpoint is kept at a constant level (not shown). The dash-dotted line
indicates the time where a different performance location is considered.

ideally results in an error of zero. The bar indicates the part of the feedforward
controller, which is based on a nominal model, which is subject to model uncer-
tainty. Inserting (3.7) in (3.6) leads to,

ez =
(
I −GzSi(GzSi)†

)
rz.

From this, it is clear that all errors in the nominal model and due to truncation of
the singular values, directly lead to an increase of the performance error.

The proposed method from Section 3.4 is applied to generate a feedforward
controller for the experimental setup with time varying performance. In order to
demonstrate this, the performance variable z(k) is chosen as follows,

z(k) =

{
y1(k) k ∈ (1, γ)
y2(k) k ∈ (γ + 1, N)

, (3.8)

i.e. performance is required at the first mass at the first γ = 141 samples, from
sample γ + 1 = 142 performance is required at the second mass. Similar changes
in performance dynamics are also expected in application where the performance
locations gradually change.
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Now the lifted system description for GzSi can be used which results in,y1

y2

0

 =

J1

J2

W

uff = Jzwuff , (3.9)

where the proper parts of y1 and y2 are chosen corresponding to the time-varying
performance variable in (3.8). The matrices J1 and J2 are the corresponding parts
of the lifted system descriptions of G1Si and G2Si, respectively. Furthermore, a
filter W is included as shown in Section 3.4. Subsequently, a bounded feedforward
uff can be computed as,

uff = J†zw

[
rz
0

]
−Kfbrz. (3.10)

3.5.5 Design of W (z)

The filter W (z) has to be stable for the 2-norm of the weighted input signal to
exist. However, the choice of W (z) is not limited to FIR filters. The choice of the
shape and gain of W (z) influences the effect on the feedforward signal. The choice
of higher order filters allows to penalize the high-frequencies more severely, while
the low frequencies are almost not penalized. This allows to take the actuator and
amplifier dynamics into account and/or to take the unmodeled dynamics of the
plant into account. However, this does not result in an explicit constraint on the
input signal, but in a trade-off between tracking performance and the input signal.
Therefore, the design of W (z) is an iterative procedure. First, an initial design
is computed. Subsequently, the input constraints are evaluated for the worst case
setpoint trajectory. In case that the input constraints are not satisfied, the filter
W (z) is iteratively redesigned until the input constraints are satisfied.

For the experiments, W (z) is chosen as a 6th-order high-pass Butterworth filter
with a cut-off frequency (−3 dB point) of 560 Hz and α = 1, i.e. frequencies
above the cut-off frequency should be penalized, indicating that the actuators and
amplifiers can follow signals up to approximately the cut-off frequency. Here, a
6-th order filter is chosen to prevent too much penalization at low frequencies.

3.5.6 Results

Directly applying the method from Section 3.3 for the LTV system of (3.9), i.e.
by not applying any weighting, leads to the feedforward signal in Fig. 3.7. Note
that for the computation of the feedforward signal, the one singular value which
is close to zero already has been removed according to (3.2). Implementing the
feedforward signal from Fig. 3.7, if possible, also leads to undesired behavior due
to the parasitic dynamics being excited which are not present in the model.
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The infeasible feedforward signal can be understood from a physical point of
view. The two masses vibrating in the first flexible mode move exactly in anti-
phase, i.e. their position and speed are opposite when the rigid-body movement
is subtracted. If the performance definition is then switched, a very large amount
of energy is required to correct for the difference in position and speed. Although,
this is a relatively simple system, it is expected that similar problems occur in
more complex systems, like for example wafer stages.

For practical implementation, a compensation for the Coulomb friction (Olsson
et al., 1998) has been added to the feedforward controller as, Fc = kc · sign (ṙz),
i.e. the value of the friction is only dependent on the direction of the velocity. The
parameter kc = 0.0007 has been obtained by manual tuning. Furthermore, the
present delay in the system, as can be seen in Fig. 3.5, has been compensated.

The feedforward computation method in (3.10) results in the feedforward signal
as shown in Fig. 3.8a. The two singular values, which are close to zero, have been
removed according to (3.2). The power spectral density of the feedforward signal
is shown in Fig. 3.8b, where it can be seen that the obtained feedforward signal
uff is indeed band-limited and satisfies the input constraint of ±2.5 V. The
oscillations of the feedforward signal around the switch time can be explained by
the change in dynamics. Increasing the weighting on the input signal can reduce
these oscillations at the cost of decreased performance.

The performance error ez obtained by using the feedforward signal from Fig. 3.8a
is shown in Fig. 3.9. Here, it can be seen that performance can be obtained for
systems with TVP. The obtained performance is represented by the black line,
which switches from y1 (light-grey line) to y2 (dark-grey line). On the left of the
dash-dotted line performance is obtained at y1, which is significantly smaller than
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Figure 3.7: Infeasible feedforward signal uff for the system without actuator and
amplifier weightings, i.e. α = 0.
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the obtained error e2 in this interval. On the right of the dash-dotted line perfor-
mance is required on y2, where it can be seen that the performance for y2 is indeed
better than for y1.

These results are also numerically presented in Table 3.2 for the different in-
tervals. Here, it can be seen that the 2-norm of the performance error is smaller
than the 2-norm of the individual errors, i.e. there is a trade-off in the achievable
performance.

This results shows that the proposed method indeed can deal with systems
where the performance location is time-varying. For traditionally actuated sys-
tems, i.e. systems with as many actuators as (rigid-)body modes, it is not possible
to prevent excitation of the flexible modes without changing the setpoint trajec-
tory, i.e. without the use of input shaping. However, the proposed method can
deal with different system dynamics without changing the setpoint trajectory. If
the switch between the different performance output occurs at steady state, the
feedforward control design problem can be separated in two problems by taking
the proper initial conditions into account. However, this is a much simpler problem
than the problem statement considered in this chapter.
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Figure 3.8: Feedforward signal uff with actuator and amplifier weightings in-
cluded, such that a signal with limited magnitude and frequency content is ob-
tained. At the time of the switch in performance there is a clear distinction visible
from the (scaled) acceleration, which takes the time-varying performance location
into account.
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Samples ‖e1‖2 ‖e2‖2 ‖ez‖2
(1, γ) 3.8 · 10−1 5.59 · 10−1 3.8 · 10−1

(γ + 1, N) 8.2 · 10−1 5.92 · 10−1 5.92 · 10−1

(1, N) 0.9052 0.8153 0.7051

Table 3.2: Errors and performance evaluated in different intervals.
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( ). The vertical dash-dotted line indicates the time instance where the switch
in performance definition occurs.
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3.6 Conclusions

This chapter presents a design method for feedforward controllers for systems with
time-varying performance locations. The proposed method employs a formulation
in the lifted framework. Direct formulation in this framework leads to infeasible
input signals. By incorporating the filter W high-frequency inputs are penalized,
depending on the magnitude and shape of W , which leads to feasible input signals.
The shape of the input signal resembles mass feedforward, with an additional
oscillation around the switch in performance definition.

The feedforward controller, designed using the proposed method, is indepen-
dent on the chosen setpoint trajectory. However, the performance definition is
predetermined, i.e. the switching time between different performance outputs, is
fixed after design of the feedforward controller. Changing the performance defini-
tion would required a redesign of the feedforward controller. The solution is also
dependent on the feedback controller, i.e. changing the feedback controller requires
redesign of the feedforward controller as well, similar to ILC. This can be solved
by using by including different setpoint trajectories as presented in Chapter 2.

Further research includes the application to intrinsically multivariable systems
with time-varying performance locations, e.g. a plate or wafer stage.

The next two chapters of this thesis deal with feedforward design for over-
actuated motion systems. In the next chapter a model-based method to exploit
the design freedom from over-actuation in feedforward control is presented.
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Chapter 4

Model-based spatial
feedforward control for

over-actuated motion systems

IN high-performance motion systems, e.g. wafer-stages and pick-and-
place machines, there is an increasing demand for higher throughput

and accuracy. The rigid-body design paradigm aims at very stiff designs,
which lead in an evolutionary way to increasingly heavier systems. Such
systems require more and more power, such that this paradigm rapidly
approaches the boundary of its scalability. An alternative paradigm is to
design a lightweight machine with over-actuation and over-sensing, to deal
with the resulting flexibilities. This chapter presents a spatial feedforward
method for over-actuated flexible motions systems, which aims at reducing
the vibrations over the complete flexible structure during motion. The
proposed method is experimentally validated on an industrial prototype and
compared to mass feedforward and a standard zero-vibration input shaper.

This chapter is based on: ”M. J. C. Ronde, M. G. E. Schneiders, E. J. G. J. Kikken, M.
J. G. van de Molengraft and M. Steinbuch. Model-based spatial feedforward for over-actuated
motion systems”, Mechatronics (2013), http://dx.doi.org/10.1016/j.mechatronics.2013.09.
010, Article in press.

http://dx.doi.org/10.1016/j.mechatronics.2013.09.010
http://dx.doi.org/10.1016/j.mechatronics.2013.09.010
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4.1 Introduction

In the semiconductor industry higher throughput and higher accuracy are desired
to keep up with Moore’s law (Moore, 1965) and to stay ahead of competition. More
aggressive motion profiles (i.e. higher accelerations) and a design with higher stiff-
ness (i.e. higher mass) are required to obtain the desired higher throughput, while
maintaining desired accuracy. This will require larger forces, which put stricter
demands on actuators, amplifiers and cooling, which is expected to become infea-
sible in the near future. For a general overview of the control of high-performance
motion systems see (Clayton et al., 2009; Butler, 2011).

The next generation of advanced motion systems is expected to be lightweight,
which results in significant internal flexibilities. An example of the mode shapes
of such systems is shown in Fig. 4.1. This has several consequences for control
design:

1. resonances in the region of interest, i.e. close to or even below the objective
bandwidth, and

2. transfer between sensor output y and performance location z becomes dy-
namical due to the limited stiffness, i.e. there is no geometrical transforma-
tion possible anymore to analyse/control the performance.

Figure 4.1: Mode shapes of a plate as an example for the problems faced in
advanced motion systems. The stage is typically measured at the edges, while
processing takes place at a different location, i.e. a good performance at the
sensors does not guarantee good performance at the location where processing
takes place due to the different dynamics.

Common feedforward methods, which do not take the flexible dynamics into ac-
count, will not lead to satisfactory results for lightweight systems. Lightweight
systems are typically over-actuated (Schneiders et al., 2003, 2004a,b), i.e. the sys-
tem contains more actuators than rigid-body degrees of freedom. The additional
actuators provide extra design freedom, which is not exploited by the current feed-
forward design methods. Therefore, the goal is to exploit this design freedom to
obtain a better performance than traditionally designed systems with rigid-body
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feedforward.
Snap-feedforward (Lambrechts et al., 2005; Steinbuch et al., 2010) is a common

method to compensate for the compliance of the low frequency contribution of flex-
ible modes in feedforward control, i.e. the deformation during motion. However,
this method only guarantees local performance, i.e. at the sensor location only.

Data-based tuning of the feedforward parameters (Van der Meulen et al., 2008)
can improve performance, but still suffers from the same drawbacks as snap-
feedforward. Also similar work with a more generic structure, such as (Heertjes
et al., 2010; Bruijnen and van Dijk, 2012), only guarantees performance at the
sensor location.

For the class of lightweight systems, local performance at the sensors is gener-
ally not sufficient, since this does not provide any guarantees at the performance
location, i.e. the location where the tool operates (Oomen, 2010; Oomen et al.,
2011).

A common method to reduce vibrations in motion systems is input shaping,
where the objective is to remove the frequency content at the eigenfrequencies of
the flexible structure from the input signal. This is typically done by convolving the
input signal with an input shaper (Singhose, 1997; Pao, 1999; Singh and Singhose,
2002; Lau and Pao, 2003; Cutforth and Pao, 2004; Singh, 2008, 2010). Such
methods aim at increasing the performance after setup-time, i.e. the residual
vibrations after the point-to-point motion are attenuated. However, these methods
obtain global performance, i.e. performance at any point of the structure.

If positive shapers are considered (Baumgart and Pao, 2007), the shaped input
signal satisfies the same bounds as the original input signal at the cost of extra
delay, which may be undesired in the intended application. Negative shapers
can reduce this delay (Singhose et al., 1995; Singh and Singhose, 2002), however
there are no guarantees provided on the bound of the shaped input signal. For
MIMO systems this delay can be reduced (Baumgart and Pao, 2007), if the input
signal is known in advance. However, in this chapter the setpoint trajectory is
assumed not to be known a priori. Also, application of input shaping changes
the setpoint trajectory which is typically not desired in many high-performance
motion applications.

Learning based approaches (Moore, 1998; Longman, 2000; Bristow et al., 2006),
such as Iterative Learning Control (ILC), require a measurement of the perfor-
mance variable during the learning process, which is not available in the consid-
ered class of motion systems. Furthermore, ILC requires a new learning sequence
for every new setpoint trajectory. In van de Wijdeven and Bosgra (2007, 2008)
ILC compensation for residual vibration prevents excitation of modes by using
an actuation and observation window. In this method only local performance is
guaranteed.

The proposed method in this chapter can be considered as a special case of
static input-output decoupling (Maciejowski, 1989; Vaes et al., 2003). Typically,
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static decoupling aims at diagonalization of the plant, by pre- and post-multiplying
the plant with a static matrix, to allow for decentralized control. However, the
method proposed here aims at independent control of the rigid-body modes and
preventing the excitation of flexible modes. This is achieved by pre-multiplying the
plant with a static matrix in the feedforward path. Therefore, there is less freedom
compared to standard decoupling techniques, since only an input transformation
is applied. Hence, the standard decoupling techniques cannot be applied for the
problem considered in this chapter.

The proposed method, called spatial feedforward, exploits the freedom in-
duced by over-actuation explicitly. This design freedom is used to prevent excita-
tion of the performance-relevant flexible modes. Compared to existing methods,
the proposed method does not introduce extra delay in the input signal.

The techniques in this chapter aim at obtaining global performance, i.e. perfor-
mance at any point of the flexible structure, in contrast to the previous chapters
and (Ronde et al., 2012a, 2013a) where local (inferential) performance is obtained.
Compared to earlier work on spatial feedforward (Ronde et al., 2012b), this chapter
provides the extension to multiple modes, including conditions for the existence
of the solution. The contributions of this chapter are to provide a feedforward
method which has the following properties:

1. explicit use of over-actuation, and

2. no additional delays introduced, and

3. prevent the excitation of multiple flexible modes, and

4. performance guarantee over the whole structure, i.e. global performance,
and

5. independent of the setpoint trajectory.

The outline of this chapter is as follows. In Section 4.2 the problem is formulated.
Subsequently, spatial feedforward is introduced in Section 4.3. The conditions for
the existence of solutions are formulated in Section 4.4. In Section 4.5 a method
to compute partial solutions is provided. In Section 4.6 input shaping, which is
used as a benchmark, is briefly discussed. In Section 4.7 and 4.8 the experimental
validation and conclusions are presented, respectively.

4.2 Problem formulation

Consider a system with proportionally damped modes. Such systems can be writ-
ten in the following modal description (Gawronski, 2004):

G(s) = Cm
[
Is2 + 2ZΩs+ Ω2

]−1
Bm,

=
[
Cb Cint

] [ Θ(b)(s)

Θ(int)(s)

] [
Bb
Bint

]
, (4.1)
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with Z and Ω diagonal, due to proportional damping. Therefore, the matrices
Θ(b)(s) and Θ(int)(s) are diagonal and contain the second order transfer functions
of the body modes and internal modes respectively. Furthermore Bmi, i.e. the
i-th row of Bm, is associated with the i-th mode only.

The plant G(s) has nu inputs and ny outputs and is controlled using the control
structure shown in Fig. 4.2.

The goal is to find a static input transformation Tu,ff , such that the body-
modes are independently controllable and the flexible modes are not excited by
feedforward control, i.e. the flexible modes become uncontrollable.

The static transformation matrices Tu,fb and Ty are used to decouple the system
as Gd = TyGTu,fb, to allow for decentralized feedback control. The motion m(t)
represents the pose of a motion system. The mapping between the sensors y(t)
and the measured rigid-body motion m(t) is given by:

m(t) = Tyy(t), (4.2)

where m(t) typically has dimension nb.

Remark 4.1. The choice of Ty is not unique, i.e. scaling or a linear combination of
translations/rotations occur. In Section 4.7.4 a choice for Ty will be made based
on physical interpretation.

Definition 4.2 (Body mode). The body modes are defined as the set of rigid-body
and suspension modes. The number of body modes is denoted by nb.

Definition 4.3 (Suspension mode). A suspension modes has, by design, a sig-
nificantly lower resonance frequency than the internal modes, i.e. the structural
stiffness of the suspension system to the fixed world is much smaller than the body
stiffness.

Definition 4.4 (Internal mode). The undesired flexible modes are called the in-
ternal modes, i.e. the flexible modes excluding the suspension modes. The number
of internal modes is denoted by nr.

Definition 4.5. The number of internal modes to be suppressed by spatial feed-
forward is denoted by nm.

Lemma 4.6. A single mode of a system in the modal form 3 (Gawronski, 2004,
p.37) is controllable if and only if bmi 6= 0

Proof: Consider a single mode in modal form 3 (Gawronski, 2004, p.37).
The controllability of this system with state matrix A and input matrix B can be
tested by (Antsaklis and Michel, 2006; Kailath, 1980),

rank
[
B AB

]
= rank

[
0 bmi
bmi −2ζiωibmi

]
,

which has clearly full row rank if and only if bmi 6= 0.
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Kfb Tu,fb G

Kff

Ty
rm,s(t) em(t) m(t)y(t)u(t)

Tu,ff

−

uff (t)

ūff (t)

F
rm(t)

Figure 4.2: Control structure for spatial feedforward. The plant G has inputs u(t)
and sensor outputs y(t). The feedback- and feedforward controller are denoted by
Kfb and Kff respectively. Furthermore, Tu,fb, Tu,ff and Ty denote the (static)
coordinate transformation matrices. The desired motion, the measured motion
and the motion error are represented by rm(t), m(t) and em(t) respectively. The
filter F is used in case of input shaping, which is used as a reference case. For all
other methods F = I.

4.2.1 Assumptions

In this chapter we assume:

1. a linear time-invariant (LTI) system with force/torque inputs and posi-
tion/rotation outputs, and

2. proportional or modal damping, and

3. no model uncertainty, and

4. functional motion system, i.e. rank(Bb) = nb .

The first three assumptions lead to a model in the form of (4.1). The fourth
assumption guarantees the independent controllability of all rigid-body modes.
For spatial feedforward, additional assumptions are:

1. over-actuated (OA) nu > nb, where the degree of over-actuation is given by
ns = nu − nb, and

2. modes to be suppressed is given.

The first assumption ensures that there is sufficient design freedom, which can
be employed by spatial feedforward. However, this condition is not sufficient to
guarantee the existence of solutions. This will be formulated in Section 4.4.

4.3 Spatial feedforward

The body modes of the system (4.1) are used to position the system at the desired
position, while the internal modes result in undesired vibrations of the system.
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Therefore, the goal is to find a new set of feedforward inputs Uff (s) by a static
input transformation Tu,ff , such that

1. each body-mode is independently controllable,

2. a selection of the flexible modes is not excited by the feedforward.

The new feedforward inputs Uff are related to the old feedforward inputs Uff
by,

Uff (s) = Tu,ffUff (s), (4.3)

where Tu,ff ∈ Rnu×nb . This results in a reduced input dimension, i.e. from nu to
nb.

4.3.1 Body-mode feedforward

For each body mode to be independently controllable, it is required that,

BbTu,ff = Λ, Bb ∈ Rnb×nu , Λ ∈ Rnu×nu

with Tu,ff from (4.3) and where Λ is a diagonal matrix. Here, Λ = I is chosen,
which can be done without loss of generality, i.e. this just introduces a scaling.
Due to over-actuation Bb is fat, i.e. non-square, a pseudo-inverse is required. A
pseudo-inverse of the matrix A is defined as the solution X to AXA = A. This
solution is denoted as A†, i.e. the Moore-Penrose pseudo-inverse (Ben-Isreal and
Greville, 2003). For a fat real matrix A with full row rank, the property AA† = I

holds. In this case A† = AT
(
AAT

)−1
. The minimum energy solution is given by,

Tu,ff = B†b ,

which allows individual control of each body mode. Therefore, this specific choice
for Tu,ff for body-mode feedforward control is denoted as,

Tb := B†b , (4.4)

In the case of rigid-body modes only, the input directions can be aligned with the
desired motion direction by using an appropriate coordinate transformation under
similarity.

For systems with suspension modes, the body-modes cannot be aligned with
the desired motion m(t), hence a combination of the body modes should be found,
such that this results in the desired movement. For details see (Ronde et al.,
2012b).
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4.3.2 Design freedom

Since the system is functionally over-actuated, the input matrix Bb is fat, i.e. there
are multiple solutions which have the same effect on the body modes. Therefore,
an extra design freedom is present in the selection of Tu,ff ,

dim ker(Bb) = ns,

i.e. there are ns free directions that can be selected without affecting the body-
mode behaviour. This design freedom can be exploited, such that a certain chosen
flexible mode is not excited.

4.3.3 Spatial feedforward control, desired solution

Ideally, the spatial feedforward design would be such that[
Bb
Bint

]
Tu,ff =

[
Inb
0nr

]
,

i.e. all body modes are independently controllable and none of the flexible modes
are excited. However, in practice this cannot be achieved due to the limited number
of actuators. Therefore, a limited number of nm internal modes is chosen in B̃int,
where B̃int is a selection of the rows of Bint, i.e. a selection which determines
which flexible modes are desired to be suppressed. This leads to,[

Bb
B̃int

]
Tu,ff =

[
Inb
0nm

]
. (4.5)

The conditions for the existence of solutions will be formulated in the next section.

4.4 Existence of solutions

The input matrix with a selected number of modes is given by,

B̃ =

[
Bb
B̃int

]
. (4.6)

In Table 4.1 the conditions for the existence of solution are summarized.
In general, problem (4.5) can be solved if and only if,[

Inb
0nm

]
∈ Im(B̃), (4.7)

where Im(·) denotes the image of the matrix.
A sufficient condition to satisfy (4.7), which guarantees the existence of a so-

lution, is given in Lemma 4.7.
There are several special cases regarding the input directions, namely,
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Constraint Existence of solutions
rank(Bb) = nb and nu > nb Functional over-actuated motion system

nm = nu and rank B̃ = nu Guaranteed solution (Lemma. 4.7)

nm = nu and rank B̃ < nu Solution if and only if (4.7) holds
nm < ns Design freedom left
nm > ns Overconstrained problem (Theorem 4.11)

Table 4.1: Summary of the existence conditions for spatial feedforward.

1. intrinsically uncontrollable internal modes, i.e. all actuators are exactly
placed in the nodes of a mode. Therefore, this mode will never be excited,

2. internal modes aligned with body modes, i.e. the direction of the body modes
and internal modes are equal. Therefore, it is not possible to make this mode
uncontrollable, without changing the actuator configuration, and

3. iso-directional internal modes, modes with the same input direction, which
can be made uncontrollable at the same time.

Lemma 4.7. The controllability of nm internal modes of a system can be arbi-
trarily selected by a static transformation matrix if the matrix (4.6) is square, i.e.
nu = nb + nm and has

rank(B̃) = nu (4.8)

Proof: Let B̃int be a selection of rows, i.e. modes, from Bint, such that the
matrix (4.6) is square and has full rank. Then, the solution of (4.5) is given by,

Tu,ff =

[
Bb
B̃int

]−1 [
Inb
0nm

]
.

Typically, a system has more relevant modes than the degree of over-actuation,
which means that the matrix in (4.6) is not square. Lemma 4.7 guarantees the
existence of a solution for a number of modes equal to the degree of over-actuation.
The rank condition in (4.8) essentially means that the extra actuators need to add
extra degrees of freedom to the input space. If this (sufficient) condition is not
satisfied, there can still be solutions, namely if (4.7) holds. If (4.7) does not hold,
then not all internal modes can be suppressed from all channels. However, it may
still be possible to make certain modes uncontrollable in certain input channels.

4.5 Partial solutions

The solution presented in Lemma 4.7 is only suitable to solve the complete case,
i.e. for all input channels at once. However, in some cases it is more desirable to
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obtain a partial solution of spatial feedforward, i.e. different internal modes might
be relevant in the different input channels.

For spatial feedforward Tu,ff is selected as,

Tu,ff = Tb + Ts,

where Tb = B†b and

Ts | Im(Ts) = ker(Bb), (4.9)

i.e. Ts is such that the image of Ts lies in the kernel of Bb.
In Section 4.3.1 it was shown that the selection of Tb allows independent control

of the body modes. In Lemma 4.8 it will be shown that the selection of Ts as in
(4.9) does not affect the controllability of the body modes. Subsequently, the
conditions for a mode to become uncontrollable will be shown in Lemma 4.9.

Lemma 4.8. The controllability of a body mode r is not affected by the selection
of Ts if and only if

Ts | Im(Ts) = ker(Bb),

Proof: Let bb,r be the r-th row of Bb and let tf,i, tb,i and ts,i be the i-th colum
of Tu,ff , Tb and Ts respectively. Furthermore, let Tb be selected as (4.4) and let
rank(Bb) = nu. Then,

bb,rtf,i = 1 ⇔ bb,rtb,i + bb,rts,i = 1 ⇔ bb,rtb,i = 1,

i.e. the columns of Tu,ff can be decomposed into Tb and Ts. Furthermore bb,rts,i =
0, due to the selection of Ts in (4.9).

Lemma 4.9. An internal mode r is uncontrollable from input i if and only if

bint,rtb,i = −bint,rts,i. (4.10)

Proof: Let bint,r be the r-th row of Bint and let tf,i, tb,i and ts,i be the i-th
colum of Tu,ff , Tb and Ts respectively.

bint,rtf,i = 0 ⇔ bint,r(tb,i + ts,i) = 0 ⇔ bint,rtb,i = −bint,rts,i.

For a single mode, computing the spatial feedforward using Lemma 4.9 boils
down to solving the scalar equation (4.10) per input channel.

Let U = Rnu be the space of all input vectors. Furthermore, let V,W be
subspaces of U , such that U = V ⊕W and V ∩W = 0.

V =
[
v1 . . . vns

] ∣∣ span(V ) = ker(Bb), V ∈ Rnu×ns ,
W =

[
w1 . . . wnb

] ∣∣ span(W ) = Im(BT
b ), W ∈ Rnu×nb
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i.e. V and W are a basis for ker(Bb) and Im(BT
b ) respectively. Due to assumptions

for functional OA and the Rank-Nullity theorem (Meyer, 2000),

dim(V ) = ns, dim(W ) = nb.

Let the spatial design freedom of ts,i be parameterized as,

ts,i = V αi, αi ∈ Rns×1. (4.11)

This parametrization is used in Theorem 4.10, such that a selected number of
internal modes can be made uncontrollable.

Theorem 4.10. Let B̃int be a selection of ns internal modes, i.e. rows, from
Bint, then the internal modes selected in B̃int are uncontrollable from input i if
and only if

Tu,ff = Tb + V αi,

with

αi = −
(
B̃intV

)−1

B̃inttb,i.

and rank(B̃) = nb + ns.

Proof: Proof follows from the application of Lemma 4.9 with (4.11).

B̃inttf,i = 0 ⇔ B̃int(tb,i + ts,i) = 0 ⇔ B̃int(tb,i + V αi) = 0 ⇔

B̃inttb,i = −B̃intV αi ⇔ αi = −
(
B̃intV

)−1

B̃inttb,i.

Due to the selection of ns modes, B̃int ∈ Rns×nu , therefore the product B̃intV is
square. To prove that B̃intV has full rank, consider the product B̃V ,[

Bb
B̃int

]
V,

which has full rank due to Sylvester’s rank inequality (Bernstein, 2009) and the

condition rank(B̃) = nb + ns. Since BbV = 0, by construction of V (V is a basis
for kerBb), this does not contribute to the rank. Therefore, it can be concluded

that rank(B̃intV ) = ns.

If nm > ns, there are more constraints than there is design freedom. Of course,
one can choose to apply a standard least-squares solution to (4.5), i.e. replace
the inverse by a pseudo-inverse. However, this would lead to an approximate
solution, thereby compromising the independent controllability of the body modes.
Therefore, a constrained solution is presented in Theorem 4.11.

If nm < ns, a limited amount of the design freedom is used, which can be solved
by applying a least-squares solution to (4.5) or by application of Theorem 4.11.
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Theorem 4.11. Let B̃int be a selection of nm > ns internal modes from Bint,
then the internal modes selected in B̃int are the 2-norm optimal solution of (4.12)
with constraint (4.13) from input i

min
∥∥∥0− B̃inttf,i

∥∥∥
2
, (4.12)

BbTu,ff = I. (4.13)

if and only if

Tu,ff = Tb + V αi,

with

αi = −
(
B̃intV

)†
B̃inttb,i

and rank(B̃) = nu.

Proof: Due to the selection of nm modes
(
B̃intV

)
∈ Rnm×ns . To prove that

B̃intV has full column rank, consider the product B̃V . By applying Sylvester’s
rank inequality (Bernstein, 2009),

rank(B̃) + rank(V )− nu ≤ rank(B̃V ),

nu + ns − nu ≤ rank(B̃V ),

therefore rank(B̃V ) = ns. Since BbV = 0, by construction of V , this does not

contribute to the rank. Therefore, it can be concluded that rank(B̃intV ) = ns. This
means that computing α boils down to a “conventional least-squares problem”. To
show that this indeed minimizes (4.12), consider

min
∥∥∥0− B̃inttf,i

∥∥∥
2

= min
∥∥∥−B̃int(tb,i + V αi)

∥∥∥
2
,

= min

∥∥∥∥∥∥∥−B̃inttb,i︸ ︷︷ ︸
y

− B̃intV︸ ︷︷ ︸
A

αi︸︷︷︸
x

)

∥∥∥∥∥∥∥
2

,

then the least-squares solution is given by x = A†y.

4.6 Input shaping

Both input shaping and the method proposed in this chapter have the property
that these method prevent the excitation of flexible modes over the complete flex-
ible structure. However, to achieve this input shaping modifies the setpoint in
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Mode Frequency (Hz) ζ (-)
1 142.75 0.0013
2 501.05 0.0019

Table 4.2: Parameters used to design the zero-vibration input shaper.

contrast to the proposed method. Therefore, input shaping provides an excel-
lent benchmark case for the proposed method. The remainder of this section will
presents a short recap of zero-vibration input shaping (Singh, 2010). Since the
method should be independent on the setpoint trajectory, it is not possible to de-
rive shorter shapers for the MIMO system (Baumgart and Pao, 2007). Therefore,
the problem reduces to designing a set of SISO shapers.

A general N th-order input shaper is given by,

h(t) =

N∑
l=0

alδ(t− tl). (4.14)

A closed-form solution of a Zero-Vibration (ZV) input shaper in the form of (4.14)
is given by Singh and Singhose (2002) and in Appendix B,

a0 =
1

1 +Q
, t0 = 0,

a1 =
Q

1 +Q
, t1 =

Td
2
,

where Q is,

Q = exp

(
ζπ√

1− ζ2

)
.

For the prototype lightweight motion system of Section4.7 these parameters
are given in Table 4.3. To allow a fair comparison, the frequencies and damping
parameters have been updated for input shaping, since this method is sensitive to
errors in the modal parameters. For input shaping the two most relevant frequen-
cies are selected to be suppressed, for spatial feedforward this is limited by the
number of additional actuators. Therefore, an input shaper will be designed to
suppress the modes from Table 4.2. The intermediate design steps are only shown
once, as they are similar for both input shapers.

For digital implementation the nearest sampling time approximation is chosen
(Baumgart and Pao, 2007),

t1,NST = ceil

(
t1
ts

)
= 35.



74 Chapter 4 Model-based spatial feedforward control

This results in the following discrete transfer functions of the input shapers,

H1(z) =
0.5015z35 + 0.4985

z35
, H2(z) =

0.5015z10 + 0.4985

z10
.

This results in the total shaper,

H(z) = H1(z)H2(z)

=
0.2515z45 + 0.25z35 + 0.25z10 + 0.2485

z45
(4.15)

with ts = 1/10000 s. For input shaping, the setpoint trajectory rm(t) is filtered
by (4.15) prior to applying to the system.

4.7 Experimental validation

4.7.1 Prototype lightweight motion system

The industrial prototype lightweight motion stage, shown in Fig. 4.3, can move
in all 6 degrees of freedom over a range of approximately 0.5 mm in x, y and z-
direction and approximately 1 mrad in Rx, Ry and Rz-direction. The sensor- and
actuator layout of the stage is schematically shown in Fig. 4.4. The stage is driven
by 4 Lorenz-actuators for the x, y,Rz-directions. For the z-direction 9 actuators
are available on a 3 by 3 grid. The position is measured at the corners of the
stage using linear incremental encoders with a resolution of 1 nm. The stage is
lifted by gravity compensators, such that ideally the stage is freely floating and
the actuators do not need to generate any force in the working point.

The goal is to perform a point-to-point motion in z-direction, while preventing
the excitation of flexible modes by using spatial feedforward. Therefore, the ex-
periments in this section will be focussed on the z,Rx, Ry-direction, this allows for
a more compact presentation of the results. The modes to be suppressed in the
feedforward path are selected on the basis of results of standard mass feedforward.
Additionally, both standard- and spatial feedforward will be compared to input
shaping.

To verify the fact that the selected internal modes are not excited by the spatial
feedforward, an additional sensor with be employed at the performance location
in Fig. 4.3. In the intended application this typically would be the area to be
exposed or the location of the component to be placed. Therefore, a capacitive
sensor is placed such that the position of the center of the stage can be measured
in z-direction with a resolution of approximately 10 nm. This sensor will only be
used for validation purposes.
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Figure 4.3: Industrial prototype lightweight motion system with over-actuation.
The position of the stage is measured with respect to the measurement frame using
sensors. The performance location indicates the area where processing takes place.

12

3 4

12

5

3 46

x

y

Figure 4.4: Schematic actuator- and sensor layout of stage in Fig. 4.3 of the pro-
totype lightweight motion system. The crosses mark the location of the actuators
in z-direction. Only the numbered actuators are actually used. The circles repre-
sent the sensors in z-direction. Furthermore, an extra sensor in z-direction can be
placed within the solid semicircle, which can be used for verification.

4.7.2 Identification

In this section, the identification of the prototype lightweight motion system will
be presented. A non-parametric model will be used for the design of the feedback
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Description i Frequency fi(Hz) Damping ζi (-)
Internal modes 1 143.0 0.005

2 382.8 0.005
3 517.3 0.005
4 517.3 0.005
5 523.5 0.005
6 760.0 0.005

Table 4.3: Eigenfrequencies and damping of the parametric model. The third
and fourth modes are bending modes with a geometric multiplicity of two , i.e.
these modes have the same eigenvalues, but their corresponding modeshapes are
orthogonal.

controller and for the stability evaluation of the system under decentralized control.
Furthermore, the non-parametric model is used to validate the parametric model.
The parametric model in the form of (4.1) is obtained from the FEM. Subsequently,
Theorem 4.10 is applied with the model from (4.1).

Non-Parametric model

In Fig. 4.5 and Fig. 4.6 a non-parametric model of the prototype lightweight mo-
tion stage is shown. This model has been identified by subsequently exciting each
input with a multisine in closed-loop, while the x, y and Rz-direction are controlled
at a fixed position.

Parametric model

A parametric model of order 200 has been obtained from a Finite Element Method
(FEM) model. The result is shown in Fig. 4.5 and Fig. 4.6. By visual inspection
it can be seen that the main characteristics of the measured plant are correctly
represented by the model. Furthermore, it can be seen that the initial estimate of
the value of the damping in the model can be improved. However, the presented
method is invariant for modelling errors in frequency and damping, i.e. the method
only depends on the input directions, i.e. the mode shapes. Therefore, this does
not pose a problem. The eigenfrequencies and corresponding damping of the model
are given in Table. 4.3.

4.7.3 Actuator- and sensor selection

For the z,Rx, Ry-directions the actuators at the four corners will be employed
both for feedback and for the standard rigid-body feedforward in order to obtain
a symmetric, equal distribution of the forces during acceleration.



4.7 Experimental validation 77

F
re
q
u
en
cy

(H
z)

|G|indB

10
1

10
2

10
3

z4(m)

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

−
18

0
−

16
0

−
14

0
−

12
0

−
10

0
−

80

z3(m)

−
18

0
−

16
0

−
14

0
−

12
0

−
10

0
−

80

z2(m)

−
18

0
−

16
0

−
14

0
−

12
0

−
10

0
−

80

z1(m)

u
6
(N

)
u
5
(N

)
u
4
(N

)
u
3
(N

)
u
2
(N

)

−
18

0
−

16
0

−
14

0
−

12
0

−
10

0
−

80
u
1
(N

)

Figure 4.5: Bode magnitude diagram of the prototype lightweight motion system,
measured FRF ( ) and parametric model ( ).
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Figure 4.6: Bode phase diagram of the prototype lightweight motion system, mea-
sured FRF ( ) and parametric model ( ).
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For the feedforward six actuators will be employed as shown in Fig. 4.4. This
configuration has been selected, such that the matrix B̃int is well invertible (con-
dition number close to 1) on the basis of the FEM-model of the waferstage.

For both the feedback and feedforward control the 4 sensors at the corners will
be used.

4.7.4 Decoupling and feedback control design

The physical coordinates are used for geometric decoupling of the system. The
four actuators and sensors will be used for feedback control of the translation and
rotation in the z,Rx, Ry-direction of the prototype motion system as in (4.2). For
the experimental setup (4.2), is equal to,

z
Rx
Ry

torsion

 =


0.25 0.25 0.25 0.25
0.90 0.90 −0.90 −0.90
−0.84 0.84 0.83 −0.83
0.35 −0.35 0.35 −0.35



z1

z2

z3

z4

 , (4.16)

where the last motion direction represents the deformation of the stage in terms
of torsion. This direction is used for an additional feedback control loop to control
the first internal mode (torsion).

The decoupled plant is then given by,

Gdec = TyGTu,fb. (4.17)

The feedback controller is given by

Kfb = diag(Kx,Ky,KRz ,Kz,KRx ,KRy ,Ktorsion), (4.18)

where

Kj(s) = kj
s+ 2πfint,j

s

1
2πfz,j

s+ 1

1
2πfp,j

s+ 1

1
1

(2πflp,j)2
s2 +

2βlp
2πflp,j

s+ 1

·
1

(2πfnz,j)2
s2 +

2βnz,j
2πfnz,j

s+ 1

1
(2πfnp,j)2

s2 +
2βnp,j
2πfnp,j

s+ 1
,

with βlp = 0.5 and other parameters as shown in Table 4.4 and 4.5. The con-
troller consists of the following elements: gain, integrator, lead-filter, second-order
lowpass and a notch-filter. The lead-filter is required to obtain the correct phase
at the zero crossing of the open-loop. The integrator is included to improve the
tracking at low frequencies and to prevent steady-state errors. The notch-filter
is included to prevent additional zero-crossings of the open loop, which allows to
increase the bandwidth without endangering stability. Finally the lowpass filter is
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Axis j kj fint,j fz,j fp,j flp,j fBW
x 3.1318e5 10 50/4 200 250 48.2
y 3.0651e5 10 50/4 200 250 46.3
Rz 2.3773e4 10 50/4 200 250 53.4
z 3.3165e5 10 50/4 200 250 49.7
Rx 1.1252e4 10 50/4 200 250 58.9
Ry 1.1328e4 10 50/4 200 250 58.9

Table 4.4: Controller parameters and resulting bandwidth fBW (Hz). fBW is
defined as the zero dB crossing of the open-loop.

Axis j fnz,j βnz,j fnp,j βnp,j
z 530 0.001 530 0.1
Rx 504 0.001 504 0.1
Ry 504 0.001 504 0.1

Table 4.5: Controller parameters for the notch filters.

included to enforce the desired roll-off and to prevent the amplification of noise.
The controller Ktorsion is given by (4.19).

Ktorsion =
60800
1

2π s+ 1

s+ 2π

s
. (4.19)

4.7.5 MIMO stability

In order to be able to easily obtain stable closed-loop behavior, interaction between
the individual feedback loops is ideally prevented by the diagonality of (4.17).
However, in practice there will always be some interaction left. Therefore, the
off-diagonal terms of the decoupled plant, Gdec, can be considered as an additive
perturbation as shown in Fig. 4.7a, where Gd = diag(Gdec) and Gnd = G − Gd.
The structured singular value can be used to evaluate the stability of the MIMO
system with a decentralized (i.e. diagonal) feedback controller, Kd, (Skogestad
and Postlethwaite, 2005; Grosdidier and Morari, 1986). The transfer function
considering the diagonal terms only are given by,

Sd = (I +GdKd)
−1,

Td = I − Sd. (4.20)

The output multiplicative error is then given by,

E = GndG
−1
d .
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Figure 4.7: Plant representation with an (a) additive and (b) multiplicative output
perturbation.
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Figure 4.8: Sufficient condition for the stability of the system with decentralized
controller Kfb. σ(Td) ( ) and µ−1

Td
( ). At the first internal mode, the sufficient

criterion is not satisfied. Therefore, no conclusion can be drawn about stability
from this condition.

If (I +GdKd)
−1 is stable, a sufficient condition for stability of (I +GKd)

−1 is
given by,

σ(Td(jω)) < µ−1
Td

(E(jω), ∀ω, (4.21)

where σ(·) is the maximum singular value and µTd is the structured singular value
w.r.t. the diagonal structure of Td from (4.20).

Remark 4.12. Typically it is assumed thatG itself is stable to allow for independent
design. In this case, the aim is only to evaluate the stability afterwards. Therefore,
the stability of G is not required.

The condition (4.21) is shown in Fig. 4.8 for the decentralized controller Kfb

in (4.18). It can be seen that condition (4.21) is not satisfied for all frequencies,
therefore the stability of the system cannot be concluded using (4.21).

Therefore, the stability of the system is assessed using the characteristic loci
(Skogestad and Postlethwaite, 2005) shown in Fig. 4.9. This figure shows that
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the controlled MIMO system has a good MIMO phase margin. Furthermore, the
circle of radius 0.5 around the -1 point is not entered. Therefore, the peak in the
sensitivity function ‖S(jω)‖∞ < 6 dB, indicating sufficient robustness margins.

−2 −1.5 −1 −0.5 0 0.5
−1

−0.5

0

0.5

Re λ(L(jω))

Im
 λ

(L
(j

ω
))

Figure 4.9: Characteristic loci.

4.7.6 Setpoint trajectory

The setpoint trajectory rm(t) for the z-direction is a third order point-to-point
motion of 10 µm, as shown in Fig. 4.10. The backward motion is exactly mirrored.
After one sequence of forward and backward motion, a wait time of 0.25 s is
introduced. This complete sequence is repeated six times. The setpoint trajectory
for all other directions is zero.

For the input shaping case, the setpoint trajectory rm(t) is filtered by (4.15),
such that the input shaped setpoint trajectory rm,s(t) is obtained.

4.7.7 Rigid-body and spatial feedforward design

To determine which modes are relevant, a standard rigid-body feedforward is ap-
plied to the system. The rigid-body decoupling matrix is defined by (4.4), with Bb
from (4.1). For rigid-body feedforward design with four actuators, Tu,ff is given
in (C.1). The two last rows being zero indicates that only the first four actuators
are employed to position the system.

The feedforward controller is given by,

Kff = kfa · a, (4.22)

where a is the acceleration of the (shaped) setpoint trajectory and kfa is the mass
parameter of the system. This parameter is determined by manual tuning.
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Figure 4.10: Setpoint trajectory for the position, velocity and acceleration and
jerk for the translation in z-direction rm(t) ( ) and shaped version rm,s(t) ( )

From the power spectral density of the servo-errors in Fig. 4.12 and Fig. 4.14
and the frequencies from Table 4.3, it is clear that the 5th internal mode is relevant
for the z-direction. For the Rx and Ry direction, the internal modes 3 and 4 are
relevant. Therefore, the spatial feedforward in the next section will be designed
such that the internal modes 3, 4 and 5 are uncontrollable in the feedforward path.

The spatial feedforward decoupling Tu,ff is designed such that the internal
modes 3, 4 and 5 are uncontrollable according to Theorem 4.10. The numerical
values of the spatial feedforward design are provided in Appendix C.

The result of both input transformations are shown in (C.2) and (C.3). In
both cases it can be seen that the first three rigid-body modes are independently
controllable, i.e. input one influences body-mode one, etc. In the case of rigid-body
feedforward the third, fourth and fifth flexible modes are still excited from all input
channels as can be seen in (C.2). However, in the case of spatial feedforward the
third, fourth and fifth flexible mode are not excited, see (C.3). The first two flexible
modes are still excited in both cases, however in the case of spatial feedforward
this mode is excited more severely for all inputs, i.e. the same input signal will lead
to a more severe excitation of the first two mode in case of spatial feedforward.
Especially, the last column contains large numbers, which is not relevant for the
presented case as the setpoint trajectory for the Ry direction is zero at all times.
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In case of a non-zero setpoint trajectory for the Ry direction, a different selection
of relevant modes has to be considered. Subsequently, the feedforward decoupling
matrix can be solved according to Theorem 4.10 per input channel.

4.7.8 Results

In this section, the experimental results of the following three methods are pre-
sented,

Rigid body feedforward Tu,ff = Tb F = I
Spatial feedforward Tu,ff = Tb + Ts F = I
Input shaping Tu,ff = Tb F = H(z)

All methods use the same rigid-body feedforward controller (4.22). However,
for spatial feedforward the static input transformation matrix Tu,ff is different.
For input shaping, the setpoint trajectory rm(t) is filtered by an ZV-input shaper
as shown in Section 4.6. However, all tracking errors are determined with respect
to the unshaped setpoint trajectory rm(t), i.e. ez(t) = rm(t) −m(t). Here, m(t)
are the motion coordinates derived from the measurements by (4.16).

To illustrate the difference between these methods, the tracking errors for the
z- and Rx-directions are shown in Fig. 4.11 and Fig. 4.13.

The three feedforward methods will be compared in terms of peak-error, RMS-
error and added delay. These results are shown in Table. 4.6. The input shaping
elongates the setpoint trajectory by 45 samples, i.e. approximately 4.5 ms.

If the z-direction is considered, input shaping performs the worst in terms of
RMS- and peak error. Spatial feedforward perform the best in terms of RMS-
and peal error. Furthermore, both spatial feedforward and input shaping don not
excite the modes around 500 Hz, which are excited by rigid-body feedforward.

For the Rx-direction the difference is much more clear. Spatial feedforward
outperforms both rigid-body feedforward and input shaping. Both the peak- and
RMS-errors are approximately a factor 1.5 smaller for spatial feedforward com-
pared to rigid-body feedforward. The results of spatial feedforward and input
shaping are similar (within 20 %). However, it must be noted that the result for
spatial feedforward has been obtained without introducing any delays in contrast
to input shaping. The setpoint trajectory for input shaping is approximately 20%
longer, see Fig. 4.10. The servo-error and its cumulative power spectral density
in z-direction are shown in Fig. 4.11 and Fig. 4.12 respectively. In Fig. 4.11 it is
clear that the error peaks during the non-zero phases of the setpoint as shown
in Fig. 4.10, which can be expected due to the absence of snap feedforward. In
the cumulative power spectral density of ez, shown in Fig. 4.12, an increase of
approximately 4 dB can be observed around 520 Hz for rigid-body feedforward.
This can be explained by the internal modes 3, 4 and 5, which are excited by
the setpoint trajectory. For spatial feedforward and input shaping this increase in
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Method max |ez| RMS(ez) max |eRx | RMS(eRx)
Rigid-body 0.4522 0.0976 0.1484 0.0323
Spatial 0.3057 0.0723 0.0969 0.0256
Input shaping 4.0257 0.8227 0.1261 0.0272

Table 4.6: Experimental results of the different methods. All values should be
multiplied by 10−6.

frequency content is much smaller compared to rigid-body feedforward. However,
the slight increases in spectral content for spatial feedforward and input shaping
indicate that compensation is still not perfect. Moreover, spatial feedforward per-
forms worse than rigid-body feedforward in the frequency region below 520 Hz,
which can be explained by the increased excitation of the modes which are not
considered in the spatial feedforward design. However, the 2-norm of the error is
significantly lower for spatial feedforward indicating a better overall performance.

The servo-error and its cumulative power spectral density in Rx-direction are
shown in Fig. 4.13 and Fig. 4.14 respectively. The servo-error eRx , shown in
Fig. 4.13, shows similar peaks during the nonzero jerk phases. In Fig. 4.14 the
cumulative power spectral density of eRx is shown. For all three methods, a clear
step in the spectral content around 500 Hz can be observed. Here, the difference
between the methods is quite clear. For rigid-body feedforward the step is approx-
imately 5 dB, while this is 0.3 dB and 0.9 dB respectively for input shaping and
spatial feedforward.

In the cumulative power spectral density of eRx it is clearly visible that the
proposed spatial feedforward improves the behavior of the system. This means
that input directions are estimated with sufficient accuracy to design the spatial
feedforward. However, the modes are still excited due to mismatches in the feed-
forward compensation and the model used to calculate the spatial feedforward.
Any mismatch in the feedforward compensation leads to a servo-error. Since a
different decoupling is used for the feedback controller, the relevant modes are
possibly still excited by the feedback inputs. If additional sensors are present,
additional feedback loops can be created to resolve this problem.

In Figs. 4.15 and 4.16 the measured tracking error in z-direction at the ad-
ditional sensor (above the center of the stage) and its cumulative power spectral
density are shown respectively. The tracking error in Fig. 4.15 is comparable to
Fig. 4.11 despite the lower resolution of the additional sensor. In the CPSD in
Fig. 4.16 it can be seen that rigid-body feedforward clearly excites the internal
modes around 500 Hz. Moreover, some higher order internal modes can be ob-
served as well. For spatial feedforward it is clear that the modes around 500 Hz are
not excited anymore, which leads to an overall performance increase. Moreover,
similar phenomena as in Fig. 4.12 can be observed, i.e. at frequencies below 520
Hz rigid-body feedforward performs better, but the overall performance of spatial
feedforward is better.
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4.8 Conclusion

In this chapter a novel feedforward control design method, called spatial feedfor-
ward, for over-actuated flexible motion systems is presented. This method employs
the extra design freedom for the input, such that ns (degree of over-actuation) of
the internal modes will not be excited. Also, conditions for the existence of a spatial
feedforward controller are explicitly derived. Furthermore, this method has been
experimentally validated on an industrial prototype lightweight motion system.
The method is compared to standard mass feedforward and input shaping. Input
shaping is a common method to design input signals for flexible systems, such that
this results in global performance. The proposed method has similar properties
to input shaping, without altering the setpoint trajectory. Both methods result in
global performance, i.e. at any point of the flexible structure.

The method presented in this chapter heavily relies on the availability of a
complex MIMO plant model to compute a (non-square) feedforward decoupling,
such that excitation of the flexible modes by the feedforward can be prevented.
Since the mode shapes from the model are never exact, data-based methods to
optimize the spatial feedforward may be applied to improve the final performance.
In the next chapter a data-based feedforward control design method to exploit the
design freedom from over-actuation and over-sensing is presented.
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Figure 4.11: Measured servo-error ez for rigid-body feedforward ( ), spatial feed-
forward ( ) and input shaping ( ).
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Figure 4.12: Cumulative power spectral density of measured ez for rigid-body
feedforward ( ), spatial feedforward ( ) and input shaping ( ).
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Figure 4.13: Measured servo-error eRx for rigid-body feedforward ( ), spatial
feedforward ( ) and input shaping ( ).
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Figure 4.14: Cumulative power spectral density of measured eRx for rigid-body
feedforward ( ), spatial feedforward ( ) and input shaping ( ).
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Figure 4.15: Measured servo-error ez at the performance location for rigid-body
feedforward ( ), spatial feedforward ( ) and input shaping ( ).
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Figure 4.16: Cumulative power spectral density of measured ez at the performance
location for rigid-body feedforward ( ), spatial feedforward ( ) and input shap-
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Chapter 5

Data-based spatial feedforward
control for over-actuated

motion systems

FOR advanced motion systems there is an increasing demand for
higher production throughput and accuracy. Traditionally, such sys-

tems are designed using a rigid-body design paradigm, which aims at de-
signs with high stiffness. The alternative is to design a lightweight system
and deal with the resulting flexibilities by over-actuation and over-sensing.
This chapter presents a data-based spatial feedforward method based on pre-
vious task trials, which aims at reducing the vibrations over the complete
structure during motion. The proposed method is experimentally validated
on an industrial prototype and compared to standard mass feedforward us-
ing rigid-body decoupling.

This chapter is based on: ”M. J. C. Ronde, G. A. L. Leenknegt, M. J. G. van de Molengraft,
M. Steinbuch. Data-based spatial feedforward for over-actuated motion systems”, Submitted for
journal publication.
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5.1 Introduction

In the semiconductor industry there is an ever increasing demand for higher
throughput and accuracy (Moore, 1965). These demands lead to more aggres-
sive motions and larger wafer sizes, which both lead to larger required forces to
actuate the system. Moreover, miniaturization leads to higher demands on ac-
curacy, which results in a higher required bandwidth of the system. Therefore, a
system with increased stiffness is required, which possibly leads to more mass. The
increased forces, due to increased mass and acceleration, lead to higher specifica-
tions on the actuators, amplifiers and cooling. In the rigid-body design paradigm
this leads in an evolutionary way to systems with an increasing mass, which is
expected to become infeasible in the near future due to thermal constraints. For
a general introduction to the control of advanced motion systems see (Steinbuch
and Norg, 1998; Clayton et al., 2009; Butler, 2011).

Therefore, the next generation of advanced motion systems, e.g. wafer-stages,
pick-and-place machines and planar motors, will be lightweight. Compared to a
rigid-body design, the differences in control design are:

1. mechanical resonances near the desired bandwidth of the feedback controlled
system, and

2. due to the elastic deformations in the moving stage, the relation between the
measured variables y and the performance variables z cannot be considered
to be static anymore. Therefore, it does not suffice anymore to use geomet-
ric relations to calculate/control the performance variables. The difference
between measurement and performance variables is illustrated in Fig. 3.1.

To deal with the challenges of advanced lightweight systems, such systems
are typically equipped with extra sensors and actuators compared to traditional
design, i.e. over-sensing and over-actuation is applied (Schneiders et al., 2003,
2004a,b). Furthermore, to obtain the desired performance it is typically required
to apply feedforward control. However, traditional feedforward methods do not
take advantage of over-sensing and over-actuation.

Snap feedforward (Lambrechts et al., 2005; Steinbuch et al., 2010) compen-
sates the low-frequency contributions of the flexible modes, i.e. the deformation
due to compliance during motion. However, such approaches only guarantee the
performance at the sensors locations and not for the whole structure.

In van der Meulen et al. (2007, 2008) the parameters of a fixed-structure feed-
forward controller are optimized based on the measured tracking error of a previous
experiment. Since this fixed-structure is based on snap feedforward, it suffers from
the same drawbacks. In Baggen et al. (2008); Heertjes et al. (2010) a multivariable
gradient-approximation-based algorithm is used to optimize a set of FIR feedfor-
ward filters. Since these feedforward filters can be of high order, it is possible to
compensate more than the deformation due to compliance during motion. Never-
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theless, no guarantees can be provided about the performance over the complete
flexible structure. Additionally, in Bruijnen and van Dijk (2012) it is shown that
a second FIR filter is required to exactly obtain a zero error at the sensor locations
in the ideal case. All fixed-structure feedforward methods can be regarded as ILC
with basis functions, as shown in van de Wijdeven and Bosgra (2010).

Learning control methods (Moore, 1998; Longman, 2000; Bristow et al., 2006;
Ahn et al., 2007), such as iterative learning control (ILC) and repetitive control,
use data from previous task trials to improve the performance. However, such
methods do not provide any guarantees on global performance. Furthermore, the
learned feedforward signal is specific for a chosen setpoint trajectory.

A different approach is presented in Heertjes and van de Molengraft (2009),
where the feedforward signal from a converged ILC sequence is mapped into a FIR
filter. In this way a setpoint trajectory invariant filter is created, which removes
one of the common drawbacks of ILC.

In Butler (2013), an adaptive feedforward method with application to a long-
stroke stage is presented. The advantage of this method is that differences due
to position dependency can be compensated for, in contrast to ILC and fixed-
structure feedforward. The presented framework aims at correcting the rigid-
body behavior due to position dependency and does not exploit over-actuation.
Therefore, only performance at the sensor locations can be guaranteed and it is
expected that this will not result in the desired global performance for lightweight
systems. Furthermore, actuators at fixed locations are considered in this chapter,
which typically have less or no position dependency.

A common approach to prevent the excitation of flexible modes is input shaping
(Pao, 1999; Singh, 2010). Typically, the setpoint trajectory is convolved with
an input shaping filter, such that the resonance frequencies of the system are
removed from the setpoint trajectory. Input shapers with positive coefficients are
designed, such that the filtered signal satisfies the same bound as the original
signal. However, by using such methods, a delay is introduced, which is not
desired in the intended applications. It is possible to overcome this drawback by
allowing negative coefficients for the input shaper. However, by doing so there are
no guarantees for the filtered signals.

Model-based spatial feedforward as presented in Chapter 4 and in Ronde et al.
(2012b, 2013b) is a novel feedforward method for over-actuated systems, which pro-
vides guarantees for performance over the whole structure, i.e. global performance.
However, this method relies heavily on the availability of a complex MIMO plant
model to compute a (non-square) feedforward decoupling, such that excitation of
the flexible modes by the feedforward can be prevented. Spatial feedforward can in
fact be viewed as a special case of static input-output decoupling, see Vaes (2005).
However, the typical aim and design freedom are quite different from standard
input-output decoupling. In standard input-output decoupling the aim is to di-
agonalize the decoupled plant, in order to facilitate decentralized feedback control
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design. Furthermore, static pre- and post-transformation matrices are available in
contrast to spatial feedforward, where only a pre-transformation matrix is avail-
able. Therefore, standard input-output decoupling methods cannot be applied in
a straightforward manner.

The approach presented in this chapter shows an analogy with iterative feed-
back tuning (IFT). For an overview of IFT see Hjalmarsson et al. (1998); Hjal-
marsson (2002); Gevers (2002). The method presented in this chapter has the
advantage over IFT that closed-loop stability is not endangered, since only the
feedforward controller is optimized. An IFT approach to decoupling is presented
in Gunnarsson et al. (2003); Mǐsković et al. (2007), which both suffer from the
same drawbacks as standard input-output decoupling methods.

In contrast to Chapter 4 and Ronde et al. (2013b), it is assumed that only
a model of the rigid-body behavior is available, i.e. without the flexible behav-
ior. The intermediate step of obtaining a parametric MIMO plant model, such
as is illustrated in Oomen et al. (2013), is replaced by a dedicated parameter
identification experiment. Furthermore, a data-based approach results in optimal
controller parameters with respect to the actual plant, which is typically not the
case for manual tuning or model-based approaches.

In contrast to the approaches in van der Meulen et al. (2007, 2008) and Baggen
et al. (2008); Heertjes et al. (2010), this chapter deals with over-actuated feedfor-
ward control, which results in feedforward controllers with an unequal number of
input and outputs. Thereby exploiting the additional design freedom. Moreover,
the class of systems considered in this chapter, i.e. lightweight motion systems, can
be considered as proportionally damped systems due to their low damping. This
allows for the representation of these systems in modal form, which is exploited
in this chapter. The use of an initial feedforward controller with inaccurate esti-
mates of the mass and principle moments of inertia of the system can cause errors
which are orders of magnitude larger than the vibrations of the system. There-
fore, the feedforward controller and feedforward decoupling are combined in one
simultaneous optimization.

The contribution of the chapter is fourfold, namely to provide a method which:

1. optimizes the over-actuated feedforward design, based on measurement data,
as an extension of Chapter 4 and Ronde et al. (2012b, 2013b),

2. estimates mass and principle moments of inertia,

3. does not require the selection of modes, and finally

4. exploits the use of over-sensing.

Moreover, similar to model-based spatial feedforward from Chapter 4 and Ronde
et al. (2013b) the presented method results in a parametric feedforward controller,
i.e. suitable for different setpoint trajectories. Furthermore, this method does not
introduce any delay or modification of the setpoint trajectory in contrast to input
shaping.
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Kfb Tu,fb G Ty
rm(t) em(t) m(t)y(t)u(t)

Kff (θ)

−

uff (t)

r̈m(t)

θ

Figure 5.1: Control structure for spatial feedforward. Here G is the plant to be
controlled, with input u(t) and sensor outputs y(t). The static pre- and post-
transformation matrices Tu,fb and Ty are used to decouple the system, such that
a decentralized feedback controller Kfb can be used to control the individual feed-
back loops. Furthermore, the post-transformation matrix Ty transforms the sensor
output y(t) to motion coordinates m(t). The (non-square) feedforward controller
Kff (θ) is designed such that the motion errors are minimized. The setpoint tra-
jectory and tracking error in motion coordinates are denoted by rm(t) and em(t)
respectively.

The outline of this chapter is as follows. In Section 5.2 the problem is for-
mulated. Subsequently, in Section 5.3 spatial feedforward is briefly discussed.
The proposed data-based optimization algorithm is presented in Section 5.4. Also
different methods for gradient estimation are presented. The data-based optimiza-
tion is applied to an industrial prototype motion system in Section 5.5, where the
method is also compared to mass feedforward with standard body-mode decou-
pling. Finally, in Section 5.6 the conclusions and recommendations are presented.

5.2 Problem formulation

Consider a motion system with modal or proportionally damped modes. Such
systems can be written in the following modal description (Gawronski, 2004):

G(s) = Cm
[
Is2 + 2ZΩs+ Ω2

]−1
Bm,

=
[
Cb Cint

] [ Θ(b)(s)

Θ(int)(s)

] [
Bb
Bint

]
, (5.1)

where Bm and Cm represent the model input- and output matrices respectively.
The matrices Z and Ω contain the damping and resonance frequencies, respectively,
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which are diagonal under the assumption of proportional damping. Therefore, the
matrices Θ(b)(s) and Θ(int)(s) are diagonal and contain the second-order transfer
functions of the (rigid) body modes and internal modes respectively. Furthermore
Bmi, i.e. the i-th row of Bm, is associated with the i-th mode only. Moreover,
the input- and output matrices Bm and Cm are divided corresponding to the
(rigid)body and internal modes into the pair Bb and Bint and into the pair Cb and
Cint, respectively.

Remark 5.1. The dependency on time or Laplace operator is dropped from the
notation when this is clear from the context.

The system G(s), having nu inputs and ny outputs, is controlled using the
control structure shown in Fig. 5.1. The static transformation matrices Tu,fb and
Ty are used to decouple the system as Gd = TyGTu,fb, to allow for decentralized
feedback control. The motion m(t) represents the pose of a motion system. The
mapping between the sensors y(t) and the measured rigid-body motion m(t) is
given by:

m(t) = Tyy(t), (5.2)

where m(t) typically has dimension nb.
The goal is to compute a non-square feedforward controller Kff (θ), based on

experimental data from previous task trials, such that:

1. the body-modes are independently controllable, and

2. the tracking errors em(t) from Fig. 5.1 are minimized using the additional
design freedom from over-actuation.

Remark 5.2. The choice of a static transformation matrix Ty is not unique, i.e. any
scaling or linear combination of translations/rotations can be taken. In Section
5.5.3, a choice will be made based on physical interpretation.

Definition 5.3 (Body mode). The body modes are defined as the set of rigid-body
and suspension modes. The number of body modes is denoted by nb.

Definition 5.4 (Suspension mode). A suspension mode has, by design, a sig-
nificantly lower resonance frequency than the internal modes, i.e. the structural
stiffness of the suspension system to the fixed world is much smaller than the body
stiffness.

Definition 5.5 (Internal mode). Internal modes are the non-intentional flexible
modes due to the finite stiffness of the moving structure, which is in general un-
desired. Theoretically an infinite number of modes exist. However, the number of
relevant internal modes (Hughes, 1987) is finite and is denoted by nr.

Definition 5.6. The number of internal modes to be suppressed by spatial feed-
forward is denoted by nm, with nm << nr.
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In this chapter the following assumptions are made:

1. linear time-invariant (LTI) system behavior, and

2. proportional damping of the modes, and

3. over-actuated system, i.e. nu > nb, and finally

4. the relevant modes must be observable from the sensor outputs.

The first two assumptions are required for a model in the form of (5.1) to exist. The
third assumption is required for spatial feedforward to exist. The last assumption
is required to include the relevant phenomena in the cost-function.

The feedforward controller is assumed to have the following standard form,

Kff (θ) = Tu,ff (θ)Kff ,

where

Kff =



m̂
m̂

Ĵz
m̂

Ĵx
Ĵx

 ,

where m̂ is the estimated mass and Ĵx, Ĵy and Ĵz are the estimated principle
moments of inertia of the moving mass. Furthermore, the rigid-body dynamics of
the plant are assumed to be decoupled by Ty and Tu,ff (θ) (typically into cartesian
coordinates), i.e. the decoupled plant becomes diagonal.

Remark 5.7. In this chapter, the basis functions are limited to the setpoint trajec-
tory acceleration. This is due to the fact that in the ideal case the system behaves
as an inertia without flexibilities.

5.3 Spatial feedforward

This section will present a brief introduction of spatial feedforward as presented in
Chapter 4 and Ronde et al. (2013b). For extensive details, the reader is referred to
Chapter 4. Subsequently, the design space including mass and principle moments
of inertia will be parameterized. This parametrization will be employed in the
data-based optimization presented in this chapter.

For spatial feedforward, Tu,ff is selected such that,

1. the body-modes can be controlled individually, and

2. the selected internal modes are not excited,
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from the feedforward inputs. Hereto, the following equation must be satisfied,

BbTu,ff = Λ, (5.3)

where Λ is any diagonal matrix, such that the body-modes can be feedforward
controlled individually. Without loss of generality Λ = I can be selected, see
Lemma D.2. Hereto,

Tu,ff = B†b ,

where (·)† denotes the pseudo-inverse (Ben-Isreal and Greville, 2003), which is
selected to obtain the minimum energy solution. This solution is denoted as,

Tb := B†b .

Remark 5.8. An alternative choice can be made such that the mass and principle
moments of inertia of the feedforward decoupled system remain the same, i.e. they
retain their physical relevance.

Since the system (5.1) is assumed to be over-actuated, the matrix Bb is fat,
i.e. it has more actuators (inputs) than rigid-body modes. Therefore, there are
multiple solutions having the same effect on the body modes of the system, as
shown in Chapter 4 and Ronde et al. (2013b). Hence, the static transformation
matrix for feedforward control can be represented as follows,

Tu,ff = Tb + Ts,

where

Ts ∈ Rnu×nb
∣∣ Im(Ts) = ker(Bb).

All the directions contained in Ts have the physical property that the sum of forces
and the sum of moments around the centre of gravity are equal to zero. To achieve
that the selected internal modes are not excited Tu,ff should be selected such that,[

Bb
B̃int

]
Tu,ff =

[
Inb
Onm

]
.

This formulation takes into account that only the excitation of nm modes from
Bint can be prevented. The selection of nm modes from Bint are contained in
B̃int. To employ this design freedom, a basis W ,

W =
[
w1 · · · wns

] ∣∣ span(W ) = ker(Bb), (5.4)

which is a basis for ker(Bb) is constructed.
Subsequently, a parametrization of the spatial design freedom is constructed.

Until now, it was implicitly assumed that the mass and inertia of the system are
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exactly known, which is typically not the case in practice. The errors due to
inaccurate mass and inertia estimates are typically large compared to the oscilla-
tions of the flexible modes. To obtain the desired solution it is required to esti-
mate the mass and inertia as well. Therefore, this section provides an extended
parametrization, such that the mass and inertia can be estimated. Furthermore,
the parametrization is chosen such that the mass and inertia parameters retain
their physical relevance.

The design freedom of the feedforward controller is parameterized as follows,

Kff (θ) = TbKff +

ns∑
j=1

ΨjΘj , Kff (θ) ∈ Rnu×nb , (5.5)

where Ψj is the matrix with the design freedom wj and is defined as,

Ψj =
[
wj wj wj wj wj wj

]
, Ψj ∈ Rnu×nb .

The diagonal matrices Θj contain the parameters θjnb+i for the i-th body mode
and the j-th design freedom. Considering all body-modes of interest, e.g. nb = 6,
this results in,

Θj =


θjnb+1

θjnb+2

θjnb+3

θjnb+4

θjnb+5

θjnb+6

 , Θj ∈ Rnb×nb . (5.6)

Furthermore, let Ψ0 := Tb and Θ0 as defined in (5.6). Including these definitions
in (5.5) results in,

Kff (θ) =

ns∑
j=0

ΨjΘj . (5.7)

Without loss of generality, an initial estimate of the mass and principle moments
of inertia can be included as,

Kff (θ) = Ψ0Kff +

ns∑
j=0

ΨjΘj . (5.8)

This parametrization of the feedforward controller will be employed in the formu-
lation of the optimization problem, which is presented in the next section.

5.4 Optimization

In contrast to Chapter 4 and Ronde et al. (2012b, 2013b) it is assumed that only a
model of the body-modes is available. Therefore, without the model of the flexible
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modes the model-based solutions cannot be computed. Using the model of the
body-modes, the space which can be used to optimize the spatial feedforward can
be computed using (5.4). This space is subsequently used in the optimization
method as presented in the remainder of this section.

5.4.1 Objective function

To optimize the parameters of the spatial feedforward, an objective function has
to be chosen, such that it represents the behavior that is subject to improvement.
In this section, only the tracking errors em(t) are minimized for simplicity of
presentation. Additional signals, such as measurements of the elastic deformation,
can be used in the objective function as well, which is shown in Section 5.5.

Definition 5.9 (Task trial). A task trial is the execution of one experiment with
a length of N samples and starting from the same initial conditions.

min
θl

V (θ̄l). (5.9)

Here, a signal based objective function V (θ̄l) : RNnb → R is chosen,

V (θ̄l) = eT
m,l(θ̄l)Γem,l(θ̄l), θ̄l =

[
θ1 · · · θn

]T
, (5.10)

where em,l(θ̄l) is the error in motion coordinates at the l-th task trial and θ̄l is the
vector with the stacked parameters from (5.7). The matrix Γ is used to weight the
relative importance of different directions in the optimization criterion.

em,l =


ex,l
ey,l
eRz,l
ez,l
eRx,l
eRy,l

 , Γ =


γx

γy
γRz

γz
γRx

γRy

 , Γ ∈ RNnb×Nnb ,

where em,l ∈ RNnb×1, γi = γ̄iI ∈ RN×N , i ∈ {x, y,Rz, z, Rx, Ry}, with γ̄i > 0
being a scalar constant.

Remark 5.10. In this section, the objective function (5.10) is tailored towards
non over-sensed systems to limit the length of the presentation. However, the
objective function can be extended to an arbitrary number of motion directions,
i.e. dim(m) > nb. An example will be shown in Section 5.5.

The second-order Taylor-approximation of (5.10) around θ̄l = 0 is given by,

V (θ̄l) = V (0) +∇V (0)Tθ̄l + 1
2 θ̄

T
l ∇2V (0)θ̄l +O(θ̄3

l ).
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Therefore, 
∂V (θ̄l)
∂θ1
...

∂V (θ̄l)
∂θn

 = ∇V (0) +∇2V (0)θ̄l,

where n denotes the number of parameters and the gradient is given by,

∇V (0) =


∂V (0)
∂θ1
...

∂V (0)
∂θn

 = 2∇eT
m,l(0)Γem,l(0), (5.11)

and the Hessian is given by,

∇2V (0) = 2∇eT
m,l(0)∇Γem,l(0) + 2∇2eT

m,l(0)Γem,l(0). (5.12)

5.4.2 Gauss-Newton optimization

The parameters can be updated using Newton’s method (Heath, 2002; Boyd and
Vandenberghe, 2004) as,

θ̄l+1 = θ̄l − αs
(
∇2V (θ̄l)

)−1∇V (θ̄l), (5.13)

where αs is a fixed step size. To improve the convergence speed, αs can be opti-
mized using a line-search algorithm. However, in this case a fixed step size αs is
considered.

The Hessian in (5.12) can be approximated as,

∇2V (0) ≈ 2∇eT
m,l(0)Γ∇em,l(0), (5.14)

since the motion errors em,l are close to zero near the solution. Furthermore, the
Hessian ∇2em,l(0) is assumed to be small.

Using (5.14) as approximation of the Hessian equals the Gauss-Newton method
(Ruszczyński, 2006). The same method has been employed in both van der Meulen
et al. (2007, 2008) and Baggen et al. (2008); Heertjes et al. (2010). The conditions
for convexity of V (θ̄l) are shown in Theorem D.1.

Procedure 5.11. The optimization procedure can be applied as follows:

1. Do an experiment with θ̄0 = 0.

2. Estimate the gradient (5.11) and the Hessian (5.14) of V (θ̄l) (offline).

3. Do a Gauss-Newton update of the parameters (5.13) (offline).

4. Increase the number of trials, i.e. l = l + 1.
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5. Repeat steps 2-4 until convergence is achieved.

Corollary 5.12. From (5.17) it is clear that ∂em
∂θk

is independent of θ̄l. Therefore,

the gradient (5.16) is independent of the parameters θ̄l. By virtue of this property,
an approximation ∇eT

m,l(θ̄l) around zero can be used for all task trials.

5.4.3 Gradient-estimation methods

To estimate the gradient and the Hessian, two approaches can be followed:

1. model-based estimation, i.e. the Hessian is estimated using model-based
knowledge, while the gradient is estimated using model-based and measure-
ment information, and

2. perturbation of the parameters method. To estimate the gradient by pertur-
bation of the parameters, using a finite difference approximation.

The model-based estimation is cheap, since the required number of experiments
is limited, i.e. a model of the process sensitivity is required. The perturbation
of parameters method is more accurate and more expensive in terms of required
number of experiments. There are several techniques available to reduce the num-
ber of experiments (Spall, 1992, 1997). However, this is beyond the scope of this
chapter.

Model-based gradient estimation

Even if a MIMO plant model, including the flexible modes, is available it is not
obvious to select the modes which are not excited by the feedforward. Therefore,
the model can be used to construct the gradient. Subsequently, the data-based
optimization method can be employed to find the optimal solution given the cost-
function in (5.9).

The tracking error em(t) for the l-th task trial is given by,

em,l(θ̄l) = So,d
(
I − TyGKff (θl)s

2
)
rm,

= So,d

I − TyG(Ψ0Kff +

ns∑
j=0

ΨjΘjs
2

 rm, (5.15)

where the decoupled output sensitivity is given by,

So,d = (I + TyGTu,fbKfb)
−1
.

In (5.15) it can be observed that the error is affine in the parameters θ̄l. The
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gradient of the motion error w.r.t. the parameters is given by,

∇eT
m,l(θ̄l) =


∂eTm,l(θ̄l)

∂θ1
...

∂eTm,l(θ̄l)

∂θn

 , (5.16)

where the derivatives w.r.t. a single parameter are given by,

∂em,l(θ̄l)

∂θk
= −So,dTyGΨjir̈m. (5.17)

Here, Ψji denotes the j-th design freedom in the i-th input channel and is defined
as,

Ψji =
[
0nu×i−1 wj 0nu×nb−i

]
,

i.e. the column of Ψj associated with the parameter θjnb+i .

Gradient estimation by parameter perturbation

The gradient and the Hessian can be approximated by doing perturbed-parameters
experiments. The first-order Taylor series approximation of the motion error for a
perturbation of the parameters is given by,

em,l(δθk) = em,l(0) +
∂em,l(0)

∂θk
δθk +O(δθ2

k). (5.18)

Using (5.18) the gradient of the error w.r.t. the parameters can be constructed as,

∂em,l(0)

∂θk
≈ em,l(δθk)− em,l(0)

δθk
, (5.19)

where em(0) and em(δθk) denote the motion error with non-perturbed parameters
and the motion error with perturbed parameters. respectively. The size of the
parameter perturbation is denoted by δθk.

Remark 5.13. The feedforward controller and the ’spatial’ decoupling are combined
in this chapter, to provide one optimization framework. However, for implemen-
tation the feedforward controller and the decoupling can be separated again. The
details are provided in Appendix D.1.

5.5 Experimental validation

In this section the data-based solution will be compared to mass feedforward using
a standard body-mode decoupling.
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5.5.1 Prototype lightweight motion system

In Fig. 4.3, an industrial prototype lightweight motion system is shown. This
stage can move in all 6 degrees of freedom, with a limited stroke of approximately
0.5 mm in x, y and z-direction and 1 mrad in Rx, Ry and Rz-direction. To limit
the complexity and length of the presentation only the out-of-place directions, i.e.
z, Rx, and Ry, will be considered. For these directions, 9 Lorenz type actuators
are available on a 3 by 3 grid as shown in Fig. 5.2. The position of the stage in
z-direction is measured at the corners by linear incremental encoders with a reso-
lution of 1 nm. Additionally, an extra output has been added to the optimization,
which measures the internal deformation (torsion) of the stage, i.e. over-sensing
is applied. This is elaborated in Section 5.5.3. Moreover, a piezo strain sensor is
present to measure internal deformation of the stage. This sensor will only be used
for validation purposes. Furthermore, gravity compensators are present, such that
ideally the stage is freely floating in its operating point.

12

3 4

162

5

3 48

7 9

Fx1

Fx2

Fy1 Fy2

x

y

piezo

Figure 5.2: Sensor- and actuator layout of the industrial prototype motion system
(top view). The crosses mark the actuators and the circles mark the sensors for
the z-direction. The square indicates the location of the piezo strain sensor. The
black rectangle on top represents the cable support to the fixed world.

5.5.2 Identification

A non-parametric frequency response function (FRF) is obtained by subsequently
exciting each input with a multisine (Pintelon and Schoukens, 2001) in closed-loop.
While doing these experiments, the stage is controlled to a fixed position in x, y
and Rz-direction. As an example, the z-direction of the measured decoupled plant
is shown in Fig. 5.3, where resonance phenomena can be observed at 143, 286, 502,
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521, 751 and 1925 Hz. The resonance frequencies observed in the measurements
differ from the resonance frequencies of the model as shown in Table 4.3, which
can be attributed to model uncertainty. Moreover, not all resonance frequencies
are observed from every input-output combination.
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Figure 5.3: Bode diagram of the frequency response measurement of TyGTu,fb in
z-direction of the industrial prototype motion system.

A Finite Element Method (FEM) has been used to obtain a model in the form of
(5.1) for the rigid-body modes of the system. The input matrix of the body-modes
from the FEM model is given in Appendix D.4 in (D.1). The matrix Bb ∈ R3×9,
i.e. there are 9 actuators to control 3 body-modes. Therefore, the dimension of
the additional design freedom is ns = 6.

5.5.3 Decoupling and feedback control design

The plant has been decoupled using geometric decoupling. Therefore, Ty is chosen
such that the motion m(t) (Fig. 5.1) contains the rigid-body displacements in
meters and radians. Since the system is over-sensed, an additional torsion output
has been added, which measures the amount of internal deformation in the stage
(no unit). To show the performance improvements by feedforward control, this
extra output will not be used for feedback control, but is used for the optimization
of the feedforward controller. The output decoupling matrix from (5.2) is given
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by, 
z
Rx
Ry

torsion

 =


0.25 0.25 0.25 0.25
0.90 0.90 −0.90 −0.90
−0.84 0.84 0.83 −0.83
0.35 −0.35 0.35 −0.35



z1

z2

z3

z4

 . (5.20)

Furthermore, Tu,fb is chosen such that the mass and principle moments of
inertia do not change. Afterwards, the remaining interaction has been analysed
using the relative gain array (RGA), see Skogestad and Postlethwaite (2005). The
RGA shows that the plant is sufficiently well decoupled for decentralized control
design, since the RGA is close to identity around the target bandwidth.

The decentralized feedback controller is designed using manual loopshaping and
is given by,

Kd(s) = diag
(
Kx,Ky,KRz ,Kz,KRx ,KRy

)
, (5.21)

where,

Ki(s) = ki
s+ 2πfint,i

s

1
2πfz,i

s+ 1

1
2πfp,i

s+ 1

1
1

(2πflp,i)2
s2 +

2βlp
2πflp,i

s+ 1

·
1

(2πfnz,i)2
s2 +

2βnz,i
2πfnz,i

s+ 1

1
(2πfnp,i)2

s2 +
2βnp,i
2πfnp,i

s+ 1
,

with βlp = 0.5 and other parameters as shown in Table 5.1 and 5.2. The feedback
controller (5.21) has been discretized using a Tustin transformation (no prewarp-
ing) with a sampling frequency of fs = 10000 Hz.

Axis i ki fint,i fz,i fp,i flp,i fBW
x 3.1318e5 10 50/4 200 250 48.2
y 3.0651e5 10 50/4 200 250 46.3
Rz 2.3773e4 10 50/4 200 250 53.4
z 3.3165e5 10 50/4 200 250 49.7
Rx 1.1252e4 10 50/4 200 250 58.9
Ry 1.1328e4 10 50/4 200 250 58.9

Table 5.1: Controller parameters and resulting bandwidth fBW (Hz). fBW is
defined as the zero dB crossing of the open-loop.

5.5.4 MIMO stability

The overall stability of the MIMO system with decentralized controller (5.21) has
been evaluated using the characteristic loci of the measured FRF (Skogestad and
Postlethwaite, 2005), which shows that the system is closed-loop stable as can be
seen in Fig. 4.9.
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Axis i fnz,i βnz,i fnp,i βnp,i
z 530 0.001 530 0.1
Rx 504 0.001 504 0.1
Ry 504 0.001 504 0.1

Table 5.2: Controller parameters for the notch filters. Note that in the first three
control loops (x, y,Rz) the notch filter is absent.

5.5.5 Setpoint trajectory

The setpoint trajectory for the z-direction is a third order point-to-point motion
profile (Lambrechts et al., 2005). This setpoint trajectory is shown in Fig. 5.4
and has been designed such that it is challenging for the system, i.e. such that
the actuators generating the largest forces are close to saturation. After 0.25 s
a backward motion, which is exactly mirrored, is performed. Every 0.75 s this
forward-backward sequence is repeated, resulting in 5 repetitions in 4 s. The
setpoint trajectory for all other directions is zero.
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Figure 5.4: Setpoint trajectory for the z-direction.



108 Chapter 5 Data-based spatial feedforward control

5.5.6 Data-based design

For the experiments the cost-criterion (5.10) has been modified, such that it only
contains the out-of-plane directions., i.e.

em,l =


ez,l
eRx,l
eRy,l
etorsion

 , (5.22)

where etorsion = 0− torsion, is the error in the torsion coordinate, which is defined
in (5.20). Furthermore, initial experiments were performed with γ̄i = 1,∀i, i.e. all
motion directions are considered equally important. However, in the experiments
the error eRy was relatively large due to the combination of imperfect rigid-body
decoupling and the setpoint trajectory in z-direction. Furthermore, the vibrations
in etorsion where not weighted sufficiently to have an influence on the solution.
Therefore, γ̄1 = 1, γ̄2 = 2, γ̄3 = 0.1, γ̄4 = 3, are chosen.

Due to the fact that only motion in z-direction is required, the number of
design parameters can be reduced. This also limits the number of perturbation
experiments to obtain the gradients of the error and the objective function.

Construction of the optimization space and gradients

Using Bb from (D.1), the free directions for the optimization can be identified as
(5.4). With the body-mode directions and the free ns = 6 directions, the total
parametrization of the feedforward controller in (5.8) can be constructed.

In Chapter 4, a model of the system in Fig. 4.3 was presented, which can be
employed for model-based gradient estimation. However, estimation of parame-
ters by experiments is inexpensive and typically results in more accurate estimates.
Therefore, the parameter perturbation method from Section 5.4.3 has been em-
ployed to construct the gradients. Eight experiments have been performed, i.e.
one nominal experiment and seven perturbation experiments. The resulting gra-
dient is calculated using (5.19). The gradient for the perturbation of θ2, is shown
in Fig. 5.5. The perturbation sizes, defined by (5.19), are chosen equal to 0.5 for
the free directions. For the mass-parameter, the perturbation size was equal to 1.

5.5.7 Results

In this section the experimental results of data-based spatial feedforward are pre-
sented. The setpoint trajectory is only non-zero in the z-direction, therefore the
optimization as presented in Section 5.4 is limited to the out-of-plane directions
as in (5.22).
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Figure 5.5: Measured gradient ∇em using a parameter perturbation method. The
different subplots show the elements of ∇em for the perturbation of θ2, which
consist of the stacked tracking errors. The different components of the tracking

errors in the gradient are δez
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( ), δetorsion
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( ). This
shows that the error indeed can modified by changing the parameters.

Convergence and parameters

The objective function (5.10) for the experimental results, is shown in Fig. 5.6a.
In this figure, it can be seen that the data-based spatial feedforward has converged
after 2 task trials. The changes after task trial 2 are mainly due to trial varying
disturbances and noise. The value of the objective function at first task trial is
determined by the feedback controller and the accuracy of the initial mass estimate.
The change in the cost-function V is small since the initial estimate is quite close
to the optimal value. The change in the perceived mass between the first and final
task trial is approximately 3.1% of the parameter value, see Fig. 5.6b.
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Remark 5.14. The convergence of the objective function is non-monotonic. This
effect is due to trial-varying disturbances and noise. However, convergence prop-
erties are outside the scope of this chapter and subject of future research.

The convergence of the perceived mass parameters is shown in Fig. 5.6b. The
perceived mass is approx. 10.7% larger than the actual system mass, which can be
explained by the non-ideal gravity compensators and/or the lack of higher order
basis functions. Furthermore, the convergence of this parameter shows that the
amount of force on the system in z-direction remains approximately constant for
a fixed setpoint trajectory.
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Figure 5.6: Cost function and perceived mass parameter θ1 as a function of task
trials.

Feedforward controller

The feedforward controller at the first task trial with θ̄0 = 0 and the initial mass
estimate is given by,

K0
ff,z(θ̄0) = 1.6111 ·

[
1 1 1 1 1 1 1 1 1

]T
, (5.23)

where the elements of the initial feedforward controller (5.23) exactly sum up to the
initial estimate of the perceived mass, i.e. m̂ = 14.5. This feedforward controller
is equal to a standard body-mode decoupling and diagonal feedforward control,
i.e. all actuators generate an equal amount of force to realize the displacement of
the stage.
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The feedforward controller at the final task trial is given by,

K11
ff,z(θ̄11) =



1.8206
1.4734
1.8597
1.9629
1.1965
1.7077
2.0945
1.1791
1.6440


. (5.24)

Again, the elements sum up to the new estimated mass. However, the ratio between
the actuator forces completely changed. If all actuators are equal by design, this
imposes a limit on the achievable acceleration of the system, i.e. the acceleration
is limited by the maximum element from (5.24) and the maximum allowed input.

Tracking errors

The experimental tracking errors of ez and eRx using the feedforward controller
in (5.23) and (5.24) are shown for t ∈ [0, 0.1] in Figs. 5.7 and 5.8, respectively. In
these figures the result of the first and final task trial are shown. The time plot of
the tracking error eRy is not shown, due to the fact that the errors are very similar
for both the first and final task trial. For ez, eRx and eRy it holds that the peak
error of the final task trial is smaller than the peak value for the first trial. The
reduction of the peak error can be explained as the compensation of the limited
stiffness of the stage using additional actuators, i.e. over-actuation.

The cumulative power spectrum (CPSD) of ez, eRx and eRy calculated from
t ∈ [0, 1] are shown in Fig. 5.9. Here, it can be observed that for ez the power
for the final task trial is lower than for the first task trail. For eRx and eRy the
power of the tracking error at the final task trial is slightly worse. Furthermore,
the flexible modes are not visible in the cumulative power spectrum, except for
the small bump around 500 Hz in eRx .

The error in the torsion direction etorsion and its cumulative power spectral
density are shown in Figs. 5.10 and 5.11, respectively. From Fig. 5.10 it is clear
that the initial feedforward controller excites the torsion mode at 143 Hz. This
additional motion direction allows to observe the deformation of the stage, which
can be used to optimize the performance. The peak error at the final task trial
is reduced by approximately a factor 1.4 with respect to the first trial. In the
cumulative power spectrum in Fig. 5.11 it becomes clear that the torsion mode,
which is excited at the first task trial, has almost disappeared in the final task trial.
Here, the excitation of a flexible mode is prevented by a data-based optimization
in the free direction which does not affect the body-mode behaviour.
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Figure 5.7: Servo-error ez, first ( ) and final ( ) iteration.
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Figure 5.8: Servo-error eRx , first ( ) and final ( ) iteration.
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Figure 5.9: CPSD of the servo-error ez, eRx , eRy (solid, dashed, dash-dotted),
first ( ) and final ( ) iteration.

A different approach to prevent the excitation would be to apply input shap-
ing. However, input shaping modifies the setpoint trajectory, which is typically
undesired as the setpoint trajectory is dictated by the given application. The
properties of input shaping and (model-based) spatial feedforward are compared
in Chapter 4 and Ronde et al. (2013b).

Additionally, a piezo strain sensor is present to measure the internal deforma-
tions of the stage. The time plot and its cumulative power spectrum are presented
in Figs. 5.12 and 5.13 respectively. From Fig. 5.12 the difference is not wel observ-
able except for a smaller peak value at the final task trial. In Fig. 5.13 it can be
observed that the mode at 143 Hz, which was present during the first task trial has
disappeared at the final task trail. The jump in the CPSD at the final task trial
indicates that the higher order modes around 500 Hz are more severely excited at
the final task trial. However, the total energy in the strain signal has been reduced
at the final task trial.
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5.6 Conclusions

This chapter presents a data-based optimization for spatial feedforward. The apply
the presented method it is required that the system approximately satisfies a modal
structure. Therefore, non-linearities, actuator constraints, external disturbances
and time-varying dynamics may hamper the application of the method. Moreover,
the identification of a parametric MIMO model is replaced by a dedicated parame-
ter identification experiment. More specifically only the input matrix with respect
to the rigid-body modes is required. Additionally, the gradient with respect to the
parameters has to be identified to apply this method. The additional advantage
is that the selection of the modes to be suppressed is automatically determined
based on the objective function provided this is chosen well, i.e. the data-based
method results in optimal controller parameters with respect to the actual plant.

The resulting feedforward controller designed using the method proposed in this
chapter is setpoint trajectory invariant in contrast to many data-based methods.
Moreover, the proposed method does not modify the setpoint trajectory in contrast
to input shaping. However, both methods can prevent the excitation of flexible
modes, i.e. the performance can be improved over the complete structure.

In this chapter it is shown that vibrations, which are introduced by the feedfor-
ward signal, can be prevented using over-actuation. Using additional sensors, i.e.
over-sensing, it is possible to suppress the observed vibrations by changing the di-
rection of the input. This new input direction does not deteriorate the performance
in the motion direction. Because the limited stiffness of the stage is compensated
by the additional actuators, the performance shows a slight improvement in the
motion directions as well. Furthermore, using an additional piezo strain sensor it
is verified that the torsion mode (143 Hz) included in the optimization indeed is
not visible at other locations on the stage, i.e. the mode is not excited by applying
the proposed feedforward method.

For systems with as many flexible modes as the degree of over-actuation, i.e.
ns = nr, the data-based solution converges to the model-based spatial solution.
However, for practical systems having less actuators than the number of flexible
modes, i.e. ns < nr, the data-based optimum is a combination of suppression of
the vibrations and compensating the limited stiffness of the higher order modes.

The framework in this chapter relies on the diagonal structure of the feed-
forward controller, which assumes perfect body-mode decoupling. As shown in
the experiments, there is cross talk present between the different axes. There-
fore, the framework could be extended such that compensation of cross-talk due
to imperfect decoupling would be possible. Moreover, the data-based optimum
is dependent on the frequency content of the setpoint trajectory. Therefore, the
criterion could be extended such that multiple setpoint trajectories are included
to have a good overall performance.

Furthermore, the framework could be extended with additional basis functions,
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e.g. higher order derivatives of the setpoint trajectory, to improve the performance
at the sensors. Moreover, it is possible to extend the parametrization of the feedfor-
ward, such that the delay in the system can be compensated for (Van der Meulen
et al., 2008).

In the next chapter the conclusions of this thesis are presented. Moreover,
recommendations for future research are motivated.
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Chapter 6

Conclusions and
recommendations

IN this chapter the main results of this thesis are presented, and rec-
ommendations for future research on feedforward control for lightweight

motion systems are given.

6.1 Conclusions

In this thesis, feedforward control of lightweight motion systems has been consid-
ered. To enable a higher production throughput, more aggressive setpoint trajec-
tories or larger wafer sizes are required. In the rigid-body design paradigm, which
aims at designs with a very high stiffness, this leads in an evolutionary way to sys-
tems with an increasing moving mass. Such systems require more and more power,
such that this paradigm rapidly approaches the boundary of its scalability due to
thermal constraints. Therefore, lightweight motion systems are designed with a
reduced moving mass compared to rigid-body designed systems. As a consequence
mechanical resonances appear in the frequency region of interest, which poses sev-
eral challenges for control design. First of all, the attainable bandwidth is limited
compared to rigid-body design. Secondly, the setpoint trajectory excites the flexi-
ble dynamics, which results in performance deterioration. In a typical production
process the sensors are located at different physical locations as where the actual
processing takes place. Moreover, due to flexibilities between the measurement-
and performance location the performance cannot be evaluated or controlled us-
ing the sensors and the use of simple geometrical coordinate transformations. For
lightweight motion systems two different subclasses can be distinguished: tradi-
tional and over-actuated systems. In traditional systems, the amount of actuators
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equals the amount of rigid-body modes, in contrast to over-actuated motion sys-
tems, which contain more actuators than rigid-body modes.

For traditional actuated motion systems, a framework to design feedforward
controllers for lightweight motion systems with physically non-collocated sensor-
and performance locations was presented in Chapter 2. This framework can deal
with inferential motion systems (measurement location is not equal to the perfor-
mance location), which are possibly non-square due to over-actuation and/or an
unequal number of measurement and performance variables. The method allows
for a feedforward control design, which is independent of the feedback controller
and setpoint trajectory, in contrast to existing methods. Moreover, simultaneous
design of the feedback- and feedforward controller is not required in contrast to
existing solutions for inferential control. Furthermore, it is shown that a different
setpoint for the feedback- and feedforward control are required to avoid conflicting
control goals. Moreover, the method proposed in this chapter has been validated
on a prototype lightweight motion system.

To apply this method, a performance model is required, which is typically ob-
tained using an identification procedure. Therefore, sensor(s) at the performance
location are required during the modeling phase. However, these sensors are not
required during operation. The attainable performance improvement is limited by
the quality of the parametric model and the amount of truncated singular values.
i.e. the accuracy of the inversion.

For systems with a time-varying performance location an exploratory study
was presented in Chapter 3. In this chapter it is shown that direct application of
the framework from Chapter 2 leads to infeasible feedforward signals. By incor-
porating a weighting filter, which penalizes undesired frequency contents, feasible
feedforward signals can be obtained. The proposed method has been validated
by experiments with a lightweight motion system, which shows that it is possible
to design a feedforward controller for a system with a time-varying performance
location.

To apply this method, a time-varying performance model is required, which
might be hard to obtain in actual production machines. Moreover, the weighting
on the input signal does not result in hard constraints, but in an iterative design
procedure. Furthermore, once the feedforward controller has been designed, the
time-varying performance model is fixed. Therefore, the feedforward controller
is only valid for this specific predetermined performance model. In practice, this
means that the feedforward controller only works for slight variations of the set-
point trajectory. The step from the presented simple motion system towards in-
dustrial motion systems is still challenging. Although the performance location in
industrial applications changes more gradually, similar changes in performance dy-
namics are also expected. Moreover, changes in performance dynamics will occur
more often than the presented application due to the presence of multiple relevant
modes.
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The second subclass of lightweight motion systems which are investigated in
this thesis are over-actuated motion systems, which are considered in Chapters 4
and 5. These systems have additional design freedom compared to traditionally
actuated systems, which is explored and characterized in Chapter 4. This resulted
in a control framework with different input decoupling transformations in the
feedback- and feedforward-path to reflect the different goals of the feedback- and
feedforward controller. For feedforward it is desirable to make the flexible modes
uncontrollable, such that the flexible modes are not excited. However, for feedback
control this might not be beneficial as disturbances might be present which excite
the flexible modes. The proposed method, called model-based spatial feedforward,
exploits the number of extra actuators to render equally many flexible modes of
the moving structure uncontrollable from the feedforward input. Also, explicit
conditions have been formulated for the existence of such solutions. Moreover, the
proposed method is experimentally validated on an industrial prototype motion
system and is compared to both standard mass feedforward and input shaping
methods. The experiments show that it is indeed possible to avoid excitation of the
flexible dynamics by applying over-actuation. Also, the approach does not suffer
from the typical drawbacks of input shaping, i.e. there are no delays introduced
and there is no filtering applied to the setpoint trajectory and feedforward input.

The application of model-based spatial feedforward is limited to over-actuated
motion systems, which can be modeled in modal form. In industrial motion sys-
tems, extra dynamics due to sensors and actuator might be present in the fre-
quency range of interest. In such cases, these dynamics must be compensated
for. However, these dynamics are ideally prevented by the integrated design of the
actuators, sensors and mechanics of the system. Moreover, the model-based spa-
tial feedforward solution relies on the input matrix of the system, which basically
contains the mode-shapes of the system. The exactness of these modes shapes
determines how well the excitation of flexible modes is prevented. Furthermore,
the required forces are determined by the fixed actuator locations and the flexible
modes which should not be excited. The unequal force distribution among the ac-
tuators resulting from the spatial decoupling might violate the input constraints.
In such cases, the acceleration should be limited to reduce the amount of force
required within the attainable limits.

To compute the optimal decoupling and feedforward controller for the true
machine, a data-based solution is presented in Chapter 5. A model of the rigid-
body behavior is employed to identify the available design freedom. Subsequently,
this design freedom is used in a data-based optimization, which employs the servo-
errors of a previous experiment to improve the performance. Moreover, in this
framework additional signals representing elastic deformations in the system can
be employed to reduce the elastic deformations during motion. The data-based
spatial feedforward is experimentally validated on an industrial prototype motion
system. In these experiments it is shown that it is possible to suppress these
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vibrations. Furthermore, it is shown that this method is effective for the complete
structure, i.e. the vibrations which were present disappeared on the additional
sensor after application of the data-based optimization. The additional sensors
were not collocated with the other sensors or used in the optimization. The data-
based method can be regarded as a dedicated system identification experiment,
which results in a model with the required parametrization.

The limitations of data-based spatial feedforward are similar to those of model-
based spatial feedforward, which both require over-actuation and a modal structure
of the model. Although the parameters are identified in a data-based optimization
approach, the method still relies on a rigid-body model to construct the opti-
mization space and to obtain the rigid-body decoupling. Also, the optimization is
unconstrained, which can result in inputs which are unattainable by the system.

6.2 Recommendations for future research

6.2.1 General recommendations

• The improvement which can be obtained by feedforward control depends
on the uncertainty associated with the model (Devasia, 2002). Therefore,
improvement of model quality has a direct impact on the attainable per-
formance of model-based feedforward. For systems with intrinsically multi-
variable behavior and a large number of in- and outputs the complexity of
obtaining parametric models increases rapidly (Van Herpen, 2014). More-
over, it should be investigated how model uncertainty affects the attainable
performance using feedforward at the performance location.

• In this thesis, only feedforward control of the setpoint trajectory is consid-
ered. However, in typical applications the setpoint trajectory is not the only
relevant disturbance. Therefore, the combination of over-actuated feedfor-
ward solutions with an over-actuated feedback controller in the framework
of Fig. 1.3 should be investigated. To this end, decoupling approaches for
over-actuated and over-sensed systems can be applied to create additional
feedback loops for the flexible modes, which is for instance explored in Ram-
padarath (2010); Durango Galvan et al. (2012). Additionally, model-based
approaches which provide extra damping (Boeren et al., 2013) or enhance the
stiffness (Van Herpen, 2014, Chapter 6) due to active control of the flexible
dynamical behavior should be investigated.

• A system design with a reduced moving mass leads to increased sensitivity
to force disturbances. Therefore, it is expected that the present distur-
bances become increasingly important, such that explicit characterization
and compensation is required. Furthermore, it must be investigated how
these disturbances affect the performance location. To this end, the control
structure from Fig. 1.3 must be extended with disturbance models as for ex-
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ample shown in Gawronski (2004, Section 3.5). Moreover, these disturbance
models must be employed in the control design to improve the performance
at the performance location.

6.2.2 Recommendations for traditionally actuated systems

• In this thesis, a feedforward design method for non-square inferential motion
systems is presented in Chapter 2. However, several questions still remain.
First of all, the method heavily relies on the quality of the model. Secondly,
the generated setpoint trajectory is computed based on model information
only, i.e. errors in this model directly affect the performance. Moreover, the
presented feedforward design results in a convolution-based feedforward con-
troller, i.e. the resulting approach is setpoint-trajectory-invariant. However,
the complete setpoint trajectory needs to be known in advance in order to
compute the feedforward. Therefore, it is desirable to investigate the design
of an causal feedforward controller or a feedforward controller with a limited
number of preview samples of the setpoint trajectory.

• The feedforward design methods for systems with time-varying performance
locations, as presented in Chapter 3, pose additional research challenges. In
lithographic systems, the performance location is varying due to the produc-
tion process, which leads to position-dependent (zero) dynamics. It must be
investigated how to identify such models. Additionally, it is desirable to ex-
plore how to reduce the number of identification experiments to obtain such
models. For lightweight motion systems, which can be modeled in a modal
framework, initial estimates from FEM can be used to speed up this process,
i.e. the modeshapes can be used to interpolate between different locations.

• Moreover, once the feedforward controller has been designed using the method
of Chapter 3 with a predetermined performance definition and thus the set-
point trajectory is fixed. Therefore, methods to design feedforward con-
trollers for position-varying performance locations should be investigated.

6.2.3 Recommendations for over-actuated systems

• The model- and data-based spatial feedforward solution depends on the
modeshapes of the system. This determines the required force distribution
over the actuators to prevent the excitation of flexible modes. However, in
this thesis, the actuator locations are considered to be fixed. By removing
this constraint, i.e. by placement of the actuators, the amount of energy
consumed could possibly be reduced, which is relevant in view of thermal
constraints. Demands for increased production throughput together with
thermal constraints are the reason to consider the design of lightweight sys-
tems in the first place. For feedforward control the placement of actuators
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on the nodes of the relevant modes is desirable. However, in practice this
hard to achieve, since any model is inaccurate. Moreover, the actuator typi-
cally adds mass, which influences the modeshape and thus the location of the
nodes. For feedback control, this will not lead to the desired result, because
the corresponding mode will be uncontrollable and any disturbance in this
direction cannot be dealt with. Further investigation is required to deter-
mine an optimal actuator placement for feedforward control in conjunction
with feedback control for over-actuated systems.

• The question which mode is important depends, among others, on the per-
formance location, i.e. at or near the nodal lines the resonant dynamics of a
mode is typically less pronounced. However, near the anti-node these reso-
nant dynamics mode may be very relevant. Also compliant dynamics should
be taken into account. Therefore, the performance location should be taken
into account explicitly by combining spatial feedforward with inferential con-
trol. Also it must be investigated if it is possible to schedule the feedforward
decoupling matrix according to the performance location. Moreover, it is the
question how to divide the scheduling regions of the performance locations,
such that the method is applicable for different setpoint trajectories. First of
all, it is not desirable to switch between different feedforward decoupling ma-
trices during the exposure of the chips. Secondly, a smooth transition of the
feedforward inputs is required, such that the flexible modes are not excited
more severely. Thirdly, it may not be possible to make the desired flexi-
ble model uncontrollable due to actuator placement. Finally, high accuracy
models are required for final implementation.

• Planar motors, such as presented in Jansen (2007); van Lierop (2008); Rovers
(2013), typically contain much more active actuators than rigid-body degrees
of freedom. Therefore, a large degree of over-actuation is present. However,
due to the position-dependent and non-linear nature of these planar motors it
is the question whether the assumptions to apply spatial feedforward hold.
For example, the quality of the position-dependent decoupling determines
the linearity of the system to be controlled, which is one of the requirements
for spatial feedforward. If the assumptions for spatial feedforward control do
not hold, it should be explored if and how these assumptions can be relaxed
such that the additional design freedom present can still be exploited.

Recommendations for model-based spatial feedforward

• In this thesis it is shown that the application of model-based spatial feedfor-
ward improves the performance of the system by designing an input transfor-
mation such that selected flexible modes become uncontrollable. However,
application of this method is still challenging. First of all, obtaining the
required multivariable model is a complex and tedious task. Secondly, since
the method is based on a multivariable model, manual (re)tuning is not ob-



6.2 Recommendations for future research 125

vious, i.e. small changes in system dynamics may require the identification
of a new model. Finally, in case the amount of over-actuation is less than the
number of relevant modes, the selection of the modes to be suppressed is not
obvious. This depends, among others, on the performance location, system
dynamics and setpoint trajectory. Therefore, the robustness of the solution
against plant variations must be investigated and possibly improved.

Recommendations for data-based spatial feedforward

• In Chapter 5 data-based spatial feedforward is presented, which optimizes
the input transformation and feedforward controller to suppress vibrations.
However, some challenges are still remaining. The design freedom for over-
actuation and the decoupling of the rigid-body modes still originates from a
model, i.e. any errors in this model cannot be compensated for. Moreover,
the basis functions are limited to the acceleration, such that higher order
dynamics cannot be compensated for. Extensions of the basis functions to
higher order terms allow to compensate for these dynamics at the sensor loca-
tions. However, it should be investigated what the effect is for the complete
system, i.e. what are the consequences at the performance location.

• Data-based spatial feedforward employs a Gauss-Newton method to com-
pute the optimal parameters for the spatial feedforward. This leads to non-
ideal convergence and sensitivity to noise. Therefore, alternative optimiza-
tion and/or parameter identification methods, such as instrumental variable
methods (Söderström and Stoica, 1983) should be investigated.

• Data-based spatial feedforward clearly benefits from the application of over-
sensing due to the fact that individual modes are separated in individual out-
put channels. Therefore, from a control perspective the ideal solution would
be to apply as many sensors as the number of relevant modes. However,
from a systems engineering perspective this solution is not feasible for two
reasons: i) costs, and ii) geometric constraints of the construction. There-
fore, it should be investigated whether estimation of the system state by
an observer can be used in conjunction with data-based spatial feedforward.
Furthermore, extensions towards systems with position-dependent dynamics
are relevant for future applications.

• The solution of the data-based optimization approach can result in input
signals beyond the attainable limits due to input saturation. In case input
saturation occurs, the linearity of the system is compromised. Therefore,
constraints on the inputs can be added to the data-based method to prevent
such situations.
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Appendix A

Inferential feedforward

A.1 SVD truncation

The system Jz can be represented as,

Jz = UΣV T,

=
[
U1 U2

] [ Σ1 0
0 Σ2

] [
V T

1

V T
2

]
,

Combining (2.2), (2.9) and Proposition 2.10 results in,

ez = rz − z,
=
(
I − JzJ†z

)
rz,

=

(
I −

[
U1 U2

] [ Σ1 0
0 Σ2

] [
V T

1

V T
2

]
V1Σ−1

1 UT
1

)
rz,

= (I − U1U
T
1 )rz,

= U2U
T
2 rz.
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A.2 Equivalence of control structures

The feedforward controllers and prefilters from Chapters 2 and 3 are given in
Table A.1.

Chapter F Kff

2 GyKff G†z
3 I (GzSi)

† −Kfb

Table A.1: Feedforward controller and prefilters from Chapters 2 and 3.

Consider the feedforward controllers and possible prefilters from Chapter 2 and
3 in the general 2DOF control structure,

u =
[
KfbF +Kff Kfb

] [ rz
−y

]
.

For the feedforward controller and prefilter of Chapter 2 this results in,

u =
[
(I +KfbGy)G†z Kfb

] [ rz
−y

]
. (A.1)

For the feedforward controller and prefilter of Chapter 3 this results in,

u =
[
Kfb + (GzSi)

† −Kfb Kfb

] [ rz
−y

]
,

=
[
(GzSi)

† Kfb

] [ rz
−y

]
. (A.2)

The 2DOF control structures of (A.1) and (A.2) are equivalent if and only if,

nz = ny = nu.

In case all dimensions are equal, the pseudo-inverse may be replaced by a normal
inverse. Therefore, the following holds,

(GzSi)
−1 = S−1

i G−1
z ,

where S−1
i = (I +KfbGy) by definition. This renders both controllers (A.1) and

(A.2) equivalent.



A.3 Parametric beam model

The parametric model from Section 2.5.4 in modal form is given by,

G :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t)
,

where,

A = diag(A1, . . . , A7),

and,

A1 =

[
0 1

−513.4 −9.5

]
,

A3 =

[
0 1

−43954.1 −8.3

]
,

A5 =

[
0 1

−1270020.5 −9.1

]
,

A7 =

[
0 1

−7625745.1 −12.0

]
,

B =



0 0 0
−35.7 −47.8 −54.0

0 0 0
−48.7 −6.7 35.6

0 0 0
−44.5 60.5 −36.0

0 0 0
−8.4 6.9 −3.5

0 0 0
−21.2 62.0 −24.1

0 0 0
−9.6 −0.2 8.3

0 0 0
37.4 36.6 38.9



,

D =

 0.0042 0.0002 0.0002
−0.0003 0.0043 0.0010
−0.0001 0.0004 0.0049

 .

A2 =

[
0 1

−1447.3 −10.7

]
,

A4 =

[
0 1

−375432.6 −19.2

]
,

A6 =

[
0 1

−3233164.0 −36.1

]
,

A6=

[
0 1

−3233164.0 −36.1

]
,

CT =



−51.4 −78.1 −88.7
0 0 0

−152.4 −26.6 111.4
0 0 0

−73.9 83.5 −42.7
0 0 0

−11.0 6.2 −7.1
0 0 0
−5.3 67.5 −43.1

0 0 0
−34.9 8.1 75.4

0 0 0
−50.4 −67.9 −78.1

0 0 0



,
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Appendix B

Zero-Vibration Input Shaper

This appendix presents a similar derivation of a zero-vibration input shaper as
presented in Singer and Seering (1990); Singh and Singhose (2002). The response
to N impulses of a second-order with underdamped poles is given by

y(t) =

N−1∑
i=0

ai
ω√

1− ζ2
e−ζω(t−ti) sin

(
ω
√

1− ζ2(t− ti)
)
,

= e−ζωt
ω√

1− ζ2

N−1∑
i=0

aie
ζωti sin

(
ω
√

1− ζ2(t− ti)
)
,

where ai and ti are the amplitude and time of the ith impulse input. Furthermore,
ω is the undamped eigenfrequency, ζ the damping ratio and t is the time. The
damped eigenfrequency is defined by

ωd = ω
√

1− ζ2.

The sum of two sinusoids with the same frequency can be computed with the
trigonometric identity,

b0 sin(ωdt+ φ0) + b1 sin(ωdt+ φ1) = Aamp sin(ωdt+ ψ),

φi = −ωdti,

where

Aamp =
√

(b0 cosφ0 + b1 cosφ1)2 + (b0 sinφ0 + b1 sinφ1)2,

ψ = tan−1

(
b0 cosφ0 + b1 cosφ1

b0 sinφ0 + b1 sinφ1

)
.
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For N impulses this results in,

V (ω, ζ) = e−ζωt
√
C(ω, ζ)2 + S(ω, ζ)2,

where

C(ω, ζ) =

N−1∑
i=0

aie
ζωti cos(ωdti),

S(ω, ζ) =

N−1∑
i=0

aie
ζωti sin(ωdti)

Solving for V (ω, ζ) = 0 for N = 2 leads to,

a0e
ζωt0 cos(ωdt0) + a1e

ζωt1 cos(ωdt1) = 0,

a0e
ζωt0 sin(ωdt0) + a1e

ζωt1 sin(ωdt1) = 0.

To avoid trivial solutions and to obtain bounded solution, the following constraints
are added (Singh and Singhose, 2002),

N−1∑
i=0

ai = 1, (B.1)

ai > 0, ∀i.

Without loss of generality t0 = 0 can be chosen, which results is,

a0 + a1e
ζωt1 cos(ωdt1) = 0, (B.2)

a1e
ζωt1 sin(ωdt1) = 0. (B.3)

Equation (B.3) is zero in a nontrivial manner when sin(ωdt1) = 0. Therefore it
follows that,

ωdt1 = nπ, n ∈ N+.

To construct the shortest input shaper, n = 1 is chosen, which results in,

t1 =
π

ωd
=
Td
2
, (B.4)

where Td is the period of the damped vibration. Applying the constraint in (B.1)
to (B.2) with t1 from (B.4) results in,

a0 − (1− a0)e
ζπ√
1−ζ2 = 0.



Rearranging,

a0

(
1 + e

ζπ√
1−ζ2

)
− e

ζπ√
1−ζ2 = 0,

and solving for the coefficients using (B.1) results in,

a0 =
e

ζπ√
1−ζ2

1 + e
ζπ√
1−ζ2

,

a1 =
1

1 + e
ζπ√
1−ζ2

.
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Appendix C

Model-based spatial
feedforward

C.1 Rigid-body feedforward design

Tb,1 =


0.2500 1.1374 −1.1492
0.2500 1.1374 1.1492
0.2500 −1.1374 1.1256
0.2500 −1.1375 −1.1256

0 0 0
0 0 0

 . (C.1)

C.2 Spatial feedforward design

The body-mode Tb,2 matrix for the extended actuator configuration of six actuators
is computed similarly to Tb,1 and is given by,

Tb,2 =


0.2069 1.0972 −1.1364
0.2069 1.0972 1.1364
0.1379 −0.7837 1.1364
0.1379 −0.7837 −1.1364
0.1724 0.1567 0.0000
0.1379 −0.7837 0.0000

 .
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The spatial feedforward Tu,ff is given by,

Tu,ff =


0.1632 0.7882 −356.1909
0.1768 1.0010 356.2118
0.1634 −0.4074 −353.9162
0.1770 −0.1946 353.9411
0.3201 0.9670 −0.0419
−0.0004 −2.1543 −0.0040


where Tu,ff is designed such that the internal modes 3, 4 and 5 are uncontrollable
according to Theorem 4.10. By applying these input transformations to the B-
matrix we get,

BTb,1 =



0.2695 −0.0000 0.0000
−0.0000 1.4704 −0.0000
−0.0000 0.0000 1.4704
0.0000 −0.0001 0.0000
0.0001 −0.0027 0.0002
−0.0009 0.3452 1.1245
0.0084 −1.1262 0.3445
0.2472 0.0392 −0.0075


, (C.2)

BTu,ff =



0.2695 0.0000 0.0000
0.0000 1.4690 0.0000
−0.0000 −0.0000 1.4690
−0.0127 −0.1994 −662.3603
−0.0003 −0.6315 0.4729
−0.0000 −0.0000 0.0000
0.0000 0.0000 −0.0000
−0.0000 0.0000 −0.0000


. (C.3)
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Data-based spatial feedforward

D.1 Relation between the data-based feedforward con-
troller and a diagonal feedforward controller and
feedforward decoupling

In Chapter 5, the feedforward controller is parameterized as,

Kff (θ) = Ψ0Kff +

ns∑
j=0

ΨjΘj .

Apply factorization to collect the common factor Ψ0 as,

Kff (θ) = Ψ0

(
Kff + Θ0

)
+

ns∑
j=1

ΨjΘj ,

Define the feedforward controller estimated from data as,

K̂ff :=
(
Kff + Θ0

)
,

i.e. the initial estimate plus the adaptation by the parameters. The resulting
matrix in the null-space of Bb is defined as,

Ts :=

ns∑
j=1

ΨjΘj .

With the definition of Ψ0 = Tb we get,

Kff (θ) = TbK̂ff + Ts,=
(
Tb + TsK̂ff

−1
)
K̂ff ,

which has the same form as the feedforward controller and feedforward decoupling
in Chapter 4 and Ronde et al. (2013b).
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D.2 Convexity of the objective function

Theorem D.1. The objective function V (θ̄l) in (5.10) is convex in θ̄l if:

1. the tracking error em(t) is affine in θ̄l, and

2. the matrix Γ � 0.

Proof: The tracking error em(t) for the l-th task trial is given by,

em,l(θ̄l) = So,d
(
I − TyGKff (θl)s

2
)
rm,

= So,d

I − TyG(Ψ0Kff +

ns∑
j=0

ΨjΘjs
2

 rm,

i.e. due to the structure of the feedforward controller all parameters in the tracking
error em(θ̄l) appear linear in θ̄l. Hence, the tracking error em(t) is affine in θ̄l.

The objective function V (θ̄l) is convex if and only if the Hessian in (5.12)
is positive semidefinite for all controller parameters. The Hessian in (5.12) is
approximated by (5.14). The approximated Hessian is positive definite if and only
if Γ � 0⇔ γ̄i > 0 and ∇em,l 6= 0. In case ∇em,l = 0, this renders the approximated
Hessian positive semidefinite.

∇2V (0) � 0 ⇐⇒ 2∇eT
m,l(0)Γ∇em,l(0) � 0,

since Γ = ΓT and diagonal, define Γ̄ =
√

Γ.

2∇eT
m,l(0)Γ∇em,l(0) � 0 ⇐⇒ 2∇eT

m,l(0)Γ̄TΓ̄∇em,l(0) � 0.

Now define A := Γ̄∇em,l(0) and rewrite

2∇eT
m,l(0)Γ̄TΓ̄∇em,l(0) � 0 ⇐⇒ 2ATA � 0,

which is known to be positive semidefinite for any real A.



D.3 Selection of Λ

Lemma D.2. Λ = I in (5.3) can be selected without loss of generality.
Proof: The reference sensitivity for the control structure of Fig. 5.1 is given by,

em = (I − TyGTu,fbKfb)
−1

(I − TyGKff (θ)s2)rm,

= (I − TyGTu,fbKfb)
−1

(I − TyGTu,ff (θ)Kffs
2)rm.

Inserting the definition of G from (5.1), while ignoring the internal dynamics re-
sults in,

em = (I − TyGTu,fbKfb)
−1

(I − TyCbΘ(b)(s)BbTu,ff (θ)Kffs
2)rm.

Selecting BbTu,ff (θ) = Λ results in,

em = (I − TyGTu,fbKfb)
−1

(I − TyCbΘ(b)(s)ΛKffs
2)rm.

Selecting BbTu,ff (θ) = I results in,

em = (I − TyGTu,fbKfb)
−1

(I − TyCbΘ(b)(s)IKffs
2)rm,

= (I − TyGTu,fbKfb)
−1

(I − TyCbΘ(b)(s)ΛΛ−1Kffs
2)rm,

i.e. selecting BbTu,ff (θ) = I results in a scaling of Kff by Λ−1.

D.4 Input matrix

BT
b =



0.2695 0.3232 −0.3232
0.2695 0.3232 0.3232
0.2695 −0.3232 0.3232
0.2695 −0.3232 −0.3232
0.2695 0.0000 −0.0000
0.2695 0.3232 −0.0000
0.2695 0.0000 0.3232
0.2695 −0.3232 −0.0000
0.2695 0.0000 −0.3232


, (D.1)
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List of symbols

Roman uppercase

Symbol Description Unit
A State matrix
B Input matrix
C Output matrix
D Direct feedthrough matrix

Damping matrix
E Output multiplicative error
F Setpoint trajectory prefilter
G Plant
H General input shaper
I Identity matrix
J Convolution matrix
K Stiffness matrix

Controller
Kfb Feedback controller
Kff Feedforward controller
Kff (θ) Parametric feedforward controller
L Length m

Open-loop
M Mass matrix
R Rotation rad
Tu,fb Feedback input decoupling transformation
Tu,ff Feedforward input decoupling transformation
Ty Output transformation to motion coordinates
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S Sensitivity
Sd Diagonal sensitivity
Si Input sensitivity
T Torque Nm
Td Diagonal complementary sensitivity
U Output singular vectors
U Input space
V Input singular vectors

Objective function
V Input space (free directions)
W Weighting filter
W Input space (body mode directions)
Z Damping matrix -

Roman lowercase

Symbol Description Unit
a Impulse response parameters

Acceleration setpoint m/s2

a, b, c Polynomials
d Damping Ns/m
e Error
f Force N

Frequency Hz
h Impulse response
k Stiffness N/m
m Motion coordinates
r Setpoint trajectory
s Laplace variable (s = jω) rad/s
t Time s
ts Sample time s
u Input
w Free direction
x State vector
y Sensor outputs
z Performance outputs

z-transform variable (z = ejω) rad/s
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Greek

Symbol Description Unit
Γ Weighting matrix
Λ Diagonal matrix
Ω Eigenfrequency matrix rad/s
Ψ Basis of free directions
Σ Singular values
Θ Modal transfer functions

Diagonal parameter matrix
α Weighting filter gain
µ Structured singular value
ω Frequency rad/s
σ Singular values
θ Optimization parameters
ζ Damping -

Subscripts, superscripts and indices

Symbol Description
b body-mode
d diagonal
dec decoupled
fb feedback
ff feedforward
int internal mode
i index
j index
k discrete time index
l trial index
m representation in motion coordinates

modal form
nd non-diagonal
nb number of body-modes
nu number of inputs
nm number of modes to be controlled
nr number of modes
ns Degree of over-actuation
ny number of sensor outputs
nz number of performance outputs
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r index
N number of samples
y representation in sensor coordinates

y-direction
z representation in performance coordinates

Special symbols and operators

Symbol Description
| · | Absolute value
∠· Angle
ceil Ceiling operation
dim Dimension
ker Kernel
(·)† Moore-Penrose pseudo-inverse

(·) Model
Maximum

‖·‖p p-norm

·̃ Partial selection of a matrix
Im Image of a matrix
rank Rank of a matrix
(·)T Transpose

Acronyms and initialisms

Symbol Description
COG Center Of Gravity
CPSD Cumulative Power Spectral Density
DOF Degree of Freedom
EBZPETC Extended Bandwidth Zero Phase Error Tracking

Controller
FEM Finite Element Method
FIR Finite Impulse Response
FRF Frequency Response Function
IC Integrated Circuit
IFT Iterative Feedback Tuning
ILC Iterative Learning Control
LTI Linear Time Invariant
LPV Linear Parameter Varying
LTV Linear Time Variant
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MIMO Multi Input Multi Output
NMP Non-Minimum Phase
NST Nearest Sample Time
OA Over-Actuated
OS Over-Sensed
PSD Power Spectral Density
RC Repetitive Control
RGA Relative Gain Array
RMS Root Mean Square
SIMO Single Input Multi Output
SISO Single Input Single Output
ZPETC Zero Phase Error Tracking Controller
ZV Zero-Vibration
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Summary
Feedforward Control for Lightweight Motion Systems

Feedforward control is a common method to compensate for tracking errors due
to known and measurable disturbances. In motion systems these disturbances are
mainly introduced by the setpoint trajectory. Typically these setpoint trajectories
are point-to-point motions, which might be changing due to the production process.
The tracking errors during motion and the residual vibrations determine both the
achievable production speed and production quality, which can be enhanced by
proper feedforward control design.

This thesis addresses feedforward control design for lightweight electromechan-
ical motion systems. Lightweight systems pose several challenges for feedforward
control design: i) flexible modes in the frequency region of interest: the setpoint
trajectory excites the resonant dynamics of the flexible modes, and ii) the rela-
tion between the measured variables and the performance variables can not be
described by a static relation. The second item implies that the performance can
not be calculated or controlled using simple geometrical transformations. Such a
control problem is known as inferential control.

The first part of the thesis deals with feedforward control design for systems
with inferential performance locations. An inferential performance location is the
actual location where performance is required, i.e. the area to be illuminated
or component to be placed. Typically, there are no sensors available at such
locations and accurate control is not possible due to flexibilities. It is shown that
different setpoint trajectories are required for the performance- and sensor location
to avoid conflicting control requirements. For traditionally actuated systems, a
feedforward control design framework is proposed which improves the performance
the inferential performance location. These results are experimentally validated
on a multivariable flexible structure.

Moreover, an exploratory study towards motion systems with time-varying in-
ferential performance locations is presented. The problem of time-varying perfor-
mance location occurs naturally in many manufacturing systems, such as wafer-
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stages and pick-and-place machines. In these machines the location where the
tool operates, i.e. the area to be exposed or the location of the component to be
placed, is constantly varying. To this end, the feedforward control design frame-
work is extended towards time-varying performance locations. However, direct
application of this framework leads to infeasible feedforward signal. To this end,
an input weighting is added to the design procedure. Experimental validation on
a two-mass system with flexible shaft shows that the proposed framework is able
to deal with time-varying performance locations.

The research on feedforward control design methods for over-actuated systems
is divided in two parts. In the first part, the presented method provides guaranteed
performance over the complete structure, similar to input shaping. However, the
presented method does not modify the setpoint trajectory, thereby overcoming
one of the main drawbacks of input shaping. To this end, a novel feedforward
control design framework is introduced, which employs a different decoupling in the
feedforward path. Using a model-based design strategy, the excitation of internal
modes can be avoided, which provides performance improvement over the complete
structure. The theoretical results are supported by experimental results on an
industrial over-actuated lightweight motion system.

In the second part, a data-based method is presented for over-actuated systems
in absence of a detailed model. The presented method optimizes the feedforward
decoupling and - controller based on measured data in one simultaneous optimiza-
tion using a similar parametrization as the model-based method. The data-based
method aims at minimizing the tracking errors instead of preventing the excita-
tion of flexible modes. Therefore, the data-based also takes the compliance effects
of higher order flexible modes into account. These results are supported by ex-
perimental validation on an industrial over-actuated lightweight motion system.
The data-based method shows an improvement with respect to the model-based
method, which can be accounted to model inaccuracies.
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