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In this thesis we consider fundamental principles and tradeoffs involved in the
control of manipulators with distributed (structural) flexibility. In particular, we
consider the end-point (angular) position control of flexible manipulators with joint
actuation. The resulting nonlinear system exhibits a fundamental characterstic that
has been termed nonminimum phase behavior in analogy with the terminology used
for linear systems. This nonminimum phase character of the nonlinear system fun-
damentally limits the types of controllers that can be implemented, as well as the
achievable performance. It is one of the main contributions of this thesis that an
appropriate transient performance measure for nonlinear systems is defined which
quantifies the limits on transient performance due to nonminimum phase character-
istics. In addition, limits on the achievable benefits of feedback control are extended
to the nonlinear setting and demonstrated with the feedback control of a two link
flexible manipulator.

A very fundamental result for the control of flexible manipulators is the global
asymptotic stability under independent joint proportional plus derivative (PD) con-
trol. A proof of this result using the full generality of the nonlinear partial differential
equations of motion is presented here for the first time in the literature. Local expo-
nential stability results are presented using full state feedback. By their local nature,
these results are less robust. A quantitative analysis of the local character serves to
highlight the tradeoffs between performance and robustness.

The transient performance measure is defined within the context of the nonlinear
output regulation theory. This theory also helps to clearly elucidate the tradeoffs
between the feedforward and the feedback control of flexible manipulators. After an
extensive search of the current literature on the inverse dynamics and feedforward
control of flexible manipulators, it is concluded that the nonlinear output regulation
theory offers the best prospects for practical, high-performance control of nonmini-
mum phase flexible manipulator systems in general.

Simulation results of a two-flexible-link manipulator are presented using the non-
linear output regulation theory. To the best of our knowledge, this constitutes the



first time that such a controller has been demonstrated for a two link manipulator
with flexible links. For the feedforward controller, the regulator equations are solved
using simplified models of the dynamics equations: linearized about the equilibrium;
and nonlinear in rigid body coordinates and rates, but linear in flexible deformation
coordinates and rates. Simulation results are surprisingly good for systems where the
elastic deformations are required to remain small. This indicates both the robustness
of the scheme and its practicality in the face of drastic design model simplifications.
For the independently designed feedback controller, both the globally asymptotically
stable robust controller and the locally exponentially stable controller are presented.

Thesis Committee: Professor Andreas H. von Flotow
Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The reasons for the study of manipulators with flexibility are manifold. For industrial

earth-bound robots, light-weight manipulators with reduced arm to payload weight

ratios would result in higher performance and in safer workplaces. Higher speeds

and lightweight manipulators inevitably result in joint compliance and link flexibility

becoming significant effects. For large, space-based manipulators required to handle

massive payloads the flexibility of the manipulator effectively sets the performance

limits. As an example, the shuttle remote manipulator system (SRMS) has its lowest

natural frequency, with joints locked, between 0.04 and 0.4 Hz, depending on the

payload [51,63]. For this reason, joint speeds cannot exceed about 6 deg/min [74] at

maximum loading.

End-point control of a one-link flexible manipulator was first suggested in Ref. [19].

In Ref. [78] the benefits of end-point control are described in detail, and the results

of implementing such a control on an experimental one-flexible-link arm are demon-

strated: a bandwidth four times higher than that achievable with a standard joint

PID controller was achieved. This was done assuming a linear model and solving

the H2 control problem (LQR or LQG). For a two-link manipulator with compliant

drives a similar result has been shown in Ref. [40]. In this case, an LQR/Constant-

Gain-Extended-Kalman-Filter (LQR/CGEKF) controller was implemented using re-

sults [77] that show under certain conditions a suitable linear plant can be found

such that the regulator and estimator gains obtained from solving this linear problem



will stabilize the nonlinear plant. This suitable linear plant is found by Hollars [40]

through Monte Carlo search.

The work of Hollars is extended by Uhlik [89] through the use of nonlinear feedback

input/output linearization and gain/scheduled LQR/CGEKF for a two-link manip-

ulator with joint compliance. Celia Oakley [64] extends some of these results to

the control of a two-link flexible manipulator. In particular, she implements track-

ing control through the use of an LQR-based feedback controller designed using the

linearization of the plant about an equilibrium configuration.

The control of manipulators with joint and distributed link flexibility has been

the subject of much research in recent years. An explosion of papers of a highly

theoretical nature has unfortulnately not been followed by more practical results.

As a consequence, there has been a widening gap between theoretical results and

engineering applications to real manipulators. It is one of the main aims of this

work to aid in the bridging of this gap by marrying theory to practical engineering

considerations.

1.1 Open Issues in Flexible Manipulator Control

The following are some of the unresolved issues in the control of manipulators with

distributed link flexibility. Invariably, the control designer for practical systems must

confront the modelling problem. Systems with distributed parameters have corre-

sponding mathematical models that are infinite dimensional. In particular, the sys-

tem description involves partial differential equations whose solution is much more

complex than the more desirable ordinary differential equations. While for some dis-

tributed linear systems the mathematical tools exist to deal analytically with some

problems of stability [61], and even control synthesis [75, 6], the problem becomes

much more intractable when we consider nonlinear systems [91].

For this reason, engineers turn to assumed modes [60] or finite element formula-

tions [46] in order to discretize the system and thus obtain a finite number of ordinary

differential equations. The order of the approximate finite order system, and in the



case of asumed modes, the choice of mode shapes that yield an accurate representaion

of the actual system, seem to depend both on the system and on the control task.

The selection of these for a given system and task is still mostly a trial and error

process and is thus an open issue in manipulator control.

The next important issue, and one that is most easily understood in the case of

linear plants, is the nonminimum phase issue. It has been known for some time [14,41]

that linear plants with nonminimum phase zeros exhibit limitations on the achievable

performance. In particular, it has more recently been shown [33] that nonminimum

phase zeros limit the ability of a controller to shape the sensitivity function. Generally

speaking, this limits the bandwidth of a feedback controller to be well below the

frequency of the first nonminimum phase zero in the plant. The reason this is a

concern in flexible manipulator control is that the transfer function from joint torque

input to tip postion output of the linearized system is nonminimum phase. Thus these

results from the linear theory place ultimate bandwidth limitations on any closed-loop

control.

The performance bounds derived in the single-input single-output (SISO) case

from sensitivity theory (see Chapter 3) are a direct consequence of properties of

linear time-invariant systems: properties of analytic functions lead to Bode gain-phase

type relations through complex variable theory. All of these properties are extended

to distributed, unstable, multi-input multi-output (MIMO) systems by Boyd and

Desoer [15] through the use of subharmonic functions. In the MIMO case, we are

concerned with nonminimum phase transmission zeros in particular. Kwakernaak

and Sivan [52] point out that a regulator cannot achieve perfect tracking if the plant

has nonminimum phase zeros, in the context of linear-quadratic regulator (LQR)

optimal control. (Recall that state feedback cannot change zero locations.) More

generally, Cheng and Desoer [21] show that for a two degree-of-freedom configuration

linear system (see Fig. 3.3) which could be distributed, if the closed-loop system is

exponentially stable, every zero in the closed right-half plane is necessarily a zero of

the closed-loop transfer function from input to output.

The concept of a nonminimum phase system has been extended to the nonlinear



case. A system with relative degree less than its order will exhibit internal dynamics.

If the output is constrained to be zero for all time, the internal dynamics that results

are termed the zero dynamics. It turns out that for the control of the tip of a flexible

manipulator, using only joint actuation, the zero dynamics are unstable. This is the

nonlinear equivalent of the notion of a nonminimum phase zero. In the literature, the

study of the stability of the zero dynamics has been used mostly in relation to finding

solution to the inverse dynamics problem. The reader is referred to Chapter 4 for a

detailed discussion.

The undesirable characteristics of nonminimum phase systems have prompted re-

searchers to try to find ways to circumvent this stumbling block. Park and Asada [72]

use a cable transmission mechanism to change the torque along the beam. This results

in the transfer function from torque to tip position being minimum phase over a wider

frequency range as the torque location approaches the tip. Wang and Vidyasagar [92]

propose a redefinition of the output that results in a system with a well-defined rel-

ative degree (they note that the standard arc-length output for the one flexible link

system has an ill-defined relative degree as the number of modes increases). The new

ouput function, which consists of the difference between the arc-length due to the

rigid body hub angle and the tip deflection in the moving frame, is minimum phase

for the number of modes considered (three). Furthermore, in some instances the new

transfer function is passive, depending on the ratio of beam inertia to hub inertia. In

this case, they point out, it is possible to invoke the Passivity Theorem [81] in order to

stabilize the system through the use of a strictly passive, finite gain controller which

can be model independent.

In the context of large space structures (LSS), Williams [94] suggests the use of low

authority control (LAC) utilizing a different sensor/actuator set than that reserved

for high authority control (HAC). In this way, the zero locations can be set with the

LAC portion of the control scheme and then the HAC strategy can proceed with a

new set of zeros. This is possible because the LAC strategy is not equivalent to state

feedback, as far as the HAC portion is concernced, since it uses a different set of

actuators and sensors.



An issue of concern when developing model-based control schemes is that of pa-

rameter uncertainty. This issue has been resolved satisfactorily for the tracking con-

trol of rigid manipulators through the use of Sliding Controllers and Adaptive Con-

trollers [81]. Similar results have been extended to manipulators with flexible joints

and even to linear flexible structures. Lozano-Leal and Brogliato [55] use adaptive

control on manipulators with flexible joints. Global asymptotic stability is assured

regardless of joint stiffness value. The approach is similar to that of Slotine and

Li [81]. The passivity properties of manipulators with flexible joints are exploited.

Elmali and Olgac [29] investigate robust output tracking of nonlinear MIMO systems

via sliding mode control. Kao and Sinha [50] present a sliding mode control solution

to the control of vibration in flexible structures using estimated states. To our knowl-

edge, similar results have not been extended to manipulators with multiple flexible

links.

Finally, there is the practical engineering issue of what kinds of simplifications are

possible in the control design when a manipulator is limited to slow enough maneu-

vers. This leads to questions of model simplifications [68, 71,65] as well as to issues

of controller simplification. On the controller side, spectral separation arguments

(whereby the system is split into slow and fast subsystems that can be controlled

separately) are appealing, while on the modelling side the correct choice of slow and

fast variables could influence the effectiveness of the controller.

Some work has been carried out along these lines in the fields of singular pertur-

bation and integral manifold control [86, 80, 79]. The basic philosophy is to control

the slow variables separately after the fast variables, treated as a perturbation, have

decayed to the slow manifold. The success of the approach in every case depends on

the slow variables being slow enough. In practice, this means keeping the bandwidth

of the controller well below the first flexible modal frequency. Comparatively good

results are obtained when feedforward terms are are added to the slow control. This

is not surprising, especially when the controller schemes are compared to LQR-based

feedback controllers that do not include feedforward terms, as in Ref. [79].

In this work we delve into the fundamental principles and tradeoffs involved in flex-



ible manipulator control. In the process, we succeed in bringing flexible manipulator

control within the grasp of the classical theories for an important class of systems in

which flexible deformations remain small. In so doing we provide formal justification

for what has been commonly carried out in an ad hoc manner in the interest of prac-

tical implementations. Moreover, we provide clear and in many instances quantifiable

descriptions of the fundamental tradeoffs between feedback control and feedforward

control; and between global robust control and local high performance control in a

nonlinear context.

We have tried to harvest from the more theoretical results practical fruits that

enhance our understanding of the control of flexible link manipulators. For this

purpose we have identified from the nonlinear topological control field a transient

performance measure that evidences the fundamental performance limits due to the

nonminimum phase nature of our system. Empowered and emboldened this way,

we have conjectured that locally linear sensitivity theory limits also apply in our

nonlinear setting. In the final analysis, we test our results with the simulated control

of a two-flexible-link arm.

1.2 Thesis Outline

In Chapter 2 we derive the nonlinear partial differential equations of motion for a

planar one-link manipulator attached to a rotating base with mass and inertia and

with end-effector mass and inertia. The most general form of the equations contains

Rayleigh damping as well as foreshortening effects. To our knowledge, this is the first

time these equations have been presented. These equation are discretized in space

using an assumed modes procedure. The form of the equations of motion of general

multibody chains in discretized form is then given, and from these we specialize to

the equation of motion of a two-link manipulator to be used for control design and

evaluation in later chapters.

In Chapter 3 we delve into the linear sensitivity theory, both for classical and

multivariable settings. Specifically, we investigate the limits on performance and



the achievable benefits of feedback imposed by nonminimum phase characterstics on

linear systems. It turns out that these represent fundamental limits for nonlinear

nonminimum phase systems as well. The chapter concludes with extensions of the

concepts of zero and nonminimum phase systems to the nonlinear multivariable case.

In Chapter 4 we examine the state of the art in inverse dynamics and feedforward

control of flexible manipulators. After some background on nonlinear control theory,

we examine the relative merits and drawbacks of schemes proposed in the recent

literature. We draw some conclusions which lead naturally to the consideration of

the developments in Chapter 5.

In Chapter 5 we introduce in detail the nonlinear output regulation theory. This

theory provides a framework within which we can clearly elucidate the tradeoffs be-

tween feedback and feedforward control. Furthermore, it is within this framework

that we identify and define a performance measure for nonlinear finite dimensional

systems. With this performance measure we are able to examine fundamental limits

to the achievable performance of flexible link manipulators with joint actuation and

tip sensing. Illustrations are made with a one-flexible-link example, and it is pointed

out how the results are not limited to finite dimensional systems.

Chapter 6 is the most theoretical of the chapters. In it we provide a proof of the

global asymptotic stability of a one link flexible arm under joint PD control. This

fundamental and perhaps intuitive result is carried out for the nonlinear partial dif-

ferential equations developed in Chapter 2. To our knowledge this is the first time

such a result has been presented. The chapter continues with proofs of locally expo-

nentially stable joint tracking control using full state feedback. More than anything,

these results on joint tracking serve to point out the limit of achievable globally sta-

ble controls through the use of feedback inversion techniques of the type presented

in Chapter 4. We then explore the tradeoff between loss of robustness and globality

when compared to the PD case on the one side, vs. the increased local performance.

Finally, suggestions are made as to how to extend these results to the multiple link

case.

In Chapter 7 we bring the results and insights of the previous chapters into focus



by considering the control of a two flexible link manipulator. In the first part of

the chapter we implement a controller based on the results of the output regulation

theory. We solve the regulator equations for the feedforward control and the steady

state manifold, which we use as part of the feedback control. We then implement

various feedback schemes to elucidate the themes of robustness vs. performance.

In the last part we revisit the fundamental limitations to the achievable benefits of

feedback through sensitivity analysis of the nonlinear system.



Chapter 2

Dynamics

2.1 Manipulator with One Flexible Link

In this section we develop the equations of motion for the system depicted in Fig. 2.1.

The system consists of: a rigid hub which is free to rotate in the plane; a flexible

link attached to the hub in a cantilevered way; and, a tip mass with inertia attached

to the tip of the flexible link, also in a cantilevered way. This system represents one

of the simplest manipulators which exhibit both distributed flexibility and nonlinear

dynamic and kinematic behavior.

In what follows, we shall derive both exact and approximate equations of motion

for the one-flexible-link manipulator. We will also consider the cases where the flexible

link does and does not exhibit material damping.

2.1.1 Exact Formulation-Undamped Beam

It will be convenient for the developments in later chapters to refer to the system's

kinetic and potential energies. For this reason, we subscribe to a Lagrangian approach

in order to determine the system's equations of motion. We will, in effect, make use

of Hamilton's Principle [73]. Because at this point we are only interested in deriving

equations of motion, we do not need to concern ourselves with the difference between



Figure 2.1: Single Flexible Link Arm

Hamilton's Principle and Hamilton's Law. The interested reader is referred to [4] for

a thorough discussion of this topic.

Kinetic and Potential Energies

Referring to Fig. 2.1, we can immediately write down the kinetic energy of the one

flexible link arm as

T = ~JHj T() NT + JT(jH(t) + (l. t))2
2 W)+ mT 11 2 Y

+ P11p ((xt) - ýH(t)7(X,t)) 2 dx

+ 11 p ((x,) + (t) (x ± b+ + ,(x,t))) dx (2.1)

where

N T HT + NH X pOT

= [)(13 t) - H(t)(7y(l, t) + bT sin ,(t))I &1

+ [r,(1, t) + ýH(t)(bH + I + 77:(l, t) + bT cos 3(t))] a2
p(t) = ,7(l, t).

As is customary, the following convention has been used 6(.)/8x = (.)' and

8(.)/at = (-). The constants JH, mT, and JT represent, respectively, the moment

T

T
nk

o 77y

mH reference axis

deformed link



of inertia of the hub body, and the mass and the moment of inertia of the tip body.

The mass per unit length of the beam is given by p. The constant length bH is the

distance between the hinge axis in the hub body, represented in Fig. 2.1 as the point

0, and the point of attachment of the link to the hub. Notice that we are assuming

that the hinge point O coincides with the center of mass of the hub body. On the tip

body, bT is the distance between the point of attachment of the tip body to the link

and the center of mass of the tip body along the extension of the beams's neutral

axis.

Following the notation established by Kane in [47], the vector NvT represents the

velocity of the point T in the inertial reference frame. The vector HvT is the velocity

of T with respect to the reference frame attached to the hub and represented by

the orthogonal unit vectors {&1,&2}. The vector NwH is the angular velocity of the

body-fixed frame {&1,&2} with respect to the inertial frame; pOT is the distance vector

between the hinge point O and the point T. Finally, the time-varying quantities OH(t),

r7x(x, t), qr,(x, t) represent, respectively, the angular position of the hub-attached frame

with respect to the inertial frame, and the link deflections in the hi (x-) direction

and in the &2 (y-) direction.

If we now further assume the link can be modelled as an undamped Bernoulli-Euler

beam [87], the potential energy can be written as

VI = E 7"(, t)) 2 d + 1 EA (n/ (X, t))2 dx (2.2)

The quantities El and EA, assumed constant for simplicity, represent the flexural

rigidity and the axial stiffness of the beam, respectively.

Correct Linearization

We are ultimately interested in deriving exact nonlinear equations of motion for the

system of Fig. 2.1, which are nonetheless linearized with respect to the (expected)

small elastic deflections. In order to do this properly, we must have the correct

energy expressions at least to second order in the small quantities (see for example

Ref. [68, Appendix A]). Eqs. 2.1 and 2.2 are actually exact, for a Bernoulli-Euler



beam. However, for simplicity, we would like to ignore axial extensions of the beam

since these are negligible in comparison to bending deflections.

In order to do this properly, however, we must take into account the correct nonlin-

ear strain-displacement relations [71,49] in the formulation of the energy expressions.

This is so because the axial extensions are not independent and in fact depend on the

transverse displacement in a nonlinear way. In fact

n7(X,t) t=)- a?7,t 0 da.

Equations of Motion

Substituting for r,(x, t) using the relation given above, and proceeding with Hamil-

ton's Principle, we obtain the equations of motion for our system: nonlinear in rigid

body motions, but linear in small elastic deflections.

JHH(t) + jl p [(x + bH)(y(x, t) + (x + bH)OH(t)) dx

+ mT [(bH+ 1+ bT)(i)(x, t) + (bH + 1+ bT)H(t))]

+ JT(0H(t) + ((t)) = 7(t) (2.3)

El•"'"(x, t) + pj,(x, t) + p(x + bH)9H(t)

- p (t) (7v(x, t) - (x + bH)i,(X, t)+ ( + bHX + bH + ")7 .t))
- mT0~(t)(bH + 1 + bT)'(x, t) = 0 (2.4)

mT 9(t)qy(l, t) - mTiy(l, t) - mT(bH + + bT)OH(t)

- mT(bH + 1)92H(t)3(t) + EI'/"(l, t) = 0 (2.5)

JT(9H(t) + p(t)) + El•"(1, t) - mTbT9)(t)( 7 (l, t) + bHT(t))

+ mTbT(bH + 1 + bT)9~(t)(t) = 0 (2.6)

In addition, the following boundary conditions must be satisfied:

vY(O0, t) = •' (0, t) = 0



Nondimensionalized Equations The above equations can be made more tractable

for ease of manipulation by nondimensionalizing. Let displacements be measured in

units of [1] and time be measured in units of [fpi4 /EI]. If we further remove the tip

body, the equations of motion become

IOH(t) + [( + b)(•,(x, t)+ (x + b)OH(t))] d = (t) (2.7)

'""( ) + , t) + i(, t) + (x + b)9H(t)
2 j(t) (x, t) - (x+b)YI(x, t) + ( + bx + b + )"(x,t)) =0 (2.8)

where we have defined the following quantities:

JHI=

bH

b T(t)

EI1Z(t- /

The following additional boundary conditions apply in the absence of a tip body:

7/(1, t) 0 -q"'(1,I) t 0

The nondimensionalized energy expressions become:

T = (I96(t)

S+ ) ((Xt) + H(t)(X + b + ,(x,t))) d (2.9)

V= 1 (ll(, t)) 2 dx (2.10)

Notice that in Eq. 2.9 we have included the term r,(x, t). Omitting this term would

result in incorrectly (or inconsistently) linearized equations. Of course, 7,(x, t) should

be replaced by its expression in terms of r,(x, t). We have not done so above in the

interest of clarity.



2.1.2 Approximate Formulation

In order to carry out numerical integration of the equations of motion, it is necessary

to convert the partial differential equations obtained above into ordinary differential

equations. This is done by discretizing the flexible degrees of freedom, represented

above by the flexible beam transverse displacement qy(x, t). Traditionally, this is

achieved either by a finite element formulation [46], where the beam is broken down

into a finite series of elements with their own mass and stiffness, or by an assumed

modes approach [60], where the transverse displacement is represented as a finite

sum of time-dependent generalized coordinates weighted by space-dependent mode

shapes.

We choose the assumed modes method and represent the transverse beam dis-

placement as

27y(7 , t) = O (x)qi(t).
i=1

In this case the dependent axial extensions become

n n
rTh(Xt) = 1 . ~ f (a)[(u)drqjqj .

i=1 j=1

Substituting these relations into the kinetic and potential energy expressions and

then proceeding with Hamilton's principle, we obtain the following set of ordinary

differential equations which are an approximation to the equations of motion for our

system.
n

ITOH(t) + mii(t) = 7 (2.11)
i=1

n n n

mjOH(t) + E Gijqi(t) + E Hiqi(t) = -- 2 (t) > K 9 qi(t), (j = 1,... ,n) (2.12)
i=1 i=1 i=1

where we have made the following definitions:

ITot = JH + IB+ bHmB + 2ebH + mT(bH + JT

mi = bHEz + Ft + mT(b + 1)0(1l) + JT¢b(l)

Gi = g91 + mTqj(l)q$(1) + JT (l)0b(()

K =- bHPij + 77ij - + mT(b + 1)A3i(l) - mTqj(1);i (1)



and following Kane et al. [48] we have defined

mB = pdx,
1· A

H3 = EI"'(x)'Yj(x)dx,

and we have further defined

0W= j I(o )d,

For future reference, we recast

H(t) H(t)M Dt + i

e = xpdx,

El = fj qi(x)pdz,

gij = j q5.(x)q5(x)pdx0

IB = 'x 2pdx

Fi = 1o xqi(x)pdx

jEqs. 2.11-2.12 into matrix for= p ()dm..

Eqs. 2.11-2.12 into matrix form.

K OH(t)
q(t)

= -0H(t)K t)
q(t)

+ Br

where

mT]
G

SK=

0 0---0 1
0 0

Kg= B=- q(t)=
Kg

qn(t)
0 0

and we have defined the following vectors and matrices: m is the n-vector whose i-th

component is mi; D is a matrix of Rayleigh damping; H is an n x n matrix with ij-th

component H12; and, K9 is an n x n matrix whose ij-th component is Kgj.

It is now an easy matter to set Eq. 2.13 in state space form by inverting the mass

matrix and defining a state vector such as, e.g.,

OH(t)
q

X =

OH(t)

4

(2.13)

M= [I m

L



2.2 Manipulators with Multiple Flexible Links

In this section we present the equations of motion for open chains of flexible bodies,

of which the equations for flexible manipulators form a subset. We circumscribe

ourselves to approximate equations so that we will end up with finite sets of ordinary

differential equations.

2.2.1 General Form of the Equations of Motion

The equations of motion of an open chain of elastic bodies can be expressed quite

generally as [42]

MRn(, q) MRE(8,q) 0 f FR(, q,;, 0)

MER(O, q) MEE (, q) fE FE(,q, ,) (2.14)

where 0 is a vector of rigid body generalized coordinates; q is a vector of the elastic

generalized coordinates; MRR, MRE, MER, and MEE form the configuration depen-

dent mass matrix; f is a vector of control forces (as in joint-torque actuators in a

manipulator); and F is a vector of nonlinear (e.g., inertial, elastic) forces.

Small Deformations Assumption

It is of great interest to model in particular the important class of systems for which

the elastic deformations remain small so it is possible to ignore terms of second order

in the qi(t) and qi(t). If we also assume linear elastic relations, it is possible to expand

Eq. 2.14 into a form which is reminiscent of the form of Eq. 2.13 for the one-flexible

link arm:

M(, q) + D + K + G(, q) = -C(, q, 0, ) + Br (2.15)
q qt q

where D is a constant matrix of Rayleigh damping; K is a constant stiffness matrix;

C(, q, q, 4i) is a vector of inertial (coriolis and centripetal) forces; G(8, q) is a non-

linear vector of position dependent gravity forces; and we have set f = Br where B

is the control distribution matrix and the control vector r has in general many fewer

elements than the number of degrees of freedom.



As was the case with Eq. 2.13, it is an easy matter to rewrite Eq. 2.15 in state

space form by defining the state vector

q

2.2.2 Equations of Motion for Flexible-Link Manipulators

The equations presented in the previous section are quite general and include among

others the equations of motion of three-dimensional, flexible-link (and flexible joint)

manipulators, with revolute and/or prismatic joints, operating in a gravity field. In

this work we limit ourselves to the study of planar (i.e., two-dimensional), revolute,

flexible-link manipulators that do not form closed chains and that operate in a plane

perpendicular to the action of gravity (i.e., so that the G term in Eq. 2.15 is zero).

A two-link example is shown in Fig. 2.2

To model the links, we assume as for the one link case that we are dealing with

flexible beams undergoing small deflections so that the Bernoulli-Euler beam theory

applies. We further use the assumed modes method to discretize the continuous (in

the spatial variables) displacements. We can then identify the components q2(t) of q

with the time-dependent generalized coordinates. We can also take the components

9i(t) of 0 to be the relative joint angles between the links. We then see that Eq. 2.15

is indeed a more general version of Eq. 2.13, where now the matrix terms contain in

general spatial integrals of functions of the modeshapes of the individual links.

Specifically, referring to Fig. 2.2 we identify

0(t)= (t) , q(t)=
LI(t)J

qi(t)

qn(t)
p1 (t)

pm(t)

x



Figure 2.2: Manipulator with Two Flexible Links

where, following the assumed modes method procedure, we represent each link's trans-

verse displacement respectively as

n

7y 2( 2,Xt) =0 X2)pzpi )

As can be seen from Fig. 2.2, 0(t) represents the (inertial) shoulder angle, while i(t)

is the relative angle between the stator and the rotor at the elbow joint.

The shoulder body A is hinged at its center of mass and has mass mA and inertia

JA. link 1 is attached to body A in a cantilevered way at a distance bl of the hinge

point. Link 1 has mass per unit length pi, length lI, and flexural rigidity EI 1 .

The elbow consists of two rigid bodies. Body B 1 is the stator and is attached to

link 1 in a cantilevered way. Body B 1 is attached to body B 2, the rotor, at the elbow

hinge point. Body Bi has mass meB and inertia JB,, for i = 1,2. The mass centers

of the bodies Bi,i = 1, 2, are offset from the hinge point. The distance between the

a,



point of attachment of body B 1 to link 1 and the hinge point at the elbow is given

by b21 . Notice that b21 is chosen to coincide with the extension of the slope of link 1

at the tip (zX = li).

The location of the mass center of body B1 is then given by the radial distance b

from the elbow hinge point and the angle /12 that it makes with the extension of line

b21 . The distance between the elbow hinge point and the point of attachment of link

2 is given by b2 2 , which is chosen to coincide with the extension of the undeformed

neutral axis of link 2. The location of the mass center of body B 2 is now given by the

radial distance b' from the elbow hinge point and the angle P:2 that it makes with

the extension of line b22 .

Notice that the joint relative angle P(t) is exactly the angle made between the

extension of the line b2 2 and that of line b21 . Link 2 is attached to body B 2 in a

cantilevered way. The mass per unit length of link 2 is given by P2, its length by 12,

and its flexural rigidity by El 2.

Finally, the tip body Ci is attached to link 2 in a cantilevered way. The distance

from the point of attachment of link 2 to the center of mass of body Ci is given by

bt, where we assume bt coincides with the extension of the slope of link 2 at the tip

(z 2 = 12). Body C1 has mass mc, and inertial Jc,.

If we take cantilevered mode shapes as the assumed modes, then the control

distribution matrix assumes a very simple form

1 0

0 1

00

00

where the actuators are taken to be joint torquers.

The general form of Eq. 2.15 is quite satisfactory for the developments in future

chapters. In Chapter 7, digital simulation results are presented using the specific

example of a planar two-link manipulator. The reader is referred to [68] for the

detailed equations of motion in this case. In Appendix C the subject of mode shape



selection for the assumed modes expansion is addressed for both the one and two-link

manipulator examples.



Chapter 3

Nonminimum Phase Systems and

Limits of Feedback Performance

3.1 Linear Systems

3.1.1 Sensitivity Theory

In the following discussion, we shall limit ourselves to the well developed theory for

continuous time, finite dimensional, linear, time-invariant systems.

The problems of control with which feedback theory is concerned can be described

quite generally as follows [41]. There is a set of objectives which is assumed to be

mathematically expressible by a finite set of variables. There is a specialized array of

equipment needed to achieve (and capable of achieving) the objectives. This array is

denoted as the plant and it has a discrete set of (controllable) inputs (see Fig. 3.1).

The solution to this

problem would be to insert between R and M a network G which translates

... the set of objectives into the language appropriate to the plant.*

This solution may not be practicable due to uncertainty (ignorance for Horowitz) both

of the plant and of the environment (e.g., uncontrollable and uncertain inputs to the

*I.M. Horowitz, Synthesis of Feedback Systems, Academic Press, N.Y., p.1
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Figure 3.1: Definitions for Feedback Control Theory

plant). If the desired objectives are not achievable within the permitted tolerances

due to this uncertainty, it may still be possible to achieve the desired accuracies by

means of feedback.

Feedback theory is concerned with processing the information gained by sensing

the outputs and comparing them with the objectives and using this difference to drive

the plant until the differences become satisfactorily small. Horowitz [41] suggests that

there are three general and all-encompassing reasons to use feedback:

(i) to contend with plant uncertainty

(ii) to contend with ignorance of exogenous inputs

(iii) to change the static and dynamic characteristics of a given element through the

use of feedback.

3.1.2 Structure of the Feedback System

If a plant has only two access points, and if access to the output is only via the plant

(what Bode [14] calls a zero leakage transmission) then it is impossible to create more

Plant
P

I I

Translating
Network

G

-R __M

R M



than two design degrees of freedom, no matter how complicated a configuration is

built around the plant.

The basic system capabilities (as far as plant sensitivity and plant distur-

bances are concerned) are completely determined by the number of access

points of the plant.t

The structure of the feedback system of Fig. 3.2 exhibits a single degree of freedom,

L = GP, where P is the a priori given plant with which the control designer must

work.

For both G and P finite dimensional linear time-invariant (FDLTI), with G(s)

and P(s) being the corresponding transfer functions, the system (closed-loop) input-

output relation and the error between the reference input and the output are given

by:

y = (1 + PG)- [PG(r - n) + Pdi + d 2] (3.1)

e = r-y

= (1 + PG)- [r - d2 PGn - Pd] (3.2)

t Ibid., p. 249.

Figure 3.2: Single Degree of Freedom Feedback Configuration



It is apparent from the closed-loop transfer function, Eq. 3.1, that the effect of

feedback around the plant is given by the quantity (1 + PG). The physical inter-

pretation of this quantity is obtained by breaking the loop anywhere and, setting all

other inputs to zero, introducing a unit impulse where the loop was broken. The

resulting output is -PG, and the difference between the input and the output is

exactly (1+ PG). For this reason (1 + PG) is called the return difference for PG, and

L(s) = P(s)G(s) is called the loop transmission or loop gain.

Let T(s) be the closed-loop transfer function from r to y. The sensitivity of T(s)

to plant parameter variations, i.e., to variations in P(s), is given by [41]

AT

S(s) = T+AT (3.3)Apnp 1 + L(s)'

Equation 3.3 indicates that the system sensitivity to plant uncertainty (S(s)), for

the system depicted in Fig. 3.1, is equivalent to the inverse of the return difference

for the system. From the above, and equations 3.1 and 3.2, it is clear that S(s) is

a measure of the benefits of feedback, as set forth in the Introduction section. For

systems with only one structural degree of freedom (as in Fig. 3.2), it is impossible to

independently specify the filter transfer function, given by T(s), and the properties

of feedback, characterized by L(s) (via S(s)).

Because the older classical feedback control theory deals mostly with the single

degree of freedom structure of Fig. 3.2, its synthesis techniques allow the designer

to achieve compromises between the filter and feedback problems. Due to the single

degree of freedom constraint, T(s) is not formally specified and instead the various

design requirements are expressed in terms of the loop transmission L(s). This way

the designer has control over the feedback properties and the system response over a

large part of the significant frequency range, i.e., over the frequency range in which

IL(jw)I > 1, where T = L/(1 + L) - L/L = 1. In the classical theory all design

specifications are given in terms of L(s). The loop transmission is shaped in the

frequency domain (via Bode and Nyquist plots) to achieve the required specifications.

More recent design procedures include the root locus method and the T(s) pole-zero

method.



Figure 3.3: Two Degree of Freedom Feedback Configuration

The one degree of freedom feedback structure suffers from some shortcomings.

This configuration is inherently very sensitive to parameter variations near crossover,

where it turns out that IS(s)I > 1 and thus sensitivity to plant variation is worse than

if no feedback were used. This situation is exacerbated in higher order systems. In

addition, sensitivity of the time response is very poor: the system overshoot is very

sensitive to variations in P, while the final steady state value is unaffected, given

S(O) = 0. Furthermore, only special kinds of disturbances at the output can be

handled by this configuration. Only when the bandwidth of T(s) is much larger than

the important frequency range of the disturbance can we make yd22 = (1- T)d 2 small

(since then T a 1).

Disturbances at the plant input are also poorly rejected in the case when P has

highly underdamped complex poles. Since these poles are nearly cancelled by G, and

Ydl = P/(1+ L)di, L does not have the poles to cancel those of P and these poles lead

to relatively large disturbance output. Finally, it is not possible to guarantee stability

margins in the presence of large uncertainty and to increase the system bandwidth

(improve the transient response), since large gain and phase margins are associated

with overdamped dominant poles which make the system response more sluggish.



The feedback system of Fig. 3.3 exhibits a configuration with two degrees of free-

dom. In this case, the input-output relation and the error between the reference input

and the output are given by

y = (1 + L)- 1 [PGr - Ln + Pd, + d 2]

= Tr - Smn + SPdl + Sd 2  (3.4)

e = r-y

= (1 - T)r + San - SPdi - Sd2  (3.5)

L(s)
Se(s) = 1 - S(s) + L(s)= (3.6)1 + L(s)

where now L = PH is the loop transmission function and T=GP/(1+L) is the filter

transfer function. As before, the system sensitivity (to plant variations) function

is given by S = 1/(1 + L). Sc is the so-called complementary sensitivity function.

We have assumed, as for the one-degree-of-freedom case, that all system blocks in

Fig. 3.3 represent FDLTI elements. The significant feature of a two-degree-of-freedom

configuration is that it allows for the independent realization of the system sensitivity

function, S, and the system transmission function, T.1 These two functions fix the

values of G and H in Fig. 3.3. As mentioned earlier, if the plant has only two access

points, and if it is a zero leakage transmission, then it is impossible to obtain more

than two degrees of freedom.

Even with the two-degree-of-freedom structure there are several limitations on

the achievable benefits of feedback [41]. One serious limitation is due to noise or to

parameter variation in the return path of the feedback loop (n in Figs. 3.2 and 3.3).

It is well known that since the transfer function from sensor noise (n) to plant output

(y) is given by the complementary sensitivity function, S,, and since not both S and

S, can be made small in the same frequency range, the significant frequency range for

sensor noise better be higher than the range where the loop gain is greater than one

(where S is small and the benefits of feedback are achieved). Another detrimental

tlbid., p. 246.



effect of noise in the feedback path is that the noise level at the plant input can

exhibit a high level of the higher frequency components of the sensor noise. This can

be seen as follows.

Setting all other inputs to zero, the transfer function from n to i (the plant input)

in Fig. 3.3 is given by

i -H(s) -
n 1 + L(s) 1 + P

For ILI < 1, i/n . -L/P and if ILI > IPI in this mid-frequency region we see that

the magnitude of the i/n transfer function is greater than one. This problem also

exists when ILI > 1 and IPl < 1, because then i/n - -1/P. It is clear that this

problem only occurs when the demand for the benefits of feedback is greater than

what the plant by itself is capable of supplying, i.e., when H must make up the gain

difference between that available in P and that desired in L.

To reduce this limitation on the achievable benefits of feedback, it is necessary to

decrease ILl as fast as possible (after the significant frequency range where the benefits

of feedback are obtained). Unfortunately, the rate of decrease of ILI is limited by

stability considerations and the Bode gain-phase theorem. We will look at this later

when we study in greater detail the limitations imposed on the achievable benefits of

feedback by right half plane zeros. Suffice it to note now that if a plant has more than

one right half plane zero then there is an absolute limit on the loop gain-bandwidth

achievable. Finally, another limitation is the limit on the loop transmission crossover

frequency imposed by practical considerations due to neglected higher order dynamics.

It is important to note that the factors determining the feedback capabilities and

the cost of feedback for a given system are system constraints such as: whether it is

zero leakage or not; the number of access points in the plant; and, the kind of stability

permitted (i.e., conditional or unconditional). The way to reduce some of the above

limitations, then, is by relaxing some to these constraints. This leads to multi-loop

designs, designs with parallel plants, multi-input multi-output (MIMO) systems, and

conditionally stable designs.



3.1.3 Nonminimum Phase Systems

A function F(s) of the complex variable s is called a minimum phase function if it

satisfies the Bode gain phase theorem; one of whose forms is

dA UI
7rB(w:) oo A In coth -du (3.7)

u =ln

and

F(jw) = A(w) + jB(w) = F(-jw) (3.8)

The last equality in Eq. 3.8 is a property of transforms of impulse responses of real

systems (time functions) for which A(jw) and B(jw) are even and odd functions of

w, respectively. Equation 3.7 can be interpreted as follows: the argument of L(s) at

any frequency wx is determined by the rate of change (on a log frequency scale) of the

log magnitude of L(s) in the neighborhood of w,. The function ln(coth( ul/2)) can

be considered a weighting function which weighs the point wx the most and rapidly

decays over a few octaves on either side.

For our purposes, we consider functions of the type F(s) = In L(s) so that A =

In |L(jw)i, B = arg L(jw). In this case, Eq. 3.7 holds for functions L(s) which satisfy

Eq. 3.8 and such that L(s) can be zero or infinite at infinity, but must be analytic

and have no zeros in the right half plane. Note that if F(s) satisfies Eq. 3.8, then

so does ln(F(jw)). (F(s) must also belong to the class 7R (see Ref. [33]), but it may

have poles and zeros of any multiplicity on the jw-axis.) In particular, we see that

unstable functions and functions with right half plane zeros and/or time delays are

not minimum phase. Of functions that satisfy Eq. 3.7 Horowitz says that

[n]o other stable function ... with the same magnitude vs. frequency

characteristic can have any less phase lag.§

Stable functions for which Eq. 3.7 does not hold are called nonminimum phase

functions. Systems represented by nonminimum phase transfer functions are called

§ Ibid.,p. 333.



nonminimum phase systems. Examples of nonminimum phase systems are sytems

with right half plane zeros, with unstable minor loops, and with time delays. Essen-

tially, nonminimum phase systems have faulty behavior at start of response (due to

large phase lag at high frequencies) which makes response slow [66, p. 391].

In order to begin to understand why nonminimum phase systems exhibit inherent

performance limitation, let us first consider the following qualitative arguments. A

loop transmission with right half plane zeros can be written as L(s) = L 1(s)(s -

a)... (s - g) where Li(s) has only left half plane poles and zeros. Equivalently

L(s) = LM(s)A(s) where

A(s) = ( a) (s g)
(s + a) ... (s + g)

A(s) is called an all-pass function (also a Blaschke product) since its modulus is

equal to one for all frequencies when evaluated at s = jw. Consequently, L(s) differs

from LM(S) only in phase. An all-pass function has an increase of phase lag from

zero to infinite frequency equal to 180 0 n, where n is the number of right half plane

zeros. LM(s), which satisfies Bode's gain phase theorem (Eq. 3.7), is seen to have

the minimum phase lag possible for its magnitude characteristic (as a function of

frequency). Thus the term minimum phase function introduced above.

Using Eq. 3.7 and its physical interpretation given above, the detrimental effects of

right half plane zeros can be understood as follows. The faster the loop transmission

decreases, the larger is its phase lag. This implies that if the modulus of L decreases

too fast the phase lag could be large enough to cause instability. The actual bandwidth

before we can make the modulus of L less than 1 is much greater than the desired

bandwidth for large loop gain. This is one of the important costs of feedback., Since

A(s) increases the phase lag of LM(s) by 1800n, the rate of decrease of the modulus

of LM(jw) must be even less than before, especially in the critical crossover region.

The same is true of systems with pure time delays. This is clear from the fact that

e- T can be approximated to arbitrary accuracy by an all-pass network.

¶Ibid., p. 324.



Freudenberg and Looze [33] formalize the above qualitative discussion with defini-

tive quantitative bounds on the achievable benefits of feedback due to nonminimum

phase systems and unstable systems. These bounds take the form of integral relations

that must be satisfied by both the sensitivity and complementary sensitivity functions

in the presence of right half plane poles and zeros. Effectively these constraints show

that desirable properties of S(jw) and S(j3w) in one frequency range must be traded

off against undesirable properties at other frequencies.

These tradeoffs are a direct consequence of properties of linear time-

invariant systems.II

In the sequel we give a concise summary of these results of Freudenberg and

Looze for the single-input, single-output (SISO) case. The generalization to multi-

input, multi-output (MIMO) systems is credited to Boyd and Desoer [15] and is also

presented below.

SISO Systems

The integral relations derived in this section, which represent bounds on the achiev-

able sensitivity function for an FDLTI system, result from the following realizability

property: the Laplace transform of the impulse response of a physical system is a

locally analytic function of the complex frequency variable. In particular, Poisson

integral formulas apply [22].

Referring to the single degree of freedom configuration of the system in Fig. 3.2,

we have as before the loop transfer function given by L(s) = P(s)G(s), the sensitivity

function by
1

1 + L(s)'

and the complementary sensitivity function by T(s) = 1 - S(s). Assuming that L(s)

is free of unstable hidden modes, i.e., the controller does not attempt to cancel any

IIJ.S. Freudenberg, and D.P. Looze, Right Half Plane Poles and Zeros and Design Tradeoffs in

Feedback Systems, IEEE Transactions on Automatic Control, Vol. AC-30, No. 6, June 1985, pp.

555-565.



unstable modes and no unstable modes are unobservable, then the feedback system

is stable if S(s) is bounded in the closed right half plane.

Assume that L(s) can be factored as

L(s) = LM(s)B,-'(s)Be-" (3.9)

where

B,(s)= i - S (3.10)

is the Blaschke product of open right half plane zeros, zi, including multiplicities,

B,(s) = 1 '- -s (3.11)

is the Blaschke product of open right half plane poles, p-, also including multiplicities,

and e-" with T > 0 representing a time delay. A line over a complex-valued vari-

able represents complex conjugation. LM(s) is assumed proper, stable and minimum

phase.

If the feedback system is stable, then S(s) can be factored as S(s) = SM(s)Bp(s),

where following the convention established above, SM(s) is stable and minimum

phase. Recall that a Blaschke product is all-pass with unit magnitude, so that

tS(jw)l = ISM(jw)IVw. For the results presented below to be valid we further re-

quire S(s) to beglong to the class of functions R7. Given a function F(s), define

M(R) = sup IF(Re 9e)J, 0 E [-7r/2,w /2].

Then if

lim M(R) = 0
R--+oo R

F(s) is said to belong to the class R.

If Lo(s) is a proper rational function, then log Lo(s) and d'/dsi log Lo(s) are in R.

If L(s) = Lo(s)e-"' , 7 > 0, then log L(s) is not in 7R. However, if the feedback system

is stable with sensitivity function S(s), then log S(s) and d'/ds' log S(s) are in 1R in

spite of any time delays in L(s).

After these preliminaries, the following two theorems, due to Freudenberg and

Looze [33], state the constraints upon the sensitivity and complementary sensitivity



functions due to right half plane poles and zeros in terms of the values of the respective

function on the jw-axis.

Theorem 3.1 Let z = z+jy be an open right half plane zero, with multiplicity m, of

the open loop transfer function L(s). Assume that d/ds' log SM(s) is in the class R,

i = 0,1,..., m- 1. Then, if the corresponding feedback system is stable, the sensitivity

function must satisfy the following integral constraints:

7r log IBp-'(z)l

7 arg Bp '(z)

7r ds log Bl()
S"- Z

J log IS(jw)|de,(w)

= arg SM(jw)dO,(w)

Jy ds' log SM(s)
Z -SM W

(3.12)

(3.13)

(3.14)d6,(w)

The function 0,(w) is given by

(w) = arctan [ . (3.15)

The complementary sensitivity function for a stable feedback system can be fac-

tored as

T(s) = Tj(s)Bz(s)e-"

where TM(S) has no poles or zeros in the right half plane.

Theorem 3.2 Let p = x + jy be an open right half plane pole, with multiplicity n,

of the open loop transfer function L(s). Assume that cd/dsz log TM(s) is in the class

(R), i = O, 1,... ,n - 1. Then, if the corresponding feedback system is stable, the

complementary sensitivity function must satisfy the following integral constraints:

7r log IB l(p)j + 7 rx7

r arg Bl'(p) + 7ryT

d. (log B;1(s)e"r) LPds---7

oo

= log IT(jw)ldOp(w)

- arg TM(ji)dO,(w)

-J 0log TM(S) d9p(w)

(i= 1,...,n - 1).

(3.16)

(3.17)

(3.18)

(3.19)

|



The function Op(w) is given by

(w) -- arctan [W . (3.20)

Note in particular the constraints given by Eqs. 3.12 and 3.16. These represent

constraints on the weighted area under the log IS(jw)l and the log IT(jw)l curves. The

jw-axis is weighted by the location of the right half plane zero or pole, respectively,

using the function 9B(w), s = z,p. It is easy to see that 8,(w) is an increasing

function of w. Since the left hand sides of Eqs. 3.12 and 3.16 are nonnegative, we

see that if IS(jw)l < 1 or JT(jw)| < 1 at some frequency ranges, then these quantities

must necessarily be greater than one at other frequency ranges. This establishes a

fundamental tradeoff between feedback properties at different frequencies.

Moreover, from the weighting function 0,(w) it is clear that right half plane poles

and zeros which are close to frequency ranges where desired feedback properties are

to be attained present a greater obstacle through the above constraining relations

than those right half plane poles and zeros that are far away. This weighting function

clearly defines the notion of proximity of a right half plane pole or zero. Finally,

note that the weighted length of the jw-axis is finite and equal to 7r. This means

in particular that we cannot assign an arbitrarily low value of IS(jw)l over some

frequency range and expect to satisfy the constraint relation by allowing IS(jw)l to

be only slightly less than one over an infinitely large frequency range.

We close this section by quantifying the comments in the last paragraph. The

following theorem [33] gives a lower bound on the maximum sensitivity that must be

present at some frequency range due to the achievement of some level of sensitivity

reduction over another frequency range for a nonminimum phase systems.

Theorem 3.3 Let the open loop transfer function L(s) have open right half plane

poles and zeros given by pi, i = 1,... , N, and z,, i = 1,..., Nz. Suppose that the

closed-loop system is stable and that the level of sensitivity reduction a has been

achieved over the frequncy range Q, i.e.,

IS(jw)L < a <1 Vw CG,



where Q is a conjugate symmetric range of frequencies (i.e., w C Q =' -w E Q ).

Then for each zero right half plane zero z of L(s) the following bound must be satisfied:

ISl ool > IB'-(z)l (3.21)

where IISlI, = sup, IS(jw)I, and

= Z j dOz(w).

Notice that this lower bound is greater than one, since a < 1, IBýl(z)I > 1, Oz,() <

7r. This implies that the closed-loop system will exhibit a sensitivity increase over

some frequency range. Further, in most classical design situations, this increase in

sensitivity occurs around crossover and its net effect is to reduce stability margins.

Recall that

GM = -20 log 1 -S(j

PM = 2 arcsin
2iS(jwc)I

where GM is the gain margin, PM is the phase margin, and w, is the crossover

frequency.

Finally, we remark that a sensitivity function that satisfies the bound given by

Theorem 3.3 tightly is not achievable in practice, i.e., any practical closed-loop sys-

tem will have a sensitivity with an even larger infinity norm. In particular, finite

bandwidth constraints, which require the sensitivity function to be almost one after a

certain cutoff frequency, result in a modified form of Eq. 3.21 which shows that IISIoo

increases as the cutoff frequency decreases.

In summary, given a stable feedback system with an open loop gain that contains

nonminimum phase zeros, the magnitude of the sensitivity function will necessarily

be greater than one over a significant frequency range if sensitivity reduction has

been achieved over a desired frequency range. Bandwidth constraints aggravate this

by pushing the lower bound on the maximum value of S(jw) further up. Peaking in

IS(jw)[ is bad for stability margins because it occurs near crossover.



MIMO Generalizations

First we recall the notion of transmission zeros of a MIMO system. Consider the

FDLTI MIMO system denoted by (A, B, C, D)

x = Ax + Bu

y = Cx + Du (3.22)

where x E R" is the state, u E R m is the input, y E R' is the output and A, B, C, D

are constant matrices of appropriate dimensions. We assume that n > 1, m 1, r >

1, max(r, m) < n. The following definition is due to Davison and Wang [25].

Definition 3.4 Given the system 3.22, the transmission zeros of 3.22 are defined to

be the set of complex numbers A which satisfy the following inequality

A-AI B
rank < n + min(r, m).

C D

If a system has transmission zeros in the open right half plane, then it is said to be

a nonminimum phase system, in analogy with the SISO case.

This is the more familiar notion of transmission zeros defined for finite dimensional

state space systems. The results we are about to present, however, were derived by

Boyd and Desoer [15] in the more general context of an algebra of transfer func-

tions [18,28] which includes infinite dimensional (distributed) linear systems.

As is true for SISO systems, right half plane transmission zeros of a MIMO plant

impose fundamental limitations on the achievable closed-loop transfer functions of

a feedback system. Cheng and Desoer [21] present the following result, valid for

distributed systems, using a two degree of freedom configuration:

under reasonable assumptions, the closed right-half plane transmission

zeros of the plant will reamin as transmission zeros of the I/O map of

any stable feedback system (here the plant output is the feedback-system

output).



As in the SISO case, there also exist in this case fundamental tradeoffs between the

feedback properties achievable at different frequency ranges for nonminimum phase

systems. Recall that in the SISO case the integral constraints due to Freudenberg

and Looze were obtained by using the analyticity of the Laplace transform of physical

SISO systems. In particular, the property of the real part of an analytic function being

harmonic is fundamental.

Boyd and Desoer [15] extend the Freudenberg and Looze constraints to the mul-

tivariable setting through the use of subharmonic functions. Without going into

excessive detail, suffice it to say that if H(s) E Hxn, where Hxn is the set of

m x n matrices whose entries are in Hoo (and thus are analytic and bounded in the

open right half plane), then any induced norm 1I - (and log 1l- II) is subharmonic.

Subharmonic functions satisfy the Poisson inequality [15] and this leads to results

similar to those for the SISO case.

While Boyd and Desoer [15] give MIMO generalizations to many classical results

such as the Paley-Wiener theorem, the Bode integral, Zames' inequality, etc., we limit

ourselves to reproducing their generalization of Theorem 3.3 above, and we use the

same notation as in that theorem.

Theorem 3.5 Suppose that the plant P has a nonminimum phase zero at z and

log IjHyd(jw)lj < log(a) for w E Q. Then

log sup lHyd(jw)l >_ - log(c) . (3.23)
wER 7r -- 0

where Hyd = (I + PC)-, the disturbance to output map, is also the sensitivity of the

system as defined in the SISO case.

3.2 Nonlinear Systems

In this section we present some of the recent developments in the theory on nonlinear

systems which extend some of the above presented concepts to the nonlinear realm.

The concepts presented herein are necessary background for understanding some of

the developments of Chapters 4 and 5.



In Chapter 4, the notions of nonlinear zero dynamics and of nonminimum phase

nonlinear systems play an important role in the analysis of inverse dynamics solutions.

In Chapter 5 the zero dynamics of a system is shown to play an intrinsic role in

the solution of the nonlinear output regulation problem. In addition, the results of

Chapter 5 show that, even for nonlinear systems, the results of section 3.1.3 for linear

systems play a crucial role.

The following concepts are best presented within the context of single-input single-

output (SISO) nonlinear systems. Generalization to certain kinds of multi-input

multi-output (MIMO) systems is straight-forward, as will be pointed out towards the

end of this chapter. The definitive reference for the material reviewed below is the

book on nonlinear control systems by Isidori [43].

Consider the following SISO nonlinear system

= f(x) + g(x)u (3.24)

y = h(x) (3.25)

where f(x) and g(x) are smooth vector fields in R" and h(x) is a smooth mapping

from R n to R. Avoiding the differential geometric theory, we shall say that the system

of Eqs. 3.24-3.25 has relative degree r at a point xr if it is necessary to differentiate

the output y(t) r times at time to in order for the value u(to) of the input to appear

explicitly. This definition is completely compatible with the definition for linear

systems.

It can be shown that if a system has relative degree r at x0 then r < n. Further,

there exists a local coordinate transformation, in terms of the first r - 1 total time

derivatives of the output function h(x) along the system trajectory, such that in terms

of these new coordinates the state space description of the system enjoys a normal

form:

Z1 = Z2

z 2 = Z3



ir-1 = z, (3.26)

where we have used the same notation as in [43] and

Z 1  Zi 1

In the normal form, we have that the output y(t) is given by zi(t), i.e., y(t) = zi(t).

If xo is an equilibrium point of the original system such that h(xo) = 0, then ((,t) =

(0, 0) can be made to be an equilibrium for the new system.

Feedback control laws for nonlinear systems of the form of Eqs. 3.24-3.25 can

be used to solve a variety of problems [43, 81]: the state space exact linearization

problem; partial linearization of systems with relative degree strictly less than the

system order; the problem of zeroing the output; the problem of reproducing the

reference output; the local asymptotic stabilization problem; the problem of tracking

the output; asymptotic model matching (which requires dynamic state feedback); the

problem of disturbance decoupling; local asymptotic stabilization by means of (high

gain) output feedback; etc.

A system with relative degree equal to its order can be exactly linearized by means

of static state feedback and coordinate transformations. If the relative degree of a

nonlinear system is less than the order of the system, it is still possible to achieve

partial linearization. In this case, we must be concerned with the stability properties

of the internal dynamics. In some cases, the study of internal dynamics is simplified

locally by considering the zero dynamics instead. The zero dynamics of a nonlinear

system is an intrinsic property of the system.

We are now in a position to introduce the concept of zero dynamics in a natural

way.



Consider the problem of zeroing the output for the system of Eq. 3.26:**

[f]ind, if any, pairs consisting of an initial state x0 and of an input func-

tion u°(t), defined for all t in a neighborhood of t = 0, such that the

corresponding output y(t) of the system is identically zero for all t in a

neighborhood of t = 0.

Because in the normal form y(t) = zi(t), we have that requiring y(t) = 0 for all t

results in the condition

il(t) = - (t) = = ,(t) = 0

which is equivalent to ((t) = 0 for all times.

The required input is the (unique) solution of the equation

0 = b(O, r(t)) + a(O,7 (t))u(t).

The behavior of the variable q(t) when ((t) is identically zero is determined by the

equation

(t)-- = q(0, r(t)). (3.27)

From this it is clear that in order to solve the output zeroing problem, the initial state

of the system must be such that ((O) = 0 while q7(0) = 77o can be chosen arbitrarily.

The input must be of the form

b(0, 7(t))

= a(0,7(t))
where q(t) is given by Eq. 3.27 with initial condition o0.

The dynamical system described by Eq. 3.27 corresponds to the internal behavior

of the system when the input and the initial conditions have been chosen so as to

force the output to remain identically zero. For this reason, the dynamics described

by Eq. 3.27 are called the zero dynamics of the system. See also Ref. [45].

**A. Isidori, Nonlinear Control Systems, 2 d ed., Springer-Verlag, Berlin, p. 173.

3.2.1 Zero Dynamics



If we carry out the program described above for linear system, we obtain linear

dynamics with eigenvalues coinciding with the zeros of the transfer function of the

original linear system, thus the term zero dynamics. It can be shown that the linear

approximation of the zero dynamics of a nonlinear system at r = 0 coincides with

the zero dynamics of the linear approximation of the entire system at x = 0, i.e., tt

that the operations of taking the linear approximation and calculating the

zero dynamics essentially commute.

The zero dynamics have a prominent role in many developments of the nonlinear

control systems theory. In the following chapters we shall have occasion to witness

this.

Nonminimum Phase Systems

From the presentation in section 3.1.3, it is clear that the zero dynamics defined

above, when applied to a linear minimum phase system, are stable. Conversely, the

zero dynamics for a nonminimum phase system are unstable. It is then natural to

extend the terminology to nonlinear systems in the following way.

Definition 3.6 The nonlinear system given by Eqs. 3.24-3.25 is said to be (asymp-

totically, exponentially) minimum phase if its zero dynamics are (asymptotically, ex-

ponentially) stable.

A nonlinear system of the form of Eqs. 3.24-3.25 is said to be nonminimum phase if

it is not minimum phase.

As in the linear case, the minimum phase property is highly desirable in a nonlinear

setting as well. Any minimum phase nonlinear system can always be locally stabilized

by smooth state feedback [16]. Similar results hold for tracking control under more

restrictive assumptions [81].

ttIbid., p. 177.



All of the above results have a straight-forward extension to MIMO systems that sat-

isfy some regularity conditions. These include, in particular, the class of multivariable

nonlinear systems that can be rendered noninteracting via static state feedback, i.e.,

that can be reduced from an input-output point of view to a collection of independent

SISO channels.

Systems that can be rendered noninteracting are those for which a vector relative

degree {rl,..., rm} at a point xz is defined and for which the so-called decoupling

matrix is nonsingular at x0 . The vector relative degree has an analogous definition

to the SISO relative degree: ri is the number of times that the i-th ouput channel

has to be differentiated before any input appears. The decoupling matrix, defined in

terms of Lie derivatives, is presented here for completeness.

La LL -1 hi (x) ... Lgm Lf1 -l hi(x)

A(x) =

Lg Lrm-lhm() ... LgLcm-l hm(x)

where gi, i = 1,...,m, are smooth vector fields in R" that form the control distribu-

tion matrix g(x) of the MIMO systems, and hi, i = 1,... ,m, are smooth real-valued

mappings that form the output matrix h(x). If A(x) is a real-valued function and

f(x) is a vector field both defined on a subset U of R", then

nO

LfA(x) Z-Xfi(x)
i=1

is called the Lie derivative of A along f.

MIMO Extensions



0
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Chapter 4

Inverse Dynamics and

Feedforward Control

The problem of finding the inverse dynamics of a system is of great interest and goes

back to Bode's remarks quoted at the beginning of Chapter 3. Given a plant, the

best way to achieve a desired output is to invert or cancel the plant and replace it

with one that exactly produces the desired objectives. This is the idea behind the

computed torques approach used in robotics, for example.

It is conceivable to carry out this cancellation or inversion by placing the inverse

plant in series with the given plant, i.e., this process could be carried out in open

loop without the need for feedback. We remark here that this is often referred to

as feedforward control to differentiate it from the case when the inverse dynamics

problem is solved via feedback. This does not mean that there is a direct feedthrough

term from the input to the output. It is to be interpreted rather as the opposite of

feedback control, although it can complement feedback control with very good results,

as we shall see in Chapter 5.

On the other hand, given the benefits that feedback carries with it, we might ask if

we can somehow invert the plant while also closing a feedback loop. In sum, we want

to know when, and if, we can invert the plant using either feedback or feedforward

control.

The purpose of this chapter is to perform an in-depth investigation of the issues



involved in the inverse dynamics control of manipulators with flexible links. Much

work has been presented in the literature, and the author feels it is time to cata-

log some of this material by clearly stating the important issues, limitations, and

contributions.

In order to understand some of the fundamentals of inverse dynamics control,

we begin by presenting some results for the relatively simple SISO nonlinear system

introduced at the end of Chapter 3. Using these general results, we then confront

the problem of solving the inverse dynamics problem for open chains of bodies. The

bulk of this chapter is dedicated to a survey of results found in the literature and to

a critical analysis of these results vis a vis the nonlinear feedback theory and other

considerations.

4.1 Nonlinear Feedback Linearization

Consider again a nonlinear SISO system of the form

f = f(X) + g(x)u (4.1)

y = h(x) (4.2)

where the reader is referred to section 3.2 for the technical assumptions. If this system

has relative degree r < n defined at a point x0 , then Eqs. 4.1-4.2 can be put in the

normal form

Zl = Z2

z 2 = Z3

zr-1 = zr (4.3)

r = b(,,,q) + a(ý, ý7)u

Y = Z1.

/



YR(t)
y (t)

'- (t)

and controller

u(t) i= YR(t) - b(eR(t),,o(t)) (4.6)
a(6R(t), (t))

With this controller, the internal dynamics becomes the forced dynamics

(t) = q(6R(t),q(t)). (4.7)

See also Eq. 3.26. By construction of the normal form (and by definition of relative

degree), a((,7 ) = LgL'-h(x) : 0 at xo, and thus by the smoothness assumption on

h(x) it is nonzero in a neighborhood of xz in R " .

It is now a trivial matter to solve the partial linearization (exact if r = n) problem

for the system of Eqs. 4.1-4.2: just choose the control law as

1
u = (-b(z) + v). (4.4)a(z)

The computed torques procedure of rigid robotics is indeed an exact feedback lin-

earization of the equations of motion possible because the relative degree of the sys-

tem from torque inputs to joint angular position outputs is the same as the number

of states.

Notice that implementing the controller of Eq. 4.4 in Eqs. 4.3 results in a linearized

subsystem plus an unobservable (from the chosen output) subsystem given by

n = q(•, 7). (4.5)

This subsystem can be viewed as the internal dynamics corresponding to the lineariz-

ing control. If the new control input v is chosen so as to command the output to

be zero for all time, Eq. 4.5 becomes the zero dynamics defined in Chapter 3. These

considerations are summarized graphically in Figs. 4.1-4.2.

Consider now the problem of reproducing a reference output yR(t). To track this

reference exactly, it is apparent from the normal form of the system that we must

have initial conditions ((0) = eR(O), where

týR(t)=



Figure 4.1: Feedback Linearization - Original System

y

Figure 4.2: Feedback Linearization - Transformed System

The system of Eqs. 4.6-4.7 can be interpreted as a realization of the inverse of the

original system, i.e., the inverse dynamics. Note that the above definition for u(t),

together with the approriate initial conditions, guarantee the exact tracking of the

reference output.

In practice, setting the initial conditions of a system exactly is not usually possible.

For this reason it is of interest to study the asymptotic tracking problem. It is enough

to modify Eq. 4.6 in the following way

1 (r r
u(t) = (- b(ý,r) - y () - c:C_1(Z i - y(-1))). (4.8)

By proper choice of the real constants c._ 1 the output y(t) can be made to exponen-

tially converge to the desired output yR(t).

y

6R



In all cases it becomes apparent that if the zero dynamics (represented by Eq. 4.5

with ( = 0) are unstable, neither version of the inverse dynamics is implementable

or causally feasible. Clearly then, this represents a fundamental limit for nonmini-

mum phase nonlinear systems: the inverse dynamics system is unstable and therefore

no causal inverse dynamics solution exists. In the next section we see how some

researchers have tried to avoid this limitation. Among others, there are non-causal

solutions in which a priori selection of the manipulator initial conditions is required so

that the inverse dynamics proceed along its stable manifold. Not all of the following

are practically feasible.

4.2 Inverse Dynamics Problem

Consider now the problem of open chains of elastic bodies connected by rotary joints

with torque actuators at the joints, angular displacement and rate sensors also at the

joints, and possibly tip position sensors. If the bodies are rigid, the forward dynamics

problem consists of finding the angular displacements, velocities, and accelerations

produced by a set of known external torques. Conversely, the inverse dynamics prob-

lem consists of finding the joint torques that will produce a desired joint trajectory.

Since the bodies are rigid, and in the absence of joint compliance, tip position trajec-

tories can be found by dead-reckoning via the forward kinematics. Alternatively, the

tip position trajectories (Cartesian space) can be specified, then the joint trajectories

(Joint space) can be determined via the inverse kinematics problem and the inverse

dynamics problem proceeds as before.

4.2.1 Chains of Rigid Bodies

For rigid manipulators, the solution of the inverse dynamics problem can be imple-

mented either as a feedforward or a feedback control scheme. In a feedforward scheme,

the nominal torques for a predetermined trajectory are used in hopes of increasing

the steady state accuracy of a tracking task over the accuracy obtained using a simple

error-driven feedback regulator. As a feedback control scheme, the



model-based nonlinear static state-feedback transforms the closed-loop

system into a linear and decoupled system made of input-output strings

of double integrators ... [t]he tracking of desired trajectories is then easily

achieved on the linear side of the problem.*

This feedback implementation is referred to in the literature as computed torques.

This is equivalent to the exact feedback linearization presented above. A drawback of

computed torques, and all other inversion techniques, is that the effectiveness of the

control scheme depends on having the exact model for the nonlinear rigid manipulator.

For reasons explained in the previous paragraph, the above two control schemes work

equally well for joint-based and cartesian-based control of rigid manipulators.

4.2.2 Chains of Flexible Bodies

As expressed in Ref. [27],

[i]t is appealing to try to find the analogue for flexible arms of the so-called

computed torque or inverse control method for rigid robots.

When the bodies in the chain are flexible, the forward and inverse kinematics are

complicated by the flexible deflections that the bodies can undergo. For a clear

exposition of the kinematics in the presence of flexibility see Ref. [88]. Furthermore,

the inverse dynamics problem is nontrivial because certain choices of output result in a

nonminimum phase system from joint torque inputs to the output. This is equivalent

to saying that the inverse dynamics of the plant is unstable. In these cases, there is

no causal solution to the inverse dynamics problem.

Output Definition for Flexible Manipulators

There have been several attempts at solving the inverse dynamics problem for flexible

revolute manipulators where the tip position is the desired output. When the manip-

ulator links are modelled as beams, the resulting system is nonminimum phase from

*A. De Luca, et al., Inversion Techniques for Trajectory Control of Flexible Robot Arms, Journal

of Robotic Systems, Vol. 6, No. 7, 1989



the joint torque inputs to the tip position output. From the discussion in section 4.1

above, it is clear that the solution to the inverse dynamics problem (or input-output

linearization, or partial linearization) via state feedback depends entirely on the choice

of outputs. For this reason it is convenient to determine from the outset the set of

outputs that we shall consider for our system. It is also crucial for the relatively

simple nonlinear results presented above that the selected output have a well-defined

relative degree (see Chapter 3 for definitions).

In the case of manipulator systems, it is clear that of paramount interest is the

position of the tip. As for rigid manipulators, this position can be determined either

through cartesian coordinates of the end-effector or through angular coordinates of

the hub and kinematic transformations to reconstruct the cartesian coordinates of

the tip. When the manipulator links are allowed to bend, we can no longer rely on

dead-reckoning to determine the tip position.

In the past, many researchers have chosen as output variable the so-called arc-

length tip position. Referring now to the one-link case for simplicity, the arc-lenght

output is defined as

Y - ?77,(Xt) + 10(t),

where 1 is the link length, 0 is the hub angle, and as in Chapter 2 77(x, t) is the

transverse displacement of the link from the cantilvered frame. This choice of output

generates a nonminimum phase system. This nonminimum phase nature for similar

non-collocated but linear systems involving beams has been reported in the litera-

ture [30, 85, 84,83].

This result, while not unexpected, is definitely not desirable for reasons explained

in section 3.2 above. Mainly, we cannot partially linearize a nonminimum phase

system. Many attempts have been made to avoid this difficulty by considering new

choices of ouptut. See for example Refs. [92,7]. In Ref. [7] five new output definitions

which involve some fractional version of the arc-length output are considered. Some

even enjoy the property of making the system passive for certain choices of parameters

(recall that a passive nonlinear system is one which is minimum phase and has a

relative degree of one [17]).
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Some of the output redefinitions have merit for the purpose of stabilizing control.

The problem remains, however, that we are interested in the performance of the real

tip position. Another disadvantage of the arc-length output is the fact that its relative

degree is ill-defined as the number of modes in a discretized version of the equations

of motion for the flexible beam is increased. This was pointed out by Wang and

Vidyasagar [92].

De Luca et al. propose the use of the inertial tip angular position for the one-link

example as the output of interest. While this output retains the nonminimum phase

character of the system, as could be expected, it has a well-defined relative degree for

any number of assumed modes in the discretized approximation to the equations of

motion. The definition of this output is given in our context by

where 7r1(x,t) was defined in Chapter 2 as the slope of the beam deflection at the x

location along the neutral axis in the cantilevered frame.

By defining succesive tip angles relative to the previous tip angle, we extend

this output definition to the multi-link case. See Chapter 7 for the application to a

manipulator with two flexible links.

Review of the State of the Art

In this section we investigate various schemes found in the literature for the inverse

dynamics and feedforward control of flexible manipulators. We analyze the different

methods in the light of the developments of previous sections and thus determine

the validity and wisdom (or lack thereof) of pursuing said methods. We conclude

with some definite ideas and insights that carry us into the next chapter and an

investigation of yet another method of feedforward control: the nonlinear output

regulation theory.

Gebler in Ref. [34] proposed a feedforward control strategy where the inverse

dynamics problem is solved approximately. This is done by choosing appropriate

nominal values for the joint angles used to determine the feedforward torques under
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the assumption of rigid joints and links. These nominal angles consist of the actual

desired angles if the manipulator were indeed rigid plus a correction term that takes

into account nominal deflections. This correction term is determined quasi-statically,

assuming that the dynamic forces resulting from deviations from the nominal position

are small and can be neglected to determine the feedforward control. Simulation

results indicate that oscillations of the endpoint are reduced significantly. Since this

method depends on linearization about the nominal trajectory, it is not only highly

sensitive to model uncertainty as is the computed torques method, but also relies

on a priori knowledge of the trajectories; the nominal deflections and corresponding

feedforward torques must be computed for each trajectory.

In a similar vein, Asada and Ma [2] solved the inverse dynamics problem for flexible

robots in an approximate manner. As is the case with Gebler's scheme, the solution

is obtained off-line; a recursive algorithm determines the feedforward torques given

a pre-determined desired trajectory. Unlike Ref. [34], however, this solution scheme

utilizes a dynamic generator to determine the flexible motion. Further, instead of an

approximate nominal deflection correction term to the nominal angle, Asada and Ma

make use of the exact nominal angle to determine the feedforward torques as if the

links were rigid. This is accomplished by the use of a virtual rigid link coordinate

system in the description of the system kinematics. This is nothing other than the

floating reference frame (or shadow-beam) obtained when the beam is assumed to be

pinned-pinned to its reference frame. The use of these frames to describe the links

allows for the exact description (to within first order in the elastic deformations) of

the tip trajectory in terms of the virtual rigid link joint angles.

Once these angles are determined, the impressed motion causes elastic deforma-

tions which are determined using a dynamic generator. A closed form expression for

the relationship between the impressed rigid angular motion and the elastic coordi-

nates is obtained after simplifying the equations of motion assuming that angular

rates are small enough. This closed form expression constitutes the dynamic genera-

tor and has a special form which is exploited by Asada and Ma to generate a more

efficient recursive algorithm than the direct integration of the closed form equation



would yield. In Ref. [3], the authors formulated the inverse dynamics problem of a

planar, multi-link, flexible arm by using virtual rigid link coordinate systems. The

model there "is still complex and cannot be solved directly."

In Ref. [27], De Luca et al. analyze the feasibility of both open-loop and closed-

loop control for trajectory tracking of flexible robot arms using nonlinear inversion

techniques (see Refs. [39,38]). It turns out that in all cases a given control approach is

possible if a certain dynamic system associated with the plant, the so-called reduced

order inverse system [45] of the flexible arm dynamics, is stable. As was the case

in Ref. [2], a dynamic inverse system is seen to be needed for the open-loop torque

generator (feedforward scheme). The inverse dynamic system, which may be of full

or reduced order, determines the

natural behavior of those system variables which are not directly con-

strained by the outputs specification ... obtained under the action of the

inversion-based input.t

This suggests that in Ref. [2] this inverse dynamic system must have been unstable.

This inconsistency has not been resolved.

The closed-loop approach is obtained by using the inversion-based algorithm to

provide nonlinear static state-feedback, in analogy to the rigid manipulator computed

torques scheme. In this case, however, implementation of the closed-loop control

scheme results in linear decoupled equations for the output variables together with

a second set of equations. This second set of equations are the unobservable part

of the system, called the sink (see [27]) or the internal dynamics (see ref. [81]). As

suggested above, the open-loop and closed-loop control schemes are feasible only if

the associated inverse dynamics or internal dynamics, respectively, are stable.

Under some conditions, it has been shown that the stability properties of these

associated dynamic systems are the same, i.e., the closed-loop and open-loop control

tA. DeLuca et al., Inversion Techniques for Trajectory Control of Flexible Robot Manipulators,

Journal of Robotic Systems,pp.325-344.



approaches either both work or both fail. In addition, it has been proven (see ref. [45])

that

in order to conclude on the local stability of the overall system, it is enough

to show asymptotic stability of [the zero] dynamics. 1

De Luca et al. derived the above results assuming a finite dimensional system

(same as Refs. [34] and [2]). Using an overly simple finite order model, they found

that "there exists a continuous set of points along the flexible arm" that if chosen as

outputs yield minimum phase systems. This clearly is only true when one assumes

a finite order model. Since a system with distributed flexibility is an infinite order

system, their statement would have to be qualified to state that certain points along

the flexible body will yield minimum phase systems up to a certain frequency, beyond

which higher order modes become evident which unstably interact with the torque

inputs (i.e., cause the system with the given output to be nonminimum phase). Note

finally that in their paper, De Luca et al. do not specify the nature of the spatial

discretization used to obtain a finite order model.

Bayo et al. in Refs. [8-11, 62] use a frequency domain approach to iteratively

solve the inverse dynamics and kinematics of multi-link elastic robots. This iterative

solution scheme relies on local linearization of the problem: the solution of each

linearization is carried out in the frequency domain. A finite element description

of the individual links is obtained with respect to nominal frames associated with

each link. The nominal motion of each nominal frame is specified, which permits the

linearization of the problem from the outset. In a manner reminiscent of the virtual

rigid link coordinate system of Ref. [2], Bayo et al. require that the elastic normal

deflection at the tip of each link be zero. This is equivalent to saying that the tip will

follow the nominal trajectory of the shadow rigid beam defined by the nominal hub

motion.

For a single link, the linear time-varying equations in the finite element coordi-

ýA. DeLuca et al., Inversion Techniques for Trajectory Control of Robots,Journal of Robotic

Systems, pp.325-344



nates are obtained and then Fourier transformed. The torque is then found for each

frequency under the condition that the elastic normal deflection at the tip be zero.

The solution algorithm also provides the values of the finite element elastic coordi-

nates. When the torque is found for all frequencies of interest, it is inverse Fourier

transformed to obtain a non-causal torque in the time domain. The solution process

in the frequency domain is iterative in order to handle the time-varying inertial forces

due to the impressed motion of the frames. For multiple links, the solution process

starts with the last link which has no tip reaction forces. Once the inverse dynamics

problem is solved for this link, the reaction forces at the tip of the previous link are

determined from equilibrium considerations and included in the linear equations for

that link. The solution then proceeds as before. An outer loop iteration is needed

in the case of three-dimensional manipulators to correct for elastic tip deflections in

the plane formed by the joint axis and the tip of the link; the tip motion of the

previous link affects the nominal trajectory of the next link. These deflections are

uncontrollable from the joint actuators and thus cannot be forced to zero.

For this solution of the inverse dynamics problem for the tip control of flexible

arms to work, the velocity and acceleration profiles, together with the forcing terms,

must be Fourier transformable. Further, as mentioned in the previous paragraph, the

resulting control law is non-causal:

in order to track the desired trajectory the flexible torques need to be

applied before the tip actually moves.5

Besides needing a very accurate model for success, as is the case in the com-

puted torques of rigid arms, this solution scheme must be performed off-line for each

trajectory of interest. The process has been tested through the use of simulation

(see refs. [9-11]) and experiments, see refs. [11,62] where the computed torques were

implemented in open loop except that joint feedback position control was used to

ensure zero initial conditions in the presence of offsets due to gravity. This joint

§E. Bayo et al.,Inverse Dynamics Kinematics of Multi-Link Elastic Robots: An Iterative Fre-

quency Domain, The International Journal of Robotics and Research, pp.49-62



feedback control probably does a lot more for the success of the feedforward scheme

than is attributed to it. Due to the non-causal and highly model dependent nature of

the solution process, I would expect that errors in initial conditions could affect the

accuracy of the tracking immensely.

De Luca et al. [27] explain the success of the non-causal scheme of Bayo et al., in

view of their own results, as follows:

in spite of dynamic instability, a particular choice of initial conditions for

the elastic variables ... describing the zero-dynamics may possibly lead to

a bounded evolution of these in time.

The output trajectory may be reproduced in a stable way if the system is properly

initialized. Because the choice of initial conditions depends on the entire trajectory,

the initialization is an off-line, non-causal procedure. In Ref. [62], Moulin et al. treat

the existence and uniqueness of solutions for the recursive, frequency domain solution

to the inverse dynamics problem for flexible multi-link manipulators presented by

Bayo et al. In short, it is concluded that for a given manipulator, there exists a range

of desired motions for which there is a unique solution to the inverse dynamics problem

for planar, open-chain, multi-link manipulators. It was established previously that

this solution can only be obtained non-causally due to the instability of the zero

dynamics. The numerical recursive algorithm proposed by Bayo et al. is shown to

converge, also for an appropriate range of motion.

Note: Geometric stiffening terms are addressed and included in the equations of

motion for the first time in Ref. [62]. Previous references ignored their existence (i.e.,

suffered from premature linearization). In Refs. [2] and [3], erroneous results resulting

from inconsistent equations are actually examined and worked into their theory. In

Ref. [2], fortunately, the erroneous results lead to the correct conclusion that in order

to linearize the equations of motion the angular rates must be below a certain limit.

In Ref. [67] Paden et al. present a (8, T) solution to the inverse dynamics problem:

an approximate torque command with the property that the true initial condition is

close to the initial condition required to cause the end-effector to follow a delayed

version of the desired trajectory. Accordingly, the Bayo et al. solution is a (0,0).



The solution is used for feedforward and together with passive joint controllers is

shown to yield exponentially stable tracking under some restrictive assumptions (like

sufficiently stiff and damped links).

De Luca [56] solves the inverse dynamics problem for a two-link, planar, revo-

lute manipulator with joint elasticity. He shows that in this case the system is fully

linearized and I/O decoupled using dynamic state feedback (i.e., through the intro-

duction of integrators). The resulting length of the I/O chains of integrators equals 6

in this case, but varies if different arm topologies are used. Note that for the case of

joint compliance, these chains will never have less than 4 integrators, as opposed to

the rigid manipulator case in which the length of the chains is 2 and does not vary.

The variability of the integration structure depends on the kind of interactions that

arise between elastic and rigid degrees of freedom. The dynamic compensation (in

the form of additional integrators) delays the contributions of the inertial interacting

effects (parasitic effects); this allows the high authority control paths (those due to

the elastic forces directly) to come into play and thus cancellation of nonlinearities is

possible.

Madhavan and Singh [58] consider the inverse dynamics problem for a one flexible

link arm. They redefine the output by choosing

y = OH(t) + a ( X t )

where a E [-1,1], and perform input-output linearization. They show that the

stability of the resulting zero dynamics depends on a, with stability guaranteed (in

the case of a finite number of modes) for -1 <• a K a* < 1. The value of a* depends

on the value of the terminal equilibrium point. They round off their control strategy

by designing a linear stabilizer for the final capture of the terminal state and for the

stabilization of the elastic modes.

4.2.3 Summary

In summary, because the system whose output is tip position and whose inputs are

joint torques is nonminimum phase, an inverse dynamic solution cannot be imple-



Figure 4.3: Feedforward Inversion Control

mented in feedback form via input/output linearization. It is still possible for off-line,

non-causal schemes to be used in order to obtain a feedforward signal [53] through

proper initialization of the unstable inverse dynamics. The noncausal schemes are

feasible because they are implemented as feedforward control on the non-inverted

system. The problem that remains is to ensure that the off-line generator remain

stable through proper initialization. Such a procedure is detailed in Ref. [53] for a

linear one flexible link system. Figure 4.3 depicts such a noncausal feedforward con-

trol. Comparing this figure with Fig. 4.1 we note that the inversion control block is

now driven by the desired trajectory and the properly initialized internal dynamics

generator.

A much more satisfying, if perhaps equivalent way of looking at the problem is the

following. In reality, we want the system outputs (e.g., tip angular positions) to follow

some desired trajectories that in a large sense are independent of what the system

dynamics are. The only restrictive requirement is that the trajectory be within the

manipulator workspace (we ignore for the sake of argument actuator and material

YtR



limitations).

Given such a trajectory, and the output as a function of the states, we might

ask if there is some manifold within which the states remain bounded yet satisfy the

output relation. This is a geometric problem in nature, and it is not surprising to

find that the solution exists within the differential geometric control theory. To put

it another way, given the trajectories in the state space governed by the nonlinear

system equations, find if possible a subspace where the combination of the states

through the output function yields the desired trajectories.

The solution to this problem is given by the nonlinear output regulation theory. As

we shall see in Chapter 5, in this theory the desired output is assumed to be generated

by a dynamical system external to the plant. Lanari and Wen [53] point out that

the regulator solution is a particular solution to the plant inversion. We interpret it

as the projection of the inverse dynamics solution into the (stable) manifold defined

by the exosystem. In this way problems of unstable zero dynamics are circumvented.

It is also noteworthy that the nonlinear output regulation scheme is implemented in

feedforward.

It is a given that in order to obtain an inverse type of controller for the tip

(angular) position of flexible manipulators we will have to resort to off-line, non-causal

procedures. In this context, we have determined that the nonlinear output regulation

theory, to be described in the sequel, holds several advantages over the other non-

causal schemes described above. First of all, it generates the desired tip trajectory,

and not a delayed, initial condition-dependent version. Its solution does not involve an

improper integral over all time in order to obtain the initial conditions that will start

the motion along the stable manifold. This in particular does not seem to be a very

robust procedure. As we shall see in Chapter 5, there are well defined conditions for

the existence of solutions and these define in particular the motions that are possible.

Thus this scheme is intuitively appealing as it results in natural trajectories that the

manipulator dynamics can follow. Further, approximate solutions of any order can be

obtained. This important practical result is a consequence of center manifold theory

(see Appendix A) on which the nonlinear output regulation theory is based.



Chapter 5

Output Regulation Theory and

Limits of Performance

As seen in Chapter 4, if we take the end-effector (angular) position as the output of

the multi-flexible-link manipulator system, the resulting zero dynamics are unstable.

This means that inversion-based controllers, such as the computed torques of rigid

manipulators, cannot be used to track the end-effector trajectory. For a one-link

flexible robot arm, De Luca et al. [27] have shown that a nonlinear regulator approach

solves this problem by allowing asymptotic trajectory tracking with internal stability.

Their approach is based on the nonlinear output regulation theory developed in recent

years by Isidori and Byrnes [44].

It is the aim of this chapter to exploit the nonlinear output regulation theory to

elucidate the performance limitations inherent in the joint-based control of flexible

manipulator end-effectors. In the process we shall make use of both the linear and

nonlinear feedback results presented in Chapter 3. First, we shall detail the main

results of the theory and highlight those aspects which lead to the development of a

performance measure. With this at hand, we shall investigate the existence of inherent

performance limits due to the particular nature of our system. Finally, alternative

actuator configurations are considered and several control strategies found in the

literature are compared vis a vis our performance measure.
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5.1 Output Regulation Theory

The linear multivariable regulator problem concerns itself with the task of regulating

the output of a linear time-invariant (LTI) system, which is subjected to disturbance

and reference signals, in the presence of parameter uncertainty. The reference and

disturbance signals are assumed produced by some external generator, called the

exosystem. While this problem has been dealt with by several authors (see for example

Refs. [31, 32, 96, 97, 13] and the references in [31]), the work of Francis [31] is of

particular interest and utility. In this paper, Francis provides a simpler algebraic

solution to the regulator problem than was previously available: he shows that the

solvability of a multivariable linear regulator problem corresponds to the solvability

of a system of two linear matrix equations. In a related work, Hautus [37] shows

that this is in turn equivalent to the transmission polynomials of a composite system,

which incorporates the plant and the exosystem, having a certain property.

In recent years, some authors have considered the multivariable regulator prob-

lem in a nonlinear setting. A short list of references for their results can be found

in Ref. [44]. The definitive work on the subject seems to be the paper by Isidori

and Byrnes [44], who extend the results of Francis to autonomous, affine, nonlinear

systems with exosystems capable of generating time-varying reference signals and/or

disturbances. They further extend Hautus' interpretation to the nonlinear setting

through the notion of zero dynamics (see Chapter 3). In our presentation, we will

closely adhere to the developments in Ref. [44], and, where it is convenient, we will

adopt their notation as well.

Let us begin by stating the problem. Consider a nonlinear system of the form

i = f(x) + g(x)u + p(x)w (5.1)

b = s(w) (5.2)

e = h(x) + q(w). (5.3)

The first of these equations describes the plant with state x defined in a neighborhood

X of the origin of R" and input u E R m . The term p(x)w represents a disturbance

to the plant. The second equation describes the exosystem with state w defined in



a neighborhood W of the origin of R". As suggested above, the exosystem describes

the class of disturbances and of reference signals that we want to consider. The third

equation defines the error e E R P between the actual plant output h(x) and the

reference signal q(w) that is to be tracked.

The vector f(z), the m columns of the matrix g(x), and the s columns of the

matrix p(x) are C"o vector fields on X; s(w) is a smooth vector field on W; h(x)

and q(w) are Co mappings defined on X and on W, respectively, with values in R P.

Further, assume that f(0) = 0, s(0) = 0, h(0) = 0, q(0) = 0. This implies that, in the

absence of inputs (u = 0), the composite system of Eqs. 5.1-5.3 has an equilibrium

at the origin of the state space (x, w) = (0, 0), with zero output error.

Definition 5.1 A state feedback controller for the system of Eqs. 5.1-5.3 will have

the form

U = a(x, w) (5.4)

where a(z,w) is a Ck mapping defined on X x W, for some integer k > 2. The

closed-loop system obtained by composing Eq. 5.4 with Eq. 5.1 is given by

i- = f(x) + g(x)a(x, w) + p(x)w (5.5)

w = s(w) (5.6)

For convenience, we assume a(0, 0) = 0. This results in the closed-loop system having

an equilibrium at the origin of the state-space. The following definition is included

for completeness and for future reference.

Definition 5.2 An error feedback controller will have the form

u = O(z) (5.7)
z = iq(z,e). (5.8)

This is a dynamical system with state z, defined on a neighborhood Z of the origin

of R". For each e E R P, q(z, e) is a Ck vector field on Z, and O(z) is a Ck mapping
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defined on Z, for some k > 2. Composing Eqs. 5.7-5.8 with Eq. 5.1 yields the closed-

loop system

= f(x) + g(x)O(z) + p(x)w (5.9)

S= (z, h(x) + q(w)) (5.10)

t = s(w) (5.11)

Again we assume for convenience that q(0, 0) = 0 and 0(0) = 0.

As stated by Isidori and Byrnes [44], the purpose of control action in this context

is to achieve local asymptotic stability and output regulation. By local asymptotic sta-

bility of the system of Eqs. 5.1-5.3 we mean that when the exosystem is disconnected

(w is set to zero), the closed-loop system given by Eqs. 5.5-5.6 (respectively, Eqs. 5.9-

5.11) has an asymptotically stable equilibrium at x = 0 (respectively, (x, z) = (0, 0)).

By output regulation we mean that in the respective closed-loop systems, for all initial

states sufficiently close to the origin, e(t) - 0 as t - oo.

We now state the two relevant synthesis problems.

Problem 5.1 (State Feedback Regulator Problem) Find, if possible, a(z,w)

such that:

(i) the equilibrium x = 0 of

S= f(X) + g(x)a(x, 0)

is exponentially stable;

(ii) there exists a neighborhood U C X x W of (0, 0) such that, for each initial

condition (x(0),w(0)) E U, the solution of Eqs. 5.5-5.6 satisfies

lim (h(x(t)) + q(w(t))) = 0.

Problem 5.2 (Error Feedback Regulator Problem) Find, if possible, O(z) and

tq(z, e), such that:



(i) the equilibrium (, z) = (0, 0) of

x = f(x) + g(W)0(z)

z = ql(z, h(x))

is exponentially stable;

(ii) there exists a neighborhood U C X x Z x W of (0, 0, 0) such that, for each initial

condition (x(O), z(O),w(O)) E U, the solution of Eqs. 5.9-5.11 satisfies

lim (h(x(t)) + q(w(t))) = 0.

In the following we shall present in some detail the results of the nonlinear output

regulation theory as developed by Isidori and Byrnes. The reader is also directed to

Ref. [43, Chapter 7] for a more leisurely exposition. We start with the linear theory

to facilitate an understanding of the more cumbersome nonlinear version.

5.1.1 Linear Regulator Theory

In what follows, we proceed as in Ref. [44] and regard the linear system in question

as an approximation of the nonlinear system given by Eqs. 5.1-5.3 at the equilibrium

(, w) = (0, 0):

i = Ax + Bu + Pw (5.12)

tb = Sw (5.13)

e = Cx + Qw (5.14)

where

A= a[] B= g(0) P=p(0)
A==[ C s 1 [h] [Oq[ 1S0 aJ C Q=[-IJ_ Q=[ .-J

w=O x=O w=O

In a similar fashion, the state feedback and error feedback controllers are approx-

imated respectively as

u = Kx + Lw (5.15)



U = Hz

z = Fz + Ge

(5.16)

(5.17)

where

K= x-O,w-O L= zOe=Oax a=wl z=O,e= O

H- F- G C-
z=0 z ,e zzOe=O,e=O=O

We now express the results of the linear regulator theory, due to Francis [31], in

a very succinct manner. Given the following assumptions:

Al: u(S) C+ {A E C : Re[A] > 0};

A2: the pair (A, B) is stabilizable;

A3: the pair

idtcbA P
[ cQ , 0 S

is detectable,

the following results describe necessary and

solutions to Problems 5.1 and 5.2.

Proposition 5.3 Suppose Al and A2 hold.

problem is solvable if and only if there exist

matrix equations

sufficient conditions for the existence of

Then, the linear state feedback regulator

matrices II and I which solve the linear

IIS = AHI + BP + P (5.18)

(5.19)CH +Q = 0.

Proposition 5.4 Suppose Al, A2, and A3 hold. Then, the linear error feedback

regulator problem is solvable if and only if there exist matrices II and r which solve

the linear matrix equations 5.18-5.19.

and as



For completeness, we state the result due to Hautus [37] to which reference was

made at the beginning of this section.

Proposition 5.5 The linear matriz equations 5.18-5.19 are solvable if and only if

the system given by Eqs. 5.12-5.14 has the same transmission polynomials as the

following system

z = Ax + Bu (5.20)

w = Sw (5.21)

e = Cx. (5.22)

5.1.2 Nonlinear Output Regulation Theory

The solution of the nonlinear regulator problem is based upon the following three

hypotheses:

HI: w = 0 is a stable equilibrium of the exosystem, and there exists a neighborhood

W C W of the origin with the property that each initial condition w(O) E W is

Poisson stable [43, p. 352];

H2: the pair f(x),g(x) has a stabilizable linear approximation at x = 0;

H3: the pair

f(x) + p(x)w h(x) +q(w)
)q(w)

has a detectable linear approximation at (x, w) = (0, 0).

We now present the solution to Problems 5.1 and 5.2 in the form of two theorems

and supporting lemmas due to Isidori and Byrnes [44]. We include the proofs of

Lemma 5.6 and Theorem 5.7 as this will naturally lead into a discussion of some results

of center manifold theory (see Appendix A) that form the basis for the development

of a performance measure in section 5.2 below.

Lemma 5.6 Suppose H1 holds and assume that, for some a(x, w), condition 1 of

Problem 5.1 is fulfilled. Then, condition 2 is also fulfilled if and only if there exists a



C k , k > 2, mapping x = 7r(w), with 7r(O) = 0, defined in a neighborhood W ° C W of

0, satisfying the conditions

S-(w) = f (w(w)) + g(7r(w))a(cr(w), w) + p(7r(w))w (5.23)

h(7(w)) + q(w) = 0. (5.24)

Proof: The closed-loop system of Eqs. 5.5-5.6 can be written in the form

:c = (A + BK)x + (P + BL)w + ¢(x,w)

tw = Sw + ¢(w)

where O(x, w) and b(w) vanish at the origin with their first-order derivatives. By

condition 2 the eigenvalues of the matrix (A + BK) are all in the open left-half

complex plane, and by H1 those of the matrix S are on the imaginary axis. This

implies that the system in question has a center manifold at (0, 0), the graph of a Ck

mapping

x = 'r(w)

where 7r(w) satisfies Eq. 5.23. From the results of center manifold theory (see Ap-

pendix A), this manifold is locally invariant under the flow of Eqs. 5.5-5.6. Using

this and H1, we have that for any sufficiently small wo and for every e > 0 and every

T > 0, the trajectory (x(t),w(t)) of Eqs. 5.5-5.6 with (x(0),w(0)) = (r(wo), wo), is

such that

HJX(t) - 7r(wO)jJ < 6, jIW(t) - w'l1 < E

at some t > T. This implies that condition 2 can only hold if this center manifold is

annihilated by the error map e = h(x) + q(w), that is, if Eq. 5.24 holds. This shows

necessity.

To prove sufficiency, note that if Eq. 5.23 holds, the graph of the mapping x =

7r(w) is a center manifold for the closed-loop system described by Eqs. 5.5-5.6. The

equilibrium (x, w) = (0, 0) of the closed-loop system is stable and the center manifold

is locally attractive and thus satisfies (see Appendix A and section 5.2 below)

lx(t) - rr(w(t))ll < Me- t lx(O) - 7r(w(O))ll (M > 0,a > 0)



for all x(0), w(O) sufficiently close to zero and all t > 0. Now by Eq. 5.24

e(t) = h(x(t)) - h(r(w(t))),

and thus by continuity of h(x), e(t) -* 0 as t -+ oo. O

The following theorem gives the solution to the state feedback regulator problem.

Theorem 5.7 Under hypotheses H1 and H2, the state feedback regulator problem is

solvable if and only if there exist Ck, k > 2, mappings x = r(w), with ir(O) = 0, and

u = c(w), with c(0) = 0, both defined in a neighborhood W ° C W of 0, satisfying the

conditions

0-s(w) = f(7r(w)) + g(7r(w))c(w) + p(7r(w))w (5.25)

h(7r(w)) + q(w) = 0. (5.26)

Proof: The necessity follows immediately from Lemma 5.6. To prove sufficiency, note

that, by hypothesis H2, there exists a matrix K such that (A + BK) has all its

eigenvalues in the open left-half of the complex plane. Suppose coditions 5.25-5.26

are satisfied for some xr(w) and c(w), and set

a(x, w) = c(w) + K(x - r(w)). (5.27)

This satisfies condition 1 of Problem 5.1. Now note that by construction

a(7r(w),w) = c(w)

and thus Eq. 5.25 reduces to Eq. 5.23. But Eqs. 5.26 and 5.24 are identical, so by

Lemma 5.6 condition 2 of Problem 5.1 is also satisfied. oI

Equation 5.27 yields a controller that solves the state feedback regulator problem.

This controller has the form of a state feedback and the additional input c(w) -

Kir(w). The state feedback portion exponentially stabilizes the closed-loop nonlinear

system (locally) since A + BK has all of its eigenvalues in the left-half complex plane.

The input c(w) - Kir(w) induces a forced response which exponentially converges to

the desired steady state response y,,(t) = -q(w(t)). We shall refer below to 7r(w)

as the steady state manifold. Figure 5.1 shows a block diagram of the composite



y

Figure 5.1: Output Regulation Control

feedforward-feedback output regulation controller. This figure should be compared

to those presented in Chapter 4.

For the sake of completeness, we now include without proof the solution to the

error feedback regulator problem. These results are significant in that they extend

the above theory to the class of general dynamic feedback controllers.

Lemma 5.8 Suppose H1 holds and assume that, for some O(z) and 7(z, e), condition

1 of Problem 5.2 is fulfilled. Then, condition 2 of Problem 5.2 is also fulfilled if and

only if there exist Ck, kI> 2, mappings x = -r(w), with 7r(0) = 0, and z = o(w), with

a(O) = 0, both defined in a neighborhood W° C W of 0, satisfying the conditions

d(r-s(w) = f(7r(w)) + g(7r(w))(o((w)) + p(7r(w))w (5.28)
8w

doc
(-s(w) = 7(0(w), 0) (5.29)

h(7r(w)) + q(w) = 0. (5.30)

Theorem 5.9 Under hypotheses H1, H2, and HS, the error feedback regulator prob-

lem is solvable if and only if there exists Ck , k > 2, mappings x = 7r(w), with 7r(O) = 0,

and u = c(w), with c(O) = 0, both defined in a neighborhood Wo C W of 0, satisfying

the conditions

y- s(w) = f (r(w)) + g(7r(w))c(w) + p(7r(w))w (5.31)

h(7r(w)) + q(w) = 0. (5.32)



In Ref. [44], sufficient conditions for the solvability of the nonlinear regulator equa-

tions are given in terms of the spectrum of the linearized exosystem equations. In

particular, it is proven that if the equilibrium of the exosystem is not hyperbolic,

i.e., the eigenvalues of the linearized system have zero real parts, then the regulator

equations are solvable. This is consistent with the results from the center manifold

theory on which the nonlinear output regulation is founded.

As mentioned in Chapter 7 in the context of a two link manipulator example,

these exosystems are capable of generating p-times differentiable trajectories, as well

as sinusoidal trajectories.

5.2 Performance Measure

To paraphrase De Luca [26], the output regulation approach enables us to separate

clearly the computation of nominal control action, which serves to impose steady-

state performance, from the derivation of a feedback law which takes care of system

stabilization. This suggests, in analogy to the linear case, two types of performance

measures that are of relevance. On the one hand there is the steady state performance

(steady state error in linear systems) and on the other there is transient performance

(reaching time or settling time of linear systems).

If the nonlinear output regulation problem is solvable, we are guaranteed that the

system will exponentially reach a steady state such that there is no steady state error,

in the absence of parameter uncertainty. This is the measure of steady state perfor-

mance. A contribution of this thesis is the realization that the exponential rate of

convergence to this so-called steady state manifold defines the transient performance

as would be expressed by the settling time in a linear system.

We define our transient performance measure in terms of the error between the

actual system trajectory and the desired trajectory on the steady state manifold

e(t) = x(t) - 7r(w(t))

Solvability of the Output Regulator Equations
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where we use the same notation as in section 5.1. Recall from the proof of Lemma 5.6

above that, under the proper assumptions, the center manifold is locally attractive:

I=x(t) - 7r(w(t))j= IIe(t)lj < Me-at'lle(0)l (5.33)

where M > 0, a > 0. Of particular note is the exponential nature of the above

relation. This implies that under the hypothesis of the nonlinear regulator theory,

if a solution exists, e(t) -+ 0 exponentially as t -- oo. Our measure of transient

performance consists in determining the rate of this exponential decay, or, more

explicitly, in determining the values that the positive constant a can have.

5.2.1 Stability of the Center Manifold

In order to determine the qualitative (as well as quantitative) nature of the constant

a in Eq. 5.33, it is necessary to take a closer look at the results from center manifold

theory. In Ref. [20], the local asymptotic stability of the center manifold is summa-

rized in the lemma that follows. It is instructive to study the proof of this lemma not

only to understand the nature of the exponential constant a, but also to understand

the local nature of the results of the entire nonlinear regulation theory.

The reader is referred to Appendix A for more details and some preliminary con-

siderations.

Consider the following set of equations

S= Ax + F(x, y) (5.34)

= By + G(x, y). (5.35)

where the A and B are constant matrices such that the all the eigenvalues of A have

zero real parts, and those of B have negative real parts. F and G are defined in

Appendix A. By Theorem A.3, the system of Eqs. 5.34-5.35 has a center manifold

which we denote by 7r(x).

Lemma 5.10 Let (x(t),y(t)) be a solution of Eqs. 5.34-5.35 with j[(x(0),y(0))|j suf-

ficiently small. Then there exist positive constants C, and it such that

Ily(t) - 7r(x(t))II • Cie-'t ljy(0) --r(z(0))II



for all t > 0.

Proof: Let (x(t),y(t)) be a solution of Eqs. 5.34-5.35 with (x(O),y(O)) sufficiently

small. Let z(t) = y(t) - 7r(x(t)). Then we have that

z = Bz + N(x,z) (5.36)

where

N(x, z) = 7r'(x)[F(x, 7r()) - F(x, z + 7r(x))] + G(x, z + 7r(x)) - G(Z, Xr()).

Now using the definitions of F and G, there exists a continuous function 6(e) with

6(0) = 0 such that

I F(x·,yi) - F(X2,y2 )ll < 6 (E)[I1xi - X211 + IlY1 - Y211] (5.37)

IIG(xi,yl) - G(x 2,y2 ) ll _ 6(E)[1IXi - X211 + I Y1 - Y211] (5.38)

for all z 1, 2 2 E R n and all Y1,y~ E Rm with Ily1ll, IIY211 < e. Further, note that since

7r(x) is Ck, k > 2, xr'(x) is bounded over any bounded neighborhood in R". Thus,

there exists a continuous function k(E) with k(0) = 0 such that jiN(x, z)lI < k(e)IIzII if

Ijzil, lxjII < e. Note that this is equivalent to saying that the nonlinearity is Lipschitz

in some sufficiently small neighborhood about the origin.

Since all the eigenvalues of B have negative real parts, there exist P > 0 and

C > 0 such that for s < 0 and y E R",

Ile-B'yll Ce_"'lyll (5.39)

where , and C depend on the particular vector norm chosen. Using Eqs. 5.36 and 5.39

we get

IIz(t)l < Ce-Ot jz(O)i + Ck(e) te-I'-)iz(T)jdr

and the result follows from Gronwall's inequality (see Appendix B):

Ilz(t)ll < Cllz(O)lle- fP '  (5.40)

where

/3 = P - ck(c) (5.41)



We highlight here for later reference that the local nature of the above results

derives from two sources. On the one hand, the existence of a center manifold is a

local result (witness the definition of F and G). On the other hand, the nonlinear term

N(x, z) above is required to be Lipschitz in some neighborhood of the equilibrium

point. In the light of Eq. 5.41, we see that the neighborhood about the origin wherein

the above results hold true is bounded by the value that k(E) takes. By definition,

k(E) is a monotonically increasing function of E. We are thus limited to values of E

such that fl > 0. We return to this point in section 5.2.3 below.

By its nature, the exponential decay of Eq. 5.33 is a lower bound on the actual

system rate of decay, i.e., the system will decay no slower than this. If the system

were linear the rate of decay would be given by the largest (negative) real part of

the eigenvalues of the closed-loop system matrix. Indeed this lower bound is tight in

the sense that, except for very special combinations of initial conditions and forcing,

it is also the upper bound for the rate of decay of the system as the linear terms

dominate, i.e., if the system is nearly linear, the response cannot decay faster than

the eigenvalue with the largest (negative) real part will allow.

The offshoot of all this is that the transient performance of a nonlinear system of

the form of Eqs. 5.5-5.6 is determined, at least locally to the steady state manifold, by

the closed-loop eigenvalues of the linear approximation to the system at equilibrium.

This intuitively appealing result is nonetheless important because it clearly establishes

the significant performance measures for nonlinear systems. In some important cases,

as we shall see below, the local nature of the results is not as restrictive and in effect

nearly global results can be inferred. Finally, the linear aspects of the performance

measure facilitate the use of the well-developed linear theory to determine bounds on

performance.

5.2.2 Frequency Domain Heuristics

Given an asymptotically stable system, the linear approximation of the system dom-

inates when the state gets close enough to the equilibrium point, assuming of course



the existence of a nontrivial linear approximation. Therefore, locally, the linear per-

formance limits ultimately determine the system performance.

In this context, we note that the transient performance measure defined above is

determined by the feedback portion of the regulator. In the presence of parameter

uncertainty, the feedback controller plays a similar role (at least locally) as in the

linear case, namely that of reducing sensitivity to parameter uncertainty and unknown

disturbances. In this sense, the frequency domain performance limits discussed in

Chapter 3 apply locally to nonlinear systems.

In the light of the already defined transient performance measure in the time

domain, it is clear that limits in the gain of the feedback controller directly affect

the rate of convergence to the steady state manifold. If these limits are imposed by

linear frequency domain considerations such as sensitivity reduction for nonminimum

phase systems, the effect will again be observable in the rate of convergence of the

trajectory of the nonlinear system to its steady state manifold. Thus, for nonlinear

closed-loop systems with a non-trivial linear approximation about the equilibrium,

the performance measure defined above clearly establishes the performance bounds

derived from the linear approximation to the system as the ultimate performance

bounds for the nonlinear system.

We note that these results are not limited to nonlinear systems under static state

feedback control. In fact, Theorem 5.9, which is concerned with error feedback, can

be extended to any nonlinear dynamic feedback controller that satisfies the nonlinear

output regulation assumptions. In particular, the theory is valid for any (linear or

nonlinear) controller which locally exponentially stabilizes the nonlinear closed-loop

system. In this case, it is again the linear approximation of the closed-loop system

that determines the ultimate performance bounds.

5.2.3 On the Local Nature of Results

Recall from the proof of Lemma 5.10 that the local character of the results is due to

two facts: first, the proof of existence of the center manifold 7r(z) is local in nature;

and second, the nonlinear terms are required to be Lipschitz in some neighborhood



of the equilibrium point. It is the second condition that is most limiting in terms of

our performance measure. We note in passing that the first effect is not as restrictive

because a global center manifold could exist even if the contraction mapping-based

proof of existence failed. The second condition, on the other hand, is equivalent to

a measure of nonlinearity that directly limits the rate of exponential decay to the

steady state manifold.

In the proof of Lemma 5.10 it was also pointed out that the actual rate of decay

to the center manifold is given by the exponential constant 61 which was defined in

Eq. 5.41 as

1 = P - Ck(e)

where P and C depend only on B, and k(E) is a continuous, monotonically increasing

function of e that was identified as a local Lipschitz constant for the nonlinear term

N(x, z). In effect, k(E) is the largest first derivative that the norm of N can attain

inside a neighborhood |Ix|l, [iz[[ < E. If k(E) were bounded with respect to E, then

global results could be inferred. A perfunctory examination of the dynamic equations

for chains of bodies (e.g., see Chapter 2) shows, however, that these nonlinear terms

depend on square velocity terms which are not bounded a priori. Nevertheless, this

suggests that for sets of bounded trajectories the Lipschitz condition can be met for

k(E) sufficiently large.

The problem now arises that k(E) cannot be arbitrarily large, since /1 must remain

positive. Since / is determined by the eigenvalues of the linear approximation to the

closed-loop system, we have clearly defined quantitatively as well as qualitatively the

local nature of the results.

This investigation leads naturally to bounds on the acceptable trajectories. For

example, for the local results to remain valid, we might have to limit the magnitude

of the angular rates in a manipulator. Given a nonlinear term of the form

011 < k()IxI, Xl1 < 6, X [ ]



we see that k(e) P e and thus if we require P > Ck(E) then

CC

5.3 Application to Flexible Robotics

In this section we apply the results from the nonlinear regulator theory to open chains

of flexible bodies (e.g., manipulators). The purpose of this program is to expound on

and clarify the notion of a performance measure introduced in the previous section.

To this end, we present a series of exosystems which will generate desired output

trajectories for manipulators with flexible links. We will analyze in particular the one

link planar manipulator with revolute joint. In Chapter 7 we will examine in detail

the planar two-link manipulator with flexible links and revolute joints.

Once the system, exosystem, and control configuration (number and locations

of acutators and sensors) are chosen, the regulator equations (Eqs. 5.25-5.26) are

solved for the feedforward control as well as for the steady state manifold. A simple

constant gain state feedback is chosen in all cases for the feedback stabilization to

the steady state manifold. The constant gain matrix is chosen using linear quadratic

regulator (LQR) theory [52] and the linear approximation at equilibrium of the open

loop system as the design model. Simulation results show the compliance of the final

nonlinear closed-loop system with the performance limits predicted by the linear

theory.

Let us begin by noting that the limitations inherent on our system due to its

nonminimum phase nature are already apparent in the fact that we cannot use input-

output decoupling to implement an inverse dynamics solution. Further limitations

in the context of the output regulation theory are expressed by unachievable steady

state solutions, e.g., if the regulator problem is not solvable for certain exosystems

(see solvability conditions in terms of zero dynamics in Ref. [44]).

The limitations due to an unachievable steady state express limits on the steady

state performance. Further, we encounter limits on the transient performance. These

are due to the limits of performance inherent in linear nonminimum phase systems.



Recall from section 5.2 that the error dynamics has an exponential bound as it con-

verges to the steady state manifold. This bound can be approximated by the linear

approximation to the closed-loop dynamics at equilibrium. Because the linear ap-

proximation to the open loop dynamics is nonminimum phase, the linear closed-loop

dynamics exhibits those performance limits expressed in Chapter 3. Thus, the closed-

loop nonlinear system will tend to the steady state manifold at a rate limited by the

largest (negative) eigenvalue of the linearized closed-loop system matrix, which in

turn is limited by linear nonminimum phase considerations.

5.3.1 Joint Actuation

Manipulator with One Flexible Link

In this section we use the one flexible link manipulator presented in Chapter 2 as our

system. We refer in the following to the discretized equations of motion 2.13 which

we reproduce here for convenience.

M (t) + H(t) + K = -2(tK H(t) + B- (5.42)q(t) 4(t) q(t) q(t)
The input to this system is the joint torque r. The output of interest, for reasons

described in Chapter 4, is the angular position of the tip. According to De Luca et

al. [27], this yields a nonminimum phase system with well defined relative degree of

two for any number of assumed modes n. In our case the output is given by

n

Y = 0H(t) + 0 ¢•(l)q,(t)

=i 1 T]c ] (5.43)[ q(t) (5.43)

l= [11) ... (1) ]

The arm parameters chosen are given in Table 5.1. The space-dependent mode

shapes are taken to be the natural mode shapes for a cantilevered-loaded beam with

the same parameters (see Appendix C). In this simple example we ignore material

damping.



Table 5.2: Open Loop Poles and Zeros for the One-flexible-link Manipulator

Choosing the state vector as

OH(t)
q

9H(t)

and linearizing about the equilibrium point at x = 0, we obtain using MATLAB [59]

the poles and zeros given in Table 5.2. Note that we have taken the number of

assumed modes to be n = 2.

The system of Eqs. 5.42-5.43, with the parameters of Table 5.1 satisfies hypotheses

H2 and H3 of the nonlinear regulator problem. In fact, its linear approximation about

the equilibrium is both controllable and observable.

Set-point Regulation The exosystem for the set-point regulator problem is trivial:

b = 0, w(0) = Od, q(w) = w(t) (5.44)

where Od is the desired final angular position of the tip in inertial space. We follow

the notation of section 5.1 above. This exosystem clearly satisfies hypothesis H1 of

Poles Zeros

P1,2 = 0

P3,4 = ±38.8422i z1 ,2 = ±18.8251

P5,6 = ±97.8966i z3,4 = ±108.8176

Kg Kg m 2  m N m 2

pl = 1.0 JH = 0.0333 1 = 1.0 El = 15.0

mT = 0 JT = 0 bH = 0.01

Table 5.1: Parameters for the One-flexible-link Manipulator



p1,2 = -18.8251 p3,4 = -39.7635 + 39.7635i p5,6 = -108.8176

Table 5.3: Closed-Loop Poles for the One-flexible-link Manipulator; t = 1 x
10- 7.

the nonlinear regulator theory. Solving the output regulation equations 5.25-5.26 for

Xr(w) and c(w) we obtain

c(w) = 0, 7r(w) =
0

0

2n + 2 (5.45)

where we note in particular that the above solution is valid for any number n of

assumed modes.

In accordance with the results of the nonlinear regulator theory, we now implement

the following control law

7 = Kreg(W(w(t)) - x(t)) (5.46)

where the gains Kreg are obtained from the solution of the linear quadratic regulator

problem with weighting I on the control effort and weighting

Q= [ cT 0 0 .. 0 ]T[ 1  cT 0 0...0]

on the states.

Starting from zero initial conditions, a desired final tip angular position of Od = 900

is commanded. This is a very large angle maneuver. We reduced the weighting L on

the control effort to achieve the fastest possible response. The linearized closed-loop

poles for the lowest weighting (It = 1 x 10- 7 ) are presented in Table 5.3. As expected

from the results of Chapter 3, a pair of poles gets "stuck" at the mirror image on the

left half plane of the first nonminimum phase zero. Simulation results are presented

in Fig. 5.2.

Poles I



From the figure it is first apparent that for this very nonlinear maneuver (with large

angle and angular rate) the nonlinear closed-loop system remains stable even for very

large controller gains. This stems from the fact that in this case the local results of the

nonlinear output regulation theory can be shown to be in fact global (see Chapter 6).

Next we see that, in accordance with the theory presented in section 5.2, the nonlinear

performance is in fact limited by the linear performance bounds: the settling time for

the output error (and the state error) is approximately 4/Real(zi) ; 0.27 sec, even if

the control effort is allowed to increase without limit.

Recall from the linear theory that an even more restrictive limit caused by nonmin-

imum phase zeros is the increase in sensitivity around crossover when the crossover

frequency approaches the nonminimum phase zero location from below. This implies

that the limit shown in Fig. 5.2 is only ideal and the practical limit will be a decay

about ten times slower to account for parameter and disturbance uncertainties.

Sinusoidal Exosystem The following exosystem produces a sinusoidal signal that

we want the inertial tip angular position to track. This exosystem is given by

Sw, w(O)= d() q(w) = wl.-W 0 O (0)

This exosystem also satisfies hypothesis H1 of the nonlinear output regulation theory.

In order to solve the regulator equations for this more complicated exosystem, we

follow De Luca et al. [27] and first invert the system using only one assumed mode.

This results in the output tracking the input exactly, while the internal dynamics are

unstable. However, since the linear approximation to the system at equilibrium is

controllable, we can stabilize the closed-loop system using the results of the output

regulation theory.

Because our new system has an unstable minor loop as shown in Chapter 3,

with unstable poles of the linear approximation at the locations of the old system's

nonminimum phase zeros, this results in performance limitations analogous to those

in the case of nonminimum phase zeros, since of course the overall system with the

unstable minor loop remains nonminimum phase.
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Figure 5.2: Output of One-flexible-link Arm: Set Point Regulation; /z = 1 x
10-7.

The inversion-based controller given by

v PT + C T r
S= + [Hq + Dq + ý2 (t)Kgq]

a + clf a + cP

yields the inverted system

S(t) = v

q(t) = -(G - mc )- Hq - (G - mcT)-1 mv

where we have set

We now design for the control input v.

We now design for the control input v.
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c(w) = -w 2 w 1, 7r(w) =

Wl
12

a1w1 + a111w + a1 22w1 w2

WW 2

(3a111 - 2a 122)www 2 + a 1ww 2 + a122ww2

where the nontrivial coefficients of the polynomial expansion of ir2(w) are defined as

a, = miW2 a122 = 3w2 aS
a 7 H 1t•w 2 den  a12 den 2w 2

-2w'K9den(w2'ai-2 1)()"W2a+(1())2w2a) den 3 - 1 ().all, = 121d1 )) den = Gil - mi (1).12w4den 2-(Hi1-7w 2 )(H11 -3w-2 )

Recall that in solving for the steady state manifold 7r(w) and for the feedforward

control c(w) above we have used only one assumed mode so that n = 1. It is

important to emphasize that this approximate solution is local in nature. If a chosen

sinusoidal trajectory has either large frequency or large amplitude the actual steady

state manifold will differ from the one given above and this will be reflected in steady

state errors.

We now implement the following control law

T = c(w(t)) + Kreg(-(w(t)) - x(t)) (5.50)

This transformation from our original system of Eq. 5.42-5.43 to the inverted

system of Eqs. 5.48-5.49 results in a simpler form of the regulator equations. These

are solved, as in Ref. [27], by assuming a solution of ir(w) in terms of a complete

polynomial of the third degree. The results of the Center Manifold Theory presented

in Appendix A ensure that we can thus approximate the center manifold to any degree

of accuracy desired.

The above decision to use the inverted system points to the fundamental question

of the tradeoff between feedback control and feedforward control. The inversion-based

control of Eq. 5.47 requires full state feedback. If the nonlinear regulator equations

were solved for the original non-inverted system, any (output) error feedback con-

troller that satisfied the conditions of the theory could be used and thus feedback

would be minimized.

Solving the regulator equations 5.25-5.26 for the system of Eqs. 5.48-5.49 produces
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Figure 5.3: Output of One-flexible-link Arm: Sinusoidal Regulation; / =
1 x 10- 7 , A = 450, w = 6 r/s.

where as in the set-point regulation case the gains K,,,g are obtained from the solution

of the linear quadratic regulator problem with weighting i on the control effort and

weighting Q as before on the states.

Starting from zero initial conditions, two desired sinusoidal trajectories are spec-

ified for the motion of the tip angular position. In the first one, a sinusoid with

amplitude of 450 and frequency w = 6 rad/sec is specified. The resulting output and

state errors are shown in Fig. 5.3.

In order to show the usefulness of the nonlinear output regulation theory, and to

further demonstrate the validity of our performance measure, a second sinusoid is

commanded with a frequency of w = 60 rad/sec. Notice that this frequency is quite a

bit higher than the first natural frequency of the linearized system. To stay within the
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Figure 5.4: Output of One-flexible-link Arm: Sinusoidal Regulation; 1 =-
1 x 10- , A = 50, w = 60 r/s.

realm of validity of the theory, however, we are forced to use a much smaller amplitude

so that our local approximate solution to the steady state manifold remains accurate.

For this reason we select an amplitude of 50. Figure 5.4 shows the actual versus the

desired tip angular positions, and the corresponding output error.

In Fig. 5.4 we see first that tracking of a very fast sinusoid is achieved in steady

state. It is also clear that the rate of convergence to the steady state, the perfor-

mance measure defined above, is again limited by the pole that gets stuck at the first

nonminimum phase zero location. Notice in particular that in the simulation of the

faster sinusoid we have used a new initial condition: -5o . We did this because if we

start at the origin of the state space, as before, the feedforward element of the control

law exceeds the feedback element, which depends on initial errors. In this particu-
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lar instance, and since we are applying our control design to the nominal plant, it

happens that the feedforward control helps the state reach its steady state. 218z For

this reason, the feedforward control is given by c(w) + K7r(w), as we decrease the

control weighting A the feedforward control helps the state reach the steady state

even faster and we do not see the limit of performance due to the feedback portion

of the control. Of course, this is deceiving since all the limits to sensitivity, i.e., to

the benefits of feedback, are still in effect even if they are not apparent in the time

domain simulation.

As can be seen from Fig. 5.4, however, when the feedback portion of the control

dominates due to a large enough initial error, the limits of the feedback control again

become apparent.

5.3.2 Other Actuators

In this section we briefly examine the effect that the addition of more actuators has in

the performance limits for manipulators with flexible links. For this purpose we select

again the one-link arm analyzed in section 5.3.1 and implement a set-point regulator.

The difference is in the control topology: we now include an ideal torque actuator at

the tip as well as at the joint of the arm.

The equations of motion are identical to those shown in section 5.3.1, Eqs. 5.42-

5.43 except for the control weighting matrix B which now becomes

B =[
C1

where c1 is the same as in Eq. 5.43. This reflects the fact that there is a torque

actuator at the tip of this new system. The output under consideration is still the

same: the tip angular position in inertial space. The arm parameters are chosen as

before to be those shown in Table 5.1, and the open loop poles are the same as those

shown in Table 5.2. However, in this case there are no open loop zeros. Note that as

before we have chosen the number of assumed modes to be n = 2.

Using the exosystem given by Eq. 5.44, and solving the regulator equations 5.25-

5.26 for 7r(w) and c(w), we obtain similar results results as those of Eq. 5.45, except
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Table 5.4: Closed-Loop Poles for the One-flexible-link Manipulator; I = 1 x
10-5.

that now c(w) = 0 and w are 2 x 1 vectors, with w1 = Od, w 2 = 0, and 7ri(w) = /1,

7ri(w) = 0 for i = 2,...,2 + 2n.

The controller is given by

S= Kg(7r(w(t)) - x(t)) (5.51)

where 7 is a 2 x 1 vector and Kreg is a 2 x (2 + 2n) matrix of gains obtained from the

solution of the linear quadratic regulator problem with control weighting A = 1 x 10- s

and state weighting matrix Q defined above. The closed-loop poles are given in

Table 5.4.

The response to a desired step of 450 is shown in Fig. 5.5. Zero error steady state

is achieved and the state remains bounded, as expected from the output regulation

theory. Notice that the steady state manifold is reached much faster than what

was possible when only the joint torquer was available (e 0.075 sec settling time

as opposed to , 0.27 sec in the joint actuator case). In theory, since there are no

transmission zeros in the present case, there are no fundamental limitations to the

benefits of feedback of the kind presented in Chapter 3 (other than of course practical

ones due to disturbances, parameter uncertainties, unmodelled dynamics and actuator

bandwidth).

Notice from Table 5.4 that the bottom two complex pole pairs would seem to

indicate a much slower response than what we observe in Fig. 5.5. However, these

poles are nearly cancelled by zeros of the transfer function from tip torque to tip angle

obtained after closing the joint torque state feedback as an inner loop. Thus in the

state response we see a decay commensurate with the lowest closed-loop poles, while

Poles

P1,2 = -6.71505 ± 10.3232i p3,4 = -13.6243 ± 56.9732i

P5,6 = -111.819 + 143.088i



Figure 5.5:
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Output of One-flexible-link Arm: Set Point Regulation; / = 1 x
10- s .

in the tip response we see a much faster response corresponding to the complex pole

pair with the largest modulus.
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Chapter 6

Robustness vs. Performance in

Feedback Control

In Chapter 5 we saw that in the context of the nonlinear output regulation theory the

complementary roles of feedback control and feedforward control are made explicit. In

this chapter we examine in more detail the stabilizing role of feedback and analyze the

tradeoffs between robust, globally stabilizing feedback control, and high performance,

locally defined feedback control.

We start this chapter with some mathematical preliminaries needed in order to

prove the global asymptotic stability of the joint proportional plus derivative (PD)

control of a single flexible link manipulator. We proceed to present this very basic

result, which is shown here for the first time in the literature. We then examine full

state feedback control options and the possibilities for higher performance stabilizing

control.

6.1 Mathematical Preliminaries

In the following we assume the reader is familiar with the basic concepts from func-

tional analysis. In particular, the concepts of linear vector spaces, norms, Banach

spaces, and L P spaces. A basic introduction to these topics is given in Ref. [57].

Reference [76] provides a more rigorous treatment. The following definitions, which



pertain in particular to the study of partial differential equations, are less common and

are thus provided here for convenience. The reference for this material is Adams [1].

Let a = (a0l,..., a n ) be an n-tuple of nonnegative integers ai. Then a is called a

multi-indez and x c = ti ... x an
1 n

where x is in R".

Definition 6.1 If Di = a/li, for 1 < i < n, then

DC = D" ... DOe,

denotes a differential operator of order Jai.

Consider the arbitrary domain Q C R". Define a functional I Im,p, where m is a

nonnegative integer and 1 < p < oo, as

IIulIm,p = (m D"u ;), ifl _ p < oo, (6.1)

IUIIm,O = max IID"ulJ , (6.2)O<Ictl<m

for any function u for which the right sides are well defined. I1- IjI is the LP(Q) norm.
Define now the following three spaces:

1. Hm,P - the completion of u E Cm(f) : IIUllm,, < oo with respect to the norm

II - IImp,

2. WmP() =_ u E LP(Q) : Dcu E LP(Q)forO < lal < m, and

3. Wo"'P the closure of CG"O() in the space W7"(Q).

C"(oo) = (l=0 C m (Q), where Cm(Q) is the vector space of all functions 0 which,

together with all their partial derivatives Da" of orders al <5 m, are continuous on

0. Co"(?2) consists of all those functions in C"(Q) which have compact support in

These spaces, equipped with the appropriate norm given by Eqs. 6.1 or 6.2, are

the so-called Sobolev spaces over Q. Note that WO'P(Q) = LP(Q), and if 1 < p < oo,
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W0'"(Q) = LP(Q). Further, HI,P(Q) = W""P(Q) for every domain Q. The Sobolev

imbedding theorem asserts the existence of imbeddings of WmP(Qf) into spaces of the

type Wi4'(M), j < m. For an exhaustive treatment of the imbedding theorem and its

properties, the reader is referred to Ref. [1].

6.1.1 Dynamical Systems in Banach Spaces

Further background on the material presented in this section can be found in Refs. [35,

98,36].

Definition 6.2 A dynamical system on a Banach space B is a function u : R+ x B --

B such that u is continuous, u(O, 0) = u, u(t + 7, q) = u(t, u(-, 0)) for all t, tau > 0
and q in B.

Definition 6.3 A positive orbit (half-trajectory) y+ = 7y+() through € in 8 is de-

fined to be 7+(() = Ut>0 u(t, q).

In Refs. [98, 35], conditions are given for the stability of invariant sets of general

dynamical systems in terms of Lyapunov functionals. The general philosophy is the

same as for dynamical systems defined by ordinary differential equations in finite di-

mensional spaces. That is to say, stability being a property essentially determined by

the distance or metric function in a given space, the existence of a Lyapunov function

(or functional) guarantees that the system trajectories remain in the neighborhood

of the invariant set. In this sense the results of Lyapunov stability theory extend in

a straightforward manner to general dynamical systems in metric spaces.

For a discussion of the Lyapunov stability results in finite dimensional spaces, the

reader is referred to [90].

6.1.2 An Invariance Principle

As expressed pithily by Hale*:

*J.K.Hale, "Dynamical Systems and Stability," J. of Math Anal. and Appl., 26, 1969, p. 39.
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Of basic importance in the theory of a dynamical system on a Banach

space B is the concept of a limit set w(7) of an orbit 7 through a point

0 in B. One can be assured that w(7) is nonempty and invariant if 7

belongs to a compact subset of B. In applications it is much easier to

show that an orbit belongs to a bounded set than it is to show it belongs

to a compact set.

In the case that a dynamical system is given by ordinary differential equations,

and thus B is finite dimensional (e.g., Rn), the local compactness of B guarantees

that a bounded orbit belongs to a compact set of B. Dynamical systems defined

on infinite dimensional Banach spaces do not possess this nice property, since these

spaces are not locally compact. Some dynamical systems, such as those generated

by retarded functional differential equations, possess the property that trajectories

become smoother as the system evolves in time. In this case, even though B is infinite

dimensional, it can be shown that bounded orbits belong to compact subsets.

Unfortunately, partial differential equations, as well as functional differential equa-

tions of neutral type, do not in general possess this smoothing property. However t

[t]he basic space B3 in such situations is usually a Sobolev space and the

well-known Sobolev imbedding theorems imply in general the existence of

a Banach space C such that the unit ball in B belongs to a compact set

in C. Therefore, any bounded orbit of the dynamical systems on B would

have a nonempty limit set in C. The limit set in C should then enjoy an

invariance property.

In this section, we will follow closely the development presented by Hale in Ref. [36].

We start with some definitions concerning limit sets and Lyapunov functions.

Definition 6.4 Let u be a dynamical system on B. For any q in B, the w-limit set

w(o) of the orbit through 0 is the set of ib in B such that there is a nondecreasing

sequence {tn}, tn > 0, tn --+ oo as n --+ oo such that I u(tn, q) - )I 3 --+ 0 as n --+ oo.

tlbid.
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Definition 6.5 Let u be a dynamical system on B. A set M in B is an invariant set

of the dynamical system if for each 0 in M there is a function U(t, 0) defined and in

M for t in (-oo, oo) such that U(O, 0) = 0 and for any a in (-oo, oo),

u(t, U(c, q)) = U(t + a;, )

for all t in R + .

Lemma 6.6 Let u be a dynamical system on B and suppose the orbit 7+(0) through

€ belongs to a compact subset of B. Then the w-limit set w(¢) of 'y+() is a nonempty,

compact, connected invariant set.

Let u be a dynamical system on B and V be a continuous scalar function defined

on B. Define V( 7) = VB (  a) as

V(b) = lim sup 1-[V(u(t, 0)) - V(¢)]. (6.3)
t--O+ t

Then we can define, following LaSalle [54],

Definition 6.7 A function V : B -- R is a Lyapunov function on a set G in B if V

is continuous on G, the closure of G, and V(q) •< 0 for 0 in G.

Let S be the set defined by

S = { in ?7: V(Ob)= 0}

and let M be the largest invariant set in S of the dynamical system. Then the

following theorem is a straightforward extension of a similar theorem for ordinary

differential equations (see Ref. [54]).

Theorem 6.8 Suppose u is a dynamical system on 13. If V is a Lyapunov function

on G and an orbit 7+(q) belongs to G and is in a compact set of 13, then u(t, q) -+ M

as t -* oo.

Note that, as remarked by Hale [36], a sufficient condition for an orbit 7+(O) to

remain in G if q belongs to G is that the conditions of Thm. 6.8 be satisfied for G a

component of the set Up = { in B : V(¢) < p}. In other words, if in addition to the

conditions stated in the theorem, G is such that V(O) < p, for some constant p, for

all q in G.
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Limit Dynamical Systems

Theorem 6.8 describes the limiting behavior of an orbit of a dynamical system when

this orbit remains in a compact subset of the space. We now present a formal pro-

cedure for determining when this is indeed the case in view of our comments (at the

beginning of this sub-section) on dynamical systems generated by partial differential

equations. The basic idea is to show that the given dynamical system on B is also a

dynamical system on a larger space C; and that when B is considered as imbedded

in C, the unit ball in B belongs to a compact subset of C. In this manner, we can

assert that a bounded orbit has a nonempty limit set if the convergence is taken in

the appropriate space.

Again we follow the development in Ref. [36].

If B and C are Banach spaces, we shall say that B C C if there exists a continuous

linear injection i : --+ C. If B C C, there is a constant K > 0 such that lHi( )llC <

Kl40111B for all 0 in B.

Definition 6.9 Suppose B C C and u is a dynamical system on B and C. Let B* C C

be the set consisting of the union of B and any 0 in C for which there is a 0 in B

such that 0 belongs to wC( b), the w-limit set in C of the orbit 7+(V)) in C. Then

u : R + x B* -- B B* is a dynamical system and we refer to this dynamical system as

the limit dynamical system of B in C.

If B is a Hilbert space, then B* = B in accordance with the Banach-Saks theorem [12].

The following lemma is a trivial extension of Lemma 6.6, where effectively B is

replaced by B3*.

Lemma 6.10 Suppose B C C and u is a dynamical system on B and C. If 0 in C

is such that 7+(O) belongs to a bounded set of B and a compact set of C, then the

w-limit set w(o) of the orbit through q is a nonempty, compact, connected set in B*,

an invariant set of the limit dynamical system and distC(u(t, q),w(O)) -+ 0 as t --, oo.

Theorem 6.11 Suppose B C C, u is a dynamical system on B and C and each

bounded orbit of B belongs to a compact set of C. Also suppose the function VB is
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a Lyapunov function on GB = {f in B : VB < q}, VC is a Lyapunov function on

GC= { in C: VC < 77}, GB C GC,

R = { in GC : c(() = 0}

and N is the largest invariant set in R of the limit dynamical system. If GB is

bounded and € is in GB, then u(t, €) --+ N in C as t -- oo.

6.2 Joint PD Control

6.2.1 One Flexible Link Arm

In this section we are concerned with showing the stability of a flexible arm, consisting

of a single flexible link, under the action of a simple joint proportional-plus-derivative

(PD) controller. As described in greater detail in Chapter 2, the arm consists of

a rigid hub free to rotate in the plane to which a flexible Bernoulli-Euler beam is

attached in a cantilevered way (See Fig. 2.1). In what follows, we will refer to the

nondimensionalized Eqs. 2.7-2.10. Notice that these equations assume that there is

no tip body.

Dynamical System

In order to use the theory developed in the previous section, we must show that

Eqs. 2.7-2.8 do indeed generate a dynamical system over an appropriate Banach

space. As mentioned earlier, the natural spaces for partial differential equations are

Sobolev spaces. Demonstrating that the equations under consideration form a dynam-

ical system is equivalent to showing the existence, and uniqueness, and continuous

dependence on the initial data of solutions to the said equations.

Showing existence and uniqueness of solutions to nonlinear partial differential

equations is a nontrivial matter that is the current subject of much research in theo-

retical mathematics. Given the particular nature of the equations under consideration

in this thesis, it is perhaps possible to extend results showing existence and unique-

ness of the linear version of the equations. These results are based on the theory of
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semigroups of operators [5]. Using the linear results, and proceeding in a manner

similar to that of Dafermos [24], it might be possible to use contraction arguments to

prove the existence and uniqueness of our 'quasilinear' equations.

Following the above procedure, one is likely to obtain local (in t) results. To obtain

global existence, one constructs a Lyapunov function and invokes the continuation

theorem to obtain a dynamical system of a subset of the space.

Dafermos uses the method of Faedo-Galerkin to show existence and uniqueness

of quasilinear equations of nonlinear elasticity. This coincides with finite dimensional

approximations to the solutions not unlike the assumed modes or finite element meth-

ods used in standard engineering practice to approximate solutions of equations of the

type under consideration in this thesis. If numerical approximate solutions exist and

are unique for increasing dimensions, as computer simulations suggest, and as could

be surmised by the fact that the discretized equations of motion are not particularly

ill-behaved, then the limiting infinite dimensional solution is likely to exist and be

unique.

Carr [20] presents results from semigroup theory that show that for an infinite

dimensional nonlinear system, such as the one we consider in this work, if the nonlin-

ear terms are locally Lipschitzian then there exists a unique, maximally defined weak

solution that is given by the variation of constants formula and that is local in time.

However, here again it is possible to extend this solution for all time if for some initial

conditions the trajectories remain bounded. Thus, if we can construct a Lyapunov

functional for our system, we can show existence and uniqueness of a weak solution

for all time.

Since for the system under consideration we can indeed construct a Lyapunov

functional, and since our system exhibits nonlinearities which are locally Lipschitzian,

in the following, existence and uniqueness of solutions to equations of the type of

Eqs. 2.7-2.8 will be assumed. Furthermore, following results from the theory of

linear partial differential equations [82], we will assume that if the initial conditions

are infinitely differentiable on the whole of the (appropriate) space of the independent

space variables (x in our case), and in the absence of inhomogeneous inputs, then the
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solution itself has all derivatives of all orders. This means in particular that solutions

will be defined on any Sobolev space W2k for arbitrary k.

Under these assumptions, and letting

x = i( ,t) and u = (6.4)
OH(t) j [XJ

we have that u is a dynamical system on B = W2 x R x W1 x R and also on

C = W2 x R x L 2[O, 1] x R.

Lyapunov Functions and Stability

In the following developments, we are concerned with showing the stability of the

equilibrium at the origin of the dynamical system generated by the nonlinear partial

differential equations 2.7-2.8. It is clear from these equations that u(t,uo) = 0 Vt if

uo = 0, where u(t, uo) = u(t) is the solution to Eqs. 2.7-2.8 with initial conditions

u(0) = uo. In other words, the origin is indeed an equilibrium of the system under

consideration.

Let 'D denote the class of functions x(s) = []y(s),OH]T for s E [0, 1], such that

77/ E W24 and OH ER and

(0) = (0) = "(1) = "(1) = 0. (6.5)

Introduce in D the inner product

(x,y) = x(s)Ty(s) ds

According to Balakrishnan [6], (must check this) the completion of D in this inner

product yields the Hilbert space

H = L2[0, 1] x R.

On E C 7H, define the operator A by

xA= ; Ax =- Y (6.6)
OH KOH



x (S) = 0

x ED =

(s) = a3ss
3 + a2s

2 + als + ao

ai = 0 Vi

K9H=0 = OH = 0 .

Now define the mass operator M(x) as

1 s + b 7y(s) (6M(x)x = (6.8)
s + b I + (s + b ,(s))2 + (s) J

Clearly, M = MT. Furthermore, M can be shown to be uniformly positive definite

as follows. Consider

xTM(s x)x -Amn(s x)(x > inf Amin(s x)) x)SE[o,1]

where the minimum eigenvalue Amin of M is given by

Ami = (I + (s + b + q(S))2 + 7(S) +
- (I + (s + b + rx(s))2 + 77(s) + 1)2 - 4(1+ q2(s)).

Notice that Amin > 0 Vs, rl,(s). In fact

inf Amin = min Amin = Amin(0, 0) A > 0.
SE[O,11 sE[(,11

Letting K = 0 for the moment, we obtain the following expressions for the Kinetic

and Potential energies of our system when x E VD (compare to Eqs. 2.9 and 2.10):

V = )(Ax, x)

T = (M(x)', Y

(6.9)
(6.10)

We would like to use the above defined inner product, together with the operators

A and M(x), to define an energy norm in an appropriate space. However, we need x
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Then for x E D

(Ax,x) = j1 2 da + K92 (6.7)

Note that A is self-adjoint and positive definite, for K > 0. In particular, Ax = 0

implies that x = 0, since
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to be in 9D since Eq. 6.9 is true only if x is in the domain of A. To get around this

problem, consider

[x

in the cross product space IE = D(VA-) x 7H with inner product

(u,v)E = (V•U 1, V--v1) + (M(u1)u 2 , V2) (6.11)

Define the candidate Lyapunov function VE as

VE()= (U U)E (6.12)

for u defined as in Eq. 6.4. Recalling from section 6.1 the standard norm in Sobolev

spaces, and using the fact that x E 'D implies that rq,(X,t) satisfies the boundary

conditions 6.5, it is possible to write the following equivalent norm in C:

i = 7,,(gs))2 d + O + ,(s) ds +

If we now let

71 = min ) 2 X

72 = min 2m '

then 0 < Yl, Y2 < ., and it is clear that

VC() VE(.) Ž Y1ll ic2. (6.13)

This shows that VC is indeed positive definite with respect to the norm in C.

The total time derivative of VC, also called the derivative of VC along the motion

u(t, uo), is given by Eq. 6.3:

VC (u) = (T + V) + KpOH9H

= H( + KOH)

= -- HKdAH < 0 Vt (6.14)



112

In the last step above we have finally used the fact that we want to implement a joint

PD controller. The controller is given by

S(t) -KpH - KdAH (6.15)

where K, and Kd are both positive constants. Notice also that we put K = K, in

the definition of the operator A, which in the interest of clarity could be written as

A(K).

Equation 6.14 shows first of all that VC is a Lyapunov function according to

Def. 6.7 on every set G in C. More importantly, Eqs. 6.13 and 6.14 together show

that the equilibrium is stable in the sense of Lyapunov (i.s.L.) relative to the norm in

C. (Reference here to appropriate stability theorem taken from yellow Hahn p. 198

and written in section on stability at beginning of chapter.)

Invariance Principle and Asymptotic Stability

It is possible to extend the above results to show indeed asymptotic stability of the

equilibrium. For this purpose we need to use the theory presented in section 6.1.2

concerning invariance properties of general dynamical systems on Banach spaces.

To use the developments of section 6.1.2, consider the smaller space 8 = W,2 x

R x W22 x R. As pointed out earlier, u is also a dynamical system on B. Taking into

account that motions u(t, uo) must satisfy the boundary conditions 6.5, we can write

down the following equivalent norm on B:

11[1 2 771,(S))2 + 02 + 11 •S + 2

11143' = j[(?IS))2 + ( Y I))] ds +H ' [+ ((S))2 ds + Hl. (6.16)

Define now the candidate Lyapunov function

VB(u) = VE(ii) + VC () (6.17)

where

?Y '(S, t)
OH·(t)

It is then clear that

VB(.) 7-•ll.21 l-B (6.18)
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and thus VB is positive definite with respect to the norm in B.

Taking the total derivative of VB with respect to time we obtain

VVB(u) = VE(i) + Vc(u). (6.19)

'VE(f) depends on the square of the angular acceleration OH(t). Examinining the

partial differential equation of motion, for consistency OH(t) must be of the same

order as the small elastic deformations. This is equivalent to a smoothness condition

on acceptable trajectories so that the elastic deformations do remain small and thus

Bernoulli-Euler beam theory does apply. For this reason, VsE(fi) is a second order

term and neglecting it we obtain:

VB(u) = -OHKd 9 H < 0 Vt. (6.20)

Equation 6.20 shows that VB is a Lyapunov function in every set G in B. Further,

Eqs. 6.18 and 6.20 together show that the equilibrium is stable i.s.L. relative to the

norm in B.

Consider in particular a set GB = {€ in B : VB(q) < 77}. VB is a Lyapunov

function of GB for any q/ > 0. Let 77 = VB(uo) + e, E > 0. In this case it is clear

that VB(t) < q Vt. From Eq. 6.17, this implies that rl,(z,t), together with its spatial

partial derivatives up to order 3, and OH(t) are bounded for all time, which in turn

implies that GB is bounded and further uo E GB.

Now let GC = {q in C : VC(O) < 77}, where 7 = VB(uo) + e as above. Then it is

clear from the results of the previous section that VC is a Lyapunov function on GC.

In addition, GB C GC . Define

Q = {€ in GC :C() = 0}

and let M be the largest invariant set in Q of the limit dynamical system.

In order to invoke the results of Thm. 6.11, we only need to show that B C C, and

that every bounded orbit of B belongs to a compact set of C. Recall that we have

already established that u is a dynamical system on both B and C. Furthermore, the

famous Sobolev imbedding theorems [1] establish that the natural mapping which
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imbeds B into C is a compact map, and consequently B C C, and every bounded orbit

in B is in a compact set in C.

Theorem 6.11 then states that u(t, uo) -* M in C as t -+ oo. It remains to show

that the equilibrium at the origin is the only element of M.

Asymptotic Stability of the Equilibrium If u is in Q, then OH(t) = 0 Vt. This

implies that OH(t) = 0 Vt. Taking into account the control law given by Eq. 6.15, and

the fact that u(t) must be a solution of Eqs. 2.7-2.8, we obtain that u in Q must be

generated by the following linear partial differential equation:

i,(x, t) + r4,"'(x,t) = 0 (6.21)

with boundary conditions given by Eq. 6.5, and an additional natural boundary con-

dition at x = 0 given by

7y,'(0, t) - by77,(0, t) = Kp0. (6.22)

Notice that for u in Q, BH(t) = 0, where 0 is a constant.

The boundary condition given by Eq. 6.22 can be given the following physical

interpretation. It expresses the moment balance that must exist between the spring

torque that the controller effectively generates, and the root moments the beam gen-

erates due to its internal elastic forces. In the absence of joint motion, as must be

the case in Q, these moments must balance.

The partial differential equation 6.21, being linear, can be easily solved using a

separation of variables arguments. This leads to the solution of an eigenvalue problem

which generates a family of natural modes of vibration which form a complete set

of orthonormal modes. Using these modes, and invoking the Expansion Theorem

(see [60]), it is possible to write the solution of Eq. 6.21 as

00

7(x, t) = -T, (x)qi(t) (6.23)
i= 1

where the y,(x) satisfy the homogeneous boundary conditions 6.5 and the qi(t) satisfy

q,(t) + Wqi(t) = O, i = 1, 2,... (6.24)
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and w4 = A! and the Ai are the eigenvalues associated with the orthonormal modes

V•,(s). The reader is referred to Ref. [60] for further details.

Equation 6.24 can be solved directly, yielding

sin wit
qi(t) = qi(0) cos wit + 4i(0) (6.25)

wi

qi(0) = jf,(x) 7y(x, 0) dx (6.26)

4 (0) = ~, (x).) (x, 0) dx. (6.27)

Requiring the solution 6.23 to satisfy condition 6.22 we obtain
oo

7T,(0)qi(t) = Kpo (6.28)
i=1

T7(0) = y,."(0) - bil,"(0). (6.29)

(Note that the series in Eq. 6.23 is absolutely and uniformly convergent-see Ref. [60]).

Since this must hold for all time, we have in particular that
00

ri(O)qi(0) = KpO (6.30)
i=1

It is straightforward to show that 7-(0) > 0 Vi. This condition has a nice physical

interpretation: all system modes are observable at the joint.

Substituting Eq. 6.25 into Eq. 6.28, and given that wi # 0 for any i, we get that

qi(0) = 4,(0) = 0 Vi.

This in turn implies, from Eqs. 6.25 and 6.30 that

qi(t) = 0 = 0 Vi, t.

This leads us to the conclusion that if u is in Q, then

(2, t) = 7(X, t) = OH (t) = 0H(t) = 0 Vt, x E [0, 1],

and thus the equilibrium at the origin is the only point in Q, and thus in M.

This concludes the proof of asymptotic stability of the origin for the one-flexible-

link arm free to rotate in the plane under the action of a joint PD controller. More

specifically, we have shown that every solution of our system that starts out with

bounded initial conditions in B approaches the origin in C as time evolves:

(x,t), (,, (X (x,,t) , ( H(t ), ), H(t) -X 0 as t -ý oo.Y Y )t)) OH~yt)) /y X1t), UHVt)
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In

6.2.2 Manipulators with Multiple Flexible Links

It seems possible to extend the above results to manipulator systems with multiple

flexible links when indpendent joint PD controllers are used. The general partial dif-

ferential equations in this case, while being more complex, have the same fundamental

properties of positive definiteness of the mass and stiffness operators and of possess-

ing a natural Lyapunov function in the energy of the system. For this reason, the

extension of the above stability results should proceed in a straightforward manner.

This is left as a suggestion for future work.

In addition, we remark that by considering motions in Hilbert spaces, it seems

likely that global asymptotic stability results can also be shown for passive joint

controllers. This has been done for finite dimensional nonlinear systems (see for

example Ref. [17]) and for infinite dimensional linear systems [93].

6.3 Full State Feedback

In this section we investigate how we can extend the results of the previous sections

if we assume that full state feedback is available. In practice, this is possible through

distributed strain measurements or through the use of modal sensors [23,70]. We still

assume only actuation at the joint in the form of a torquer is available.

We are interested in particular in obtaining higher performance stabilizing con-

trollers and in investigating the feasibility of globally stable tracking control.

6.3.1 Trajectory Tracking

By using the feedback linearization schemes presented in Chapter 4, it is possible

to partially linearize the system of Eqs. 2.7-2.8. As mentioned in that chapter,

the feasibility of a feedback linearizing control scheme will depend on the choice

of outputs and in the stability properties of the internal dynamics in the case only

partial linearization is achieved.
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The feedback linearizing controller for our system of Eqs. 2.7-2.8 is given by

S= Iv - (x + b)4""(x, t)dx + (x + b)9()(xt) (6.31)

when the chosen output is the hub angle. This control law is everywhere defined and

so is the trivial change of coordinates that yields the partially linearized system. For

this reason, the joint trajectory control could be made globally exponentially stable

if we could show that the internal dynamics are globally stable. In other words, the

global or local property of the stability is determined by the global or local stability

of the internal dynamics, while the linearized input output behavior can always be

made exponentially stable by proper choice of the new input v. Of course, the internal

dynamics could be unstable, in which case the controller is not implementable.

The internal dynamics for our system are given by Eq. 2.8 itself, where now 0H(t)

is to be considered as exponentially converging to the desired joint trajectory. Because

the stability of the internal dynamics depend on the trajectories that •H(t) follows,

we are forced to investigate these on a per case basis or to limit ourselves to local

results by examining the linearized zero dynamics. Following the latter course, we

obtain from Eq. 2.8 the equation for a Bernoulli-Euler clamped-loaded beam. This

means that the zero dynamics are stable.

In conclusion, we can guarantee only local stability of the system with the lin-

earizing feedback control law given by Eq. 6.31 and at this level of generality. For a

given trajectory more could be said.

6.3.2 Higher Performance Feedback Control

In this section we resort to the spatially discretized equations of motion for the one-

link case. This is particularly useful for comparison with the results of later chapters

where design and implementation models are taken to be finite dimensional per force.

At the end of this section we outline how the results would proceed in the more

general infinite dimensional case.

The well-known and much used Lyapunov linearization [81] method establishes

connections between local stability of a nonlinear system and the stability of its lin-
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earization about equilibrium. In particular, if the system linearization is strictly

exponentially stable, then the system itself is asymptotically stable about the equi-

librium. If the linearized system is unstable, so is the nonlinear system. Finally,

if the linear system is marginally stable, then nothing can be concluded from the

linearization of the system at that equilibrium.

In cases when the linearized system is exponentially stable, we might be interested

in determining if the stability of the nonlinear system itself is exponential to some de-

gree, rather than just asymptotic. This of course is a question of performance and we

are interested here in the possible tradeoffs between locality and higher performance.

The quantification of such a tradeoff is of high practical interest.

Using as in Chapter 5 results inspired by the center manifold theory (see Ap-

pendix A), we are able to effect such a quantification by examining a system in the

form

y = By + g(y) (6.32)

where B is a constant matrix with all of its eigenvalues having negative real parts;

and the function g is assumed to be Cr, r > 2, with g(0) = 0, g'(0) = 0. Note that

B can be looked at as the linearization of a closed-loop nonlinear system. Using the

variations of constant formula, and if g is locally Lipschitzian with Lipschitz constant

k(e), then we get

Ily(t)ll < Ce- t ly(O)Jl + Ck(e) ot e-( t-. )Iy(r)1ldr (6.33)

where, since all of the eigenvalues of B have negative real parts we can find / > 0

and C > 0 such that for s < 0 and y E Rn

Ile-B'yJ 5_ Ce 'IlyI.

Using Gronwall's inequality (see Appendix B) we obtain that

]ly(t)|l < ClJy(0)lJe - 11t (6.34)

where

1 = P - Ck(E) (6.35)
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Equation 6.35 provides the desired tradeoff between the local nature of our control

and the achievable performance. The actual performance is estimated by 8i. The

exponential constant 8 is determined by our controller designed using the linearized

equations about equilibrium as a local design model. The Lipschitz constant k(e) is

a measure of the nonlinearity of the equations. In general k(e) is a nondecreasing

function of E, which defines the neighborhood about the equilibrium.

Given a desired trajectory, we have no control over the resulting magnitude of the

nonlinear terms, but it can be determined. Given P and C, which are determined by

the linearization of our closed-loop system, and given a desired performance, we can

calculate the maximum "allowable" value of k(E). From the form of our nonlinear

terms we are then able to bound possible trajectories and so determine the achievable

performance for the given controller. See also .

It is clear from Eq. 6.35 that the larger our linearized controller gains are, or

more generally, the larger we can make the magnitude of the linearized closed-loop

system's eigenvalues, the more nonlinear the desired trajectories we can afford. Notice

of course that practical limits will arise. For manipulator systems, for example, the

nonlinear terms have the form of squared velocity terms. Therefore in general k(e)

will be very large even for small neighborhoods.

We remark that extensions of these results to multi-link systems are fairly straight-

forward. In order to extend these results to infinite dimensional system, it is neces-

sary to resort to semigroup theory [5] and to consider the resolvent of generators

of semigroups. For the class of systems under study, however, the spectrum of the

generator consists of eigenvalues, and the corresponding eigenfunctions form a com-

plete orthonormal set. This means in particular that we can compute the asymptotic

behavior of the systems in exactly the same manner that we have done above for the

finite dimensional systems.
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Chapter 7

Control of a Two Link

Manipulator with Flexible Links

In this chapter we bring the results and insights of previous chapters into focus by

considering the problem of control of a two link manipulator with flexible links. In

Chapter 5 we introduced the nonlinear output regulation theory as a framework

within which to elucidate the concept of a transient performance measure. We then

proceeded to apply this theory to the one-flexible-link manipulator and we evidenced

the limits on the transient performance due to the nonminimum phase nature of the

system we considered.

In Chapter 6 we looked at various controllers in the light of their robustness

properties. A clear tradeoff suggested itself between global properties of stability and

degradation of local performance. In the first part of this chapter, we consider the

output regulation control of a two link manipulator. For the feedback stabilization

control we compare the results of using both a globally stable robust controller and

a locally defined higher performance controller.

Due to the difficulty in solving the nonlinear regulator equations for more complex

systems than the one-link manipulator, we investigate solutions using simplified forms

of the equations of motion. In particular, we use both linearized equations (about

equilibrium) and equations that are nonlinear in rigid body coordinates but linear in

flexible coordinates. The results, not surprisingly, are locally quite good but depend
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among other things on the level of excitation, expressed by the frequency content of

the desired trajectory.

In the last part of this chapter we investigate the limits of performance from the

point of view of linear sensitivity theory. In Chapter 5 it was suggested that, just as

the linear approximation of the system locally set the limit on time-domain response,

we could expect sensitivity considerations of the type discussed in Chapter 3 to also

become significant locally. This is indeed the case and this albeit heuristic analysis

concludes our in-depth study of the performance limits of flexible manipulators.

7.1 Output Regulation Control of the Two-Flexible-

Link Arm

As pointed out in Chapter 2, the discretized (in space) equations of motion for a two

link manipulator can be represented quite generally in the form of Eq. 2.15, which we

reproduce here for convenience.

M(0, q) + D + K + G(0, q) = -C(0, q, 0, 0j) + Br (7.1)

As in the one-link case, we consider only actuation at the joints provided by

torquers, one at each joint. The outputs of interest are the relative angular positions

at the tips of each link: [(t) + EI11 ¢S(l 1)qi(t) 1
Y P(t) + E~ ¢'(l1 2)p(t)

0 + Clq (7.2)

where [ = 1)(11) 0 ]0 (7.3)0 ... o0 ' (12) ... 0'1(12)
The parameters chosen for the two link arm are given in Tables 7.1 and 7.2.

See section 2.2.2 and Fig. 2.2 for the definitions. The space-dependent mode shapes

are taken to be the natural mode shapes for cantilevered-loaded beams with the



appropriate parameters (see Appendix C).

one percent modal damping for each link.

Contrary to the one-link case, we include

Proceeding as for the one-link case, we define a state vector x as

0

q
X "

q.

and linearize about the equilibrium P(t) = 450 with all other states zero. Using

MATLAB [59] we obtain the poles and transmission zeros presented in Tables 7.3-

7.4. We have assumed two modes per link to obtain the values in Tables 7.3-7.4.

The system of Eqs. 7.1-7.2, with the parameters of Tables 7.1 and 7.2 and two

assumed modes per link, satisfies hypotheses H2 and H3 of the nonlinear regulator

problem. In fact, its linear approximation about the equilibrium is both controllable

and observable.

123

Kg Kgm 2  m

Pill = 0.9 JA = 0.103 11 = 0.686 EI1 = 116.5Nm 2

mA = 2.3 JB 1 = 0.039 bl = 0.133 112 = irrad

mEB = 5.72 b21 = 0.121

b = 0.011

Table 7.1: Parameters for the Two-flexible-link Manipulator: Link 1

Kg Kg m2  m
p212 = 0.5 JB 2 = 0.025 12 = 0.736 EI 2 - 14.16Nm 2

mB2 = 5.4 Jc1  = 0.32 b22 = 0.153 61'2 = 0rad

mec = 4.42 bt= 0.03

b' = 0.011

Table 7.2: Parameters for the Two-flexible-link Manipulator: Link 2



P1,2 = 0 P3,4 = 0

ps,6 = -0.269007 ± 12.7267i p7,s = -7.50916 ± 58.42i

p9,10 = -5.27705 ± 61.9152i p11,12 = -12.8041 ± 167.526i

Table 7.3: Open Loop Poles for the Two-flexible-link Manipulator

Table 7.4: Open Loop Zeros for the Two-flexible-link Manipulator

7.1.1 Set-point Regulation

The exosystem for set-point regulation is given by:

= , w (0)- , q(w) = w(t)
_ jd

(7.4)

where Od is the desired final angular position of the tip of the inboard link in inertial

space and Pd is the desired final angular position of the tip of the outboard link

relative to the angular position of the tip of the inboard link. We note that this

exosystem satisfies hypothesis H1 of the nonlinear regulator theory. The solution of

the regulator equations 5.25-5.26 results in

c(w) = 0, ir(w) =

124

Zeros

zl = -4.26386 zz2 = 4.35839

Z3= -9.58006 z4 = 10.0961

zs = -123.052 z6 = 132.254

Z7 = -273.694 z8 = 298.340

Poles I



From the results of Chapter 6, it was inferred that independent joint proportional

plus derivative (PD) feedback for flexible multi-link systems would provide the same

global robustness properties as for rigid manipulators. Because of this, it is of inter-

est to examine the performance that a composite controller (such as the nonlinear

output regulator of Chapter 5) can achieve when the feedback control is effected with

independent joint PD.

Recall that in order to apply the results of the output regulation theory, the

feedback stabilizing control must render the linear approximation of the closed-loop

system exponentially stable. If we use only independent joint PD control, the results

of chapter 6 suggest that in the absence of material damping we cannot exponentially

stabilize the infinite dimensional system. While this problem is not apparent when

we use a finite dimensional approximation, as we must in our simulations, it is evi-

denced in slower and slower settling times as the number of modes is increased. If we

include material damping, however, then independent joint PD control does satisfy

the exponential stability requirement.

The control law takes the simple form

7 = Kp(w - 0)- KDO (7.5)

where Kp and KD are positive definite diagonal matrices. In practice, the gains for

the PD control are obtained by solving an LQR problem and then zeroing out all

the cross-coupling terms and all the terms associated with the flexible coordinates q.

The LQR is solved using the original, non-inverted system, so that the control law

consists of pure PD control.

Starting from the open loop equilibrium (with 6(0) = 450), desired final relative

tip angular positions of Od = 0.010 and Pd = 44.990 are commanded. The reason we

limit the maneuver to such small steps is that, in order to reach the performance

bound on the transient response due to the nonminimum phase zeros of our system,

we had to increase the regulator gains considerably. This translates into very large

start-up torques due to initial errors. This in turn results in very large angles and

125

PD Feedback Control
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displacements and these lead to mass matrix ill-conditioning since we note that the

configuration-dependent mass matrix has been linearized in small elastic deflections.

For this reason we have to be careful not to exceed acceptable small elastic deforma-

tions.

The results are shown in Fig. 7.1. We have assumed two modes per link, so that

n = 2 and m = 2. We have increased the PD gains to try to obtain as fast a response

as possible. However, as mentioned in Chapter 6, due to the collocated nature of

the transfer function from joint angle to joint torque, the alternating structure of

poles and zeros for the linearized system causes lightly damped poles to remain in

the closed-loop transfer function, thus limiting performance. It is ironic that it is

this same quality, that is, the alternating pole zero pattern, that results in the PD

control's innate robustness.

In order to obtain a less oscilatory response, we must reduce the PD gains, and

this in turn results in a slower reaching time. As could be expected, limiting ourselves

to such a simple controller results in some severe performance limitations. This was

shown experimentally for the first time by Schmitz [78]. Figure 7.2 shows the results

of decreasing the PD gains. In the following section we compare these results to the

performance obtained using an LQR-based feedback controller.

LQR Feedback Control

To obtain better feedback performance, at the cost of globality and robustness, we

implement the control law

7 = Kreg(7r(W(t)) - x(t)). (7.6)

The gain matrix K,,g is obtained from the solution of the linear quadratic regulator

problem with control weighting .1 and state weighting matrix

Q = [ 2X2 C1 0 0 ]T[ I2x2 1 0 0].

Starting from the open loop equilibrium (with /(0) = 450), desired final relative

tip angular positions of Od = 0.50 and Pd = 44.50 are commanded. The control
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Figure 7.1: Output of Two-flexible-link Arm: Set-point Regulation; Inde-
pendent Joint PD; I = 1 x 10-6.

weighting it was reduced until the poles of the linearized system stuck at the left-

half plane mirror images of the nonminimum phase zeros became the dominant poles.

Simulation results are presented in Fig. 7.3 for the value it = 1 x 10- 4 . The closed-loop

poles of the linearized system for this value of IL are given in Table 7.5.

From the figure we see that as expected there is zero steady state error and the

state tends to the steady state manifold at a rate limited by the first nonminimum

phase zero of the system. The settling time for the output errors is seen to be

approximately 4/Real(zi) r 1 sec. Comparing to Fig. 7.2, we see that better transient

performance is achievable, even though, in the light of the results of Chapter 6, the

LQR-based feedback is local in nature and not as robust.
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Output of Two-flexible-link Arm: Set-point
pendent Joint PD; I = 1 x 10- 4 .

Regulation; Inde-

7.1.2 Sinusoidal Exosystem

In order to have the output of our system (Eq.

consider the following exosystem:

0

--W 1

0

0

0

0

0

-W 2

w, w(0)=

7.2) track a sinusoidal signal we

q(w)= w

This exosystem satisfies hypothesis H1 of the nonlinear output regulation theory.

As in the one-link case, we first invert the system in order to obtain a more

tractable form of the equations of motion with which to solve the nonlinear regulator
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Poles

P1,2 = -1.48281 ± 1.20839i p7,s = -5.66036 ± 61.6744i

p3,4 = -5.18571 ± 3.10971i p9,10 = -11.3181 ± 59.8202i

P5,6 = -5.66295 ± 13.5723i P11,12 = -14.3093 ± 167.552i

Table 7.5: Closed-Loop Poles for the Two-flexible-link Manipulator; Cj = 1 x
10- 4.

equations. The inversion-based controller is given by

S= CR(z, z) + (A1 + CA 2)'[v + (A + CA3)(KEEq + DEE + CE(, ) (7.7)

where we have defined

z = , M- 1  A, A T

q A2 A3

The control law of Eq. 7.7 yields the inverted system:

y(t) = v (7.8)

0l(t) = -A-1[KEEq + DEE4 + CE(Z, z) + MER(Z)V] (7.9)

where we have set

A = MEE(Z) - MER(z)C1.

The solution of the regulator equations 5.25-5.26 is now carried out using Eqs. 7.8-7.9

with the new input v.

The solution of the regulator equations is again carried out by expanding unknown

terms of the steady state manifold ir(w) as complete polynomials of the third degree

in the wi, i = 1,..., 4. The complex form of the equations in this case requires the

use of a symbolic manipulator such as MATHEMATICA [95] (see Appendix D). Even

using a symbolic manipulator, we were forced to limit the number of modes to one

per link and to simplify the nonlinear terms until a solution was obtained.
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Two-flexible-link Arm: Set-point Regulation; I = 1 x

The following results are true for any number of modes and before any simplifying

assumptions are necessary. They arise from the simpler form of the inverted equations:

wi(w) = W1, 7r3+n+m(W) = w1w2, c1(w) = -W

7r2 (w) = W3 , 7r4+n+m(W) = W2W 4 , C2 (W) = 2 3

To obtain the steady state manifold coordinates corresponding to the flexible degrees

of freedom, we assume only one mode per link and use two sets of simplified equations

of motion. In the first set we actually linearize the equations of motion about the equi-

librium configuration. This yields the eqivalent linear regulator solution mentioned

in Chapter 5.

For the second set of simplified equations we maintain all nonlinear terms in the

rigid body coordinates and rates but ignore all nonlinear terms that involve the small
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elastic deformation coordinates and rates. We remark that this simplified version

of the equations of motion has been dubbed the ruthless equations and has been

investigated in the context of flexible manipulator equations by the author [71,69,70].

The details of the calculations for the steady state manifold flexible coordinates

using these simplified models are presented in Appendix D.

The resulting control law is similar in form to the one obtained for the one-link

case:

" 0 - C17rq

7 = c(w(t)) + Keg( rq - x(t)). (7.10)
w - C, rq

7rq

The matrix of gains Kreg is obtained as in the set-point regulation case through the

solution of a linear quadratic regulator problem with control weighting pL = 1 x 10- 4

and state weighting Q as before.

In the following we will present the results of using either set of simplified solutions

to the regulator equations in the controller implementation.

Linearized Solutions

Starting from the equilibrium configuration (with P(0) = 450), desired sinusoidal

trajectories are specified for the inboard link's inertial tip angular position and the

outboard link's relative tip angular position. The amplitude of the sinusoids is 0.10

about the corresponding rest (equilibrium) positions and the frequencies are chosen

to be approximately one tenth of the linearized system frequencies that correspond

to bending of each beam, respectively wl = 5.89445,w 2 = 1.65066. We point out

that this maneuver is kept relatively mild in order that the approximate solution of

the regulator equations be close to the actual solution. The simulation results are

presented in Figs. 7.4 and 7.5.

From the figures we see that the results are extremely good, even for a linear

implementation of the regulator solutions. In terms of transient performance, we see

as expected that we are limited locally by the nonminimum phase character of the
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Figure 7.4: Output of Two-flexible-link Arm: Sinusoidal Regulation; p =
1 x 10- 4 .

linear approximation to the equations of motion. In particular, we see that neither

of the outputs can have a faster settling time than about 0.9 sec., consistent with a

dominant pole at the mirror image location in the left-half plane to a nonminimum

phase zero at zl (see Table 7.3).

In Fig. 7.6 we show the results of requiring the outputs to follow faster sinusoids.

In this case the sinusoidal frequency required of each output is, respectively, wl =

18.6399,w 2 = 5.21985. We see that the results are very good. A steady-state error

in the tracking of the outboard link's tip is doubtless due to the use of the simple

linear model in calculating the solution to the nonlinear output regulation equations.

These results of nontheless show excellent robustness of the output regulator to small

uncertainties.
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Figure 7.5: Output of Two-flexible-link Arm: Sinusoidal Regulation; L =
1 x 10- 4 .

Finally, in Fig. 7.7 we reduce the control weighting on the LQR solution of the

feedback controller gains and we slow down the desired sinusoids. This is done so that

larger amplitude sinusoids can be commanded and the validity of the nonlinear output

regulation-based feedforward-feedback control scheme presented above be shown for

large nonlinear motions of the system. Both commanded sinusoids are chosen to have

amplitudes of 450 and frequencies of 0.5 rad/sec.

From the figure it is apparent that even at this large level of motion, and still

using just a linear model to solve the feedforward control equations, the results are

very good. In this case when the commanded angles are large and the rigid body

coordinates tend to be much larger than the flexible deformations, it is expected that

a ruthless model will help improve on the steady state error.
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Figure 7.6: Output of Two-flexible-link Arm: Sinusoidal Regulation; t =
1 x 10- 4 .

Ruthless Solutions

In this section we require the system outputs to follow the same sinusoidal trajec-

tories specified above, but in this case we use for the approximate solution to the

steady state manifold and feedforward term the second set of simplified equations

of motion. Specifically, we solve the nonlinear regulator equations 5.25-5.26 using

the equations of motion nonlinear in rigid body coordinates and rates but linear in

flexible deformation coordinates and rates (i.e., the ruthless equations).

As in the previous section, we use as feedback control the LQR-based set of gains

Kre, obtained by setting A = 1 x 10- and using state weighting Q as defined pre-

viously. Since such good results were obtained in the previous section for the low
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Figure 7.7: Output of Two-flexible-link Arm: Sinusoidal Regulation; /i = 0.1.

frequency commanded sinusoids using the linear version of the equations, we study

here only the higher frequency sinusoids, where we stand to gain something by in-

creasing the complexity of our design model.

The results shown in Fig. 7.8 are remarkable even though the commanded sinu-

soids are of much higher frequency and one of them in fact exceeds the first linearized

system frequency. These results are to be compared to Fig. 7.6. We remark that this

solution has been obtained by using the ruthless model equations to solve the non-

linear regulator equations. These results are almost indistinguishable from those of

Fig. 7.6. The small steady state error in the tracking of the outboard link's tip angle

remains. This is probably due to the fact that, at the low commanded angles, the

neglected flexible coordinate terms in the ruthless model simplification are of mag-
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Figure 7.8: Output of Two-flexible-link Arm: Sinusoidal Regulation; p =
1 x 10- 4.

nitudes comparable to the retained terms. This results in a small but nonnegligible

steady state error.

7.2 MIMO Sensitivity Analysis

Let us now consider the performance limits of the two-flexible link manipulator in

the context of linear sensitivity theory. For this purpose we will look at the MIMO

sensitivity of the linearization of our system about equilibrium. In the MIMO context,

it is necessary to carefully define the locations at which a loop is broken to determine

a transfer function. In our case we are interested in the disturbance to output transfer

function where the disturbance is assumed to occur at the output. See Fig. 7.9. We
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Figure 7.9: Definition of MIMO Sensitivity Transfer Function

will call this the sensitivity transfer function in analogy with the SISO case.

Recall from the discussion in Chapter 3 that in the SISO case the sensitivity

transfer function as defined in Fig. 7.9 also gives a measure of sensitivity to small

parameter variations.

For a system in state space form

& = Ax + Bu (7.11)

y = Cx (7.12)

with an LQR-based controller u = -Kx, the sensitivity transfer function defined

above is given by

-= (A - BK)x - BKCT(CCT)-ld (7.13)

y = Cx + d. (7.14)

For this study we consider a feedback controller designed by solving the LQR

problem on the linearized equations of motion, as in section 7.1.1, and setting the

control weighting to 1L = 1 x 10- 4 . This results in a MIMO bandwith of about 10

rad/sec, obtained by examining the singular value plot of the closed-loop transfer

matrix.

We inject sinusoidal output disturbances to our system in order to examine the

system response to both low and high frequency excitation. Specifically, we will use
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two sinusoidal frequencies: 1 rad/sec, and 20 rad/sec. In a typical SISO design prob-

lem, the controller would have shaped the sensitivity function such that it would be

small at low frequencies, and thus it would reject disturbances well. At some high

frequency we would have an increase in the sensitivity due usually to actuator band-

width constraints or to nonminimum phase considerations (see Chapter 3). In the

case of flexible link manipulators with joint actuators, the system from actuators to

tip angles is nonminimum phase. Thus we expect sensitivity to peak if our bandwidth

is "close" to the nonminimum phase zero location.

Figure 7.10 shows the two sensitivity plots obtained by considering combinations

of corresponding input-output pairs, i.e., shoulder torque to shoulder angle and elbow

torque to elbow angle. In the figure, Sii is the sensitivity function from input i to

output i. In Fig. 7.11 we show the actual MIMO sensitivity in terms of the singular

values of the transfer matrix of the system given by Eqs. 7.13-7.14.

In Fig. 7.12 we show for comparison the MIMO singular value plot for the sensi-

tivity transfer function matrix obtained using an LQR-based controller with control

weighting it = 1 x 10-8. This controller results in a closed-loop bandwidth of about

100 rad/sec. As expected from the results of Chapter 3 the sensitivity characteristics

become worse as the bandwidth approaches the nonminimum phase zero location.

In particular we note a much higher peak around the crossover region compared to

Fig. 7.11 and increased sensitivity overall in the lower frequency regions.

Returning now to our lower bandwidth controller (i.e., with I = 1 x 10-4), we

see from Fig. 7.11 that we can expect good disturbance rejection at low frequencies

(say below about 2 rad/sec) but will get amplification at frequencies between about

2 rad/sec and 100 rad/sec. We already saw in section 7.1.2 that for sinusoids with

frequencies of about one tenth the link bending frequencies the response of the system

was very good.

For the following simulations we require both output channels to follow the same

frequency sinusoid but with possibly varying amplitudes and phases. In Fig. 7.13 we

see the system response when the disturbance frequency is required to be 1 rad/sec

for each output.
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Figure 7.10: SISO Sensitivity Plots: 1 = 1 x 10- 4.

As expected, we see from the figure that the disturbance is attenuated by the

feedback controller. In Fig. 7.14 we see the response of the system to higher frequency

disturbance sinusoids at the outputs: w1 = w2 = 20 rad/sec. In this case we see the

disturbance is amplified and we would be better off in open loop. It is interesting

to look at the open loop response to the higher frequency disturbance. Figure 7.15

shows this response. The resulting drift evidences the nonlinear nature of our plant.

From the MIMO sensitivity plot of Fig. 7.11 we see that the frequency of the

commanded output sinusoids in this case is well into the amplification range, so that

in this case the use of feedback is actually deleterious.

Figure 7.16 shows the MIMO sensitivity plot for another LQR-based feedback

controller. In this case the control weighting has been increased to ti = 0.01. This
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Figure 7.11: MIMO Sensitivity Plot: IL = 1 x 10- 4 .

results in a lower bandwith controller and thus a smaller region of sensitivity reduc-

tion. On the other hand, the peaking of the sensitivity function is seen to subside

somewhat. The result of applying output disturbances of frequency 0.1 rad/sec is

shown in Fig. 7.17. This is included to show that the conclusions arrived at above are

not limited to very small angular motions. As can be seen from the figure, the distur-

bance signals have very large amplitudes (450). As predicted by the linear theory, the

nonlinear system exhibits significant disturbance attenuation at the given frequency.

7.3 Some Practical Considerations

The complexity of the nonlinear output regulator equations make their solution dif-

ficult even when a polynomial expansion is used to obtain approximate answers.
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Figure 7.12: MIMO Sensitivity Plot: L = 1 x 10- 8 .

However, the results presented in this chapter show that, even for a broad range of

maneuvers of different amplitudes and frequencies, using the linearized equations to

solve the regulator equations yields very good results. The solution in the linear case

can be reduced to the solution of a linear equation of the type Ax = b by the use of

Kronecker products (see Ref. [53]).

For nonlinear equations, even simplified ones such as the ruthless model used

above, the complexity of the solution increases very fast with the number of modes

retained in the modelling transverse deformations of the links. In the face of limi-

tations to computing power, it would be of interest to develop fast, smart solution

algorithms that take advantage of the fact that the solution of the equations at any

order does not depend on higher order terms. This is a subject for future research.
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Figure 7.13: Sinusoidal Output Disturbance: ,, = 1 x 10- 4 .

The practicality of using the output regulation theory to determine the feed-

forward control for manipulator systems is evidenced by the fact that many basic

trajectories of interest can be generated by exosystems which satisfy the sufficient

conditions for solvability of the regulator equations. In particular, steps, ramps, p-

times differentiable maneuvers in general, and sinusoids are among the trajectories

that can be generated. A common way of generating smooth joint-space trajecto-

ries for rigid manipulators is through the use of high order (e.g., fifth) polynomial

splines. Since these are trajectories that are that many times differentiable, they can

be generated by exosystems.

Finally, we point out that the framework presented by the output regulation the-

ory for the feedforward-feedback control of flexible manipulators does not preclude
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Figure 7.14: Sinusoidal Output Disturbance: IL = 1 x 10- 4 .

the use of practical "fixes" to account for model uncertainty, neglected dynamics,

etc. In particular, the feedback design question has been left open in the above

developments. By using full state feedback LQR-based controllers we have avoided

considerations of output feedback and estimators. Because the nonlinear output reg-

ulation theory also solves the output error feedback regulator problem, there is no

difficulty in considering controllers that do not assume full state feedback. Further-

more, any feedback controller that locally exponentially stabilizes the system can be

used in the feedback part of our composite controller. This means that controllers

designed to take into account parameter uncertainty, disturbance rejection, or any

other relevant considerations can be used as long as they exponentially stabilize the

linearized system.
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Figure 7.15: Open Loop Sinusoidal Output Disturbance: 1z = 1 x 10- 4 .

The same considerations apply to the feedforward part of the composite control.

For example, pre-filters can be used to smoothen the command signal into the plant

so as not to excite higher unmodelled modes that have not been taken into account

in the solution of the nonlinear output regulation equations.
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Figure 7.16: MIMO Sensitivity Plot: Iz = 1 x 10- 2 .
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Chapter 8

Conclusions

The objective of this thesis has been to investigate the fundamental principles and

tradeoffs involved in the control of flexible manipulators. In the process, we have

succeeded in bringing flexible manipulator control within the grasp of the classical

theories for an important class of systems in which flexible deformations remain small.

We have endeavored to marry theory and practice. In particular, we wanted to

address both achievable performance and the extension of robust control designs for

rigid manipulators to flexible link manipulator systems.

In pursuance of this program, in early chapters we presented the dynamics of the

systems under consideration in both "exact" infinite dimensional representation and

approximate finite dimensional form. A form of the partial differential equations of

motion was presented which included the effects of foreshortening and which to the

author's knowledge have not been presented in the literature before.

It is well documented in the literature that linear systems of the type under con-

sideration, specifically, links modelled using beam theory where actuator and sensors

are non-collocated, exhibit nonminimum phase behavior. For this reason, and from a

practical standpoint, we investigated the nature of linear nonminimum phase systems

in depth. The main result is that the achievable performance due to the benefits

of feedback control is severely and fundamentally limited by the nonminimum phase

character of a system. We then proceeded to point out the extension to a nonlinear

setting of the concept of a nonminimum phase system through the definition of zero
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dynamics. It is one of the most important contributions of this work that we have

extended the fundamental limits of performance due to nonminimum phase nature of

a system to the nonlinear setting through the use of a transient performance measure

that we have defined using center manifold theory and within the context of nonlinear

output regulation theory.

Within the nonlinear output regulator theory, we have further clarified the distinc-

tion between steady state and transient performance and have brought these useful

concepts from the linear realm to the fully nonlinear setting. In the sense that the

identified peformance measure is locally defined we see that the limits of performance

of nonlinear nonminimum phase systems are fundamental, since an asymptotically

stable system will eventually reach any neighborhood of the equilibrium point. While

the development of a performance measure was carried out for finite dimensional sys-

tems, it can easily be extended to certain useful infinite dimensional systems. The

extension is made trivial by the fact that center manifold theory applies to the same

class of infinite dimensional systems. It is a further contribution of this work that

as a result of the definition of a performance measure, the concept of local results is

quantitatively defined.

It also becomes clear from the definitions of our performance measure that tran-

sient performance depends largely on the feedbak portion of the controller, while

steady state performance is driven mostly by the feedforward control. In Chapter 4

we investigated the state of the art in inverse dynamics and feedforward control for

manipulators with flexibility. Inverse dynamics control, which results in the computed

torques of rigid link robots, is impossible for flexible link manipulators when the out-

puts of interest are the tip (angular) positions. This is due to the nonminimum phase

character of the system which results in unstable zero dynamics which in turn locally

characterize the unobservable dynamics in the inverted system. When carried out

with joint angles as outputs, the inverse dynamics algorithm yields a stable internal

dynamics. Because our performance variables are still the tip (angular) positions, this

inverse has value only in a stabilization role, and as such represents a particularly

complicated and computationally taxing full state feedback stabilizer.
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Of the feedforward schemes presented in the literature, some of which exhibit

feedback to varying degrees through, for example, partial joint I/O linearizations,

the most noteworthy from a practical viewpoint are those that involve simplifying

assumptions on the dynamics equations. Other than that, most are found to be not

as effective as control schemes because they require the forcing of certain variables

to follow a trajectory while trying to coerce others to, e.g., decay to zero. When

more actuators are allowed into the problem (such as the tip torques of section 5.3.2)

this can be achieved. For the systems under consideration, however, this results in

degraded performance to a degree that is not even quantifiable.

A notable exception is the nonlinear output regulation theory, within which our

performance measure was defined. In this theory, only the desired performance vari-

ables are forced to follow the desired trajectory. Because this is implemented as a

feedforward control, we circumvent the problems due to unstable zero dynamics. Fur-

thermore, part of the solution to the regulator problem is the so-called steady state

manifold, which in effect is a determination of what all the states want to do if the

outputs follow the desired trajectory. Using results from center manifold theory, it is

shown that any feedback controller that exponentially stabilizes the system will have

its state converging to the steady state manifold. Thus steady state performance is

achieved, while benefits of feedback including robustness and performance issues are

neatly relegated to the choice of feedback control for the original system with the

feedforward disconnected.

It is one of the main conclusions of this thesis that nonlinear output regulation

should be heralded as the "computed torques" approach for flexible manipulators,

without the problems associated with the full state feedback inversion. The thesis

concludes with such an implementation on a two link manipulator where from the

practical standpoint we consider simplifications to the nonlinear output regulation

equation solutions based on sound engineering judgement. It is concluded that lin-

earized equations yield very effective feedforward control even when high frequency

end-point trajectories are commanded. This bespeaks the robustness of the scheme

and its usefulness as a practical control scheme.



In the implementation of the nonlinear output regulation controller, the choice

feedback controller remains an open question. In Chapter 6 we considered the ex-

tension to flexible links of classical feedback controller for rigid links, and analyzed

robustness, globality, and practical implementation issues. Most of the results were

presented for the one link arm, and where possible infinite dimensional equations

were used to obviate the problem of spillover due to truncation. Suggestions for the

extension of results to multiple links were presented.

One of the main theoretical contributions in this chapter is the proof of the global

asymptotic stability of the nonlinear one-flexible-link arm under the action of joint

PD controllers. This intuitive result has been bandied about in the literature but

no proofs for the infinite dimensional, nonlinear equations have been presented. The

main difficulty arises from the fact that for dynamical systems in infinite dimensional

spaces LaSalle's invariance theorem does not hold in general. This is circumvented by

the use of a more general invariance principle due to Hale, and the Sobolev imbedding

theorems. The proof does not require structural damping to be present, thanks to

the fact that all system modes are observable at the hub.

The major practical contributions in this chapter arise from the investigation of

the tradeoff between globally stable, robust controllers, such as the joint PD, and the

locally defined, higher performance full state feedback controllers, which are shown

to locally induce exponential stability.

As mentioned earlier in this conclusion, the developments of all previous chapters

are brought to bear in the final chapter where a two link flexible manipulator is

controlled in simulation. In the first part of the chapter, a nonlinear output regulation-

based controller was implemented. For the solution of the feedforward control we used

two simplified models of the equations of motion: linearized about the equilibrium

configuration of interest; and nonlinear in rigid body states but linear in flexible

deformation states (i.e., ruthlessly linearized). For the feedback control we used a

simple indpendent joint PD control and an LQR-based controller obtained using the

system's linearization about equilibrium. As expected, transient performance is better

with the LQR than with the PD controller.
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Using the LQR-based controller, we obtain excellent tracking results when im-

plementing the nonlinear output regulation control for a desired sinusoidal output

trajectory. For both low and high frequency sinusoids, the linear solution to the reg-

ulator equations is shown to yield excellent reults, thus showing not only robustness

of the controller, but also suggesting that for certain maneuvers the system is nearly

linear, while for still others, even a roughly determined feedforward control signal

goes a long way towards increasing system performance. We notice that throughout

we are limited to mild enough maneuvers (in terms of the amplitudes of the motions)

so that the flexible deflections remain small.

In the last part of the chapter, we return to an investigation of limits to the

achievable benefits of feedback (i.e., performance measure). Here we demonstrated

that for the class of manipulators under consideration, the frequency domain lim-

its of performance of linear nonminimum phase systems carry over as well into the

feedback control of flexible manipulators. By studying the MIMO sensitivity of the

system linearized about equilibrium, we correctly predict how output disturbances

to the nonlinear system are rejected at low frequencies and magnified near crossover.

Considering this sensitivity transfer function as a measure of sensitivity to small pa-

rameter variations, in analogy to the linear case, we propose that, at least locally,

appropriate conclusions about the robustness of feedback schemes for nonlinear sys-

tems can be inferred as well.

8.1 Recommendations for Future Work

Much remains to be done in the theoretical arena when considering continuum models

of chains of flexible bodies. Besides formally extending the results presented in this

thesis to the multiple link case, it remains to extend passivity results to even the

one-link case. In particular, it appears that proving the global stability of passive

feedback controllers that measure the joint angle and angular rates and derive a

torque command should be a relatively straightforward endeavor.

Of more practical interest is the derivation of rate of decay estimates when using
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a passive controller at the joint and when material damping is assumed. Also of great

interest is studying what is possible with distributed actuators and sensors such as

piezoelectric films. If full actuation is achievable in this way, it might be possible

to extend feedback input-output linearization schemes to the flexible link case. This

would open the way for adaptive controllers of the type used for rigid robots.

The development of a transient performance measure for nonlinear systems brought

into evidence how the ultimate performance limits are determined by the system lin-

earization. This prompted the conjecture that a similar phenomenon would be true

in the frequency domain. While simulation results presented in this thesis seem to

support this conjecture, it remains to be shown analytically that this is indeed the

case. While this task promises to be very mathematically involved, it could nonethe-

less result in some precious insights into the frequency domain nature of nonlinear

systems and could possibly be the gateway to practical nonlinear feedback control

synthesis.

An area of much practical importance is the selection of system mode shapes for

the spatial discretization of nonlinear continuum models. The field of component

mode synthesis offers some promise in this respect. The work of Oakley [64] presents

some guidelines that seem to be sufficient for local maneuvers about equilibrium, and

which we have independently and implicitly adopted in this work.

Finally, the use of feedforward controllers derived from simplified versions of the

equations of motion should be investigated from the practical controls point of view.

The results presented in previous chapters concerning the nonlinear output regulation

theory and the use of very simple models suggest the advantages of such an approach.

In particular, it would be useful to derive guidelines in terms of allowable maneuvers

that would help in the selection of the simplest model that would yield desired results

for various accuracy requirements.



Appendix A

Some Results from Center

Manifold Theory

In this Appendix we summarize the relevant results from the Center Manifold Theory.

These results are taken from the book by Carr [20] and from the Appendix in the

paper by Isidori and Byrnes [44].

A.1 Preliminaries

Definition A.1 Given a nonlinear system of the form

x = f(x) (A.1)

where f is a Cr, r > 2, vector field defined on an open subset U of Ri, a C' sub-

manifold S of U is said to be a locally invariant manifold for Eq. A.1 if for xo E S,

the solution x(t) of Eq. A.1 with x(0) = xo is in S for ItI < T, T > 0. If it is always
possible to choose T = oo, then we say that S is an invariant manifold.

Let x = 0 be an equilibrium point of Eq. A.1 (f(0) = 0), and denote by

F=[f]_=O

the Jacobian matrix of f in Eq. A.1 at x = 0. It is possible to decompose the domain

of the linear mapping F into the direct sum of three invariant subspaces, denoted
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Eo, E-, E+, whose dimensions (no, n-, n+)correspond to the number of eignvalues of

F with zero, negative, and positive real parts, respectively. If we now view F as the

differential of the nonlinear mapping f : x E U --+ f(x) E R at x = 0, then its

domain is the tangent space ToU to U at x = 0, and the three subspaces defined

above are subspaces of ToU satisfying

ToU = Eo D E- E E +.

Definition A.2 Let x = 0 be an equilibrium of Eq. A.1. A manifold S, passing

through x = 0, is said to be a center manifold for Eq. A.1 at x = 0, if it is locally

invariant and the tangent space to S at 0 is exactly E'.

Consider the system

i = Ax + f(x, y) (A.2)

y = By + g(x, y) (A.3)

where x E Rn , y E R" and A and B are constant matrices such that all the eigenvalues

of A have zero real parts while all the eigenvalues of B have negative real parts. The

functions f and g are Cr, r > 2, with f(0, 0) = 0, f'(0, 0) = 0, g(0, 0 = 0, g'(0, 0) = 0,

and f' represents the Jacobian matrix of f.

Notice that if we consider F as above,i.e., as the Jacobian of f in Eq. A.1 at x = 0,

and if F has no positive eigenvalues, then it is possible to choose coordinates in U

such that the system of Eq. A.1 can be represented in the form of Eqs. A.2-A.3.

A.2 Existence of a Center Manifold

Theorem A.3 There exist a neighborhood V C R n" of x = 0 and a C'-1 mapping

7 : V -+ R"- such that

S = {(x,y)E Vx (R-)}: y = (x)

is a center manifold for the system of Eqs. A.2-A.3.
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By definition, a center manifold for the system of Eqs. A.2-A.3 passes through

the origin and is tangent to the subset of points whose y coordinate is equal to zero,

such that

7r(0) = 0, -9 (0) = 0. (A.4)

Because the center manifold is also locally invariant for Eqs. A.2-A.3, the mapping

7r must satisfy the constraint

(Ax + f(x, 7r(x))) = B7r(x) + g(x, 7r(x)) (A.5)

Equations A.4 and A.5 together show that a center manifold for Eqs. A.3-A.3 can

be described as the graph of a mapping y = r(x) satisfying the partial differential

equation A.5 subject to the constraints specified by Eq. A.4.

A center manifold is not necessarily unique. Further, even if f and g are C"

functions, 7r is only guaranteed to be Ck , k > 2.

A.3 Stability of the Center Manifold

The prove of existence of the center manifold (see [20]) is carried out for a modified

set of equations that is identical with Eqs. A.2-A.3 in a neighborhood of the origin.

Let I : R n -_ [0, 1] be a C" function with O(x) = 1 when l[xii _ 1 and O(x) = 0

when 11xil > 2. For E > 0 define F and G by

F(x,y) = f(x, (x ) ,y), G(x,y) = g (x2, ( ) ,y).

Notice that the cut-off function b is only a function of x. This is so because*

... the proof of the existence of a centre manifold generalizes in an obvious

way to infinite dimensional problems.

With the above definitions, the following equations denote a system which is

identical to that of Eqs. A.2-A.3 in a neighborhood of the origin:

:= Ax + F(x,y) (A.6)

y = By + G(x, y). (A.7)

*J.Carr,Applications of Centre Manifold Theory,Springer-Verlag, 1981, p. 17.



Lemma A.4 Let (x(t),y(t)) be a solution of Eqs. A.6-A.7 with |I(x(0),y(0))II suffi-

ciently small. Then there exist positive constants C, and it such that

j y(t) - r(x(t))Il 5 Cie-et I|y(0) - 7r(x(O))I

for all t > 0.

The proof of this lemma is detailed in section 5.2.1.

A.4 Reduction Principle

The results summarized in this section allow us to relate the asymptotic behavior of

small solutions of Eqs. A.2-A.3 to solutions of the n-dimensional system

i, = Au + f(u, x(u)) (A.8)

which governs the flow on the center manifold.

Theorem A.5 a Suppose that the zero solution of Eq. A.8 is (asymptotically) stable

(unstable). Then the zero solution of Eqs. A.2-A.3 is (asymptotically) stable

(unstable).

b Suppose that the zero solution of Eqs. A.2-A.3 is stable. Let (x(t),y(t)) be a so-

lution of Eqs. A.2-A.3 with (x(0),y(0)) sufficiently small. Then there exists a

solution u(t) of Eq. A.8 such that as t -+ oo,

x(t) = u(t) + O(e - "' ) (A.9)

y(t) = h(u(t)) + O(e -Yt) (A.10)

where y > 0 is a constant depending on B.

A.5 Approximation of the Center Manifold

We note that in general the solution of Eqs. A.4-A.5 for the center manifold is as

difficult as solving the original system equations, Eqs. A.2-A.3. Because of this,
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the following result has profound consequences for the applicability of the nonlinear

regulator theory presented in Chapter 5. It shows that the center manifold can be

approximated to any degree of accuracy.

For functions 0 : Rn -+ Rm which are C1 in a neighborhood of the origin define

(M¢)(x) = 0'(x)[Ax + f(x, O(x))] - Be(x) - g(x, O(x)).

Theorem A.6 Suppose that 0(0) = 0, 0'(0) = 0 and that (Mq)(x) = O(ljxjzl) as

S- O0 where q > 1. Then as x - 0,

I7r(x) - O(x)II = O(ll:Xll).
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Appendix B

Gronwall's Inequality

Also called the Bellman-Gronwall Inequality (see Ref. [90]).

Theorem B.1 Suppose c > 0, r(.) and k(-) are nonnegative valued continous func-

tions. Let

r(t) _ c + k(•)r(r)dr,

r(t) _ cexp [f k(-)d] ,

Vt E [O, T].

Vt e [0, T]
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pij,(x,t) + EI77r'(x, t) = 0

/ a

(C.1)

m, J

Figure C.1: Cantilevered-Loaded Beam
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Appendix C

Cantilevered-Loaded Mode Shapes

In this Appendix we derive the natural (unforced) vibration mode shapes for a can-

tilevered beam loaded with a tip mass and inertia (see Fig. C.1). The center of mass

of the tip body is offset from the end of the link by a distance a measured along the

undeformed neutral axis of the beam.

Assuming a Bernoulli-Euler beam, the equation for the transverse motion of the

beam is given by the partial differential equation



y(0, t) = 0

7 (0,t) = 0

and the natural boundary conditions

V(1) = mij,(l, t) + maýi(l, t)

M(I) = -maij,(l, t) - (J + ma2)ij (l, t).

Using the separation of variables principle, assume a solution of the form 7y(x,t) =

¢(x)q(t). Then defining

/34  PW
El

we obtain from Eq. C.1

O(),,_ #40(X) = 0 (C.2)

4(t) + w q(t) = 0. (C.3)

Solutions of Eq. C.2 are of the form

O(x) = A sin(1px) + B sinh(fpx) + C cos(Px) + D cosh(zx) (C.4)

where O(x) must satisfy the boundary conditions

(0) = 0

'(0) = 0
EI."'(1) + mw20(1) + maw2 ¢'(1) = 0

EI¢"(l) - maw20(1) - (J + ma 2)w2 0'(l) = 0.

These boundary conditions form a set of linear equations that can be solved for the

coefficients of Eq. C.4 as functions of A = pl. The values of A are determined by

setting the determinant of the linear equations to be equal to zero. This yields a

transcendental equation with a denumerable number of solutions.
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To each solution Ai corresponds a set of coefficients that determine the mode shape

qi(x). These are determined only up to a multiplicative constant. These solutions to

Eq. C.2 satisfy the orthogonality relation

fo0 pP,(x)O,(x)dx + mq,(1)q,(1) + ma[O'/(1)k,(1) + 4,(1)O',(])] (C.5)
+ (J + ma 2 )q0.(1)q01(1) = 0 (r s).

If r = s we normalize the mode shapes by equating the above expression to the total

mass of the beam, i.e., pl + m.

C.1 Code Listing

In this section we list some Matlab [59] code that determines the values of A and the

mode shape coefficients for given beam and tip body parameters.

Program modes.m

% This program calculates the frequencies and modal shapes
% for a cantilever beam with a payload on the end by assuming
% a beam shape of the form:
% phi(x) = Asin(beta*x) + Bsinh(beta*x) + Ccos(beta*x) + Dcosh(beta*x)
% applying boundary conditions to "y" to get four equations with unknowns
% A, B, C, and D, then using a root solver to find the appropriate
% lambda = beta*lb which causes the dterminant of the 4x4 to be zero.

% Reset variables.

% User inputs.

mb = input('enter mass of beam (kg): ');
lb = input('enter length of beam (m): ');
ei = input('enter stiffness of beam (Nm^2): ');
mp = input('enter payload mass (kg): ');
ip = input('enter payload inertia (kgm^2): ');
a = input('enter payload offset from beam tip (m): ');
nmode = input('enter number of modes to be calculated (<=10): );
init = input('enter initial guesses for lambda (0 - default): ');

% Initial guesses for lambda.
'A
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if init == 0,
lamO = 0;
lamin = [1 3 6 9 12 15 18 21 24 27];

else,
lamO = init;
lamin = init;

end
rho = mb/lb;
itot = ip + mp*a*a;
mor = mp/rho;
ior = itot/rho;
maor = mp*a/rho;
mat = 0.*ones(2,2);
lam = 0.*ones(1,nmode);
om = 0.*ones(1,nmode);
coef = O.*ones(4,nmode);

% Declaration of global variables.

global mor ior maor lb mat rho la abcd

fact = sqrt(ei/rho)/lb/lb;

% Solve for nmode modeshapes.

for i=l:nmode,
lam(i) = fzero('zdet_cl',lamO);

% Check for a repeated root.

if i>1,
for j=i-1:-1:1,

while abs(lam(i)-lam(j))<.1,
lamO = lamO+O.l
lam(i) = fzero('zdet_cl',lamO);

end
end
for j=1:i-1,

while abs(lam(i)-lam(j))<.1,
lamO = lamO+0.5
lam(i) = fzero('zdet_cl',lamO);

end
end

end

om(i) = lam(i)*lam(i)*fact/2/pi;
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% solve for un-normalized coefficients
c = -mat(1,1)/mat(1,2);

abcd = [1 -1 c -c]';
la = lam(i);

% calulate integrals:
% intph2 = integral of phi(x)*phi(x)
% intphi = integral of phi(x)
% intxph = integral of x*phi(x)

[xout,yout] = ode45('intmod_cl',O,lb,[O 0 0],Ie-6);
nptn=length(xout);
intph2(i,i)=yout(nptn,1);

iph(i) = yout(nptn,2);

ixph(i) = yout(nptn,3);

be = lam(i)/lb;

cl = cos(la); chl = cosh(la); sl = sin(la); shl = sinh(la);

phl(i) = abcd'*[sl shl cl chl]';
dphl(i) = be*abcd'*[cl chl -sl shl]';
phil=phl(i);
dphil=dphl(i);

% Normalize mode shapes so that first orthogonality relation is equal
% to the total mass.

mtot = mb + mp;

iphtot = intph2(i,i) + mp*phil*phil + 2*mp*a*dphil*phil + itot*dphil*dphil;
abig = sqrt(mtot/iphtot);

% Calculate normalized coefficients, and integrals.

coef(1:4,i) = abig*abcd;
intph2(i,i) = abig*abig*intph2(i,i);
iph(i) = abig*iph(i);

ixph(i) = abig*ixph(i);
phl(i) = abig*phl(i);
dphl(i) = abig*dphl(i);

end

% Calculate int(rho*phi(i)*phi(j)) from modal constants.

for i=l:nmode,
for j=1:i-1,

intph2(i, j ) =-mp*phl(i)*phl(j);
intph2(i,j)=intph2(i,j)-mp*a*(dphl(i)*phl(j)+phl(i)*dphl(j));
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intph2(i,j)=intph2(i,j)-itot*dphl(i)*dphl(j);
intph2(j ,i)=intph2(i,j);

end
end

% Calculate int(EI*ddphi(i)*ddphi(j)) from second orthog. relation.

for i=i:nmode,
intei(i,i)=4*pi*pi*mtot*om(i)*om(i);
for j=1:i-1,

intei(i,j)=O;

intei(j ,i)=0;
end

end

disp(' ')

disp('frequencies in Hz are: ');om
disp('lambdas are: ');lam

disp('hit ENTER to continue')
pause
disp(' ')
disp('the coefficients (transpose[ A(i) B(i) C(i) D(i) ]) for modes i=1,nmode are:
i = 0;

% calculate the mode shapes as a function of x/lb

for x = 0:.04:1,
i = i + 1;
bx = x*lam';
phimat = [sin(bx) sinh(bx) cos(bx) cosh(bx)]';
lam4 = [lam' lam' lam' lam']';
phi(i,1:nmode) = sum(coef.*phimat);
dphmat = lam4.*[cos(bx) cosh(bx) -sin(bx) sinh(bx)]';
dphi(i,1:nmode) = sum(coef.*dphmat);
xol(i) = x;

end

disp(' ')
disp('The mode shapes are contained in the matrix phi')
disp('versus the dimensionless position xol=x/lb')
disp('Hit ENTER for a plot of the mode shapes:')
pause
plot (xol ,phi)
pause
disp(' ')
disp('The calculated variables are:')
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disp('om: natural frequencies in Hz')

disp('lam: the lambdas')
disp('phi: the mode shapes as a function of xol=x/L')
disp('iph: the integral of rho*phi(i)')
disp('ixph: the integral of rho*x*phi(i)')
disp('intph2: the integral of rho*phi(i)*phi(j) for each mode')
disp('intei: the integral of EI*ddphi(i)*ddphi(j)')
disp('coef: the coefficients of the mode shapes:')

function y=zdet(lam)

% This function is used by modes.m to calculate the determinant of
% the matrix of the modal coefficients.

sl = sin(lam);
shl = sinh(lam);
cl = cos(lam);
chl = cosh(lam);
be = lam/lb;
be2 = be*be;
be3 = be*be2;
mll = -(cl+chl)+mor*be*(sl-shl)+maor*be2*(cl-chl);
m12 = (sl-shl)+mor*be*(cl-chl)-maor*be2*(sl+shl);
m21 = -(sl+shl)-maor*be2*(sl-shl)-ior*be3*(cl-chl);
m22 = -(cl+chl)-maor*be2*(cl-chl)+ior*be3*(sl+shl);
mat = [ mll m12

m21 m22 ];
y = det(mat);

function yp=intmod(x,y)

% This function is used in lmodes.m to compute the modal integrals
% needed for normalization of the mode shapes and for the two-link
% flexible arm simulation.

be = la/lb;
bx = be*x;

phi = abcd'*[sin(bx) sinh(bx) cos(bx) cosh(bx)]';
yp(i) = rho*phi*phi;
yp(2) = rho*phi;
yp(3) = rho*x*phi;

yp = yp';
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Appendix D

Solution of the Nonlinear

Regulator Equations via

Polynomial Expansion

In this appendix we include a listing of the MATHEMATICA [95] code developed

to solve the nonlinear regulator equations presented in Chapter 5. The equations

are solved for the two-flexible link manipulator, assuming one mode per link, and

assuming the exosystem generates two sinusoids of frequencies wl and w2 that are to

be tracked by the inboard and outboard link tip angles, respectively.

D.1 Code Listing

Case 1: Two-flexible link system
Share[]

<<simplify.m

Sinusoidal Exosystem.
Define pi2q. -- Note: I am assuming 1 mode per link for now.
Clear[a]
Clear [b]
combal = x_Integer a[m_]a[n_] -> a[m,n]
(x_Integer)*a[m_]*a[n_] -> a[m, n]
(xInteger) a[m_] a[n_] -> a[m, n]
comba2 = a[m_]a[En_ -> a[m,n]
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a[m_]*a[n_] -> a[m, n]
combb = a[nja[n_] -> a[n,n]

a[n_]^2 -> a[n, n]
combc = xInteger a[n_]a[r_,s_] -> a[n,r,s]
(x_Integer)*a[n_]*a[r_, s_] -> a[n, r, s]
(x_Integer) a[n_] a[r_, s_] -> aEn, r, s]

combd = a[n_]^3 -> a[n,n,n]
a[n_]^3 -> aEn, n, n]
pi2ql = a[1]w[1] + a[2]w[2] + a[3]w[3] + a[4]w[4];
pi2q2 = Expand[pi2qi^2] //. combal;
pi2q2 = pi2q2 //. combb;
pi2q3 = Expand[pi2qi^31 //. combb;
pi2q3 = pi2q3 //. comba2;
pi2q3 = pi2q3 //. combc;
pi2q3 = pi2q3 //. combd;
pi2q = pi2ql + pi2q2 + pi2q3;
pi2q = Collect [pi2q,{w[1] ,w[2] ,w[3] ,w[4]}] ;
Define pi2p.
comcal = xInteger b[m_]b[n_] -> b[m,n];
comca2 = b[m_]b[n_] -> b[m,n];
comcb = b[n_]b[n_] -> b[n,n];
comcc = x_Integer b[n_]b[r_,s_] -> b[n,r,s];

comcd = b[n_]^3 -> b[n,n,n];
pi2pl = b[1]w[1] + b[2]w[2]+b[3]w[3]+b[4]w[4] ;
pi2p2 = Expand[pi2pi^2] //. comcal;
pi2p2 = pi2p2 //. comcb;
pi2p3 = Expand[pi2pl^3] //. comca2;
pi2p3 = pi2p3 //. comcb;
pi2p3 = pi2p3 //. comcc;
pi2p3 = pi2p3 //. comcd;
pi2p = pi2pl + pi2p2 + pi2p3;
pi2p = Collect [pi2p,{w[l] ,w[2] ,w[3] ,w[4}] ;
Determine pi4q and pi4p by doing partial differentiations.
pi4q = D[pi2q,w[1]]om[1]w[2] - D[pi2q,w[2]]om[1]w[1] +

D[pi2q,w[3]]om[2]w[4] - D[pi2q,w[4]]om[2]w[3];
pi4p = D[pi2p,w[1]]om[1]w[2] - D[pi2p,w[2]]om[1]w[1] +

D[pi2p,w[3]]om[2]w[4] - D[pi2p,w[4]]om[2]w[3];
pi4ql = D[pi2ql,w[l]]om[1]w[2] - D[pi2ql,w[2]]om[1]w[1] +

D[pi2ql,w[3]]om[2]w[4] - D[pi2ql,w[4]]om[2]w[3];
pi4pl = D[pi2pi,w[1]]om[1]w[2] - D[pi2pl,w[2]]om[1]w[1] +

D[pi2pl,w[3]]om[2]w[4] - D[pi2pl,w[4]]om[2]w[3];
pi4q2 = D[pi2q2,w[1]]om[1]w[2] - D[pi2q2,w[2]]om[1]w[1] +

D[pi2q2,w[3]]om[2]w[4] - D[pi2q2,w[4]]om[2]w[3];
pi4p2 = D[pi2p2,w[]om[1]w[2] - D[pi2p2,w[2]]om[1]w[1] +
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D[pi2p2,w[3]]om[2]w[4] - D[pi2p2,w[4]]om[2]w[3];
pi4q3 = D[pi2q3,w[l]]om[1]w[21 - D[pi2q3,w[2]]om[1]w[1] +

D[pi2q3,w[3]]om[2]w[4] - D[pi2q3,w[4]]om[2]w[3];
pi4p3 = D[pi2p3,w[l]]om[l]w[2] - D[pi2p3,w[2]]om[1]w[1] +

D[pi2p3,w[3]]om[2]w[4] - D[pi2p3,w[4]]om[2]w[3];
pi4p = Collect [pi4p,{w[l] ,w[2] ,w[3] ,w[4]}] ;
Determine the coefficient for the left-hand side (lhs) equation.
-- Note: Now need to deal with matrices, and will need to approximate sine and cos
phi = 1.138084;psi = 1.8963692;
C1 = {{phi,0},{O,psi}};
ang45 = 45*Pi/180 //N;
Expand sine and cosine:
betal = w[3]-psi pi2pl;
beta2 = -psi pi2p2;
sb = Sin[ang45] + Cos[ang45] (betal + beta2)

- 0.5 Sin[ang45] (betai^2);
cb = Cos[ang45] - Sin[ang45] (betal + beta2)

- 0.5 Cos[ang45] (betal^2);
Reevaluate M3 using numerical values from simulation: linearization about the orig
Matrix of constant terms in M3.
Mcons3 = {{10.746617, 5.0356943},{5.0356943, 4.9197}};
Matrix of coefficients of cos(beta) in M3.
Mcos3 = {{5.707913, 2.3992472},{2.3992472, 0}};
Matrix of coefficients of sin(beta) in M3.
Msin3 = {{0, 0},{0, 0}};
M3 = Mcons3 + cb*Mcos3 + sb*Msin3;
M3 = {{14.782721,6.7322182},{6.7322182,4.9197}}
{{14.782721, 6.7322182}, {6.7322182, 4.9197}}
{{14.782721, 6.7322182}, {6.7322182, 4.9197}}
Form and simplify products of the form: sine*q, cosine*q, sine*p. Use function: sil
--Note: When using more than one mode per link, must remember that p and q appear

Reevaluate M2 using numerical values from simulation: linearization about the orig
Matrix of constant terms in M2.
Mcons2 = {{13.48022, 4.8215191},{4.4247123, 4.4247124}};
Matrix of coefficients of cos(beta) in M2.
Mcos2 = {{7.1952732, 2.5076853},{3.9407335, 0}};
Matrix of coefficients of sin(beta) in M2.
Msin2 = {{0, 0},{0, 0}};
M2 = Mcons2 + cb*Mcos2 + sb*Msin2;
M2 = {{18.568047,6.5947204},{7.2112318,4.4247124}}
{{18.568047, 6.5947204}, {7.2112318, 4.4247124}}
{{18.568047, 6.5947204}, {7.2112318, 4.4247124}}
Del = M3 - M2 . Cl;
Del[[1,1]] = Collect[Del[[1,1]],{w[1],w[2],w[3],w[4]}];
De1110 = simplify[Del[[1,1]],0];
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De111i = simplify[Del[[1,1]]-De1110,1];
Del112 = simplify[Del[[1,1]]-Delll1-De1110,2];
Del[[1,2]] = Collect[Del[[1,2]],{w[l],w[2],w[3],w[4]}];
Dell20 = simplify[Del[[1,2]],0];
Deli21 = simplify[Del[[i,2]]-Dell20,1];
Dell22 = simplify[Del[[1,2]]-Deli21-Deli20,2];
Del[[2,1]] = Collect[Del[[2,1]],{w[l],w[2],w[3],w[4]}];
Del210O = simplify[Del[[2,1]],0];
Del211 = simplify[Del[[2,1]]-Del2l10,1];
Del212 = simplify[Del[[2,1]]-Del211-Del221,2];
Del[[2,2]] = Collect[Del[[2,2]],{w[l],w[2l,w[3],w[4]}];
Del220 = simplify[Del[[2,2]],0];
Del221 = simplify[Del[[2,2]]-Del220,1];
Del222 = simplify[Del[[2,2]]-Del221-Del220,2];
Complete lhs through partial differentiations and matrix multiplication.
Determine values of frequency of forcing.
om[1] = 1;
om[2] = 1;

lhsl = {D[pi4qi,w[l]]om[l]w[2] - D[pi4ql,w[2]]om[l]w[l] +
D[pi4qi,w[3]]om[2]w[4] - D[pi4ql,w[4]]om[2]w[3],
D[pi4pi,w[1]]om[1]w[2] - D[pi4pi,w[2]]om[1]w[1] +
D[pi4pi,w[3]]om[2]w[4] - D[pi4pi ,w[4]]om[2]w[3]};

lhs2 = {D[pi4q2,w[1]]om[l]w[2] - D[pi4q2,w[2]]om[l]w[l] +
D[pi4q2,w[3]]om[2]w[4] - D[pi4q2,w[4]]om[2]w[3],
D[pi4p2,w[l]]om[l]w[2] - D[pi4p2,w[2]]om[l]w[l] +
D[pi4p2,w[3]]om[2]w[4] - D[pi4p2,w[4]]om[2]w[3]};

lhs3 = {D[pi4q3,w[l]]om[l]w[2] - D[pi4q3,w[2]]om[l]w[l] +
D[pi4q3,w[3]]om[2]w[4] - D[pi4q3,w[4]]om[2]w[3],
D[pi4p3,w[l]]om[l]w[2] - D[pi4p3,w[2]]om[l]w[1] +
D[pi4p3,w[3]]om[2]w[4] - D[pi4p3,w[4]]om[2]w[3]};

lhsll = DelilO (lhsl[[1]]+lhs2[[1]]+lhs3[[1]]) +
De111i (lhsl[[1]]+lhs2[[l]]) +
De1112 lhsl[[1]];

lhs12 = Dell20 (lhsl[[2]]+lhs2[[2]]+lhs3[[2]]) +
Deli21 (lhsl[[2]]+lhs2[[2]]) +
Dell22 lhsl[[2]];

lhs2l = Del210 (lhsl[[1]]+lhs2[[1]]+lhs3[[1]]) +
Del211 (lhsi[[1]]+lhs2[[1]]) +
De1212 lhsl[[1]];

lhs22 = Del220 (lhsl[[2]]+lhs2[[2]]+lhs3[[2]]) +
Del221 (lhsl[[2]]+lhs2[[2]]) +
De1222 lhsl[[2]];

lhsl = lhsll + lhsl2;
lhs2 = lhs21 + lhs22;
Determine now the coefficients of the right-hand side (rhs).
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Kee = {{228.43573,0},{0,79.889449}};
Dee = {{0.99094121,0},{0,0.39650075}};
nombl = om[1] w[21 - phi pi4ql +

om[2] w[4] - psi pi4pl;
nomb2 = -phi pi4q2 -psi pi4p2;
nomb21 = 0;
nomb22 = nombl^2;
nomb23 = 2 nombl nomb2;
nombt2 = nomb2l + nomb22 + nomb23;
omel = om[1] w[2] - phi pi4ql;
ome2 = -phi pi4q2;
ome21 = 0;
ome22 = omel^2;
ome23 = 2 omel ome2;
omet2 = ome2l + ome22 + ome23;
Ceeom = (1.2840395 10^-11 + 9.0647807 10^-17 cb

+ -4.6875879 sb);
Ceenom = (-1.7478598 10^-8

+ 1.7478598 10^-8 cb + 2.5076853 sb);
Ceetom = -3.9407335 sb;
CeelO = simplify[Ceeom,0];
Ceell = simplify[Ceeom-CeelO,1];
Ceel2 = simplify[Ceeom-Ceell-CeelO,2];
Cee20 = simplify[Ceenom,0];
Cee2l = simplify[Ceenom-Cee20,1];
Cee22 = simplify[Ceenom-Cee2l-Cee20,2];
Cee30 = simplify[Ceetom,0];
Cee31 = simplify[Ceetom-Cee30,1];
Cee32 = simplify[Ceetom-Cee3l-Cee30,2];
Ceetl = CeelO omet2 + Ceell (ome2l + ome22)

Ceel2 ome21 + Cee20 nombt2 + Cee21 (nomb2l
+ nomb22) + Cee22 nomb21;

Ceet2 = Cee30 omet2 + Cee3l (ome2l + ome22)
Cee32 ome21;

rhs = Kee . {pi2q,pi2p} + Dee . {pi4q,pi4p} -
{Ceetl,Ceet2} +
M2 . {-om[1]^2 w[1],-om[2]^2 w[3]};

rhsl = rhs[[1]];
rhs2 = rhs[[2]];
soll = lhsl + rhsl;
sol2 = lhs2 + rhs2;
Skip to second order terms.
soil = Collect [soll,{w[l] ,w[2] ,w[3] ,w[4]}];
sol2 = Collect [sol2,{w[1] ,w[2 ,w[3] ,w[4]}];
Iqi = Coefficient[soll,w[l]];
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Iqi = Coefficient[lql,w[2],O] ;
Iqi = Coefficient[lql,w[31,0];
lqi = Coefficient[lq,w[4],0] ;
1q2 = Coefficient[soll,w[2]];
lq2 = Coefficient[1q2,w[1],0] ;
1q2 = Coefficient[1q2,w[3],0];
1q2 = Coefficient [lq2,w[4],0];
lq3 = Coefficient[soll,w[3]] ;
1q3 = Coefficient[1lq3,w[1],O];
1q3 = Coefficient[1lq3,w[2],0];
1q3 = Coefficient[1q3,w[4],0];
1q4 = Coefficient[soll,w[4]] ;
1q4 = Coefficient[1lq4,w[1],01 ;
1q4 = Coefficient[lq4,w[2],0];
1q4 = Coefficient[1lq4,w[3],0];
ipi = Coefficient[sol2,w[1]];
ipl = Coefficient[lpl,w[2],0];
ipi = Coefficient[lpl,w[31,0];
Ipi = Coefficient [lpl,w[4],0];
lp2 = Coefficient[sol2,w[2]] ;
1p2 = Coefficient[1p2,w[1],0];
lp2 = Coefficient [lp2,w[3],0];
lp2 = Coefficient[lp2,w[41,0];
lp3 = Coefficient[sol2,w[3]];
lp3 = Coefficient[lp3,w[1],0];
lp3 = Coefficient[lp3,w[2],0];
lp3 = Coefficient[lp3,w[4],0];
1p4 = Coefficient[sol2,w[41;
1p4 = Coefficient[1p4,w[1],0] ;
Ip4 = Coefficient[lp4,w[2],0];
1p4 = Coefficient [1p4,w[3] ,0] ;
arl = Solve[{lq==O,1q2==0 ,1q3==O,q4==0,1pl==O,p2== p3==,p==O,p4==O},

{a[l] ,a[2] ,a[3] ,a[4] ,b[1] ,b[21 ,b[3] ,b[4]}]
arls=arl [I] ;
Now solve for second order term coefficients.
soll = soll /. aris;
soll = Collect[soll,{w[l] ,w[2] ,w[3],w[4}];
lqll = Coefficient[soll,w[l],2];
lqll = Coefficient[lqll,w[2],0];
lqll = Coefficient[lq11,w[3],0];
lqll = Coefficient[lqll,w[4],0];
1q22 = Coefficient[soll,w 2],2];
1q22 = Coefficient[1lq22,w[1],0];
1q22 = Coefficient[1lq22,w[3],0];
1q22 = Coefficient[1lq22,w[41,0];
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1q33 = Coefficient[soll,w[3],2];
1q33 = Coefficient[1lq33,w[2],0];
1q33 = Coefficient[1lq33,w[1],0];
1q33 = Coefficient[1lq33,w[4],0];
1q44 = Coefficient[soll,w[4],2];
1q44 = Coefficient[1lq44,w[2],0];
1q44 = Coefficient[1lq44,w[3],O];
1q44 = Coefficient[lq44,w[1],0];
lq12 = Coefficient[soll,w[l]w[2]];
lq12 = Coefficient[lql2,w[3],0];
lq12 = Coefficient[lql2,w[4],0];
lq13 = Coefficient[soll,w[l]w[3]];
lq13 = Coefficient[lql3,w[2],0];
lq13 = Coefficient[lql3, w[4],0];
lq14 = Coefficient[solw[1]w[4]];
lq14 = Coefficient[lq14,w[31,0];
lq14 = Coefficient [lq4,w[2],0] ;
1q23 = Coefficient[soll,w[2]w[3]];
1q23 = Coefficient[1q23,w[1],0];
lq23 = Coefficient[1lq23,w[4],0];
1q34 = Coefficient[soll,w[3]w[4]];
1q34 = Coefficient[1q34,w[1],0];
1q34 = Coefficient[1q34,w[2],0];
lq24 = Coefficient[soll,w[2]w[4]];
1q24 = Coefficient[1q24,w[l,0] ;
lq24 = Coefficient[1q24,w[3],0];
sol2 = sol2 /. arls;
sol2 = Collect [sol2,{w[1] ,w[2] ,w[3] ,w[4]}] ;
ipll = Coefficient[sol2,w[1],2];
ipil = Coefficient[lpll,w[2],0];
Ipll = Coefficient[lpll,w[3],0];
Ipll = Coefficient[lpll,w[4],0];
lp22 = Coefficient[sol2,w[2],2];
lp22 = Coefficient[lp22,w[11],0];
lp22 = Coefficient[1p22,w[3],0];
lp22 = Coefficient[1p22,w[41,01;
lp33 = Coefficient[sol2,w[3],2];
lp33 = Coefficient[1p33,w[2],0];
lp33 = Coefficient[lp33,w[1],0];
lp33 = Coefficient[1p33,w[4],01;
lp44 = Coefficient[sol2,w[4],2];
lp44 = Coefficient[1p44,w[21,0];
1p44 = Coefficient[1p44,w[31,0];
lp44 = Coefficient [p44,w[1],0] ;
lp12 = Coefficient[sol2,w[l]w[21];
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1pi2 = Coefficient[lpl2,w[3],0];
lp12 = Coefficient[lpl2,w[4],0];
1pi3 = Coefficient[sol2,w[l]w[3]];
lp13 = Coefficient[lpl3,w[2],0];
lp13 = Coefficient[1pl3,w[4],0];
1pi4 = Coefficient[sol2,w[1w[411]];
lp14 = Coefficient[lpl4,w[3],0];
1pi4 = Coefficient[lpl4,w[2],0];
lp23 = Coefficient[sol2,w[2]w[3]];
lp23 = Coefficient[1p23,w[1],0];
lp23 = Coefficient[1p23,w[41,0];
lp34 = Coefficient[sol2,w[3]w[41]];
lp34 = Coefficient[lp34,w[11,01];
lp34 = Coefficient[lp34,w[2],0];
lp24 = Coefficient[sol2,w[2]w[41]];
1p24 = Coefficient[lp24,w[1],0];
lp24 = Coefficient[lp24,w[3],0];
ar2 = Solve[{lqll==0,lq22==o0,q33===0,q44==0,lq2==,1q3==O,lq4==O,

lq23==0, q34==0, q24==0, iplI==0,p22==0, p33==0, p44==0,
lpl2==0, lpl3==,lpl4==,pp==,p23==0p34== ,p24==0},

{all,l] ,a[2,2] ,a[3,3] ,a[4,4] ,a[1,2 ,a[l,3] ,a[,4 ,a[2,31,
a[3,4] ,a[2,41,b[l,11 ,b[2,21 ,b[3,3],b[4,41,b[1,21,b[1,31,
b[l,4,b[2,3],b[3,4] ,b[2,4]}]

Finally, third order terms.
ar2s = ar2[[l]];
soil = soil /. ar2s;
Iqill = Coefficient[soll,w[l],3];
lq222 = Coefficient[soll,w[2],3];
1q333 = Coefficient[soll,w[3],3];
1q444 = Coefficient[soll,w[4],3];
lq112 = Coefficient[soll,w[1]'2 w[2]];
lq122 = Coefficient[soll,w[l] w[21]2];
lq113 = Coefficient[soll,w[1]-2 w[3]];
1q133 = Coefficient[soll,w[l] w[3]-2];
lqll4 = Coefficient[soll,w[1l^2 w[4]];
1q144 = Coefficient[soll,w[4]^2 w[1]];
1q123 = Coefficient[soll,w[l] w[2] w[3]];
lq124 = Coefficient[soll,w[1] w[2] w[41];
1q134 = Coefficient[soll,w[ll w[3] w[41];
1q223 = Coefficient[soll,w[21"2 w[3]];
1q224 = Coefficient [soll,w[21^2 w[4]];
1q233 = Coefficient[soll,w[3]^2 w[2]];
1q234 = Coefficient[soll,w[2] w[3] w[41];
1q244 = Coefficient[soll,w[4]^2 w[2]];
1q334 = Coefficient[soll,w[312 w[41]];
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1q344 = Coefficient [soll,w[4]^2 w[3]];
sol2 = sol2 /. ar2s;
Ip111 = Coefficient[sol2,w[1],3];
1p222 = Coefficient[sol2,w[2],3];
lp333 = Coefficient[sol2,w[3],3];
lp444 = Coefficient[sol2,w[4],3];
lp112 = Coefficient[sol2,w[1]^2 w[2]];
lp122 = Coefficient[sol2,w[1] w[21^2];
1p1 13 = Coefficient[sol2,w[1]^2 w[3]];
lpl33 = Coefficient[sol2,w[1] w[3]^2];
lpli4 = Coefficient[sol2,w[1]^2 w[4]];
1pi44 = Coefficient[sol2,w[4]^2 w[1]];
1p123 = Coefficient[sol2,w[l] w[2] w[3]];
lp124 = Coefficient[sol2,w[1] w[2] w[4]];
1pi34 = Coefficient[sol2,w[1] w[3] w[4]];
lp223 = Coefficient[sol2,w[2]^2 w[3]];
lq224 = Coefficient[sol2,w[2]^2 w[4]];
lp233 = Coefficient[sol2,w[3]^2 w[2]];
lp234 = Coefficient[sol2,w[2] w[3] w[4]];
lp244 = Coefficient[sol2,w[41]2 w[2]];
1p334 = Coefficient [sol2,w[3]2 w[4]] ;
lp344 = Coefficient[sol2,w[4]'2 w[3]];
bigeqi = {lqill,1q222,1q333,1q444,1q112,1qi22,lq113,

1q133, lq4,11 q144,q 1q44, 23, iqi24, q134, q223,
1q224, q233, q234, q244,1q334,1q344};

ar31 = Solve[bigeql == {0,0,0,0,0,0,0,0,O,,0,0,0,0,
0,0,0,0,0,0},{a[1,,1,1],a[2,2,2],a[3,3,3],a[4,4,4],a[2,1,1]

a[1,2,2] ,a[3,1,1],
a[1,3,3],a[4,1,1] ,a[1,4,4],a[3,1,2],a[4,1,2],a[4,1,3],a[3,2,2],
a[4,2,2] ,a[2,3,3],a[4,2,3],a[2,4,4] ,a[4,3,3],a[3,4,4]}];

ar31s = ar3l[[1]]
bigeq2 = {1plll,1p222,

1p333,lp444,lpll2,1pl22,lp113,
1p133, Ip114,lp144,lpl23,lp124, lp134,p223,
lp224,lp233,1p234,lp244,lp334,1p344} /. ar3ls;

ar32 = Solve[bigeq2 == {0,0,0,0,0,,0,0,0,0,0,0,0,0,
0,0,0,0,0,0},{b[1,1,1],

b[2,2,2] ,b[3,3,3] ,b[4,4,4] ,b[2,1,1] ,b[1,2,2] ,b[3,1,1]
b[1,3,3] ,b[4,1,1],b[1,4,4] ,b[3,1,2] ,b[4,1,2] ,b[4,1,3] ,b[3,2,2],
b[4,2,2b2,3,3b4,3,b[2,4,4] ,b[4,3,3] ,b[3,4,4]}];

ar32s=ar32[[1]]

simplify[expr_,o_] :=
Block[{i, j, rest = 0, counti, test, next, e, tO, f = 100},
test = Expand[expr ;
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counti = Length[test]; Print [countll ;
Do[

tO = test[[il];

Do[
e[j] = Exponent[tO, w[j]],

{j,4}];
next = If[Sum[e[n], {n,4}] > o, 0, tO];
rest = rest + next;
If[i == f,Print[i]; f = f + 100],

{i, countl}]; Print [Length[rest]] ; Return[rest]]
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