6,370 research outputs found

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Design and implementation of an oil leakage monitoring system based on wireless network

    Get PDF
    Monitoring pipeline leaks is one of the recent hot studies. Leakage may occur because of time corrosion in the tube raw materials. To reduce the negative consequences of this leak, an effective leak detection system is used to prevent serious leakage accidents and damage in oil pipelines. Buildings, ecosystems, air pollution, and human life are all at risk in case of leakage occurs which could lead to fires. This paper introduces one of the research methods for the detection of pipeline leaks with a particular focus on software-based methods. The computer board interface (CBI) and wireless sensor networks have been used beside Arduino as a micro-monitor for the entire system. ZigBee is also utilized to send read data from sensors to the monitoring system displayed on the LabVIEW graphical user interface (GUI). The operator can take direct action when a leak occurs. The effectiveness of the leakage monitoring process and its practical use are demonstrated by the introduction of computerized techniques based on pressure gauge analysis on a specific pipeline in the laboratory. The result showed that the system is widely covered, accurate data transmission and robust real-time performance which reduces economic losses and environmental pollution

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    xLED: Covert Data Exfiltration from Air-Gapped Networks via Router LEDs

    Full text link
    In this paper we show how attackers can covertly leak data (e.g., encryption keys, passwords and files) from highly secure or air-gapped networks via the row of status LEDs that exists in networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device ('side-channel'), intentionally controlling the status LEDs to carry any type of data ('covert-channel') has never studied before. A malicious code is executed on the LAN switch or router, allowing full control of the status LEDs. Sensitive data can be encoded and modulated over the blinking of the LEDs. The generated signals can then be recorded by various types of remote cameras and optical sensors. We provide the technical background on the internal architecture of switches and routers (at both the hardware and software level) which enables this type of attack. We also present amplitude and frequency based modulation and encoding schemas, along with a simple transmission protocol. We implement a prototype of an exfiltration malware and discuss its design and implementation. We evaluate this method with a few routers and different types of LEDs. In addition, we tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and also discuss different detection and prevention countermeasures. Our experiment shows that sensitive data can be covertly leaked via the status LEDs of switches and routers at a bit rates of 10 bit/sec to more than 1Kbit/sec per LED

    WiRoTip: an IoT-based Wireless Sensor Network for Water Pipeline Monitoring

    Get PDF
    One of the key components of the Internet of Things (IoT) is the Wireless Sensor Network (WSN). WSN is an effective and efficient technology. It consists of senor nodes; smart devices that allows data collection and pre-processing wirelessly from real world. However, issues related to power consumption and computational performance still persist in classicalwireless nodes since power is not always available in application like pipeline monitoring. Moreover, they could not be usually suitable and adequate for this kind of application due to memory shortage and performance constraints. Designing new IoT WSN system that matches the application specific requirements is extremely important. In this paper, wepresent WiRoTip, a WSN node prototype for water pipeline application. An experimental and a comparative studies have been performed for the different node’s components to achieve a final adequate design

    Framework for integrated oil pipeline monitoring and incident mitigation systems

    Get PDF
    Wireless Sensor Nodes (motes) have witnessed rapid development in the last two decades. Though the design considerations for Wireless Sensor Networks (WSNs) have been widely discussed in the literature, limited investigation has been done for their application in pipeline surveillance. Given the increasing number of pipeline incidents across the globe, there is an urgent need for innovative and effective solutions for deterring the incessant pipeline incidents and attacks. WSN pose as a suitable candidate for such solutions, since they can be used to measure, detect and provide actionable information on pipeline physical characteristics such as temperature, pressure, video, oil and gas motion and environmental parameters. This paper presents specifications of motes for pipeline surveillance based on integrated systems architecture. The proposed architecture utilizes a Multi-Agent System (MAS) for the realization of an Integrated Oil Pipeline Monitoring and Incident Mitigation System (IOPMIMS) that can effectively monitor and provide actionable information for pipelines. The requirements and components of motes, different threats to pipelines and ways of detecting such threats presented in this paper will enable better deployment of pipeline surveillance systems for incident mitigation. It was identified that the shortcomings of the existing wireless sensor nodes as regards their application to pipeline surveillance are not effective for surveillance systems. The resulting specifications provide a framework for designing a cost-effective system, cognizant of the design considerations for wireless sensor motes used in pipeline surveillance

    Investigation and Implementation of IoT Based Oil & Gas Pipeline Monitoring System

    Get PDF
    Wireless Sensor Networks (WSNs) involve top potential technologies that will dramatically change the way of human living and working. Many scientific, industrial and environmental applications require real time information related to physical events like pressure, temperature or humidity. In the past the only way to transfer the sensed data to control center was through cumbersome and costly wires. But recent advancement in wireless networking enables WSNs to communicate the sensed real time event data wirelessly. WSNs have capabilities of sensing, processing and communicating which make them most suitable for monitoring different on and gas industries upstream, midstream and downstream operations which help to increase production, decrease the accidents, maintenance cost and malfunctioning
    corecore