31 research outputs found

    Shared control for navigation and balance of a dynamically stable robot.

    Get PDF
    by Law Kwok Ho Cedric.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 106-112).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Related work --- p.4Chapter 1.3 --- Thesis overview --- p.5Chapter 2 --- Single wheel robot: Gyrover --- p.9Chapter 2.1 --- Background --- p.9Chapter 2.2 --- Robot concept --- p.11Chapter 2.3 --- System description --- p.14Chapter 2.4 --- Flywheel characteristics --- p.16Chapter 2.5 --- Control patterns --- p.20Chapter 3 --- Learning Control --- p.22Chapter 3.1 --- Motivation --- p.22Chapter 3.2 --- Cascade Neural Network with Kalman filtering --- p.24Chapter 3.3 --- Learning architecture --- p.27Chapter 3.4 --- Input space --- p.29Chapter 3.5 --- Model evaluation --- p.30Chapter 3.6 --- Training procedures --- p.35Chapter 4 --- Control Architecture --- p.38Chapter 4.1 --- Behavior-based approach --- p.38Chapter 4.1.1 --- Concept and applications --- p.39Chapter 4.1.2 --- Levels of competence --- p.44Chapter 4.2 --- Behavior-based control of Gyrover: architecture --- p.45Chapter 4.3 --- Behavior-based control of Gyrover: case studies --- p.50Chapter 4.3.1 --- Vertical balancing --- p.51Chapter 4.3.2 --- Tiltup motion --- p.52Chapter 4.4 --- Discussions --- p.53Chapter 5 --- Implement ation of Learning Control --- p.57Chapter 5.1 --- Validation --- p.57Chapter 5.1.1 --- Vertical balancing --- p.58Chapter 5.1.2 --- Tilt-up motion --- p.62Chapter 5.1.3 --- Discussions --- p.62Chapter 5.2 --- Implementation --- p.65Chapter 5.2.1 --- Vertical balanced motion --- p.65Chapter 5.2.2 --- Tilt-up motion --- p.68Chapter 5.3 --- Combined motion --- p.70Chapter 5.4 --- Discussions --- p.72Chapter 6 --- Shared Control --- p.74Chapter 6.1 --- Concept --- p.74Chapter 6.2 --- Schemes --- p.78Chapter 6.2.1 --- Switch mode --- p.79Chapter 6.2.2 --- Distributed mode --- p.79Chapter 6.2.3 --- Combined mode --- p.80Chapter 6.3 --- Shared control of Gyrover --- p.81Chapter 6.4 --- How to share --- p.83Chapter 6.5 --- Experimental study --- p.88Chapter 6.5.1 --- Heading control --- p.89Chapter 6.5.2 --- Straight path --- p.90Chapter 6.5.3 --- Circular path --- p.91Chapter 6.5.4 --- Point-to-point navigation --- p.94Chapter 6.6 --- Discussions --- p.95Chapter 7 --- Conclusion --- p.103Chapter 7.1 --- Contributions --- p.103Chapter 7.2 --- Future work --- p.10

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Hybrid wheelchair controller for handicapped and quadriplegic patients

    Get PDF
    In this dissertation, a hybrid wheelchair controller for handicapped and quadriplegic patient is proposed. The system has two sub-controllers which are the voice controller and the head tilt controller. The system aims to help quadriplegic, handicapped, elderly and paralyzed patients to control a robotic wheelchair using voice commands and head movements instead of a traditional joystick controller. The multi-input design makes the system more flexible to adapt to the available body signals. The low-cost design is taken into consideration as it allows more patients to use this system

    Applicable Solutions in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare

    Analysis and Control of Mobile Robots in Various Environmental Conditions

    Get PDF
    The world sees new inventions each day, made to make the lifestyle of humans more easy and luxurious. In such global scenario, the robots have proved themselves to be an invention of great importance. The robots are being used in almost each and every field of the human world. Continuous studies are being done on them to make them simpler and easier to work with. All fields are being unraveled to make them work better in the human world without human interference. We focus on the navigation field of these mobile robots. The aim of this thesis is to find the controller that produces the most optimal path for the robot to reach its destination without colliding or damaging itself or the environment. The techniques like Fuzzy logic, Type 2 fuzzy logic, Neural networks and Artificial bee colony have been discussed and experimented to find the best controller that could find the most optimal path for the robot to reach its goal position. Simulation and Experiments have been done alike to find out the optimal path for the robot

    Where is cognition? Towards an embodied, situated, and distributed interactionist theory of cognitive activity

    Get PDF
    In recent years researchers from a variety of cognitive science disciplines have begun to challenge some of the core assumptions of the dominant theoretical framework of cognitivism including the representation-computational view of cognition, the sense-model-plan-act understanding of cognitive architecture, and the use of a formal task description strategy for investigating the organisation of internal mental processes. Challenges to these assumptions are illustrated using empirical findings and theoretical arguments from the fields such as situated robotics, dynamical systems approaches to cognition, situated action and distributed cognition research, and sociohistorical studies of cognitive development. Several shared themes are extracted from the findings in these research programmes including: a focus on agent-environment systems as the primary unit of analysis; an attention to agent-environment interaction dynamics; a vision of the cognizer's internal mechanisms as essentially reactive and decentralised in nature; and a tendency for mutual definitions of agent, environment, and activity. It is argued that, taken together, these themes signal the emergence of a new approach to cognition called embodied, situated, and distributed interactionism. This interactionist alternative has many resonances with the dynamical systems approach to cognition. However, this approach does not provide a theory of the implementing substrate sufficient for an interactionist theoretical framework. It is suggested that such a theory can be found in a view of animals as autonomous systems coupled with a portrayal of the nervous system as a regulatory, coordinative, and integrative bodily subsystem. Although a number of recent simulations show connectionism's promise as a computational technique in simulating the role of the nervous system from an interactionist perspective, this embodied connectionist framework does not lend itself to understanding the advanced 'representation hungry' cognition we witness in much human behaviour. It is argued that this problem can be solved by understanding advanced cognition as the re-use of basic perception-action skills and structures that this feat is enabled by a general education within a social symbol-using environment

    15th Conference on Dynamical Systems Theory and Applications DSTA 2019 ABSTRACTS

    Get PDF
    From Preface: This is the fifteen time when the conference „Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 255 persons from 47 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 338 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference edited books.Technical editor and cover design: Kaźmierczak, MarekCover design: Ogińska, Ewelina; Kaźmierczak, Mare

    NASA Tech Briefs, September 1990

    Get PDF
    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    corecore