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ABSTRACT 

 

The world sees new inventions each day, made to make the lifestyle of humans more easy 

and luxurious. In such global scenario, the robots have proved themselves to be an invention of 

great importance. The robots are being used in almost each and every field of the human world. 

Continuous studies are being done on them to make them simpler and easier to work with. All 

fields are being unraveled to make them work better in the human world without human 

interference. We focus on the navigation field of these mobile robots. The aim of this thesis is to 

find the controller that produces the most optimal path for the robot to reach its destination 

without colliding or damaging itself or the environment. The techniques like Fuzzy logic, Type 2 

fuzzy logic, Neural networks and Artificial bee colony have been discussed and experimented to 

find the best controller that could find the most optimal path for the robot to reach its goal 

position. Simulation and Experiments have been done alike to find out the optimal path for the 

robot.  
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1. INTRODUCTION 

The thesis conveys an inventive background, for enabling the mobile robot to explore 

a congested and cluttered real world surrounding safely, especially, an impulsively 

fluctuating environment thereby avoiding structured or unstructured obstacles. The work 

described in this thesis has been carried out in the context of the navigation through various 

environments with mobile robots. This chapter specifies background information and the 

basic concept and an overview of the research areas concerning the work carried out as well 

as the motivation pertaining to the work carried out in this thesis. It then briefly enlightens 

the overview of major goals of this research i.e. what type of demanding problems have been 

undertaken and how, which are reaffirmed later in more depth in the successive thesis 

chapters. Finally, the thesis structure has been sketched. 

1.1 BACKGROUND AND NAVIGATION 

Starting from the earliest to the latest, the formation of autonomous mobile robots has 

been acknowledged. For the purpose of efficient control of a robot substantial variations in 

the robot‘s inclusive behaviour or action are needed in order to behave in large scale 

surroundings. Mobile robot is not only a combination of algorithms for sensing real time 

response but also expanding possession of knowledge, rationalizing the positional error and 

moving about space. It also leads to physical incarnations of these algorithms and ideas, 

which are able to conduct all of whims of the real world and are also entailed to be coupled. 

As such mobile robot provides an authenticity check for hypothetical concepts and 

algorithms.  

Research and development of mobile robots have attracted the attention of researchers 

in the areas of engineering, computer science, biology, mining and others. Mobile robots 

have a high potential in several applications which include automatic freeway driving, 

guidance of the blind and disabled, explorations of dangerous regions and mechanical parts 

transfer in flexible assembly system. Progress in the field of mobile robot navigation has been 

slower than expectations from the excitement and relatively rapid advances of the early days 

of research. 

A robot acting independently in complicated surroundings has been proven only in 

very limited number of trials. Autonomous mobile robots are intelligent agents that can 



 

 

2

perform desired tasks in various (known and unknown) environments without continuous 

human interference. All kinds of robots are autonomous to some degree. One important area 

of robotics research is to enable the robot to cope with its environment whether on land, 

underwater, in the air, underground or in space. A fully autonomous robot in the real world 

has the ability to  

 Track information from the environment 

 Navigate from one point to another without manual help 

 Avoid obstacles and hazardous situations 

 Repair itself to some extent without outside assistance 

A perceptive robot needs to be able to deal with probable, equivocal, inconsistent and noisy 
data by learning through its own interface with the world while achieving goal. Mechanisms, 
used in successful navigation of robotic agent, use a number of skills, starting from high level 
capabilities such as surveying the surrounding environment, to building an autonomous 
global map and planning a path towards an explicit goal, to the execution of rudimentary low 
level action like avoiding collisions with obstacles. So an autonomous robot needs to learn 
the following: 

 Gaining some new abilities 

 Planning navigation strategies based on surroundings 

 Adapting to surroundings without interference 

The navigation and control of mobile robots is a challenging topic and can be taken up for 

research for the following reasons: 

 A mobile robot needs to sense its own environment and move about in the 

environment without looking forward to human assistance. It should be able to 

identify different features, detect various obstacles, find paths around the obstacles 

and navigate accordingly. 

 Autonomous mobile robots are supposed to be the nearest approximations of 

intelligent agents which means that they satisfy the need of the people to make 

machines that can mimic living beings or natural phenomena. 

 The applications of mobile robots lead them to operate in environments where even 

human intrusion is not possible. Hence the autonomous vehicle has to be able enough 

to navigate in such spaces and endure such circumstances which living beings are 
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unable to tolerate. However for such mobile robots the risk of hurting someone or 

something is at its least as compared to the robots which have to share their working 

space with the human beings. In such cases, they have to move within an environment 

full of uncertain human intrusion and hence the risk of hazardous accidents increases. 

In order to mix and adapt to their environments, animals approximate the result of their 

actions and acquire or adapt their behaviours according to the behaviour of other objects. 

Hence there is a strong stifle in order to investigate intelligent behaviour by means of 

positioned agents or mobile robots. Perception and action are imposed to be highly coupled in 

a closed loop to spawn navigational strategy of mobile agents. This awareness reverses the 

inclination of mobile robotics field towards an inherently interdisciplinary research area 

involving the followings: 

 For designing locomotive mechanisms : Mechanical Engineering 

 For sensing and path planning : Computer Science engineering 

 For system integration and communication : Electrical engineering 

 For perceptions and neurological behaviour : Cognitive psychology 

Path analysis and planning is an exciting challenge in building autonomous mobile 

robots. An autonomous mobile robot should be able to learn and sense its environment 

thereby programming itself without assistance. It consists of finding a route from the origin 

of the robot to its target destination. Path analysis and planning becomes more difficult when 

some static as well as dynamic obstacles are added to the environment. In such case, it is 

necessary to find an alternative route. This requires a process of adaptation to the 

environment. In addition to avoiding collision, the other requirements for navigation in such 

cases include smoother motion, shorter travelling time, or more clearance from the obstacle. 

Therefore, the path analysis and planning involves optimization with respect to certain 

performance measures. 

 

 

1.2 OBJECTIVE AND GOAL 
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The goal of autonomous mobile robotics is to build and control physical systems which 

can move purposefully and without human intervention in real-world environments. To 

survive within unforeseen situations and to adapt to the effects of changing environment; the 

power of self-government or sturdy autonomy is essential, which implies that the robot 

should be able to govern its course of action by its own perceptive process, rather than 

following a fixed, hardwired sequence of superficially provided instructions. The 

development of techniques for autonomous mobile robot operation constitutes one of the 

major trends in the current research and practice in modern robotics.  

The objective of this research is to determine the shortest path from the origin of the robot to 

its target destination. Methods for finding the shortest path, by diverting through obstacles, 

have traditionally been based on one of several models. This thesis proposes alternative ways 

for determining the best route a mobile robot can follow in any environment from its origin to 

its target destination. The objective of a kinematic controller is to follow a trajectory 

described by its position and velocity profiles as function of time. Many researchers have 

studied kinematic behaviour and provided some adequate solutions for (kinematic) motion 

control of a mobile robot system. Most of controllers of mobile robot are not considering the 

dynamics of the system. 

Following the example of our intelligence, the robot explores the environment and 

identifies human understandable guiding clues to find a way to the assigned destination. The 

aim of this research is to idealize an existing autonomous mobile robot, on levels like 

kinematics, perception, cognition, sensor fusion, path analysis, path planning and navigation. 

This thesis is enthused to the goal of design and development of Autonomous mobile robot 

enriched with a distinctive control skill such that robot has the ability: 

 To move freely in its environment,  

 To perform a number of different tasks,  

 To learn from experience and change its behaviour accordingly,  

 To build internal representation of its world that can be used for reasoning processes 

like navigation,  

 Finally, to choose the most appropriate suggestions adequate to human intelligence 

for finding a way to the consigned endpoint.  
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As a trial to move the robot through the given environment, fuzzy control concept has 

already proven to be worthwhile in both global and local path planning tasks for autonomous 

mobile objects. A set of linguistic fuzzy rules are developed to implement expert knowledge 

under various situations. Sensor signals are fed to the controller and the output provides 

motor control commands (e.g. turn left or right). Under the control of the proposed fuzzy 

logic-based model, the mobile robot can generate paths towards the target by integrating 

different preliminary robotic behaviours. The artificial life approach to evolutionary robotics 

is specifically designed to grow a neural structure with complex dynamical properties for 

path recognition of autonomous mobile robot. Neural networks are often used to enhance and 

optimize the outcome of fuzzy logic based system, e.g. by introducing a learning ability. This 

learning ability is achieved by presenting a training set of different examples to the network 

and using learning algorithm, which changes the weights (or the parameters of activation 

functions) in such a way that network will reproduce a correct output for the input values 

associated with nonlinearities.  

In order to overcome the limitations of fuzzy logic introduced to mobile robots, type 2 

fuzzy logic is introduced which enables the robot to gain a better control over the 

environment and reach the goal more efficiently and effectively in a shorter time using the 

shortest path. The path obtained is compared to the path obtained from other mechanisms to 

reveal the best of all. Even though human being is considered to be the intelligent of all 

animals, some animals have better organisation and path seeking skills than the humans. An 

example of this can be seen in case of the honey bees which move in search of food and 

gather their food in a single place thereby allowing others to take up their path and follow 

them to their food position. This algorithm when applied to a mobile robot enables it to move 

freely in the environment but search for a more complacent path to reach the destination. 
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1.3 THESIS STRUCTURE 

The practices as organized in this thesis are approximately divided into ten chapters.  

 

 Succeeding the introduction, Chapter 2 puts on the literature review of foregoing 

investigations on kinematics and analysis of mobile robot configuration, fuzzy logic 

controller, neural network backpropagation algorithm and a newly designed artificial 

bee colony algorithm.  

 Chapter 3 studies the kinematics architecture of mobile robot configuration for 

weighing performance of the model robot pertaining to different mechanical aspects.  

 Chapter 4 studies the concept of fuzzy logic to design a reactive behavioural 

controller whose performance has also been assessed.  

 Chapter 5 discusses the backpropagation algorithm and neural networks in order to 

build a controller that would allow better navigation of the robot using training 

patterns. 

 Chapter 6 aims at the study of type 2 fuzzy logic, an enhancement of fuzzy logic 

behaviour, that will allow the formation of a better and certain path by getting rid of 

excess uncertainties. 

 Chapter 7 gives a detailed study of the artificial bee colony algorithm, an evolutionary 

algorithm,  that enables the mobile robot to reach the destination using a more suitable 

path by studying the behaviour of honeybees. 

 Chapter 8 describes hardware aspect of a simple mobile robot configuration by 

accumulating different sub modules.  

 Chapter 9 discusses a comprehensive description of results and discussion has been 

carried out.  

 Chapter 10 gives the contributions and conclusions of this research and future 

directions for further investigation has also been conferred.  

The paper published related to the thesis has been listed at the last. 
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2. LITERATURE REVIEW 

Crafting a robust global navigation technique for economical mobile robot has been a big 

challenge for scientists for many years. There is a great number of potential applications for 

autonomous mobile robots in indoor environments, extended from cleaning, to surveillance, 

to search and rescue operations in burning buildings or hostage situations, to assisting the 

handicapped or elderly around the home. In order to realize these applications, all difficulties 

and challenges in this domain must be focused. The progress made in the past decades in the 

field of kinematics and dynamic modelling and design of artificial intelligence techniques 

used for navigation of mobile robots are briefly reviewed here.  

2.1 INTRODUCTION 

Autonomous mobile robots have the ability to move in its environment and performing a 

number of different tasks by adapting to the changes in environments and learning from 

experience in order to change behaviour accordingly and last but not the least to build an 

internal representation of its world that can be used for reasoning process like navigation. 

Amongst several issues related to autonomous operation, previous research works on two 

main computational issues are elaborated here: Modelling of Mobile Robot and Path planning 

and Navigation of the mobile robot. Modelling of mobile robots requires previous analysis of 

the kinematic and dynamic constraints whereas navigation can be considered as a process 

whose inputs are the specifications taken from the environment, description of the current and 

future position, description of the destination and the agent's observations of the environment. 

The produced output is the most appropriate movement orders to reach the destination 

position, avoiding obstacles and other exception situations that can arise.  

Much research has been done on many aspects related to mobile robots. A literature review 

cannot simply be a catalogue of all the articles published on a subject, the list would be much 

too long and could not be include each contribution. The alternative is to include in this 

chapter only those contributions that cover to kinematics stability of mobile robots which 

provides desired trajectory and artificial intelligence technique that helps to design an 

intelligent controller for robot. A large number of researchers have used kinematic models to 

develop motion control strategy for mobile robots. The ultimate goal of mobile robotics 
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research is to provide the robots with high intellectual ability, by which navigation in an 

unknown environment is achieved using on line sensory information. It summarizes the past 

work, mostly in computational geometry and robotics, and discusses possible directions for 

research. This chapter provides details survey report within important aspects of research 

work to seek out optimal path and track the target in the competing clutter environment on 

the basis of sensory data and their structural significance using fuzzy logic, backpropagation 

algorithm, type 2 fuzzy logic and artificial bee colony algorithm. 

Another challenge in literature review is that even the perception of what constitutes progress 

varies widely in the research community. The representations would be difficult to extend 

other scenarios where a robot may need to seek out optimal path and track the target in the 

competing clutter environment on the basis of their semantic significance. Despite these 

challenges, the next sections review in this article and highlights some of the more 

interesting, important and experimental milestones. This chapter provides details survey 

report within important aspects of what the researchers have worked in the area of 

navigational path analysis and planning for mobile robot using fuzzy logic, neural network, 

adaptive neuro-fuzzy and heuristic rule base neural network technique. 

2.2 KINEMATIC ANALYSIS OF WHEELED MOBILE ROBOT 

The kinematic model of a mobile robot is mainly the description of the admissible 

instantaneous motions in respect of the constraints. On the other hand, the dynamic model 

accounts for the reaction forces and describes the relationship between the above motions and 

the generalized forces acting on the robot. These models can be expressed in a canonical form 

which is convenient for design of planning and control techniques. This section provides a 

detailed survey report of kinematics of mobile robot. With reference to the unicycle 

kinematics, this part reviews several control strategies for trajectory tracking and posture 

stabilization in an environment free of obstacles. A kinematic methodology is the first step 

towards achieving these goals. 

Mobile robots are more efficient than legged or treaded robots on hard as well as smooth 

surfaces, and have potential enough to find widespread application in industry, because of the 

hard, smooth plant floors in existing industrial environments [1]. Several configurations for 

mobility can be found in the applications as mentioned by Jones et al. [2]. The most common 

form single-body robots are the differential drive and synchronic drive tricycle or car-like 
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drive, and omnidirectional steering robots [3]. Besides the relevance in applications, the 

problem of autonomous motion planning and control of mobile robot has attracted the interest 

of many researchers to view its theoretical challenges [4]. The motion control of wheeled 

mobile robots has been able to draw considerable attention over the past few years. The 

nonholonomic behaviour in robotic systems is particularly interesting; since it points out that 

the mechanism can be completely controlled by using a reduced number of actuators. 

Particularly, these systems are typical examples of nonholonomic mechanisms due to the 

perfect application of the rolling constraints on the wheel motion [5]. Several controllers have 

been proposed for the motion control of mobile robots with nonholonomic constraints, where 

the two main approaches to controlling mobile robots are posture stabilization and trajectory 

tracking. 

The procedure of modelling can be inspired by definition of a wheeled mobile robot 

according to Muri and Neuman [6] as this, “A robot capable of locomotion on a surface 

solely through the actuation of wheel assemblies mounted on the robot and in contact with 

the surface. A wheel assembly is a device that provides a relative motion between its mount 

and a surface on which it is intended to have a single point of contact.” However it is required 

that the vehicle kinematic design has the appropriate degrees of freedom (mobility) so that it 

can adapt to the variations in the surface and the wheels roll without slip. Mobility is 

enhanced by the use of omnidirectional wheels instead of conventional wheels [7]. The 

necessity of ideal rolling without sideways slipping for wheels enforces non-holonomic (non-

integrable) constraints on the motion of the wheels of mobile robot [8]. The relation between 

the rigid body motion of the robot and the steering and drive rates of wheels has been 

developed by Alexander and Maddocks [9] based on constraint as “rolling without sliding”. 

Slippage due to misalignment of the wheels is investigated here by minimization of a non-

smooth convex dissipation functional that is derived from Coulomb's Law of friction. This 

minimization principle is equivalent to the construction of quasi-static motions. 

Three related but different kinematical aspects have to be considered when designing a robot. 

They can be listed as mobility, control and positioning [10, 11]. The first one, mobility, deals 

with the possible motions that the robot can follow in order to reach its final destination in 

any orientation. The second aspect, control, relates to the choice of the kinematical variables: 

generalized velocities or coordinates. Finally, the third aspect, positioning, considers the 

localization system that is used to estimate the actual position and orientation of the robot by 
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reducing the robot’s region of uncertainty based on sensor measurements necessary to 

achieve an autonomous operation [12]. 

The motion along the configuration space is limited using the kinematic constraints. 

Kinematic limitations can be applied at any speed, while dynamic constraints are important to 

apply as an agent operates at higher speeds. Robot design has to tackle agent dynamics 

issues, as even a holonomic robot without any kinematic constraints will have to face some 

form of dynamics limitations, and in particular bounds on acceleration and velocity. 

Dynamics constraints limit the acceptable values for derivatives of an agent’s position over 

time 

Moon et al. [13] have proved that a wheeled mobile robot is not able to move along a straight 

line exactly, even if the kinematic problems are corrected perfectly, and this phenomenon is 

related to acceleration constraints on motor controllers. Kinematic model of a parallel 

wheeled mobile robot fails to meet Brockett‘s necessary condition for feedback stabilization 

thereby implying that no smooth or continuous time invariant. Stabilization and control of 

nonholonomic systems with dynamic equations have been considered in [14] whereas back 

stepping based methods are presented in several papers [15, 16, 17].  

Internal error occurs from unsuitable setting up of the parameters and the time constant. 

External error inescapably appears when a WMR is being driven and it occurs by virtue of 

the two driving wheel’s different friction and radius. In order to minimize such errors, Chung 

et al. [18] has proposed a feedback controller having two separated feedback loops; one of 

which is a position feedback, and the other an orientation feedback. 

Based on back stepping algorithm, a robust adaptive controller has been proposed in [19, 20] 

to design an auxiliary wheel velocity controller in order to make the tracking error as small as 

possible as compared to the uncertainties in the kinematics of the robot and fuzzy logic 

techniques employed to learn the behaviours of the unknown dynamics of the robot and the 

wheel actuators. The major advantage of this method is that previous knowledge of the robot 

kinematics and the dynamics of the robot and wheel actuators is unnecessary. The parameters 

characterizing the robot dynamics are to be updated online, thereby providing smaller errors 

and better performance in applications in which these parameters can vary, such as load 

transportation. The stability of the whole system is analyzed using Lyapunov theory, and the 

control errors are ultimately bounded [21]. 
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Deng et al. [22] designed a combined feedback control scheme based on Lyapunov function 

candidate [23] has been discussed for four obstacle cases in dynamic environments 

considering local minima problem. The controller includes virtual attractive force, repulsive 

force and detouring force, whereas the potential field function used for the design of the 

controller considers the Euclidean distance information and the magnitude information of the 

relative velocity between the robot and the target [24]. 

A dynamic model of a two-wheeled mobile robot has been derived in [25, 26] which shows 

that the translational motion and the rotational motion with 3 degrees of freedom of the body 

and here, the dynamic model is reduced to the kinematic model under certain assumptions. 

Arvin et al. [27] have presented mobile robots motion control technique based on pulse-width 

modulation (PWM). 

The wheels of mobile robot have been modelled as a torus by Chakraborty and Ghosal [28] 

and used as a passive joint thereby enforcing a lateral degree of freedom so as to get a slip 

free motion in an uneven terrain without using variable length axle (VLA) as it has several 

limitations in application. Zhang et al. [29] have developed a feedback control law [30, 31], 

allowing a 2-wheel differentially driven mobile robot to track a prescribed trajectory by using 

the integral backstepping method and Lyapunov function for ensuring a trajectory tracking 

controller with global asymptotic stability. 

Zohar et al. [32] recently proposes control schemes for trajectory tracking of mobile robot 

model which includes kinematic and dynamic effects on motion by using the notion of virtual 

vehicle [33] and the concept of flatness [34], and applying the backstepping [35] 

methodology.  

Gandhi and Ghorbel [36] have proposed the harmonic drive system for non-linear controller 

to compensate for kinematic error in the presence of flexibility in high-speed regulation and 

trajectory tracking application. Pathak et al. [37] have discussed the behaviour of space 

robots with torque and attitude controller. A single curvature trajectory, having a constant and 

large rotation radius, has been proposed by Han et al. [38] as an optimal trajectory, in order to 

minimize the tracking error of the differential drive mobile robot while capturing a moving 

object along with the pre-determined initial and final states. A receding horizon controller 

may be used for tracking control of wheeled mobile robots subject to nonholonomic 

constraint in the environments without obstacles. The control policy is derived from the 
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optimization of a quadratic cost function, which penalizes the tracking error and control 

variables in each sampling time [39, 40].  

2.3 NAVIGATION USING FUZZY LOGIC CONTROLLER FOR 

MOBILE ROBOT 

Fuzzy Logic technique plays an important role in the designing of an intelligent 

controller for mobile robot. This technique is used for navigation of mobile robots. Fuzzy set 

theory provides a mathematical framework for representing and treating uncertainty in the 

sense of vagueness, imprecision, lack of information and partial truth. Fuzzy control systems 

employ a mode of approximate reasoning that resembles the decision-making process of 

humans. A fuzzy system is usually designed by interviewing an expert and formulating the 

implicit knowledge of the underlying process into a set of linguistic variables and fuzzy rules. 

In particular for complex control tasks, obtaining the fuzzy knowledge base from an expert is 

often based on a tedious and unreliable trial and error approach [41]. Fuzzy set theory was 

introduced by Lofti Zadeh in the mid sixties. In 1965 Lotfi Zadeh proposed fuzzy set theory, 

and published a paper [42]. Fuzzy logic has been applied to diverse fields, from control 

theory to artificial intelligence. This section presents a variety of fuzzy logic techniques 

which address the challenges posed by autonomous robot navigation. 

Autonomous mobile robot navigation in uncertain and dynamic environments 

demands adaptation and perception capabilities. Reactive control strategies imply a strong 

dependency on sensed information about the robot’s environment. Thus, imprecision and 

uncertainties in perception from sensors have to be considered [43]. While the rules are based 

on qualitative knowledge, the membership functions defining the linguistic terms provide a 

smooth interface to the numerical process variables and the set-points [44]. Stability analysis 

of fuzzy systems is a very important research field in fuzzy systems practically from the 

pioneer work of Mamdani on fuzzy control applications [45]. A Mamdani controller is 

usually used as a feedback controller. Since the rule base represents a static mapping between 

the antecedent and the consequent variables, external dynamic filters must be used to obtain 

the desired dynamic behaviour of the controller [46]. The control protocol is stored in the 

form of if-then rules in a rule base which is a part of the knowledge base. While the rules are 

based on qualitative knowledge, the membership functions defining the linguistic terms 

provide a smooth interface to the numerical process variables and the set-points [47]. 
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Intelligent control plays an important role when employing mobile robots in unstructured, 

unknown, and dynamic environments. The task complexity of intelligent control is greatly 

reduced by dividing the overall task into subtasks. These subtasks are modelled as 

perception-action units, called behaviours. The reduced task complexity in a behaviour-based 

approach increases responsiveness to environmental dynamics [48]. Systems equipped with 

fuzzy logic controllers give rise to nonlinear dynamic systems. This theory provides an 

overall perspective on the behaviour modes of the system, which can be used as a guide for 

the search of concrete behaviours [49]. 

Fuzzy systems belong to the family of nonlinear systems and they can have, in 

general, a complex analytical description [50]. It is not easy and time consuming for human 

experts to examine all the input-output data from a mobile robot to find a number of proper 

rules for a fuzzy controller. To copy with this difficulty, an intelligent mobile robot with 

automatic fuzzy controller design approaches is necessary [51]. It should also be noticed that 

although the operating range of the input is restricted by the saturation, the range of the other 

system variables cannot be bounded. This is in fact the cause of the troubles with the 

nonlinear nature of the saturation [52]. In this context, fuzzy logic is often adopted to 

overcome the difficulties of modeling the unstructured, dynamically changing environment, 

which is difficult to express using mathematical equation [53]. A class of fuzzy control laws 

can be formulated using the Lyapunov’s direct method, which can guarantee the convergence 

of the steering errors [54]. 

The fuzzy controller can be optimised by using the schema co-evolutionary algorithm, which 

finds an optimal solution [55]. The main problem in fuzzy control involves the design of the 

fuzzy knowledge base. Various approaches to this problem have been proposed, including 

trial and error. For a mobile robot to intermesh navigation in various environments using 

fuzzy logic controller represents significant progress for the entire research community. An 

adaptive-resonance theory based fuzzy controller, including an adaptive-resonance theory 

based environment recogniser, a comparer, combined rule bases, and a fuzzy inferring 

mechanism, is introduced for the purpose of the adaptive navigation of the quadruped 

robot[56]. 

The adaptive fuzzy logic control based on physical properties of wheeled inverted 

pendulums makes use of a fuzzy logic engine and a systematic online adaptation mechanism 
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to approximate the unknown dynamics [57]. Fuzzy adaptive extended information filtering is 

to improve estimation accuracy and robustness for the localization system, while the system 

lacks sufficient information of complete models or the process and measurement noise varies 

with time [58]. The unmanned control of the steering wheel is, at present, one of the most 

important challenges facing researchers in autonomous vehicles within the field of intelligent 

transportation systems [59]. Once this control architecture has been implemented, installed, 

and tuned, the resulting steering maneuvering is very similar to human driving, and the 

trajectory errors from the reference route are reduced to a minimum. In the controller a rule 

base of positive rules can be specified by an expert for directing the vehicle to the target in 

the absence of obstacles, while a rule base of negative rules can be experimentally 

determined from expert operation of the vehicle in the presence of obstacles [60]. 

Fuzzy logic system promises an efficient way for obstacle avoidance. However, it is 

difficult to maintain the correctness, consistency, and completeness of a fuzzy rule base 

constructed and tuned by a human expert. Reinforcement learning method is capable of 

learning the fuzzy rules automatically [61]. Martinez et al. [62] have considered a problem 

which is consisted of achieving sensor based motion control of mobile robot among obstacles 

in structured and unstructured environments with collision-free motion. Sensor-based 

navigation method, which utilised fuzzy logic and reinforcement learning for navigation of 

mobile robot in uncertain environments, has been proposed by Boem et al. [63] they have 

discussed about the navigation of mobile robot using fuzzy logic. 

The concepts of car maneuvers, fuzzy logic control, and sensor-based behaviours are 

merged to implement the human-like driving skills by an autonomous car-like mobile robot. 

Four kinds of Fuzzy logic controller, fuzzy wall-following control, fuzzy corner control, 

fuzzy garage-parking control, and fuzzy parallel-parking control, are synthesized to 

accomplish the autonomous fuzzy behaviour control [64]. The architecture for the fuzzy 

controller is a hierarchical scheme which combines seven modules working in series and in 

parallel [65]. The scaling factors and the coefficients of the sliding surface for the control of 

the steering angle and forward–backward velocity of a car-like mobile robot are adopted by 

that for the control of two motors [66]. Wang [67] has used fuzzy systems to model higher 

levels of hierarchical systems and design controllers for the hierarchical systems. Seraji’s 

[68] paper presents a new strategy for behaviour- based navigation of field mobile robots on 



 

 

15

challenging terrain. Outdoor environments are particularly challenging for mobile robots as 

they offer dynamic, unstructured, and highly variable situations where the inconsistency of 

the terrain, the irregularity of the product, and the open nature of the working environment 

result in complex problems of identification, modeling, sensing, and control [69]. 

One important problem in autonomous robot navigation is the effective following of a 

unknown path traced in the environment in compliance with the kinematic limits of the 

vehicle, i.e., bounded linear and angular velocities and accelerations. In this case, the motion 

planning must be implemented in real time and must be robust with respect to the geometric 

characteristics of the unknown path, namely curvature and sharpness [70]. The stabilizing 

controller is designed as a state optimal controller and second application is the optimization 

method applied to the design of a fuzzy controller for vision-based mobile robot navigation 

[71]. 

The fuzzy error correction control system can be used to navigate a robot along an 

easily modifiable path in a well-structured environment. The fuzzy engine gives outputs 

commands for the robot wheels. These commands determine the necessary angle of rotation 

to correct the direction of travel in order for the robot to remain on the path [72]. Das et al. 

[73] have assumed a control structure that makes possible the integration of a kinematic 

controller and an adaptive fuzzy controller for trajectory tracking for nonholonomic mobile 

robots. The hybrid controller is able to choose a better position according to the 

circumstances encountered [74]. 

The information about the global goal and the long-range sensory data are used by the 

first layer of the planner to produce an intermediate goal, referred to as the way-point that 

gives a favourable direction in terms of seeking the goal within the detected area. The second 

layer of the planner takes this way-point as a sub goal and, using short-range sensory data, 

guides the robot to reach the sub goal while avoiding collisions [75]. Designing the controller 

on account of nonholonomic constraints gain more accurate position and velocity control, a 

self-organized fuzzy controller can be used to find solutions of optimal fuzzy input and 

output membership functions [76] and to determine a rule base process. 

The fuzzy multi sensor data fusion scheme provides a novel mechanism to efficiently 

integrate task scheduling, action planning and motion control in a unified framework. The 

theoretical development of a complete navigation problem of an autonomous mobile robot is 
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the situation for which the vehicle tries to reach the endpoint is treated using a fuzzy logic 

controller [77]. An efficient design methodology that allows starting with any kind of fuzzy 

controller and subsequently transforming it until a system suitable for easy digital signal 

processing implementation is obtained [78]. Navigation based on processing some analog 

features of Radio Frequency Identification signal is a promising alternative to different types 

of navigation methods in the state of the art. The main idea is to exploit the ability of a 

mobile robot to navigate a priori unknown environments without a vision system and without 

building an approximate map of the robot workspace, as is the case in most other navigation 

algorithms [79].  

In the soccer game strategy Radio Frequency data transmitter is used to communicate 

among robot [80]. The development of the controllers is carried out by means of a 

reconfigurable platform based on field-programmable gate arrays. This platform combines 

specific hardware to implement fuzzy inference modules with a general-purpose processor, 

thus allowing the realization of hybrid hardware/software solutions [81]. The merger method 

is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets 

corresponding to a given cluster with that pertaining to cluster prototype [82]. Target tracking 

requires team coordination to maintain a desired formation and to keep team-mates and target 

together. Generally, distributed autonomous systems using multiple robots are considered 

superior to others in terms of reliability, expandability, and flexibility. In contrast to a single 

robot system; they provide increased robustness by taking advantage of inherent parallelism 

and redundancy. Moreover, the versatility of a multi-robot system can provide the 

heterogeneity of structures and functions required to undertake different missions in unknown 

environmental conditions [83]. Research in autonomous multi-robot systems often focuses on 

mechanisms to enhance the efficiency of the group through some form of cooperation among 

the individual agents. One of the greatest challenges in robotics is to create machines that are 

able to interact with unpredictable environments in real time [84]. Intriguingly, a similar 

relationship between group size and efficiency has been documented in social robots. 

 

2.4 NAVIGATION USING BACKPROPAGATION ALGORITHM 
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The human brain is the structure of marvel for everyone as it is very complex, 

nonlinear and parallel computer. It works on the basis of neural network and has neurons as 

its basis [85]. There are billions and trillions of neurons and the connections are more than 

them. The neural network system turns more interesting because of the fact that it has been 

adopted from the living beings [86]. There are billions of neurons and trillions of connections 

between them. The interest in neural network increases by the wish of understanding 

principles leading to the comprehension of the basic human brain functions, and to building 

the machines that are able to perform complex tasks [87]. Neural network theory revolves 

around the idea that certain key properties of biological neurons can be extracted and applied 

to simulations, thus creating a simulated brain [88]. There is a significant interest in 

autonomous mobile robots which may be defined as vehicles that are capable of intelligent 

autonomous navigation. 

The key factor is that the robots must be able to understand the structure of the 

environment [89]. In order to reach their targets without collisions, the robots must be 

endowed with perception, data processing, recognition, learning, reasoning, interpreting, and 

decision-making and action capacities. Interest in neural networks emerged after the 

introduction of simplified neurons by McCulloch and Pitts  [90]. In 1949 Hebb [91] formed 

the basis of ‘Hebbian learning’, now regarded as an important part of neural networks theory 

[92]. Rosenblatt [93] constructed neuron models in hardware during 1957. These models 

ultimately resulted in the concept of the Perceptron. It has been an important development 

and the underlying concept is still in use today widely. Widrow and Hoff [94] presented 

simplified artificial neuron development. Most neural network researchers left the field when 

Minsky and Papert published their book Perceptrons in 1969 [95] in which they showed the 

deficiencies of perceptron models,  

Neural networks are parts of intelligent controllers and also parts of well-known 

structures [96]. They are adaptive and statistical structures that are based on an analogy with 

the brain structure they are referred to as adaptive because they can learn to estimate the 

parameters of some population using some number of examples at a time. They do not differ 

from standard statistical models [97] and hence can be used as statistical tools in a various 

number of fields like statistics, engineering, econometrics etc.  
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If human can understand animal behaviour control, and comparable technology is 

available, then it would be possible to build a robot that behaves the same way. Recent 

advances in both knowledge and technology have begun to make this possibility a realistic 

aim in invertebrate neuroscience [98, 99, 100]. Neural network circuits can produce 

coordinated patterns of high-dimensional rhythmic output signals while receiving only 

simple, low dimensional, input signals [98]. A growing number of studies have been done in 

which hypotheses for the behavioural function of neural circuits have been tested by 

implementing them as controllers for robots and evaluating the robot behaviour [101]. An 

artificial neural network is a mathematical model or computational model that tries to 

simulate the structure and/or functional aspects of biological neural networks [102]. It 

consists of an interconnected group of artificial neurons and processes information using a 

connectionist approach to computation [103].  

The neural networks can be used to model complex relationships between inputs and 

outputs or to find patterns in data [104]. However, the evolved neural controllers could be 

flimsy in inexperienced environments, especially in real worlds, because the evolutionary 

optimization processes would be executed in idealized simulators. This is well known as the 

gap problem between the simulated and real worlds. To overcome this, Kondo [105] focused 

on an evolving on-line learning ability instead of weight parameters in a simulated 

environment. 

Basically, the control of a robot arm and the control of a mobile robot are similar to 

any controller [106]. First a path is planned and the path is transformed from Cartesian 

domain to the joint or wheel domain using the inverse kinematics of the system and finally a 

dynamic controller maps the set points in this domain to actuator signals. However, in 

practice the problems with mobile robots occur more with path-planning and navigation than 

with the dynamics of the system. A new paradigm of cognitive science has emerged [107] 

whose hallmark is to focus on the situated and embodied nature of intelligence. Research in 

so-called behaviour-based artificial intelligence [108], embodied neurobiology, and embodied 

cognitive science [109] has challenged the traditional view according to which intelligence is 

an abstract, symbolic process independent of physical implementation.  

The artificial life approach to evolutionary robotics is used as a fundamental 

framework for the development of a modular neural control of autonomous mobile robots 
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[110]. The applied evolutionary technique is especially designed to grow different neural 

structures with complex dynamic properties which is due to a modular neuro dynamics 

approach to cognitive systems, stating that cognitive processes are the result of interacting 

dynamical neuro-modules [111]. Relevant brain centres, known as Mushroom Bodies and 

Central Complex have been recently identified in insects: though their functional details are 

not yet fully identified, it is known that they provide secondary pathways allowing the 

emergence of cognitive behaviours [112]. In recent years, mobile robots have been required 

to become more and more autonomous in such a way that they are able to sense and 

recognise the three dimensional space in which they live or work [113]. Werbos et al. [99] 

reviewed the empirical results which fit the theory, and suggested important new directions 

for research, within the scope of NSF's recent initiative on cognitive optimization and 

prediction. 

Basically, neural networks are built from simple units, called neurons or cells by 

comparing with the real thing. These units are connected by a set of weighted connections 

[114]. Learning is generally accomplished by modification of the connection weights. Each 

unit corresponds to a feature or a characteristic of a pattern that we want to analyse or that we 

want to use as a predicator. 

These networks usually organize their units into several layers. The first layer is 

called the input layer, the last one the output layer. The intermediate layers are called the 

hidden layers. The information to be analysed is fed to the neurons of the first layer and then 

propagated to the neurons of the second layer for further processing [115]. The result of this 

processing is then propagated to the next layer and then to the next layer until the last layer. 

Each unit receives some information from other units and processes this information, which 

will be converted into the output of the unit. 

The goal of the network is to learn and discover an association between input and 

output patterns and to analyse or find the structure of the input patterns. The learning process 

is achieved through the modification of the connection weights between units. In statistical 

terms, this is equivalent to interpreting the value of the connections between units as 

parameters (e.g., like the values of a and b in the regression equation by = a + bx) to be 

estimated [116]. The learning process specifies the “algorithm” used to estimate the 

parameters. 
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Rumelhart and McClelland [117] formulated the backpropagation algorithm and used 

it in layered feed forward neural networks. As the name itself suggests, this means that the 

artificial neurons are organized in layers, and send their signals “forward”, and then the errors 

are propagated backwards. The network receives inputs by neurons in the input layer, and the 

output of the network is given by the neurons on an output layer. There may be one or more 

intermediate hidden layers. 

The purpose of the learning rule is to train the network to perform some task. There 

are many types of neural network learning rules [181]. They fall into three broad categories: 

supervised learning, unsupervised learning and reinforcement learning. The mobile robot 

navigation deals with application of back propagation algorithm in both, supervised and 

reinforcement learning approaches [119]. A hybrid approach for the autonomous motion 

control of robots in cluttered environments with unknown obstacles is introduced by Maravall 

et al. [120].  

Decision making system is the most important part of the robot soccer system [121]. 

As the environment is dynamic and complex, one of the reinforcement learning methods is 

employed in learning the decision-making strategy. Nelson et al. [122] have described the 

evolutionary training of artificial neural network controllers for competitive team a game 

playing behaviours by teams of real mobile robots. A neural network based machine vision 

system, which is intended to act as a reconfigurable inspection tool and used in 

manufacturing environments [123, 124]. Discriminative training is accomplished in a 

supervised manner, using gradient-descent method. The approach is suitable for navigation 

and for map learning [125]. Many current machine learning paradigms has been used for this 

purpose, but, result in opaque models are difficult, if not impossible to analyse, which is an 

inhibition in safety-critical applications or application scenarios where humans and robots 

occupy the same workspace [126].  

The hybrid architecture using band pass filtering, cross-correlation and recurrent 

neural networks can be used to develop a robust, accurate and fast sound-source localisation 

model for a mobile robot [127]. The new approach in robotic learning systems was proposed 

by Burgsteiner et al. [128]. It provided a method to use a real-world device that operates in 

real time, controlled through a simulated recurrent spiking neural network for robotic 

experiments. Robot path-planning techniques can be divided into two categories. The first, 
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called local planning relies on information available from the current 'viewpoint' of the robot. 

This planning is important, since it is able to deal with fast changes in the environment. 

The second situation is called global path-planning, in which the system uses global 

knowledge from a topographic map previously stored in memory. Even though global 

planning permits optimal paths to be generated [129], it has its weakness. The third 

generation of artificial neural networks, spiking neural networks [130], have unique 

advantages and are good candidates for robot controllers. In the controller, the integrated-and 

firing model can be used and the Spiking neural network is trained by the Hebbian learning 

algorithm [131]. The transportation using wheels is one of the most popular transportation 

mechanisms for mobile robots because of its high energy efficiency, simple mechanisms and 

well-investigated control systems [132]. Wheel type mobile systems are the most popular 

transportation mechanisms because the energy efficiency is high while the mechanism is 

simple and the control system is well investigated [133]. On the other hand, the wheel type 

mobile robots have difficulties in rough terrain movement. Perception and behaviour are 

usually considered to be separate processes. Behavioural learning forms associations between 

perception and action, organized by reinforcement, without regard for the construction of 

perception [134]. The behaviour is organized as a dynamic hierarchy of independent schemas 

[135].  

The backpropagation algorithm uses supervised learning method [136]. This means 

that an algorithm is provided with examples of the inputs and outputs that the network is 

supposed to compute, and then the error (difference between actual and expected results) is 

calculated. The idea of the backpropagation algorithm is to reduce this error, until the ANN 

learns the training data [117]. The training begins with random weights, and the goal is to 

adjust them so that the error will be minimal. The activation function of the artificial neurons 

in ANNs implementing the backpropagation algorithm is a weighted sum [137]. If the output 

function would be the identity (output=activation), then the neuron would be called linear. 

But these have severe limitations. The sigmoidal function is very close to one for large 

positive numbers, 0.5 at zero, and very close to zero for large negative numbers. This allows 

a smooth transition between the low and high output of the neuron (close to zero or close to 

one). We can see that the output depends only in the activation, which in turn depends on the 

values of the inputs and their respective weights [138]. 
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Now, the goal of the training process is to obtain a desired output when certain inputs 

are given [139]. Since the error is the difference between the actual and the desired output, 

the error depends on the weights, and we need to adjust the weights in order to minimize the 

error. The backpropagation algorithm now calculates how the error depends on the output, 

inputs, and weights [140]. 

2.5 NAVIGATION USING TYPE 2 FUZZY LOGIC 

The concept of a type-2 fuzzy set was introduced by Zadeh [141] as an extension of 

the concept of type-1 fuzzy set. Such sets are fuzzy sets whose membership values are 

themselves type-1 fuzzy sets. These are very useful in circumstances where there is difficulty 

in determining an exact membership function for a fuzzy set; hence, they are useful for 

incorporating linguistic uncertainties [142]. A fuzzy relation of higher type (e.g., type-2) has 

been regarded as one way to increase the fuzziness of a relation, and, according to Hisdal, 

“increased fuzziness in a description means increased ability to handle inexact information in 

a logically correct manner [142]”. According to John, “Type-2 fuzzy sets allow for linguistic 

grades of membership, thus assisting in knowledge representation, and they also offer 

improvement on inferencing with type-1 sets [144]”. 

Type-2 sets can be used to convey the uncertainties in membership functions of type-

1 sets, due to the dependence of the membership functions on available linguistic and 

numerical information. Linguistic information (e.g., rules from experts), in general, does not 

give any information about the shapes of the membership functions. When membership 

functions are determined or tuned based on numerical data, the uncertainty in the numerical 

data, e.g., noise, translates into uncertainty in the membership functions. In all such cases, 

information about the linguistic=numerical uncertainty can be incorporated in the type-2 

framework. In [143], Liang and Mendel demonstrated (using real data) that a type-2 fuzzy 

set, a Gaussian with fixed mean and uncertain standard deviation (std), is more appropriate to 

model the frame sizes of I=P=B frames in MPEG VBR video tra<c than is a type-1 Gaussian 

membership function. When the secondary MFs are interval sets, we call them “interval type-

2 fuzzy sets”. The operations of interval type-2 fuzzy sets are studied in [145, 146]. 

Fuzzy sets have been around for nearly 40 years and have found many applications. 

However they suffer from certain problems [147]. These fuzzy sets are, in fact, type-1 fuzzy 

sets. Type-2 fuzzy sets are 'fuzzy fuzzy' sets and are more expressive [148]. Type-2 fuzzy sets 
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and systems generalize (type-1) fuzzy sets and systems so that more uncertainty can be 

handled. From the very beginning of fuzzy sets, criticism was made about the fact that the 

membership function of a type-1 fuzzy set has no uncertainty associated with it, something 

that seems to contradict the word fuzzy, since that word has the connotation of lots of 

uncertainty.  

A type-2 fuzzy set lets us incorporate uncertainty about the membership function into 

fuzzy set theory, and is a way to address the above criticism of type-1 fuzzy sets head-on. 

And, if there is no uncertainty, then a type-2 fuzzy set reduces to a type-1 fuzzy set, which is 

analogous to probability reducing to determinism when unpredictability vanishes. In order to 

symbolically distinguish between a type-1 fuzzy set and a type-2 fuzzy set, a tilde symbol is 

put over the symbol for the fuzzy set; so, A denotes a type-1 fuzzy set, whereas Ã denotes the 

comparable type-2 fuzzy set. 

The membership function of a general type-2 fuzzy set, Ã, is three-dimensional where 

the third dimension is the value of the membership function at each point on its two-

dimensional domain that is called its footprint of uncertainty (FOU).Unlike a type 1 fuzzy set, 

whose membership for each value is a number, the membership of a type 2 fuzzy set is an 

interval.  

To go from an interval type-2 fuzzy set to a number two steps are required. The first 

step, called type-reduction, is where an interval type-2 fuzzy set is reduced to an interval-

valued type-1 fuzzy set. There are as many type-reduction methods. An algorithm known as 

the KM Algorithm is used for type-reduction. Although this algorithm is iterative, it is very 

fast. The second step of Output Processing, which occurs after type-reduction, is 

called defuzzification. Because a type-reduced set of an interval type-2 fuzzy set is always a 

finite interval of numbers, the defuzzified value is just the average of the two end-points of 

this interval. 

2.6 NAVIGATION USING ARTIFICIAL BEE COLONY 

In past few decades, the computational researchers have been numerously interested 

to the natural sciences, and specifically biology, as source of modelling paradigms. Many 

research areas are massively influenced by the behaviour of various biological entities and 

phenomena [149]. It gave birth to most of population-based metaheuristic algorithms. They 
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modelled the animal social behaviours such as ant, fish, bird, bee etc. They can be regarded 

as belonging to the category of intelligent optimization tools used to solve a computational 

and complex problem in different areas. Honey bees are one of the one of the deeply studied 

social insects. In the early years many studies based on the different bee behaviours have 

been developed to solve complex combinatorial and numerical optimization problems [150].  

We can enumerate two sub-models in bee model. The first one, food source searching 

sub model, is based on the food source searching behaviour. Anew system called Bees system 

(BS) based on food source searching as foraging behaviour of bee colonies was developed. It 

was tested through many instances of the travelling salesman problem (TSP) [151].Another 

model was inspired by the nest site searching behaviour. The marriage behaviour represents 

this second model of the algorithms inspired by bee life. They rely on the same principle. It is 

the result of a synthesis study after a large bibliographic research on the various 

computational systems inspired by the different bee behaviours [152]. The first model 

represents the algorithms inspired by the foraging behaviour of bees. In its turn, it can be 

divided into two sub-models; the first one is based on the food source searching and the 

second represents studies which turn round the new nest site searching. The second model 

groups different algorithms which are inspired by marriage behaviour. There are other 

algorithms inspired by the evolution of the queen that can be considered as genetic algorithms 

improvement [153]. 

2.7 CONCLUSION 

Firstly the kinematics and dynamic analysis of differential drive mobile robot has 

been addressed here, and the problem of model based constraints and trajectory tracking have 

been found in a number of research work. This chapter also provides a detailed review report 

which has been used in last decades by many researchers in the area of new intelligent control 

techniques like Fuzzy Logic and Fuzzy-Neural Network. Sensors used in different robotic 

application are also reviewed here. From the survey it has been perceived that the mobile 

robot navigation can be controlled successfully in a complex, unknown and dynamic 

environments using the above strategies. 
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3. KINEMATIC ANALYSIS OF MOBILE ROBOT 

3.1 INTRODUCTION  

Kinematics is the study of motion of points, objects or system of objects without 

taking into consideration the forces due to which the movement is caused. It is also referred 

to as geometry of motion. In other words, it is the study of behaviour of mechanical systems. 

Basically trajectories of points, lines and other geometric properties like velocity and 

acceleration are studied for the purpose of kinematic analysis. Kinematic analysis is used to 

measure the kinematics quantities used in describing the motion of an object.  In case of 

mobile robots, kinematic analysis helps us understand the mechanical behaviour of robots in 

order to create control software for mobile robot hardware.  

All mechanical systems require such an analysis to help them work better. Robotic 

manipulators have also been subjected to such an analysis for more than thirty years. Such 

manipulators were more complex than the ordinary robots and hence more deep analysis was 

required for their understanding.  The questions about the kinematics of mobile robotics are 

the same as that posed for mobile manipulators.  

The position estimation of the robot also has much dissimilarity in comparison to the 

position estimation of the robotic manipulator. In case of a manipulator, one end is fixed to 

the environment. Hence the position of the manipulator is taken as the position of the end 

effector. However, in case of a wheeled mobile robot the whole robot is movable and its 

position is not a factor to be measured instantaneously. Its position is to be estimated by 

integrating its motion over time and adding inaccuracies of motion estimation due to slippage 

constraint.  

 3.2 KINEMATIC CONSTRAINTS 

The derivation of a model for the whole robot’s motion is a bottom to top approach. The 

fact that each individual wheel contributes to the motion control of the robot as well as 

imposes constraints on the robot is predictable. However the wheels work together on the 

robot chassis geometry so that their constraints are also combined together to form the overall 

motion constraints of the robot chassis. However the constraints and forces of each wheel is 
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to be expressed with respect to a lucid and reliable reference frame. The constraints imposed 

by the wheels are  

 There should be a rolling motion and  

 There should be no lateral slip 

3.2.1 WHEEL DESIGN 

 The design of a wheeled mobile robot is concerned about the kinds of wheels and 

their configuration and actuation systems. The mobility characteristic of the robot is defined 

using these parameters.  

The wheels can be divided into five major classes depending on their kinematics. Hence the 

wheels used in a robot’s architecture affects the overall kinematics of the robot.  

 Fixed standard wheel 

 Steerable standard wheel 

 Castor wheel 

 Swedish wheel 

 Spherical wheel 

The wheel needs to be steered along a vertical axis if it needs to change its direction. So, the 

rotational axis of the wheel plays a vital role in the motion of the wheel. 

The fixed standard wheel is fixed to robot chassis and moves only back and fro. 

 There is no vertical axis of rotation or steering for the fixed standard wheel.  

 The angle between the chassis and the wheel axis is fixed. 

  It is limited to move the robot back and forth along the wheel plane and rotation 

around its contact point with the ground plane. Such wheel is used in carts where the 

direction of the vehicle is changed by the movement of the bullocks. 

 The steerable standard wheel is fixed to the robot chassis but has a vertical axis of 

rotation. It is different from the fixed standard wheel in that it has an extra degree of freedom.  
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 There is a vertical axis of rotation. 

 The angle between the chassis and the wheel axis is not fixed and changes with every 

steering. 

Such wheels are used in all transportation vehicles as their direction is changed by the change 

in direction of the wheels. 

The castor wheel is offset from the chassis. Hence its wheel of rotation does not pass through 

the ground contact point.  

 There are two axes, one through the robot chassis and the other through the wheel. 

 Both the axes have a gap between them. 

Such wheels are used in shopping carts, office chairs and industrial material handling 

equipment. The Swedish wheel or the omni wheel has small discs around its circumference 

that are perpendicular to the rolling direction. Hence the wheel can roll with full speed as 

well as slide laterally easily. 

 There is no vertical axis of rotation and the movement is done by adding an extra 

degree of freedom to the fixed standard wheel. 

 The rollers attached to the wheel circumference have anti parallel axes to the main 

axis of the wheel. 

Such wheels are used in holonomic drive systems and in robots which need to move in every 

direction. The spherical wheel has no direct axis of rotation and hence has no rolling or 

sliding constraints. It is omnidirectional. 

 There is no principal axis of rotation. 

 It can rotate in any direction. 

Such wheels are used in computer mouse where powered rollers are placed against the top 

side of the sphere in order to provide rotational force. 

3.3 WHEELED MOBILE ROBOTS 

 Wheels are the most suitable locomotion devices in case of robots and other man-

made vehicles as they can achieve decent efficiency level and do not need a complicated 
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mechanical implementation. Generally, wheeled mobile robots do not have an issue of 

instability in motion since a minimum of three wheels suffices the condition of stability. 

However, a robot with two wheels can also move steadily whereas in case of more than three 

wheels, a suspension system is required to maintain the robot’s contact with the ground 

surface. Hence the main issue of concern is the traction provided by the wheel in order to 

cover every type of terrain that it passes through with the required velocity. 

Depending on the orientation and types of wheels used, Wheeled Mobile Robots can be 

classified into  

 Bicycle or tricycle – one independent orientable wheel and other independent fixed 

wheel 

 Differential drive robot – one independent fixed wheel and other omnidirectional 

wheels 

 Synchro drive robot – one independent orientable wheel and other omnidirectional 

wheels 

 Omnidirectional robot – only Castor and Swedish wheels 

 Two wheeled differential drive - Two independent orientable wheels 

Depending on the number of wheels in the Wheeled Mobile Robot, Wheeled Mobile Robots 

can be divided into 

 Two wheeled mobile robot 

 Three wheeled mobile robot 

 Four wheeled mobile robot 

 Six wheeled mobile robot 

3.4 POSITION OF THE ROBOT 

The position of the robot has to be expressed in terms of a relation between the robot’s global 

reference frame and the robot’s local reference frame. Here XI and YI define an arbitrary 
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inertial basis on the plane as the global reference frame from the origin O {XI, YI}.  In order 

to specify the robot position we choose a point P on the robot chassis as the position 

reference point. {XR,YR} defines two axes relative to P on the chassis of the robot and is 

hence the robot’s local reference frame. The position of the robot can be described using 

these coordinates x and y and the angular difference between global and local reference 

frames, given by θ. The position of the robot can be described using these factors described in 

the form of a matrix. 

T

I
x y ]ξ = [ θ

 

 

 

 

 

 

 

Fig. 3.1. Position of the robot in local reference frame 

The matrix called the orthogonal matrix is used to map the robot’s global reference frame in 

its local reference frame. 

  R(θ) = 
cos sin 0
sin cos 0
0 0 1

θ θ⎡ ⎤
⎢ ⎥− θ θ⎢ ⎥
⎢ ⎥⎣ ⎦  

 

The operation of mapping global reference frame in terms of local reference frame is done 

using the orthogonal rotation matrix and is denoted by  

( ) IR θ ξ  

 

(3.1)

(3.3)

(3.2)
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3.5 FORWARD KINEMATIC ANALYSIS 

A motion of a robot is a hierarchical process. In the given differential robot, two 

wheels each having diameter ‘r’ are present. A point P is located in the centre of two drive 

wheels, each at a distance l from P. If r, l, θ  and speed of both the wheels, 1ϕ&  and 

2ϕ& respectively, are provided then a forward kinematic analysis of the robot will be able to 

predict the overall speed of the robot in the global reference frame. 

[ ] ( )1 2 y , , ,I x f l rθ θ ϕ ϕξ = = ,& &  

The contribution of each of the drive wheels in the local reference frame is first computed. 

The contribution of the spinning speed of each wheel to the translational speed at P in the 

direction of XR is then calculated.  

The approach leads us to first compute the contribution of each of the two wheels in 

the local reference ξR . Considering the contribution of each wheel‘s spinning speed to the 

translation speed at P in the direction of +XR, if one wheel spins while the other wheel 

contributes nothing and is stationary then knowing that P is halfway between the two wheels, 

it will move instantaneously with half its speed. In a differential drive robot, these two 

contributions can be simply added to calculate the xR component of ξR . As neither of the 

wheels contributes to sideways motion in the robot’s reference frame, so yR is always zero  

Again, the contributions of each wheel are computed independently and just added for 

computing rotational component. Considering the right wheel (say wheel 1), a forward spin 

of this wheel results in counter clockwise rotation at point P.  On the other hand, if wheel 1 

spins alone, the robot pivots around wheel 2.  

The rotation velocity ω1 at P can be computed as the wheel is instantaneously moving along 

the arc of a circle of radius 2l:  

1
1 2

r
l

ϕ
ω =

&

 

The same calculation applies to the left wheel, with the exception that forward spin results in 

clockwise rotation at point P:  

(3.4)

(3.5)
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2
2 2

r
l
ϕ

ω
−

=
&

 

Combining these individual formulas yields a Forward Kinematic model for the differential-

drive mobile robot in reference frame: 

1 2

1 2

2 2
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2 2
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r r
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ϕ ϕ

ϕ ϕ

⎡ ⎤+⎢ ⎥
⎢ ⎥
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⎣ ⎦
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Combining these individual formulas, a forward kinematic model for the differential-drive 

example robot can be framed: 

1

1 2

1 2

( )
2 2

0

2 2

I R

r r

r r
l l

ξ θ

ϕ ϕ

ϕ ϕ

−=

⎡ ⎤+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−

+⎢ ⎥
⎣ ⎦

&

& &

& &

 

This approach to kinematic modelling provides information about the motion of a robot 

provided its component wheel speeds are given in straightforward cases. However, we wish 

to determine the space of possible motions for each robot chassis design. To do this, we must 

go further, describing formally the constraints on robot motion imposed by each wheel. 

 

3.6 ANALYSIS OF WHEEL KINEMATICS 

A differential drive robot has a maximum of three wheels to ensure stability of the 

mobile robot. Out of these three wheels, two separately controlled drive wheels are located at 

either side of the robot whereas one wheel is placed at the front or rear end of the robot in the 

center in order to stabilize the motion of the robot.  

Both the drive wheels have a common horizontal axis which is fixed during the 

operation of the robot. The angular velocities of these wheels assure the mobility of the 

mobile robot. The third wheel is the Swedish wheel that is freely aligned and moves 

(3.6)

(3.7)

(3.8)
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automatically on the route due to the forces developed by the two drive wheels. It assures the 

robot’s equilibrium but does not contribute to the robot’s movement.  

The rotation of the vehicle about the robot’s center of the axle is the result of the 

speed difference between two separately driven coaxial wheels. The coaxial wheels move in 

synchronous with one another to produce forward or reverse motion. This kind of robot is 

able to rotate in its position provided the angular velocities of the two coaxial wheels are 

equal and opposite. Here we assume that vertical motion is absent. As it is the mobile robot 

operates at relatively low speeds.  

The analysis is simplified by further important assumptions. First assumption taken is 

that the wheel always remains in vertical position during the robot motion and there is no 

sliding at the only point of contact between the wheel and the ground. In other words the 

wheel is in rotation about the vertical axis through the contact point and the motion is under 

only pure rolling condition.  

Using these assumptions, two constraints can be marked for each wheel type. The first 

constraint is to consider the concept of rolling contact that ensures the rolling of the wheel 

during motion in appropriate direction. The second constraint considers that there is no lateral 

slippage and no sliding orthogonal to the wheel plane.  

 

 

 

 

 

 

 

Fig. 3.2. Position of the robot in local reference frame 

A fixed standard wheel and its position relative to the robot‘s local reference frame is seen in 

figure 3.3. The position of the robot is expressed in terms of polar coordinates by distance l 

p YR

XR 

XI

YI 
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and angle α while β denotes the angle of the wheel plane relative to the robot chassis. The 

angle β is fixed as the fixed standard wheel is non-steerable. If we consider a wheel of radius 

r, its rotational position around its horizontal axle is a function of time t: φ (t).  

In order to get pure rolling at the point of contact using adequate amount of wheel spin the 

wheel imposes that all movement along the direction of wheel plane is given by: 

( ) ( ) ( )sin cos cos Il R rθα + β − α + β − β ξ − ϕ = 0⎡ ⎤⎣ ⎦
& &  

The sliding constraint for this wheel considers the wheel‘s motion normal to the wheel plane 

must be zero: 

( ) ( ) ( )cos  sin  sin 0Il R θα + β α + β β ξ =⎡ ⎤⎣ ⎦
&

 

Now we have to compute the kinematic constraints of the robot chassis associated with the 

wheels. The principal idea is that each wheel imposes zero or more constraints on robot 

motion, and so the process is simply one of appropriately combining all of the kinematic 

constraints arising from all of the wheels based on the placement of those wheels on the robot 

chassis 

 
Fig 3.3. Fixed standard wheel and its parameters 

As we know the fixed standard wheels have an effect on robot chassis kinematics and hence 

require to be considered while computing the robot‘s kinematic constraints. Supposing the 

robot has a total of Nf fixed standard wheels, β refers to the orientation of the Nf fixed 

(3.9)

(3.10)



 

 

34

standard wheels. As far as the wheel spin is concerned, the fixed wheels rotate around the 

horizontal axle and their rotational positions vary as a function of time, denoted as fϕ . The 

Swedish wheel on the rear end is unpowered and is free to move in any direction, so we 

ignore this third point of contact altogether as it does not impose any kinematic constraint.  

Now the rolling constraints of all wheels can be combined into a unique expression and 

represented as: 

1 2( ) 0f I fJ R Jθ ξ ϕ− =& &  

1 1
1 2( )I f fR J Jξ θ ϕ− −⇒ =& &  

Here 1 fJ denotes a matrix of (Nf x 3) for all fixed standard wheels to their motions along their 

individual wheel planes, and J2f is a constant diagonal matrix of (Nf X Nf) of all standard wheels 

radii.  

In similar way we can also express the sliding constraints by combining all wheels into a single 

expression given by 

1 ( ) 0f IC R θ ξ =&  

Here C1f is of the order (Nf  x 3).The above equation serves as a constraint for all standard 

wheels so that their components of motion orthogonal to their wheel planes must be zero. 

This sliding constraint over all fixed standard wheels has the most significant impact on 

defining the overall maneuverability of the robot chassis. 

Combining (3.11) & (3.13) in a matrix form, 

1 2

1

( )
0

f f
I

f

J J
R

C
θ ξ ϕ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
& &  

In order apply the fixed standard wheel’s rolling constraint formula, we have to first identify 

each wheel’s α and ß values. Suppose that the robot’s local reference frame is aligned in such 

a manner that the robot moves forward in the direction of +XR.  

In the present movement direction, for the right wheel α = -π/2 and β = π and for the left 

wheel α = π /2 and β=0. Note the value of β for the right wheel is necessary to ensure that 

positive spin causes motion in the +XR direction. Because the two fixed standard wheels are 

(3.14)

(3.11)

(3.12)

(3.13)
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parallel, equation (3.10) results in only one independent equation. So, for the given values 

equation (3.16) can be written as 

( )

1 1

2

1 0

1 0 ( )
0

0 1 0

f

I

l
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l R
ϕ
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ϕ

−
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⎣ ⎦
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Suppose that the robot is positioned such that  = π/3, r =1 and l=1. If the robot engages its 

wheels unevenly, with speeds 1ϕ& = 4 cm/s and 2ϕ&  = 2 cm/s, we can compute its velocity in the 

global reference frame: 
1

1

1 0 4

0 1 2
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3 3 1 0

sin cos 0 1 0
3 3
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⎢ ⎥⎣ ⎦
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3.7 MOBILE ROBOT MANEUVERABILITY 

The overall manoeuvrability of a robot is a combination of the available mobility based on 

the kinematic sliding constraints of the standard wheels, in addition to the additional freedom 

contributed by steering and spinning of the steerable standard wheels.  

3.7.1 DEGREE OF MOBILITY  

The kinematic mobility of a robot chassis is its ability to move freely in the environment. The 

basic constraint limiting the mobility of the robot is the rule that every wheel must satisfy its 

sliding constraint. Therefore, we can formally derive robot mobility by starting from equation 

(3.13) which imposes the constraint that every fixed standard wheel must avoid any lateral 

slip.  

(3.15)

(3.16)

(3.17)

(3.18)
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Robot chassis kinematics is hence a function of the set of independent constraints arising 

from all standard wheels. The mathematical interpretation of independence is related to the 

rank of a matrix. Therefore rank of [C1f] is the number of independent constraints. The greater 

the number of independent constraints, the greater is the rank of [C1f], and hence more 

constrained is the mobility of the robot. We can define a robot’s degree of mobility = mδ  where 

mδ =3-rank[C1f ] 

The dimensionality of the null space (dim N) of [C1f] matrix is a measure of the number of 

degrees of freedom of the robot chassis that can be immediately manipulated through changes in 

wheel velocity.  

In the case of the differential drive robot in figure 3.1, the two wheels are aligned along the 

same horizontal axis. In fact, the second wheel imposes no additional kinematic constraints 

on robot motion since its zero motion line is identical to that of the first wheel. Differential-

drive chassis has only one independent kinematic constraint. Therefore, rank [C1f] = 1 and 

mδ =2. This fits with intuition: a differential drive robot can control both the rate of its change 

in orientation and its forward/reverse speed, simply by manipulating wheel velocities.  

3.7.2 DEGREE OF STEERABILITY  

The degree of mobility defined above quantifies the degrees of controllable freedom based on 

changes to wheel velocity. Steering can also have an eventual impact on a robot chassis pose, 

although the impact is indirect because after changing the angle of a steerable standard wheel, 

the robot must move for the change in steering angle to have impact on pose.  

As with mobility, we care about the number of independently controllable steering 

parameters when defining the degree of steerability sδ , but it deals only with steerable 

wheels. As we have taken the differential drive along with only the fixed standard wheels, so 

here sδ = 0, i.e. the robot has no steerable standard wheels. 

 

3.7.3 MANEUVERABILITY MEASUREMENT 

(3.19)
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The overall Degrees of Freedom (DOF) that a robot can manipulate is called the degree of 

maneuverability (δM). Thus the maneuverability comprises with the degrees of freedom that 

the robot changes its position directly through wheel velocity and the degrees of freedom that 

it indirectly manipulates by changing the steering configuration and moving. 

 

 

 

 

 

 

Fig 3.4. Differential mobile robot with two fixed wheels and one Swedish wheel 

Figure 3.4 represents three wheeled differential mobile robot having two fixed standard 

wheels and one swedish wheel. For this type of robot, rank [C1f] is one and it has no steerable 

standard wheels. 

δM = mδ + sδ  

This results in the degree of mobility mδ =2 and the degree of steerability sδ =0, 

The degree of maneuverability δM = mδ + sδ =2 

3.8 HOLONOMICITY OF MOBILE ROBOT 

In the robotics community, when describing the path space of a mobile robot, often the 

concept of holonomy is used. The term holonomy has broad applicability to several 

mathematical areas, including differential equations, functions and constraint expressions. In 

mobile robotics, the term refers specifically to the kinematic constraints of the robot chassis. 

3.8.1 DIFFERENCE BETWEEN HOLONOMIC & NONHOLONOMIC 

p YR
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A nonholonomic kinematic constraint requires a differential relationship, for example the 

derivative of a position variable. Moreover, it cannot be integrated to provide a constraint in 

terms of the position variables only. A holonomic kinematic constraint can be expressed as an 

explicit function of position variables only. For example, in the case of a mobile robot with a 

single fixed standard wheel, a holonomic kinematic constraint would be expressible using α, 

β, l, r, �, x, y,  only. Such a constraint may not use derivatives of these values, such as � or 

ξ. 

 A nonholonomic mobile robot configuration is described by more than three 

coordinates. Three values are needed to describe the location and orientation of the 

robot, while others are needed to describe the internal geometry. However, a 

holonomic mobile robot can be described by three coordinates. The internal geometry 

does not appear in the kinematic equations of the abstract mobile robot, so it can be 

ignored. The robot can instantly develop a wrench or accelerate in an arbitrary 

combination of directions X, Y and  .  

 Nonholonomic robots are most prevalent because of their simple design and ease of 

control. By their nature, nonholonomic mobile robots have fewer degrees of freedom 

than holonomic mobile robots. These few actuated degrees of freedom in 

nonholonomic mobile robots are often independently controllable or mechanically 

decoupled, further simplifying the low-level control of the robot. Since they have 

fewer degrees of freedom, there are certain motions they cannot perform. This creates 

difficult problems for motion planning and implementation of reactive behaviors.  

 Holonomicity offers full mobility with the same number of degrees of freedom as the 

environment. This makes path planning easier because there aren‘t constraints that 

need to be integrated. Implementing reactive behaviors is easy because there are no 

constraints which limit the directions in which the robot can accelerate.  

 In case of nonholonomic mobile robot, the wheels rotate in the forward direction and 

then backward to its previous angular position, the robot will not necessarily arrive in 

the same location due to slippage or any other conditions.  

 In cases of holonomic mobile robots, the wheels rotate in the forward direction and 

then backward to its previous angular position, the robot will arrive in the same 
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location. So, holonomic robot can perform both Forward Kinematics (The angular 

rate difference between both wheels determines position & orientation of robot) and 

Inverse Kinematics (The position and orientation of a robot determines the angular 

rate difference between both wheels).  

Considering equation (3.12), this constraint must use robot motion rather than pose because 

the point is to constrain robot motion perpendicular to the wheel plane to be zero. The 

constraint is non-integrable, depending explicitly on robot motion. Therefore, the sliding 

constraint is a nonholonomic constraint and the robot is a nonholonomic one. 

3.9 KINEMATIC MODEL OF MOBILE ROBOT 

The model of mobile robot (in Figure 3.5) consists of a vehicle chassis with two driving 

wheels mounted on the same axis and a front point sliding support. Both wheels have the 

same diameter denoted by 2r and separated by distance 2R. The two driving wheels are 

independently driven to achieve the motion and orientation. The kinematics of the differential 

drive mobile robot is based on the assumptions are as follows:  

(1) Mobile robot moves on a plane surface.  

(2) The wheel of a mobile robot rolls on the floor without translational slip.  

(3) The wheel of a mobile robot makes rotational slip at the contact point between each wheel 

and the floor.  

(4) The robot motion is slow such that the longitudinal traction & lateral force exerted on the 

robot‘s tires do not exceed the maximum static friction between tires and floor.  

In Figure 3.5, Let xc, yc be the Cartesian coordinates of the point P in the middle of the rear 

axle respectively xg, yg the coordinates of the center of mass of the platform, the point G, and 

let  be the angle between the heading direction and the OXI-axis specifying the orientation 

of the local platform with respect to the inertial frame. The distance between points G and C 

is ‘d’. The generalized coordinates qg=[ xg yg θ]T or qc =[ xc yc θ]T completely specifies the 

position of the robot in the XIOYI inertial Cartesian frame with a linear speed [ ]( ) T
c c cv x y& &  

and angular velocity ( )ω θ& . 
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Fig. 3.5. Kinematic analysis of mobile robot  

There three fundamental operations during kinematic motion [5]: 

 If the angular velocities are identical both as values and relative senses R Lω ω= , the 

robot makes a linear motion. The direction on the linear motion, forward or 

backwards, depends of the opposite group of sense of the driven wheels angular 

velocities.  

 If the angular velocities are identical as values but opposite as senses R Lω ω= − , the 

robot makes a -spin motion. The spin motion is a rotation of the mobile robot body 

around its vertical axis passing through the geometrical symmetry point (or centre of 

gravity). There is a particularity of this mechanical configuration, because only the 

two-wheeled differential drive mobile robot can do this type of motion, very useful to 

escape outside from difficult obstacles 

 If the angular velocities are different as values and with the same senses, the robot 

makes a curve motion. Of course, the characteristics of the curve motion, i.e. the 

curvature coefficient k of the curve-segment trajectory, depend of the differences 

between the values of the two drive wheels. As the difference is smaller, as the curve 

motion tends to a linear motion  
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The kinematics of the differential drive mobile robot is based on the assumption of pure rolling 

and there is no slip between the wheel and surface 

2
R L

c
v vv +

=  

2
R Lv v

R
ω −

=  

Where ,R LR Lv vr rω ω= =  

So, in matrix form: 

2 2

2 2

Rc

L

r r
v

r r
R R

ω
ωω

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎡ ⎤

= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

 

Suffix R, L and t stand for right, left wheel and tangential (with respect to its centre of gravity 

point of mobile robot) respectively. 

From Figure 3.5, we can derive, 

cosg cx x d θ= +  

sing cy y d θ= +  

 

The linear velocity vc can be decomposed at point C in two components, as 

cosc cx v θ=&  

sinc cy v θ=&  

So, the velocity components of vg at point G, 

(3.21)

(3.24)

(3.23)

(3.22)

(3.26)

(3.27)

(3.25)
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cos sing cx v dωθ θ= −&  

cossing cy v dωθ θ= +&  

By eliminating vc from the equations, we can get a nonholonomic constraint: 

cossin 0g gx y dθ θ θ− + =&& &  

⇒ [ ]sin cos 0
g

g

x
d yθ θ

θ

⎡ ⎤
⎢ ⎥− =⎢ ⎥
⎢ ⎥⎣ ⎦

&

&
&

 

This relation states that the robot can only move in the direction normal to the axis of the 

driving wheels as long as mobile robot satisfies the conditions of pure rolling and non-

slipping. Therefore, the component of the velocity of the contact point with the ground, 

orthogonal to the plane of the wheel is zero.  

When the center of mass of the platform, the point G, coincides with its center of rotation, the 

point C, then d=0, so nonholonomic constraint will be: 

cossin 0 0g gx yθ θ− + =& &  

Combining linear and angular velocities at point G (from equation 3.26 and 3.27) can be 

written in matrix form, 

cos sin
= sin   cos

0 1

g
c

g

x d
v

q y d
θ θ
θ θ

ω
θ

−⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

&

& &

&
 

According to equations (3.21) and (3.31), the kinematic model of differential drive two 

wheeled mobile robot can be explicitly written as: 

cos sin cos sin
2 2 2 2

= sin cos   sin cos
2 2 2 2
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(3.31)

(3.29)

(3.33)

(3.32)

(3.34)

(3.28)

(3.30)
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3.10 CONCLUSION 

When developing a robot, the designer analyzes the terrain in which the robot will be 

travelling and what the function of the robot on reaching the goal. With the help of developed 

methodology, the robot can achieve path following considering both kinematic model of the 

mobile robot. According to this analysis the robot’s locomotion mechanism can be chosen.  
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4. FUZZY LOGIC CONTROLLER FOR MOBILE ROBOT 

An autonomous mobile robot is a machine that operates in an unknown and 

unpredictable environment. Uncertainty and ambiguity associated with reactive navigation 

for autonomous mobile agent in unknown or partially known chaotic surroundings, 

especially, unpredictably changing environment can be unravelled by making coordination 

and fusion of the elementary behaviours of mobile agent. A key issue in the research of an 

autonomous mobile robot is the design and development of a control technique that enables 

the robot to navigate in a real world environment, avoiding structured and unstructured 

obstacles especially in crowded and unpredictably changing environment. The fuzzy 

navigation technique, which is accomplished to generate satisfactory direction and velocity 

manoeuvers of the autonomous robot, is instigated here for the robot navigation to reach its 

goal safely moving on unknown static terrains. This chapter presents the development in the 

area of intelligent controller for mobile robot in various (known and unknown) environments 

where action coordination of the behaviours will be addressed using fuzzy logic in the present 

research. The inputs to the proposed fuzzy control scheme consist of a target angle between a 

robot and a specified target and the distances between the robot and the obstacles to the left, 

front, and right to its locations, being acquired by an array of sensors. In this chapter an 

intelligent controller has been proposed for mobile robot navigation algorithm employing 

fuzzy theory in a complex environment. 

4.1 INTRODUCTION 

Human beings do not need precise, numerical information input to make a decision, but they 

are able to perform highly adaptive control. Humans have the remarkable capability of 

performing a wide variety of physical and mental tasks without any explicit measurements or 

computations. Examples of everyday tasks being parking a car, driving in city traffic, playing 

golf or summarizing a story. In performing such familiar tasks, humans use perceptions of 

time, distance, speed, shape, and other attributes of physical and mental objects [149]. Fuzzy 

logic is a problem-solving control system methodology that lends itself for implementation in 

systems ranging from simple, small, embedded micro-controllers to large, networked, 

workstation-based data acquisition and control systems. The theory of fuzzy logic systems is 

inspired by the remarkable human capability to operate on and reason with perception-based 

information. The rule-based fuzzy logic provides a scientific formalism for reasoning and 
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decision making with uncertain and imprecise information. It can be implemented in 

hardware, software, or a combination of both. Fuzzy logic approach to control problems 

mimics how a person would make decisions. The main advantages of a fuzzy navigation 

strategy lie in the ability to extract heuristic rules from human experience, and to obviate the 

need for an analytical model of the process [54, 68]. 

Fuzzy logic technique is having ability to take decision like human being, avoidance of 

structured and unstructured obstacle in complex environment. The FLC (fuzzy logic 

controller) is a problem-solving control system that attends to the implementation in systems 

ranging from simple, small, embedded micro-controllers to large, networked, multi-channel 

PC or workstation-based data acquisition and control systems [85].The rule-based fuzzy logic 

provides a scientific formalism for reasoning and decision making with uncertain and 

imprecise information. It can be implemented in hardware, software, or a combination of 

both. Fuzzy logic approach to control problems mimics how a person would make decisions. 

Another advantage of fuzzy navigation is its ability to extract heuristic rules from human 

experience, and to preclude the need for an analytical model of the process [86].  

Fuzzy controllers consist of an input stage, a processing stage, and an output stage. The input 

stage maps sensor or other inputs, such as switches, thumbwheels, and so on, to the 

appropriate membership functions and truth values. The processing stage invokes each 

appropriate rule and generates a result for each, then combines the results of the rules. 

Finally, the output stage converts the combined result back into a specific control output 

value. The processing stage is based on a collection of logic rules in the form of IF-THEN 

statements, where the IF part is called the "antecedent" and the THEN part is called the 

"consequent". The fuzzy rule sets have several antecedents that are combined using fuzzy 

operators like AND, OR, and NOT where AND uses the minimum weight of all the 

antecedents, OR uses the maximum value and NOT operator subtracts a membership function 

from 1 to give the "complementary" function [87]. The complete process of applying fuzzy 

logic to a problem can be seen in fig1. Here the crisp space values are the real world inputs to 

the problem. 
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Fig. 4.1. Process for the working of a fuzzy logic controller 

Recent researches have shown many advantages of the fuzzy based evolutionary navigation 

scheme over most other techniques (such as potential field method, vector field histogram 

and local navigation etc.), one of them being that less local information is required for this 

algorithm. Fuzzy logic can be used in implement individual behaviours, to coordinate the 

various behaviours, to select roles for each robot, and for robot perception, decision-making, 

and speed control [150]. Fuzzy behaviour-based architecture for mobile robot navigation in 

unknown environments incorporates design of basic behaviours for mobile robot navigation: 

goal seeking behaviour, obstacle avoidance behaviour, wall following behaviour, and 

deadlock disarming behaviour [151, 152]. Each of the behaviours is implemented using fuzzy 

controller to achieve the oriented navigation task. 

The development of techniques for autonomous navigation in real-world environments 

constitutes one of the major trends in the current research on robotics. One of the important 

problems of autonomous mobile robot navigation is the need to cope with the large amount of 

uncertainty that is inherent of natural environments. Fuzzy logic has features that make it an 

adequate tool to address this problem. Navigation of mobile robots in presence of static and 

moving obstacles using fuzzy technique is presented in this work. At first, a set of navigation 

rules are extracted from the data base. The rules are used to control the navigation of mobile 

robots. The use of fuzzy logic techniques for controlling wheel-based mobile robots has been 
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effectively proposed by many authors in the last decade [153, 67, 60, 154]. This chapter 

proposes an on-line path analysis and planning approach that embeds a fuzzy strategy to drive 

a mobile robot. A new intelligent fuzzy interface system has been developed in this current 

investigation. In this approach, the fuzzy logic system is used to control the robot taking 

inputs from various sensors. Sensor signals are fed to the fuzzy logic system, and the output 

provides motor control commands (e.g., turn right or left). The fuzzy logic system learns the 

full dynamics of the mobile robot online. Fuzzy controller for mobile robot has four inputs 

and two outputs. Both inputs and output have three membership functions. Each membership 

function consists of trapezoidal and triangular membership functions. In this methodology 81 

rules have been used to design the fuzzy controller. This research focuses a fuzzy logic 

framework to be implemented in the mobile robot for behaviour design and coordination. The 

proposed method has been compared with other methods [153, 73, 154, 155] which show the 

effectiveness of the developed method. It is also concluded that the current method can be 

successfully employed for navigation of mobile robot. This fuzzy controller of mobile robot 

for path analysis and planning has been authenticated by experimental verification. 

4.2 FUZZY LOGIC CONTROLLER 

Fuzzy logic controllers work by mimicking the ability of human brain to take decisions. 

Hence it can be formulated using a simple set of rules called fuzzy rules also known as If-

Then rules. It consists of inputs mentioned as If condition or antecedent and the output 

mentioned as then condition or consequence. This type of input-output coupling is easily 

understandable and consists of natural linguistic representations. 

A fuzzy inference system is a popular computing framework based on the concepts of fuzzy 

set theory, fuzzy if-then rules and fuzzy reasoning. It mainly consists of three main 

components namely a rule base which contains a selection of fuzzy rules, a database that 

defines the membership function used in fuzzy rules and a reasoning mechanism that 

performs the inference procedure. It can take either fuzzy inputs or crisp inputs but the 

outputs are almost always fuzzy sets. Sometimes it is important to have a crisp output mainly 

in a situation where a fuzzy inference system is used as a controller. So a defuzzification 

method is applied to extract a crisp value in order to represent a fuzzy set. 

 



 

 

48

 

 

 

 

 

 

Fig. 4.2. Fuzzy controller with fuzzy inference system 

4.3 MEMBERSHIP FUNCTION 

The membership function of a fuzzy set is a generalization of the indicator function in 

classical sets. In fuzzy logic, it represents the degree of truth as an extension of valuation. 

Degrees of truth are often confused with probabilities, although they are conceptually 

distinct, because fuzzy truth represents membership in vaguely defined sets, not likelihood of 

some event or condition. The membership function can have varying shapes depending on the 

type of variations in input and output. For example, a triangular membership function is used 

when we need a sharp value while a trapezoidal function is used when we need a constant 

value.  

For any set X, a membership function on X is any function from X to the real unit 

interval [0, 1].Membership functions on X represent fuzzy subsets of X. The membership 

function which represents a fuzzy set  is usually denoted by μA. For an element x of X, the 

value μA (x) is called the membership degree of x in the fuzzy set  The membership 

degree μA (x) quantifies the grade of membership of the element x to the fuzzy set  The 

value 0 means that x is not a member of the fuzzy set; the value 1 means that x is fully a 

member of the fuzzy set The values between 0 and 1 characterize fuzzy members, which 

belong to the fuzzy set only partially. 
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Fig. 4.3. Types of membership function: (a) triangular (b) trapezoidal (c) gaussian (d) 

bell shaped (e) sigmoidal 
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Sometimes, a more general definition is used, where membership functions take values in an 

arbitrary fixed algebra or structure L; usually it is required that L be at least a poset or lattice. 

The usual membership functions with values in [0, 1] are then called [0, 1]-valued 

membership functions. Elements of a fuzzy set are taken from a universe of discourse or just 

universe. The universe contains all elements that can come into consideration. Before 

designing the membership functions it is necessary to consider the universes for the inputs 

and outputs. 

 

 

 

 

 

 

 

 

Fig. 4.4. Example of a membership function. 

 

4.4 FUZZY CONTROLLER FOR THE MOBILE ROBOT 

Fuzzy controllers are very simple conceptually. They consist of an input stage, a processing 

stage, and an output stage. The input stage maps sensor or other inputs, such as switches, 

thumbwheels, and so on, to the appropriate membership functions and truth values. The 

processing stage invokes each appropriate rule and generates a result for each, then combines 

the results of the rules. Finally, the output stage converts the combined result back into a 

specific control output value.  

For the given robot, the fuzzy controller has three inputs and two outputs. The inputs are 

given as distances whereas the outputs are received as velocities. The inputs given to the 
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fuzzy controller are Left Obstacle Distance (LD), Right Obstacle Distance (RD), Front 

Obstacle Distance (FD) and Steering Angle (STA). Similarly, the outputs received are Left 

Wheel Velocity (LWV) and Right Wheel Velocity (RWV). 

4.4.1 MEMBERSHIP FUNCTIONS FOR THE ROBOT CONTROLLER 

The membership function for each of the four input variables are derived using the sets of 

operator input/output data. For the sake of ease in application and understanding, the 

membership function considered is triangular. The membership functions for the inputs and 

outputs along with the range of these functions are shown in the figure below. 
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Membership function for RD 

 

 

 

 

 

 

 

Membership function for STA 

Fig. 4.5. All In put membership functions for fuzzy controller 

Three membership functions are taken for each input variable but their ranges vary from each 

other. For front obstacle distance, left obstacle distance and right obstacle distance, the ranges 

taken are 0 to 2, 1 to 3 and 2 to 4 respectively and the membership functions taken are near, 

medium and far. Each function again has a range between which it varies. For steering angle 

the membership functions taken are positive, zero and negative. The range of the membership 

functions lies between the ranges of -180 to 180.  
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4.4.2  FUZZIFICATION 

It is the conversion of crisp input data to degrees of membership by mapping data from crisp 

input space to the fuzzy sets. The fuzzy set, here, is labeled by linguistic variables near, 

medium and far and these are chosen to fuzzily left obstacle distance, right obstacle distance 

and front obstacle distance. Variables “pos”, “zero” and “neg” define the heading angle of the 

target with respect to the robot.  

When the target is located at the left side of the mobile robot, the target angle is considered 

negative and if the target is at right side of robot, the target angle is considered positive. The 

term “no target considered” is used if there is no target in the environment. Linguistic 

variables like “fast”, “medium” and “slow” are defined for left wheel velocity and right 

wheel velocity for three membership function. The parameters for Left Obstacle Distance, 

Front Obstacle Distance, Right Obstacle Distance, Steering Angle, Left Wheel Velocity and 

Right Wheel Velocity are given in table 4.1, 4.2 and 4.3 respectively. 

 

Variables 

 

Near (Meter) 

 

Medium (Meter) 

 

Far (Meter) 

 

Left Obstacle Distance 

 

0.0 1.0 2.0 

 

Right Obstacle Distance 

 

1.0 2.0 3.0 

 

Front Obstacle Distance    

 

2.0 3.0              4.0 

Table 4.1. Parameters for left, right and front obstacle distance 
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Table 4.2. Parameters for Steering angle 

Variables Slow (meter/sec) Medium (meter/sec) Fast (meter/sec) 

Left wheel velocity 0.0 0.5 1.0 

Right wheel velocity 0.5 1.0 1.5 

Table 4.3. Parameters for Left and right wheel velocity 

4.5  FUZZY RULE MECHANISM 

Fuzzy rules are formulated based on human perception. The fuzzy rule base is a set of 

linguistic rules in the form of “if a set of conditions are satisfied, then a set of consequences 

are inferred”. Based on the above fuzzy subsets, the fuzzy control rules are defined in a 

general form for four inputs and two outputs fuzzy system as follows: 

If (matching degree of LD is μ(LDi) and matching degree of FD is μ(FDj) and matching 

degree of RD is μ(RDk) and matching degree of HA is μ(STAm), Then (matching degree of 

LWV is μ(LWVijkm) and matching degree of RWV is μ(RWVijkm). 

Variable Negative (degree) Zero (degree) 
Positive 

(degree) 

Heading angle 

-180 -90 0 

-90 0 90 

0 90 180 

(4.1)
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where i = 1 to 3, j = 1 to 3, k = 1 to 3 and m =1 to 3 because LD, FD, RD and STA have three 

membership functions each. 

The matching degree of final output is computed by the following formula: 

Matching degree μ LWV, RWV (velijkm) = min{μ(LDi), μ(FDj), μ(RDk) and μ(STAm)} 

When the matching degree=1 the inferred conclusion is identical to the rule‘s consequent, and 

if it is zero no conclusion can be inferred from the rule.  

Finally, the output firing area of the left and right wheel velocities can be computed by the 

following formula, 

μ LV (vel) = max{μLV(vel1111), ……………μ(vel ijkm), ……………μ(vel 3333)}  

μ RV (vel) = max{μRV(vel 1111), …………..μ(vel ijkm), ……………μ(vel 3333)} 

The final output (crisp value) of the fuzzy logic controller of left and right wheel velocities 

can be calculated by “Centre of Gravity” method. 

 

4.5.1 SIMULATION 

The conditions given to the robot as input are constructed in the form of rules which are then 

given to the simulator to find out the required output. The rules are in the form of “if – then” 

as mentioned earlier for fuzzy rules. Since there are four inputs and two outputs hence the 

total number of rules formulated can range upto 256. Table 4.1 lists some of the input 

conditions and the outputs obtained from them. The front obstacle distance, left obstacle 

distance and right obstacle distance have three values each, i.e. near, medium and far while 

the steering angle has positive, negative and zero as its three values. The output variables are 

the velocities of the left and right wheels. Hence the values for them are slow, medium and 

fast. 

 

(4.2)

(4.3)

(4.4)
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Sl. No. FOD LOD ROD STA LWV RWV 

1 Near  Near Far Positive Slow Fast 

2 Medium Near Far Zero Medium Medium 

3 Far Near Far Negative Fast Slow 

4 Near Near Medium Positive Slow Fast 

5 Medium Near Medium Zero Medium Medium 

6 Far Near Medium Negative Fast Slow 

7 Near Near Near Positive Slow Fast 

8 Medium Near Near Zero Medium Medium 

9 Far Near Near Negative Fast Slow 

10 Near Medium Far Positive Slow Fast 

11 Medium Medium Far Zero Medium Medium 

12 Far Medium Far Negative Fast Slow 

13 Near Medium Near Positive Slow Fast 

14 Medium Medium Near Zero Medium Medium 

15 Far Medium Near Negative Fast Slow 

16 Near Medium Medium Positive Slow Fast 

17 Medium Medium Medium Zero Medium Medium 

18 Far Medium Medium Negative Fast Slow 

19 Near Far Far Positive Slow Fast 

20 Medium Far Far Zero Medium Medium 

21 Far Far Far Negative Fast Slow 

22 Near Far Medium Positive Slow Fast 

23 Medium Far Medium Zero Medium Medium 

24 Far Far Medium Negative Fast Slow 
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25 Near Far Near Positive Slow Fast 

26 Medium Far Near Zero Medium Medium 

27 Far Far Near Zero Medium Medium 

28 Near Near Far Negative Fast Slow 

29 Medium Near Far Zero Medium Medium 

30 Far Near Far Positive Slow Fast 

31 Near Near Medium Negative Fast Slow 

32 Medium Near Medium Zero Medium Medium 

33 Far Near Medium Positive Slow Fast 

34 Near Near Near Negative Fast Slow 

35 Medium Near Near Zero Medium Medium 

36 Far Near Near Positive Slow Fast 

37 Near Medium Far Negative Fast Slow 

38 Medium Medium Far  Zero Medium Medium 

39 Far Medium Far Positive Slow Fast 

40 Near Medium Far Negative Fast Slow 

41 Medium Medium Medium Zero Medium Medium 

42 Far Medium Medium Negative Fast Slow 

43 Near Far Near Negative Fast Slow 

44 Medium Far Near Positive Medium Medium 

45 Far Far Near Positive Slow Fast 

 

 

Table 4.4. Some of the input and output conditions 



 

 

58

These values were given to the MATLAB simulator and a program for the navigation of the 

robot was created. The microchip in the robot was instilled with the program written in the 

MATLAB simulator. Various obstacles were provided in the path of the robot so that it had 

to change its path to reach its destination. The figure showing the arrangement of the 

obstacles is shown in the figure 4.3. 

 

Fig. 4.6. Figure showing the obstacles posed in the robots path 

The robot can be seen as a small black dot at the origin of the graph whereas the destination 

is seen as the green circle at the other end of the graph. The robot has to dodge the obstacles 

and reach the destination. The program allows the robot to reach the destination safely 

without colliding with the obstacles. Figure 4.4 shows the path of the robot taken to reach the 

destination. 
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Fig. 4.7. Path taken by the robot during simulation in MATLAB for Fuzzy logic 

 
 

4.6 EXPERIMENTAL ANALYSIS 
The path achieved by the robot during simulation was verified by implementing the program 

on a stingray robot in a physical environment similar to the environment produced in 

simulation. The path length of the robot was measured in the real environment as well as in 

the simulation. 

 

 

 

 

 

 

 

Fig. 4.8. Path taken by the robot during experiment using Fuzzy controller 
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4.7 RESULTS AND DISCUSSION 

The comparison between the simulation and experimental results was done in terms of the 

distance covered by the robot and the time taken. The comparison for Fuzzy logic is given in 

the following table: 

 

Sl.

No

. 

 

Algorithm used to find the 

robot’s path 

Path length in 

simulation 

achieved by 

proposed 

technique in 

cm. 

Path length in 

experiment 

achieved by 

proposed 

technique in 

cm. 

 

Error in % 

1. Fuzzy logic controller 277.7 278.0 0.108 

 

Table 4.5. Results found from the simulation and experimental results for Fuzzy 
Method 

Scale for simulation: 1 = 27.777  

 

4.8 CONCLUSION 

The simulation of the above techniques in MATLAB revealed that the path taken by the robot 

in all situations is different. However the robot was successful in avoiding the obstacles in the 

path and was successful in reaching the goal position. The comparison between simulation 

and experimental results showed a good agreement. 
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5. TYPE 2 FUZZY LOGIC FOR MOBILE ROBOT 

Fuzzy systems enable a machine to take decisions as the human mind would take. 

However, even human decision making process is not flawless and sometimes wrong 

decisions hamper the navigation to the goal. In such cases, improving the decision making 

process becomes a necessity. In order to do that, we have to reduce the ambiguities present in 

the decision making process. So we implement type 2 fuzzy system that would reduce 

anomalies and improve the decision making process. The present chapter gives us an 

overview of such process. 

5.1 INTRODUCTION 

Artificial Intelligence (AI) based systems work as gizmo that not just enhance human    

decision making but also compensate intrinsic flaws in human decision making processes. 

For qualitative and holistic development, it is important to take productive decisions and 

selections. In order to increase productivity and effectiveness of the selection process, it is 

essential to have an advisory system that can offer advantages of knowledge based approach. 

The database-oriented systems are comparatively less effective and offer necessary static 

decision support. Generalized systems might not be helpful in providing personalized 

assistance and effective advisory to an individual user. Hence, the scope of such systems is 

restricted and they are not widely accepted. Moreover, the knowledge based systems can 

provide more effective evaluation of suitability of decisions and learns from feedback.  

Type-2 fuzzy systems generalize type-1 fuzzy sets and systems so that more uncertainty can 

be avoided. From the very beginning of fuzzy sets, criticism has been made about the fact 

that the membership function of a type-1 fuzzy set has no uncertainty associated with it. This 

contradicts the word fuzzy, as it has the possibilities of lots of uncertainties. Prof. L.A. 

Zadeh [161], proposed a more sophisticated kind of fuzzy set, the first of which was called 

a type-2 fuzzy set. A type-2 fuzzy set allows us to accommodate uncertainty about the 

membership function into fuzzy set theory, and creates a way to address the criticism of type-

1 fuzzy sets head-on. And, if there is no uncertainty, then a type-2 fuzzy set reduces to a type-

1 fuzzy set that is analogous to probability reducing to determinism when unpredictability 

vanishes. 
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Type-1 Fuzzy logic systems have limited capacity to handle data uncertainties [162]. Once a 

type-1 membership function has been defined, uncertainty disappears because a type 1 

membership function is precise [163]. Type-2 fuzzy logic systems make it possible to handle 

uncertainties in a better way. These are rule based systems where linguistic variables are 

defined by means of type-2 fuzzy sets that include a footprint of uncertainty (FOU) [4]. It 

captures more uncertainties [162] than type 1 fuzzy set systems. Type 2 fuzzy sets have non-

crisp membership functions whereas type 1 fuzzy sets have crisp membership grades [165]. A 

representation of the inference model for type 2 fuzzy set systems is depicted in Figure 1 

[162]. 

 

 

 

 

 

 

Fig. 5.1. Inference model for type 2 fuzzy set systems 

The process begins with fuzzification, which maps crisp points into type 2 fuzzy set 

systems. After that the inference engine computes the rule base by making logical 

combinations of antecedent type 2 fuzzy set systems, whose results are concerned with 

consequent type 2 fuzzy systems to form an aggregate output type 2 fuzzy set. Then type 

reduction (TR) takes all the output sets and performs a centroid calculation of this combined 

type 2 fuzzy set, and this leads to a type 1 fuzzy set called type reduced set. That reduced set 

is finally defuzzified in order to obtain a crisp output [164, 166]. The computational 

complexity of this model is reduced if interval type 2 fuzzy sets are used [164]. It is 

convenient in the context of hardware implementation in order to make softer the 

computational effort and speed up the inference time. Type 2 fuzzy hardware is a topic of 

special interest, since the application of type 2 fuzzy logic system to particular fields that 

demand mobile electronic solutions would be necessary. Some recent applications of type 2 
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fuzzy logic systems have been developed in fields like robotics, communication and control 

systems among others [167, 163, 168, 169, 170]. It is worth to think about the possibility of 

embedding type 2 fuzzy logic systems handling these applications in order to achieve better 

communication speeds in smaller areas [178]. 

Control and robotics are one of the most widely used application fields of fuzzy logic. 

The advantages of type-2 fuzzy logic controllers over type-1 fuzzy logic controllers (T1-

FLC) have also been demonstrated and documented in [167, 172, 173, 163, 174, 175]. 

Although this kind of works presents improvements in the type 2 fuzzy logic controllers 

performance, it is necessary to propose methodologies where these advances can be reflected 

in design processes as [172, 173,174,175] and hardware implementation approaches over 

embedded devices as [172, 176, 168, 169]. In this way type 2 fuzzy logic systems would 

become widely used in different applicative contexts. 

5.2 INTERVAL TYPE 2 FUZZY SYSTEMS 

Type 1 fuzzy system theory was first introduced by Zadeh in 1965 and has since been 

successfully applied in many areas, including modelling and control, data mining, time-series 

prediction, linguistic summarization, computing with words, etc.  

A type 1 fuzzy system X is comprised of a domain DX of real numbers (also called the 

universe of discourse of X) together with a membership function (MF) μX : DX →[0,1], i.e., 

( ) /
XDX x x= ∫ μ  

Here ∫  denotes the collection of all points x  DX with associated membership grade μX (x). 

In spite of having a name that represents uncertainty, research has shown that there are 

limitations in the ability of type 1 fuzzy system to model and minimize the effect of 

uncertainties. This is because a type 1 fuzzy system is certain in the sense that its membership 

grades are crisp values. Recently, type-2 fuzzy systems, characterized by membership 

functions that are themselves fuzzy, have been attracting great interests. Interval type 2 fuzzy 

systems, a special case of type-2 fuzzy systems, are currently the most widely used for their 

reduced computational cost, and are also the focus of this paper. The membership function 

for the interval type 2 fuzzy logic is shown in fig 5.3 
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Fig 5.2 Membership function for interval type fuzzy logic 

 

The membership function is not just a value but a range or interval unlike type 1 fuzzy 

controller. The upper limit of the membership function is given by X whereas the lower 

limit is given by X . The area between both these limits is called the footprint of uncertainty 

or FOU. 

5.3 INTERVAL TYPE 2 FUZZY LOGIC CONTROLLERS 

The schematic diagram of an interval type 2 fuzzy logic controller is similar to its type 1 

counterpart. The major difference is that at least one of the fuzzy systems in the rule base is 

an interval type 2 fuzzy system. Hence, the outputs of the inference engine are interval type 2 

fuzzy systems, and a type reducer is needed to convert them into a type 1 fuzzy system before 

defuzzification can be carried out. The inputs given to the controller are left obstacle distance 

(LD), left obstacle distance (RD), front obstacle distance(FD) and steering angle(STA) 

whereas left wheel velocity(LWV) and right wheel velocity(RWV). Here the computation for 

one of the inputs LD is shown. The same process is repeated for all the inputs to receive the 

output. 

1 1:         ,             1, 2,n n n n
I IR IF x is X and x is X THEN yisY n N… = …% %  

where 1  nX% (i = 1, . . . , I) are IT2 FSs and n n nY  = [y , y ] is an interval, which can be understood 

as the centroid of a consequent interval type 2 fuzzy logic system. 
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Assume the input vector is LD′ = (LD1, LD2, ..., LD’I ). Typical computations in an interval 

type 2 fuzzy logic system involve the following steps: 

1. Compute the membership of LDi on each LDi = 1, 2, ..., I, n = 1, 2, ...,N.              (8)                 

2. Compute the firing interval of the nth rule, Fn(LD)using the formula: 

(9) 

3. Perform type-reduction to combine Fn(LD) and the corresponding rule consequents. 

There are many such methods. The most commonly used one is the center-of-sets 

type-reducer whose formula is given by 

 

The flowchart for the type 2 fuzzy system is shown in the next figure. 

 

 

 

 

 

 

 

Fig 5.3 Flowchart for type 2 fuzzy controller for the given mobile robot 

 

5.4 SIMULATION 
        The robot was given a set of instructions to follow and the program was written in 

MATLAB simulator. The microchip in the robot was instilled with the program written in the 
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MATLAB simulator. Various obstacles were provided in the path of the robot so that it had 

to change its path to reach its destination. The figure showing the arrangement of the 

obstacles is shown in the figure 5.3. The robot can be seen as a small black dot at the origin 

of the graph whereas the destination is seen as the green circle at the other end of the graph. 

The robot has to dodge the obstacles and reach the destination. The program allows the robot 

to reach the destination safely without colliding with the obstacles. Figure 5.4 shows the path 

of the robot taken to reach the destination. 

 
Fig 5.4 Figure showing the obstacles posed in the robots path 



 

 

67

 
Fig. 5.5. Path taken by the robot during simulation in MATLAB for type 2 fuzzy  

5.5 EXPERIMENTAL ANALYSIS 

The path achieved by the robot during simulation was verified by implementing the program 

on a stingray robot in a physical environment similar to the environment produced in 

simulation. The path length of the robot was measured in the real environment as well as in 

the simulation. 
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Fig. 5.6. Path taken by the robot during experiment using type 2 fuzzy controller  

5.7 RESULTS AND DISCUSSION 
The comparison between the simulation and experimental results was done in terms of the 

distance covered by the robot and the time taken. The comparison for Fuzzy logic is given in 

the following table: 

 
Sl.
No
. 

 

Algorithm used to find the 
robot’s path 

Path length in 
simulation 

achieved by 
proposed 

technique in 
cm. 

Path length in 
experiment 
achieved by 

proposed 
technique in 

cm. 

 

Error in % 

1. 
Type 2 Fuzzy logic 

controller 
258.2 258.33 0.050 

Table 5.1 Results found from the simulation and experiment for Type-2 Fuzzy Method 

Scale for simulation: 1 = 27.777  
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5.8 CONCLUSION 

The simulation of the above techniques in MATLAB revealed that the path taken by the robot 

in all situations is different. However the robot was successful in avoiding the obstacles in the 

path and was successful in reaching the goal position. The comparison between simulation 

and experimental results showed a good agreement. 
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6. ARTIFICIAL BEE COLONY FOR MOBILE ROBOT  

Today’s world has become completely mechanized and a greater part of it has already been 

occupied by machines. They perform almost each and every job that used to be done by 

humans prior to their invention. The most important machine that is also nearest to mankind 

is a robot. Their invention took place just like other machines but eventually scientists 

decided to give them some intelligence that would allow them to take their own decisions and 

think like other organisms. This quality or feature came to be termed as artificial intelligence. 

Now artificial intelligence is a widespread area of study since it has many aspects. A part of 

this area is the evolutionary computation and a subset of this is an evolutionary algorithm. It 

describes the process of evolution in organisms. The evolutionary algorithms use instances 

from nature for improving the intelligence of a robot. They focus on the mechanisms of 

navigation, target location and obstacle avoidance of various organisms found in nature. The 

present chapter focuses on the intelligence provided by one of such evolutionary algorithms, 

the bee colony algorithm. 

6.1 INTRODUCTION 

A bee colony consists of up to 60,000 to 80,000 bees in a single hive. The bees in the hive 

have one breeding Queen, some male drones, several thousands of sterile female workers and 

many young bee larvae or broods. Now the worker bees are divided into three main 

categories. The employed bees are bees that are engaged with a food source. The onlooker 

bees are those which are not appointed to any food sources yet. They stay in the hive and wait 

for the employed bees to show their dance so that they can choose the food source that they 

want to go to. The scout bees on the other hand are explorer bees that explore new food 

sources. 

A colony of honey bees can extend itself over a very long distance (maximum up to 14 km) 

and simultaneously in multiple directions in order to exploit a larger number of food sources 

[149]. A colony can only prosper by employing its foragers in good fields. However, flower 

patches with abundance of nectar or pollen that can be collected with lesser effort would be 

visited by more bees rather than patches with less nectar or pollen would receive fewer bees 

[150]. The foraging process begins by scout bees or the worker bees in a colony being sent to 

search for new and untouched flower patches. There is randomness in their movement from 
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one patch to another. During the harvesting season, a colony keeps a percentage of the 

population as scout bees so as to continue its exploration [151]. 

When the scout bees return to the hive, those bees that have found a patch rated above a 

certain quality threshold [152] (measured as a combination of some constituents, such as 

sugar content) deposit their nectar or pollen and go to the “dance floor” to perform one of the 

two kinds of dance forms, round dance or the waggle dance [153]. Round dance is generally 

performed when there is food source nearby and the direction of the food source is given by 

this dance. Another form of dance is the waggle dance. This dance is essential for colony 

communication, and contains three pieces of information regarding a food source: the 

direction in which it will be found, its distance from the hive and its quality rating (or 

fitness). This information helps the colony to send its bees to flower patches precisely, 

without using guides or maps [179]. Each individual’s knowledge of the outside environment 

is gathered from the waggle dance. This dance enables the colony to evaluate the importance 

of different patches according to both the quality of the food they provide and the amount of 

energy needed to harvest the required amount of food [180]. After waggle dancing inside the 

hive, the dancer (i.e. the scout bee) goes back to the flower patch or the food source with the 

follower bees gathered from the hive after dancing that were waiting inside the hive [181]. 

Other follower bees are sent to other promising food sources. This allows the colony to gather 

food more quickly and efficiently [182]. 

While harvesting from a food source, the bees monitor its food level. This is necessary in 

order to decide upon the next waggle dance when they return to the hive [183]. If the patch is 

still good enough as a food source, then it will be advertised in the waggle dance and more 

bees will be recruited to that source. 

6.2 ABC ALGORITHM 

Artificial Bee Colony Algorithm (ABC) is an optimization algorithm based on the intelligent 

foraging behaviour of honey bee swarm [184]. This model that leads to the emergence of 

collective intelligence of honeybee swarms consists of three essential components: food 

sources, employed foragers, and unemployed foragers, and defines two leading modes of the 

honeybee colony behaviour: recruitment to a food source and abandonment of a source [185]. 

Communication among bees related to the quality of food sources occurs in the dancing area. 

The related dance is called waggle dance [13]. 
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The main steps of the algorithm are as below: 

1. Initialize Population 

2. Repeat 

3. Place the employed bees on their food sources 

4. Place the onlooker bees on the food sources depending on their nectar 

amounts 

5. Send the scouts to the search area for discovering new food sources 

6. Memorize the best food source found so far  

7. Continue until requirements are met 

In first step, the bee algorithm starts with the scout bees (n) being placed randomly in the 

search space. Step 2 continues the fitness of the sites visited by the scout bees and evaluates 

them. The employed bees are placed on their food sources in step 3. In step 4, bees that have 

the highest fitness are chosen as “selected bees” and sites visited by them are chosen for the 

neighbourhood search. Then, in steps 5 and 6, searches are conducted in the neighbourhood 

of the selected sites, thereby assigning more bees to search near to the best food sites. The 

bees are either chosen directly according to the fitness associated with the sites they are 

visiting or the fitness values are used to determine the probability of the bees being selected. 

Searches in the neighbourhood of the best food sites that represent more promising solutions 

are done in a more detailed way by recruiting more bees to follow them than the other 

selected bees. Apart from scouting, this differential recruitment is a key operation of the Bee 

Algorithm. However, in step 6, for each food source only the bee with the highest fitness will 

be selected to form the next bee population although in nature, there is no such a restriction. 

This restriction is introduced here to reduce the number of points to be explored. In step 7, 

the remaining bees in the population are assigned randomly around the search space scouting 

for new potential solutions. These steps are repeated until a stopping criterion is met. At the 

end of every iteration  the colony will have two parts to its new population – those that were 

the fittest representatives from a patch and those that have been sent out randomly. The whole 

process can be seen in the flowchart is given in figure1 
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As per the given problem, the values are set prior to the algorithm execution. The four inputs 

are taken as the food sources and the range of distribution is taken as (-5, 5). The fitness 

function taken is given by 

1   0
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The maximum fitness value is calculated and the quality of the best food source is achieved. 

The cycle is repeated using the equation 

, , , ,( )i j i j ij i j k jv x x x= + Φ − , , , ,( )i j i j ij i j k jv x x x= + Φ −  

A Population of n Scout Bees is initialised 

The Fitness of the Population is evaluate 

The Size of Neighbourhood (Patch Size) is determined 

Bees are recruited for Selected Sites 

The (n–m) Remaining Bees are assigned to Random Search 

For Neighbourhood Search m Sites are selected  

The Fittest Bees from Each Patch are selected 

New Population of Scout Bees is found 

(6.1)

(6.2)

Fig.6.1. Flowchart showing the bee algorithm 
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Where k=1, j=0 and � is taken randomly in between [-1,1]. 

Again the fitness value is calculated and the greediness value is calculated. If the greediness 

value is greater than the fitness value then the cycle is repeated for the next bee in the 

population. This process is carried out for all the onlooker bees and then then cycle value is 

increased. 

6.3 SIMULATION 

These values were given to the MATLAB simulator and a program for the navigation of the 

robot was created. The microchip in the robot was instilled with the program written in the 

MATLAB simulator. Various obstacles were provided in the path of the robot so that it had 

to change its path to reach its destination. The figure showing the arrangement of the 

obstacles is shown in the figure. The robot can be seen as a small black dot at the origin of 

the graph whereas the destination is seen as the green circle at the other end of the graph. The 

robot has to dodge the obstacles and reach the destination.   

Fig. 6.2. Figure showing the arrangement of obstacles in the environment 
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The program allows the robot to reach the destination safely without colliding with the 

obstacles. Figure shows the path of the robot taken to reach the destination. 

 

 

Fig.6.3. Path taken by the robot during simulation in MATLAB for ABC. 

 

 

6.4 EXPERIMENTAL ANALYSIS 
The path achieved by the robot during simulation was verified by implementing the program 

on a stingray robot in a physical environment similar to the environment produced in 

simulation. The path length of the robot was measured in the real environment as well as in 

the simulation. 
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Fig.6.4. Path taken by the robot during experiment using ABC controller. 

6.5 RESULTS AND DISCUSSION 

The comparison between the simulation and experimental results was done in terms of the 

distance covered by the robot and the time taken. The comparison for Fuzzy logic is given in 

the following table: 

 

Sl.

No

. 

 

Algorithm used to find the 

robot’s path 

Path length in 

simulation 

achieved by 

proposed 

technique in cm. 

Path length in 

experiment 

achieved by 

proposed 

technique in cm. 

 

Error in % 

1. Artificial bee colony algorithm 249.3 250.0 0.280 

Table 6.1. Results found from the simulation and experimental results for ABC method 

Scale for simulation: 1 = 27.777  
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6.5 CONCLUSION 

The simulation of the above techniques in MATLAB revealed that the path taken by the robot 

in all situations is different. However the robot was successful in avoiding the obstacles in the 

path and was successful in reaching the goal position. The comparison between simulation 

and experimental results showed a good agreement. 
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NEURAL NETWORKS 
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7. NEURAL NETWORKS FOR MOBILE ROBOT 

A basic research in the field of pattern recognition involves focus on network architectures. 

Neural network methods are considered as generalizations of classical pattern oriented 

methods in statistics and various areas of engineering. Artificial neural networks are inspired 

by the early models of sensory processing by the brain. A neural network is a graph, with 

patterns as numerical values attached to the nodes of the graph and transformations between 

patterns achieved by simple message-passing algorithms. This chapter provides a novel 

approach for design of an intelligent controller for autonomous mobile robot using multilayer 

feed forward neural network which enables the robot to navigate in a real world dynamic 

environment.  

7.1 INTRODUCTION TO NEURAL NETWORKS 

Artificial Neural Network (ANN) is a paradigm for information processing that is motivated 

by the way information is processed in a biological neural network, such as the brain. The 

central block of this paradigm is the distinctive structure of the information processing 

system. It consists of a large number of highly interconnected and organized processing 

elements (neurons) working together to process and solve. Like human beings, ANNs learn 

by lots of examples. Usually an ANN is implemented for a specific task, such as pattern 

approbation, data classification or obstacle avoidance through a learning process. 

 A novel thought was given for tracking control of the mobile robots by the Neurodynamics 

approach to get a smooth velocity of the robot with a good backward movement. For a 

nonholonomic mobile robot’s real time navigation by incorporation of a back stepping 

technique, a Neurodynamics model has been designed. Contrasting to other tracking control 

techniques, this novel approach is better in generation of continuous smooth control of robot 

signals with zero initial velocity, for which the theory of  Lyapunov stability has been used. 

Moreover this can also be used very smoothly in the situations with large tracking errors. 

7.2 BASIC NEURON AND NETWORK LAYER 

An artificial neuron is the component which receives a lot of inputs and provides single 

output. Two modes of maneuver are basically available; the training mode and the using 

mode. In the training mode, the firing of neuron can be trained for particular input patterns. In 

the using mode, based on the taught input, the taught output becomes the current one. If the 
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input pattern has not been taught, the firing rule determines the decision of firing. The 

artificial neural networks consist of three layers: input layer, hidden layer and output layer. 

1. The input units convert the raw information that is fed into the network. 

2. Each hidden unit output is determined by input units and the connection weights between 

them. 

3. The output units’ behaviour depends on the hidden units’ output and the weights between 

them. The hidden units are free to put up their own representations of the input. The activity 

of hidden units is determined by the weights, and so with modification of weights, a hidden 

unit can choose what it represents. 

7.3 THE LEARNING PROCESS 

The remembrance of patterns and the succeeding network response can be categorized into 

two general paradigms. In associative mapping the network learns to produce an output on 

the set of input units whenever another output is applied on the set of input units. The 

associative mapping is of two types. 

 Auto-association: An input pattern is associated with itself and the pattern output 

units match the trained one. This is used for other pattern completion, i.e. to produce 

a pattern when some portion of it or a partial pattern is presented. In the second case, 

the network basically stores pairs of patterns associating two sets of patterns. 

 

 Hetero-association: It is associated with two recall mechanisms: Nearest-neighbour 

recall, where the output produced corresponds to the stored input pattern, closest to 

the pattern presented interpolative recall, where the output pattern leads to 

interpolation which is based on similarity dependence of the patterns stored 

compared to the pattern presented. Another model, which is a variant associative 

mapping, is classification, i.e. when input patterns are to be classified into a fixed set 

of classifications. Every neural network owns knowledge which is contained in the 

weights. A learning rule for altering the values of the weights must lead to 

modification of the knowledge stored in the network as a function of practice. Data is 

stored in the weight matrix W of a neural network. The determination of the weights 
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is called the learning process. Following the way learning is performed, we can 

categorize two major categories of neural networks: 

 

o Fixed networks: The weights are fixed, i.e. the change of time is zero. In such 

networks, the weights are computed according to the problem to be solved.  

 

o Adaptivenetworks: Here the weights are changeable, i.e. the change of 

weights with respect to time is non- zero. Entirely, the learning methods used 

for adaptive neural networks can be classified into two chief categories: 

 

 Supervised learning: which includes an external teacher, so that each 

output unitis told its expected response to input signal. In the learning 

process global information may be a requirement. Models of 

supervised learning include error-correction learning, reinforcement 

learning and stochastic learning. A critical issue about supervised 

learning is the problem of error convergence, i.e. the minimization of 

difference between the desired and computed values. The objective is 

to find out a set of weights that reduces the error, for which some 

methods is common to many learning methods, is the least mean 

square (LMS) convergence. 

 Unsupervised learning: uses no external teacher and is centered upon 

local information. It is also stated to as self-organization, in the way 

that it self-organizes data presented to the network and detects their 

emergent group properties. Examples of unsupervised learning are 

Hibbing learning and competitive learning. 

7.4 TYPES OF NEURAL NETWORK 

1. Feed-forward neural network: The first and probably the simplest type of artificial 

neural network invented, this network features the movement of information in single 

direction. From the input nodes information goes to the hidden nodes (if any) and finally to 

the output nodes. There are no cycles or loops in the network. Feed-forward networks can be 

constructed from various types of units, e.g. binary McCulloch-Pitts neurons, one example 

being the perception. 
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2. Learning Vector Quantization: Learning Vector Quantization (LVQ) may be understood 

as neural network architecture. Representatives of the classes parameterize in LVQ, together 

with a suitable distance measure, a distance-based classification scheme. 

3. Recurrent neural network: Contrary to feed-forward networks, recurrent neural networks 

(RNNs) are models with bi-directional data flow. While there is linear transmittance of data 

in feed-forward network from input to output, RNNs also propagate data from later units to 

earlier units. RNN scan be used as general sequence processors. 

4. Fully recurrent network: It is the basic architecture established way back in the 1980s: 

consisting of a network of neuron-like units, each with a directed link to every other unit, 

with all units having a time-varying real-valued initiation. Each assembly has a modifiable 

real-valued weight. Some of the nodes are called input nodes; some are called output nodes, 

the rest hidden nodes. Most architecture below is special cases. 

5. Hopfield network: The Hopfield network is of historic interest although it is not all-

purpose RNN, as it is not designed to process systems of patterns. Instead it requires static 

inputs. It is an RNN in which all contacts are symmetric. Designed by John Hopfield in 1982, 

assures that its dynamics will converge. If the links are trained using Hebbian learning then 

the Hopfield network will perform as robust content-addressable memory, resistant to 

connection alteration. 

6. Simple recurrent networks: This special case of the Hopfield network was when a three-

layer network is used, along a set of ”context units” in the input layer. There are links from 

the hidden layer or from the output layer to the context units fixed with a weight of one. At 

each time step, the input is transmitted in a standard feed-forward fashion, and then a simple 

back prop-like learning rule is applied. The fixed back connections result in the context units 

always preserving a copy of the previous values of the hidden units (since they propagate 

over the connections before the learning rule is applied). 

7. Echo state network: The echo state network (ESN) is a recurrent neural network with a 

sporadically linked random hidden layer. Only the weights of output neurons can be changed 

and be trained. ESNs are good at replicating certain time series. 
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7.5 THE BACK-PROPAGATION ALGORITHM 

For training a neural network to execute any task, weights of each unit must be changed in 

such a manner that the difference between the desired output and the actual output is reduced. 

It requires that the neural network computes the error offshoot of the weights (EW). In other 

words, it must calculate the fluctuation of error occurring with a slight increase or decrease in 

each weight. The back propagation algorithm is a commonly used method for finding the 

EW. 

The back-propagation algorithm is easiest to comprehend if all the units in the network are 

linear. The algorithm computes each EW by first determining the activation, the rate at which 

the error varies as the movement level of a unit is altered. For output units, the activation 

error is just the difference between the real and the desired output. To calculate this for a 

hidden unit in the layer just before the output layer, firstly all the weights amongst that 

hidden unit and output units to which it is linked are recognized.  

Activation errors of those output units are computed and the products are added. This sum 

equals the activation error in the hidden layer penultimate to output layer. We can similarly 

compute the activation for other layers, effecting from layer to layer in the reverse direction 

of the propagational direction of activities through the network. Hence it is called back 

propagation. Once the activation error has been computed for a unit, it is simple to calculate 

the EW for each incoming link of the unit. The EW is the creation of the EA and the activity 

through the incoming link. 

7.6 NEURAL NETWORK CONTROLLER 

A new epitome of intelligent navigation systems must be enriched with some common 

features like: criteria for optimal performance and ways to optimize design, structure and 

control of robot. The growing need for the deployment of intelligent, highly autonomous 

systems has made it beneficial to carry out research on artificial neural networks due to its 

high learning capabilities with a high level of knowledge interpretability. Neural network is 

able to build comprehensive knowledge bases considering sensor-rich system with real time 

constraints by adaptive learning, rule extraction and inclusion. The training for back 

propagation algorithm and its navigational performances analysis has been done in real 

experimental setup. As experimental result matches well with the simulation result, the 
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realism of method is verified. To reduce travel time as well as the distance travelled, four 

layer perception neural networks has been designed by using the environmental information 

to make navigational decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.1. Multilayer Neural Controller for implementation of robotic behaviours 

 The first layer is used as input layer which has three neurons, for receiving the values 

of the distances from obstacles in front, left and right of the robot. Next the robot network 

consists of two hidden layers as shown in figure which adjusted the weight of neuron; as with 

one hidden layer it is difficult to train the network within a specified error limit. The training 

error is the difference between desired output and actual output. The first hidden layer has 

eighteen neurons and the second hidden layer has five neurons as shown in figure. These 

numbers of hidden layers were also found empirically. Then a output layer with a single 

neuron which provide steering angle to control the direction of movement of the robot. Back 

propagation method is used to minimize the error and optimize the path and time of mobile 

robot to reach the target. 
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During training and during normal operation, the input patterns fed to the neural network 

comprise the following components: 

          (7.11) 

         (7.12) 

         (7.13)   

                (7.14) 

 

These input values are distributed to the hidden neurons which generate outputs given by: 

 

                  (7.15) 

              (7.16) 

 

 

 
 

 

 

                  (7.17) 

The sigmoid has the property of being similar to the step function, but with the 

addition of a region of uncertainty. Sigmoid functions in this respect are very similar to the 

input-output relationships of biological neurons, although not exactly the same. Figure given 

below is the graph of a sigmoid function. During training, the network output _actual may 

differ from the desired output θdesired as specified in the training pattern presented to the 

network. A measure of the performance of the network is the instantaneous sum-squared 

difference between θdesired and θactual for the set of presented training patterns: 
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          (7.18) 

The error back propagation method is employed to train the network. This method requires 

the computation of local error gradients in order to determine appropriate weight corrections 

to reduce error for the output layer, the error gradient is: 

            (7.19) 

The local gradient for neurons in hidden layer [lay] is given by 

           (7.20) 

7.7 SIMULATION: 

The robot was given a set of instructions to follow and the program was written in MATLAB 

simulator. The microchip in the robot was instilled with the program written in the MATLAB 

simulator. Various obstacles were provided in the path of the robot so that it had to change its 

path to reach its destination. The figure showing the arrangement of the obstacles is shown in 

the figure 7.2. The robot can be seen as a small black dot at the origin of the graph whereas 

the destination is seen as the green circle at the other end of the graph. The robot has to dodge 

the obstacles and reach the destination.  
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Fig. 7.2. Figure showing the arrangement of obstacles in the environment 

 

The program allows the robot to reach the destination safely without colliding with the 

obstacles. Figure 7.3 shows the path of the robot taken to reach the destination. 

 

7.8 EXPERIMENTAL ANALYSIS 

The path achieved by the robot during simulation was verified by implementing the prograon 

a stingray robot in a physical environment similar to the environment produced in simulation. 

The path length of the robot was measured in the real environment as well as in the 

simulation. 
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Fig.7.2. Path taken by the robot during simulation in MATLAB for NN 

 

 

 

Fig.7.3. Path taken by the robot during experiment using NN controller. 
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7.9 RESULTS AND DISCUSSION 

The comparison between the simulation and experimental results was done in terms of the 

distance covered by the robot and the time taken. The comparison for Fuzzy logic is given in 

the following table:  

 

Sl.No. 
Back propagation 

algorithm 

Path length in simulation 

achieved by proposed 

technique in cm. 

Path length in experiment 

achieved by proposed 

technique in cm. 

Error 

in % 

1. 

Backpropagation 

algorithm 252.0 253.0 0.397 

Table 7.1. Results found from the simulation and experimental results for NN method 

Note:-Scale for simulation: 1 = 27.777  

7.10 CONCLUSION 

The simulation of the above techniques in MATLAB revealed that the path taken by the robot 

in all situations is different. However the robot was successful in avoiding the obstacles in the 

path and was successful in reaching the goal position. The comparison between simulation 

and experimental results showed a good agreement. 
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CHAPTER 8 

HARDWARE ANALYSIS
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8. HARDWARE ANALYSIS 

The chassis is constructed from 1.58 mm thick 5052 Aluminum sheet metal. This 

robot has the specialty that there are three ultrasonic sensors having a wide field of view 

which can detect the obstacles and give a record to the micro-controller and the program will 

run accordingly. These sensors can detect the obstacles quickly in running condition also so 

that the robot can avoid the obstacles in front of it and move to the goal in an optimized path. 

The motors speed is 310 RPM at 7.2 V Dc which equates to approximately 2 m/s. 

 

8.1 SPECIFICATIONS OF THE ROBOT 

 Power requirements: Motors rated @ 7.2V (stall current 4.5A @ 7.2V) 

 Motor details: 7.2VDC, 310 RPM, 6mm Shaft 

 Operating temperature: 32 to 158 F (0 to 70 C) 

 Dimensions, assembled: 13 Length 10.9 Width 5.5 Height (33 27.7 14 cm) 

 Power requirements: 60mA @ 5 VDC ( 20mA each PING) sensor 

 Communication: Positive TTL Pulse 

 

8.2 FEATURES 

 High-quality, scratch-resistant, type-2 anodized aluminum alloy chassis 

 Solid 12.4 cm diameter wheels with durable high-traction rubber tread 

 Durable 7.2 VDC motors have all metal gears. Two-wheel differential drive system 

with rear omni-directional wheel.  

 Multiple mounting locations for sensors, add-ons, etc. 

 3 PING) Ultrasonic Range Finders 

 Ultrasonic vision for the Stingray Robot for up to 9 meter. 
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These are some pictures of the Stingray robots: 

 

 

  

  

  

  

  

 

 

  

  

  

  

  

  

  

  

 

 

 

 

Fig.8.2. Top view of Stingray 

Fig.8.1. Side view of Stingray 

Fig.8.3. Front view of Stingray 
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9. RESULTS AND DISCUSSIONS 

In the present findings a problem related to navigational path analysis of mobile robot 

in various environments has been analysed. Considering the kinematical aspect, AI 

techniques (e.g. Fuzzy Logic, Neural Network) are used for dynamic, optimized and 

collision-free path so that mobile robot can reach the target. This chapter, which is supposed 

to encapsulate the performances of present work done by mentioning the analysis and results 

of respective chapters for endorsement, can be divided into two main parts as following: 

To grasp the expertise in performance, the self-adaptive robot's navigation and path 

planning algorithm must be consistent with the kinematics of the mobile robot. As sensory 

statistics is ineffective to provide vehicle‘s configuration, it becomes necessary to obtain 

stable kinematic and dynamic model for the robot in its global and local reference frame 

respectively.  

In chapter three, Kinematic analysis of the mechanical structure of a robot has been 

done concerning the description of the motion with respect to a fixed reference cartesian 

frame by ignoring the forces and moments that cause motion of the structure. Modelling of 

mobile robot is done by combining all kinematic constraints for individual wheels. The 

different levels of designing wheeled mobile robot can be portrayed as: positioning of the 

robot model in the environment, maneuverability analysis and holonomicity checking with 

respect to kinematic constraints and generalized control of developed kinematic model. The 

manoeuvrability or degree of freedom deals with the possible motions that the robot may 

follow to reach a final configuration. Modelling of mobile robot with differential drive 

wheels as control systems has been addressed with a differential geometric point of view by 

considering only the conventional theory of "rolling without slipping". Such a robot can 

rotate on the spot (i.e., without moving the midpoint between the wheels), only if the angular 

velocities of the two wheels are equal and opposite.  

Navigational analysis of mobile agent faces many critical troubles in real world 

environment than the problems regarding kinematic instability of the robot configuration. 

Selection of navigational techniques is very much significant in the research area of mobile 

robotics. All forms of robotic behaviours depend on intelligence of the controller to get 

collision free navigational path.  
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Fuzzy navigation technique allows a reactive control to move in a reasonable 

direction and velocity maneuvers of the autonomous mobile robot, is activated to achieve 

reasonable behavioural performance in static terrains. A Mamdani based Fuzzy logic 

controller (FLC has been recognised to be more compatible with the reasoning process of 

human behaviours. Fuzzy behaviour-based architecture for mobile robot navigation in 

unknown environments incorporates design of rule base considering basic behaviours for 

mobile robot navigation, i.e., goal seeking, obstacle avoidance, wall following and deadlock 

disarming etc. 

 
Fig. 9.1. Path taken by the robot during simulation in MATLAB for Fuzzy logic.  

 



 

 

93

The movement of the mobile robot in another environment can also be viewed so as to 

confirm the results given in the chapter. The figure 9.1 shows the navigation of the mobile 

robot in another environment and in simulation as well as in experimental analysis using the 

fuzzy logic controller 

Fig. 9.2. Path taken by the robot during experiment using Fuzzy controller. 

The next chapter gives an advanced version of the fuzzy logic behaviour called the 

type 2 fuzzy behaviour which enables us to remove more uncertainties from the decision 

making process. The results obtained from the experiments showed the above statement to be 

true. The truth can also be confirmed by looking at the navigation of the robot in another 

environment using the same type 2 fuzzy mechanism. The figure 9.2 shows the navigation of 

the mobile robot in another environment and in simulation as well as in experimental analysis 

using the type 2 fuzzy logic controller. 
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Fig. 9.3. Path taken by the robot during simulation in MATLAB for type 2 fuzzy  
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Fig. 9.4. Path taken by the robot during experiment using Fuzzy Type-2 controller. 

 

In the next chapter, an evolutionary algorithm, the artificial bee colony algorithm has 

been used to make the robot move from the source to the goal. The robot undergoes a number 

of cycles to reach an optimised path. The path taken is shorter and more sensitive to the 

environment. The results can be seen in the figure given below. The figure 9.3 shows the 

navigation of the mobile robot in another environment and in simulation as well as in 

experimental analysis using the artificial bee colony algorithm. 
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Fig. 9.5. Path taken by the robot during simulation in MATLAB for ABC. 

 
Fig. 9.6. Path taken by the robot during experiment using ABC controller. 

A multilayer feed forward neural network using the principle of back propagation 

algorithm has been employed in the next chapter to increase the accuracy in steering angle 
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measurement by eliminating uncertainties in target sensor reading. 200 training are used for 

designing an intelligent well trained neural controller for mobile robot being used to navigate 

in a cluttered environment. The results show the improvement in the results obtained from 

earlier mechanisms. The figure 9.4 shows the navigation of the mobile robot in another 

environment and in simulation as well as in experimental analysis using the neural network 

controller. 

 
Fig. 9.7. Path taken by the robot during simulation in MATLAB for NN. 
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Fig. 9.8. Path taken by the robot during experiment using NN controller. 

. 

In chapter eight, hardware aspects of the Stingray robot has been given which is the robot 

used in all the experiments. Proper Hardware implementation of model mobile robot leads to 

the successful experimental verification of specified navigational algorithms.  
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Sl.

No

. 

 

Algorithm used to find the 

robot’s path 

Path length in 

simulation 

achieved by 

proposed 

technique in 

cm. 

Path length in 

experiment 

achieved by 

proposed 

technique in 

cm. 

 

Error in % 

1. Fuzzy logic controller 277.7 278.0 0.108 

2. ABC Algorithm 249.3 250.0 0.280 

3. Type 2 fuzzy logic 258.2 258.33 0.050 

4. 
Backpropagation algorithm 

NN 
252.0 253.0 0.397 

Table: 9.1. Showing the Comparison between simulation and experimental results 

Scale for simulation: 1 = 27.777  

The table 9.1 shows the comparision between various algorithms used and their outputs in 

terms of the path length. The result also shows the error in percentage for each controller 

regarding the difference in length covered by the robot in simulation and experiment. 

9.1 DISCUSSION  

The fuzzy logic technique is supposed to mimic the human decision making power but it does 

not guarantee an optimal path generation. However, the error in the simulation and 

experimental analysis is low. The path generated by the robot is not an optimal one but it is 

generated depending upon the logic it works accordingly. The table 4.2 gives some of the 

values for the logical inputs and outputs. However, fuzzy logic also leaves some ambiguities 

in its operation. This is overcome by the type 2 fuzzy logic controller. The results found 

through type 2 fuzzy logic controller is found to be more satisfactory than fuzzy logic 

controller. The figure 5.5 shows the path taken by the robot using a type two fuzzy controller 

and it is better than the fuzzy controller. 
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Further the neural network technique is a learning mechanism and the accuracy is more for 

more number of epochs. The result of lesser number of epochs is more error. The results 

shown in fig 7.3 show the accuracy of the neural controller. The neural network designed for 

this robot is shown in fig 7.1. It shows all the inputs and outputs of the network structure. 

Artificial bee colony algorithm is a biologically inspired technique. The fact that the honey 

bees search for their food and then use the optimal path to reach it cannot be denied. Their 

method of finding their food is shown in chapter 6. The mathematical operations done to find 

this method can be viewed in this chapter. The fig 6.3 shows the path of the robot that 

undertakes to reach its goal by using the bee colony algorithm. 

9.2 CONCLUSION 

The results show that the while navigating using fuzzy controller the mobile takes a longer 

but safer path to reach the destination. As the type 2 controller is more accurate than the 

fuzzy logic controller hence the path taken by the mobile robot using the type 2 fuzzy 

controller is a bit shorter. Similarly, the backpropagation algorithm, being a learning 

algorithm uses a shorter path than the fuzzy controllers. However, the artificial bee colony 

algorithm is an evolutionary algorithm and when the mobile robot uses this algorithm the 

length of the path taken from the source to goal becomes even shorter. In fact the bee colony 

algorithm gives the shortest path length amongst all the three algorithms used. 
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CHAPTER 10 

CONCLUSION AND 

FUTURE WORK 
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10. CONCLUSION AND FUTURE WORK 

The previous chapters have presented the background, approach and results of this research in 

a detailed way. This chapter summarises the conclusions of the research and proposes idea 

for future work. It recapitulates the main contributions, conclusions of the present 

investigations and space for additional works. This investigation anticipates for making the 

following contributions to the domain of navigational path analysis of mobile robots in 

diverse environments. The major intents of this research work have been to find out efficient 

control techniques for mobile robot navigation in crowded real world situations by avoiding 

collision with obstacles arranged in a chaotic way.  

10.1 CONCLUSIONS 

In the present research, attempt has been made to solve a problem related to navigational path 

analysis of mobile robots in various environments. The investigation was carried out in 

several stages as follows: 

1. From the kinematic analysis of mobile robot left wheel and right wheel velocities of the 

mobile robot has been calculated. From the wheel velocities, steering angle for the robot is 

calculated 

2. Next the fuzzy controller uses the human decision making concept to find a path for the 

robot to reach from its source to its destination. 

3. The fuzzy technique is further magnified and improved using the type 2 fuzzy logic. The 

uncertainties are minimized and accuracy is maximised. 

4. Further, an evolutionary technique called the bee algorithm inhibits the robot with the 

navigational accuracies of honey bees which they use to find their food and reach their food 

source. 

5. The neural controller is yet another technique used to teach the robot to move around in its 

environment by avoiding collisions and reaching the goal safely at its goal. 

6. The hardware was described for the Sting Ray robot which has been used as the robot to 

navigate in experimental simulation. 
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Performance measure has been carried out through the comparison between simulation and 

experimental results for different environmental scenarios in terms of path travelled and they 

are found to be good agreement 

This research is committed to appraise the performances of controllers during navigation of 

mobile robot in different simulation and experimental environmental scenarios along with 

comparison with previous research work for endorsement.  

10.2 FUTURE WORKS 

This work provides a foundation for future expansion of integrated designing 

approaches of intelligent controller based on artificial intelligence technique. Autonomous 

navigation in various environments is still an open area of research. There are a number of 

interesting directions to pursue as future work. The suggestions with several crucial and 

promising researches for future investigation are as follow. In the current research work, the 

techniques developed for navigational path analysis of mobile robot enable the robots to 

avoid collision among each other and with static obstacles. The current effort affords a base 

for forthcoming growth of cohesive designing approaches of sensible controller based on 

artificial intelligence technique enriched with human perception. Regardless of all research 

that has been conducted, autonomous navigation in various environments is still a vast area of 

research. 

However, further development of the techniques may be required for the avoidance of 

moving obstacles other than the robots. This will make the algorithm more effective in 

dealing with unpredictable real life situations. The navigational techniques developed in this 

research work are capable of detecting and reaching the static targets. Further modifications 

in these navigational techniques may be carried out so that the robots can not only detect 

dynamic targets but also reach them using an optimum path. Further research is required for 

cooperative behaviour coordination between the robots for task and handling a particular 

object by avoiding static as well as moving obstacles. 
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