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Abstract 

The single wheel, gyroscopically stabilized robot, called Gyrover, is a novel concept 

of mobile robots which provides dynamic stability for rapid locomotion. It has sev-

eral advantages over statically stable multi-wheel robots including reduced sensitiv-

ity to attitude disturbances, complete recoverability from falling, and high dynamic 

stability. Further, this kind of robot can find obstacle-free paths on the ground more 

easily, and its narrow profile improves maneuverability. However, problems in steer-

ing and low-speed stability have kept such robot from becoming commonplace. In 

this thesis, the goal is to develop a semi-autonomous control for this kind of robots. 

In order to provide a good foundation for the development of the robot, we par-

tition the control problem into a set of loosely coupled computing modules (behav-

iors) by a behavior-based approach. Under this approach, we sort out two behaviors 

which locate at the lowest layer within the control architecture: (i) Lateral balanc-

ing, and (ii) Tiltup motion. These behaviors deal with the local instability problem 

in controlling a dynamically stable but statically unstable robot. 

Since the robot concept brings a number of challenging issues in modeling and 

control by using some traditional control methods, therefore, we prefer to model 

the behaviors by learning. We propose using an efficient neural-network learning 

architecture that combines flexible cascade neural networks with extended Kalman 

filtering to capture the control skills from an expert operator. The models obtained 
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by the learning algorithm are validated by a stochastic similarity measure that is 

based on Hidden Markov Model analysis, which can compare the similarity between 

two dynamic and stochastic control trajectories. 

Finally, we develop a shared control framework for the robot. Under the shared 

control, the control tasks are shared between the human operator and the automatic 

control system: the robot maintains local balancing, while the operator is responsible 

for the global navigation task. In order to let the system chooses between the control 

command from the two entities in an effective and systematic manner, a function is 

developed to tackle this problem. 

Implementation results for the learning control and shared control are given in the 

thesis. The experiments demonstrate that this semi-autonomous approach provides 

a better way to control a dynamically stable but statically unstable robot, which 

can free the operator from being troubled by the low speed instability problem, and 

let him/her focuses on higher-level navigation tasks. 
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摘 要 

單輪陀螺平衡機器人，我們稱之爲“Gyrover”，是一種新型的移動機器人。它可 

以實現機器人在快速運動下的動態平衡。此機器人比多輪式靜態平衡移動機具 

備更多優點，包括抗姿態干擾性，跌倒恢復能力，以及良好的動態穩定性。並 

且此種機器人能更容易找出無障礙物之行走路徑，它扁平的外型令其靈活性大 

大的提高。然而，其轉向以及低速行走的不穩定問題則令此類機器人不能受到 

廣泛的應用。因此，本篇論文的目的就是要爲此類機器人開發一個半自主的控 

制方法。 

爲了提供一個良好的基礎予此系統的發展，我們透過一種基於行爲的控制 

方法，將整個控制問題分爲若干的非鍋合計算模塊（行爲）。藉此方法，我們得 

出兩個分佈在整個控制結構中最基層的行爲：（一）側向平衡，及（二）跌倒恢 

復動作。這些行爲專門處理在控制一個動態平衡但靜態不平衡的機器人時所帶 

來的局部不穩定問題。 

由於在傳統的控制方法下，這機器人帶來了一定的建模和控制上的挑戰性 

問題，所以我們嘗試利用機器學習的方法來建模。我們提出使用一種有效的神 
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經網絡學習結構，此結構結合了級聯人工神經網絡及結點解鍋延伸卡爾曼過濾 

法來吸取專業控制人員的控制技巧。我們並且使用基於隱含馬爾卡夫模型的隨 

機相似性量度指數來驗證學習模型的可靠性，此量度指數能夠比較動態及複雜 

的軌跡的相似度。 

最後，我們爲此機器人開發一個共享控制架構。在此控制模式中，不同的 

控制工作將被分配予控制人員以及自主控制系統：自主控制系統負責維持機器 

人的局部平衡狀態，而控制人員則負責全局導航的工作。爲了令整個系統能有 

效地選擇執行控制人員或自動系統的命令，我們建立了一個函數來應付此問題。 

此論文中提供了學習控制和分配控制的驗証結果。實驗結果証明這半自主 

的控制模式能提供一個更好的方法來控制一個動態平衡但靜態不平衡的機器 

人，令控制員大大減少對其在低速行走時之穩定性的關注，從而令他/她更能專 

注於高層次的導航工作。 
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Chapter 1 

Introduction 

1.1 Motivation 

Land locomotion can be broadly characterized as quasi-static or dynamic. Quasi-

static equilibrium implies that inertial effects are small enough to ignore. The mo-

tions are slow enough that static equilibrium can be assumed. Traditionally, mobile 

robots are treated as quasi-static devices. Numerous robots with multiple wheels or 

legs have been developed to maximize their mobility on various terrain. Generally, 

these robots have featured low center of mass and broad bases of support, along 

with intelligent control algorithms designed to keep the center of mass gravity vec-

tor within the support ploygon. Although these robots are statically stable, they are 

often limited by motion-planning constraints and hence are usually designed for rel-

atively low-speed operation. Dynamic factors have little influence on such systems 

and consequently have been ignored. 

On the other hand, consider a bicycle or a motorcycle which has two wheels in 

the fore-aft configuration. Such vehicle is statically unstable in the roll direction, but 

can achieve dynamic stability at moderate speed through an appropriate steering ge-

ometry and gyroscopic action of the steering front wheel. Steering stability increases 
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CHAPTER 1, INTRODUCTION 2 

Figure 1.1: The Gy rover. 

with speed gradually due to gyroscopic effects. Dynamic forces at the wheel-ground 

contact point act on or near the vehicle center (sagital) plane, and thus produce 

minimal roll disturbances. Additional, bicycles have greater maneuverability than 

the quasi-static devices. 

As a logical extension of this argument, in order to retain static (quasi-static ve-

hicles) and dynamic (bicycles) stabilities, we designed a single wheel, gyroscopically 

stabilized robot, Gyrover, as shown in Figure 1.1. 

Gyrover is a single, large-diameter wheel that relies on gyroscopic action for 

dynamic stability. In its simiplest form, Gyrover is a large wheel with its propulsion, 

steering and other equipment suspended from its axle. The rotational motion of the 

wheel gyroscopically stabilizes its attitude, while directional control is accomplished 

by reacting against an internal gyroscope, to produce "lean steering". An internal 

gyroscope may also augment the lateral stability of the robot, and allows it to stand 

and turn in place. 

Owing to the gyroscopic effect of the spinning flywheel, the static stability of the 
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robot is greatly improved. Dynamic disturbances due to surface irregularities act 

through or near the wheel's center of mass, producing minimal torques in roll, pitch 

and yaw. In terms of attitude control, the robot is relatively insensitive to fore/aft 

and side slopes. Although Gyrover has a number of advantages over traditional 

wheel robots, its complex dynamics characteristics (e.g. dynamic coupling between 

the wheel and the flywheel) bring certain challenging problems in modelling and 

control at the same time. We will further explain this in next part. 

Thus far, Gyrover is being controlled only manually, by using two joysticks to 

control the drive and tilt motors through a radio link. Even for human operators, the 

contol task of Gyrover is very difficult due to its inherent instability in its lateral 

(roll) direction. Consider a human riding a unicycle, the rider needs to concern 

the lateral stability of the vehicle. To keep steering the vehicle is also a problem 

since it does not have any proper steering mechanism visually, from the concept 

of gyroscopic precession, the rider needs to lean on one side to achieve steering. 

It would be difficult if the speed of the system is too slow for it to gain enough 

dynamical stability. 

In this thesis, our goal is to develop a semi-autonomous control system for Gy-

rover. As an extension of our work in [14], we model the human control skills in 

balancing and tiltup the robot in the vertical position using a machine learning al-

gorithm. By the success in implementing the learnt models, we develop a shared 

control framework for the robot in this thesis. This work is definitely unique and 

original from other related researches. 

First of all, we propose using a behavior-based control approach to breakdown 

the control problem of Gyrover. For each of the low level task (e.g. lateral bal-

ancing) ,although it is difficult to develop an accurate dynamic model, we observed 
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that human beings are excellent in mastering complex system such as car driving. 

Therefore, we use a model-free machine learning algorithm, Cascade Neural Network 

(CNN) with Node-Decoupled Extended Kalman Filtering (NDEKF), as a modelling 

tool for human control skill learning in Gyrover. Due to the limitation of the number 

of the sensors on board, it is impossible for us to implement navigation control at 

this moment. This limitation motivates us to develop a shared control framework 

for Gyrover, that is, while the operate is giving a navigation command, the robot 

will remain the lateral stability along the journey. This reduce the operator's effort 

in controlling the robot significantly. 

1.2 Related work 

The modelling of this highly coupled, dynamically stable system is a very challeng-

ing problem. Several researhers have been attemped to develop a dynamic model 

for the control of Gyrover. As a first step in modelling this complex system, a 3-

dimensional model of the wheel part of the Gyrover was developed and discussed 

in [2], utilizing the constrained Lagrangian principle for nonholonomic system. Im-

plementations of the equations of motion in a real-time graphic simulator and the 

simulation of the dynamic behavior of the wheel for different initial conditions and 

different gravitational effects were also presented in [2 . 

However, due to the motion between the flywheel and the robot is highly coupled 

with each other, it is necessary to consider the dynamics of the single wheel and the 

spinning flywheel at the same time. By taking the actuation of the flywheel inside 

the robot into account, the dynamic behavior and the nonholonomic constraints of 

the systems were also investigated [4 . 

The dynamic model developed in [2, 4] is further simiplify by decoupling the 
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model with respect to the control input. Based on the linearization, the motion 

control is decomposed into three parts: (1) controlling the rolling speed, (2) con-

trolling the tilting variable, and (3) a linear state feedback controller to control the 

lean angle of the robot, so as to track a circular path or a straight line [5]. Further, 

a line following controller for tracking any desired straight path is developed in [6 . 

The controller is divided into two parts : (1) velocity control and (2) torque control. 

Another version of the dynamic model of Gyrover is developed based on the 

Newton-Euler approach. The linearized model is used to develop a state feedback 

controller. The design methodology is based on a semi-definite programming proce-

dure which optimize the stability region subject to a set of Linear Matrix Inequalities 

that capture stability and pole placement constraints. Finally, the controller is com-

bined with the extended Kalman filter. [3 . 

Moreover, the dynamics and control for the robot to roll on an inclined plane is 

studied in [8, 9], The effect of internal pendulum motion and the inclination angle of 

the plane are also addressed. The condition of rolling up an inclined plane is figured 

out and different motion strategies are proposed when it has violated the rolling up 

condition. 

Finally, a complete different control approach is used in [14]. This was a prelimi-

nary work in abstracting the human strategy in controlling a dynamically stabilized 

robot. 

1.3 Thesis overview 

As mentioned in the previous section, the control of Gyrover is heavily relied on the 

dynamic model of the robot. However, due to the complexity of the system (highly 

coupled dynamics and nonholonomic nature), the proposed dynamic model is much 
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being simplified and thus incomplete. Many of our researches are still focusing on 

the dynamics and control of the robot. At the meantime, we are seeking for other 

modelling method which enables us to develop a control method for the robot. We 

found that machine learning is an alternative for us to achieve the goal since no a 

priori model is required for the learning process. 

Therefore, this thesis applies machine learning techniques towards abstracting 

and implementing the models of human control strategy in real Gyrover control. 

However, due the limited of sensors available on the robot, it is impossible for us 

to develop a fully autonomous system at this stage. To this end, with the idea of 

shared control, a degree of control can be shared to the machine. Therefore, in a 

shared control environment, the human operator will entirely responsible for the 

navigation control on the robot, while the machine will responsible for some local 

stability tasks. 

This thesis is organized as follows: 

• Chapter 2: Single wheel robot: Gyrover 

A detail description about the Single Wheel Robot will be given in this chapter. 

First of all, we introduce the history of the development of the robot. Next, the 

hardware components and the robot's concept are discussed. Later, we study 

the effects of the internal flywheel. Since the flywheel is a very important 

component in Gyrover, with a better understanding of the flywheel, a better 

control of the robot would result. Finally, we summarize some characteristics 

in Gyrover control which are different from the traditional mobile robots. 

• Chapter 3: Learning control 

Since Gyrover is a complex system in both dynamics and control, we have 
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many difficulties in deriving an accurate model for the robot by using tradi-

tional control method. Therefore, a model-free machine learning algorithm, 

an alternative control method, will be discussed in this chapter. Moreover, we 

propose using a similarity measure to validate the learnt models. 

• Chapter 4: Control architecture 

In this chapter, we propose using a subsumption architecture for controlling 

Gyrover in a complex environment. The subsumption architecture is a special 

case of behavior-based control for robotics. Behavioral modules are added as 

"layers" with each layer performing a complete behavior. We first decompose 

the control problem in Gyrover into many behavioral modules, to develop the 

subsumption architecture, low level behavioral modules are arranged at the 

bottom and those in higher level is built on top of lower levels. By using 

this approach, we are able to have a clear picture for the autonomous control 

problem in Gyrover. Later, we will discuss the behaviors we are going to model 

within the overall control structure. A detail discussion will be given in the 

last section of this chapter. 

• Chapter 5: Implementation of learning control 

The casade neural network models for the motions of lateral balancing and 

tiltup are implemented in this chapter. The models are validated by a simi-

larity measure first, by comparing the trajectories generated from the models 

and those from human operator. Next, implementation results of the individ-

ual models will be given. From the experimental results, we observe that each 

model is subjected to some initial condition. For instance, the tiltup model 

is unable to balance the robot into the vertical position after tiltup from the 
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ground. To address this problem, we combine the two motions into a single 

motion. Experiments show that the combined motion can fully recover the 

robot from the fall position and stabilized at the vertical position for a long 

period of time. 

• Chapter 6: Shared control 

Due to the complexity of the Gyrover system, we are unable to develop a fully 

autonomous system for the robot yet. Although a large portion of control is 

still rely on online human operator, in order to reduce the workload of the 

operator, we propose a shared control framework for Gyrover. To effectively 

and accurately distribute the workload in the control, a decision function is 

developed in a shared control system in this chapter. A number of experiments 

are conducted to verify the algorithm. 

• Chapter 7: Conclusion 

A summary of contributions of the thesis is given in this chapter. A number 

of suggestions for the future development of Gyrover are also included. 



Chapter 2 

Single wheel robot: Gyrover 

2.1 B ackgr ound 

Gyrover is a novel, single wheel gyroscopically stabilized robot, originally developed 

at Carnegie Mellon University, in August, 1992. 3 prototypes have already been 

developed. Figure 2.1 and Figure 2.2 shows the first and the second prototypes 

respectively. The latest model of Gyrover (the third generation) is shown in Figure 

2.3. 

In the literature, there are precedents for single-wheel-like vehicles. In 1869, R.C. 

Hemmings patented "Velocipede", a large wheel encircling the rider, powered by 

hand cranks. Palmer describes several single-wheel vehicles with an operator riding 

inside. A 1935 publication describes Gyroauto, which carried the riders between a 

pair of large, side-by-side wheels, and was claimed capable of a speed of 116 mph. 

In, a concept having a bus-like chassis straddling a huge central wheel was also 

described. 

Before the first prototype of Gyrover was developed, several alternative configu-

rations had been considered, such as, a spherical shape, two wheels side by side and 

outboard wheels configuration. However, most of the above designs do not exhibit 

9 
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natural steering behavior resulting from the interaction of the gravitational torque 

and the gyroscopic effect. The present concept, with all the sensors and instruments 

enclosed in the singlw wheel, provides a simple, reliable and rugged vehicle. 

# ij 
Figure 2.1: Gyrover I. Figure 2.2: Gyrover 11. 

Gyrover I has a diameter of 29 cm and a mass of 2.0 kg. It can be easily driven 

and steered by remote control, has a good high-speed stability on smooth or rough 

terrain, and can be kept standing in place. The main shortcomings of this robot are 

its lack of resilience and vulnerability to wheel damage, excessive battery drain due 

to drag on the gyro, inadequate torque in the tilt servo and incomplete enclosure of 

the wheel. Gyrover II was designed to address these problems. It is slightly larger 

than Gyrover I (34 cm diameter, 2.0 kg) and uses many RC model parts. Tilt-

servo torque and travel were approximately doubled. The robot contains a variety 

of sensors to monitor motor current, position and speed, tire and vacuum pressure, 

body orientation and gyro temperature. 

The latest version, Gyrover III, was designed on a larger scale to premit it to 

carry numerous inertial sensors and a computer (486PC) for data acquisition and 
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Figure 2.3: Gyrover III. 

control. This machine uses a lightweight 40 cm bicycle tire and rim and a pair of 

transparent domes attached to the axle. The overall weight is about 7 kg. This 

prototype is readily for us to implement some control algorithms into the robot to 

develop a semi/fully autonomous control system. However, vision is still not avaiable 

in this prototype yet. 

2.2 Robot concept 

The actuation mechanism in Gyrover consists of three seperate actuators: (1) a spin 

motor, which spins a suspended flywheel at a high rate, imparting dynamic stability 

to the robot; (2) a tilt motor, which controls the orientation of the flywheel; and (3) 

a drive motor, which causes forward or backward acceleration, by driving the single 

wheel directly. 

T = JujxQ (2.1) 

where T is the applied torque normal to the spin and precession axis, J is the wheel 

polar moment of inertia about the spin axis, oj is the angular speed of the wheel, 
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and Q is the wheel's precession rate normal to the spin axis. 

The behavior of Gyrover is based on the principle of gyroscopic precession, equa-

tion(l.l) , as exhibited in the stability of a rolling wheel. Because of its angular 

momentum, a spinning wheel tends to precess at right angles to an applied torque 

(classical gyroscopic pression). Thus, if a torque (T) is applied about the wheel's 

longitudinal axis, rather than falling over, the wheel precesses about the vertical 

axis, causing it to follow a curved path. If the wheel leans to one side, the gravi-

tationally induced torque causes it to precess so that it turns in the direction it is 

leaning, tending to stabilize its upright position. 

Gyrover supplements this basic concept with the addition of an internal gyro-

scope nominally aligned with the wheel and spinning in the direction of forward 

motion. The gyro's angular momentum produces lateral stability when the wheel 

is stopped or moving slowly. A tilt mechanism enables tilting the gyro's axis about 

the fore/aft axis with respect to the wheel. Because the gyro acts as an inertial 

reference in attitude, the immediate affect of the tilt action is to cause the wheel 

to lean left or right, which in turn causes the wheel to steer (precess) in the direc-

tion of leaning. Torques generated by a drive motor, reacting against the internal 

mechanism which hangs as a pendulum from the wheel's axle, produce thrust for 

accleration and braking. 

Gyrover has a number of advantages over multi-wheeled vehicles: 

1. The entire system can be enclosed within the wheel to provide mechanical and 

enviromental protection for the equipment and actuation mechanism. 

2. Gyrover is resistant to getting stuck on obstacles because it has no body to 

hang up, no exposed appendages, and the entire exposed surface is driven. 



CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 13 

3. The tillable spinning flywheel can be used to right the vehicle from its statically 

stable, rest position (on its side). The wheel has no backside on which to get 

stuck. 

4. Gyrover can turn in place by simply leaning and precessing in the desired 

desired direction with no special steering mechanism, which enhance maneu-

verability. 

5. Single-point contact with the ground eliminates the need to accommodate 

uneven surfaces and simplifies control. 

6. Full drive traction is available because all the weight is on the single drive 

wheel. 

7. A large pneumatic tire may have very low ground-contact pressure, resulting 

in minimal disturbance to the surface and rolling resistance. 

Although the robot offers tremendous potential applications, the robot concept 

also brings a number of challenging problems in modeling and control due to the 

following characteristics: 

• Dynamic coupling: It is a highly coupled dynamic system between the wheel 

and the flywheel because the flywheel is mounted on the rolling wheel through 

a 2-link manipulator. In fact, there is no actuator to control the roll angle of 

the robot directly, the system only allows us to control its roll angle indirectly 

by tilting the orientation of the spinning flywheel. 

• Nonholonomic constraints: The single wheel robot is subject to two nonholo-

nomic constraints: the first order and the second order nonholonomic con-

straints. The first order constraint is based on the assumption that the robot 
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rolls on a plane without slipping. The second order one is due to underactua-

tion in the roll direction. 

• Unstable in lateral direction: Similar to a single track vehicle such as bicycle 

or unicycle, the robot is inherently unstable in the lateral direction. 

• Gyroscopic stabilization: A characteristic of gyroscopic stabilization, not gen-

erally understood, is that the stability depends on the freedom to precess. For 

our case, a gyro with horizontal axis normally precesses about the vertical 

(yaw) axis when a torque is applied about the fore/aft (roll) axis. If the yaw 

precession is prevented by some obstruction, a yaw torque will be generated 

that completely negates the stabilizing effect, which makes the wheel to fall 

like a static, rigid body. If the precession is resisted by a yaw torque, the 

unpright attitude will decay as the wheel precesses, and it will fall slowly in 

the direction of the roll torque. 

These are the reasons why we prefer using a model-free approach to control the 

robot rather than classical control method which requires ultimate understanding 

about the dynamic properties of the system. 

2.3 System description 

In this section, details of Gyrover's sensing, actuating mechanisms and computing 

device are discussed. The latest model we are using currently is Gyrover III. It is 

built with a light-weight bicycle tire and rim and a set of transparent domes. It 

includes a radio system for remote control, on-board computer and a number of 

sensors to permit data-logging and on-board control of the machine's motion. 
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There are 3 actuating mechanism in Gyrover: (i) Gyro tilt servo, (ii) Drive 

motor, and (iii) DC gyro motor. Table 2.1 gives a detail description of each of them. 

Actuator Symbol Descriptions 
The tilt servo controls the relative angle of the gyro 

. spin axis with respect to the wheel axis. In fact, by 
Gyro tilt servo uq controlling the tilt servo, we are able to controls the 

lean angle angle of the robot indirectly. 
The robot forward/backward drive system uses a 2-

Drive motor Ui stage, tooth belt system to amplify the torque from 
the drive motor. 
This motor cause the internal gyro to spin at a der-

DC gyro motor u^ sirable operating speed, increase the angular momen-
tum of the gyro. 

Table 2.1: Table of different actuating mechanism in Gyrover. 

A number of on-board sensors have been installed on Gyrover to provide infor-

mation about the states of the machine to the on-board computer. The information 

includes: 

• Gyro tilt angle, fia 

• The servo current 

• Drive motor current 

• Drive motor speed 

• Gyro speed, % 

• Angular rate (3-axes: Roll-Pitch-Yaw), 7 and a 

• Accleration (3-axes: Roll-Pitch-Yaw), 7 and a 

• Robot tilt angle (Roll), f3 
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All these signals, plus the control inputs from the radio transmitter, can be read 

by the computer. A custom-built circuit board contains the control computer and 

flashdisk, interface circuitry for the radio system and servos, components and logic 

to control power for the actuators, and an interface for the on-board sensors. The 

on-board processing is performed by a 486 Cardio PC. 

In addition, several more sensors are planned to incorporate with our control 

algorithms in the near future. Visual processing capability or a Global Position-

ing System (GPS) is a big issue for the autonomous control, however, due to the 

structural limitation of the robot, we have not equipped the robot with this kind of 

device yet. 

2.4 Flywheel characteristics 

In this section, we are going to study how the orientations of the internal flywheel 

affect the Gyrover's motion. By having a better understanding of this problem, 

humans can control the robot more effectively. First of all, let's consider the case 

of a rolling disc, according to the fundamental equation for gyroscopic precession 

(2.1), the idea is illustrated in Figure 2.4. 

For instance, given that the disc is rolling on a plane at its upright position, if 

a torque is applied to the X-axis, an angular rate of precession will be induced at 

the y-axis. Therefore, rather than falling over, the disc will turn in the direction it 

is leaning, tending to stabilize its upright position. 

Gyrover is considered as a combination of three components: (1) a wheel, (2) 

an internal mechanism, and (3) an internal flywheel. The robot is so designed that 

the intial orientation of the flywheel is located at 0 �( / ？ ^ 二 0), with the spinning 

axis parallel to the pitch direction of the robot, Figure 2.5 and 2.6. Moreover, the 



CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 17 

Y 
‘ 0 二 Precession rate 

o 
J 二 Polar Moment of inertia 

Torque 

z 

Figure 2.4: The fundamentals of gyroscopic precession. 

orientation of the flywheel is bounded between ± 9 0 �A t the boundary conditions 

ifia — ±90°), the spinning axis of the flywheel will be paralleled to the yaw direction 

of the robot. 

Zb - spin axis I 7 

-90^ ^^^^^^ +90° 

flywheel's ^ ^ / 
tilt axis  

(Xb) \ 
\ flywheel 

REAR VIEW 

Figure 2.5: Flywheel's orientation is limited to ±90°. 

The high speed spinning flywheel, when installed in Gyrover, its angular momen-

tum can provide lateral stability when the robot is moving slowly or even remain at 

a stationary location. Consider that the flywheel is located at /3a = 0，if we applied 

a torque along the tilt axis (X5), from equation (3.1), a torque will be induced at 
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Y (yaw) Y (yaw) 

J h 
Z (pitch) ^ « 」 画 （ X (roll) ^ 麗 

REAR VIEW SIDE VIEW 

Figure 2.6: Coordinate frames of the Gyrover and the flywheel. 

the direction Y .̂ Since the flywheel is attached to the robot with the motion at YJ, 

is fixed, the torque results in the coupling motion between the yaw and roll axis of 

the robot. By this coupling motion, the gyroscopic torque from the flywheel can 

balance the gravitational torque which intend to make the robot fall down. 

However, when the flywheel's spinning axis is in parallel (or closely parellel) with 

the wheel's yaw axis, the torque produced by the flywheel will no more contribute 

to stabilize the wheel in the lateral (roll) direction. On the other hand, the torque 

will contribute to the internal mechanism of the robot which will cause undesirable 

motion to the whole system. This can be demonstrated by the following experiments. 

Besides the above problem, there is another disadvantage if the flywheel's spin-

ning axis is in parallel with the robot's yaw axis, i.e. when fia 二 士90�. Due to the 

hardware limitation, the tilt angle of the flywheel is bounded by: 

—90�<e>a< 90� （2.2) 

Consider that if/3a w 90°, since the flywheel cannot be tilted further beyond 90^, 
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lean angle of Gyrover 
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Figure 2.7: The effects of the flywheel in Gyrover. 

if the robot keeps falling on a particular side, the flywheel is unable to generate a 

sufficient torque to oppose the change, the robot will fall down eventually. The case 

is similar when /3a 
fti y u • 

Thus, during the control of Gyrover, we should avoid the flywheel to stay at or 

near ±90® as possible as we can. In other words, in order to stabilize the robot 

and to response to any disturbance in the lateral direction effectively, we should 

always keep the flywheel to remain at 0°. This can avoid the motion of the internal 

mechanism, which is undesirable, the flywheel is also able to provide maximum 

degree of freedom (DOF) to oppose any changes in the lateral direction of the robot. 

Here, we introduce a method to measure the DOF of the flywheel: 

DOF flywheel = 1 - "TT^“ (2.3) 
I Pa:max 

where 良 is the mean tilt angle of flywheel, Pa-.max is the maximum tilt angle the 
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flywheel can achieve (i.e. ± 9 0 � ) and 0 > DOFflywheel > 1. 

If DOFfly如heel is equal to 1, that means the flywheel is always located at the 

position. If DOFflywheel is equal to 0, implies that the flywheel is always located at 

±900，which is not desired. Therefore, under this measurement, the greater value 

of DOFfiyyjheeh the better control of the robot (flywheel) would result. For the 

experiments we conduct later, we use this measurement to evaluate the "quality of 

control" of Gyrover. 

2.5 Control patterns 

Conventional mobile robots constitute the following behaviors during navigation: (i) 

Obstacles aviodance, (ii) Object recognition (image processing behavior), (iii) Path 

planning, (iv) Path tracking, and (v) Wondering (randomly move around). Besides 

the traditional mobile robot behaviors, Gyrover has some other behaviors which are 

different from them. 

• Lateral balancing 

Lateral stability is the most basic problem of a single wheel vehicle, especially 

when the wheel does not roll, which is similar to a bicycle. The robot is 

inherently unstable in the lateral direction because there is no actuator which 

directly balance itself. However, since a spinning flywheel is mounted on the 

rolling wheel through a two-link manipulator, by tilting the internal flywheel 

into different orientation, we are able control the robot in the lateral direction 

indirectly. 

• Fall recovery 
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Fall recovery is an unique ability of Gyrover when compared with other mobile 

robot. Although the robot is unstable in lateral direction, which implies that 

it may sometimes fall on the ground, it is able to recover from the fall positions 

by controlling the orientation of the flywheel. Gyrover resists to get stuck on 

obstacles because it has no body to hang up, no exposed appendages, and the 

entire exposed surface is live. The wheel also has no backside on which to get 

stuck. 

• Heading control 

Since the robot do not have a proper steering mechanism, there is no direct 

control to the yaw direction for the robot. However, we can control the robot's 

heading direction by letting the robot to lean and precess until the desired 

direction is reached. 

Although these special features bring a number of challenging problems in a 

control point of view, the high dynamic stability and maneuverability of Gyrover 

motivate us to have a further study on the robot, and to develop a complete control 

architecture for this system. 



Chapter 3 

Learning Control 

Due to the complexity of the system, it is difficult for us to work out a 'complete' 

analytical model of it. Therefore, in this chapter, we propose using a machine 

learning algorithum, Cascade Neural Network (CNN) with node-decoupled extended 

Kalman Filtering (NDEKF), to model the robot's behaviors from human control 

strategy (HCS). 

3.1 Motivation 

Gyrover is a single track mobile vehicle which is inherently unstable in the lateral 

direction. With the lack of a wide polygon of support (single-point contact with 

the ground), Gyrover has a very bad static stability, even it has equipped with an 

internal gyroscope spinning at a high rate. The thin pneumatic tire which wrapped 

around the robot makes it difficult to stand in a stationary position for a very 

long time, it will fall on the ground eventually. However, by tilting the internal 

gyroscope into different orientations, we can indirectly control the lean angle of the 

robot, which implies that it is possible for us to keep the robot to stay around into 

its upright position with a proper control method. 

22 
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Previous researches of Gyrover have been focused on the dynamics and control, 

including the kinematic constraints and motion equations [2, 3，4, 5, 7, 8，9]. How-

ever, the robot concept brings a number of challenging problems in modeling and 

control because of the highly coupled dynamics, the nonholonomic constraints and 

the non-minimum phase behavior of the system. The proposed linear state feedback 

model in [5] only gurantees the local stability of the system. Moreover, the dynamic 

model derived has been based on many assumptions which may not be realistic. 

In [7], a linear state feedback controller is developed for stabilizing the robot to 

any desired angle, however, this model only applied for the case when the robot 

reaches at the steady state. By putting the consideration of the swinging motion 

of the internal mechanism, the model is modified in [8]. Unfortunately, the models 

obtained above are based on the assumption of rolling without slipping condition, 

that is, the robot must be rolling perfectly on the ground. Therefore, these models 

are not applicable for the static situation. In the static situation, the coupling 

between the wheel and the flywheel becomes much more complicated, which makes 

us difficult to derive an analytical model by traditional control method. 

On the other hand, humans are capable of mastering complex, and highly non-

linear control system, a typical example is car driving. For Gyrover control, humans 

are able to control the robot well if enough practices (trainings) are given. Thus, 

we intuitively come up with the idea of machine learning, a model-free approach to 

model this kind of human control strategy. This approach is suitable for Gyrover 

control for the following reasons: 

• Gyrover is a complex system which is difficult for us to develop a complete 

dynamic model to represent the robot's behaviors by using traditional control 
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method. 

• In a practical point of view, it is equally difficult to model the system precisely 

due to some unmodeled factors, such as friction. Friction is an important issue 

when we are dealing with the coupling between the wheel and the spinning 

flywheel. 

• Although Gyrover is a complex system, humans can control the robot through 

a radio transmitter to perform various kind of tasks, they do not need to 

explicitly model a system in order to control it. Through interaction with the 

system and observation of the behaviors of the system, humans are able to 

"learn" how to control a system. 

• The learning process is in fact a direct input-output mapping between the 

system sensory data and the actuation data. A controller is generated by 

using the training data while a human "teacher" controls the system until the 

synthesized controller can perform the same way as human. 

3.2 Cascade Neural Network with Kalman filter-
ing 

The field of intelligent control has emerged from the field of classical control theory 

to deal with applications which are too complex for classical control approaches. In 

terms of complexity, human control strategy lies between low-level feedback control 

and high-level reasoning, and encompasses a wide range of useful physical tasks with 

a reasonably well-defined numeric input/output representation. 

Here, we introduce a continuous learning architecture for modeling human con-

trol strategies based on neural network. Since most neural networks used today 
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rely on rigid, fixed architecture networks and/or with slow gradient desent-based 

training algorithms, which may not be a suitable method to model the complex, 

dynamic and nonlinear human control strategy. To counter these problems, a new 

neural network learning architecture is proposed in [11], which combines (1) flexible 

cascade neural networks, which dynamically adjust the size of the neural network 

as part of the learning process, and (2) node-decoupled extended Kalman Filtering 

(NDEKF), a faster converging alternative to backpropagation. This methodology 

has been proved which can efficiently model human control skills [13, 14] and human 

sensation [30 . 

First of all, let's discuss the architecture of cascade learning. In cascade learning, 

the network topology is not fixed prior to learning, hidden units are added to an 

initially minimal network one at a time. This not only free us from a prior choice of 

network architecture, but also allows new hidden units to assume variable activation 

functions. That is, each hidden unit's activation function no longer need to confine to 

just a sigmoidal nonlinearity. A priori assumption about the underlying functional 

form of the mapping we wish to learn are thus minimized. The whole training 

process is described below: 

1. Initially, no hidden unit exists in the network, only direct input-output con-

nections. These weights are trained first, to obtain a linear relationship, if 

any. 

2. With no further significant decrease in the RMS error {crms)^ a first hidden 

node will be introduced into the network from a pool of candidate units. These 

candidate units are trained independently and in parallel with different random 

initial weights by using the quickprop algorithm. 
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3. The best candidate unit will be selected and installed into the network if no 

more appreciable error reduction occurs, therefore, the first hidden node is 

produced. 

4. Once the hidden unit is installed, all the input weights of the hidden unit will 

be frozen, while the weights to the output unit(s) is/are going to train again. 

This allows for a much faster convergence of the weights during training than 

a standard multi-layer feedforward network. 

5. This process (from step 2 - step 4) is repeated until the crms reduces suffi-

ciently for the training set or the number of hidden units reaches a predefined 

maximum number. 

Figure 3.1 illustrates, for example, how a two-input, single-output network with 

a bias unit grows with increasing number of hidden nodes. 

established connection 
( J new node 
^ ^ new connection 

Q K , 0 K ( B \ 
/ \ add 1st hidden \ , / \ add 2nd hidden \ x ! \ and so on ) 

(S) (5) 
Figure 3.1: The cascade learning architecture. 

A cascade neural network with riin input units (including the bais unit), n^ 

hidden units, and riout, has n ĵ connections (total number of weights) where, 

riyj = ninUout + rihiuin + riout) + (jih 一 (3.1) 
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In fact, any multi-layer feedforward neural network with k hidden units arranged 

in m layers, fully connected between consecutive layers, is a special case of a cascade 

network with k hidden units with some of the weights equal to zero. Thus, this 

architecture relaxes a prior assumptions about the functional form of the model 

to be learnt by dynamically adjusting the network size. We can further relax these 

assumptions by allowing new hidden units to have different activation function. The 

kind of activation functions which reduces crms most will be selected during the 

process, Sigmoid, Gaussian, and sinusoidal function of various frequency are some 

of the available types of activation functions we can choose. 

While quickprop is an improvement over the standard backpropagation algorithm 

for adjusting the weights in the cascade network, it still requires many iterations 

until satisfactory convergence is reached. When combining cascade neural networks 

with node-decoupled extended Kalman filtering (NDEKF), [13] has shown that this 

methodology can solve the poor local minima problem, and that the resulting learn-

ing architecture substantially outperforms other neural network training paradigms 

in learning speed and/or error convergence for learning tasks important in control 

problems. 

3.3 Learning architecture 

Denote uj\ as the input-side weight vector of length at iteration k, for i G 

{0，1’... ’ Uo}, and, 

= = , (3.2) 
l̂ Uin + Uh z G {1 , . . . ,no) 

The NDEKF weight-update recursion is given by, (staring from equation (3.6) 
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to (3.9), {}，s, O's and []'s evaluate to scalars, vectors and matrics respectively) 

= + (3.3) 

where “ is the rvdimensional error vector for the current training pattern,讽 is 

the no-dimensional vector of partial derivatives of the network's output unit signals 

with respect to the ith unit's net input, and, 

此=pici (3.4) 
r "1—1 

Uo 
A, = (3.5) 

pu = (3.6) 

Pi = { I M I (3.7) 

where Q is the nj^-dimensional input vector for the ith unit, and PI is the x n^ 

approximate conditional error covariance matrix for the zth unit. The parameter r}Q 

is introduced in (3.9) to avoid the singularity problems for error covariance matrices, 

throughout the training, we use t]q = 0.0001 and rjp = 0.01. 

The vector ipl can be computed in this way: let Oi be the value of the zth output 

node, To be its corresponding activation function, netoi be its net activation, Th 

be the activation function for the current hidden unit being trained, and netn be 

its net activation. We have, 

BQ. 
= 0 , V Z ^ J (3 .8 ) 

onetoj 
QQ. 

o = V'o(netoi),i € { 1 , . . . ,no} (3.9) 
onetoi 

dO 
w - i - = WHi.T'o{netoi).r'H{netH"l (3.10) 
oneiH 

where Wni is the weight connecting the current hidden node to the zth output node. 
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3.4 Input space 

The cascade neural network architecture only offers a static mapping between the 

input and output. In fact, human control strategy is dynamic, we must map the 

dynamics system onto a static map. In general, we can approximate a dynamic 

system through a difference equation [13]: 

u{t-hl) = r[4t)，iZ(t —l),...，i2(t —71̂^ + 1)’无,对亡一1)，...’对亡_几1 + 1),乏(力)](3.11) 

where r( . ) is a mapping between a dynamic system onto a static one, u{t) is the 

control vector, x{t) is the system state vector, and z{t) is a vector describing the 

external environment at time t. Since vision system is not available on the current 

Gyrover prototype yet, the above equation is reduced to: 

u{t + 1) = r[权⑴，u{t — 1),. •.，財t - n" + x{t — 1) , . . . ’ 辨力一 + 1)] (3.12) 

The order of the dynamic system in (3.9) is given by the constant n^ and rix, 

which may be infinite. Therefore, by providing enough time-delayed histories of the 

state and command vectors of a system, a static model is able to abstract a dynamic 

system. For Gyrover, the HCS model will require: 

1. current and previous state information (e.g. lean angle of the robot, 

tilt angle of the flywheel), 

X=[p Pa P i a 4 0 -f a 

2. previous human operator's control information, 

- 1了 U =-- U.o Ui 
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Let's denote the HCS model's input space for Gyrover as, 

{ r ， ， h , , … , ！ ^ : ， r ， r ' , … ， u r } , 

(3.13) 

n i > 0 , i e { 1 , 2 , . . . , 12}, 

rii is the number of time-delayed histories of a particular input variable. The above 

expression can also represent as, 

S〜二 [2(亡一71�+ 1).. .2(亡一1)5 ⑷严 E e { x u} (3.14) 

The total number of inputs riin is given by, 

12 

riin = (3.15) 
i二 1 

S will be ommitted from equation (3.14) if n̂  = 0. For instance, u^} 

represents a model whose input space consists of three previous lean angle {(3) and 

tilt angle {/Sa) information, and together with five history tilt motor commands (ui). 

For the sake of convenient, we will S6t n^； = rii 二 n) = ... == nio, and n^ = rin = nu. 

Therefore, 

,公“"} = , PcTr, h , ， ， 台 ： ， (3.16) 

riin = lOn,； + 2nu (3.17) 

3.5 Model evaluation 

The main advantage of modeling robot's behaviors by learning, is that no explicit 

physical model is required, however, this also presents its biggest weakness. Since 

a model is trained by the input-output relationship only, the lack of a scientific 

jusitification degrades the confidence that we can show in these learnt models. This 
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is especially true when the process we are going to model is dynamic and stochastic 

in nature, which is the case of human control strategy. For a dynamic process, errors 

may feed back into the model to produce outputs which are not characteristics of 

the original process or making the process to be unstable. For a stocastic process, a 

static error criterion such as RMS error, based on the difference between the training 

data and the predicted model outputs is inadequate to gauge the fidelity of a learnt 

model to the source process. 

In general, for different models, the similarity between a dynamic human con-

trol trajectory and a model-generated one will vary continously, from completely 

dissimilar to nearly identical. Furthermore, one cannot expect exact trajectories for 

the system and the learnt model, even equivalent initial conditions are given. To 

effectively evaluate the learnt models, we introduce a stochastic similarity measure 

proposed in [12]. This method is based on Hidden Markov Model (HMM) analy-

sis, which is a useful tool for comparing stochastic, dynamic and multi-dimensional 

trajectories. 

Hidden Markov Model is a trainable statistical model, which consists of a set of 

n states, interconnected by probabilistic transitions, each of these states has some 

output probability distributions associated with it. A discrete HMM is completely 

defined by, 

A = {A,B,7r} (3.18) 

where A is the probabilistic Ug x rig state transition matrix, B is the L x Ug output 

probability matrix with L discrete output symbols I G {1,2,...,!/}，and TT is the 

n-length initial state probability distribution vector for HMM. Two HMMs (Ai and 
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入2) are said to be equivalent if and only if, 

P(0|Ai) 二/̂ (0|A2),V0 (3.19) 

We prefer discrete HMMs than continuous or semi-continuous HMMs, because 

they are relatively simple in computation and less sensitive to initial random param-

eter settings. However, the human control trajectories we are going to measure are 

continuous and real-valued functions, in order to make use of the discrete HMMs, 

we must convert the data sets into sequences of discrete symbols On by the following 

procedures: 

1. Normalization 

2. Spectral conversion 

3. Power Spectral Density (PSD) estimation 

4. Vector quantization 

The purpose of step (1) - (3) is to extract some meaningful feature vectors V for 

the vector quantizer. In step (4), the feature vectors V are converted to L discrete 

symbols, where L is the number of output observables in our HMMs. 

In general, assume that we are going to compare the obervation sequences (Oi 

and O2) from two stochastic processes (Fi and [2). The probability of the observa-

tion sequences Oi given the HMM model Aj, is given by [12], 

= i , i G { l , 2 } (3.20) 

where the above equation is being normalized with respect to the total numbers of 

symbols 
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The similarity measure a between Oi and O2 is, 

w a，仏） = \ / S S (3.21) 

Figure 3.2 illustrates the overall approach to evaluate the similarity between two 

observation sequences. The HMMs are trained by each observation sequence first, 

then we cross-evaluate each observation sequence on the other HMM. Based on the 

four normalized probabilies, the similarity measure a can be obtained. 

—o�\ 

\ / HMML: 

y 巧’而 

/ \ HMM2: X2 “ “ 

~ I 
Figure 3.2: Similarity measure between Oi and O2. 

Here, we demonstrate an example of how this similarity measure works. Figure 

3.3 shows four Gyrover control trajectories. Figure 3.3(a) and 3.3(b) correspond to 

the tiltup motion control, while Figure 3.3(c) and 3.3(d) correspond to the lateral 

stabilization control of Gyrover. We applied the HMM similarity measure across 

these four trajectories, we might expect that the trajectories of the same motion 

should have a relatively high similarity, for any two trajectories which generated 

from different kinds of motion should have a low similarity value. We summarize 

the results in Table 3.1. 

From the Table 3.1, it is clear that this similarity measure can accurately classify 

dynamic control trajectories from the same type of motion, while discirminating 
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Figure 3.3: Control data for different motions. 

“ Tiltup # 1 Tiltup # 2 Vertical stab. # 1 Vertical stab. # 2 
—Tiltup # 1 1.000 0.6306 0.0524 “ 0.1234 
"Tiltup # 2 0.6306 1.000 0.0615 — 0.0380 
"Vertical stab. # 1 0.0524 0.0615 1.000 — 0.4994 
—Vertical stab. #2 0.1234 0.0380 0.4994 1.000 

Table 3.1: Similarity measures bewteen different control trajectories. 
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those from different motions by giving a low similarity value. This similarity measure 

can be applied towards validating a learned model's fidelity to its training data, by 

comparing the model's dynamic trajectories in the feedback loop to the human's 

dynamic control trajectories. 

3.6 Training procedures 

Fist of all, we have made two assumptions for the training data provided for the 

learning process: 

1. Reliable training set. Since learning is a kind of high-level, model free 

"teaching by showing" approach, the stability or robustness of the learnt model 

is heavily depended upon the operating skills of a "human teacher", in order 

to provide reliable and stable control. Therefore, throughout the teaching 

process, we assume that the operator is skillful and experienced enough to 

master the robot. That is, the training data can fully reflect the skills in 

a particular robot behavior. Besides the quality of the training data, the 

quantity of the data points is equally important. If the training set is in a 

larger scale, a more complete skill can be described. 

2. Injective mapping. Another important issue is about the mappings between 

inputs and outputs in a static map. Figure 3.4 shows a human control strategy 

for the lateral balancing behavior, it is not difficult to figure out that the 

control of the flywheel is always switching (a very sharp change). That is, 

at a short moment ago, the command is positive, but in the next moment, 

the command will change into negative. Unfortunately, the switching problem 

causes very similar inputs to be mapped to a radically different outputs, which 
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is difficult for the cascade neural network to adapt, Figure 3.5. To ensure 

that there will be a correct mapping, enough time-delayed histories should be 

provided in the training data set. In our cascade network training, we will 

provide at least 20 history data (n^ > 20) to guarantee the injectiveness of the 

mapping. 

Change of control to tilt motor (verticle stabilization) 
101 1 1 1 i 1 1 1  

8 - -

6 - -

4 - I -

-4 - -

- 6 - -

- 8 - -

_io' ‘ 1 1 1 1 1 1  
0 5 10 15 20 25 30 35 40 

time(sec) 

Figure 3.4: Switchings in human control of flywheel. 

For each model, we process the training data as follows: 

1. Removal of irrelevant data 

Let [f, t + tm] denotes an interval of time, in seconds, that a human operator 

has given an inappropriate command during the experiment. Then, we cut 

the data corresponding to time interval [t — 1, f + f^] from the training data. 

In other words, we not only remove the irrelevant data from the training set, 

but also the second data leading to the inappropriate command time interval. 
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Input space Output space 

Figure 3.5: Similar inputs can be mapped to extreme different outputs if switching 
occurs. 

This ensures that the cascade model does not learn control behaviors that are 

potentially destabilizing. 

2. Normalization 

We normalize each input dimension of the training data, such that all the 

input in the training data falls inside the interval [—1,1 . 

3. Generate time-shifted data 

As mentioned in the previous section, we need to provide enough time-delayed 

values of each state and control variable such that the model is able to build 

necessary derivative dependencies between the inputs and outputs. In our 

cascade network training, we will provide 20 history data. 

4. Randomization 

Finally, we randomize the input-output training vectors and select half for 

training, while reserving the other half for testing. 

The sampling rate of the training data is 40Hz, typical training set will consist 

of approxiamtely 10,000 data points. 



Chapter 4 

Control Architecture 

In this chapter, we will introduce the overall control architecture of Gyrover. Since 

the behavior-based control is widely used in mobile robot applications, we attempt to 

apply this control architecture into the Single Wheel Robot control system. Based on 

this concept, layers of control system are built to let the robot operate at increasing 

level of competence. By building this architecture, it gives us a clear picture to 

develop a complete control system for the robot. 

4.1 Behavior-based approach 

Behavior-based approaches have been established as a main alternative to conven-

tional robot control in the recent years. Due to their modular architectures, these 

approaches provide high flexibility, while limiting complexity of individual modules. 

Each behavior in the system can be implemented and tested independently. Fur-

thermore, they meet real-time requirements in a dynamic enviroment by creating a 

tight coupling between sensing and acting. 

38 
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4.1.1 Concept and applications 

A behavior-based approach has many advantages over traditional methods of con-

trolling autonomous mobile robots. Traditional approaches decompose the overall 

problem into a set of functional units such as perception, world modeling, plan gen-

eration, etc. These functional units are linked sequentially that creating a linear 

datapath from sensory transducers to motor actuators, as shown in Figure 4.1. 

Various sensors information • 

I raw data 

—一——--…， 

Perception 

Modelling 

I Planning — 

i | 
Execution J g 

Control 

_ I 
内 commands 

I Actuators 

1， _— _ 3 

Figure 4.1: Conventional approach of a mobile robot control system. 

That is, a robot first senses, perceives, and models its environment, and then it 

plans and acts in its environment. Since the world has plenty of information to ac-

quire, this traditional method leads to information overload, which makes the robot 

incapable in functioning real time. Moreover, conventional methods assume the 

robot itself can construct accurate, global world models from the incoming sensory 
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information. The facts such as a rapidly changing world, limited processing power 

of the system, and inaccurate, incomplete sensor models make this assumption to 

be failed. 

In contrast, a behavior-based approach solves the control problem in a parallel 

fashion, Figure 4.2. Each behavior, acting concurrently with other behaviors, only 

extracts the information required to complete a given task from the environment at 

a given time, which greatly avoid the information overload problem. This kind of 

division of labor method also eliminates the need for construction and maintenance 

of a global world model, which further reduces the computation load of the system. 

一 i Aviod obstacles | 

Identify objects i 

I � i � h 
I I raw data Path Planning | commands w | 

I s { ^̂mmr̂^ I ^ ' ^ 5 i 
I I Explore I “ < y 
\ s! \ \ 

Maps building 

Wandering , 

� 
V ) 

Y 
behavior-based modules (tasks) 

Figure 4.2: Behavior-based approach of a mobile robot control system. 

Another advantage of the behavior-based approach is that it enables us to create 

layers of increasingly complex behaviors. The higher level behaviors can inhibit or 

modulate lower level behaviors. Therefore, a robot control system can be incremen-

tally built with increasing capabilities, without losing low-level capabilities which 

are already created. 

Behavior-based approach conveys significant contributions in the control of robotic 
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systems, a wide-range of robotic systems have applied this control architecture. The 

examples below illustrate the advantages of the applications of the hierarchical, 

behavior-based control in various kinds of autonomous systems: 

• Autonomous flying vehicle control 

The University of Southern California Robotics Research Laboratory has de-

veloped an Autonomous Flying Vehicle-I (AFV-I) [18, 21]. A behavior-based 

control architecture was introduced for this autonomous flying vehicle. The 

behaviors of the robot are organized hierarchically, with low level, reflexive 

behaviors responsible for craft survival and high level behaviors responsible 

for tasks such as navigation and object location. The control system utilizes 

the sensors on AFV-I to make it to remain stable during the flight, navigation 

to a target, and to manipulate a physical object. The AFV-I had won the 

first-place in the International Aerial Robotics Competition in 1994. 

• Planetary autonomous robot control 

In [16], [20] and [28], behavior-based control approach is applied to the field 

of planetary exploration. [16] presents a very small, legged robotic system, 

called the Mars Micro-Rover. The behavior-based architecture breaks down 

the Micro-Rover locomotion problem into many subtasks, from low level tasks 

(motor activities), medium level tasks (e.g. leg control) to higher level tasks 

(e.g. 'increase-ground-clearance').This mirco robot serves as a testbed to eval-

uate the performance potential of small legged robotic systems and their con-

trol architectures. 

Research groups of the Jet Propulsion Laboratory in California had imple-

mented the behavior control algorithm in several microrover prototypes [20, 
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28]. The control systems of these microrovers integrate information from dif-

ferent sensors and encoders which report on the state of the articulation of the 

rover's suspension system and other mechanics, a homing beacon, a magnetic 

compass, and contact sensors. The robot is able to perform variety of useful 

tasks, such as soil sample collection, spectral imaging, and sample returns. 

• Multi-robot system 

A multi-robot system is a system which consist of several autonomous robots 

working together to achieve a common goal. The most challenging problem of 

this system is how to effectively control a group of robots to perform a specific 

task and avoid collisions within the group. In [19], an approach is presented 

which is based on the master-slave type of control with dynamically selected 

'master'. The implementation of the control system is a behavior-based, while 

the subsumption architecture is extended over a group of robots. 

A behavior-based formation control for multi-robot teams is presented in [24 . 

The formation behaviors are integrated with other navigation behaviors which 

enable a robotic team to reach navigation goals, to aviod hazards and remain 

in formation at the same time. The behaviors are implemented on robots in 

laboratory and aboard ummanned ground vehicles. 

• Mobile manipulation 

A control architecture for mobile manipulation within a behavior-based frame-

work, so called Mobile Manipulation Control Architecture (MMCA), is given 

in [26]. The control structure enables integration of the manipulator into a 

behavior-based control structure for the platform. This concept has imple-

mented on a Puma560 arm which is mounted on a mobile platform. 
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Behavior-based control approach is well suited in Gyrover control for the follow-

ing reasons: 

• Multiple Goals: Since Gyrover has plenty of potential applications, it is neces-

sary for the robot to perform multiple tasks simultaneously. It may require to 

reach a certain distance ahead while avoiding local obstacles. Moreover, often 

the relative importance of the goals will be context-dependent. For this kind 

of statical unstable vehicle, it is necessary to keep the robot remains stable in 

the lateral direction in all sense, whether the vehicle is in a static or dynamic 

status. The control system must be responsive to high priority but low level 

goals, e.g. lateral stability. 

• Multiple Sensors: A number of on-board sensors have been installed on Gy-

rover to provide information about the state on the machine to the control 

computer. In reality, all sensors have an error component in their readings, 

and they will often give inconsistent readings. In a behavior-based architec-

ture, not all sensors are required to feed into the central representation, only 

those with extreme reliability might be eligible to enter the central unit. 

• Robustness: When some sensors on-board are failed, the robot should able to 

adapt and cope with the changes based on those remaining reliable sensors. 

The subsumption architecture can ensure that a degree of the behaviors is still 

functioning even some of the higher level modules has failed. 

• Extensibility: Since more sensors and capabilities may be added into the sys-

tem in the future, the existing control structure should be flexible enough for 

the builders to modify it. 



CHAPTER 4. CONTROL ARCHITECTURE 44 

4.1.2 Levels of competence 

A level of competence is an informal specification of a desired class of behaviors for 

a robot over all enviroments it will encounter. A higher level of competence implies 

a more specific desired class of behaviors, each level of competence in fact includes a 

subset of each earlier level. Since each level defines a class of valid behaviors, it can 

be seen that higher levels provide additional constraints on that class. The key idea 

of levels of competence is that we can build layers of control system corresponding 

to each level of competence, by simply adding a new layer to an existing level, the 

capability of the existing set will be increased. 

For instance, at the very beginning, we start by building a complete robot control 

system at the lowest level of competence. Since this layer represents the most basic 

task for the robot to execute (e.g. avoid hitting any obstacles), this layer is debugged 

thoroughly. Once this layer is completed, we never alter that system. Next, we build 

another control layer, which we call it the medium level control layer. This medium 

layer is able to examine the data from the lower level layer, and it also allows to 

inject data into the lower level which supresses the normal data flow. When the 

system is running, the lower layer continues to run unaware of the layer above it 

which may sometimes interferes with its data flow. 

In such a way, additional layers can be added later, and the initial fundamental 

working system never needed to be altered. The same process is repeated in our 

design in order to achieve higher levels of competence for the system, as shown in 

Figure 4.3. This architecture is being well-known as a sub sumption architecture. We 

will base on this idea to develop a behavior-based controller for Gyrover in the next 

section. 
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Figure 4.3: A subsumption architecture. 

4.2 Behavior-based control of Gyrover: architec-
ture 

For building an autonomous control structure for Gyrover, we must first figure out 

the tasks which the robot can perform. By understanding the applications of the 

robot, we are able to list out some behaviors of the robot, and then we are going to 

design a behavior-based control architecture for Gyrover. 

The Gyrover appears to be well suited in two classes of tasks: survey and trans-

port. As a surveryor, Gyrover might carry a videocamera or other instruments for 

non-contact sensing, and survey broad regions at close range while travelling at high 

speed. Gyrover could be driven remotely, providing video data to seek out and ex-

plore sights for landing or construction, or paths for road construction. When the 

robot is equipped with some special sonsors on board, it is able to measure soil 

properties through the tire tread. As a transporter, Gyrover could carry equipment, 

materials or personnel. Because of its high dynamics stability, Gyrover can deliver 

tools or medical supplies rapidly. Moreover, the ability of fall recovery gives Gyrover 
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robustness and a high degree of survivability. The ability of Gyrover to travel on 

soft surfaces and water opens intriguing possibilities for an amphibious vehicle on 

earth. 

Conventional autonomous mobile robots control usually focus on navigational 

problems such as goal seeking, path planning, obstacles aviodance and even speed 

control. Since they have a broad ploygon of support, they are very stable statically, 

and can tolerate large slopes without roll-over. However, due to the single-wheeled 

configuration together with the special steering and propulsion mechanism of Gy-

rover, the locomotion properties of this robot are slightly different from traditional 

quasi-static mobile robot. Although its slim profile can improve the maneuverability 

and can find obstacle-free paths more easily, the problem of low-speed stability is 

the one we need to tackle with in Gyrover control. 

Gyrover consists a set of sensors (N, inputs) to perceive the environment, some 

actuators (U, outputs) to modify the enviorment or the robot's position, and to-

gether with a digital control system, which is equipped with some memory Z. From 

a mathmatical point of view, mobile robot control appears to be simple, theoreti-

cally, it is a mapping between the sensors Ui and the actuators Ui with a function f 

with respect to an internal memory state Zi, as the following equation denotes: 

f ‘ Oi，Zi) — {ui, Zi) or (Ui, Zi) = f{ni, Zi) (4.1) 

However, the above transformation is usually quite complex and highly non-

linear in real application. The dimension of sensor input N can be very high, but 

the dimension of actuator output U is typically small, or sometimes the internal 

state space dimension which is needed to perform a task is not even known. In 

general, we are unable to obtain a closed form representation for the function / . 
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By the way, we can reduce the complexity of the system by splitting the domain 

and dividing the problem into several sub-tasks (behaviors). Therefore, the problem 

becomes: 

'fi{n, z) if (n, z) is in Bi 
( … �二 /2(n，z) if (n , , ) is in 52 (4.2) 

Jn{n,z) if (n,z) is in B^ 

where Bi represents a specific behavior of the robot. 

The above expression can be further expressed as: 

{u, z') = h(n, z) U /2(n, z) U . . . U /n(n, z) (4.3) 

In fact, the sensor input, the actuator output and the amount of internal memory 

need not to be the same for each fucntion / “ we have: 

(U,之'）=fl(nuZi) U /2(722’ 2：2) U . . . U / n K , Z^) (4.4) 

Therefore, each fi is responsible for a mapping between sensors and actuators in 

a specific behavior subset. The number of sensors required in each fi is not necessary 

the same as the others, which avoid data overflow for the system. Equation (4.4) is 

already the idea of a behavior-based control architecture. 

Based on the discussions in the previous sections, we are able to build a prilim-

ilary structure for Gyrover autonomous control. An overview of the control archi-

tecture is shown in Figure 4.4. 

At the lowest level, the behaviors (reflex behaviors) implement very tight reflex 

loops. The task of each individual loop is very simple but essential. For instance, 
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Figure 4.4: The overall control architecture. 

the tiltup module responsible to tiltup the robot into the vertical upright position 

whenever the robot has fallen on the ground, which we hope the robot can perform 

this behavior even it cannot reach its higher level goal. 

The medium level behaviors assume that the lower level behaviors are behaving 

with some degree of competence, they do not affect the outputs to the actuators 

directly but modulate the lower level behaviors. The behaviors in this level is also 

called the short-term behaviors, such as path tracking. 

The high level behaviors is responsible for achieving some long term goals. The 

goal can be moving towards a target or searching for a specific target in a place. The 

planner, which is a much higher level module, is responsible for generating a set of 

subgoals to accomplish the entire task. This is done by activating the appropriate 

set of behaviors, and initiating the correct set of parameters. 

At a very first step in building a behavior-based architecture for Gyrover control, 
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let we decompose the whole control task of Gyrover into several behaviors. We 

classify the behaviors of Gyrover into different levels: low, medium and high. The 

behaviors in the low level are (i) Lateral balancing, and (ii) Tiltup from the fall 

position. Medium level includes (iii) heading control, and (iv) obstacle avoidance. 

Behaviors such as (v) path planning and (vi) path tracking, are consider as high 

level behaviors. 

In this way, based on the framework in Figure 4.4, we develop a behavior-based 

control structure for Gyrover. In Figure 4.5, most of the individual behaviors are 

shown, as well as the primary informational links. 
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Figure 4.5: A detailed structure of the behavior connectivity in Gyrover control. 
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4.3 Behavior-based control of Gyrover: case stud-
ies 

In order to develop an autonomous control scheme for Gyrover, we must deal with 

its lateral instablility problem, especially when the robot is in a static position (i.e. 

the robot does not roll). Recall the behavior-based control architecture we have 

developed in the previous section, we pick out the low-level behaviors module from 

the structure for further discussions, as shown in Figure 4.6. 

• Lateral balancing  

^ 、 广 -S 

sensors H tilt servo 
V ^ J V J 

\ = t ^ “ ^ robot 

r ^  
Gyrover H  w 

Figure 4.6: The low-level behaviors layer in the overall control architecture. 

The shaded blocks in Figure 4.6 are the behaviors we desire the robot to perform 

in the first level of competence within the subsumption architecture, (i) Lateral 

balancing, and (ii) Tiltup motion. Therefore, if we can model these two behaviors, 

the statically unstable problem could be solved for Gyrover. 

Humans are able to control the robot to perform complicated motions which 

are difficult to model in a mathmatical point of view. Therefore, we propose to 

approximate this human control capability using a "teaching by showing" approach 

13，14’ 15:. 
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4.3.1 Vertical balancing 

Similar to the single track vechiles, Gyrover is inherently unstable in the lateral 

direction. The robot can easily fall down especially when its rolling speed is low or 

even it is not rolling. Fortunately, by tilting the internal flywheel, the coupling effect 

at yaw and row direction can somehow stabilize the robot in the vertical position. 

Therefore, we are seeking some control method to stabilize the robot in order to keep 

/3 w 90® for low speed as well as high speed operations. In Figure 4.7, under the 

control of human operator, the robot is able to stay roughly at 90® in a 50 seconds 

experiment. 
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Figure 4.7: Lateral balancing at the vertical position (90^) by human control. 

average lean angle DOFflywheel 
Human control 89.32� 0.9600 

Table 4.1: Performance of human operator in verticale stabilization 
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Table 4.1 summarized the robot status throughout the experiment. The operator 

can control the robot to stay at around 90�while reserve a high degree of freedom 

for the flywheel. Thus, this motion is selected as one of the behaviors we are going 

to "teach" the robot. 

4.3.2 Tiltup motion 

Tiltup motion is refered to the behavior that the robot recovers from the fall position 

( a 20�）back to the upright position ( c 90�），which is an unique behavior of 

Gyrover over traditional multi-wheels mobile robots. In [14], a tiltup motion which 

is constituted by the control of the drive motor 以o and tilt motor ui simultaneously 

is introduced. However, we found that the tiltup motion in [14] brings a number of 

problems in applications: (1) require a large space to perform this motion, (2) the 

final heading direction a is unpredictable, and (3) it takes a longer period of time to 

complete. Thus, we modified the previous tiltup motion by considering the control 

of flywheel only. Figure 4.8 shows the performance of the modified tiltup motion. 

In Figure 4.8, the robot is orginally lying on the ground with lean angle at 

20。，1 second later, the operator changed the orientation of the flywheel and the 

robot is back to its upright position a moment later. The drive motor command is 

kept constant at the 0 position implies the robot is not moving neither forward nor 

backward.The modified motion outstands the previous one for the following reasons: 

• Takes shorter time to finish 

• Not much space is needed because the robot can be tiltup at nearly the iden-

tical position 

• Heading direction is predictable since the heading direction before and after 
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Figure 4.8: Modified tiltup motion by human control, 

tiltup does not vary too much 

• Internal pendulum motion is avoided 

Therefore, besides the motion of lateral stabilization, the modified tiltup motion 

is another behavior which we are going to let the robot to learn from human. 

4.4 Discussions 

From the behavior-based architecture we obtained in the previous section, we can 

recognize that the entire control task is decomposed into many sub-tasks which 

located at different levels within the structure. 
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Low-level behaviors 

As mentioned in the earlier section, Gyrover is inherently unstable and underactuate 

in its lateral direction, the stability is improved when the robot is equipped with an 

internal gyroscope spinning at a high rate. By controlling the orientations of the 

internal gyroscope, we are able to stabilize the robot into its upright position even 

the robot is not rolling. For the case when the robot has fallen onto the ground, it 

is able to tilt-up by itself. Therefore, the lateral balancing behavior and the tiltup 

motion constitute the basic level control of Gyrover. 

This lowest layer of control makes sure that the robot can maintain its lateral 

stability in a static condition (when the wheel does not roll) and can recover from 

fall. Therefore, no matter the robot is rolling or not, once the control is activated, 

we suppose the robot will keep standing upright. This complete the first level of 

competence in the control structure. 

Mid-level behaviors 

The mid-level layer of control, when combined with the low-level layer, the robot can 

move around without hitting obstacles while it can still maintain its lateral stability, 

and will recover from the fall positions when the robot falls down. Besides the direct 

actuation of the drive motor in the heading control module, the behaviors in this 

layer only affect the system by modulating the low-level reflex behaviors. This was 

defined as second level of competence in this architecture. 

If an obstacle is detected by the robot in a certain range, the Obstacle Avoidance 

module will generate a command to modify the robot's heading direction in the 

Heading control module, so that the robot will not get hit on the obstacle. 
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High-level behaviors 

This level is meant to add an exploratory mode of behavior into the robot. The 

decisions made in this layer are some long-term goals relative to that of the former 

layers, for example, to find an obstacle-free path to reach a distance location from 

the current location. Although a map is necessary to cope with this module in order 

to generate a desired path within a region, vision is not the only way to generate 

such a map, other alternatives such as a GPS may also be used. The commands 

generated from this layer will also suppress the lower level module to accomplish 

the third level of competence in this system. 

In addition, there is an external module to monitor the robot's actions, called 

the planner, appeared in the top left corner in Figure 4,5. The planner is responsible 

for producing the set of actions that achieve a certain goal for the robot. For each 

stage in the plan, the appropriate set of behaviors are activated. This unit can be 

an on-board unit or can be a tele-operating unit. 

Although we are still in an early stage to complete the mid-level and high-level 

layers based on the current system we are using, it is worthwhile to develop such 

an architecture for us to build a fully-autonomous control system for Gyrover in the 

near future. 

In summary, the behavior-based approach is suitable for Gyrover control for the 

following reasons : 

• This control system is able to respond to high priority goals (e.g. path plan-

ning), while it can still servicing necessary low-level goals (e.g. the lateral 

stability) 

• This subsumption architecture enables us to extend the whole system into a 
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more complete one if we have explored other tasks for the robot to perform in 

the future. 

• If some of the modules in higher level are failed to work properly, the robot 

can still perform some low-level instinct behaviors. 

• Numerous inertial sensors and a mirco-computer is begin built on board in 

the third prototype of Gyrover. If all the sensors data are fed in each of the 

sub-task controller, the computational time for each response will increase 

significantly. 

• Since Gyrover is designed for general transportation, exploration, rescue or 

recreation. Individual layers can be working on individual goals concurrently. 

This subsumption architecture leads us the idea of share control (semi-autonomous 

control) for Gyrover, which will be discussed in Chapter 6. 



Chapter 5 

Implementation of Learning 
Control 

In this chapter, we show the implentation results of the CNN models trained in the 

previous chapter. First of all, we validate the CNN models we obtained by applying 

a Hidden Markov Model based similarity measure. Next, for the experimental im-

plementations of the CNN models, we evaluate the performance of these models by 

observing the lean angle of the robot and the overall control on the flywheel. Later, 

we combined the two motions into a single motion. This combined motion ensures 

that the robot can be fully recovered from the fall position back and balanced at its 

upright position. 

5.1 Validation 

In this section, we will evaluate each of the model generated by the cascade learn-

ing algorithm for different behaviors of the robot, including lateral stabilization 

and tiltup motion. We apply the similarity measure mentioned in Section 3.2.4 to 

quantify the level of similarity between the original human control data and the 

model-generated trajectories through simulations. Since we do not have a physical 
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model for these kind of motion for Gyrover, our simulations are done by feeding the 

current and history state variables and control information into the cascade neural 

network, to see if it can generate similar control output in each time instant. 

Basically, we have two motions to learn: (1) Lateral balancing (i — 1), and 

(2) Tiltup (i = 2). For each motion, we give three different set of data for the 

simulation. For notation convenience, let X �, i G {1 ,2 } , j G {1,2，3}, denote the 

run of different motions i in trail 

5.1.1 Vertical balancing 

Figure 5.1, 5.3 and 5.5 show three different vertical balanced motion by human 

control. The graph on the left of each figure is the plot of lean angle data (/?), while 

the right one plots the orientations of the flywheel (J3a), The corresponding human 

control data and CNN model control data for X(i’i), X(i’2) and X(i’3) are shown 

in Figure 5.2, 5.4 and 5.6 respectively. We perform the similarity measure between 

the human control and CNN model control trajectories for each motion, the results 

are summarized in Table 5.1. From the performance of this vertical balancing CNN 

model, we can observe that the model can generate similar control trajectories as 

human operator, with an average similarity value of 0.5940. 

similarity a 
0.5885 
0.6235 -

X(i’3) 0.5700 -
average 0.5940 

Table 5.1: Similarity measures for vertical balanced control betweem human and 
CNN model 
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Figure 5.1: Vertical balanced motion by human control, X(i’i). 

Human control trajectory 
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Figure 5.3: Vertical balanced motion by human control, X(i，2). 
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Figure 5.2: Control trajectories comparison for X(i ’ i ) . 
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Figure 5.5: Vertical balanced motion by human control, X(i’3). 
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Figure 5.2: Control trajectories comparison for X(i ’ i ) . 
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5.1.2 Tilt-up motion 

Figure 5.7, 5.9 and 5.11 show three different tiltup motion by human control. The 

corresponding human control data and CNN model control data for X(2’i), X(2’2) 

and X(2’3) are shown in Figure 5.8, 5.10 and 5.12 respectively. Again, we perform the 

similarity measure between the human control and CNN model control trajectories 

for each motion, the results are summarized in Table 5.2. The CNN model can also 

generate similar control trajectories as human operator, with an average similarity 

value of 0.7437. 

similarity a 
JT^i) 0.7896 
；C(2’2) — 0.7030 
X(2，3) 0.7386 
average 0.7437 

Table 5.2: Similarity measures for tiltup control betweem human and CNN model 

5.1.3 Discussions 

The simulations we have done in fact is the first step to validate the CNN models 

we obtained. By using the HMM similarity measure, we compare the human control 

trajectory with the control trajectory generate from the CNN model of a particular 

motion. If the similarity measure gives us a relatively high similarity value (cr > 0.5), 

which implies the particular CNN model can produce 'similar' control output as 

human control. From the simulation results of the lateral balancing and tiltup 

motion, we can verify that the CNN models for both motions are able to model the 

human control strategy. Later on, in the next chapter, we will further verify the 

models by experimental implementation. 
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Figure 5.7: Tiltup motion by human control, X(2’i). 

Human control trajectory CNN model control trajectory 
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Figure 5.8: Control trajectories comparison for X(2’i). 
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Figure 5.9: Tiltup motion by human control, X(2’2). 

Human control trajectory CNN model control trajectory 
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Figure 5.10: Control trajectories comparison for X(2’2). 
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Figure 5.11: Tiltup motion by human control, X(2，3). 

Human control trajectory CNN model control trajectory 
240 ‘ ‘ . 240 . . . 

… V 230 • 
220 • \ 

R�. . ；ifV 
^ e c ^ - 一。1 \ 

180. V h 

14� " 170- V ^ -

120' ‘ ‘ ‘ 160' ‘ ‘ ‘ 
0 2 4 6 8 0 2 4 6 8 

time time 

Figure 5.12: Control trajectories comparison for X(2’3). 

5.2 Implementation 

5.2.1 Vertical balanced motion 

A number of experiments have been conducted to verify the CNN model for vertical 

balancing, Figure 5.13, 5.14 and 5.15 shows the implementation results. The human 

control strategy in balancing the robot at the vertical position is given in Figure 
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5.16. As mentioned in the pervious chapter, we evaluate the performance by the 

lean angle of the robot and the degree of freedom remains for the flywheel. We 

summarized the overall performance of both CNN model and human operator for 

the vertical stabilized motion in Table 5.3. 

average lean angle 0 DOFfiy^jheei 
CNN control # 1 90.24� 0.9944 

"CNN control SS.IF 0.8756 
CNN control # 3 87.57^ — 0 . 8 8 6 7 ^ 
Human control 89.41^ 0.9600 

Table 5.3: Performance measures for vertical balancing. 

When compared with human control, the CNN model we obtained for vertical 

balancing behaves very similar to human. For the 3 different trails, the CNN model 

not only able to stablize the robot at around 90"̂ , but also reserved a high level of 

degree of freedom for the internal flywheel to oppose any motion that appears to 

make the robot to fall down. 

lean angle of Gyrover 
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-40 — I — — L J — I — I — I i 1 1 J  
0 10 20 30 40 50 60 70 80 90 100 110 

tlme{sac) 

Figure 5.13: Vertical balancing by CNN model, trail #1. 
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Figure 5.14: Vertical balancing by CNN model, trail #2 . 
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Figure 5.15: Vertical balancing by CNN model, trail #3. 
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Figure 5.16: Vertical balancing by human operator. 

5.2.2 Tilt-up motion 

Next, we implement another CNN model which is trained by human tiltup motion 

data, the results are shown in Figure 5.17 and 5.18 for CNN model control, while 

the human control is shown in Figure 5.19. The performance of these motions are 

summarized in Table 5.4. 

average lean angle (3 DOFf—eei— 
"CNN c o n t r o l ^ T 97.26^ 0.6774 
“CNN control # 2 95.60^ 0.4039 
“Human control 87.3r 0.7372 

Table 5.4: Performance measures for tiltup motion. 
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Figure 5.17: Tiltup motion by CNN model, trail #1 . 
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Figure 5.18: Tiltup motion by CNN model, trail #2. 
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Figure 5.19: Tiltup motion by human operator. 

Since a large portion of the flywheel's motion is contributed to tiltup the robot, 

the overall degree of freedom of the flywheel in tiltup motion is much lower than 

that of lateral stabilzation. For the CNN model control in Figure 5.17 and 5.18, the 

robot is lying on the ground initially, with P ^ 150°, after a few seconds, the model 

tiltup the robot and brings the robot back to the upright position. 

5.3 Combined motion 

We observed that the CNN models for lateral balancing and tiltup motion are sub-

jected to some intial condition, the problem can be solved by combining the two 

motions to form a single motion. 

Consider the case that the robot is in the fall position, that is, with jS ^ 150. 

In Figure 5.17 and 5.18, although the CNN tiltup model is able to keep the robot 
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Figure 5.20: Combined motion. 

to stay around at 90° for a certain moment, the robot will fall back to the ground 

eventually because the flywheel has reached an ill-condition (fia — ±90o). Moreover, 

the tiltup model is unable to let the robot to converge to 90® sometimes, which 

causes a large fluctuation in the lean angle about 90。，Figure 5.21. 

To deal with this problem, we combine the tiltup motion together with the lateral 

balanced motion, Figure 5.20. Since the CNN model is unable to keep the robot 

at the vertical position, after the robot has tiltup, we ask the model to balance the 

robot at 

The experimental result for the whole tiltup and stabilzation process after the 

combination is shown in Table 5.5 and Figure 5.22. Initially, the robot is in a fall 

position, by executing the tiltup control of the CNN model, the robot is recovered to 

the vertical position. Afterwards, the lateral stabilization is controlled by another 

model which specifically trained for keeping the robot into the vertical position. 



CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 72 

lean angle of Gyrover 

2001 i 1 I i I I I I I 

iin—f\ ！__f 
- W W V 口 

Q I 1 1 1 I I I I I I  

0 1 2 3 4 5 6 7 8 9 10 
time(sec) 

tilt angle of flywheel 

-�-.—-—\7.......————y———.——...../——7————t 
-50- V \j y 

-10o' 1 1 1 1 1 1 1 1 1  
0 1 2 3 4 5 6 7 8 9 10 

time (sec) 

Figure 5.21: Fluctuation in the lean angle made by the tiltup model. 

From the results, the combined motion can keep the robot at the vertical position 

well after tiltup from the ground for a much more longer period of time. 

average lean angle jS DOFf—hee�  

"CNN control # 1 88.40� 0 .8998— 

Table 5.5: Performance measures for combined motion. 

5.4 Discussions 

In this chapter, the CNN models for lateral balancing and tiltup motion are being 

verified by experimental implementations. By combining the two motions into a 

single motion, the robot is able to recover from the fall position, and then to remain 

stable at the vertical position after tiltup. Therefore, we have completed the low-

level behavior module within the behavior-based architecture shown in Figure 4.5. 
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Figure 5.22: Tiltup and vertical balanced motion by CNN models. 

With this module completed, we are going to develop a semi-autonomous control 

for Gyrover in the next chapter. 



Chapter 6 

Shared Control 

Based on the successful implementations of the lateral balancing and tiltup motion, 

in this chapter, we are going to develop a shared control framework for Gyrover. In 

fact, any situation of a system using shared control will involve human interactions. 

Under shared control, the human operator acts as a supervisor for the overall control, 

while the robot itself can handle some local motions which in turn to assist the 

human in control. In order to distribute the control tasks systematically, we develop 

an expression to make such a decision. Experimental results will be given in order 

to verify our idea. 

6.1 Concept 

In fact, shared control happens in many daily examples, especially for human-animal 

interactions. First of all, let's consider the horse riding case [32], it is a fairly good 

example of semi-autonomous systems, or more specifically, shared control system. 

For the horse which is being riden by human, it is usually able to take care of all 

low-level tasks such as coordination of leg motions, stability, local obstacles avoid-

ance and provide enough power and speed for different actions. On the other hand, 
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the rider provides global planning, interacts with the horse to arrive at different lo-

cations and achieve various goals. At the same time, the rider can override any horse 

behavior by pulling the reins or hitting on the horse's body if necessary. Throughout 

the journey, the rider relies on the horse motoric abilities and the horse's behaviors 

become more intelligent by getting the rider's command. The interaction between 

the two individuals happens in a natural and simple way. 

Another example we want to illustrate is to ask a robotic arm to handle a cup 

of tea [39]. The whole task can be decomposed into two subtasks: (i) to handle the 

cup of tea safely without pour the tea (local balancing), and (ii) to reach the desired 

location (global navigation). In a teleoperated environment, it maybe difficult for 

a human operator to perform both tasks simultaneously, or it would be mentally 

taxing. However, if an autonomous module is introduced for the local stability of 

the cup, the operator in the control loop only responsible for the navigation task, 

which greatly reduce the burden for the operator. Moreover, it is clear that the 

performance of the system would be much better and stable than being controlled 

by a single entity (human/machine). 

Gyrover is a complex system not only in terms of the difficulties in deriving 

its mathematical model, but also in terms of its control by human operator. The 

robot can be controlled manually through a radio transmitter with two independent 

joysticks, one of them is assigned to control the drive motor, while the other one 

is assigned to control the tilt motor. Similar to a bicycle, Gyrover is a single track 

vehicle which is inherently unstable in its lateral direction. Therefore, different from 

controlling a quasi-static mobile robot, the human operator not only handles the 

global navigation for the robot, but also needs to pay attention to govern the lean 

angle of the robot simutantously. Moreover, the highly coupling effect between the 
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wheel and the internal flywheel also complicates the control of Gyrover. To this 

end, for such a complex system, instead of making a fully autonomous control, it is 

much more practical to develop a control method which can "share" the workload 

of human operator. 

Recently, shared control has been widely applied into many robotics man-machine 

systems, from health care [31, 32, 37, 40, 41, 43] to telerobotics [33, 34, 35, 39，42 . 

For rehabilitation applications, a typical example is robotic wheelchairs. Although 

the wheelchair itself can provide a level of autonomy for the users, it is still desir-

able that the user can augment the control by the on-board joystick in some special 

occasion (e.g. docking, pass thru a doorway). A telerobotic system usually consists 

of a human operator and several autonomous controllers. Human operator usu-

ally interacts with the system in different ways. One of the important issues is to 

develop an efficient method to combined human and machine intelligences so that 

the telerobotic system can perform tasks which cannot be done by either human or 

autonomous controller alone [35]. In these shared control system, the autonomous 

modules exist in the system assist the human operator during navigations, in order 

to relief the tensions of the operators in a complex system. Usually, the human 

operator is responsible for some high-level control (e.g. gobal navigation), while the 

machine performs low-level control (e.g. local obstacles avoidance). 

In fact, the two behaviors we have mentioned in the previous chapters, (i) Lateral 

balancing and (ii) Tiltup motion, are designed to tackle the robot's instability prob-

lem in the lateral direction. Since we have successfully modeled and implemented 

the two behaviors by a machine learning approach and verified in experiments, the 

next step is to incorporate these motions with human control in order to develop 

a shared control framework for Gyrover. We prefer using a shared control scheme 
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rather than a fully autonomous one because of the following reasons: 

• Sophisticated dynamic system. As mentioned before, it is difficult for us 

to obtain a complete mathematical model to govern the motions of Gyrover, 

due to its complicated dynamic and nonholonomic nature. This makes us en-

counter many difficulties in developing a fully autonomous system for Gyrover 

at this stage. 

• Hardware limitations. Due to the special physical structure of Gyrover, 

the current prototype of Gyrover we are using still does not have any navigation 

devices equipped on-board (e.g. vision), which is impossible for the robot to 

navigate itself. 

• Importance of human operators. Practically, for some complicated tasks, 

which may be trival for humans, robots often do not perform well. Therefore, 

human operator is essential to exist in the control loop in order to monitor 

and operate the executive system. 

• Time and cost. Building a fully autonomous system which provides safe 

and robust performance would be time consuming and costly, in terms of 

computations and resources. In contrast, it is far more practical and much 

cheaper to develop a semi-autonomous system. 

• Accuracy vs Reliability. Machines are excellent in performing repetitive 

tasks quickly and accurately but their abilities to adapt changes in environment 

is low. On the other hand, humans are usually reliable, with tremendous 

perception ability and good decision making in unpredictable situations, but 
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their accuracies are relatively lower than machines. Shared control can let 

them compensate each weakness which would result a better control. 

• Teleop er at ions. Gyrover can be operated by humans through a radio trans-

mitter, which allows humans to participate in the control of the robot. 

The main difficulty in developing a shared control for Gyrover is due to the access 

of the tilt motor. Since the lean angle of the robot is controlled by the tilt motor, 

not only the autonomous module will access the tilt motor to achieve stability in 

the lateral direction, the human operator also need to access the tilt motor during 

navigation. At a particular time instant, these commands may contradict with each 

other. Therefore, it is a big issue to let the system to decide which command is going 

to be executed, and at the same time, to manage the contaminated commands with 

a reasonable way. To this end, we have developed an expression for making this 

decision, which will be discussed in the later part of this chapter. With a better 

sharing between the machine and human operator, the performance of the system 

can be enhanced, and the range of tasks that can be performed by the system can 

also increase. 

6.2 Schemes 

In fact, there are many aspects of "sharing" in shared control, varies from application 

to application. Basically, a semi-autonomous control can be categorized into serial 

type and parallel type [39]. In serial type, the manual control and autonomous 

control cannot be executed simultaneously, only one of them will be selected at 

a time; in parallel type, both manual and autonomous control can be executed 

simultaneously. 
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In the following sections, we will breifly discuss three operating modes of shared 

control, namely: (1) Switch mode, (2) Distributed mode, and (3) Combined mode. 

6.2.1 Switch mode 

In switch mode, the manual control and autonomous control are switched in serial, 

as shown in Figure 6.1. The condition to trigger the switch depends on applications, 

for example, if an operator is acted as a supervisor of the control system, the human 

control will only be activated whenever the system reaches an "ill condition". No 

matter which control module is switched, the robot will be fully controlled by the 

selected one. If a high cooperation between the machine and operated is required, 

we must have a function (11) which can "smartly" switch between the two control 

module. 

Autonomous Human 
module operator 

Figure 6.1: Switch mode. 

6.2.2 Distributed mode 

Figure 6.2 illustrates the architecture of distributed control. Different from switch 

mode, both manual and autonomous control can be executed in parallel in this 
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mode. The control of various actuators (ui) in the entire system will be distributed 

to either of the two modules. 

Therefore, the two entities can exist in the system peacefully without disturbing 

each other. However, this also shows the weakness of this mode because there is 

no communication bewteen the two entities. The operator cannot modify the com-

mands from autonomous module even the robot is performing or tends to perform 

some undesirable motions. 

Autonomous Human 
module operator 

( R O B O T ) 

Figure 6.2: Distibuted control mode. 

6.2.3 Combined mode 

Combined mode is in fact an extension of distributed mode, Figure 6.3. However, 

the input to a single actuator is a combination of the operator's command and the 

machine command. There are many ways to combine the output vectors from the 

task modules: a simple summation, a simple average, weighted sum and average, 

voting on angle and velocity, and some unusual variations. In practice, the weighted 

average performs well since it is not computationally expensive and its performance 

is predictable [42 . 
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Autonomous Human 
module operator 

( R O B O T ) 

Figure 6.3: Combined mode. 

6.3 Shared control of Gyrover 

Analog to the example of handling a cup of tea, in our approach, in order to re-

duce the operator burden in controlling a statically unstable robot, it is desired that 

Gyrover itself can maintain a degree of local balancing, while the operator only re-

sponsible for the navigation task. In considering which mode of sharing is suitable 

for Gyrover shared control, we found that the commands from the automation mod-

ule (lateral balancing and tiltup) always contradicts with the navigation commands. 

It is due to the special steering mechanism of Gyrover, which is entirely contributed 

by the tilting effect of the internal flyhwheel. 

As mentioned in section 3.2.1, when a disc is rolling, it will steer to the direction 

that it is leaning. Since the autonomous module is designed to keep the lean angle 

into the vertical position, if we attempt to steer to the left/right manually (i.e. lean 

to left/right), the machine will generate commands to stabilize the robot back to the 

vertical position, which will totally oppose the changes we want to make. Therefore, 

the commands from the two modules is impossible to combine into a single valid 

command during navigation. Fortunately, this problem is solved automatically if we 
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consult the behavior-based control architecture we disccussed in Chapter 2. 

Referring to Figure 4.5，the mid- and high-level behaviors are replaced by human 

operator in shared control. Due to the high flexibility of the subsumption archite-

cure, we obtain the shared control architecture as shown in Figure 6.4, without 

destorying the original control structure, which shows the beauty of behavior-based 

control architecture. Since the navigation tasks are entirely given to the human op-

erator, the operator will solely control the drive motor throught a radio transmitter. 

On the other hand, we suppose the robot can maintain lateral stablility when it 

stops rolling, or when a complete fall is detected, it will automatically tiltup back 

to its upright position. Thus, the tilt motor is jointly control by the operator and 

the machine. 

f ： \ 
Visual Human operator 

information J ^ JJI | 

/!- A i f N 
' (必 1 H drive motor 
n Navigations ； 

___ robot 

I I 

丨 … e r a l balancing * | 

sensors H hH tilt servo L J \ K J 
from ) I t � 

robot — - — — reset Tilt 叩 — 一 」 ： robot 

Gyrover H  

Figure 6.4: Subsumption architecture of shared control. 

According to Figure 6.4, regarding to the tilt motor, switch mode is used since 



CHAPTER 6. SHARED CONTROL 83 

the operator and the machine cannot control the motor at the same time; regarding 

to the whole structure, the system is somewhat in a distributed mode of sharing. As 

a result, the shared control of Gyrover combines the switch mode and the distributed 

mode, which compensates each mode's weakness. 

6.4 How to share 

Recalling the horse riding example, it is believed that the horse acknowledges the 

rider commands if they exceed a certain threshold. This threshold may depend on 

the horse training (reliability of the autonomous system), the skill of rider, and on the 

situation at hand. If the rider wishes to correct or modify the horse current behavior, 

he/she will increase the level of stimulus which is acted on the horse (pulling the 

reins more or pushing harder on the saddle). This continues until the horse changes 

its behavior as wished by the rider. A poor communication or compromisation 

between them can lead to undesirable or even dangerous results. Therefore, in this 

section, we develop a function to decide whether to follow or neglect the commands 

from the online operator. 

First of all, let's introduce the variables that constitute the function, which are 

similar to those proposed in [32]: 

1. Degree of Autonomy, A where 0 < A < 1. 

This is a parameter which can be adjusted by the online operator. If the 

operator (a novice) wish to rely much more on the autonomous module, he/she 

should select a higher value of A at the beginning of an operation. Otherwise, 

if an experienced operator is confident with his/her control skill, a lower value 

of A can be selected. We will demonstrate the effect of this parameter later. 
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2. Strength of conflict, S where 0 < < 1. 

This parameter measures the conflict between the operator and the current 

status of the system, it will vary from time to time whenever the operator is 

given a command to alter the system's trajectory. A high value of S indicates 

that the operator is making a control command which greatly affect the cur-

rent status of the system, while a low value of S indicates that only a small 

disturbance is generated. This value will pass to the function instanteously 

to make a decision whether to execute the operator's command or not. The 

strength of conflict S can be defined as: 

n "̂ operator _ 以machine /n 
Sp = ^ o r 5out o (6.1) 

^Pmax "̂̂ max 

where S巨 is measured in terms of the changes in the lean angle (3 of the robot, 

5out is in terms of the conflict between the command from operator and the 

machine. 

3. Confidence level, C where 0 < C < 1. 

Contradict to the strength of conflict, C is a parameter to show the confidence 

of an operator in making the current control command. It is obvious that 

the higher value of C, the more confident the operator is. This is also a time 

varying parameter which will pass to the function to let the system to make a 

decision. The confidence level C can be defined as: 

C 二 丨 , P e r a t o r l ( 6 . 2 ) 

"Umax 
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Based on the above definition, at a particular time instant, the system recieves a 

command from the operator and the machine simultaneously, we obtain the following 

relationship between S and C\ 

if C > S, follow operator's command, 

C < S, follow machine's command. (6.3) 

The above expressions imply that if the operator is confident enough to modify 

the current system trajectory, his/her command will be executed. On the other 

hand, if the system determines that the command of the operator is potentially 

to let the robot falls down, his/her command will be neglected, and the system 

will execute the balancing command from the autonomous module. However, the 

threshold of the above expressions remains constant and it is dependent on the 

system parameters. Practically, a system may be potentially operated by different 

operators, it is desired that the thershold of the decision to be dependent on the 

operator. To this end, we introduce the parameter of Degree of Autonomy (A) into 

the above expressions, 

if C ' {I — A) > S ' A, follow operator's command, 

C • {1 — A) < S ' A, follow machine's command. (6.4) 

By rewriting equation (6.4), we have, 

5 , C) = X'C-S (6 .5 ) 

where A = (1 — A)/A for simplicity, and the decision finally becomes, 

if n(A, S, C) > 0, follow operator's command, 

n(A, 5, C) < 0, follow machine's command. (6.6) 
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The function IT is called a decision function which allows a system to decide 

whether to execute the command from operator in a shared control environment. 

To validate the decision function, we let A 二 0, which implies that the operator 

do not need any assistance from the autonomous module and the system should 

respond to all the commands from the operator. From equation (5.6), 

n(0, 5, C) = + o o > 0 V5, C 

n(0, 5, C) is always positive so that the system always execute the commands from 

the operator. Now, consider when A = 

n(l,5, C) = - 5 < 0 V5,C 

n ( l , 5, C) always be negative or equal to zero, which implies the system will totally 

follow the machine commands and disregard all the operator's control. 

To further validate the decision function 11 in (6.5), we perform the following 

experiments to see how the system works with this function. Table 6.1, 6.2 and 6.3 

show the values obtained from the decision function 11 by using A = 0.25, A = 0.50 

and A 二 0.75 respectively. Based on the decision criteria in (6.6), if 5, C) is 

greater than zero, the system will execute the operator's command at that particular 

moment, otherwise, machine's command will be executed. In each table, a shaded 

value represents the system has chosen the operator's command. 

When A = 0.25, the system will more likely to rely on the operator's control. In 

Table 6.1, most of the operator's commands are chosen even when the Confidence 

level of the his/her control is quite low (smaller du). On the other hand, for a 

higher value of .4 ( Table 6.3 ), the system relies on the machine's commands more 

so that the frequency of accepting the operator's commands reduces significantly. 
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Current lean angle of the robot jS 
du 40� 50O 60� 70� 80� 90� 100� 110� 120� 130� 140� 

0 -0.56 -0.44 -0.33 -0.22 -0.11 0 - 0 , 1 1 -0.22 -0.33 -0.44 -0.55 
2 -0.36 -0.25 -0.14 -0.03 0.08 0.11 -0.01 -0.12 -0.23 -0.34 -0.45 
4 -0.17 -0.06 0.06 0.17 0.28 0.21 0.10 -0.01 -0.12 -0.23 -0.34 
6 0.03 0.14 0.25 0.36 0.43 0.32 0.21 0.09 -0.02 -0.13 -0.24 
8 0.22 0.33 0.44 0.56 0.53 0.42 0.31 0.20 0.09 -0.02 -0.13 

i 

10 0.42 0.53 0.61 0.75 0.64 0.53 0.42 0.31 0.19 0.08 -0.03 
15 0.09 1.01 1.13 1.01 0.90 0.79 0.68 0.57 0.46 0.35 0.24 
20 1.39 1.50 1.39 1.28 1.17 1.06 0.94 0.83 0.72 0.61 0.30 
30 2.14 2.03 1.92 1.81 1.69 1.58 1.47 1.36 1.25 1.14 1.03 
40 2.67 2.56 2.44 2.33 2.22 2.11 2.00 1.89 1.78 1.67 1.56 

Table 6.1: Decision making of A = 0.25. 

Current lean angle of the robot /3 
du 40� 50O 60� 70O 80� 90� 蕭 1 1 0 � 1 2 0 � 1 3 0 ^ 置 

0 -0.56 -0.44 -0.33 -0.22 -0.11 0 - 0 . 1 1 -0.22 -0.33 -0.44 -0.55 
2 -0.46 -0.35 -0.24 -0.13 -0.02 0.01 -0.11 -0.22 -0.33 -0.44 -0.55 
4 -0.37 -0.26 -0.14 -0.03 0.08 0.01 -0.01 -0.21 -0.32 -0.43 -0.54 
6 -0.27 -0.16 -0.05 0.06 0.13 0.02 -0.09 -0.21 -0.32 -0.43 -0.54 

8 -0.18 -0.07 0.04 0.16 0.13 0.02 -0.09 -0.20 -0.31 -0.42 -0.53 
10 -0.08 0.03 0.14 0.25 0.14 0.03 -0.08 -0.19 -0.31 -0.42 -0.53 
15 0.15 0.26 0.38 0.26 0.15 0.04 -0.07 -0.18 -0.29 -0,40 -0.51 
20 0.39 0.50 0.39 0.28 0.17 0.06 -0.06 -0.17 -0.28 -0.39 -0.50 
30 0.64 0,53 0.42 0.31 0.19 0.08 -0.03 -0.14 -0.25 -0.36 -0.47 
40 0.67 0.56 0.44 0.33 0.22:: 0.11 0 -0.11 -0.22 -0.33 -0.44 

Table 6.2: Decision making oi A — 0.50. 

The above experiments simply illustrate that the decision function 11 can judge 

whether to execute human operator's commands effectively by taking the value A 

into accounts, which is very important in a shared control system. 

In fact, the system neglects the operator's commands only when the command 

is potentially dangerous to the robot. Since a positive change in the tilt command 
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Current lean angle of the robot 
du 40^ 50^ 60^ 70^ 80^ 90^ 100^ 110^ 120^ 130^ 140^ 
0 -0.55 -0.44 -0.33 -0.22 -0.11 0 - 0 . 1 1 -0.22 -0.33 1-0.44 -0.55 
2 -0.49 -0.38 -0.27 -0.16 -0.05 -0.03 -0.14 -0.25 -0.36 -0.47 -0.58 
4 -0.43 -0.32 -0.21 -0.10 0.01 -0.06 -0.17 -0.28 -0.39 -0.50 -0.61 
6 -0.37 -0.26 -0.15 -0.04 0.03 -0.08 -0.19 -0.31 -0.42 -0.53 -0.64 

8 -0.31 -0.20 -0.09 0.02 0 -0.11 -0.22 -0.33 -0.44 -0.56 -0.67 
10 -0.25 -0.14 -0.03 0.08 -0.03 -0.14 -0.25 -0.36 -0.47 -0.58 -0.69 
15 -0.10 0.01 0.13 0.01 -0.10 -0.21 -0.32 -0.43 -0.54 -0.65 -0.76 
20 O.OG 0.17 0.06 -0.06 -0.17 -0.28 -0.39 -0.50 -0.61 -0.72 -0.83 
30 0.14 0.03 -0.08 -0.19 -0.31 -0.42 -0.53 -0.64 -0.75 -0.86 -0.97 
40 " y ^ -0.11 -0.22 -0.33 -0.44 -0.56 -0.67 -0.78 -0.89 -1.00 -1.11 

Table 6.3: Decision making of A = 0.75. 

will give a positive change in the lean angle of the robot, if the lean angle is beyond 

90。，a larger du will make the lean angle grows bigger, which potentially to make 

the robot falls down. Therefore, in this case, if the operator is not confident enough 

to make this change, his/her command will be neglected. 

6.5 Experimental study 

In this section, we implement the shared control framework as shown in Figure 6.4, 

by applying the decision function we have mentioned in the last section. We have 

designed several tasks for the robot to perform under the shared control scheme, in-

cluding (i) heading control (ii) a straight path tracking, (iii) a circular path tracking, 

and (iv) point-to-point navigation. 

Since the autonomous module now in hand is only responsible for the lateral 

stabilization and tiltup motion when the robot is held in a stationary location, 

the navigation task of the robot will be entirely given to the human operator to 

control, which implies that the human cannot rely on the machine throughout the 
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navigation. Based on this limitation, we use a relatively high level of autonomy 

{A ^ 0.25) in Gyrover shared control. From the experiments, we can observe that 

even the operator has shared a level of control to the system, the robot can still 

achieve some basic goals in mobile teleoperations. 

6.5.1 Heading control 

The purpose of this experiment is to illustrate the cooperation between the human 

operator and the autonomous module in a shared control environment. One special 

feature of Gyrover is the ability to turn into a desirable heading direction at a 

stationary location, this motion can be achieved by controlling the lean angle of the 

robot (left/right) until the desired heading direction is reached. 

When the robot is not rolling, the system will automatically execute the lateral 

balancing module in order to maintain its lateral stability, by controlling the tilt 

motor. If the operator wishes to command the robot to turn into a particular 

heading angle, he/she requires to make the robot to lean at a certain angle by 

controlling the tilt motor also, in this case, the robot must stops the autonomous 

module and execute the operator's command. Therefore, if the system cannot make 

a right decision, the operator can never control the robot to turn into a desired 

heading direction. 

The result of using A = 0.2 and A 二 0.8 in the heading control test is shown 

in Figure 6.5 and Figure 6.6 respectively. For A 二 0.2, the operator triggers the 

control of tilt motor at 7.5 < t < 9.5 and 14.5 < t < 17, in order to make the 

robot leans to a particular heading angle. It is clear that the operator augments 

the control in these periods successfully, which is expected when a low degree of 

autonomy is used. When there is no command from the operator, the robot will 
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execute the lateral balancing control from the autonomous module in order to keep 

the robot stays around 90� . For A = 0.8, the control trajectory of the operator is 

completely different from the final control output to the system. The operator wants 

to trigger the tilt motor, but the system neglects most of his/her commands and 

continues to execute the lateral balancing commands from the autonomous module. 

The system will only execute those commands from the operator only when the 

particular command is greatly contribute in keeping the robot in 90。，or when the 

confidence level is high, for instance, d^t t ^ 13 and t ^ 17. 

6.5.2 Straight path 

In the straight path test, the operator is asked to control the robot to travel a 

straight path, approximately 44 ft long. The experimental setup is shown in Figure 

6.7. Three trails are given in this experiment, the trajectory that the robot has 

travelled in each trail is shown in Figure 6.10. The sensor data of the robot in trail 

# 3 are plotted in Figure 6.11. 

Under a shared control, although some of the control commands are being ne-

glected by the system (flattened peaks in the final output of tilt motor command), 

the operator is still able to control the robot to travel a nearly straight path, with 

an average 0.1736 ft offset from the desired path. At 亡=9 , the robot recieved no 

commands from the operator and started to execute the lateral balancing module 

to balance the robot. As mentioned earlier, the control of the drive motor is en-

tirely given to the operator, therefore, the system will not interfere the drive motor 

command, which directly follows the control of the operator. 
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Figure 6.5: Sensor data acquired in the heading control test, A 二 0.2. 

6.5.3 Circular path 

Similar to the straight path test, the experimental setup is shown in Figure 6.8. 

This time, the operator is required to control the robot to travel a circular path. 
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Figure 6.6: Sensor data acquired in the heading control test, A = 0.8. 

In order to make the robot to turn in place, the operator needs to tilt the internal 

flywheel to make a "lean steering" precisely. If the robot fails to follow the right 
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Figure 6.7: Experiment on tracking a straight path under shared control. 

commands, it is unable to steer well. Figure 6.12 indicates the desired path and the 

actual path travelled by the robot respectively. Figure 6.13 shows the corresponding 

sensor data (trail #3 ) of the robot during travelling a circular path. 

I 丨 丨 • “ \ \ 
\ 

FINISH 

^ \ � o 

^ 9 feets ^ 

Figure 6.8: Experiment on tracking a curved path under shared control. 

The average offset in the circular path test is 0.51 ft. Although the robot cannot 

track the circular path precisely, the operator can control the robot to move back to 

the goal location within 0.25 ft nearly the end of the experiments. Therefore, with 

a degree of shared control with the robot, the operator is still able to control the 
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robot to turn a tight corner. 

6.5.4 Point-to-point navigation 

In this experiment, we require the robot to travel from one location to anothter 

which are seperated by a right corner and they are far apart ( ^ 60 ft), Figure 6.9. 

The operator needs to control the robot to move from a starting area to a specific 

destination, which is a 2 ft x 2 ft region (the dimension of Gyrover is about 1.5 ft 

X 0.8 ft as viewed form the top). This experiment has two main goals: 

1. The robot must reach the destination within the specific area. 

2. After the robot has reached the destination, it is required that the robot can 

maintain its lateral balance even when the operator does not further control 

it. 

The experimental results are shown in Figure 6.14 and 6.15. 

Although we are not concerning whether the robot can accurately track the path 

or not, the overall offset from the path is 1.18 ft, which is an acceptable value for a 60 

ft long journey. Moreover, for the three trails in this experiment, all the trajectories 

of the robot are converging to the destination at the end of the path. From Figure 

6.15, when t > 14 (at the destination), the operator did not command the robot 

anymore, however, the robot can balance itself ar around 90''. Therefore, under a 

shared control environment, with the human operator responsible for the navigation 

task of the robot, the robot is able to move from one location to another location 

which is far apart, and to balance itself at the vertical position when the robot stops 

moving (with no operator's command). 
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Figure 6.9: Experiment on point-to-point navigation under shared control. 

6.6 Discussions 

From the results we conducted from the previous experiments, we verify that our 

proposed shared control algorithm can let the system choose between human oper-

ator's control commands or the commands from the autonomous module system-

atically. Whenever the operator has chosen a high level of autonomy, the system 

will execute the command from the the autonomous module unless the operator has 

given a command which is 'confident' enough to overcome the conflict between the 
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operator and the machine. On the other hand, if a low degree of autnomy is chosen, 

the system will follow the operator's command unless a 'significant' err or/conflict 

is measured. The proposed shared control algorithm is able to allow two entities 

(human and machine) to exit in the same system simultaneously. 

Although Gyrover do not have an autonomous module to navigate itself to travel 

from one location to another, this can be done by sharing the navigation task to 

the operator. Under shared control, the robot will maintain its lateral balance when 

the operator does not command it. On the other hand, under a degree of sharing, 

the operator is still able to control the robot to do some specific tasks (straight 

path tracking, point-to-point navigation, etc). It is believed that if an autonomous 

navigation module exists in the system, the operator can share more naviagtion 

control to the machine using the proposed shared control algorithm, which can 

greatly reduce the duty of the online human operator. 
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Figure 6.10: Trajectory travelled in the straight path test. 
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Figure 6.11: Sensor data acquired in the straight path test. 
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Figure 6.12: Gyrover trajectories in the curved path test. 
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Figure 6.11: Sensor data acquired in the straight path test. 
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Chapter 7 

Conclusion 

7.1 Contributions 

In this dissertation, we present a machine learning algorithm for Gyrover behaviors 

learning and a framework for Gyrover shared-control, which is original and unique 

from the previous work of the robot. We summarize the original contributions of 

this work below. 

• We developed a behavior-based control architecture for Gyrover control. Un-

der this architecture, the overall control task of Gyrover is decomposed into a 

number of behaviors. The subsumption architecture enables us to extend or 

to modify the existing system without affecting the original structure. Since 

the behaviors are distributed into difFerents levels of competence, the architec-

cture enables the system to execute some high level goals while still servicing 

other low level behaviors. This control approach gives us a good foundation 

to develop a fully autonomous system for Gyrover in the near future. 

• We propose an efficient neural-network learning architecture, cascade neural 

network with extended Kalman filtering, to model the human control behaviors 

in stabilizing and tiltup the robot into its upright positions. The instability 
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problem in the lateral direction of Gyrover, especially when the robot is be-

ing held in a static location, causes the main difficulty in Gyrover control for 

both human and machine. While some motions in Gyrover control are hard to 

obtain a complete mathematical model, this learning algorithm is an alterna-

tive method which is suitable to model the dynamic and complicated control 

strategy of human. 

• We develop a shared control framework for Gyrover, based on the behavior-

based architecture. Since building a fully autonomous system is costly and 

sometimes not practical, the main purpose of shared control is to reduce the 

operator's control burden in a complex system. In order to distribute the 

workload systematically in a shared control environment, we develop a decision 

function to let the system judges whether to execute the operator's command 

or not, by considering the Degree of Autonomy, the Strength of Conflict and 

the Confidence level. Experiments show that this shared control framework is 

able to share some of the control tasks from the operator without decreasing 

the maneuverability of the robot. 

7.2 Future work 

While this thesis provides a foundation for the development of Gyrover control 

system, it is certainly not the first and last word on this topic - it is only an important 

first step. There are a number of different directions in which the work in this thesis 

can be extended and applied. The followings are some possible improvements and 

extensions of this work. 

First of all, although the lateral balancing of the robot can be obtained by 
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a machine learning algorithm, we still desire to seek for a better control method 

which is developed from the mathematical dynamic model. From the experiments, 

we observed that the existing lateral stablization model can only stable the robot 

around the vertical position with a tolerance of ±10。，which may not be an ideal 

control if a high level of accuracy is required by the system. 

From the behavior-based architecture of Gyrover, we have only implemented a 

small portion of control experimentally. In this thesis, we have successfully imple-

mented the low level behaviors which enable the robot to retain its local stability. 

In the future, we are looking forward to have more implementations on different 

controls of Gyrover. 

Furthermore, due to the lack of autonomous modules in the system, the system 

only allows a low level of sharing in the navigation tasks for the operator. In fact, the 

Gyrover control still relies heavily on the human operator. We suggest to equip the 

robot with one/two CCD camera(s) on board to work out some simple autonomous 

navigation control for the robot, which can assist the operator in controlling Gyrover 

more. 

Finally, we are seeking the possibility of applying this shared control framework 

on other man-machine cooperating system, such as robotics wheelchair or semi-

autonomous car driving. We believe that this framework can efficiently share the 

workload within the system for human and machine, while retaining a high level of 

maneuverability and flexibility of the orginal system. 
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