
SHARED CONTROL FOR NAVIGATION AND BALANCE OF A

DYNAMICALLY STABLE R O B O T

B Y

LAW KWOK HO CEDRIC

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

OF THE DEGREE OF MASTER OF PHILOSOPHY IN

MECHANICAL AND AUTOMATION ENGINEERING

�T H E CHINESE UNIVERSITY OF HONG KONG

AUGUST 2001
The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending
to use a part or whole of the materials in the thesis in a proposed publication must seek copyright
release from the Dean of the Graduate School.

M 1 1 fR 12 d J _ _ •

"̂ •(ĵ lBRARY SYSTtr̂

Abstract

The single wheel, gyroscopically stabilized robot, called Gyrover, is a novel concept

of mobile robots which provides dynamic stability for rapid locomotion. It has sev-

eral advantages over statically stable multi-wheel robots including reduced sensitiv-

ity to attitude disturbances, complete recoverability from falling, and high dynamic

stability. Further, this kind of robot can find obstacle-free paths on the ground more

easily, and its narrow profile improves maneuverability. However, problems in steer-

ing and low-speed stability have kept such robot from becoming commonplace. In

this thesis, the goal is to develop a semi-autonomous control for this kind of robots.

In order to provide a good foundation for the development of the robot, we par-

tition the control problem into a set of loosely coupled computing modules (behav-

iors) by a behavior-based approach. Under this approach, we sort out two behaviors

which locate at the lowest layer within the control architecture: (i) Lateral balanc-

ing, and (ii) Tiltup motion. These behaviors deal with the local instability problem

in controlling a dynamically stable but statically unstable robot.

Since the robot concept brings a number of challenging issues in modeling and

control by using some traditional control methods, therefore, we prefer to model

the behaviors by learning. We propose using an efficient neural-network learning

architecture that combines flexible cascade neural networks with extended Kalman

filtering to capture the control skills from an expert operator. The models obtained

i

ii

by the learning algorithm are validated by a stochastic similarity measure that is

based on Hidden Markov Model analysis, which can compare the similarity between

two dynamic and stochastic control trajectories.

Finally, we develop a shared control framework for the robot. Under the shared

control, the control tasks are shared between the human operator and the automatic

control system: the robot maintains local balancing, while the operator is responsible

for the global navigation task. In order to let the system chooses between the control

command from the two entities in an effective and systematic manner, a function is

developed to tackle this problem.

Implementation results for the learning control and shared control are given in the

thesis. The experiments demonstrate that this semi-autonomous approach provides

a better way to control a dynamically stable but statically unstable robot, which

can free the operator from being troubled by the low speed instability problem, and

let him/her focuses on higher-level navigation tasks.

iii

摘 要

單輪陀螺平衡機器人，我們稱之爲“Gyrover”，是一種新型的移動機器人。它可

以實現機器人在快速運動下的動態平衡。此機器人比多輪式靜態平衡移動機具

備更多優點，包括抗姿態干擾性，跌倒恢復能力，以及良好的動態穩定性。並

且此種機器人能更容易找出無障礙物之行走路徑，它扁平的外型令其靈活性大

大的提高。然而，其轉向以及低速行走的不穩定問題則令此類機器人不能受到

廣泛的應用。因此，本篇論文的目的就是要爲此類機器人開發一個半自主的控

制方法。

爲了提供一個良好的基礎予此系統的發展，我們透過一種基於行爲的控制

方法，將整個控制問題分爲若干的非鍋合計算模塊（行爲）。藉此方法，我們得

出兩個分佈在整個控制結構中最基層的行爲：（一）側向平衡，及（二）跌倒恢

復動作。這些行爲專門處理在控制一個動態平衡但靜態不平衡的機器人時所帶

來的局部不穩定問題。

由於在傳統的控制方法下，這機器人帶來了一定的建模和控制上的挑戰性

問題，所以我們嘗試利用機器學習的方法來建模。我們提出使用一種有效的神

iv

經網絡學習結構，此結構結合了級聯人工神經網絡及結點解鍋延伸卡爾曼過濾

法來吸取專業控制人員的控制技巧。我們並且使用基於隱含馬爾卡夫模型的隨

機相似性量度指數來驗證學習模型的可靠性，此量度指數能夠比較動態及複雜

的軌跡的相似度。

最後，我們爲此機器人開發一個共享控制架構。在此控制模式中，不同的

控制工作將被分配予控制人員以及自主控制系統：自主控制系統負責維持機器

人的局部平衡狀態，而控制人員則負責全局導航的工作。爲了令整個系統能有

效地選擇執行控制人員或自動系統的命令，我們建立了一個函數來應付此問題。

此論文中提供了學習控制和分配控制的驗証結果。實驗結果証明這半自主

的控制模式能提供一個更好的方法來控制一個動態平衡但靜態不平衡的機器

人，令控制員大大減少對其在低速行走時之穩定性的關注，從而令他/她更能專

注於高層次的導航工作。

Acknowledgments

I sincerely thank my supervisor, Prof. Yangsheng Xu, for his friendship and intel-

lectual guidance on all aspects of the work. He has given me a lot of motivations

and opportunities to learn throughout the two years of study.

I would like to thank H. Ben Brown and his team at Carnegie Mellon University

for providing excellent technical support for Gyrover. Special thanks go to Arne J.

Suppe, who has spent plenty of time to solve the software problem in the robot. Also

thanks go to Samuel K. W. Au for his preliminary work in the wireless communi-

cation and the basis of the programs in Gyrover, which provides a good foundation

for me to work on.

In addition, I thank the following people for their friendship, both personal and

professional, throughout my two years study: Allan Lam, Mark Lau, H. C. Lo,

Yong He and Eric Wong. They have given me a lot of supports during the toughest

period, and they have spent many nights to work with me, which are memoriable

for me. Also, thanks go to my colleagues in the Advanced Robotics Lab. in CUHK,

especially K. K. Lee and On Yongsheng.

Finally, with great love and respect, I acknowledge the support, love and encour-

agement of my family, without whom, I surely would not have reached this stage in

my life. Special thanks also go to Welly Lau for her support and concern.

V

Contents

1 Introduction 1

1.1 Motivation 1

1.2 Related work 4

1.3 Thesis overview 5

2 Single wheel robot: Gyrover 9

2.1 Background 9

2.2 Robot concept 11

2.3 System description 14

2.4 Flywheel characteristics 16

2.5 Control patterns 20

3 Learning Control 22

3.1 Motivation 22

3.2 Cascade Neural Network with Kalman filtering 24

3.3 Learning architecture 27

3.4 Input space 29

3.5 Model evaluation 30

3.6 Training procedures 35

vi

CONTENTS vii

4 Control Architecture 38

4.1 Behavior-based approach 38

4.1.1 Concept and applications 39

4.1.2 Levels of competence 44

4.2 Behavior-based control of Gyrover: architecture 45

4.3 Behavior-based control of Gy rover: case studies 50

4.3.1 Vertical balancing 51

4.3.2 Tiltup motion 52

4.4 Discussions 53

5 Implementation of Learning Control 57

5.1 Validation 57

5.1.1 Vertical balancing 58

5.1.2 Tilt-up motion 62

5.1.3 Discussions 62

5.2 Implementation 65

5.2.1 Vertical balanced motion 65

5.2.2 Tilt-up motion 68

5.3 Combined motion 70

5.4 Discussions 72

6 Shared Control 74

6.1 Concept 74

6.2 Schemes 78

6.2.1 Switch mode 79

6.2.2 Distributed mode 79

CONTENTS viii

6.2.3 Combined mode 80

6.3 Shared control of Gyrover 81

6.4 How to share 83

6.5 Experimental study 88

6.5.1 Heading control 89

6.5.2 Straight path 90

6.5.3 Circular path 91

6.5.4 Point-to-point navigation 94

6.6 Discussions 95

7 Conclusion 103

7.1 Contributions 103

7.2 Future work 104

List of Figures

1.1 The Gyrover 2

2.1 Gyrover 1 10

2.2 Gyrover II 10

2.3 Gyrover III 11

2.4 The fundamentals of gyroscopic precession 17

2.5 Flywheel's orientation is limited to ±90® 17

2.6 Coordinate frames of the Gyrover and the flywheel 18

2.7 The effects of the flywheel in Gyrover 19

3.1 The cascade learning architecture 26

3.2 Similarity measure between Oi and O2 33

3.3 Control data for different motions 34

3.4 Switchings in human control of flywheel 36

3.5 Similar inputs can be mapped to extreme different outputs if switch-

ing occurs 37

4.1 Conventional approach of a mobile robot control system 39

4.2 Behavior-based approach of a mobile robot control system 40

4.3 A subsumption architecture 45

ix

LIST OF FIGURES x

4.4 The overall control architecture 48

4.5 A detailed structure of the behavior connectivity in Gyrover control. . 49

4.6 The low-level behaviors layer in the overall control architecture. . . . 50

4.7 Lateral balancing at the vertical position (90'') by human control. . . 51

4.8 Modified tiltup motion by human control 53

5.1 Vertical balanced motion by human control, 妙 ’ 1) 59

5.2 Control trajectories comparison for _X(i’i) 59

5.3 Vertical balanced motion by human control, X(i’2) 60

5.4 Control trajectories comparison for X(i’2) 60

5.5 Vertical balanced motion by human control, X(i’3) 61

5.6 Control trajectories comparison for X(i’3). . 61

5.7 Tiltup motion by human control, X(2'i) 63

5.8 Control trajectories comparison for X(2’i) 63

5.9 Tiltup motion by human control, I(2’2) 64

5.10 Control trajectories comparison for X(2’2) 64

5.11 Tiltup motion by human control, X(2’3) 65

5.12 Control trajectories comparison for X(2，3) 65

5.13 Vertical balancing by CNN model, trail # 1 66

5.14 Vertical balancing by CNN model, trail # 2 67

5.15 Vertical balancing by CNN model, trail # 3 67

5.16 Vertical balancing by human operator 68

5.17 Tiltup motion by CNN model, trail # 1 69

5.18 Tiltup motion by CNN model, trail # 2 69

5.19 Tiltup motion by human operator 70

LIST OF FIGURES xi

5.20 Combined motion 71

5.21 Fluctuation in the lean angle made by the tiltup model 72

5.22 Tiltup and vertical balanced motion by CNN models 73

6.1 Switch mode 79

6.2 Distibuted control mode 80

6.3 Combined mode 81

6.4 Subsumption architecture of shared control 82

6.5 Sensor data acquired in the heading control test, A = 0.2 91

6.6 Sensor data acquired in the heading control test, A = 0.8 92

6.7 Experiment on tracking a straight path under shared control 93

6.8 Experiment on tracking a curved path under shared control 93

6.9 Experiment on point-to-point navigation under shared control 95

6.10 Trajectory travelled in the straight path test 97

6.11 Sensor data acquired in the straight path test 98

6.12 Gyrover trajectories in the curved path test 99

6.13 Sensor data acquired in the circular path test 100

6.14 Gyrover trajectories in the combined path test 101

6.15 Sensor data acquired in the combined path test 102

List of Tables

2.1 Table of different actuating mechanism in Gyrover 15

3.1 Similarity measures bewteen different control trajectories 34

4.1 Performance of human operator in verticale stabilization 51

5.1 Similarity measures for vertical balanced control betweem human and

CNN model 58

5.2 Similarity measures for tiltup control betweem human and CNN model 62

5.3 Performance measures for vertical balancing 66

5.4 Performance measures for tiltup motion 68

5.5 Performance measures for combined motion 72

6.1 Decision making of A — 0.25 87

6.2 Decision making oi A = 0.50 87

6.3 Decision making of A = 0.75 88

xii

Chapter 1

Introduction

1.1 Motivation

Land locomotion can be broadly characterized as quasi-static or dynamic. Quasi-

static equilibrium implies that inertial effects are small enough to ignore. The mo-

tions are slow enough that static equilibrium can be assumed. Traditionally, mobile

robots are treated as quasi-static devices. Numerous robots with multiple wheels or

legs have been developed to maximize their mobility on various terrain. Generally,

these robots have featured low center of mass and broad bases of support, along

with intelligent control algorithms designed to keep the center of mass gravity vec-

tor within the support ploygon. Although these robots are statically stable, they are

often limited by motion-planning constraints and hence are usually designed for rel-

atively low-speed operation. Dynamic factors have little influence on such systems

and consequently have been ignored.

On the other hand, consider a bicycle or a motorcycle which has two wheels in

the fore-aft configuration. Such vehicle is statically unstable in the roll direction, but

can achieve dynamic stability at moderate speed through an appropriate steering ge-

ometry and gyroscopic action of the steering front wheel. Steering stability increases

1

CHAPTER 1, INTRODUCTION 2

Figure 1.1: The Gy rover.

with speed gradually due to gyroscopic effects. Dynamic forces at the wheel-ground

contact point act on or near the vehicle center (sagital) plane, and thus produce

minimal roll disturbances. Additional, bicycles have greater maneuverability than

the quasi-static devices.

As a logical extension of this argument, in order to retain static (quasi-static ve-

hicles) and dynamic (bicycles) stabilities, we designed a single wheel, gyroscopically

stabilized robot, Gyrover, as shown in Figure 1.1.

Gyrover is a single, large-diameter wheel that relies on gyroscopic action for

dynamic stability. In its simiplest form, Gyrover is a large wheel with its propulsion,

steering and other equipment suspended from its axle. The rotational motion of the

wheel gyroscopically stabilizes its attitude, while directional control is accomplished

by reacting against an internal gyroscope, to produce "lean steering". An internal

gyroscope may also augment the lateral stability of the robot, and allows it to stand

and turn in place.

Owing to the gyroscopic effect of the spinning flywheel, the static stability of the

CHAPTER 1, INTRODUCTION 3

robot is greatly improved. Dynamic disturbances due to surface irregularities act

through or near the wheel's center of mass, producing minimal torques in roll, pitch

and yaw. In terms of attitude control, the robot is relatively insensitive to fore/aft

and side slopes. Although Gyrover has a number of advantages over traditional

wheel robots, its complex dynamics characteristics (e.g. dynamic coupling between

the wheel and the flywheel) bring certain challenging problems in modelling and

control at the same time. We will further explain this in next part.

Thus far, Gyrover is being controlled only manually, by using two joysticks to

control the drive and tilt motors through a radio link. Even for human operators, the

contol task of Gyrover is very difficult due to its inherent instability in its lateral

(roll) direction. Consider a human riding a unicycle, the rider needs to concern

the lateral stability of the vehicle. To keep steering the vehicle is also a problem

since it does not have any proper steering mechanism visually, from the concept

of gyroscopic precession, the rider needs to lean on one side to achieve steering.

It would be difficult if the speed of the system is too slow for it to gain enough

dynamical stability.

In this thesis, our goal is to develop a semi-autonomous control system for Gy-

rover. As an extension of our work in [14], we model the human control skills in

balancing and tiltup the robot in the vertical position using a machine learning al-

gorithm. By the success in implementing the learnt models, we develop a shared

control framework for the robot in this thesis. This work is definitely unique and

original from other related researches.

First of all, we propose using a behavior-based control approach to breakdown

the control problem of Gyrover. For each of the low level task (e.g. lateral bal-

ancing) ,although it is difficult to develop an accurate dynamic model, we observed

CHAPTER 1, INTRODUCTION 4

that human beings are excellent in mastering complex system such as car driving.

Therefore, we use a model-free machine learning algorithm, Cascade Neural Network

(CNN) with Node-Decoupled Extended Kalman Filtering (NDEKF), as a modelling

tool for human control skill learning in Gyrover. Due to the limitation of the number

of the sensors on board, it is impossible for us to implement navigation control at

this moment. This limitation motivates us to develop a shared control framework

for Gyrover, that is, while the operate is giving a navigation command, the robot

will remain the lateral stability along the journey. This reduce the operator's effort

in controlling the robot significantly.

1.2 Related work

The modelling of this highly coupled, dynamically stable system is a very challeng-

ing problem. Several researhers have been attemped to develop a dynamic model

for the control of Gyrover. As a first step in modelling this complex system, a 3-

dimensional model of the wheel part of the Gyrover was developed and discussed

in [2], utilizing the constrained Lagrangian principle for nonholonomic system. Im-

plementations of the equations of motion in a real-time graphic simulator and the

simulation of the dynamic behavior of the wheel for different initial conditions and

different gravitational effects were also presented in [2 .

However, due to the motion between the flywheel and the robot is highly coupled

with each other, it is necessary to consider the dynamics of the single wheel and the

spinning flywheel at the same time. By taking the actuation of the flywheel inside

the robot into account, the dynamic behavior and the nonholonomic constraints of

the systems were also investigated [4 .

The dynamic model developed in [2, 4] is further simiplify by decoupling the

CHAPTER 1, INTRODUCTION 5

model with respect to the control input. Based on the linearization, the motion

control is decomposed into three parts: (1) controlling the rolling speed, (2) con-

trolling the tilting variable, and (3) a linear state feedback controller to control the

lean angle of the robot, so as to track a circular path or a straight line [5]. Further,

a line following controller for tracking any desired straight path is developed in [6 .

The controller is divided into two parts : (1) velocity control and (2) torque control.

Another version of the dynamic model of Gyrover is developed based on the

Newton-Euler approach. The linearized model is used to develop a state feedback

controller. The design methodology is based on a semi-definite programming proce-

dure which optimize the stability region subject to a set of Linear Matrix Inequalities

that capture stability and pole placement constraints. Finally, the controller is com-

bined with the extended Kalman filter. [3 .

Moreover, the dynamics and control for the robot to roll on an inclined plane is

studied in [8, 9], The effect of internal pendulum motion and the inclination angle of

the plane are also addressed. The condition of rolling up an inclined plane is figured

out and different motion strategies are proposed when it has violated the rolling up

condition.

Finally, a complete different control approach is used in [14]. This was a prelimi-

nary work in abstracting the human strategy in controlling a dynamically stabilized

robot.

1.3 Thesis overview

As mentioned in the previous section, the control of Gyrover is heavily relied on the

dynamic model of the robot. However, due to the complexity of the system (highly

coupled dynamics and nonholonomic nature), the proposed dynamic model is much

CHAPTER 1, INTRODUCTION 6

being simplified and thus incomplete. Many of our researches are still focusing on

the dynamics and control of the robot. At the meantime, we are seeking for other

modelling method which enables us to develop a control method for the robot. We

found that machine learning is an alternative for us to achieve the goal since no a

priori model is required for the learning process.

Therefore, this thesis applies machine learning techniques towards abstracting

and implementing the models of human control strategy in real Gyrover control.

However, due the limited of sensors available on the robot, it is impossible for us

to develop a fully autonomous system at this stage. To this end, with the idea of

shared control, a degree of control can be shared to the machine. Therefore, in a

shared control environment, the human operator will entirely responsible for the

navigation control on the robot, while the machine will responsible for some local

stability tasks.

This thesis is organized as follows:

• Chapter 2: Single wheel robot: Gyrover

A detail description about the Single Wheel Robot will be given in this chapter.

First of all, we introduce the history of the development of the robot. Next, the

hardware components and the robot's concept are discussed. Later, we study

the effects of the internal flywheel. Since the flywheel is a very important

component in Gyrover, with a better understanding of the flywheel, a better

control of the robot would result. Finally, we summarize some characteristics

in Gyrover control which are different from the traditional mobile robots.

• Chapter 3: Learning control

Since Gyrover is a complex system in both dynamics and control, we have

CHAPTER 1, INTRODUCTION 7

many difficulties in deriving an accurate model for the robot by using tradi-

tional control method. Therefore, a model-free machine learning algorithm,

an alternative control method, will be discussed in this chapter. Moreover, we

propose using a similarity measure to validate the learnt models.

• Chapter 4: Control architecture

In this chapter, we propose using a subsumption architecture for controlling

Gyrover in a complex environment. The subsumption architecture is a special

case of behavior-based control for robotics. Behavioral modules are added as

"layers" with each layer performing a complete behavior. We first decompose

the control problem in Gyrover into many behavioral modules, to develop the

subsumption architecture, low level behavioral modules are arranged at the

bottom and those in higher level is built on top of lower levels. By using

this approach, we are able to have a clear picture for the autonomous control

problem in Gyrover. Later, we will discuss the behaviors we are going to model

within the overall control structure. A detail discussion will be given in the

last section of this chapter.

• Chapter 5: Implementation of learning control

The casade neural network models for the motions of lateral balancing and

tiltup are implemented in this chapter. The models are validated by a simi-

larity measure first, by comparing the trajectories generated from the models

and those from human operator. Next, implementation results of the individ-

ual models will be given. From the experimental results, we observe that each

model is subjected to some initial condition. For instance, the tiltup model

is unable to balance the robot into the vertical position after tiltup from the

CHAPTER 1, INTRODUCTION 8

ground. To address this problem, we combine the two motions into a single

motion. Experiments show that the combined motion can fully recover the

robot from the fall position and stabilized at the vertical position for a long

period of time.

• Chapter 6: Shared control

Due to the complexity of the Gyrover system, we are unable to develop a fully

autonomous system for the robot yet. Although a large portion of control is

still rely on online human operator, in order to reduce the workload of the

operator, we propose a shared control framework for Gyrover. To effectively

and accurately distribute the workload in the control, a decision function is

developed in a shared control system in this chapter. A number of experiments

are conducted to verify the algorithm.

• Chapter 7: Conclusion

A summary of contributions of the thesis is given in this chapter. A number

of suggestions for the future development of Gyrover are also included.

Chapter 2

Single wheel robot: Gyrover

2.1 B ackgr ound

Gyrover is a novel, single wheel gyroscopically stabilized robot, originally developed

at Carnegie Mellon University, in August, 1992. 3 prototypes have already been

developed. Figure 2.1 and Figure 2.2 shows the first and the second prototypes

respectively. The latest model of Gyrover (the third generation) is shown in Figure

2.3.

In the literature, there are precedents for single-wheel-like vehicles. In 1869, R.C.

Hemmings patented "Velocipede", a large wheel encircling the rider, powered by

hand cranks. Palmer describes several single-wheel vehicles with an operator riding

inside. A 1935 publication describes Gyroauto, which carried the riders between a

pair of large, side-by-side wheels, and was claimed capable of a speed of 116 mph.

In, a concept having a bus-like chassis straddling a huge central wheel was also

described.

Before the first prototype of Gyrover was developed, several alternative configu-

rations had been considered, such as, a spherical shape, two wheels side by side and

outboard wheels configuration. However, most of the above designs do not exhibit

9

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 10

natural steering behavior resulting from the interaction of the gravitational torque

and the gyroscopic effect. The present concept, with all the sensors and instruments

enclosed in the singlw wheel, provides a simple, reliable and rugged vehicle.

ij
Figure 2.1: Gyrover I. Figure 2.2: Gyrover 11.

Gyrover I has a diameter of 29 cm and a mass of 2.0 kg. It can be easily driven

and steered by remote control, has a good high-speed stability on smooth or rough

terrain, and can be kept standing in place. The main shortcomings of this robot are

its lack of resilience and vulnerability to wheel damage, excessive battery drain due

to drag on the gyro, inadequate torque in the tilt servo and incomplete enclosure of

the wheel. Gyrover II was designed to address these problems. It is slightly larger

than Gyrover I (34 cm diameter, 2.0 kg) and uses many RC model parts. Tilt-

servo torque and travel were approximately doubled. The robot contains a variety

of sensors to monitor motor current, position and speed, tire and vacuum pressure,

body orientation and gyro temperature.

The latest version, Gyrover III, was designed on a larger scale to premit it to

carry numerous inertial sensors and a computer (486PC) for data acquisition and

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 11

\Wlmmi

Figure 2.3: Gyrover III.

control. This machine uses a lightweight 40 cm bicycle tire and rim and a pair of

transparent domes attached to the axle. The overall weight is about 7 kg. This

prototype is readily for us to implement some control algorithms into the robot to

develop a semi/fully autonomous control system. However, vision is still not avaiable

in this prototype yet.

2.2 Robot concept

The actuation mechanism in Gyrover consists of three seperate actuators: (1) a spin

motor, which spins a suspended flywheel at a high rate, imparting dynamic stability

to the robot; (2) a tilt motor, which controls the orientation of the flywheel; and (3)

a drive motor, which causes forward or backward acceleration, by driving the single

wheel directly.

T = JujxQ (2.1)

where T is the applied torque normal to the spin and precession axis, J is the wheel

polar moment of inertia about the spin axis, oj is the angular speed of the wheel,

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 12

and Q is the wheel's precession rate normal to the spin axis.

The behavior of Gyrover is based on the principle of gyroscopic precession, equa-

tion(l.l) , as exhibited in the stability of a rolling wheel. Because of its angular

momentum, a spinning wheel tends to precess at right angles to an applied torque

(classical gyroscopic pression). Thus, if a torque (T) is applied about the wheel's

longitudinal axis, rather than falling over, the wheel precesses about the vertical

axis, causing it to follow a curved path. If the wheel leans to one side, the gravi-

tationally induced torque causes it to precess so that it turns in the direction it is

leaning, tending to stabilize its upright position.

Gyrover supplements this basic concept with the addition of an internal gyro-

scope nominally aligned with the wheel and spinning in the direction of forward

motion. The gyro's angular momentum produces lateral stability when the wheel

is stopped or moving slowly. A tilt mechanism enables tilting the gyro's axis about

the fore/aft axis with respect to the wheel. Because the gyro acts as an inertial

reference in attitude, the immediate affect of the tilt action is to cause the wheel

to lean left or right, which in turn causes the wheel to steer (precess) in the direc-

tion of leaning. Torques generated by a drive motor, reacting against the internal

mechanism which hangs as a pendulum from the wheel's axle, produce thrust for

accleration and braking.

Gyrover has a number of advantages over multi-wheeled vehicles:

1. The entire system can be enclosed within the wheel to provide mechanical and

enviromental protection for the equipment and actuation mechanism.

2. Gyrover is resistant to getting stuck on obstacles because it has no body to

hang up, no exposed appendages, and the entire exposed surface is driven.

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 13

3. The tillable spinning flywheel can be used to right the vehicle from its statically

stable, rest position (on its side). The wheel has no backside on which to get

stuck.

4. Gyrover can turn in place by simply leaning and precessing in the desired

desired direction with no special steering mechanism, which enhance maneu-

verability.

5. Single-point contact with the ground eliminates the need to accommodate

uneven surfaces and simplifies control.

6. Full drive traction is available because all the weight is on the single drive

wheel.

7. A large pneumatic tire may have very low ground-contact pressure, resulting

in minimal disturbance to the surface and rolling resistance.

Although the robot offers tremendous potential applications, the robot concept

also brings a number of challenging problems in modeling and control due to the

following characteristics:

• Dynamic coupling: It is a highly coupled dynamic system between the wheel

and the flywheel because the flywheel is mounted on the rolling wheel through

a 2-link manipulator. In fact, there is no actuator to control the roll angle of

the robot directly, the system only allows us to control its roll angle indirectly

by tilting the orientation of the spinning flywheel.

• Nonholonomic constraints: The single wheel robot is subject to two nonholo-

nomic constraints: the first order and the second order nonholonomic con-

straints. The first order constraint is based on the assumption that the robot

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 14

rolls on a plane without slipping. The second order one is due to underactua-

tion in the roll direction.

• Unstable in lateral direction: Similar to a single track vehicle such as bicycle

or unicycle, the robot is inherently unstable in the lateral direction.

• Gyroscopic stabilization: A characteristic of gyroscopic stabilization, not gen-

erally understood, is that the stability depends on the freedom to precess. For

our case, a gyro with horizontal axis normally precesses about the vertical

(yaw) axis when a torque is applied about the fore/aft (roll) axis. If the yaw

precession is prevented by some obstruction, a yaw torque will be generated

that completely negates the stabilizing effect, which makes the wheel to fall

like a static, rigid body. If the precession is resisted by a yaw torque, the

unpright attitude will decay as the wheel precesses, and it will fall slowly in

the direction of the roll torque.

These are the reasons why we prefer using a model-free approach to control the

robot rather than classical control method which requires ultimate understanding

about the dynamic properties of the system.

2.3 System description

In this section, details of Gyrover's sensing, actuating mechanisms and computing

device are discussed. The latest model we are using currently is Gyrover III. It is

built with a light-weight bicycle tire and rim and a set of transparent domes. It

includes a radio system for remote control, on-board computer and a number of

sensors to permit data-logging and on-board control of the machine's motion.

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 15

There are 3 actuating mechanism in Gyrover: (i) Gyro tilt servo, (ii) Drive

motor, and (iii) DC gyro motor. Table 2.1 gives a detail description of each of them.

Actuator Symbol Descriptions
The tilt servo controls the relative angle of the gyro

. spin axis with respect to the wheel axis. In fact, by
Gyro tilt servo uq controlling the tilt servo, we are able to controls the

lean angle angle of the robot indirectly.
The robot forward/backward drive system uses a 2-

Drive motor Ui stage, tooth belt system to amplify the torque from
the drive motor.
This motor cause the internal gyro to spin at a der-

DC gyro motor u^ sirable operating speed, increase the angular momen-
tum of the gyro.

Table 2.1: Table of different actuating mechanism in Gyrover.

A number of on-board sensors have been installed on Gyrover to provide infor-

mation about the states of the machine to the on-board computer. The information

includes:

• Gyro tilt angle, fia

• The servo current

• Drive motor current

• Drive motor speed

• Gyro speed, %

• Angular rate (3-axes: Roll-Pitch-Yaw), 7 and a

• Accleration (3-axes: Roll-Pitch-Yaw), 7 and a

• Robot tilt angle (Roll), f3

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 16

All these signals, plus the control inputs from the radio transmitter, can be read

by the computer. A custom-built circuit board contains the control computer and

flashdisk, interface circuitry for the radio system and servos, components and logic

to control power for the actuators, and an interface for the on-board sensors. The

on-board processing is performed by a 486 Cardio PC.

In addition, several more sensors are planned to incorporate with our control

algorithms in the near future. Visual processing capability or a Global Position-

ing System (GPS) is a big issue for the autonomous control, however, due to the

structural limitation of the robot, we have not equipped the robot with this kind of

device yet.

2.4 Flywheel characteristics

In this section, we are going to study how the orientations of the internal flywheel

affect the Gyrover's motion. By having a better understanding of this problem,

humans can control the robot more effectively. First of all, let's consider the case

of a rolling disc, according to the fundamental equation for gyroscopic precession

(2.1), the idea is illustrated in Figure 2.4.

For instance, given that the disc is rolling on a plane at its upright position, if

a torque is applied to the X-axis, an angular rate of precession will be induced at

the y-axis. Therefore, rather than falling over, the disc will turn in the direction it

is leaning, tending to stabilize its upright position.

Gyrover is considered as a combination of three components: (1) a wheel, (2)

an internal mechanism, and (3) an internal flywheel. The robot is so designed that

the intial orientation of the flywheel is located at 0 �(/ ？ ^ 二 0), with the spinning

axis parallel to the pitch direction of the robot, Figure 2.5 and 2.6. Moreover, the

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 17

Y
‘ 0 二 Precession rate

o
J 二 Polar Moment of inertia

Torque

z

Figure 2.4: The fundamentals of gyroscopic precession.

orientation of the flywheel is bounded between ± 9 0 �A t the boundary conditions

ifia — ±90°), the spinning axis of the flywheel will be paralleled to the yaw direction

of the robot.

Zb - spin axis I 7

-90^ ^^^^^^ +90°

flywheel's ^ ^ /
tilt axis

(Xb) \
\ flywheel

REAR VIEW

Figure 2.5: Flywheel's orientation is limited to ±90°.

The high speed spinning flywheel, when installed in Gyrover, its angular momen-

tum can provide lateral stability when the robot is moving slowly or even remain at

a stationary location. Consider that the flywheel is located at /3a = 0，if we applied

a torque along the tilt axis (X5), from equation (3.1), a torque will be induced at

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 18

Y (yaw) Y (yaw)

J h
Z (pitch) ^ « 」 画 （ X (roll) ^ 麗

REAR VIEW SIDE VIEW

Figure 2.6: Coordinate frames of the Gyrover and the flywheel.

the direction Y .̂ Since the flywheel is attached to the robot with the motion at YJ,

is fixed, the torque results in the coupling motion between the yaw and roll axis of

the robot. By this coupling motion, the gyroscopic torque from the flywheel can

balance the gravitational torque which intend to make the robot fall down.

However, when the flywheel's spinning axis is in parallel (or closely parellel) with

the wheel's yaw axis, the torque produced by the flywheel will no more contribute

to stabilize the wheel in the lateral (roll) direction. On the other hand, the torque

will contribute to the internal mechanism of the robot which will cause undesirable

motion to the whole system. This can be demonstrated by the following experiments.

Besides the above problem, there is another disadvantage if the flywheel's spin-

ning axis is in parallel with the robot's yaw axis, i.e. when fia 二 士90�. Due to the

hardware limitation, the tilt angle of the flywheel is bounded by:

—90�<e>a< 90� （2.2)

Consider that if/3a w 90°, since the flywheel cannot be tilted further beyond 90^,

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 19

lean angle of Gyrover
170 I ！ ！ ！ 1 ！ 1 ！

160 - ： flywheel at
；90 degrees b.J'^^^

： 丨 丨 ：
f � f y
、 。 丨 I r ^ 丨

11�_ y ly/: flywheel at 0 degree _

： 麗 : t t 1
801 i i i i i i i

0 0.5 1 1.5 2 2.5 3 3.5 4
time(sec)

Figure 2.7: The effects of the flywheel in Gyrover.

if the robot keeps falling on a particular side, the flywheel is unable to generate a

sufficient torque to oppose the change, the robot will fall down eventually. The case

is similar when /3a
fti y u •

Thus, during the control of Gyrover, we should avoid the flywheel to stay at or

near ±90® as possible as we can. In other words, in order to stabilize the robot

and to response to any disturbance in the lateral direction effectively, we should

always keep the flywheel to remain at 0°. This can avoid the motion of the internal

mechanism, which is undesirable, the flywheel is also able to provide maximum

degree of freedom (DOF) to oppose any changes in the lateral direction of the robot.

Here, we introduce a method to measure the DOF of the flywheel:

DOF flywheel = 1 - "TT^“ (2.3)
I Pa:max

where 良 is the mean tilt angle of flywheel, Pa-.max is the maximum tilt angle the

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 20

flywheel can achieve (i.e. ± 9 0 �) and 0 > DOFflywheel > 1.

If DOFfly如heel is equal to 1, that means the flywheel is always located at the

position. If DOFflywheel is equal to 0, implies that the flywheel is always located at

±900，which is not desired. Therefore, under this measurement, the greater value

of DOFfiyyjheeh the better control of the robot (flywheel) would result. For the

experiments we conduct later, we use this measurement to evaluate the "quality of

control" of Gyrover.

2.5 Control patterns

Conventional mobile robots constitute the following behaviors during navigation: (i)

Obstacles aviodance, (ii) Object recognition (image processing behavior), (iii) Path

planning, (iv) Path tracking, and (v) Wondering (randomly move around). Besides

the traditional mobile robot behaviors, Gyrover has some other behaviors which are

different from them.

• Lateral balancing

Lateral stability is the most basic problem of a single wheel vehicle, especially

when the wheel does not roll, which is similar to a bicycle. The robot is

inherently unstable in the lateral direction because there is no actuator which

directly balance itself. However, since a spinning flywheel is mounted on the

rolling wheel through a two-link manipulator, by tilting the internal flywheel

into different orientation, we are able control the robot in the lateral direction

indirectly.

• Fall recovery

CHAPTER 2. SINGLE WHEEL ROBOT: GYROVER 21

Fall recovery is an unique ability of Gyrover when compared with other mobile

robot. Although the robot is unstable in lateral direction, which implies that

it may sometimes fall on the ground, it is able to recover from the fall positions

by controlling the orientation of the flywheel. Gyrover resists to get stuck on

obstacles because it has no body to hang up, no exposed appendages, and the

entire exposed surface is live. The wheel also has no backside on which to get

stuck.

• Heading control

Since the robot do not have a proper steering mechanism, there is no direct

control to the yaw direction for the robot. However, we can control the robot's

heading direction by letting the robot to lean and precess until the desired

direction is reached.

Although these special features bring a number of challenging problems in a

control point of view, the high dynamic stability and maneuverability of Gyrover

motivate us to have a further study on the robot, and to develop a complete control

architecture for this system.

Chapter 3

Learning Control

Due to the complexity of the system, it is difficult for us to work out a 'complete'

analytical model of it. Therefore, in this chapter, we propose using a machine

learning algorithum, Cascade Neural Network (CNN) with node-decoupled extended

Kalman Filtering (NDEKF), to model the robot's behaviors from human control

strategy (HCS).

3.1 Motivation

Gyrover is a single track mobile vehicle which is inherently unstable in the lateral

direction. With the lack of a wide polygon of support (single-point contact with

the ground), Gyrover has a very bad static stability, even it has equipped with an

internal gyroscope spinning at a high rate. The thin pneumatic tire which wrapped

around the robot makes it difficult to stand in a stationary position for a very

long time, it will fall on the ground eventually. However, by tilting the internal

gyroscope into different orientations, we can indirectly control the lean angle of the

robot, which implies that it is possible for us to keep the robot to stay around into

its upright position with a proper control method.

22

CHAPTER 3. LEARNING CONTROL 23

Previous researches of Gyrover have been focused on the dynamics and control,

including the kinematic constraints and motion equations [2, 3，4, 5, 7, 8，9]. How-

ever, the robot concept brings a number of challenging problems in modeling and

control because of the highly coupled dynamics, the nonholonomic constraints and

the non-minimum phase behavior of the system. The proposed linear state feedback

model in [5] only gurantees the local stability of the system. Moreover, the dynamic

model derived has been based on many assumptions which may not be realistic.

In [7], a linear state feedback controller is developed for stabilizing the robot to

any desired angle, however, this model only applied for the case when the robot

reaches at the steady state. By putting the consideration of the swinging motion

of the internal mechanism, the model is modified in [8]. Unfortunately, the models

obtained above are based on the assumption of rolling without slipping condition,

that is, the robot must be rolling perfectly on the ground. Therefore, these models

are not applicable for the static situation. In the static situation, the coupling

between the wheel and the flywheel becomes much more complicated, which makes

us difficult to derive an analytical model by traditional control method.

On the other hand, humans are capable of mastering complex, and highly non-

linear control system, a typical example is car driving. For Gyrover control, humans

are able to control the robot well if enough practices (trainings) are given. Thus,

we intuitively come up with the idea of machine learning, a model-free approach to

model this kind of human control strategy. This approach is suitable for Gyrover

control for the following reasons:

• Gyrover is a complex system which is difficult for us to develop a complete

dynamic model to represent the robot's behaviors by using traditional control

CHAPTER 3. LEARNING CONTROL 24

method.

• In a practical point of view, it is equally difficult to model the system precisely

due to some unmodeled factors, such as friction. Friction is an important issue

when we are dealing with the coupling between the wheel and the spinning

flywheel.

• Although Gyrover is a complex system, humans can control the robot through

a radio transmitter to perform various kind of tasks, they do not need to

explicitly model a system in order to control it. Through interaction with the

system and observation of the behaviors of the system, humans are able to

"learn" how to control a system.

• The learning process is in fact a direct input-output mapping between the

system sensory data and the actuation data. A controller is generated by

using the training data while a human "teacher" controls the system until the

synthesized controller can perform the same way as human.

3.2 Cascade Neural Network with Kalman filter-
ing

The field of intelligent control has emerged from the field of classical control theory

to deal with applications which are too complex for classical control approaches. In

terms of complexity, human control strategy lies between low-level feedback control

and high-level reasoning, and encompasses a wide range of useful physical tasks with

a reasonably well-defined numeric input/output representation.

Here, we introduce a continuous learning architecture for modeling human con-

trol strategies based on neural network. Since most neural networks used today

CHAPTER 3. LEARNING CONTROL 25

rely on rigid, fixed architecture networks and/or with slow gradient desent-based

training algorithms, which may not be a suitable method to model the complex,

dynamic and nonlinear human control strategy. To counter these problems, a new

neural network learning architecture is proposed in [11], which combines (1) flexible

cascade neural networks, which dynamically adjust the size of the neural network

as part of the learning process, and (2) node-decoupled extended Kalman Filtering

(NDEKF), a faster converging alternative to backpropagation. This methodology

has been proved which can efficiently model human control skills [13, 14] and human

sensation [30 .

First of all, let's discuss the architecture of cascade learning. In cascade learning,

the network topology is not fixed prior to learning, hidden units are added to an

initially minimal network one at a time. This not only free us from a prior choice of

network architecture, but also allows new hidden units to assume variable activation

functions. That is, each hidden unit's activation function no longer need to confine to

just a sigmoidal nonlinearity. A priori assumption about the underlying functional

form of the mapping we wish to learn are thus minimized. The whole training

process is described below:

1. Initially, no hidden unit exists in the network, only direct input-output con-

nections. These weights are trained first, to obtain a linear relationship, if

any.

2. With no further significant decrease in the RMS error {crms)^ a first hidden

node will be introduced into the network from a pool of candidate units. These

candidate units are trained independently and in parallel with different random

initial weights by using the quickprop algorithm.

CHAPTER 3. LEARNING CONTROL 26

3. The best candidate unit will be selected and installed into the network if no

more appreciable error reduction occurs, therefore, the first hidden node is

produced.

4. Once the hidden unit is installed, all the input weights of the hidden unit will

be frozen, while the weights to the output unit(s) is/are going to train again.

This allows for a much faster convergence of the weights during training than

a standard multi-layer feedforward network.

5. This process (from step 2 - step 4) is repeated until the crms reduces suffi-

ciently for the training set or the number of hidden units reaches a predefined

maximum number.

Figure 3.1 illustrates, for example, how a two-input, single-output network with

a bias unit grows with increasing number of hidden nodes.

established connection
(J new node
^ ^ new connection

Q K , 0 K (B \
/ \ add 1st hidden \ , / \ add 2nd hidden \ x ! \ and so on)

(S) (5)
Figure 3.1: The cascade learning architecture.

A cascade neural network with riin input units (including the bais unit), n^

hidden units, and riout, has n ĵ connections (total number of weights) where,

riyj = ninUout + rihiuin + riout) + (jih 一 (3.1)

CHAPTER 3. LEARNING CONTROL 27

In fact, any multi-layer feedforward neural network with k hidden units arranged

in m layers, fully connected between consecutive layers, is a special case of a cascade

network with k hidden units with some of the weights equal to zero. Thus, this

architecture relaxes a prior assumptions about the functional form of the model

to be learnt by dynamically adjusting the network size. We can further relax these

assumptions by allowing new hidden units to have different activation function. The

kind of activation functions which reduces crms most will be selected during the

process, Sigmoid, Gaussian, and sinusoidal function of various frequency are some

of the available types of activation functions we can choose.

While quickprop is an improvement over the standard backpropagation algorithm

for adjusting the weights in the cascade network, it still requires many iterations

until satisfactory convergence is reached. When combining cascade neural networks

with node-decoupled extended Kalman filtering (NDEKF), [13] has shown that this

methodology can solve the poor local minima problem, and that the resulting learn-

ing architecture substantially outperforms other neural network training paradigms

in learning speed and/or error convergence for learning tasks important in control

problems.

3.3 Learning architecture

Denote uj\ as the input-side weight vector of length at iteration k, for i G

{0，1’... ’ Uo}, and,

= = , (3.2)
l̂ Uin + Uh z G {1 , . . . ,no)

The NDEKF weight-update recursion is given by, (staring from equation (3.6)

CHAPTER 3. LEARNING CONTROL 28

to (3.9), {}，s, O's and []'s evaluate to scalars, vectors and matrics respectively)

= + (3.3)

where “ is the rvdimensional error vector for the current training pattern,讽 is

the no-dimensional vector of partial derivatives of the network's output unit signals

with respect to the ith unit's net input, and,

此=pici (3.4)
r "1—1

Uo
A, = (3.5)

pu = (3.6)

Pi = { I M I (3.7)

where Q is the nj^-dimensional input vector for the ith unit, and PI is the x n^

approximate conditional error covariance matrix for the zth unit. The parameter r}Q

is introduced in (3.9) to avoid the singularity problems for error covariance matrices,

throughout the training, we use t]q = 0.0001 and rjp = 0.01.

The vector ipl can be computed in this way: let Oi be the value of the zth output

node, To be its corresponding activation function, netoi be its net activation, Th

be the activation function for the current hidden unit being trained, and netn be

its net activation. We have,

BQ.
= 0 , V Z ^ J (3 .8)

onetoj
QQ.

o = V'o(netoi),i € { 1 , . . . ,no} (3.9)
onetoi

dO
w - i - = WHi.T'o{netoi).r'H{netH"l (3.10)
oneiH

where Wni is the weight connecting the current hidden node to the zth output node.

CHAPTER 3. LEARNING CONTROL 29

3.4 Input space

The cascade neural network architecture only offers a static mapping between the

input and output. In fact, human control strategy is dynamic, we must map the

dynamics system onto a static map. In general, we can approximate a dynamic

system through a difference equation [13]:

u{t-hl) = r[4t)，iZ(t —l),...，i2(t —71̂^ + 1)’无,对亡一1)，...’对亡_几1 + 1),乏(力)](3.11)

where r(.) is a mapping between a dynamic system onto a static one, u{t) is the

control vector, x{t) is the system state vector, and z{t) is a vector describing the

external environment at time t. Since vision system is not available on the current

Gyrover prototype yet, the above equation is reduced to:

u{t + 1) = r[权⑴，u{t — 1),. •.，財t - n" + x{t — 1) , . . . ’ 辨力一 + 1)] (3.12)

The order of the dynamic system in (3.9) is given by the constant n^ and rix,

which may be infinite. Therefore, by providing enough time-delayed histories of the

state and command vectors of a system, a static model is able to abstract a dynamic

system. For Gyrover, the HCS model will require:

1. current and previous state information (e.g. lean angle of the robot,

tilt angle of the flywheel),

X=[p Pa P i a 4 0 -f a

2. previous human operator's control information,

- 1了 U =-- U.o Ui

CHAPTER 3. LEARNING CONTROL 30

Let's denote the HCS model's input space for Gyrover as,

{ r ， ， h , , … , ！ ^ : ， r ， r ' , … ， u r } ,

(3.13)

n i > 0 , i e { 1 , 2 , . . . , 12},

rii is the number of time-delayed histories of a particular input variable. The above

expression can also represent as,

S〜二 [2(亡一71�+ 1).. .2(亡一1)5 ⑷严 E e { x u} (3.14)

The total number of inputs riin is given by,

12

riin = (3.15)
i二 1

S will be ommitted from equation (3.14) if n̂ = 0. For instance, u^}

represents a model whose input space consists of three previous lean angle {(3) and

tilt angle {/Sa) information, and together with five history tilt motor commands (ui).

For the sake of convenient, we will S6t n^； = rii 二 n) = ... == nio, and n^ = rin = nu.

Therefore,

,公“"} = , PcTr, h , ， ， 台 ： ， (3.16)

riin = lOn,； + 2nu (3.17)

3.5 Model evaluation

The main advantage of modeling robot's behaviors by learning, is that no explicit

physical model is required, however, this also presents its biggest weakness. Since

a model is trained by the input-output relationship only, the lack of a scientific

jusitification degrades the confidence that we can show in these learnt models. This

CHAPTER 3. LEARNING CONTROL 31

is especially true when the process we are going to model is dynamic and stochastic

in nature, which is the case of human control strategy. For a dynamic process, errors

may feed back into the model to produce outputs which are not characteristics of

the original process or making the process to be unstable. For a stocastic process, a

static error criterion such as RMS error, based on the difference between the training

data and the predicted model outputs is inadequate to gauge the fidelity of a learnt

model to the source process.

In general, for different models, the similarity between a dynamic human con-

trol trajectory and a model-generated one will vary continously, from completely

dissimilar to nearly identical. Furthermore, one cannot expect exact trajectories for

the system and the learnt model, even equivalent initial conditions are given. To

effectively evaluate the learnt models, we introduce a stochastic similarity measure

proposed in [12]. This method is based on Hidden Markov Model (HMM) analy-

sis, which is a useful tool for comparing stochastic, dynamic and multi-dimensional

trajectories.

Hidden Markov Model is a trainable statistical model, which consists of a set of

n states, interconnected by probabilistic transitions, each of these states has some

output probability distributions associated with it. A discrete HMM is completely

defined by,

A = {A,B,7r} (3.18)

where A is the probabilistic Ug x rig state transition matrix, B is the L x Ug output

probability matrix with L discrete output symbols I G {1,2,...,!/}，and TT is the

n-length initial state probability distribution vector for HMM. Two HMMs (Ai and

CHAPTER 3. LEARNING CONTROL 32

入2) are said to be equivalent if and only if,

P(0|Ai) 二/̂ (0|A2),V0 (3.19)

We prefer discrete HMMs than continuous or semi-continuous HMMs, because

they are relatively simple in computation and less sensitive to initial random param-

eter settings. However, the human control trajectories we are going to measure are

continuous and real-valued functions, in order to make use of the discrete HMMs,

we must convert the data sets into sequences of discrete symbols On by the following

procedures:

1. Normalization

2. Spectral conversion

3. Power Spectral Density (PSD) estimation

4. Vector quantization

The purpose of step (1) - (3) is to extract some meaningful feature vectors V for

the vector quantizer. In step (4), the feature vectors V are converted to L discrete

symbols, where L is the number of output observables in our HMMs.

In general, assume that we are going to compare the obervation sequences (Oi

and O2) from two stochastic processes (Fi and [2). The probability of the observa-

tion sequences Oi given the HMM model Aj, is given by [12],

= i , i G { l , 2 } (3.20)

where the above equation is being normalized with respect to the total numbers of

symbols

CHAPTER 3. LEARNING CONTROL 33

The similarity measure a between Oi and O2 is,

w a，仏） = \ / S S (3.21)

Figure 3.2 illustrates the overall approach to evaluate the similarity between two

observation sequences. The HMMs are trained by each observation sequence first,

then we cross-evaluate each observation sequence on the other HMM. Based on the

four normalized probabilies, the similarity measure a can be obtained.

—o�\

\ / HMML:

y 巧’而

/ \ HMM2: X2 “ “

~ I
Figure 3.2: Similarity measure between Oi and O2.

Here, we demonstrate an example of how this similarity measure works. Figure

3.3 shows four Gyrover control trajectories. Figure 3.3(a) and 3.3(b) correspond to

the tiltup motion control, while Figure 3.3(c) and 3.3(d) correspond to the lateral

stabilization control of Gyrover. We applied the HMM similarity measure across

these four trajectories, we might expect that the trajectories of the same motion

should have a relatively high similarity, for any two trajectories which generated

from different kinds of motion should have a low similarity value. We summarize

the results in Table 3.1.

From the Table 3.1, it is clear that this similarity measure can accurately classify

dynamic control trajectories from the same type of motion, while discirminating

CHAPTER 3. LEARNING CONTROL 34

Tiltup control trajectory #1 Tlltup control trajectory #2

200 j 1 1 1 1 1 1 1 1 2001 1 1 1 1 1 1 1

170 - 170 - y -

V _ ^ r _
140 - L y 140 - I -

130 - 130 -J -

1201 I I I I I I I I 1201 I I I I I I I
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

time time

(a) Tiltup 1 (b) Tiltup 2

Vertical stabilization control trajectory #1 Vertical stabilization control trajectory #2

1951 1 1 1 1 1 1 1] 1951 1 1 1 1 1 1 1

190 - n 190 - I M -

丄 jJVv J. .
:丨： 1 y u :

170 - “ - 170 - 「 r - ' -

1651 1 1 1 1 1 “ 1 I65 ' 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

time time

(c) Vertical balancing 1 (d) Vertical balancing 2

Figure 3.3: Control data for different motions.

“ Tiltup # 1 Tiltup # 2 Vertical stab. # 1 Vertical stab. # 2
—Tiltup # 1 1.000 0.6306 0.0524 “ 0.1234
"Tiltup # 2 0.6306 1.000 0.0615 — 0.0380
"Vertical stab. # 1 0.0524 0.0615 1.000 — 0.4994
—Vertical stab. #2 0.1234 0.0380 0.4994 1.000

Table 3.1: Similarity measures bewteen different control trajectories.

CHAPTER 3. LEARNING CONTROL 35

those from different motions by giving a low similarity value. This similarity measure

can be applied towards validating a learned model's fidelity to its training data, by

comparing the model's dynamic trajectories in the feedback loop to the human's

dynamic control trajectories.

3.6 Training procedures

Fist of all, we have made two assumptions for the training data provided for the

learning process:

1. Reliable training set. Since learning is a kind of high-level, model free

"teaching by showing" approach, the stability or robustness of the learnt model

is heavily depended upon the operating skills of a "human teacher", in order

to provide reliable and stable control. Therefore, throughout the teaching

process, we assume that the operator is skillful and experienced enough to

master the robot. That is, the training data can fully reflect the skills in

a particular robot behavior. Besides the quality of the training data, the

quantity of the data points is equally important. If the training set is in a

larger scale, a more complete skill can be described.

2. Injective mapping. Another important issue is about the mappings between

inputs and outputs in a static map. Figure 3.4 shows a human control strategy

for the lateral balancing behavior, it is not difficult to figure out that the

control of the flywheel is always switching (a very sharp change). That is,

at a short moment ago, the command is positive, but in the next moment,

the command will change into negative. Unfortunately, the switching problem

causes very similar inputs to be mapped to a radically different outputs, which

CHAPTER 3. LEARNING CONTROL 36

is difficult for the cascade neural network to adapt, Figure 3.5. To ensure

that there will be a correct mapping, enough time-delayed histories should be

provided in the training data set. In our cascade network training, we will

provide at least 20 history data (n^ > 20) to guarantee the injectiveness of the

mapping.

Change of control to tilt motor (verticle stabilization)
101 1 1 1 i 1 1 1

8 - -

6 - -

4 - I -

-4 - -

- 6 - -

- 8 - -

_io' ‘ 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

time(sec)

Figure 3.4: Switchings in human control of flywheel.

For each model, we process the training data as follows:

1. Removal of irrelevant data

Let [f, t + tm] denotes an interval of time, in seconds, that a human operator

has given an inappropriate command during the experiment. Then, we cut

the data corresponding to time interval [t — 1, f + f^] from the training data.

In other words, we not only remove the irrelevant data from the training set,

but also the second data leading to the inappropriate command time interval.

CHAPTER 3. LEARNING CONTROL 37

Input space Output space

Figure 3.5: Similar inputs can be mapped to extreme different outputs if switching
occurs.

This ensures that the cascade model does not learn control behaviors that are

potentially destabilizing.

2. Normalization

We normalize each input dimension of the training data, such that all the

input in the training data falls inside the interval [—1,1 .

3. Generate time-shifted data

As mentioned in the previous section, we need to provide enough time-delayed

values of each state and control variable such that the model is able to build

necessary derivative dependencies between the inputs and outputs. In our

cascade network training, we will provide 20 history data.

4. Randomization

Finally, we randomize the input-output training vectors and select half for

training, while reserving the other half for testing.

The sampling rate of the training data is 40Hz, typical training set will consist

of approxiamtely 10,000 data points.

Chapter 4

Control Architecture

In this chapter, we will introduce the overall control architecture of Gyrover. Since

the behavior-based control is widely used in mobile robot applications, we attempt to

apply this control architecture into the Single Wheel Robot control system. Based on

this concept, layers of control system are built to let the robot operate at increasing

level of competence. By building this architecture, it gives us a clear picture to

develop a complete control system for the robot.

4.1 Behavior-based approach

Behavior-based approaches have been established as a main alternative to conven-

tional robot control in the recent years. Due to their modular architectures, these

approaches provide high flexibility, while limiting complexity of individual modules.

Each behavior in the system can be implemented and tested independently. Fur-

thermore, they meet real-time requirements in a dynamic enviroment by creating a

tight coupling between sensing and acting.

38

CHAPTER 4. CONTROL ARCHITECTURE 39

4.1.1 Concept and applications

A behavior-based approach has many advantages over traditional methods of con-

trolling autonomous mobile robots. Traditional approaches decompose the overall

problem into a set of functional units such as perception, world modeling, plan gen-

eration, etc. These functional units are linked sequentially that creating a linear

datapath from sensory transducers to motor actuators, as shown in Figure 4.1.

Various sensors information •

I raw data

—一——--…，

Perception

Modelling

I Planning —

i |
Execution J g

Control

_ I
内 commands

I Actuators

1， _— _ 3

Figure 4.1: Conventional approach of a mobile robot control system.

That is, a robot first senses, perceives, and models its environment, and then it

plans and acts in its environment. Since the world has plenty of information to ac-

quire, this traditional method leads to information overload, which makes the robot

incapable in functioning real time. Moreover, conventional methods assume the

robot itself can construct accurate, global world models from the incoming sensory

CHAPTER 4. CONTROL ARCHITECTURE 40

information. The facts such as a rapidly changing world, limited processing power

of the system, and inaccurate, incomplete sensor models make this assumption to

be failed.

In contrast, a behavior-based approach solves the control problem in a parallel

fashion, Figure 4.2. Each behavior, acting concurrently with other behaviors, only

extracts the information required to complete a given task from the environment at

a given time, which greatly avoid the information overload problem. This kind of

division of labor method also eliminates the need for construction and maintenance

of a global world model, which further reduces the computation load of the system.

一 i Aviod obstacles |

Identify objects i

I � i � h
I I raw data Path Planning | commands w |

I s { ^̂mmr̂^ I ^ ' ^ 5 i
I I Explore I “ < y
\ s! \ \

Maps building

Wandering ,

�
V)

Y
behavior-based modules (tasks)

Figure 4.2: Behavior-based approach of a mobile robot control system.

Another advantage of the behavior-based approach is that it enables us to create

layers of increasingly complex behaviors. The higher level behaviors can inhibit or

modulate lower level behaviors. Therefore, a robot control system can be incremen-

tally built with increasing capabilities, without losing low-level capabilities which

are already created.

Behavior-based approach conveys significant contributions in the control of robotic

CHAPTER 4. CONTROL ARCHITECTURE 41

systems, a wide-range of robotic systems have applied this control architecture. The

examples below illustrate the advantages of the applications of the hierarchical,

behavior-based control in various kinds of autonomous systems:

• Autonomous flying vehicle control

The University of Southern California Robotics Research Laboratory has de-

veloped an Autonomous Flying Vehicle-I (AFV-I) [18, 21]. A behavior-based

control architecture was introduced for this autonomous flying vehicle. The

behaviors of the robot are organized hierarchically, with low level, reflexive

behaviors responsible for craft survival and high level behaviors responsible

for tasks such as navigation and object location. The control system utilizes

the sensors on AFV-I to make it to remain stable during the flight, navigation

to a target, and to manipulate a physical object. The AFV-I had won the

first-place in the International Aerial Robotics Competition in 1994.

• Planetary autonomous robot control

In [16], [20] and [28], behavior-based control approach is applied to the field

of planetary exploration. [16] presents a very small, legged robotic system,

called the Mars Micro-Rover. The behavior-based architecture breaks down

the Micro-Rover locomotion problem into many subtasks, from low level tasks

(motor activities), medium level tasks (e.g. leg control) to higher level tasks

(e.g. 'increase-ground-clearance').This mirco robot serves as a testbed to eval-

uate the performance potential of small legged robotic systems and their con-

trol architectures.

Research groups of the Jet Propulsion Laboratory in California had imple-

mented the behavior control algorithm in several microrover prototypes [20,

CHAPTER 4. CONTROL ARCHITECTURE 42

28]. The control systems of these microrovers integrate information from dif-

ferent sensors and encoders which report on the state of the articulation of the

rover's suspension system and other mechanics, a homing beacon, a magnetic

compass, and contact sensors. The robot is able to perform variety of useful

tasks, such as soil sample collection, spectral imaging, and sample returns.

• Multi-robot system

A multi-robot system is a system which consist of several autonomous robots

working together to achieve a common goal. The most challenging problem of

this system is how to effectively control a group of robots to perform a specific

task and avoid collisions within the group. In [19], an approach is presented

which is based on the master-slave type of control with dynamically selected

'master'. The implementation of the control system is a behavior-based, while

the subsumption architecture is extended over a group of robots.

A behavior-based formation control for multi-robot teams is presented in [24 .

The formation behaviors are integrated with other navigation behaviors which

enable a robotic team to reach navigation goals, to aviod hazards and remain

in formation at the same time. The behaviors are implemented on robots in

laboratory and aboard ummanned ground vehicles.

• Mobile manipulation

A control architecture for mobile manipulation within a behavior-based frame-

work, so called Mobile Manipulation Control Architecture (MMCA), is given

in [26]. The control structure enables integration of the manipulator into a

behavior-based control structure for the platform. This concept has imple-

mented on a Puma560 arm which is mounted on a mobile platform.

CHAPTER 4. CONTROL ARCHITECTURE 43

Behavior-based control approach is well suited in Gyrover control for the follow-

ing reasons:

• Multiple Goals: Since Gyrover has plenty of potential applications, it is neces-

sary for the robot to perform multiple tasks simultaneously. It may require to

reach a certain distance ahead while avoiding local obstacles. Moreover, often

the relative importance of the goals will be context-dependent. For this kind

of statical unstable vehicle, it is necessary to keep the robot remains stable in

the lateral direction in all sense, whether the vehicle is in a static or dynamic

status. The control system must be responsive to high priority but low level

goals, e.g. lateral stability.

• Multiple Sensors: A number of on-board sensors have been installed on Gy-

rover to provide information about the state on the machine to the control

computer. In reality, all sensors have an error component in their readings,

and they will often give inconsistent readings. In a behavior-based architec-

ture, not all sensors are required to feed into the central representation, only

those with extreme reliability might be eligible to enter the central unit.

• Robustness: When some sensors on-board are failed, the robot should able to

adapt and cope with the changes based on those remaining reliable sensors.

The subsumption architecture can ensure that a degree of the behaviors is still

functioning even some of the higher level modules has failed.

• Extensibility: Since more sensors and capabilities may be added into the sys-

tem in the future, the existing control structure should be flexible enough for

the builders to modify it.

CHAPTER 4. CONTROL ARCHITECTURE 44

4.1.2 Levels of competence

A level of competence is an informal specification of a desired class of behaviors for

a robot over all enviroments it will encounter. A higher level of competence implies

a more specific desired class of behaviors, each level of competence in fact includes a

subset of each earlier level. Since each level defines a class of valid behaviors, it can

be seen that higher levels provide additional constraints on that class. The key idea

of levels of competence is that we can build layers of control system corresponding

to each level of competence, by simply adding a new layer to an existing level, the

capability of the existing set will be increased.

For instance, at the very beginning, we start by building a complete robot control

system at the lowest level of competence. Since this layer represents the most basic

task for the robot to execute (e.g. avoid hitting any obstacles), this layer is debugged

thoroughly. Once this layer is completed, we never alter that system. Next, we build

another control layer, which we call it the medium level control layer. This medium

layer is able to examine the data from the lower level layer, and it also allows to

inject data into the lower level which supresses the normal data flow. When the

system is running, the lower layer continues to run unaware of the layer above it

which may sometimes interferes with its data flow.

In such a way, additional layers can be added later, and the initial fundamental

working system never needed to be altered. The same process is repeated in our

design in order to achieve higher levels of competence for the system, as shown in

Figure 4.3. This architecture is being well-known as a sub sumption architecture. We

will base on this idea to develop a behavior-based controller for Gyrover in the next

section.

CHAPTER 4. CONTROL ARCHITECTURE 45

^ ^ ~ 4th level — ,

H M M
increase in level of [|

competence | 1 3 r d I c V G I 1

decrease In level of

compctcnce (^

I 2nd level 1

^^^ I 卜二
I s e n s o r s f i — \ i

I = g I 与 1st level Q

X IF'
Figure 4.3: A subsumption architecture.

4.2 Behavior-based control of Gyrover: architec-
ture

For building an autonomous control structure for Gyrover, we must first figure out

the tasks which the robot can perform. By understanding the applications of the

robot, we are able to list out some behaviors of the robot, and then we are going to

design a behavior-based control architecture for Gyrover.

The Gyrover appears to be well suited in two classes of tasks: survey and trans-

port. As a surveryor, Gyrover might carry a videocamera or other instruments for

non-contact sensing, and survey broad regions at close range while travelling at high

speed. Gyrover could be driven remotely, providing video data to seek out and ex-

plore sights for landing or construction, or paths for road construction. When the

robot is equipped with some special sonsors on board, it is able to measure soil

properties through the tire tread. As a transporter, Gyrover could carry equipment,

materials or personnel. Because of its high dynamics stability, Gyrover can deliver

tools or medical supplies rapidly. Moreover, the ability of fall recovery gives Gyrover

CHAPTER 4. CONTROL ARCHITECTURE 46

robustness and a high degree of survivability. The ability of Gyrover to travel on

soft surfaces and water opens intriguing possibilities for an amphibious vehicle on

earth.

Conventional autonomous mobile robots control usually focus on navigational

problems such as goal seeking, path planning, obstacles aviodance and even speed

control. Since they have a broad ploygon of support, they are very stable statically,

and can tolerate large slopes without roll-over. However, due to the single-wheeled

configuration together with the special steering and propulsion mechanism of Gy-

rover, the locomotion properties of this robot are slightly different from traditional

quasi-static mobile robot. Although its slim profile can improve the maneuverability

and can find obstacle-free paths more easily, the problem of low-speed stability is

the one we need to tackle with in Gyrover control.

Gyrover consists a set of sensors (N, inputs) to perceive the environment, some

actuators (U, outputs) to modify the enviorment or the robot's position, and to-

gether with a digital control system, which is equipped with some memory Z. From

a mathmatical point of view, mobile robot control appears to be simple, theoreti-

cally, it is a mapping between the sensors Ui and the actuators Ui with a function f

with respect to an internal memory state Zi, as the following equation denotes:

f ‘ Oi，Zi) — {ui, Zi) or (Ui, Zi) = f{ni, Zi) (4.1)

However, the above transformation is usually quite complex and highly non-

linear in real application. The dimension of sensor input N can be very high, but

the dimension of actuator output U is typically small, or sometimes the internal

state space dimension which is needed to perform a task is not even known. In

general, we are unable to obtain a closed form representation for the function / .

CHAPTER 4. CONTROL ARCHITECTURE 47

By the way, we can reduce the complexity of the system by splitting the domain

and dividing the problem into several sub-tasks (behaviors). Therefore, the problem

becomes:

'fi{n, z) if (n, z) is in Bi
(… �二 /2(n，z) if (n , ,) is in 52 (4.2)

Jn{n,z) if (n,z) is in B^

where Bi represents a specific behavior of the robot.

The above expression can be further expressed as:

{u, z') = h(n, z) U /2(n, z) U . . . U /n(n, z) (4.3)

In fact, the sensor input, the actuator output and the amount of internal memory

need not to be the same for each fucntion / “ we have:

(U,之'）=fl(nuZi) U /2(722’ 2：2) U . . . U / n K , Z^) (4.4)

Therefore, each fi is responsible for a mapping between sensors and actuators in

a specific behavior subset. The number of sensors required in each fi is not necessary

the same as the others, which avoid data overflow for the system. Equation (4.4) is

already the idea of a behavior-based control architecture.

Based on the discussions in the previous sections, we are able to build a prilim-

ilary structure for Gyrover autonomous control. An overview of the control archi-

tecture is shown in Figure 4.4.

At the lowest level, the behaviors (reflex behaviors) implement very tight reflex

loops. The task of each individual loop is very simple but essential. For instance,

CHAPTER 4. CONTROL ARCHITECTURE 48

r ^ r — ^
Map Image Processor M Vision

V ^ I J I J

T •! ：
^ ^ ^ High-level behaviors

Planner 丨 （long-term behaviors)
V , J ！

j ！ i i
I I ”

[j * Mid-level behaviors
I (short-term behaviors)

I ^ I

I z m j I _
Low-level behaviors I ^ “

Sensors • (reflex behaviors) H Actuators

Figure 4.4: The overall control architecture.

the tiltup module responsible to tiltup the robot into the vertical upright position

whenever the robot has fallen on the ground, which we hope the robot can perform

this behavior even it cannot reach its higher level goal.

The medium level behaviors assume that the lower level behaviors are behaving

with some degree of competence, they do not affect the outputs to the actuators

directly but modulate the lower level behaviors. The behaviors in this level is also

called the short-term behaviors, such as path tracking.

The high level behaviors is responsible for achieving some long term goals. The

goal can be moving towards a target or searching for a specific target in a place. The

planner, which is a much higher level module, is responsible for generating a set of

subgoals to accomplish the entire task. This is done by activating the appropriate

set of behaviors, and initiating the correct set of parameters.

At a very first step in building a behavior-based architecture for Gyrover control,

CHAPTER 4. CONTROL ARCHITECTURE 49

let we decompose the whole control task of Gyrover into several behaviors. We

classify the behaviors of Gyrover into different levels: low, medium and high. The

behaviors in the low level are (i) Lateral balancing, and (ii) Tiltup from the fall

position. Medium level includes (iii) heading control, and (iv) obstacle avoidance.

Behaviors such as (v) path planning and (vi) path tracking, are consider as high

level behaviors.

In this way, based on the framework in Figure 4.4, we develop a behavior-based

control structure for Gyrover. In Figure 4.5, most of the individual behaviors are

shown, as well as the primary informational links.

I (Map M Image Processor ^ 1

i^riJ V V ^ ^
Monitor

(Planner � —丨 (^ .
^ I 1 I 1 Vision E ^

^ ^ Path ^ Path V) video
/ r \ \ / \ planning tracking

sensory and ^ ^ . . i 1 1
. . ‘ / . r ‘• activation i
behavior state in fomat ion - — - ‘

»> Obstacles
—rf avoidance �H e a d i n g ~ H drive motor J

I High level behaviors COntfOl

m ^ ^ Mid-level behaviors _ Lateral balancing •

r sensors W - “ ^ ti.t servo 1

Low level behaviors from ' —
I robot w reset • Tiltup robot

I^Gyrove^

Figure 4.5: A detailed structure of the behavior connectivity in Gyrover control.

CHAPTER 4. CONTROL ARCHITECTURE 50

4.3 Behavior-based control of Gyrover: case stud-
ies

In order to develop an autonomous control scheme for Gyrover, we must deal with

its lateral instablility problem, especially when the robot is in a static position (i.e.

the robot does not roll). Recall the behavior-based control architecture we have

developed in the previous section, we pick out the low-level behaviors module from

the structure for further discussions, as shown in Figure 4.6.

• Lateral balancing

^ 、 广 -S

sensors H tilt servo
V ^ J V J

\ = t ^ “ ^ robot

r ^
Gyrover H w

Figure 4.6: The low-level behaviors layer in the overall control architecture.

The shaded blocks in Figure 4.6 are the behaviors we desire the robot to perform

in the first level of competence within the subsumption architecture, (i) Lateral

balancing, and (ii) Tiltup motion. Therefore, if we can model these two behaviors,

the statically unstable problem could be solved for Gyrover.

Humans are able to control the robot to perform complicated motions which

are difficult to model in a mathmatical point of view. Therefore, we propose to

approximate this human control capability using a "teaching by showing" approach

13，14’ 15:.

CHAPTER 4. CONTROL ARCHITECTURE 51

4.3.1 Vertical balancing

Similar to the single track vechiles, Gyrover is inherently unstable in the lateral

direction. The robot can easily fall down especially when its rolling speed is low or

even it is not rolling. Fortunately, by tilting the internal flywheel, the coupling effect

at yaw and row direction can somehow stabilize the robot in the vertical position.

Therefore, we are seeking some control method to stabilize the robot in order to keep

/3 w 90® for low speed as well as high speed operations. In Figure 4.7, under the

control of human operator, the robot is able to stay roughly at 90® in a 50 seconds

experiment.

Lean angle of Gyrover Tilt angle of flywheel
1401 • • 401 •

30

120 I fl I fl I

•：：講：‘:;iff
- 2 0

40 • • ‘ -30 ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50

time(sec) time(sec)

Control input to drive motor Control input to tilt motor
1871 ‘ 2001 ,

195

1 脳 ，190 J j- ！;:漏邏人：
^185.5 〜 5 I I P 丨 * 1

170 f [(

185' • 165 I
0 10 20 30 40 50 0 10 20 30 40 50

time(sec) time(sec)

Figure 4.7: Lateral balancing at the vertical position (90^) by human control.

average lean angle DOFflywheel
Human control 89.32� 0.9600

Table 4.1: Performance of human operator in verticale stabilization

CHAPTER 4. CONTROL ARCHITECTURE 52

Table 4.1 summarized the robot status throughout the experiment. The operator

can control the robot to stay at around 90�while reserve a high degree of freedom

for the flywheel. Thus, this motion is selected as one of the behaviors we are going

to "teach" the robot.

4.3.2 Tiltup motion

Tiltup motion is refered to the behavior that the robot recovers from the fall position

(a 20�）back to the upright position (c 90�），which is an unique behavior of

Gyrover over traditional multi-wheels mobile robots. In [14], a tiltup motion which

is constituted by the control of the drive motor 以o and tilt motor ui simultaneously

is introduced. However, we found that the tiltup motion in [14] brings a number of

problems in applications: (1) require a large space to perform this motion, (2) the

final heading direction a is unpredictable, and (3) it takes a longer period of time to

complete. Thus, we modified the previous tiltup motion by considering the control

of flywheel only. Figure 4.8 shows the performance of the modified tiltup motion.

In Figure 4.8, the robot is orginally lying on the ground with lean angle at

20。，1 second later, the operator changed the orientation of the flywheel and the

robot is back to its upright position a moment later. The drive motor command is

kept constant at the 0 position implies the robot is not moving neither forward nor

backward.The modified motion outstands the previous one for the following reasons:

• Takes shorter time to finish

• Not much space is needed because the robot can be tiltup at nearly the iden-

tical position

• Heading direction is predictable since the heading direction before and after

CHAPTER 4. CONTROL ARCHITECTURE 53

Lean angle of Gyrover Tilt angle of f lywheel
1401 201 • •
1 2 0 0 ： ~

oa 60 oo." y
40 —60
20 —— -80 [/
o' • ‘ -100' •
0 2 4 6 0 2 4 6

time(sec) time(sec)

Control input to drive motor Control input to tilt motor
1831 • 2301 m~•

•g 182.5 咖 \
1 e210 X
5 182 § \
I ^ 200

° 181.5 � \
190 V ^

181 • • 1801
0 2 4 6 0 2 4 6

time(sec) time(sec)

Figure 4.8: Modified tiltup motion by human control,

tiltup does not vary too much

• Internal pendulum motion is avoided

Therefore, besides the motion of lateral stabilization, the modified tiltup motion

is another behavior which we are going to let the robot to learn from human.

4.4 Discussions

From the behavior-based architecture we obtained in the previous section, we can

recognize that the entire control task is decomposed into many sub-tasks which

located at different levels within the structure.

CHAPTER 4. CONTROL ARCHITECTURE 54

Low-level behaviors

As mentioned in the earlier section, Gyrover is inherently unstable and underactuate

in its lateral direction, the stability is improved when the robot is equipped with an

internal gyroscope spinning at a high rate. By controlling the orientations of the

internal gyroscope, we are able to stabilize the robot into its upright position even

the robot is not rolling. For the case when the robot has fallen onto the ground, it

is able to tilt-up by itself. Therefore, the lateral balancing behavior and the tiltup

motion constitute the basic level control of Gyrover.

This lowest layer of control makes sure that the robot can maintain its lateral

stability in a static condition (when the wheel does not roll) and can recover from

fall. Therefore, no matter the robot is rolling or not, once the control is activated,

we suppose the robot will keep standing upright. This complete the first level of

competence in the control structure.

Mid-level behaviors

The mid-level layer of control, when combined with the low-level layer, the robot can

move around without hitting obstacles while it can still maintain its lateral stability,

and will recover from the fall positions when the robot falls down. Besides the direct

actuation of the drive motor in the heading control module, the behaviors in this

layer only affect the system by modulating the low-level reflex behaviors. This was

defined as second level of competence in this architecture.

If an obstacle is detected by the robot in a certain range, the Obstacle Avoidance

module will generate a command to modify the robot's heading direction in the

Heading control module, so that the robot will not get hit on the obstacle.

CHAPTER 4. CONTROL ARCHITECTURE 55

High-level behaviors

This level is meant to add an exploratory mode of behavior into the robot. The

decisions made in this layer are some long-term goals relative to that of the former

layers, for example, to find an obstacle-free path to reach a distance location from

the current location. Although a map is necessary to cope with this module in order

to generate a desired path within a region, vision is not the only way to generate

such a map, other alternatives such as a GPS may also be used. The commands

generated from this layer will also suppress the lower level module to accomplish

the third level of competence in this system.

In addition, there is an external module to monitor the robot's actions, called

the planner, appeared in the top left corner in Figure 4,5. The planner is responsible

for producing the set of actions that achieve a certain goal for the robot. For each

stage in the plan, the appropriate set of behaviors are activated. This unit can be

an on-board unit or can be a tele-operating unit.

Although we are still in an early stage to complete the mid-level and high-level

layers based on the current system we are using, it is worthwhile to develop such

an architecture for us to build a fully-autonomous control system for Gyrover in the

near future.

In summary, the behavior-based approach is suitable for Gyrover control for the

following reasons :

• This control system is able to respond to high priority goals (e.g. path plan-

ning), while it can still servicing necessary low-level goals (e.g. the lateral

stability)

• This subsumption architecture enables us to extend the whole system into a

CHAPTER 4. CONTROL ARCHITECTURE 56

more complete one if we have explored other tasks for the robot to perform in

the future.

• If some of the modules in higher level are failed to work properly, the robot

can still perform some low-level instinct behaviors.

• Numerous inertial sensors and a mirco-computer is begin built on board in

the third prototype of Gyrover. If all the sensors data are fed in each of the

sub-task controller, the computational time for each response will increase

significantly.

• Since Gyrover is designed for general transportation, exploration, rescue or

recreation. Individual layers can be working on individual goals concurrently.

This subsumption architecture leads us the idea of share control (semi-autonomous

control) for Gyrover, which will be discussed in Chapter 6.

Chapter 5

Implementation of Learning
Control

In this chapter, we show the implentation results of the CNN models trained in the

previous chapter. First of all, we validate the CNN models we obtained by applying

a Hidden Markov Model based similarity measure. Next, for the experimental im-

plementations of the CNN models, we evaluate the performance of these models by

observing the lean angle of the robot and the overall control on the flywheel. Later,

we combined the two motions into a single motion. This combined motion ensures

that the robot can be fully recovered from the fall position back and balanced at its

upright position.

5.1 Validation

In this section, we will evaluate each of the model generated by the cascade learn-

ing algorithm for different behaviors of the robot, including lateral stabilization

and tiltup motion. We apply the similarity measure mentioned in Section 3.2.4 to

quantify the level of similarity between the original human control data and the

model-generated trajectories through simulations. Since we do not have a physical

57

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 58

model for these kind of motion for Gyrover, our simulations are done by feeding the

current and history state variables and control information into the cascade neural

network, to see if it can generate similar control output in each time instant.

Basically, we have two motions to learn: (1) Lateral balancing (i — 1), and

(2) Tiltup (i = 2). For each motion, we give three different set of data for the

simulation. For notation convenience, let X �, i G {1 ,2 } , j G {1,2，3}, denote the

run of different motions i in trail

5.1.1 Vertical balancing

Figure 5.1, 5.3 and 5.5 show three different vertical balanced motion by human

control. The graph on the left of each figure is the plot of lean angle data (/?), while

the right one plots the orientations of the flywheel (J3a), The corresponding human

control data and CNN model control data for X(i’i), X(i’2) and X(i’3) are shown

in Figure 5.2, 5.4 and 5.6 respectively. We perform the similarity measure between

the human control and CNN model control trajectories for each motion, the results

are summarized in Table 5.1. From the performance of this vertical balancing CNN

model, we can observe that the model can generate similar control trajectories as

human operator, with an average similarity value of 0.5940.

similarity a
0.5885
0.6235 -

X(i’3) 0.5700 -
average 0.5940

Table 5.1: Similarity measures for vertical balanced control betweem human and
CNN model

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 59

lean angle of Gyrover tilt angle of flywheel
1401 . ‘ . -N 401 ‘ ‘

13�_ 3 � * I [M I 1 I
120 20- |l|l I U I 1

譯 P :
60 ’ -40
50 ‘ ‘ ‘ ^ -50 ‘ ‘ ‘ —

0 20 40 60 80 0 20 40 60 80
time(sec) time(sec)

Figure 5.1: Vertical balanced motion by human control, X(i’i).

Human control trajectory

210 I I I I I I I I

2 0 0 - -

！:kWy/vVVvv^
1601 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80
time

CNN model control trajectory
2101 1 1 1 1 1 1 1 1

2 0 0 - -

！:(V/vVvVvVvVWvv
16o' 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80
time Figure 5.2: Control trajectories comparison for X(i ’ i) .

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 60

lean angle of Gyrover tilt angle of flywheel
1301 401 ‘ ‘ ‘ ‘

120 30 丨

i m ‘ : : p | i
60 . - 20

50 ‘ ‘ ‘ -30 ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100

time(sec) time(sec)

Figure 5.3: Vertical balanced motion by human control, X(i，2).

Human control trajectory
2001 1 1 1 1 1 1 1 1 1

fVMWV^AWVM
“170 - I -

1601 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

time

CNN model control trajectory
2001 1 1 1 1 1 1 1 1 1

16o' 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

time

Figure 5.2: Control trajectories comparison for X(i ’ i) .

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 61

lean angle of Gyrover tilt angle of flywheel
1301 . . . 601 ‘ ‘ ‘

120

6 0 •

50 ‘ ‘ ‘ -40 ‘ ‘ ‘
0 20 40 60 0 20 40 60

time(sec) time(sec)
Figure 5.5: Vertical balanced motion by human control, X(i’3).

Human control trajectory
2001 1 1 1 1 1 1

/ w ：
160 - \ll| -

1501 1 1 1 1 1 1
0 10 20 30 40 50 60 70

time

CNN model control trajectory
2001 1 1 1 1 1 1

/ V ：
160 - \jf|A/ -

150' 1 1 1 1 1 1
0 10 20 30 40 50 60 70

t ime

Figure 5.2: Control trajectories comparison for X(i ’ i) .

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 62

5.1.2 Tilt-up motion

Figure 5.7, 5.9 and 5.11 show three different tiltup motion by human control. The

corresponding human control data and CNN model control data for X(2’i), X(2’2)

and X(2’3) are shown in Figure 5.8, 5.10 and 5.12 respectively. Again, we perform the

similarity measure between the human control and CNN model control trajectories

for each motion, the results are summarized in Table 5.2. The CNN model can also

generate similar control trajectories as human operator, with an average similarity

value of 0.7437.

similarity a
JT^i) 0.7896
；C(2’2) — 0.7030
X(2，3) 0.7386
average 0.7437

Table 5.2: Similarity measures for tiltup control betweem human and CNN model

5.1.3 Discussions

The simulations we have done in fact is the first step to validate the CNN models

we obtained. By using the HMM similarity measure, we compare the human control

trajectory with the control trajectory generate from the CNN model of a particular

motion. If the similarity measure gives us a relatively high similarity value (cr > 0.5),

which implies the particular CNN model can produce 'similar' control output as

human control. From the simulation results of the lateral balancing and tiltup

motion, we can verify that the CNN models for both motions are able to model the

human control strategy. Later on, in the next chapter, we will further verify the

models by experimental implementation.

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 63

lean angle of Gyrover tilt angle of flywheel
180| . . . lOOi . . .

1 6 0： 8 0 A

140 60 V ^

’ 1 2 0 I 40

尝 100_[[Vyl l\ \ IN

8� . V J 1 v V
60. II ‘ -20 ll “
40 ‘ ‘ ‘ - 40 ‘ ‘ ‘

0 2 4 6 0 2 4 6
time(sec) time(sec)

Figure 5.7: Tiltup motion by human control, X(2’i).

Human control trajectory CNN model control trajectory
200 . . . 200 . . .

1 170- f V I 170 /

2 160- , I 160 j /

150 • 150- y

140 f 140

13o' ‘ ‘ ‘ 13o" ‘ ‘ ‘
0 2 4 6 0 2 4 6

time time

Figure 5.8: Control trajectories comparison for X(2’i).

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 64

lean angle of Gyrover tilt angle of flywheel
1 8 0 | . . 1 0 0 ： ‘ ‘

50. f " ^ ^

c [j : I Y\ 8�. fVlxH p̂ y
60 • ^

40 ‘ ‘ -50 ‘ ‘
0 2 4 6 0 2 4 6

time(sec) time(sec)

Figure 5.9: Tiltup motion by human control, X(2’2).

Human control trajectory CNN model control trajectory
190| ‘ ‘ 190| ‘ ‘

180 • J ~ 180 -

r � . J \ y . r � . A / .
^150- rv^ ^150- A 0

J l/J
140 140 IT

13o' ‘ ‘ 130' ‘ ‘
0 2 4 6 0 2 4 6

time time

Figure 5.10: Control trajectories comparison for X(2’2).

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 65

lean angle of Gyrover tilt angle of flywheel
1501 ‘ . . . 601 T- , ,

40 •

r卜軌V j 1 ? 产 :
50 -4� /

1 - 6 � /
V -80 f

oJ; ； ‘ ‘ ‘ -100' ‘ ‘ ‘ ‘
0 2 4 6 8 10 0 2 4 6 8 10

time(sec) time(sec)

Figure 5.11: Tiltup motion by human control, X(2，3).

Human control trajectory CNN model control trajectory
240 ‘ ‘ . 240 . . .

… V 230 •
220 • \

R�. . ；ifV
^ e c ^ - 一。1 \

180. V h

14� " 170- V ^ -

120' ‘ ‘ ‘ 160' ‘ ‘ ‘
0 2 4 6 8 0 2 4 6 8

time time

Figure 5.12: Control trajectories comparison for X(2’3).

5.2 Implementation

5.2.1 Vertical balanced motion

A number of experiments have been conducted to verify the CNN model for vertical

balancing, Figure 5.13, 5.14 and 5.15 shows the implementation results. The human

control strategy in balancing the robot at the vertical position is given in Figure

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 66

5.16. As mentioned in the pervious chapter, we evaluate the performance by the

lean angle of the robot and the degree of freedom remains for the flywheel. We

summarized the overall performance of both CNN model and human operator for

the vertical stabilized motion in Table 5.3.

average lean angle 0 DOFfiy^jheei
CNN control # 1 90.24� 0.9944

"CNN control SS.IF 0.8756
CNN control # 3 87.57^ — 0 . 8 8 6 7 ^
Human control 89.41^ 0.9600

Table 5.3: Performance measures for vertical balancing.

When compared with human control, the CNN model we obtained for vertical

balancing behaves very similar to human. For the 3 different trails, the CNN model

not only able to stablize the robot at around 90"̂ , but also reserved a high level of

degree of freedom for the internal flywheel to oppose any motion that appears to

make the robot to fall down.

lean angle of Gyrover

i p f i n
5 0 ' ‘ ' —I 1 1 1 1 1 I !

0 10 20 30 40 50 60 70 80 90 100 110
time{sec)

tilt angle of flywheel
801 I I 1 ！ 1 1 1 1 1 1

60- /1 -

-40 — I — — L J — I — I — I i 1 1 J
0 10 20 30 40 50 60 70 80 90 100 110

tlme{sac)

Figure 5.13: Vertical balancing by CNN model, trail #1.

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 67

lean angle of Gyrover
1201 1 1 1 1 1 1

！ V W i / V V f
50' ‘ 1 1 1 1 0 10 20 30 40 50 60

time(sec)

tilt angle of flywheel
801 1 1 1 1 1

§ �a a A A 八 a
-40' 1 1 1 1 1 0 10 20 30 40 50 60

time(sec)

Figure 5.14: Vertical balancing by CNN model, trail #2 .

lean angle of Gyrover

1401 1 i 1 1 1 1
1 2 0 - fc -

参 寿 _ :
401 ‘ ‘ ‘ ‘ 1 1 0 10 20 30 40 50 60 70

time(sec)

tilt angle of flywheel
601 1 1 1 1 -(— 1

- 4 � - 1/ --60' 1 1 1 1 1 1 0 10 20 30 40 50 60 70
time(sec)

Figure 5.15: Vertical balancing by CNN model, trail #3.

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 68

lean angle of Gyrover
1401 1 1 1 1 1 1
120 -

6 0 - 1 -
401 1 1 1 1 1 1

0 10 20 30 40 50 60 70
time(sec)

tilt angle of flywheel
401 1 1 1 1 1 1
30 - I

譽 WMvAyVV
- 2 0 f -

-30' 1 1 1 1 1 1 0 10 20 30 40 50 60 70
time(sec)

Figure 5.16: Vertical balancing by human operator.

5.2.2 Tilt-up motion

Next, we implement another CNN model which is trained by human tiltup motion

data, the results are shown in Figure 5.17 and 5.18 for CNN model control, while

the human control is shown in Figure 5.19. The performance of these motions are

summarized in Table 5.4.

average lean angle (3 DOFf—eei—
"CNN c o n t r o l ^ T 97.26^ 0.6774
“CNN control # 2 95.60^ 0.4039
“Human control 87.3r 0.7372

Table 5.4: Performance measures for tiltup motion.

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 69

lean angle of Gyrover
1801 , 1

\ if-

, , ；

401 ^ — ‘ ‘
0 5 10 15

time(sec)

tilt angle of flywheel

100̂ 1 — ‘

a 40 - u -

"20- / f ^ -
Q 严“I

-20' 1 1
0 5 10 15

time(sec)

Figure 5.17: Tiltup motion by CNN model, trail #1 .

lean angle of Gyrover
2001 1 1 1 -1

‘ 1 � �- I 丫 _
50- VV K ^ -
qI 1 1 1 1

0 5 10 15 20 25
time(sec)

tilt angle of flywheel
1001 IT 1 1 1 1

� - -

0 -

-20' 1 1 1 1
0 5 10 15 20 25

time(sec)

Figure 5.18: Tiltup motion by CNN model, trail #2.

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 70

lean angle of Gyrover

1801 I i I I I 1 I I
1 6 � -
140 1 -

ra120- \ , -
；S 1 A

8�--I^/^^s^VAVWVVVA^^^VA/"^"^ l ^ / Y ^ P / v A ^ -

401 1 1 1 1 1 I I I
0 1 2 3 4 5 6 7 8 9

time(sec)

tilt angle of flywheel
1001 1 1 1 1 1 1 1 1

60- / V r - -
I 4 0 - 1 -

� 2 � - ^ ^ - ^ ^ ‘
-20—V -
_ 4 o l 1 1 1 1 1 1 I I

0 1 2 3 4 5 6 7 8 9
time(sec)

Figure 5.19: Tiltup motion by human operator.

Since a large portion of the flywheel's motion is contributed to tiltup the robot,

the overall degree of freedom of the flywheel in tiltup motion is much lower than

that of lateral stabilzation. For the CNN model control in Figure 5.17 and 5.18, the

robot is lying on the ground initially, with P ^ 150°, after a few seconds, the model

tiltup the robot and brings the robot back to the upright position.

5.3 Combined motion

We observed that the CNN models for lateral balancing and tiltup motion are sub-

jected to some intial condition, the problem can be solved by combining the two

motions to form a single motion.

Consider the case that the robot is in the fall position, that is, with jS ^ 150.

In Figure 5.17 and 5.18, although the CNN tiltup model is able to keep the robot

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 71

Verticle position

I
motion of robot ,

\ I
spinning axis of flywheel | I

flywheel ! \ \ \

/////////// //////// / y / /
Initial status Tilting-up Lateral stabilization

REAR VIEW OF GYROVER

Figure 5.20: Combined motion.

to stay around at 90° for a certain moment, the robot will fall back to the ground

eventually because the flywheel has reached an ill-condition (fia — ±90o). Moreover,

the tiltup model is unable to let the robot to converge to 90® sometimes, which

causes a large fluctuation in the lean angle about 90。，Figure 5.21.

To deal with this problem, we combine the tiltup motion together with the lateral

balanced motion, Figure 5.20. Since the CNN model is unable to keep the robot

at the vertical position, after the robot has tiltup, we ask the model to balance the

robot at

The experimental result for the whole tiltup and stabilzation process after the

combination is shown in Table 5.5 and Figure 5.22. Initially, the robot is in a fall

position, by executing the tiltup control of the CNN model, the robot is recovered to

the vertical position. Afterwards, the lateral stabilization is controlled by another

model which specifically trained for keeping the robot into the vertical position.

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 72

lean angle of Gyrover

2001 i 1 I i I I I I I

iin—f\ ！__f
- W W V 口

Q I 1 1 1 I I I I I I

0 1 2 3 4 5 6 7 8 9 10
time(sec)

tilt angle of flywheel

-�-.—-—\7.......————y———.——...../——7————t
-50- V \j y

-10o' 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

time (sec)

Figure 5.21: Fluctuation in the lean angle made by the tiltup model.

From the results, the combined motion can keep the robot at the vertical position

well after tiltup from the ground for a much more longer period of time.

average lean angle jS DOFf—hee�

"CNN control # 1 88.40� 0 .8998—

Table 5.5: Performance measures for combined motion.

5.4 Discussions

In this chapter, the CNN models for lateral balancing and tiltup motion are being

verified by experimental implementations. By combining the two motions into a

single motion, the robot is able to recover from the fall position, and then to remain

stable at the vertical position after tiltup. Therefore, we have completed the low-

level behavior module within the behavior-based architecture shown in Figure 4.5.

CHAPTER 5. IMPLEMENTATION OF LEARNING CONTROL 73

lean angle of Gyrover

1801 1 1 1 1 1 1 1 1 1
160 A -

140 - -

4 0 1 1 1 1 1 1 I I I I

0 10 20 30 40 50 60 70 80 90 100
time(sec)

tilt angle of flywheel
1001 1 1 1 1 1 1 1 1 1 1

_ 5 0 ' 1——II 1 1 1 1 1 I I I

0 10 20 30 40 50 60 70 80 90 100
time(sec)

Figure 5.22: Tiltup and vertical balanced motion by CNN models.

With this module completed, we are going to develop a semi-autonomous control

for Gyrover in the next chapter.

Chapter 6

Shared Control

Based on the successful implementations of the lateral balancing and tiltup motion,

in this chapter, we are going to develop a shared control framework for Gyrover. In

fact, any situation of a system using shared control will involve human interactions.

Under shared control, the human operator acts as a supervisor for the overall control,

while the robot itself can handle some local motions which in turn to assist the

human in control. In order to distribute the control tasks systematically, we develop

an expression to make such a decision. Experimental results will be given in order

to verify our idea.

6.1 Concept

In fact, shared control happens in many daily examples, especially for human-animal

interactions. First of all, let's consider the horse riding case [32], it is a fairly good

example of semi-autonomous systems, or more specifically, shared control system.

For the horse which is being riden by human, it is usually able to take care of all

low-level tasks such as coordination of leg motions, stability, local obstacles avoid-

ance and provide enough power and speed for different actions. On the other hand,

74

CHAPTER 6. SHARED CONTROL 75

the rider provides global planning, interacts with the horse to arrive at different lo-

cations and achieve various goals. At the same time, the rider can override any horse

behavior by pulling the reins or hitting on the horse's body if necessary. Throughout

the journey, the rider relies on the horse motoric abilities and the horse's behaviors

become more intelligent by getting the rider's command. The interaction between

the two individuals happens in a natural and simple way.

Another example we want to illustrate is to ask a robotic arm to handle a cup

of tea [39]. The whole task can be decomposed into two subtasks: (i) to handle the

cup of tea safely without pour the tea (local balancing), and (ii) to reach the desired

location (global navigation). In a teleoperated environment, it maybe difficult for

a human operator to perform both tasks simultaneously, or it would be mentally

taxing. However, if an autonomous module is introduced for the local stability of

the cup, the operator in the control loop only responsible for the navigation task,

which greatly reduce the burden for the operator. Moreover, it is clear that the

performance of the system would be much better and stable than being controlled

by a single entity (human/machine).

Gyrover is a complex system not only in terms of the difficulties in deriving

its mathematical model, but also in terms of its control by human operator. The

robot can be controlled manually through a radio transmitter with two independent

joysticks, one of them is assigned to control the drive motor, while the other one

is assigned to control the tilt motor. Similar to a bicycle, Gyrover is a single track

vehicle which is inherently unstable in its lateral direction. Therefore, different from

controlling a quasi-static mobile robot, the human operator not only handles the

global navigation for the robot, but also needs to pay attention to govern the lean

angle of the robot simutantously. Moreover, the highly coupling effect between the

CHAPTER 6. SHARED CONTROL 76

wheel and the internal flywheel also complicates the control of Gyrover. To this

end, for such a complex system, instead of making a fully autonomous control, it is

much more practical to develop a control method which can "share" the workload

of human operator.

Recently, shared control has been widely applied into many robotics man-machine

systems, from health care [31, 32, 37, 40, 41, 43] to telerobotics [33, 34, 35, 39，42 .

For rehabilitation applications, a typical example is robotic wheelchairs. Although

the wheelchair itself can provide a level of autonomy for the users, it is still desir-

able that the user can augment the control by the on-board joystick in some special

occasion (e.g. docking, pass thru a doorway). A telerobotic system usually consists

of a human operator and several autonomous controllers. Human operator usu-

ally interacts with the system in different ways. One of the important issues is to

develop an efficient method to combined human and machine intelligences so that

the telerobotic system can perform tasks which cannot be done by either human or

autonomous controller alone [35]. In these shared control system, the autonomous

modules exist in the system assist the human operator during navigations, in order

to relief the tensions of the operators in a complex system. Usually, the human

operator is responsible for some high-level control (e.g. gobal navigation), while the

machine performs low-level control (e.g. local obstacles avoidance).

In fact, the two behaviors we have mentioned in the previous chapters, (i) Lateral

balancing and (ii) Tiltup motion, are designed to tackle the robot's instability prob-

lem in the lateral direction. Since we have successfully modeled and implemented

the two behaviors by a machine learning approach and verified in experiments, the

next step is to incorporate these motions with human control in order to develop

a shared control framework for Gyrover. We prefer using a shared control scheme

CHAPTER 6. SHARED CONTROL 77

rather than a fully autonomous one because of the following reasons:

• Sophisticated dynamic system. As mentioned before, it is difficult for us

to obtain a complete mathematical model to govern the motions of Gyrover,

due to its complicated dynamic and nonholonomic nature. This makes us en-

counter many difficulties in developing a fully autonomous system for Gyrover

at this stage.

• Hardware limitations. Due to the special physical structure of Gyrover,

the current prototype of Gyrover we are using still does not have any navigation

devices equipped on-board (e.g. vision), which is impossible for the robot to

navigate itself.

• Importance of human operators. Practically, for some complicated tasks,

which may be trival for humans, robots often do not perform well. Therefore,

human operator is essential to exist in the control loop in order to monitor

and operate the executive system.

• Time and cost. Building a fully autonomous system which provides safe

and robust performance would be time consuming and costly, in terms of

computations and resources. In contrast, it is far more practical and much

cheaper to develop a semi-autonomous system.

• Accuracy vs Reliability. Machines are excellent in performing repetitive

tasks quickly and accurately but their abilities to adapt changes in environment

is low. On the other hand, humans are usually reliable, with tremendous

perception ability and good decision making in unpredictable situations, but

CHAPTER 6. SHARED CONTROL 78

their accuracies are relatively lower than machines. Shared control can let

them compensate each weakness which would result a better control.

• Teleop er at ions. Gyrover can be operated by humans through a radio trans-

mitter, which allows humans to participate in the control of the robot.

The main difficulty in developing a shared control for Gyrover is due to the access

of the tilt motor. Since the lean angle of the robot is controlled by the tilt motor,

not only the autonomous module will access the tilt motor to achieve stability in

the lateral direction, the human operator also need to access the tilt motor during

navigation. At a particular time instant, these commands may contradict with each

other. Therefore, it is a big issue to let the system to decide which command is going

to be executed, and at the same time, to manage the contaminated commands with

a reasonable way. To this end, we have developed an expression for making this

decision, which will be discussed in the later part of this chapter. With a better

sharing between the machine and human operator, the performance of the system

can be enhanced, and the range of tasks that can be performed by the system can

also increase.

6.2 Schemes

In fact, there are many aspects of "sharing" in shared control, varies from application

to application. Basically, a semi-autonomous control can be categorized into serial

type and parallel type [39]. In serial type, the manual control and autonomous

control cannot be executed simultaneously, only one of them will be selected at

a time; in parallel type, both manual and autonomous control can be executed

simultaneously.

CHAPTER 6. SHARED CONTROL 79

In the following sections, we will breifly discuss three operating modes of shared

control, namely: (1) Switch mode, (2) Distributed mode, and (3) Combined mode.

6.2.1 Switch mode

In switch mode, the manual control and autonomous control are switched in serial,

as shown in Figure 6.1. The condition to trigger the switch depends on applications,

for example, if an operator is acted as a supervisor of the control system, the human

control will only be activated whenever the system reaches an "ill condition". No

matter which control module is switched, the robot will be fully controlled by the

selected one. If a high cooperation between the machine and operated is required,

we must have a function (11) which can "smartly" switch between the two control

module.

Autonomous Human
module operator

Figure 6.1: Switch mode.

6.2.2 Distributed mode

Figure 6.2 illustrates the architecture of distributed control. Different from switch

mode, both manual and autonomous control can be executed in parallel in this

CHAPTER 6. SHARED CONTROL 80

mode. The control of various actuators (ui) in the entire system will be distributed

to either of the two modules.

Therefore, the two entities can exist in the system peacefully without disturbing

each other. However, this also shows the weakness of this mode because there is

no communication bewteen the two entities. The operator cannot modify the com-

mands from autonomous module even the robot is performing or tends to perform

some undesirable motions.

Autonomous Human
module operator

(R O B O T)

Figure 6.2: Distibuted control mode.

6.2.3 Combined mode

Combined mode is in fact an extension of distributed mode, Figure 6.3. However,

the input to a single actuator is a combination of the operator's command and the

machine command. There are many ways to combine the output vectors from the

task modules: a simple summation, a simple average, weighted sum and average,

voting on angle and velocity, and some unusual variations. In practice, the weighted

average performs well since it is not computationally expensive and its performance

is predictable [42 .

CHAPTER 6. SHARED CONTROL 81

Autonomous Human
module operator

(R O B O T)

Figure 6.3: Combined mode.

6.3 Shared control of Gyrover

Analog to the example of handling a cup of tea, in our approach, in order to re-

duce the operator burden in controlling a statically unstable robot, it is desired that

Gyrover itself can maintain a degree of local balancing, while the operator only re-

sponsible for the navigation task. In considering which mode of sharing is suitable

for Gyrover shared control, we found that the commands from the automation mod-

ule (lateral balancing and tiltup) always contradicts with the navigation commands.

It is due to the special steering mechanism of Gyrover, which is entirely contributed

by the tilting effect of the internal flyhwheel.

As mentioned in section 3.2.1, when a disc is rolling, it will steer to the direction

that it is leaning. Since the autonomous module is designed to keep the lean angle

into the vertical position, if we attempt to steer to the left/right manually (i.e. lean

to left/right), the machine will generate commands to stabilize the robot back to the

vertical position, which will totally oppose the changes we want to make. Therefore,

the commands from the two modules is impossible to combine into a single valid

command during navigation. Fortunately, this problem is solved automatically if we

CHAPTER 6. SHARED CONTROL 82

consult the behavior-based control architecture we disccussed in Chapter 2.

Referring to Figure 4.5，the mid- and high-level behaviors are replaced by human

operator in shared control. Due to the high flexibility of the subsumption archite-

cure, we obtain the shared control architecture as shown in Figure 6.4, without

destorying the original control structure, which shows the beauty of behavior-based

control architecture. Since the navigation tasks are entirely given to the human op-

erator, the operator will solely control the drive motor throught a radio transmitter.

On the other hand, we suppose the robot can maintain lateral stablility when it

stops rolling, or when a complete fall is detected, it will automatically tiltup back

to its upright position. Thus, the tilt motor is jointly control by the operator and

the machine.

f ： \
Visual Human operator

information J ^ JJI |

/!- A i f N
' (必 1 H drive motor
n Navigations ；

___ robot

I I

丨 … e r a l balancing * |

sensors H hH tilt servo L J \ K J
from) I t �

robot — - — — reset Tilt 叩 — 一 」 ： robot

Gyrover H

Figure 6.4: Subsumption architecture of shared control.

According to Figure 6.4, regarding to the tilt motor, switch mode is used since

CHAPTER 6. SHARED CONTROL 83

the operator and the machine cannot control the motor at the same time; regarding

to the whole structure, the system is somewhat in a distributed mode of sharing. As

a result, the shared control of Gyrover combines the switch mode and the distributed

mode, which compensates each mode's weakness.

6.4 How to share

Recalling the horse riding example, it is believed that the horse acknowledges the

rider commands if they exceed a certain threshold. This threshold may depend on

the horse training (reliability of the autonomous system), the skill of rider, and on the

situation at hand. If the rider wishes to correct or modify the horse current behavior,

he/she will increase the level of stimulus which is acted on the horse (pulling the

reins more or pushing harder on the saddle). This continues until the horse changes

its behavior as wished by the rider. A poor communication or compromisation

between them can lead to undesirable or even dangerous results. Therefore, in this

section, we develop a function to decide whether to follow or neglect the commands

from the online operator.

First of all, let's introduce the variables that constitute the function, which are

similar to those proposed in [32]:

1. Degree of Autonomy, A where 0 < A < 1.

This is a parameter which can be adjusted by the online operator. If the

operator (a novice) wish to rely much more on the autonomous module, he/she

should select a higher value of A at the beginning of an operation. Otherwise,

if an experienced operator is confident with his/her control skill, a lower value

of A can be selected. We will demonstrate the effect of this parameter later.

CHAPTER 6. SHARED CONTROL 84

2. Strength of conflict, S where 0 < < 1.

This parameter measures the conflict between the operator and the current

status of the system, it will vary from time to time whenever the operator is

given a command to alter the system's trajectory. A high value of S indicates

that the operator is making a control command which greatly affect the cur-

rent status of the system, while a low value of S indicates that only a small

disturbance is generated. This value will pass to the function instanteously

to make a decision whether to execute the operator's command or not. The

strength of conflict S can be defined as:

n "̂ operator _ 以machine /n
Sp = ^ o r 5out o (6.1)

^Pmax "̂̂ max

where S巨 is measured in terms of the changes in the lean angle (3 of the robot,

5out is in terms of the conflict between the command from operator and the

machine.

3. Confidence level, C where 0 < C < 1.

Contradict to the strength of conflict, C is a parameter to show the confidence

of an operator in making the current control command. It is obvious that

the higher value of C, the more confident the operator is. This is also a time

varying parameter which will pass to the function to let the system to make a

decision. The confidence level C can be defined as:

C 二 丨 , P e r a t o r l (6 . 2)

"Umax

CHAPTER 6. SHARED CONTROL 85

Based on the above definition, at a particular time instant, the system recieves a

command from the operator and the machine simultaneously, we obtain the following

relationship between S and C\

if C > S, follow operator's command,

C < S, follow machine's command. (6.3)

The above expressions imply that if the operator is confident enough to modify

the current system trajectory, his/her command will be executed. On the other

hand, if the system determines that the command of the operator is potentially

to let the robot falls down, his/her command will be neglected, and the system

will execute the balancing command from the autonomous module. However, the

threshold of the above expressions remains constant and it is dependent on the

system parameters. Practically, a system may be potentially operated by different

operators, it is desired that the thershold of the decision to be dependent on the

operator. To this end, we introduce the parameter of Degree of Autonomy (A) into

the above expressions,

if C ' {I — A) > S ' A, follow operator's command,

C • {1 — A) < S ' A, follow machine's command. (6.4)

By rewriting equation (6.4), we have,

5 , C) = X'C-S (6 .5)

where A = (1 — A)/A for simplicity, and the decision finally becomes,

if n(A, S, C) > 0, follow operator's command,

n(A, 5, C) < 0, follow machine's command. (6.6)

CHAPTER 6. SHARED CONTROL 86

The function IT is called a decision function which allows a system to decide

whether to execute the command from operator in a shared control environment.

To validate the decision function, we let A 二 0, which implies that the operator

do not need any assistance from the autonomous module and the system should

respond to all the commands from the operator. From equation (5.6),

n(0, 5, C) = + o o > 0 V5, C

n(0, 5, C) is always positive so that the system always execute the commands from

the operator. Now, consider when A =

n(l,5, C) = - 5 < 0 V5,C

n (l , 5, C) always be negative or equal to zero, which implies the system will totally

follow the machine commands and disregard all the operator's control.

To further validate the decision function 11 in (6.5), we perform the following

experiments to see how the system works with this function. Table 6.1, 6.2 and 6.3

show the values obtained from the decision function 11 by using A = 0.25, A = 0.50

and A 二 0.75 respectively. Based on the decision criteria in (6.6), if 5, C) is

greater than zero, the system will execute the operator's command at that particular

moment, otherwise, machine's command will be executed. In each table, a shaded

value represents the system has chosen the operator's command.

When A = 0.25, the system will more likely to rely on the operator's control. In

Table 6.1, most of the operator's commands are chosen even when the Confidence

level of the his/her control is quite low (smaller du). On the other hand, for a

higher value of .4 (Table 6.3), the system relies on the machine's commands more

so that the frequency of accepting the operator's commands reduces significantly.

CHAPTER 6. SHARED CONTROL 87

Current lean angle of the robot jS
du 40� 50O 60� 70� 80� 90� 100� 110� 120� 130� 140�

0 -0.56 -0.44 -0.33 -0.22 -0.11 0 - 0 , 1 1 -0.22 -0.33 -0.44 -0.55
2 -0.36 -0.25 -0.14 -0.03 0.08 0.11 -0.01 -0.12 -0.23 -0.34 -0.45
4 -0.17 -0.06 0.06 0.17 0.28 0.21 0.10 -0.01 -0.12 -0.23 -0.34
6 0.03 0.14 0.25 0.36 0.43 0.32 0.21 0.09 -0.02 -0.13 -0.24
8 0.22 0.33 0.44 0.56 0.53 0.42 0.31 0.20 0.09 -0.02 -0.13

i

10 0.42 0.53 0.61 0.75 0.64 0.53 0.42 0.31 0.19 0.08 -0.03
15 0.09 1.01 1.13 1.01 0.90 0.79 0.68 0.57 0.46 0.35 0.24
20 1.39 1.50 1.39 1.28 1.17 1.06 0.94 0.83 0.72 0.61 0.30
30 2.14 2.03 1.92 1.81 1.69 1.58 1.47 1.36 1.25 1.14 1.03
40 2.67 2.56 2.44 2.33 2.22 2.11 2.00 1.89 1.78 1.67 1.56

Table 6.1: Decision making of A = 0.25.

Current lean angle of the robot /3
du 40� 50O 60� 70O 80� 90� 蕭 1 1 0 � 1 2 0 � 1 3 0 ^ 置

0 -0.56 -0.44 -0.33 -0.22 -0.11 0 - 0 . 1 1 -0.22 -0.33 -0.44 -0.55
2 -0.46 -0.35 -0.24 -0.13 -0.02 0.01 -0.11 -0.22 -0.33 -0.44 -0.55
4 -0.37 -0.26 -0.14 -0.03 0.08 0.01 -0.01 -0.21 -0.32 -0.43 -0.54
6 -0.27 -0.16 -0.05 0.06 0.13 0.02 -0.09 -0.21 -0.32 -0.43 -0.54

8 -0.18 -0.07 0.04 0.16 0.13 0.02 -0.09 -0.20 -0.31 -0.42 -0.53
10 -0.08 0.03 0.14 0.25 0.14 0.03 -0.08 -0.19 -0.31 -0.42 -0.53
15 0.15 0.26 0.38 0.26 0.15 0.04 -0.07 -0.18 -0.29 -0,40 -0.51
20 0.39 0.50 0.39 0.28 0.17 0.06 -0.06 -0.17 -0.28 -0.39 -0.50
30 0.64 0,53 0.42 0.31 0.19 0.08 -0.03 -0.14 -0.25 -0.36 -0.47
40 0.67 0.56 0.44 0.33 0.22:: 0.11 0 -0.11 -0.22 -0.33 -0.44

Table 6.2: Decision making oi A — 0.50.

The above experiments simply illustrate that the decision function 11 can judge

whether to execute human operator's commands effectively by taking the value A

into accounts, which is very important in a shared control system.

In fact, the system neglects the operator's commands only when the command

is potentially dangerous to the robot. Since a positive change in the tilt command

CHAPTER 6. SHARED CONTROL 88

Current lean angle of the robot
du 40^ 50^ 60^ 70^ 80^ 90^ 100^ 110^ 120^ 130^ 140^
0 -0.55 -0.44 -0.33 -0.22 -0.11 0 - 0 . 1 1 -0.22 -0.33 1-0.44 -0.55
2 -0.49 -0.38 -0.27 -0.16 -0.05 -0.03 -0.14 -0.25 -0.36 -0.47 -0.58
4 -0.43 -0.32 -0.21 -0.10 0.01 -0.06 -0.17 -0.28 -0.39 -0.50 -0.61
6 -0.37 -0.26 -0.15 -0.04 0.03 -0.08 -0.19 -0.31 -0.42 -0.53 -0.64

8 -0.31 -0.20 -0.09 0.02 0 -0.11 -0.22 -0.33 -0.44 -0.56 -0.67
10 -0.25 -0.14 -0.03 0.08 -0.03 -0.14 -0.25 -0.36 -0.47 -0.58 -0.69
15 -0.10 0.01 0.13 0.01 -0.10 -0.21 -0.32 -0.43 -0.54 -0.65 -0.76
20 O.OG 0.17 0.06 -0.06 -0.17 -0.28 -0.39 -0.50 -0.61 -0.72 -0.83
30 0.14 0.03 -0.08 -0.19 -0.31 -0.42 -0.53 -0.64 -0.75 -0.86 -0.97
40 " y ^ -0.11 -0.22 -0.33 -0.44 -0.56 -0.67 -0.78 -0.89 -1.00 -1.11

Table 6.3: Decision making of A = 0.75.

will give a positive change in the lean angle of the robot, if the lean angle is beyond

90。，a larger du will make the lean angle grows bigger, which potentially to make

the robot falls down. Therefore, in this case, if the operator is not confident enough

to make this change, his/her command will be neglected.

6.5 Experimental study

In this section, we implement the shared control framework as shown in Figure 6.4,

by applying the decision function we have mentioned in the last section. We have

designed several tasks for the robot to perform under the shared control scheme, in-

cluding (i) heading control (ii) a straight path tracking, (iii) a circular path tracking,

and (iv) point-to-point navigation.

Since the autonomous module now in hand is only responsible for the lateral

stabilization and tiltup motion when the robot is held in a stationary location,

the navigation task of the robot will be entirely given to the human operator to

control, which implies that the human cannot rely on the machine throughout the

CHAPTER 6. SHARED CONTROL 89

navigation. Based on this limitation, we use a relatively high level of autonomy

{A ^ 0.25) in Gyrover shared control. From the experiments, we can observe that

even the operator has shared a level of control to the system, the robot can still

achieve some basic goals in mobile teleoperations.

6.5.1 Heading control

The purpose of this experiment is to illustrate the cooperation between the human

operator and the autonomous module in a shared control environment. One special

feature of Gyrover is the ability to turn into a desirable heading direction at a

stationary location, this motion can be achieved by controlling the lean angle of the

robot (left/right) until the desired heading direction is reached.

When the robot is not rolling, the system will automatically execute the lateral

balancing module in order to maintain its lateral stability, by controlling the tilt

motor. If the operator wishes to command the robot to turn into a particular

heading angle, he/she requires to make the robot to lean at a certain angle by

controlling the tilt motor also, in this case, the robot must stops the autonomous

module and execute the operator's command. Therefore, if the system cannot make

a right decision, the operator can never control the robot to turn into a desired

heading direction.

The result of using A = 0.2 and A 二 0.8 in the heading control test is shown

in Figure 6.5 and Figure 6.6 respectively. For A 二 0.2, the operator triggers the

control of tilt motor at 7.5 < t < 9.5 and 14.5 < t < 17, in order to make the

robot leans to a particular heading angle. It is clear that the operator augments

the control in these periods successfully, which is expected when a low degree of

autonomy is used. When there is no command from the operator, the robot will

CHAPTER 6. SHARED CONTROL 90

execute the lateral balancing control from the autonomous module in order to keep

the robot stays around 90� . For A = 0.8, the control trajectory of the operator is

completely different from the final control output to the system. The operator wants

to trigger the tilt motor, but the system neglects most of his/her commands and

continues to execute the lateral balancing commands from the autonomous module.

The system will only execute those commands from the operator only when the

particular command is greatly contribute in keeping the robot in 90。，or when the

confidence level is high, for instance, d^t t ^ 13 and t ^ 17.

6.5.2 Straight path

In the straight path test, the operator is asked to control the robot to travel a

straight path, approximately 44 ft long. The experimental setup is shown in Figure

6.7. Three trails are given in this experiment, the trajectory that the robot has

travelled in each trail is shown in Figure 6.10. The sensor data of the robot in trail

3 are plotted in Figure 6.11.

Under a shared control, although some of the control commands are being ne-

glected by the system (flattened peaks in the final output of tilt motor command),

the operator is still able to control the robot to travel a nearly straight path, with

an average 0.1736 ft offset from the desired path. At 亡=9 , the robot recieved no

commands from the operator and started to execute the lateral balancing module

to balance the robot. As mentioned earlier, the control of the drive motor is en-

tirely given to the operator, therefore, the system will not interfere the drive motor

command, which directly follows the control of the operator.

CHAPTER 6. SHARED CONTROL 91

lean angle of Gyrover
2001 1 1 1 1 1 1 1 1 1 1

1 5 0 - < -

〜 眞 . �计 八 " w j J V �r
50 {\/

Q 1 I I I I I I I 1 1

0 2 4 6 8 10 12 1 4 16 1 8 2 0 2 2
time(sec)

tilt angle of flywheel
100 1 1 1 1 1 1 1 1 1 I

_100' 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 1 2 1 4 16 1 8 2 0 2 2

time(sec)
Tilt command (Human)

2201 1 1 1 1 1 1 1 1 1 1

f � - 1 w -
I 180 ^ ^
O

16�- -

1401 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 2 0 2 2

time(sec)
Tilt command (robot)

2 4 0 1 1 1 1 1 1 1 i 1 1

r � - |A -

1501 I I I I 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 2 0 2 2

time(sec)

Figure 6.5: Sensor data acquired in the heading control test, A 二 0.2.

6.5.3 Circular path

Similar to the straight path test, the experimental setup is shown in Figure 6.8.

This time, the operator is required to control the robot to travel a circular path.

CHAPTER 6. SHARED CONTROL 92

lean angle of Gyrover
1501 1 1 1 1 1 1 1 1 1 1

vVlAJl严
5 0 - I f “

Q I I I I I I 1 I I I

0 2 4 6 8 10 12 14 16 18 20
time(sec)

tilt angle of flywheel
1001 1 1 1 1 1 1 1 1 1 1—

50 - rt -

- 1 0 0 1 1 1 1 1 1 1 1 1 1 1——
0 2 4 6 8 10 12 14 16 18 20

time(sec)
Tilt command (Human)

20 1 1 1 1 1 1 1 1 ^ 1

1 - / Y A / W
c V y v

_ 2 o I I I I I I I 1 1 1

0 2 4 6 8 10 12 14 16 18 20
time(sec)

Tilt command (robot)
30 1 1 1 1 1 ifr 1 1 1 1

! : p w W v V
— 2 0 I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20
time(sec)

Figure 6.6: Sensor data acquired in the heading control test, A = 0.8.

In order to make the robot to turn in place, the operator needs to tilt the internal

flywheel to make a "lean steering" precisely. If the robot fails to follow the right

CHAPTER 6. SHARED CONTROL 93

START FINISH
® •

44 feets
< •

Figure 6.7: Experiment on tracking a straight path under shared control.

commands, it is unable to steer well. Figure 6.12 indicates the desired path and the

actual path travelled by the robot respectively. Figure 6.13 shows the corresponding

sensor data (trail #3) of the robot during travelling a circular path.

I 丨 丨 • “ \ \
\

FINISH

^ \ � o

^ 9 feets ^

Figure 6.8: Experiment on tracking a curved path under shared control.

The average offset in the circular path test is 0.51 ft. Although the robot cannot

track the circular path precisely, the operator can control the robot to move back to

the goal location within 0.25 ft nearly the end of the experiments. Therefore, with

a degree of shared control with the robot, the operator is still able to control the

CHAPTER 6. SHARED CONTROL 94

robot to turn a tight corner.

6.5.4 Point-to-point navigation

In this experiment, we require the robot to travel from one location to anothter

which are seperated by a right corner and they are far apart (^ 60 ft), Figure 6.9.

The operator needs to control the robot to move from a starting area to a specific

destination, which is a 2 ft x 2 ft region (the dimension of Gyrover is about 1.5 ft

X 0.8 ft as viewed form the top). This experiment has two main goals:

1. The robot must reach the destination within the specific area.

2. After the robot has reached the destination, it is required that the robot can

maintain its lateral balance even when the operator does not further control

it.

The experimental results are shown in Figure 6.14 and 6.15.

Although we are not concerning whether the robot can accurately track the path

or not, the overall offset from the path is 1.18 ft, which is an acceptable value for a 60

ft long journey. Moreover, for the three trails in this experiment, all the trajectories

of the robot are converging to the destination at the end of the path. From Figure

6.15, when t > 14 (at the destination), the operator did not command the robot

anymore, however, the robot can balance itself ar around 90''. Therefore, under a

shared control environment, with the human operator responsible for the navigation

task of the robot, the robot is able to move from one location to another location

which is far apart, and to balance itself at the vertical position when the robot stops

moving (with no operator's command).

CHAPTER 6. SHARED CONTROL 95

I \
��� START

^ ������ ^
< ^ •

Figure 6.9: Experiment on point-to-point navigation under shared control.

6.6 Discussions

From the results we conducted from the previous experiments, we verify that our

proposed shared control algorithm can let the system choose between human oper-

ator's control commands or the commands from the autonomous module system-

atically. Whenever the operator has chosen a high level of autonomy, the system

will execute the command from the the autonomous module unless the operator has

given a command which is 'confident' enough to overcome the conflict between the

CHAPTER 6. SHARED CONTROL 96

operator and the machine. On the other hand, if a low degree of autnomy is chosen,

the system will follow the operator's command unless a 'significant' err or/conflict

is measured. The proposed shared control algorithm is able to allow two entities

(human and machine) to exit in the same system simultaneously.

Although Gyrover do not have an autonomous module to navigate itself to travel

from one location to another, this can be done by sharing the navigation task to

the operator. Under shared control, the robot will maintain its lateral balance when

the operator does not command it. On the other hand, under a degree of sharing,

the operator is still able to control the robot to do some specific tasks (straight

path tracking, point-to-point navigation, etc). It is believed that if an autonomous

navigation module exists in the system, the operator can share more naviagtion

control to the machine using the proposed shared control algorithm, which can

greatly reduce the duty of the online human operator.

CHAPTER 6. SHARED CONTROL 97

straight path test

4 I ！ ！ ！ ！ ！ ！ ！ ！

3 - ； ： i •； •； -

2 - •： i ； ； ： -

1 - ： ： ： ： ： -
： ： # 3

1 : /

1 - 、.： i： -

： ： # 2 ： ： ： # 1 ： ： ：

2 - ： ： ： ： :: ： -

3 — ； ： ： ： ； ； ^ -

4 I I I 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

distance (ft)

Figure 6.10: Trajectory travelled in the straight path test.

CHAPTER 6. SHARED CONTROL 98

lean angle of Gyrover
1201 1 1 1 1— 1 —I 1 1 1

oqI I I I I I 1 1 1 1
0 1 2 3 4 5 6 7 8 9 1 0

time(sec)

tilt angle of flywheel

201 ‘ ‘ ‘ ‘ ^ ^ ‘ T^

一 201 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 1 0

time(sec)

Drive command (Human)
200 F ‘ 1 I ‘ ^ ‘ ‘ ‘ ‘ =

I 195 - I \ _
1 -0 - ^ ^ ^ ^ -

185 - _
Q

IqqI I ~I I I 1 1 1 1 I ——
0 1 2 3 4 5 6 7 8 9 1 0

time(sec)

Tilt command (Human)
inniT"" 1 i 1 1 I 1 1 1 I •
190 - n

j i —
1751； I I I I 1 I I I I 1

0 1 2 3 4 5 6 7 8 9 1 0

time(sec)

Tilt command (robot)
1901 1 1 1 1 1 1 1 1 1

"D r~i
« 185 - H r\ _ ^ V/̂

175 [： I 1 I I I I I I I 1
0 1 2 3 4 5 6 7 8 9 1 0

time(sec)

Figure 6.11: Sensor data acquired in the straight path test.

CHAPTER 6. SHARED CONTROL 99

Circular path test
14 I 1 ！ ！ ！ ！ ！

^1 — j丨——j：一丨—：一-
1 0 - \ ： -

8 - -
\ ： ： ： ： ：

g \

[

2 ； I
： ：

qI I 1 1 1 1 ‘
0 2 4 6 8 1 0 1 2 1 4

x(ft)

Figure 6.12: Gyrover trajectories in the curved path test.

CHAPTER 6. SHARED CONTROL 100

lean angle of Gyrover
1401 1 1 1 —1 1 1 1 I ~~

120- . A f ^

署 100八. i-WV J

- 8 0 - ^ V A T r � 1 ^ -

40 I I 1 1 1 1 1 ‘ 1
0 1 2 3 4 5 6 7 8 9

time(sec)
tilt angle of flywheel

601 1 1 1 1 1 1rzz 1 I

c
圓 I I , , ,

0 1 2 3 4 5 6 7 $me(sec)‘
Drive command (Human)

151 1 1 1 1 — 1 1 1 I ~

i ： I v _

0 I I I I I I I I
0 1 2 3 4 5 6 7 8 9

time(sec)
Tilt command (Human)

101 1 1 1 1 r I I I

I I I 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

time(sec)
Final tilt command (robot)

10 I 1 1— 1 1 —I— 1 I
^ 0 ^ s , _
CO ‘ S I

_qnl I I I i 1 1 1 ‘
0 1 2 3 4 5 6 7 8 9

time(sec)

Figure 6.11: Sensor data acquired in the straight path test.

CHAPTER 6. SHARED CONTROL 101

Combined path test
1 1 1 1 —I I

::-
5 � - i ； ； 丨 丨 丨 -

4 � -A ： … _

i ^ # 3 ：
3 5 - 义 … … ： -

r . . 丹 V....丨......丨..............丨.......-

4........\.......丨........丨丨....丨.......-
20 I k -

tf/^^.......j丨j.......丨...丨....-

1 ： ： ： ： ： ：

QI 1 1 1 1 1 1
0 2 4 6 8 10 12 14

x(ft)

Figure 6.14: Gyrover trajectories in the combined path test.

CHAPTER 6. SHARED CONTROL 102

lean angle of Gyrover
1 4 0 1 1 1 1 1 1 - 1 — 1 1 1 1

40 I 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

time(sec)
tilt angle of flywheel

4 0 1 1 1 1 1 丨 丨 1 ^ ^ ‘ ‘

\ n 广 -

-401 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

Drive command (Human) time(sec) 201 1 1 1 i 1~— 1 1 1 1 1

I! :
Q 0 ‘ u

_c I 1 I I I I I I 1 1
“ 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

time(sec)
Tilt command (Human) 201 1— 1 1 1 1 1 1 1 1 1

I ‘

l i -

-201 1 1 1 1 1 1 1 1 1 ‘
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

time(sec)
Final tilt command (robot) 201 1 1 1 1 1 1 1 1 1 1

I： ^ ^ ^ ^ ^ y / V A
-201 1 1 1 1 1 1 1 1 1

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

time(sec)

Figure 6.11: Sensor data acquired in the straight path test.

Chapter 7

Conclusion

7.1 Contributions

In this dissertation, we present a machine learning algorithm for Gyrover behaviors

learning and a framework for Gyrover shared-control, which is original and unique

from the previous work of the robot. We summarize the original contributions of

this work below.

• We developed a behavior-based control architecture for Gyrover control. Un-

der this architecture, the overall control task of Gyrover is decomposed into a

number of behaviors. The subsumption architecture enables us to extend or

to modify the existing system without affecting the original structure. Since

the behaviors are distributed into difFerents levels of competence, the architec-

cture enables the system to execute some high level goals while still servicing

other low level behaviors. This control approach gives us a good foundation

to develop a fully autonomous system for Gyrover in the near future.

• We propose an efficient neural-network learning architecture, cascade neural

network with extended Kalman filtering, to model the human control behaviors

in stabilizing and tiltup the robot into its upright positions. The instability

103

CHAPTER 7. CONCLUSION 104

problem in the lateral direction of Gyrover, especially when the robot is be-

ing held in a static location, causes the main difficulty in Gyrover control for

both human and machine. While some motions in Gyrover control are hard to

obtain a complete mathematical model, this learning algorithm is an alterna-

tive method which is suitable to model the dynamic and complicated control

strategy of human.

• We develop a shared control framework for Gyrover, based on the behavior-

based architecture. Since building a fully autonomous system is costly and

sometimes not practical, the main purpose of shared control is to reduce the

operator's control burden in a complex system. In order to distribute the

workload systematically in a shared control environment, we develop a decision

function to let the system judges whether to execute the operator's command

or not, by considering the Degree of Autonomy, the Strength of Conflict and

the Confidence level. Experiments show that this shared control framework is

able to share some of the control tasks from the operator without decreasing

the maneuverability of the robot.

7.2 Future work

While this thesis provides a foundation for the development of Gyrover control

system, it is certainly not the first and last word on this topic - it is only an important

first step. There are a number of different directions in which the work in this thesis

can be extended and applied. The followings are some possible improvements and

extensions of this work.

First of all, although the lateral balancing of the robot can be obtained by

CHAPTER 7. CONCLUSION 105

a machine learning algorithm, we still desire to seek for a better control method

which is developed from the mathematical dynamic model. From the experiments,

we observed that the existing lateral stablization model can only stable the robot

around the vertical position with a tolerance of ±10。，which may not be an ideal

control if a high level of accuracy is required by the system.

From the behavior-based architecture of Gyrover, we have only implemented a

small portion of control experimentally. In this thesis, we have successfully imple-

mented the low level behaviors which enable the robot to retain its local stability.

In the future, we are looking forward to have more implementations on different

controls of Gyrover.

Furthermore, due to the lack of autonomous modules in the system, the system

only allows a low level of sharing in the navigation tasks for the operator. In fact, the

Gyrover control still relies heavily on the human operator. We suggest to equip the

robot with one/two CCD camera(s) on board to work out some simple autonomous

navigation control for the robot, which can assist the operator in controlling Gyrover

more.

Finally, we are seeking the possibility of applying this shared control framework

on other man-machine cooperating system, such as robotics wheelchair or semi-

autonomous car driving. We believe that this framework can efficiently share the

workload within the system for human and machine, while retaining a high level of

maneuverability and flexibility of the orginal system.

Bibliography

1] H. B. Brown and Y. Xu, “A Single-Wheel, Gyroscopically Stabilized Robot",

Proc. of the IEEE Int. Conf. on Robotics and Automation , Vol. 4, pp. 3658-63,

1996.

2] Gora C. Nandy and Y. Xu, "Dynamic Model of A Gyroscopic Wheel", Proc.

of the 1998 IEEE International Conference on Robotics and Automation , Vol.

3, pp. 2683-88, 1998

3] Shu-Jen Tsai, Enrique D. Ferreira, Christiaan J. J. Paredis, "Control of the

Gyrover", Proc. of the 1999 lEEE/RSJ International Conference on Intelligent

Robots and Systems , pp. 179-184, 1999

4] Y. Xu, K. W. Au, Nandy, G. C. and Brown, H. B., "Analysis of actuation and

the dynamic balancing for a single wheel robot", Proc. lEEE/RSJ International

Conference on Intelligent Robots and Systems , Vol. 3, pp. 1789-94, 1998.

5] Kwok Wai Au, Yangsheng Xu, "Decoupled dynamics and stabiliztion of sin-

gle wheel robot", Proc. of the 1999 lEEE/RSJ International Conference on

Intelligent Robots and Systems , Vol. 1, pp. 197-203, 1999.

106

BIBLIOGRAPHY 121

6] Kwok Wai Au, Yangsheng Xu, "Path following of a Single Wheel Robot" ’ Proc.

of the 2000 IEEE International Conference on Robotics and Automation , Vol.

3, pp. 2925-2930, 2000.

7] Kwok Wai Au, Yangsheng Xu, "Dynamics and Control of a Single Wheel,

Gyroscopically Stabilized Robot", M.Phil. Thesis, The Chinese University of

Hong Kong, 1999,

8] Yangsheng Xu, Loi Wah Sun, "Stabilization of a Gyroscopically Stabilized

Robot on an Inlclined Plane", Proc. of the 2000 IEEE International Conference

on Robotics and Automation，Vol. 4, pp. 3549-54, 2000.

9] Yangsheng Xu, Loi Wah Sun, "Dynamics of a Rolling Disk and a Single Wheel

Robot on an Inclined Plane", Proc. of the 2000 lEEE/RSJ International Con-

ference on Intelligent Robots and Systems , Vol. 1, pp. 811-816, 2000.

10] R.A. Brooks, “A robust layered control system for a mobile robot", IEEE Jour-

nal on Robotics and Automation, Vol. RA-2，No. 1, pp. 14-23, March 1986.

11] M. Nechyba, Y. Xu, "Cascade Neural Networks with Node-Decoupled Extended

Kalman Filtering", Proc. IEEE Int. Symp. on Computational Intelligence in

Robotics and Automation, Vol. 1，pp. 214-9, 1997.

12] M. Nechyba, Y. Xu, "Stochastic Similarity for Validating Human Control Strat-

egy Models", IEEE Transactions on Robotics and Automation, Vol. 14 , No. 3,

June 1998, pp. 437-451.

13] M. Nechyba, "Learning and Validation of Human Control Strategy", Ph.D.

Thesis, Carnegie Melon University, 1998.

BIBLIOGRAPHY 122

14] Y. Xu, W. Yu, K. All, "Modeling Human Control Strategy in a Dynamically

Stabilized Robot", Proc. of the 1999 lEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, Vol. 2, pp. 507-512, 1999.

15] Montgomery, J. F., Bekey, G. A., "Learning helicopter control through "teach-

ing by showing"", Proc. of the 37th IEEE Conf. on Decision and Control, Vol.

4, pp. 3647-52, 1998.

16] S. Cherian, W.O. Troxel, M.M. Ali, "Design of a Behavior-based Micro-Rover

Robot", Proc. of the Intelligent Vehicles '92 Symposium, pp. 280-287, 1992.

17] R. Hartley, F. Pipitone, "Experiments with the subsumption architecture",

Proc. of 1991 IEEE International Conference on Robotics and Automation,

Vol.2, pp. 1652-58, 1991.

18] M.A. Lewis, A.H. Fagg, G.A. Bekey, “The USC autonomous flying vehicle: an

experiment in real-time behavior-based control", Proc. of 1993 IEEE Interna-

tional Conference on Robotics and Automation, Vol.2, pp. 422-429, 1993.

19] T. Taipale, S. Hirai, “A behavior-based control system applied over multi-robot

system", Proc. of the 1993 lEEE/RSJ International Conference on Intelligent

Robots and Systems，93, IROS，93, Vol.3，pp. 1941-43, 1993.

20] E. Gat, A. Behar, R. Desai, R. Ivlev, J. Loch, D.P. Miller, "Behavior control for

planetary exploration: interim report，，, Proc. of the 1993 IEEE International

Conference on Robotics and Automation, Vol.2, pp. 567-571, 1993.

BIBLIOGRAPHY 109

21] J.F. Montgomery, A.H. Fagg, G.A, Bekey, "The USC AFV-I: a behavior-based

entry in the 1994 International Aerial Robotics Competition", IEEE Expert,

Vol.10, Issue.2, pp. 16-22, 1995.

22] Y. Jeon, J. Park, 1. Song, Y.J. Cho, S.R. Oh, “An object-oriented implemen-

tation of behavior-based control architecture，，，Proc. of the 1996 IEEE Inter-

national Conference on Robotics and Automation, Vol.1, pp. 706-711, 1996.

23] N.O. Khessal, S.M.H. Amin, "Distributed behavior-based control architecture

for a wall climbing robot，，，Proc. of the 1997 IEEE International Conference

on Intelligent Engineering Systems, INES '91�pp. 153-158, 1997.

24] T. Balch, R.C. Arkin, "Behavior-based formation control for multirobot teams",

IEEE Transactions on Robotics and Automation, VoL14, Issue.6, pp. 926-939,

1998.

25] M. Kasper, G. Fricke, E. von Puttkamer, "A behavior-based architecture for

teaching more than reactive behaviors to mobile robots，，，The 1999 Third Eu-

ropean Workshop on Advanced Mobile Robots, Eurobot ,99, pp. 203-210, 1999.

26] L. Petersson, M. Egerstedt, H.L Christensen, "A hybrid control architecture for

mobile manipulation", Proc. of the 1999 lEEE/RSJ International Conference

on Intelligent Robots and Systems, IROS，99, Vol.3，pp. 1285-91, 1999.

27] K. Watanable, K. Izumi, "A survey of robotic control systems constructed

by using evolutionary computations ”, Proc. of the 1999 IEEE International

Conference on Systems, Man, and Cybernetics, Vol.2, pp. 758-763, 1999.

BIBLIOGRAPHY 110

28] T. Huntsberger, H. Aghaznrian. E. Baiiiiigartner. P.S. Schenker. "Behavior-

Ijasf'd control systems for planetary tiutonoinous robot outposts ,,, Aen\<p(icc

Conference Proceedmys, 2000 IEEE, Vol.. pp. G79-68G. 2000.

29) R. Stfir/el, "A behaviur-brLsed control arrhiiecture", Proc. of on 2000 IEEE

lute mat lonal Conference on Systems. Mail, und Cyhtnu tics. \'ul.5. j)p. 3235-

JO. :) _ .

301 K . K . L"• ’ V . X u , "Ilimi.-in s« 'nsatiun i iux l c ln i^ in v i r tua l mviruiuiuMits" . / ' m r .

of 2000 lEEK/RSJ Intcrnation C(mft n,mr on IntrUujrnt lii>lh>ts iui,l Systems,

\ol I. pp. 15l-15(i, •JOOO.

':ir I). A H»-ll. S P. Lrviii.-. Y. Kurt-n. L. A. .laros. .1 Hon-iistrni. "n'-M^ii (ntr.n“

fur ub.stiu li- avouiann^ m .i shariMl-contrul systr'ni". W'fntnkrr Stuilmt Srif'riti)ir

hip" (\nn]>*t\t\on. HESS A '94 .1 nniidl Coufrrrnrr, .lui".. lU'Jl

”i:” r.ihlHMjb. K A . Asaiia. Ii ii . "A s'-ini-aufuiiomoiis < ontr(>l .irc lutiM ttirr .ipplird
i I

lu r.»lMitic iMirs". of thr rJ'J'J IEEE IiSJ Intrrnntionnl ('tfjiff rr nrr

on hitrllujrnt l{"hot、.irui <ij>trtn>, IHOS . V"1 J. ' " "””11, WW

Vtiii SiMî . W.vii^ 'I laiinn.ui \V”i .Inn Y.iug IViiĵ l”！ ZImii^ UJXi.in "Sliar.-

rontrnl m init'lhg«'nt .inn haii.l ”.l””|"‘r.it"i ”�?.'!"•• I*”, of th> /EEE

intf t nntiofuil ('onfr n rur on RoUitu > and .1 u'innintu'fi.. \“1 .''» J i ’ ' . I 1''''''

:U I."’ S {.'•'' ii S . All .uk.uirt«'! '<ip« r.itor "m,…！ ”、，• !“ m�”，•、“-

u.itMin I'rtH of ！ 99：^ IFFAi hi'^'-riuiiionnl 厂 〜 … o n nmi A a ‘

tomatum \ I � � ”� “ i

BIBLIOGRAPHY 111

35] Chuanfan Guo, Tzyh-Jong Tarn, Ning Xi, Bejczy, A.K. , "Fusion of human and

machine intelligence for telerobotic systems", Proc. of the 1995 IEEE Interna-

tional Conference on Robotics and Automation, Vol.3, pp. 3310-15, 1995.

36] Aigner, P., McCarragher, B.J., "Modeling and constraining human interactions

in shared control utilizing a discrete event framework"，IEEE Transactions on

Systems, Man and Cybernetics, Part 乂，Vol.30, Issue: 3, pp. 369-379, 2000.

37] Cooper, R.A. ’ "Intelligent control of power wheelchairs", IEEE Engineering in

Medicine and Biology Magazine , Vol.14, Issue : 4, pp. 423-431, 1995.

38] Aigner, P., McCarragher, B., "Simultaneous human and autonomous control

with constrained human action"，Proc. of the Australian and New Zealand Con-

ference on Intelligent Information Systems, 1996., pp. 101-4, 1996.

39] Yokokohji, Y., Ogawa, A., Hasunuma, H., Yoshikawa, T., "Operation modes for

cooperating with autonomous functions in intelligent teleoperation systems",

Proc. of the 1993 IEEE International Conference on Robotics and Automation,

Vol.3，pp. 510-515, 1993.

40] Aigner, P., McCarragher, B.，"Shared control framework applied to a robotic

aid for the blind", Proc. of the 1998 IEEE International Conference on Robotics

and Automation, "Vol.1, pp. 717-722, 1998.

41] Simpson, R.C., Levine, S.P., "Adaptive shared control of a smart wheelchair op-

erated by voice control", Proc. of the 1997 lEEE/RSJ International Conference

on Intelligent Robots and Systems, IROS'97, Vol.2, pp. 622-626, 1997.

BIBLIOGRAPHY 112

42] Douglas, A., Y.S. Xu, "Real-time shared control system for space telerobotics",

Proc. of the 1993 lEEE/RSJ International Conference on Intelligent Robots

and Systems '93, IROS，93, Vol.3, pp. 2117-22, 1993.

43] G. Bourhis, Y. Agostini, "Man-machine cooperation for the control of an intelli-

gent powered wheelchair", Journal of Intelligent and Robotics Systems , Vol.22,

no.3-4 pp. 269-287, 1998.

.、.、气 J I . 卜 ： 气 ...
、。:-.‘_, . _ / • : , - 」 . ： . _ • , . ’ ， .

：：• •• • •

S

i ‘ •

C U H K L i b r a r i e s

圓圓1_1
0D3fl71S7b

