671 research outputs found

    Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules

    Get PDF
    Metasurfaces are nano-structured devices composed of arrays of subwavelength scatterers (or meta-atoms) that manipulate the wavefront, polarization, or intensity of light. Like other diffractive optical devices, metasurfaces suffer from significant chromatic aberrations that limit their bandwidth. Here, we present a method for designing multiwavelength metasurfaces using unit cells with multiple meta-atoms, or meta-molecules. Transmissive lenses with efficiencies as high as 72% and numerical apertures as high as 0.46 simultaneously operating at 915 nm and 1550 nm are demonstrated. With proper scaling, these devices can be used in applications where operation at distinct known wavelengths is required, like various fluorescence microscopy techniques

    Doctor of Philosophy

    Get PDF
    dissertationOptics is an old topic in physical science and engineering. Historically, bulky materials and components were dominantly used to manipulate light. A new hope arrived when Maxwell unveiled the essence of electromagnetic waves in a micro perspective. On the other side, our world recently embraced a revolutionary technology, metasurface, which modifies the properties of matter-interfaces in subwavelength scale. To complete this story, diffractive optic fills right in the gap. It enables ultrathin flat devices without invoking the concept of nanostructured metasurfaces when only scalar diffraction comes into play. This dissertation contributes to developing a new type of digital diffractive optic, called a polychromat. It consists of uniform pixels and multilevel profile in micrometer scale. Essentially, it modulates the phase of a wavefront to generate certain spatial and spectral responses. Firstly, a complete numerical model based on scalar diffraction theory was developed. In order to functionalize the optic, a nonlinear algorithm was then successfully implemented to optimize its topography. The optic can be patterned in transparent dielectric thin film by single-step grayscale lithography and it is replicable for mass production. The microstructures are 3?m wide and no more than 3?m thick, thus do not require slow and expensive nanopatterning techniques, as opposed to metasurfaces. Polychromat is also less demanding in terms of fabrication and scalability. The next theme is focused on demonstrating unprecedented performances of the diffractive optic when applied to address critical issues in modern society. Photovoltaic efficiency can be significantly enhanced using this optic to split and concentrate the solar spectrum. Focusing through a lens is no news, but we transformed our optic into a flat lens that corrects broadband chromatic aberrations. It can also serve as a phase mask for microlithography on oblique and multiplane surfaces. By introducing the powerful tool of computation, we devised two imaging prototypes, replacing the conventional Bayer filter with the diffractive optic. One system increases light sensitivity by 3 times compared to commercial color sensors. The other one renders the monochrome sensor a new function of high-resolution multispectral video-imaging

    Intelligent Multi-channel Meta-imagers for Accelerating Machine Vision

    Full text link
    Rapid developments in machine vision have led to advances in a variety of industries, from medical image analysis to autonomous systems. These achievements, however, typically necessitate digital neural networks with heavy computational requirements, which are limited by high energy consumption and further hinder real-time decision-making when computation resources are not accessible. Here, we demonstrate an intelligent meta-imager that is designed to work in concert with a digital back-end to off-load computationally expensive convolution operations into high-speed and low-power optics. In this architecture, metasurfaces enable both angle and polarization multiplexing to create multiple information channels that perform positive and negatively valued convolution operations in a single shot. The meta-imager is employed for object classification, experimentally achieving 98.6% accurate classification of handwritten digits and 88.8% accuracy in classifying fashion images. With compactness, high speed, and low power consumption, this approach could find a wide range of applications in artificial intelligence and machine vision applications.Comment: 15 pages, 5 figure

    Design, Analysis, And Optimization Of Diffractive Optical Elements Under High Numerical Aperture Focusing

    Get PDF
    The demand for high optical resolution has brought researchers to explore the use of beam shaping diffractive optical elements (DOEs) for improving performance of high numerical aperture (NA) optical systems. DOEs can be designed to modulate the amplitude, phase and/or polarization of a laser beam such that it focuses into a targeted irradiance distribution, or point spread function (PSF). The focused PSF can be reshaped in both the transverse focal plane and along the optical axis. Optical lithography, microscopy and direct laser writing are but a few of the many applications in which a properly designed DOE can significantly improve optical performance of the system. Designing DOEs for use in high-NA applications is complicated by electric field depolarization that occurs with tight focusing. The linear polarization of off-axis rays is tilted upon refraction towards the focal point, generating additional transverse and longitudinal polarization components. These additional field components contribute significantly to the shape of the PSF under tight focusing and cannot be neglected as in scalar diffraction theory. The PSF can be modeled more rigorously using the electromagnetic diffraction integrals derived by Wolf, which account for the full vector character of the field. In this work, optimization algorithms based on vector diffraction theory were developed for designing DOEs that reshape the PSF of a 1.4-NA objective lens. The optimization techniques include simple exhaustive search, iterative optimization (Method of Generalized Projections), and evolutionary computation (Particle Swarm Optimization). DOE designs were obtained that can reshape either the transverse PSF or the irradiance distribution along the optical axis. In one example of transverse beam shaping, all polarization components were simultaneously reshaped so their vector addition generates a focused flat-top square irradiance pattern. Other designs were obtained that can be used to narrow the axial irradiance distribution, giving a focused beam that is superresolved relative to the diffraction limit. In addition to theory, experimental studies were undertaken that include (1) fabricating an axially superresolving DOE, (2) incorporating the DOE into the optical setup, (3) imaging the focused PSF, and (4) measuring aberrations in the objective lens to study how these affect performance of the DOE

    Compact folded metasurface spectrometer

    Get PDF
    An optical design space that can highly benefit from the recent developments in metasurfaces is the folded optics architecture where light is confined between reflective surfaces, and the wavefront is controlled at the reflective interfaces. In this manuscript, we introduce the concept of folded metasurface optics by demonstrating a compact spectrometer made from a 1-mm-thick glass slab with a volume of 7 cubic millimeters. The spectrometer has a resolution of -1.2 nm, resolving more than 80 spectral points from 760 to 860 nm. The device is composed of three reflective dielectric metasurfaces, all fabricated in a single lithographic step on one side of a substrate, which simultaneously acts as the propagation space for light. The folded metasystem design can be applied to many optical systems, such as optical signal processors, interferometers, hyperspectral imagers, and computational optical systems, significantly reducing their sizes and increasing their mechanical robustness and potential for integration

    MEMS-tunable dielectric metasurface lens

    Get PDF
    Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 μm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics

    Planar immersion lens with metasurfaces

    Get PDF
    The solid immersion lens is a powerful optical tool that allows light entering material from air or vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, they rely on semispherical topographies and are non-planar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue

    Doctor of Philosophy

    Get PDF
    dissertationDiffractive optics, an important part of modern optics, involves the control of optical fields by thin microstructured elements via diffraction and interference. Although the basic theoretical understanding of diffractive optics has been known for a long time, many of its applications have not yet been explored. As a result, the field of diffractive optics is old and young at the same time. The interest in diffractive optics originates from the fact that diffractive optical elements are flat and lightweight. This makes their applications into compact optical systems more feasible compared to bulky refractive optics. Although these elements demonstrate excellent diffraction efficiency for monochromatic light, they fail to generate complex intensity profiles under broadband illumination. This is due to the fact that the degrees-of-freedom in these elements are insufficient to overcome their strong chromatic aberration. As a result, despite their so many advantages over refractive optics, their applications are somewhat limited in broadband systems. In this dissertation, a recently developed diffractive optical element, called a polychromat, is demonstrated for several broadband applications. The polychromat is comprised of linear "grooves" or square "pixels" with feature size in the micrometer scale. The grooves or pixels can have multiple height levels. Such grooved or pixelated structures with multilevel topography provide enormous degrees-of-freedom which in turn facilitates generation of complex intensity distributions with high diffraction efficiency under broadband illumination. Furthermore, the super-wavelength feature size and low aspect ratio of this micro-optic make its fabrication process simpler. Also, this diffractive element is not polarization sensitive. As a result, the polychromat holds the potential to be used in numerous technological applications. Throughout this dissertation, the broadband operation of the polychromat is demonstrated in four different areas, namely, photovoltaics, displays, lenses and holograms. Specifically, we have developed a polychromat-photovoltaic system which facilitates better photon-to-electron conversion via spectrum splitting and concentration, a modified liquid crystal display (LCD) that offers higher luminance compared to a standard LCD, a cylindrical lens that demonstrates super-achromatic focusing over the entire visible band, a planar diffractive lens that images over the visible and near-IR spectrum and broadband transmission holograms that project complex full-color images with high efficiency. In each of these applications, a unique figure of merit was defined and the height topography of the polychromat was optimized to maximize the figure of merit. The optimization was achieved with the aid of scalar diffraction theory and a modified version of direct binary search algorithm. Single step grayscale lithography was developed and optimized to fabricate these devices with the smallest possible fabrication errors. Rigorous characterization of these systems demonstrated broadband performance of the polychromat in all of the applications

    Particle trapping with functionalized hybrid optical fibers

    Get PDF
    Understanding processes on sub-micron scales that are obscured from the observer’s naked eye represents a long cherished desire of mankind. Unfortunately, single particle studies are time demanding and suffer from Brownian motion, which thus limits their practicability and range of applications. Optical and electrical trapping, however, both awarded with a Nobel prize, represent two sophisticated and widely applied solutions allowing for controlled access to individual particles via almost the entire room angle. Particle trapping via optical fibers in principle provides a flexible and low-cost photonic platform enabling remotely operable applications within difficult to reach environments, including in situ and in vivo scenarios. The microtechnologically functionalized tip of a hybrid optical fiber (HOF), in particular, which in contrast to conventional optical fibers incorporates additional materials, offers a unique platform for implementing electromagnetic, i.e., optical and electrical, fields that are essentially required for the trapping of particles and unavailable by standard fibers alone. Within the scope of this work, three unique implementations of HOF tip-based particle traps, which in detail rely on integrating a liquid channel, a pure silica section and metallic wires for functionalizing the fibers, are demonstrated, discussed, and compared to state-of-the-art concepts. First, the principles of optical phenomena, the motion of microscopic objects and influences of confinements including different particle trapping mechanisms, as well as required methods for analyzing and characterizing fiber-based particle traps are introduced. Subsequently, three unique concepts, which in detail consist of a dual fiber focus trap, a single meta-fiber trap and a fiber point Paul trap, and effectively represent two optical and one electrical trap, are discussed and compared with respect to current implementations. ..

    Metasurfaces: Beyond Diffractive and Refractive Optics

    Get PDF
    Optical metasurfaces are a category of thin diffractive optical elements, fabricated using the standard micro- and nano-fabrication techniques. They provide new ways of controlling the flow of light based on various properties such as polarization, wavelength, and propagation direction. In addition, their compatibility with standard micro-fabrication techniques and compact form factor allows for the development of several novel platforms for the design and implementation of various complicated optical elements and systems. In this thesis, I first give a short overview and a brief history of the works on optical metasurfaces. Then I discuss the capabilities of metasurfaces in controlling the polarization and phase of light, and showcase their potential applications through the cases of polarimetric imaging and vectorial holography. Then, a discussion of the chromatic dispersion in optical metasurfaces is given, followed by three methods that can be utilized to design metasurfaces working at multiple discrete wavelengths. As a potential application of such metasurfaces, I present results of using them as objective lenses in two-photon microscopy. In addition, I discuss how metasurfaces enable the at-will control of chromatic dispersion in diffractive optical elements, demonstrate metasurfaces with controlled dispersion, and provide a discussion of their limitations. Integration of multiple metasurfaces into metasystems allows for implementation of complicated optical functions such as imaging and spectrometry. In this regard, I present several examples of how such metasystems can be designed, fabricated, and utilized to provide wide field of view imaging and projection, microelectromechanically tunable lenses, optical spectrometers, and retroreflectors. I conclude with an outlook on where metasurfaces can be most useful, and what limitations should be overcome before they can find wide-spread application.</p
    • …
    corecore