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Abstract

Understanding processes on sub-micron scales that are obscured from the observer’s naked
eye represents a long cherished desire of mankind. Unfortunately, single particle studies are
time demanding and suffer from Brownian motion, which thus limits their practicability
and range of applications. Optical and electrical trapping, however, both awarded with a
Nobel prize, represent two sophisticated and widely applied solutions allowing for controlled
access to individual particles via almost the entire room angle.

Particle trapping via optical fibers in principle provides a flexible and low-cost photonic
platform enabling remotely operable applications within difficult to reach environments,
including in situ and in vivo scenarios. The microtechnologically functionalized tip of
a hybrid optical fiber (HOF), in particular, which in contrast to conventional optical
fibers incorporates additional materials, offers a unique platform for implementing electro-
magnetic, i.e., optical and electrical, fields that are essentially required for the trapping
of particles and unavailable by standard fibers alone. Within the scope of this work,
three unique implementations of HOF tip-based particle traps, which in detail rely on
integrating a liquid channel, a pure silica section and metallic wires for functionalizing the
fibers, are demonstrated, discussed, and compared to state-of-the-art concepts.
First, the principles of optical phenomena, the motion of microscopic objects and

influences of confinements including different particle trapping mechanisms, as well as
required methods for analyzing and characterizing fiber-based particle traps are introduced.
Subsequently, three unique concepts, which in detail consist of a dual fiber focus trap,
a single meta-fiber trap and a fiber point Paul trap, and effectively represent two optical and
one electrical trap, are discussed and compared with respect to current implementations.
In particular, careful design studies, detailed simulations, and proof of principle experiments
are realized in this work, and several applications are achieved by experimentally trapping
freely diffusing microbeads as well as biologically relevant bacteria in water.

Finally, the obtained results are assessed and compared, and a vision on further improve-
ments for their employment within future scenarios is given. Concludingly, the here
presented unique concepts highlight the potential of HOF tip-based particle traps while
opening up the possibility for applications in a variety of fields, including chemical analysis
of trapped cells via fiber-based spectroscopy, in vivo endomicroscopy, or micro-manipulation
and sensing of physical properties for, e.g., tumorous tissue diagnosis.
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Zusammenfassung

Das Verständnis von Prozessen auf Submikrometerskalen, die dem bloßen Auge des Beobach-
ters verborgen bleiben, stellt einen lang gehegten Wunsch der Menschheit dar. Leider sind
Einzelteilchenuntersuchungen zeitaufwendig und leiden unter der Brownschen Bewegung,
was ihre Praktikabilität und Anwendungsbreite einschränkt. Optisches und elektrisches
Fangen hingegen, beide mit einem Nobelpreis ausgezeichnet, stellen zwei ausgereifte und
weit verbreitete Lösungen dar, welche einen kontrollierten Zugang zu einzelnen Teilchen
über nahezu den gesamten Raumwinkel ermöglichen.
Das Partikelfangen mittels optischer Fasern stellt im Grunde eine flexible und kosten-

günstige photonische Plattform dar, welche fernbedienbare Anwendungen in schwer zugäng-
lichen Umgebungen ermöglicht, darunter auch in situ und in vivo Szenarien. Insbesondere
die mikrotechnologisch funktionalisierte Spitze einer hybriden optischen Faser (HOF),
welche im Gegensatz zu konventionellen optischen Fasern zusätzliche Materialien mitein-
bezieht, bietet eine einzigartige Plattform zur Implementierung von elektromagnetischen,
d.h. optischen und elektrischen, Feldern, die für das Fangen von Partikeln essentiell erforder-
lich und von Standardfasern allein nicht erreicht werden können. Im Rahmen dieser Arbeit
werden drei einzigartige Implementierungen von HOF-Spitzen-basierten Partikelfallen,
welche im Kern auf der Integration eines Flüssigkanals, eines reinen Quarzabschnitts sowie
metallischer Drähte zur Funktionalisierung der Fasern beruhen, demonstriert, ausführlich
diskutiert und mit dem aktuellen Stand der Wissenschaft verglichen.
Zunächst werden jedoch die Grundlagen optischer Phänomene, die Bewegung mikro-

skopischer Objekte und Einflüsse von Einengungen einschließlich verschiedener Partikelfang-
mechanismen, sowie benötigte Methoden zur Analyse und Charakterisierung faserbasierter
Partikelfallen vorgestellt. Anschließend werden drei einzigartige Konzepte, welche im Detail
aus einer Doppelfaserfokusfalle, einer Einzelfasermetafalle sowie einer Faser-Punkt-Paulfalle
bestehen und somit de facto zwei optische und eine elektrische Falle darstellen, diskutiert
und im Hinblick auf aktuelle Implementierungen verglichen. Insbesondere werden in die-
ser Arbeit sorgfältige Designstudien, detaillierte Simulationen und Machbarkeitsstudient
durchgeführt sowie mehrere Anwendungen des experimentellen Fangens frei diffundierender
Mikropartikel und biologisch relevanter Bakterien in Wasser realisiert.

Abschließend werden die erzielten Ergebnisse bewertet und verglichen, und es wird ein
Ausblick auf weitere Verbesserungen für ihren Einsatz in zukünftigen Szenarien gegeben.
Zusammengefasst zeigen die hier vorgestellten einzigartigen Konzepte das Potenzial von
HOF-Spitzen-basierten Partikelfallen auf, welche die Möglichkeit für Anwendungen in
einer Vielzahl von Bereichen eröffnen, z.B. zur chemischen Analyse gefangener Zellen
mittels faserbasierte Spektroskopie, in vivo Endomikroskopie, oder Mikromanipulation
und Sensorik physikalischer Eigenschaften z.B. zur Diagnose von Tumorgewebe.
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1
Introduction

Here, a brief summary of state-of-the-art particle trapping concepts (section 1.1) as well
as the principal scope and structure of this work are given (section 1.2).

1.1 Motivation and state-of-the-art

Observing and understanding processes on microscopic[1,2], nanoscopic[3,4], molecular[5,6]

or even atomic scales[7,8] that remain hidden from the observer’s naked eye represents a
key motivation for studying individual particles. Unfortunately, many investigations are
generally time demanding and thus suffer from the random motion of the object of interest,
which is commonly known as Brownian motion[9,10]. As a result, this effectively complicates
their practicability and limits their full potential.

Single particle trapping

The trapping or levitation of particles[11–13], however, which denotes the contact-free and
non-destructive immobilization of freely diffusive particles within media, represents a
sophisticated solution significantly reducing this motion. In general, particle trapping
techniques provide free access via almost the entire room angle[14], thus enabling investiga-
tion and control of individual sub-microscopic objects. Applications include, for example,
chemical sensing of molecular compositions via spectroscopy[15,16], controlled rotation
and micro-manipulation[17,18] of biological specimen, e.g., single DNA[19] and bacterial
cells[20,21], for their 3D observation and physical analysis, or shuttling single ions for
quantum computing[8,22] as well as measuring atomic transitions[23].
In principle, particle trapping relies on different physical mechanisms, two of which

are given by the most prominent examples of optical[11,12] and electrical[13,24] trapping.
Highlighting the large relevance of optical trapping, in particular, two Nobel prizes
were awarded, i.e., for the invention of single beam gradient force traps commonly known
as optical tweezers[12] (2018), and for the trapping and cooling of single atoms[7] (1997).
Electrical forces, in contrast, are of great importance within biological applications[16,25,26],
while enabling the trapping of particles that are effectively unsuited within optical trapping,
e.g., due to exhibiting a rough scattering surface. The invention of a device that allows
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1 Introduction

electrodynamically trapping charged particles, specifically, a Paul trap[13], was awarded
with the Nobel prize even before optical trapping in 1989.

Functionalized hybrid fiber tips

Optical fibers, in principle, represent a length-invariant, flexible and low-cost photonic
platform allowing the transmission of signals over hundreds of kilometers[27], which was
awarded with the Nobel prize in 2009 for enabling optical communication. Due to their
unique integrability and remote operability in difficult to reach environments, specifically,
this led to various applications, including infrastructural health monitoring via distributed
strain, temperature, or electromagnetic field sensors[28–30], nonlinear light generation[31–33],
and fiber lasers and sensors in medicine[34–36]. Particularly their small cross-section and
large aspect ratio are perfectly suited for in situ and in vivo applications, such as fiber-
based spectroscopy, imaging and endomicroscopy[37–42] or optical micro-manipulation and
trapping of single particles[43–46], the latter of which is the scope of this work.
Hybrid optical fibers[47] (HOFs), specifically, represent a special type of fibers that are

combined with additional materials to multi-material fibers[48,49]. Here, the flat cleaved
tip of an HOF effectively provides a unique platform for functionalization via micro- and
nanotechnology[50–52], while the additional fiber materials in particular offer a broad range
of opportunities to implement electromagnetic, i.e., optical and electrical, fields that are
essentially required for trapping freely diffusing particles and difficult to obtain otherwise.
For this purpose, different materials such as, e.g., liquids[32,53], glasses[31,54] and metals[55,56]

are introduced along the fiber or directly on its tip, which thus explicitly enables fiber
beams that differ significantly[46,57] from traditional ones. Particularly metals, for example,
enable the creation of electrical fields[58,59] in front of the HOF tip, all of which is not
possible via using conventional optical fibers.

Fiber-based particle traps

Combining particle traps with optical fibers[58,60,61], in particular, opens up the possibility
for their remote operability as well as transferring unique trapping concepts to within
difficult to reach environments. This specifically includes a broad variety of life science
scenarios, where fiber-based trapping of individual particles effectively enables in situ
and in vivo applications[21,44]. For example, this provides direct access to chemical
analysis via, e.g., fiber-based Raman spectroscopy of trapped individual bacteria and
cells[37,38,62], while additionally allowing analysis of their physical properties as well via,
e.g., investigating bacterial motility within the optical trap[63].

Scenarios of further applications include, for instance, fiber-based optical manipulation
via, e.g., rotating and stretching individual trapped red blood cells (RBCs) and single giant
unilamellar vesicle cells[64–66] for investigating lipid membrane mechanics, thus effectively
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1.2 Scope and structure of this work

providing the basis for tumorous tissue diagnosis. Moreover, specifically the diffraction
limited high numerical aperture (NA) focal spot of a fiber-based single beam gradient trap,
i.e., optical fiber tweezers[44,46,61], potentially paves the way towards future in vivo imaging
applications while acting as a fiber endomicroscope[40–42].

Figure 1.1 demonstrates the concept of a hybrid fiber-based particle trap, which relies on
an HOF whose tip is functionalized for trapping individual particles in front of the facet.
This effectively enables controlled and unhindered access to the object of interest.

Fig. 1.1. Concept of a hybrid fiber-based particle trap using the functionalized tip of an HOF. The tip
of a hybrid optical fiber (HOF), including different materials such as liquids, glasses, or metals, is functionalized
via micro- and nanotechnology. This provides optical and electrical fields significantly different from conventional
optical fibers in front of the facet, effectively creating a trapping potential for controlled and unhindered access.

1.2 Scope and structure of this work
Within the scope of this work, in particular, three different implementations of hybrid
fiber-based particle traps that rely on functionalized HOF tips are realized, discussed,
and compared to state-of-the-art concepts. Specifically, these HOFs consist of unique
combinations of a water filled channel (chapter 5), a pure silica section (chapter 6)
or metallic wires (chapter 7) implemented within the fiber, and represent two optical
(chapters 5 and 6) and one electrical trapping concept (chapter 7).

However, for a fundamental understanding of fiber-based particle trapping principles,
first, the essential prerequisites are introduced in chapters 2–7. Specifically, in chapter 2,
the principles of optical fibers and related phenomena are presented, such as diffraction
effects and the propagation of beams. Followed by chapter 3, an insight into the motion
of microscopic particles as well as influences of confinements is given, and different
trapping concepts including their mechanisms are portrayed. Finally, the prerequisite
part is completed with chapter 4, where effectively required techniques for analyzing and
characterizing fiber-based traps are elaborated in detail.

3



1 Introduction

The unique HOF trapping concepts, i.e., a dual fiber focus trap, a single meta-fiber
trap and a fiber point Paul trap, are presented and discussed in chapters 5–7. Specifically,
this includes their design, the simulation and an experimental demonstration of exemplarily
trapping single microbeads and biologically relevant bacteria in water.

Dual fiber focus trap

In chapter 5, the concept of a dual fiber focus trap is presented and principally compared to
a conventional dual fiber trap[45,60]. Due to the presence of two foci between the fibers, here,
a simple and straight-forward enhancement over a standard solid-core fiber is achieved.
In contrast to conventional optical fibers, this unique concept specifically relies on the
integration of a water filled central channel that yields a distinct beam profile of the
HOF[45,57]. Here, optical trapping is first predicted within a simulation and is later
experimentally demonstrated on the example of freely diffusing microbeads and bacteria
in water, followed by a detailed discussion of potential applications.

Meta-fiber trap

The concept of a meta-fiber trap[46], which in principle relies on a diffractive meta-
lens[67] that is optically three-dimensional (3D) printed onto the tip of a hybrid silica
fiber, is presented in chapter 6. In contrast to a dual fiber trap, the meta-fiber trap
consists of only one fiber, thus effectively enabling flexible, robust, and remote optical
trapping of freely diffusing particles in water using a single beam, which, in particular,
is uniquely only achieved via an ultra-high numerical aperture of the meta-lens. Here,
its detailed design, implementation, and the performance of the meta-fiber, including an
exemplary demonstration of its application for optically trapping microbeads and relevant
bacteria, as well as further potentials are discussed within detail.

Fiber point Paul trap

In contrast to the two fiber-based optical trapping concepts, in chapter 7, the alternative
of implementing a point Paul trap[68] onto the facet of a microwired HOF for electrical
trapping of particles[58] is discussed as an outlook. Here, the realized concept uniquely
relies on contacting an electrical trapping structure via the microwired fiber itself, thus
representing a key feature and major advantage over common traps. Specifically, the design,
its implementation, and an experimental application of trapping charged beads are achieved
and subsequently discussed for potential employment within future scenarios.

Ultimately, in chapter 8, all obtained results are assessed, and compared to state-of-the-
art concepts, and the work is concluded with an outlook on envisioned applications.
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2
Fundamentals of optics

This chapter introduces the essentially required principles for a solid understanding
of optical phenomena. A starting point for deriving a solution to most problems,

such as, e.g., waveguiding within optical fibers, represent the microscopic Maxwell’s
equations that relate the electrical field ~E and the magnetic flux density ~B:

~∇ · ~E = ρ

ε0
(2.0a)

~∇ · ~B = 0 (2.0c)

~∇× ~E = − ∂

∂t
~B (2.0b)

~∇× ~B = µ0~j + 1
c2
∂

∂t
~E. (2.0d)

Here, ρ denotes the electrical charge density, ~j the current density, ε0 and µ0 the vacuum
permittivity and permeability, respectively, and c =

√
1

ε0µ0
= 2.99792458 · 108 m/s the

vacuum speed of light. For optics in a linear, homogeneous, and isotropic dielectric matter,
it is convenient to introduce the magnetic field ~H and the electric displacement field ~D:

~H = 1
µ0
~B (2.1a) ~D = ε0εr ~E. (2.1b)

The relative permittivity of a medium εr, in particular, exhibits a dispersion εr = n2
m(λ)

that depends on the vacuum wavelength λ and corresponds to the refractive index nm.
In this chapter, first, the principles of waveguiding and beam propagation within

optical fibers are introduced (section 2.1), which is followed by a detailed consideration of
diffraction and phase effects (section 2.2).

2.1 Optical fibers

Optical fibers are waveguides that, generally, exhibit a cylindrical geometry and are made
from ultra-pure glass, effectively allowing the transmission of signals over hundreds of
kilometers for which the Nobel prize was awarded in 2009 [27]. Here, light is principally
guided along the optical axis z within a central core that is surrounded via a cladding
(Figure 2.1A). Commonly, optical fibers are covered with a thin layer of acrylate coating
that makes the fiber bendable and protects it against environmental influences such as, e.g.,
humidity. Various types of fibers that differ by their mechanism of optical waveguiding
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2 Fundamentals of optics

are widely used and commercially available, including, e.g., step-index and graded-index
fibers[27,69], photonic crystal fibers[70,71], and anti-resonant hollow core fibers[72,73].

The simplest type of fiber to describe waveguiding within an optical fiber is based on a
step-index fiber, which exhibits a rotational and axial symmetry along its azimuthal angle ϕ
and the propagation direction z. Here, optical waveguiding relies on the total internal
reflection between a higher refractive index ncore of the core and a lower refractive index nclad

of the cladding (Figure 2.1, A and B). In the following, discrete solutions to waveguiding
within step-index fibers are derived (subsection 2.1.1), and, specifically, the propagation of
the emitted fiber beam in free space is described. Finally, the concept of hybrid optical
fibers used within the scope of this work is briefly introduced (subsection 2.1.2).

2.1.1 Guided modes and free space propagation

Due to the geometry of optical fibers, it is particularly convenient to make an ansatz
within cylindrical coordinates (r, ϕ, z), using ~E, ~H = ~A(~r, t) = ~A(r, ϕ) exp [ik0(neffz − ct)].
Here, k0 = 2π/λ is the wavenumber and neff the eigenvalue to solve for. For non-magnetic
media in the absence of free charges (ρ = ~j = 0), the combination of Equations 2.0b and
2.0d yields the wave equation, which transforms into the latter Helmholtz equation:(

~∇2 − n2

c2
∂2

∂t2

)
~A =

(
~∇2 + k2

)
~A = 0. (2.2)

The above relation describes the propagation of waves with wavenumber k = k0nm in
a medium of refractive index nm. Solutions to Equation 2.2 for a core of radius r = a,
however, are given via a transcendent equation that can only be solved numerically[69]:
(
J ′ν(U)
UJν(U) + K ′ν(W )

WKν(W )

)(
J ′ν(U)
UJν(U) + n2

clad
n2

core

K ′ν(W )
WKν(W )

)
=
(
ν
neff

ncore

)2 ( 1
U2 + 1

W 2

)
(2.3a)

U = ak0

√
n2

core − n2
eff (2.3b) W = ak0

√
n2

eff − n2
clad. (2.3c)

Here, Jν and Kν represent the Bessel functions of first- and modified second-kind
of order ν, J ′ν and K ′ν their derivatives with respect to the argument, and U and W

are auxiliary modal parameters. Solutions to Equation 2.3a are principally given via
discrete modes of eigenvalues nclad < neff < ncore, where the fundamental mode is always
represented by the highest effective refractive index neff closest to the index of the core ncore

(Figure 2.1B). For the special case of ν = 0 and a low refractive index contrast, in particular,
Equation 2.3a yields the linear polarized (LP0m) modes, where m denotes the mode order.
In case of higher contrast, these consist of transversal electric TE0m and transversal
magnetic TM0m modes, and, as in general, if a higher azimuthal order of ν ≥ 1 is present,
this effectively leads to the coupling of TE0m and TM0m modes into hybrid HEνm modes.
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2.1 Optical fibers

An optical waveguide that supports only a few modes can often be described by the
normalized frequency or V parameter, which is related to the numerical aperture (NA)
and the maximum acceptance angle θ for incident rays (see Figure 2.1A):

V =
√
U2 +W 2 = ak0

√
n2

core − n2
clad (2.4)

NA = n sin(θ) =
√
n2

core − n2
clad. (2.5)

The V parameter represents the contrast of the refractive index n between the core
and the cladding of the optical waveguide and thus the confinement and the quality of
guidance of a mode. While fibers with small V , in particular, are more susceptible to
bending loss, multi-mode fibers (MMFs) with large V robustly support many modes. Here,
the number M of modes can generally be approximated via M ≈ V 2/2. A single-mode
optical fiber (SMF), in contrast, only supports one, namely the fundamental HE11 mode,
whose intensity profile is best approximated via a Gaussian profile (Figure 2.1C), which is
thus most efficient for its excitation.

Generally, optical fibers are single-mode up to a normalized frequency of approximately
V > 2.405, where the fundamental mode cuts off and higher order modes arise. Inversely
proportional to the V parameter of the fundamental mode, however, is the mode field
diameter (MFD), which is defined as where the intensity at the radial coordinate r drops
to I(r) = I0/e2, with I0 = I(r = 0, z = 0). The NA of a fiber, in contrast, is linked via the
bandwidth product and the conservation of the etendue. It is thus as well obtained via a
Fourier transformation of the mode, followed by retrieving the radial 1/e2 value of the
resulting angular spectrum (Figures 2.1F and 2.4, B and E).

Gaussian beams

Since the fundamental mode of an optical fiber exhibits a near Gaussian intensity profile,
it is convenient to describe its propagation in free space via the analytical model of a
Gaussian beam. This type of beam is defined entirely via its opening angle (numerical
aperture) θ and the initial beam width (mode field diameter) 2w0 = MFD. In equivalence
to the MFD, it is convenient to introduce the Rayleigh length (full width half maximum)
2zR = FWHMz as where the intensity along the axial direction z drops to I(z) = I0/2 and
the beam yields

√
2 times its initial width. This allows describing the beam diameter 2w(z)

and the curvature radius R(z) of wavefronts along the propagation direction z:

w(z) = w0

√
1 + (z/zR)2 (2.6a)

zR = nπw2
0

λM2 (2.6c)

R(z) = z
[
1 + (zR/z)2

]
(2.6b)

M2 = nπw0

λ
tan(θ). (2.6d)

Here,M2 denotes the beam quality factor, which yields unity for a perfect Gaussian beam
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2 Fundamentals of optics

and M2 . 1 for near diffraction limited SMF beams (Figure 2.4). Generally, these exhibit
Rayleigh lengths of zR ∼ 10 . . . 20 µm for visible wavelengths in air. The intensity I(r, z)
along the radial and axial directions is finally given via:

I(r, z) =
∣∣∣∣∣ w0

w(z) · exp
(
− r2

w(z)2

)
︸ ︷︷ ︸

A(r,z)

· exp
(

i
[
kz − arctan

(
z

zR

)
+ kr2

2R(z)

]
︸ ︷︷ ︸

Φ(r,z)

)∣∣∣∣∣
2

= w2
0

w(z)2 · exp
(
− 2r2

w(z)2

)
.

(2.7)

The above relation consists of a real valued amplitude A(r, z) and a complex term
including the phase Φ(r, z), which is important later when considering diffraction effects
(details see Figure 6.7). Figure 2.1D exemplarily illustrates the calculated beam profile
that is emitted by a typical single-mode fiber for a wavelength of λ = 660 nm in air.

   

 

     

     

     
 

 

  
    

        

     

HE11 mode

Far-fieldSpectrumOutput

Gaussian beam

A B C

D

E F G

Waveguiding

Fig. 2.1. Schematic illustration of waveguiding and beam propagation with a step-index optical fiber.
(A) The principle of waveguiding relies on total internal reflection, where incident rays up to a maximum
acceptance angle of 2θ are guided along the fiber. (B) A refractive step-index profile yields the formation
of discrete modes, where the highest effective index lies closest to the index of the core and represents the
fundamental mode of the fiber. (C) Calculated 1D and (E) 2D profiles of the fundamental HE11 mode for a
wavelength of 660 nm. Here, 2a represents the diameter of the core and MFD denotes the mode field diameter
of the fiber where the intensity drops to 1/e2. (D) Calculated propagation of the near Gaussian shaped fiber
beam in air. (F) Conserved angular spectrum of the fiber mode, where NA denotes the numerical aperture
taken at the 1/e2 value. (G) Propagated 2D profile of the mode in the far-field at a distance of 100 µm.
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2.1 Optical fibers

2.1.2 Hybrid optical fibers

Hybrid optical fibers[47] (HOFs), in particular, represent a special type of fibers based on
microstructured fibers[74] that include longitudinal holes parallel to their optical axis z.
In this work, the concept specifically relies on combining a single-mode fiber (SMF)
with additional materials to a hybrid-material fiber[48,49]. Generally, these materials
are implemented inside or close to the core via filling the holes of a microstructured
fiber[58,75,76] and range from active, nonlinear dopants and different glasses[31,34] over liquids
and gases[32,33] to metals and semiconductors[55,77]. Specific applications include, e.g.,
the generation of supercontinuum within nonlinear HOFs[31–33], biological, chemical, and
pharmaceutical sensing[53,78,79], the detection of nanoparticles[4,80,81], and beam shaping
and particle trapping (compare refs. [45, 46, 57]) being the scope of this work.
Figure 2.2 illustrates several examples of experimentally implemented hybrid optical

SMFs. A water filled central channel (bore) inside the core of a nanobore fiber[4,45,57]

(Figure 2.2, A and B), for example, yields a beam profile that differs significantly from
the usual Gaussian shape, while being specifically useful within optical trapping (compare
chapter 5 and ref. [45]). Combining an SMF and an MMF[46,82,83] (Figure 2.2, C and D),
in particular, serves to deliver an enlarged HE11 mode to a diffractive lens that is imple-
mented on its tip for ultra-high NA focusing (compare chapter 6 and ref. [46]). Metallic
wires inside a microwired hybrid fiber[58,75,76] (Figure 2.2E), in contrast, enable contacting
a structure on its facet for electrical trapping of particles (details see chapter 7).

water filled bore fiber facet

5µm
Nanobore beam profile in water

beam candle

1µm

0.7µm

core

bore

silica

Nanobore fiber facet Paul
fiber facet

50µm

microwires

core

MMF beam expansion section
fa

ce
t

SMF

splice

50µm

Large core single-mode fiber

Large core HE11 mode

10µm

C

A

B

D E

Fig. 2.2. Examples of experimentally implemented hybrid optical fibers. (A) The water filled central
bore of a nanobore fiber (NBF) yields (B) a beam profile that is particularly useful within optical trapping.
(C) The combination with a multi-mode fiber (MMF) provides (D) an enlarged HE11 mode for beam shaping.
(E) Metallic wires inside a microstructured fiber allow contacting an electrical trapping structure on its facet.
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2 Fundamentals of optics

2.2 Diffraction and phase effects

Since typical fiber beam diameters range within just a few microns, any kind of optical
manipulation requires the consideration of diffraction, i.e., the bending of rays around
objects due to a retardation of their phase. This effect is most pronounced for feature sizes
comparable to the dimension of the wavelength and also occurs in media with varying
refractive index. While subsection 2.1.1 described the propagation of fiber beams in free
space via the approximation of an analytical Gaussian model, this section treats the
employment of optical elements with dimensions close to those of fiber beams.

2.2.1 Diffractive optics

Traditionally, bulk lenses rely on the principle of refraction, where the direction of incident
light changes upon passing from one medium to another. A thin diffractive optical
element (DOE) or diffractive lens (also termed meta-lens later, compare refs. [46, 67, 84]),
in contrast, manipulates the propagation of an incident beam via the modulation of its
phase. An ideal lens, which focuses a spherical wave at a propagation distance and focal
length of z = f , exhibits a radially varying phase that is described via a hyperbolic profile
as accordingly achieved with an asphere (Figure 2.3C)[46,67,84]:

φideal(r, f) = −k
(√

r2 + f 2 − f
)
. (2.8)

For convenience, a parabolic approximation is often used, which is specifically obtained
via a Taylor series expansion of the hyperbolic phase function:

φpar(r, f) = φideal(0, f) + ∂

∂r

∣∣∣∣∣
r=0
φideal(r, f) · r + ∂2

∂r2

∣∣∣∣∣
r=0
φideal(r, f) · r2 + . . .

≈ −kr
2

2f +O(r4).
(2.9)

In contrast to Equation 2.8C, this is achieved via a spherical lens and is also visible in the
phase Φ(r, z) of a Gaussian beam (Equation 2.7). The stronger curvature of the parabolic
phase, however, inevitably leads to a positive spherical aberration where marginal rays
focus early (Figure 2.3B). Figure 2.3D compares the phase profiles of both refractive lenses
(spherical lens and bulk asphere) with the one of a diffractive lens[46,85,86]:

Φdiff(r, f) = mod (φ(r, f), 2π) . (2.10)

The above equation represents a kinoform (Figure 2.3E), dividing a diffractive lens
into a number of NFres = φ(rmax, z)/2π so-called Fresnel zones[46]. A key advantage of a
diffractive lens over a refractive lens, which is NFres times thicker, particularly relies on
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2.2 Diffraction and phase effects

its thickness of just a few wavelengths. However, the experimental implementation of the
continuous kinoform profile is practically limited, generally leading to a quantization into a
number of Nh discrete phase levels (Figure 2.3F). The diffractive focusing efficiency η of a
discretized kinoform, specifically, is proportional to the number of levels and is defined via
η ∝ sinc2(1/Nh), which for an amplitude grating (Figure 2.3G) is as low as η = 10.1% [85,
87]. One example of an experimentally implemented discretized kinoform (see chapter 6),
i.e., a diffractive phase-type meta-lens, is effectively demonstrated in Figure 6.3.

Kinoform Multi-level phase mask Binary level lens

Spherical lens Bulk asphere Phase profiles

R
ef
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ct

iv
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D
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e 
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s

A B DC

E F G

𝜂 ≤ 40%𝜂 > 80%𝜂 → 100%

Fig. 2.3. Comparison of refractive and diffractive optics for manipulating a beam. (A–D) Refractive
optics for the example of (B) a spherical lens with a positive spherical aberration resulting from the marginal rays,
and (C) an ideal aberration free asphere. (D) Comparison of the phase profiles of the two refractive lenses
with the one of an ideal diffractive lens. (E–G) Diffractive optics for the example of (E) the ideal continuous
profile in D, (F) the quantized profile with discrete phase levels and (G) a binary level lens. This can either be
(from left to right) a phase mask, a refractive index element or an amplitude grating (adapted from [87]).

2.2.2 Beam propagation
Often, the profile of an incident plane wave that propagates along z exhibits an arbitrary
amplitude u(~r0) in the aperture plane at the position ~r0 = (x, y, 0). The Huygens-Fresnel
principle, in particular, describes a wavefront exp(i~k · ~r) as the superposition of individual
spherical wavelets, each solving the Helmholtz equation (Equation 2.2). The amplitude u(~r)
of the diffracted pattern at the position ~r = (x, y, z) is thus given as the sum of all rays
emerging from the aperture plane at ~r0 under all angles of the wave vector ~k:

u(~r) =
∫∫ ∞
−∞

u(~r0) exp
(
i~k · [~r − ~r0]

)
d~r0 d~k (2.11)

=
∫∫∫ ∞

−∞
u(~r0) exp (−i[kxx+ kyy]) dx dy exp (ikzz) d~k
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2 Fundamentals of optics

=
∫∫ ∞
−∞
F{u(x, y)} exp

(
i
√
k2 − k2

x − k2
yz
)

dkx dky

= F−1{F{u(x, y)} exp (ikzz)}. (2.12)

The above equation effectively reduces to a simple three step routine for numerically
calculating the diffracted pattern u(~r) of an arbitrary input profile u(~r0):

1. Fourier transformation of the input amplitude u(~r0) to obtain the angular spectrum.

2. Multiplication with a plane wave propagation term, where the component of the
~k vector along the propagation direction z is given via kz =

√
k2 − k2

x − k2
y.

3. Back transformation to obtain the final diffracted amplitude u(~r).

In the following, this is referred to as the beam propagation method (BPM) and is
exemplarily shown in Figure 2.4 for the beam of (i) an MMF (Figure 2.4, A to C), (ii) an
SMF (Figure 2.4, D to F) and (iii) a plane wave (Figure 2.4, G and I). Specifically, the
propagation is fixed via the initial phase predetermining the beam divergence or focusing.

Single-mode fiber SMF spectrum Defined phase

exp(i𝑘𝑧𝑧)
+ FT-1FT

Decomposition Propagation

Multi-mode fiber MMF spectrum Chaotic phase

exp(i𝑘𝑧𝑧)
+ FT-1FT

Decomposition Propagation

Plane wave focus Diffractive lens Plane wave input

FT +
exp(i𝑘𝑧𝑧)

+ FT-1

CombinationPropagation

defocus

focus cancel phase

A B C

D E F

GHI

Fig. 2.4. Propagation of arbitrary beams calculated using the beam propagation method (BPM) for
a distance of 100 µm in air at a wavelength of 660 nm. (A–C) Propagation of the divergent beam emitted
by a multi-mode fiber (MMF) of (A) 105 µm core diameter and (B) 0.1NA in the angular spectrum. (C) The
chaotic phase of the MMF beam limits reversing its propagation (focusing) via a phase structure. (D–F) Same
for a single-mode fiber (SMF) of (D) 4 µm MFD, corresponding to (E) 0.09NA in the spectrum. (F) The phase
of the SMF beam is well-defined and can thus be canceled via a phase lens for refocusing the beam. (G–I) A
beam with a flat phase (plane wave) can be focused via a diffractive lens to close to wavelength dimensions.
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2.2 Diffraction and phase effects

However, several approximations of Equation 2.12 allow for an analytical expression of the
diffracted field, including the Fresnel near field and the Fraunhofer far field approximation.
Specifically, both variants rely on a paraxial approximation of kz =

√
k2 − k2

x − k2
y via a

Taylor series expansion, followed by neglecting higher order terms.
Figure 2.4 effectively reveals that a well-defined phase of a beam can be altered via a

diffractive element in order to change the direction of its propagation, e.g., to focus or
defocus the beam. For multi-mode fibers (Figure 2.4, A to C), in particular, this task
remains a challenge due to their chaotic phase at the output that changes upon bending
the fiber. In case of single-mode fibers (Figure 2.4, C to F), however, this is relatively
straight-forward to achieve, since their beam exhibits a flat phase upon emission while
behaving like a spherical wave (Figure 2.4, I to G). A well-defined phase thus represents a
key requirement for near diffraction limited beams, while principally allowing for features
sizes on the order of the wavelength (Figure 2.4I).

Experimental examples of the cases (i)–(iii) discussed in Figure 2.4 are demonstrated in
chapter 6: (i) focusing an MMF beam (Figure 6.6, B and G), (ii) expanding and focusing
an SMF beam (Figure 6.6, C and I), and (iii) focusing a plane wave (Figure 6.6, A and F).

Diffraction limits

The diffraction pattern that is obtained from focusing an infinitely extended plane wave
of wavelength λ through an ideal circular lens of phase profile φideal(r, z), numerical
aperture NA and focal length f is principally given via[46,88]:

I(r, z = 0) ∝ jinc2
(

NA · r
λ

)
with jinc(r) = 2J1(2πr)

2πr (2.13a)

I(z, r = 0) ∝ sinc2
((
n−

√
n2 − NA2

)
· (z − f)

λ

)
with sinc(z) = sin(πz)

πz
. (2.13b)

Equation 2.13a describes the two-dimensional diffraction pattern in the focal plane and
is commonly referred to as the Airy function. Here, the finest resolvable feature size is
principally limited by the distance d(λ) between the maxima of two neighboring Airy discs,
which is defined via the first root of the Airy function. This specifically yields the Abbe
formula for the diffraction limit and the resolution of an optical system:

jinc2
(

NA · d
λ

)
= 0 with d(λ) = 1.22λ

2 NA . (2.14)

However, it is important to note that the formalism to analytically describe the propa-
gation of Gaussian beams (Equation 2.7) does not comply with Equations 2.13a and 2.13b
and is thus not suitable within the following. Depending on the dimensions of a finitely
extended beam compared to the size of a lens aperture, effectively, the above equations
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2 Fundamentals of optics

require the convolution with the incident beam profile. Figure 2.5 exemplarily displays
the obtained foci of the two different types of diffractive lenses (Equations 2.8 and 2.9)
calculated for a numerical aperture of NA = 0.89 in air. Specifically, here, the profile of
the incident beam is given via a plane wave of wavelength λ = 660 nm.

Due to the infinite extension of the input plane wave, in particular, the asphere produces
a well-defined diffraction limited focal spot (Figure 2.5, A and B). The spherical lens,
in contrast, principally suffers from strong positive spherical aberration in the focal spot as
a result of the increased marginal curvature and the related early focusing of rays (see Fig-
ure 2.3B). This is effectively observed in both the one-dimensional (Figure 2.5, C and D)
and the two-dimensional (Figure 2.5, E and F) cross-section profiles of the intensity within
the focal planes. When introducing the lens into a different immersion medium, however,
such as, e.g., water, the aspect ratio of the full width half maximum (FWHM) of the focal
spot changes due to a resulting change in the NA (Figure 2.5G).

Diffraction limited focus

Positive spherical aberration

Axial profile

Focal plane
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Fig. 2.5. Characteristics and aberration of a focused plane wave calculated for a wavelength of
660 nm in air. (A) Radial and (B) axial 2D intensity profiles of a diffraction limited spot in the focal plane
obtained from an ideal lens with a hyperbolic phase profile and a numerical aperture of NA=0.89. (C) Radial
and (D) axial 1D profiles along the dotted lines of the diffraction limited focus (A and B) compared to an
aberrated focal spot (E and F) obtained from a spherical lens with a parabolic phase profile and the same NA.
(E) Radial and (F) axial 2D intensity profiles of the aberrated focal spot, which exhibits a positive spherical
aberration due to early focusing of marginal rays. (G) Aspect ratio of the full width half maximum (FWHM)
of the focal spot for different NAs in air compared to water. The ratio decreases significantly for higher NAs
and changes with the immersion medium, however, it shows no dependence on the incident wavelength.
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3
Particle dynamics and trapping

Key motivation for studying single particles is the general desire to observe and under-
stand processes that happen on microscopic[64–66], nanoscopic[3,20,80], molecular[5,6,89]

or even atomic scales[7,8,22]. Unfortunately, applications of sub-micron precision are gener-
ally time demanding, while ranging from the observation and analysis of physical properties
via microscopy[64,66,80], the chemical detection and sensing via spectroscopy[15,37,62] to the
sorting and manipulation of mesoscopic objects with respect to a certain property[25,90,91].
A main limiting factor of all prior scenarios, however, represents the issue of particle
movement, which is commonly known as Brownian motion[9,10,92].

In this chapter, an insight into free particle dynamics is given (section 3.1), followed by
a description of mechanisms to suppress Brownian motion. Specifically, these include a
physical (section 3.2) and a virtual, non-contact confinement (section 3.3), while particularly
the latter is discussed for the examples of optical and electrical trapping. Figure 3.1A
provides an overview of applications that are enabled via a non-contact confinement.

3.1 Free diffusive motion
Brownian motion in principle describes the effect of self-propelled random motion within
a medium due to its internal energy resulting from collisions with the molecules of
the medium. This yields a transfer into kinetic energy as described via the kinetic
gas theory. A Wiener process is a mathematical model that describes this stochastic
process exhibiting a normally distributed and independent time-continuous increase[92].
Throughout this work, only single particles are considered, specifically assumed to be
independent yet representing the entire batch. The random walk x(t) of a particle of massm
over the time t can thus be calculated via the Brownian dynamics as an approximation of
the stochastic differential Langevin equation[10,92]:

mẍ+ γẋ+∇U(x) =
√

2γkBTξ(t) with 〈ξ(t)ξ(t′)〉 = δ(t− t′). (3.1)

The above equation effectively describes a damped harmonic oscillator in the diffusive
regime without ballistic inertia (generally t > 1 µs), where γ = 6πηR is the Stokes friction
coefficient for a particle of diameter 2R within a medium of viscosity η and a potential U .
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3 Particle dynamics and trapping

Specifically, the product of the Boltzmann constant kB and the absolute temperature T
represents the internal energy of the system, and ξ(t) denotes a stochastic thermal noise,
i.e., white noise, that is modeled via the random Gaussian process with zero mean and
unity variance[92]. The diffusion coefficient D describes the thermal mobility of balancing
inhomogeneities within a medium of concentration gradient and is related to the variance
of the covered distance 〈x2〉 of the particle along one dimension within a given time t[9,92]:

〈x2〉
2t

ESR= D
SEQ= kBT

6πηR. (3.2)

Here, ESR denotes the Einstein-Smoluchowksi relation and SEQ the Stokes-Einstein
equation. Equation 3.2 effectively reveals that the diffusion D of a particle scales inversely
with its size, which thus particularly complicates the observation and analysis of small beads
due to their rapid diffusion. A lack of buoyancy within the medium, however, additionally
results in the effect of sedimentation, thus leading to a slow and steady downwards drift
with velocity vdrift. In addition to diffusion, this generally limits a long-time observation
that suffers from motion blur, thus excluding applications such as spectroscopy due to the
rapid vanishment of the object of interest. Commonly, a particle moves more than its own
diameter within seconds and escapes the field of view (Figure 3.1B) within minutes.

Figure 3.1B displays calculated trajectories for two different kinds of beads (polystyrene
and silica, 2R = 2 µm each) in water (chosen for all following scenarios) using Equation 3.1.
Here, the two beads of same size but different material particularly emphasize the influence
of sedimentation due to their masses that differ by a factor of two.
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Fig. 3.1. Key aspects and motivation behind trapping a diffusing particle under Brownian motion.
(A) Time demanding applications that benefit from a non-contact confinement. These include, e.g., three-
dimensional (3D) observation and analysis of physical properties via microscopy, detection and sensing via
spectroscopy, and sorting and manipulation with respect to a certain property. The background shows a
scanning electron microscope (SEM) image of silica beads. (B) Exemplary trajectories for two different beads in
water of masses that differ by a factor of two. The frame shows the field of view (FOV) for a 4.7mm×3.5mm
camera sensor at a magnification of 55× as in later experiments. The beads exceed their own diameter within
seconds and escape the FOV (dashed circle segment) within minutes, excluding them from applications in A.
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3.2 Influence of confinement

3.2 Influence of confinement

The main limiting cause for time demanding applications presented in Figure 3.1A is the
random movement of a freely diffusive particle. One solution to suppress the diffusion
represents confining the particle of interest within a potential U (see Equation 3.1 and
Figure 3.2A). This effectively allows for studying the particle via limiting its degrees
of freedom, yielding its macroscopically confined motion as well as an effect commonly
referred to as hindered diffusion[93,94]. While the prior is simply observed and identified
within the statistics of its motion, the latter, in contrast, is of microscopic origin and
results from interactions with the boundaries of the confinement[93,94].
In principle, various origins of confinement within a potential U exist, being either of

physical or of non-contact nature. Confinement within a slit, a box, or a pore (Figure 3.2B)
represent examples of physical confinement, specifically differing by their appearance within
the statistics of the motion. A non-contact mechanism to suppress the free diffusive motion,
in contrast, is generally referred to as the trapping within a parabolic potential Utrap with a
linear restoring force ~Ftrap = −∇Utrap (Figure 3.2C).

3.2.1 Local distribution

A simple statistical method for investigating and characterizing particle motion represents
the analysis within a histogram. Here, a first indication of confinement is obtained via
examining the particle’s local distribution. The probability ρ(x) of finding a particle within
a confining potential U(x) along one dimension results from the kinetic gas theory and is
given via the Boltzmann distribution[95]:

ρ(x) ∝ exp
(
−U(x)
kBT

)
. (3.3)

The particle’s local distribution strongly depends on the shape and the strength of
the confinement, which thus directly allows for its identification. While the local probability
of a free particle under no influence of a confining potential U is equally distributed along
the entire dimension x (Figure 3.2A, corresponding to a flat histogram), the confinement
within a slit is described via a box potential (Figure 3.2B, visible as a linear boundary
within the local distribution). A box, moreover, limits one more dimension of freedom
than a slit and is effectively revealed when examining the full 3D trajectory in Cartesian
coordinates. A confining pore, in contrast, is straight-forwardly identified when a coordinate
transformation into cylindrical coordinates is performed. Otherwise, it appears as a half
disc within the localization histogram. In case of confinement within a harmonic trap
potential Utrap(x) ∝ x2 (Figure 3.2C), however, the distribution exhibits a Gaussian shape,
as illustrated alongside the previous scenarios in Figure 3.2D.
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3 Particle dynamics and trapping

3.2.2 Particle displacement

The local distribution of a particle, however, only yields information about the type and
the degree of macroscopic confinement but not about the microscopic diffusion itself.
To obtain this information, it is useful to analyze the displacement ∆xi = x(t+ ti)− x(t)
of a particle, which is defined as the change of the trajectory x(t) with respect to the time
increment ti. Its probability density function ρ(∆xi, ti) along one dimension is given via[9]:

ρ(∆xi, ti) = 1√
4πDti

exp
(
−(∆xi)2

4Dti

)
. (3.4)

In principle, the above equation defines a normal Gaussian distribution with zero mean
and variance 2Dti dependent on the diffusion D and the incremental time ti, as resulting
from the stochastic process described in Equation 3.1. Note that for particle sizes 15 times
smaller compared to the dimensions of physical confinement (as present within a slit
in later experiments, see chapter 5) the effect of hindered diffusion only denotes a few
percent[93,94] and is thus neglected throughout this work.

Temporal evolution

Generally, only a limited part of the motion is analyzed, which is namely referred to as the
finite trajectory x(t) in the following. The probability density ρ(∆xi, ti) of Equation 3.4
can thus be extended to describe the displacement of a particle for an arbitrary interval
of time ∆t commonly referred to as the lag time. Analyzing the temporal evolution
of the displacement ∆x(∆t) via its variance for all lag times ∆t of the same length,
however, represents a powerful method for investigating the characteristics of the motion.
Compared to the description of the entire distribution for only a single lag time ∆t,
in particular, this reveals even more detailed information about the dynamics of a particle
and is commonly referred to as the mean square displacement (MSD)[81,96,97]:

〈
(∆x(∆t))2

〉
= 2kBT

∇2U

(
1− exp

[
−D∆t∇

2U

kBT

])
+ ε2 (3.5)

=

2D∆t + ε2 for ∆t→ 0 or ∇2U = 0

2kBT/∇2U + ε2 for ∆t→∞ and ∇2U 6= 0.
(3.6)

Here, ε2 denotes an experimental error resulting from the computer-based analysis, i.e.,
the finite precision in retrieving the particle trajectory x(t) (see section 4.1.2). In principle,
the diffusion D can be attributed as free with a linear time-dependent slope for short lag
times ∆t ∼ 0, yielding information about the particle itself such as, e.g., its size[80,81], as well
as properties of the surrounding medium. For long lag times ∆t� 0, however, the effect of
confinement plays a major role, and the slope decreases while approaching an asymptotic
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3.2 Influence of confinement

limit that describes the degree of confinement. A steady drift such as, e.g., sedimentation of
velocity vsed, in particular, yields an additional term (vsed∆t)2 in Equation 3.5. Figure 3.2E
displays a temporal analysis of the previously introduced scenarios.
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Fig. 3.2. Different simulated scenarios of free, confined, and trapped motion for a 2 µm diameter
polystyrene bead in water and identification via statistics. (A) Free diffusive motion calculated for a time
of three minutes. The gray circle marks the start and end position of the bead after 3min. (B) The same bead
as in A is let to freely diffuse but is confined within a slit between two physical boundaries. (C) The bead
is confined within a non-contact harmonic trapping potential. (D) Local distribution along the x dimension
of the bead in A–C. The type of confining potential is directly revealed via the shape of the distribution.
(E) Time-dependent mean square displacement (MSD) analysis of the scenarios in D. The bead diffuses freely
on short timescales but deviates from the linear slope of the MSD under external influences for long times.

Both methods, i.e., analyzing the local distribution or the MSD (Figure 3.2, D and E),
allow for differentiating between free and confined motion of a particle as well as for
identifying external influences. Potential origins of these represent, e.g., the influence of
drift due to sedimentation, a continuous flow of the liquid, or external trapping forces.
Particularly, even detailed information about the microscopic hindered diffusion resulting
in a different free diffusive slope can be identified when analyzing the displacement of a
particle via the MSD (Figure 3.2E). Hence, its use represents an extremely powerful and
versatile method for characterizing finite particle trajectories x(t). However, in contrast to
a histogram of only a single lag time ∆t, unfortunately, this generally requires significant
computation capacities due to considering all possible lag times ∆t.
In the following, specific principles of virtual non-contact particle confinement for

suppressing free diffusive Brownian motion are elaborated in further detail.
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3 Particle dynamics and trapping

3.3 Particle trapping mechanisms

The trapping or levitation of particles[11–13] in principle represents a sophisticated solution
for providing control as well as unhindered access via almost the entire room angle[14].
This allows for investigating individual microscopic to atomic objects within applications
previously introduced in Figure 3.1A, enabling, e.g., the controlled rotation[17,18] of micro-
scopic specimen for their 3D observation and physical analysis via microscopy[20,66], chemical
detection and sensing of molecular compositions via spectroscopy[15,37,62], and even cooling
and measuring atomic transitions within single ions[7,68,98]. Further applications include,
e.g., the controlled micro-manipulation of biological cells[64–66] and single DNA[19,89] through
membranes in vivo[21], sorting mesoscopic objects with respect to a certain property[25,90,91]

as well as shuttling single ions for quantum computing[8,22].
However, the mechanisms behind particle trapping uniquely rely on different physical

principles, some of which are given by the most prominent examples of optical tweezers[12],
plasmonic trapping[3], dielectrophoresis[90] and electrophoresis[13], while representing the
principles of optical and electrical trapping as summarized in Figure 3.3A. A qualitative
model for describing a trapped particle is based on the damped harmonic oscillator
of Equation 3.1 with a parabolic trap potential Utrap(x) = κx2 and a linear restoring
force ~Ftrap = −∇U = −κ~x. This is shown for one dimension in Figure 3.3B, where κ is the
restoring spring constant that completely describes the properties and the performance of
a trap and specifically represents the key quantity for comparing its degree of confinement.

Prominent trapping mechanisms

Electrical 
trapping

Optical 
trapping

Plasmonic 
trapping

Optical
tweezers

Electrophoretic 
trapping

Dielectrophoretic 
trapping
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Trap quantities in harmonic oscillator modelB

Fig. 3.3. Overview of prominent particle trapping mechanisms modeled by a harmonic oscillator.
(A) Examples of prominent trapping mechanisms that rely on the principle of optical trapping (left) or electrical
trapping (right). (B) A harmonic oscillator allows for modeling the trap and characterizing its quantities.
The restoring spring constant κ completely describes the degree of confinement and is thus used for comparison.

20



3.3 Particle trapping mechanisms

Table 3.1 provides a detailed overview of most prominent particle trapping mechanisms
introduced in Figure 3.3A and gives a comparison of several important quantities for
characterizing a trap. In principle, the mechanisms behind trapping can be grouped into
two categories, namely representing optical and electrical trapping. While optical tweezers
and plasmonic trapping rely on the principle of optical trapping, dielectrophoresis and
electrophoresis, in contrast, represent examples of electrical trapping.

Tab. 3.1. Overview of prominent particle trapping mechanisms and comparison of their most relevant
quantities for characterizing a trap. Additionally, key advantages and limitations of each method are
summarized. The plasmonic trapping force is not explicitly reported in the cited literature.

Optical
tweezers

Plasmonic
trapping

Dielectro-
phoresis

Electro-
phoresis

Particle size [µm] 10−4 . . . 102 10−2 . . . 0.5 0.01 . . . 15 10−4 . . . 10
Displacement [µm] 10−4 . . . 102 10−3 . . . 0.5 0.01 . . . 0.1 10−4 . . . 1
Trapping force [pN] 0.003 . . . 102 0.1 . . . 15 10−2 . . . 0.1
Trap stiffness [pN/µm] 0.002 . . . 103 10−4 . . . 1 0.1 . . . 100 10−2 . . . 15

Key advantages large particles,
long range

metallic
particles

arbitrary
particles

selective
sorting

Limitations transparency,
scattering

nanostructures,
short range

immersion
medium

particle
charge

Reference [7, 45, 62, 99] [3, 100, 101] [90, 102, 103] [68, 102–105]

A key advantage of optical over electrical trapping, in particular, represents its low
dependence on the immersion medium, which effectively even allows operating through
translucent barriers. While its demand for transparency, for example, limits the application
of optical tweezers, plasmonic trapping, in contrast, requires particle sizes well below
the operating wavelength, which thus excludes it from many applications. The unknown
plasmonic trapping force ~Ftrap is assumed to range within 10−4 . . . 0.1 pN, which is one to
three orders of magnitude lower than within optical tweezers.
Electrical traps, in contrast, generally benefit from their functionality with arbitrary

particles exhibiting, e.g., a rough scattering surface, which thus complicates their use
within optical tweezers. The main drawback of electrophoresis, however, represents its
demand for charged particles, while dielectrophoresis, in contrast, is limited to operating
within an immersion medium, thus excluding atomic particle sizes.

Nevertheless, the trapping force ~Ftrap and stiffness κ of all mechanisms are effectively
limited on the lower end due to losing a trapped particle under the influence of thermal fluc-
tuations or additional external forces such as, e.g., particle drift. However, they principally
scale with the incident power and are thus often normalized. In the following, the principles
of optical (subsection 3.3.1) and electrical trapping (subsection 3.3.2) are elaborated in
further detail for their application within later experiments.
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3 Particle dynamics and trapping

3.3.1 Optical trapping

Due to its large scalability and range of applications, here, optical trapping is discussed
for the example of optical tweezers. In this context, plasmonic trapping is neglected
since it requires subwavelength dimensions that are not observable via conventional
light microscopy. The first observation of photonic forces, which are sometimes referred to
as the effect of photophoresis, was made by Arthur Ashkin in 1970[11]. Here, the working
principle effectively relies on the relative refractive index contrast m = np/nm between a
particle of refractive index np and the surrounding medium of index nm.
In particular, a photon that strikes a particle generates a momentum, which yields

an acceleration of the particle into the opposite direction in order to compensate this
momentum (Figure 3.4A). This is principally known as the gradient force ~Fgrad, which is
always directed towards the maximum of the intensity profile I0 along the radial direction r
and along the axial direction z for a focused beam (Figure 3.4B). For a dielectric sphere of
radius R in the approximation of a point dipole ~p within the Rayleigh regime well below
the dimensions of the wavelength λ, this force reads[12,61,95]:

~Fgrad(~r) =
(
~p · ~∇

)
~E = 2πR3

(
m2 − 1
m2 + 2

)
︸ ︷︷ ︸
∼ sphere polarizability

nm

c
· ~∇I0(~r). (3.7)

A scattering force ~Fscat, in contrast, results from the radiation pressure being only
experienced along the propagation direction ẑ of the incident beam. In early experiments,
this had to be compensated via two counter-propagating beams[12,61,95]:

~Fscat(~r) = 8πk4
0R

6

3

(
m2 − 1
m2 + 2

)2

︸ ︷︷ ︸
scattering cross-section

nm

c
· I0(~r)ẑ with |ẑ| = |~z/z| = 1. (3.8)

Both optical forces principally scale with the incident intensity I0 and the diameter 2R
of a trapped particle, which thus complicates the trapping of small particles and hence
requires the exploitation of the axial gradient force ~Fgrad(z). This effectively led to the
establishment of single beam gradient force traps (Figure 3.4C) commonly known as
optical tweezers[12], for which the Nobel prize was awarded in 2018. However, generally no
limitations on the size of the trapped object exist, which was demonstrated via, e.g.,
trapping individual bacteria and viruses on the micro- and nanoscopic level[1,2] or single
atoms on the Ångström scale[7,98], awarded with the Nobel prize in 1997. This enabled the
development of a broad range of applications particularly in life sciences, including, e.g.,
the Raman spectroscopy of trapped cells[15,37,62], their rotation and stretching to study
lipid membrane mechanics[64–66], optical manipulation inside a living zebrafish[21] as well
as the investigation of single DNA and proteins for molecular motors[5,19].
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3.3 Particle trapping mechanisms
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Fig. 3.4. Working principle of optical tweezers for trapping a particle (adapted from [106, 107]).
(A) A photon is incident onto a bead, which generates a momentum that yields its acceleration into the
opposite direction in order to compensate this. (B) The resulting gradient force is always directed towards the
maximum of a focused beam along the radial and the axial direction. (C) The scattering force, in contrast,
is always directed towards the propagation direction of the incident beam. This particularly requires a tight
focus for optical trapping with a single beam and compensating the scattering force via the axial gradient force.

Of particular rapid progress is the field of optical manipulation driven by the invention of
holographic optical traps[18,44,108]. In contrast to conventional optical tweezers, which solely
rely on the intensity of an incident beam, this concept also exploits its polarization and
phase, thus enabling, e.g., the generation of conveyor and tractor beams[108–110] or the
creation of multiple time varying trapping sites[18,44,108]. Further applications include, e.g.,
the controlled rotation of objects via optical vortices[17,18] or full 3D specimen observation[20],
the sorting via periodic optical potentials[111,112] as well as the transport and delivery of
particles[108,110] and even single qubits for quantum computing[22].

Limitations

The analytical description of optical forces (Equations 3.7 and 3.8), however, is only
valid for a single spherical particle in the Rayleigh regime well below the dimensions of
the wavelength[12,95]. Determining the optical potential U and the resulting trap stiffness κ
for larger microscopic particles within the Mie scattering regime, in contrast, particularly
requires a rigorous numerical calculation via the time averaged Maxwell stress tensor 〈T̂ (~r)〉.
Here, the optical force ~Fopt that acts upon a particle of arbitrary shape is given via the
integration over its surface S with respect to the surface normal ~n(~r)[61,113]:

~Fopt(~r) =
∮
S

〈
T̂ (~r)

〉
· ~n(~r) dS. (3.9)
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3 Particle dynamics and trapping

Often, the obtained trap stiffness κ is normalized to the optical power P of an incident
beam[43,45,86], which thus allows quantitatively comparing the trap performance. Typical
values of κ/P range within (10−3 . . . 10−1) pN/µm/mW depending on the size and the
material of the particle (compare refs. [43, 45, 114] and Table 8.1). However, if more than
one particle is confined within the optical trap, generally a coupling between individual
particles occurs. This is commonly referred to as optical binding[115–117] (see Figure 5.10,
B and D) and specifically complicates the description of the optical trap and its stiffness κ
via the simplified model of a single damped harmonic oscillator (Figure 3.3B).

Since the principle of optical tweezers particularly relies on the gradient force ~Fgrad

for optical trapping, which is generally ensured via a tightly focused laser beam to
compensate the axial scattering force ~Fscat(z), microscope objectives of high numerical
aperture, i.e., NA > 0.8, are conventionally used. The previously mentioned application
of two counter-propagating beams[11,45,117], however, represents a simple technique for
compensating axial scattering forces ~Fscat(z), effectively allowing for the application of
arbitrary beams. These specifically include the divergent beams emitted by conventional
single-mode fibers of generally low NAs ∼ 0.1 (see section 2.1) being insufficient for optical
trapping with a single beam alone and thus excluding them from certain applications.
The counter-propagating beam concept thus enables applications such as, e.g., the prior
mentioned rotation and stretching of single red blood[64,66,118] and giant unilamellar vesicle
cells[65] as well as Raman spectroscopy of trapped cells[62].

One implementation of two identical fibers as a dual beam fiber trap (compare refs. [45,
60, 64]) is thoroughly discussed in chapter 5. However, several different approaches
to circumvent the demand for high NAs have been exploited in the past. For exam-
ple, these represent the trapping against a surface[82,119,120], in reflection via a standing
wave[117,121] as well as the combination of an optical fiber with a focusing element[42,52,122].
Particularly the latter represents a sophisticated concept enabling high numerical apertures
of NA > 0.8 as required within single beam optical trapping (compare refs. [44, 46, 83]),
being presented in detail in chapter 6.

3.3.2 Electrical trapping

Electrical trapping of individual particles effectively represents an alternative to the
previously discussed concept of optical tweezers in case the exhibited properties are
incompatible, e.g., due to limited transparency. Particularly, electrical forces are of
importance within biological applications[16,25,26] due to the electrochemical charge double
layer that surrounds a freely diffusing object, i.e., the Stern layer[123] (details see Figure A.1
in the appendix). For example, this influences the behavior of biological macro-molecules
including proteins and nucleic acids in electrolytes, representing the essential requirement
for analytical methods in bio-medicine, such as DNA sequencing[24,26].
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3.3 Particle trapping mechanisms

The mechanisms behind electrical trapping can principally be grouped into elec-
trophoretic (EP) and dielectrophoretic (DEP) forces, which rely on two fundamentally
different principles[24,102]. While the EP force ~Fep, in particular, requires a fixed net
charge Q, the DEP force ~Fdep, in contrast, relies on the induced dipole moment ~p of
a particle. Equivalent to the gradient force ~Fgrad in optical trapping via photophoresis,
this effectively requires the gradient ∇ ~E of an inhomogeneous electric field ~E:

~Fep(~r) = Q~E(~r) (3.10a) ~Fdep(~r) = ~p · ∇ ~E(~r). (3.10b)

Applications of electrical forces include, e.g., charge selective[13] trapping of single
DNA[89] and ions[8,68] (EP), bacteria[16] and protein molecules[6] (DEP) as well as sorting
biological cells via flow cytometry[25] (EP) or DEP[90,124]. Due to its versatility and indepen-
dence on immersion media[89,105] and particularly with respect to life sciences, where most
biological cells exhibit negatively charged functional groups[24,26], here, the principles of
EP trapping are briefly discussed in the following. Figure 3.5 exemplarily compares the
mechanisms behind EP and DEP trapping of a single particle.
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Fig. 3.5. Different mechanisms behind electrical trapping of a single particle (adapted from [24]).
(A) The electrophoretic (EP) force acts upon a particle that exhibits a net charge and is thus observed in
homogeneous electric fields. (B) The dielectrophoretic (DEP) force, in contrast, does not rely on net charges
but on the polarizability of the particle. Hence, this requires the gradient of an inhomogeneous electric field.

In the following, the working principle of a device for the electrophoretic trapping of
charged particles, i.e., a Paul trap[13], is introduced. Subsequently, the concept is extended
to a circular geometry particularly complying better with the one of optical fibers[58,68].

Linear quadrupole trap

A linear quadrupole Paul trap[13], for whose invention the Nobel prize was awarded
in 1989, allows for electrodynamic trapping of charged particles. Ideally, it consists of
four hyperbolic rods separated by a distance 2r0, while an alternating (AC) voltage Vac of
radio frequency (RF) ω is applied to two opposite rods and the remaining two are kept on
ground (GND) or on a direct (DC) potential Udc (Figure 3.6, A and B). This creates a
time-dependent electric potential Φ[13,105] between the rods (Figure 3.6, B and C):
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3 Particle dynamics and trapping

Φ(x, y, t) = Φ0(t)
2r2

0

(
x2 − y2

)
with Φ0(t) = Udc + Vac cos (ωt) . (3.11)

EP trapping in particular relies on the ponderomotive principle[13], which demands the
Laplace equation ∇2Φ = 0 to be satisfied at all times and here is specifically ensured
via the rapidly alternating saddle point of the electric potential Φ. A particle of mass m
and charge Q is thus confined within the time-independent trap potential 〈Ψep〉 ∝ |∇Φ|2

(Figure 3.6C), and equivalent to Equation 3.1, the equation of motion reads:

mẍ+ γẋ+Q∇Φ(t) = Ft(t) with 〈Ft(t)Ft(t′)〉 = 2γkBTδ(t− t′). (3.12)

Here, γ = 6πηR is the Stokes friction coefficient for a particle of diameter 2R within a
medium of viscosity η and Ft(t) represents the stochastic thermal force. The introduction
of a dimensionless time τ = ωt/2 effectively yields the Mathieu differential equation[13,105]:

d2u

dτ 2 + b
du
dτ ± [a+ 2q cos (2τ)]u = 4Ft

mω2 with u = x, y. (3.13)

In particular, b, a and q are dimensionless parameters defining the motion of the par-
ticle within the electrophoretic Paul trap, where b describes the damping influence of
the immersion medium, and a, q denote the respective DC and AC stability of the trapping:

a = 4QUdc

mr2
0ω

2 Λ (3.14a) q = 2QVac

mr2
0ω

2 Λ (3.14b) b = 2γ
mω

. (3.14c)

However, a particle is only confined stably along two spatial dimensions (e.g., x and y
for a linear trap, where the displacement along z is invariant) for a < 0.24 and q < 0.91
(Figure 3.6D), while the overlap of both regions generally increases for b > 0[125,126]. Here,
Λ ≤ 1 describes the geometry of the trap, yielding unity for an ideal quadrupole[68]. For the
AC-only case (a = 0, q � 1), in particular, the ponderomotive potential 〈Ψep〉 and the
resulting electrophoretic trapping force 〈~Fep〉 can be approximated[68,102]:

〈
Ψep(x, y)

〉
≈ Q2 |Λ∇Φac|2

mω2 [4 + b2] = qΛ
4 + b2

QVac

2r2
0

(
x2 + y2

)
(3.15)

〈
~Fep(x, y)

〉
= −∇〈Ψep〉 = −κ (x+ y) with κ = q2

4 + b2
mω2

2 . (3.16)

This effectively yields a harmonic trap potential 〈Ψep〉 ∝ u2 for a linear quadrupole
(Figure 3.6E). For an adiabatic process (b� q), in particular, the oscillatory motion u(t)
of a confined particle within the ponderomotive potential 〈Ψep(u)〉 is given via[68,102]:

u(t) ≈ u0

[
1− 2q

4 + b2

(
cos(ωt)− b

2 sin(ωt)
)]

exp
(
− 4q2

4b2 + b4ωt

)
. (3.17)
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3.3 Particle trapping mechanisms

The trapped particle’s motion principally consists of a slow secular part of frequency Ω ≈
ω
√
q2/8 and a fast micro motion of frequency ω. However, as the equations hold only for

a point charge, the trapping of a macroscopic particle cannot be described analytically.
Equivalent to optical trapping, nevertheless, the trap stiffness κ (Equation 3.16) scales with
the particle size and is thus often normalized to units of Volt−2. Moreover, κ strongly
depends on the specific EP trap geometry, which thus requires a careful design.

𝑦

𝑥
𝑧

trapped particles

Quadrupole Paul trap Ponderomotive principleC

Electric potential [V] Norm. trap potential [V2/r0
2]B D E

A

Trapping stability

Fig. 3.6. Working principle of a linear Paul trap for electrophoretic trapping of charged particles.
(A) An ideal quadrupole trap consists of four hyperbolic rods, where a radio frequency (RF) electric potential
is applied to two opposite rods while the remaining two are kept on ground (GND). (B) The resulting electric
potential exhibits a saddle point between the four rods. (C) Ponderomotive principle of electrophoretic trapping.
The rapidly alternating electric saddle point creates a time-independent ponderomotive trap potential for the
charged particle (see main text, adapted from [127]). (D) Stable trapping along two spatial dimensions is
provided where both regions overlap. (E) Resulting harmonic ponderomotive potential around the trap center.

In the following, the concept of a surface-electrode point Paul trap is briefly presented,
which particularly complies better with the geometry of an optical fiber.

Surface-electrode point Paul trap

Conventionally, the only theoretical geometry of an ideal hyperbolic quadrupole is adapted
to a four-rod linear Paul trap[68,128,129] as exemplarily demonstrated in Figure 3.7A. However,
the confinement within linear traps is principally only provided along two spatial dimensions,
e.g., x and y, while particles are chained along z in the center of the trap and thus exhibit
one degree of freedom. Since the EP trapping between longitudinal wires inside an
optical fiber is generally complicated, a deformation of three-dimensional (3D) rods into a

27



3 Particle dynamics and trapping

2D surface-electrode trap[68,128,129] is particularly convenient, where particles are trapped
at a height z0 above the surface as illustrated within Figure 3.7B.1 This specifically allows
for a periodic repetition of the electrodes, including the rearrangement of wires into a
surface geometry of five electrodes[128] as visualized in Figure 3.7C.
A surface-electrode point Paul trap[68] specifically represents the transformation and

circular continuation of an odd number of periodic surface-electrodes into a concentric
symmetry[58,68,130]. In particular, this ensures a better compatibility with the geometry
of an optical fiber, while being rotationally invariant within the azimuthal angle ϕ as
presented within Figure 3.7D. This effectively allows simultaneously confining a particle
along all three spatial dimensions in the center of the trap at a height z0.1 Figure 3.7,
E to G, exemplarily displays the ponderomotive potentials 〈Ψep〉 of the configurations
depicted in Figure 3.7, A to D, respectively, where a larger number of electrodes generally
leads to a stronger confinement of a charged particle within the EP trap.

Trap potential BE Trap potential C,DTrap potential A F G

GND GNDRFRF GND
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B C D4-wire surface trap 5-wire geometry Point Paul trap

GND

RF

particles

4-rod linear trapA

Fig. 3.7. Geometric transition to surface-electrodes and a point Paul trap (adapted from [128, 129]).
(A) Conventionally, a four-rod linear trap is used instead of an only theoretical ideal hyperbolic quadrupole,
confining charged particles along a line in the center of the trap. (B) Deforming the wires yields a two-
dimensional (2D) surface-electrode trap, where the particles are trapped above the surface.1 (C) In principle,
a periodic repetition is allowed, including the rearrangement of electrodes into a five-wire geometry. (D) The
circular transformation yields a concentrical symmetric point Paul trap, where a particle is confined above
the center of the trap. (E–G) Resulting ponderomotive potentials for the configurations in A–D, respectively.
A lager number of electrodes effectively yields a stronger confinement of charged particles within the trap.

The working principle of a concentric three ring electrode point Paul trap is demonstrated
in further detail in Figure A.2 in the appendix. In addition, Figure A.3 exemplarily
illustrates the approximation of its potential via an ideal hyperbolic quadrupole.

28 1The gravitational force (∼ fN� Fep ∼ pN for microbeads, see Table 8.1) is neglected here.



4
Characterization of fiber traps

The previous chapter in principle focused on the free diffusive dynamics of a single
particle and highlighted some of the key motivations for its trapping. In this context,

an introduction to particle trapping mechanisms was given, and applications were presented
and discussed. This chapter, however, is dedicated to the experimental implementation
and methodology of fiber-based particle trapping, which in all experiments was carried
out within aqueous solutions.

Here, a key motivation arises from the importance of retrieving the motion of a trapped
particle for analyzing and comparing the performance of the fiber trap, which specifically
requires a subsequent detailed investigation of the trapped particle dynamics. Figure 4.1
exemplarily illustrates the motion of a trapped silica bead of 2R = 2 µm diameter that
was experimentally confined within a fiber-based optical trap in water.
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Fig. 4.1. Motion of an example of a 2 µm diameter silica bead confined within a fiber trap in water.
(A) The bead oscillates rapidly within the trap; however, its displacement is below its own diameter as displayed
by the inset. (B) The bead covers the entire effective trapping region in approximately under 10 s, which
specifically demands a fast acquisition of its movement in order to properly analyze and characterize the trap.

Figure 4.1 shows the rapid oscillatory movement of the bead within the fiber trap,
which specifically covers the entire effective trapping region in under 10 s. This particularly
requires a fast acquisition of the motion in order to entirely understand its behavior
and thoroughly characterize the fiber-based trap. In the following, the experimental
retrieval of trapped particle dynamics is discussed in detail (section 4.1), and subsequently,
an introduction into the analysis for the examples of spatial as well as time and frequency
domain techniques is given (section 4.2).
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4 Characterization of fiber traps

4.1 Retrieving trapped particle motion
Within this section, first, an overview of the experimental setup for the example of fiber-
based optical trapping of single particles in water is given (subsection 4.1.1). In principle,
this allows a straight-forward transfer to the application of fiber-based electrical trapping
while requiring only little adjustment. Subsequently, established examples of techniques
for retrieving trapped particle motion are discussed in detail (subsection 4.1.2).

4.1.1 Experimental setup

The implemented optical path for fiber-based optical trapping of individual particles is
schematically illustrated in Figure 4.2A. In detail, it consists of a laser source in combination
with variable optical density (OD) filters for reducing the optical power P0 of the beam.
A continuous wave (CW) laser diode of power P0 = 120 mW at a wavelength of λ = 660 nm
(Thorlabs L660P120) in combination with a collimating lens of focal length f = 4.5 mm
(Thorlabs C230TMD-A) were used within the single meta-fiber optical trapping (chapter 6,
compare ref. [46]). For dual beam fiber trapping experiments (chapter 5, compare ref. [45]),
however, a CW laser of power P0 = 100 mW at a wavelength of λ = 635 nm was used,
and the optical path was split into two arms via a beam splitter (BS). In both cases,
this resulted in final beam diameters of ∅ ∼ 2 . . . 3 mm.
Each arm of the optical path was steered via mirrors (M) to correct for angle and

offset errors of the beam. A 20× dry objective (Olympus MPLN, NA = 0.4) was used
for exciting the fundamental HE11 mode of an optical fiber (see section 2.1), while the
fibers (presented in chapters 5 and 6 in further detail) were mounted with their input
sides on three-axis micro-precision stages (Elliot Martock MDE122). In combination with
the beam steering mirrors, this effectively allows optimizing the fiber coupling in order to
approximately match the profile of the fundamental fiber mode. Here, optical powers of
P1,2 ≈ 30 mW were generally reached at the output of each fiber.

Observation

A custom-built optical microscope forms the essential part within the observation of
trapped particle motion, consisting of an imaging (Figure 4.2B) and an illumination section
(Figure 4.2D, presented in further detail in Figure 4.3). Here, both were built along the
horizontal plane in order to minimize vibrations.

The imaging section specifically consists of a dry objective (OBJ) in combination with a
tube lens (L), followed by a high-speed camera (CAM) as depicted in Figure 4.2B. A 40×
dry objective (Olympus MPLN, NA = 0.65) in combination with a tube lens of focal length
ft = 250 mm were used for the observation of a particle within the dual beam fiber trap[45].
For the single meta-fiber trap[46], in contrast, a 50× dry objective (Olympus MPLFLN,
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4.1 Retrieving trapped particle motion

NA = 0.8) was used, followed by an achromatic tube lens of focal length ft = 200 mm
(Thorlabs AC254-200-A-ML). In both cases, this yields final magnifications of M = 55×
for all experiments as a direct result of the fact that Olympus objectives are referenced to
a tube length of ft = 180 mm.

Moreover, scattered trapping laser light was blocked using a notch filter in the collimated
infinity space between the objective and the tube lens (Figure 4.3A), and high-speed videos
of a trapped particle were recorded via a camera (640 px×480 px sensor and 7.4 µm pixel size,
Basler pilot piA640-210gm) at a high frame rate of 1/∆t = 1000 fps in all experiments.
For all recordings, the minimum duration was t > 30 s and the exposure time τ < 1 ms.

Sample chamber

In this work, all experiments were carried out in aqueous solutions, for which stock
solutions of particles were diluted within ultra-pure water to final particle concentrations of
c ∼ 5 · 106 cm−3. Specifically, either silica beads of diameters 2R = 2 µm (Micromod Inc.,
Figure 6.9A) or inactivated Escherichia coli (E. coli) bacteria of approximately 1 µm×
3 µm size (Figure 6.9B) were used within the experiments. A sample chamber (Figure 4.2C)
was fabricated via 3D printing (Ultimaker2), effectively allowing confinement of the
suspended particle solution as well as up to two optical fibers for trapping.

5mm

Sample chamberA

D

B C

trapped particle

Fig. 4.2. Sketch of the experimental setup for fiber-based optical trapping of single particles in water.
(A) A laser beam is split into two arms for a dual beam fiber trap via a beam splitter (BS), which is removed
within single meta-fiber optical trapping. The beam is steered via mirrors (M) and focused into an optical fiber
via an objective (OBJ). Optical density (OD) filters attenuate the beam. The motion of a trapped particle is
recorded via a custom-built optical microscope that consists of (B) an observation and (D) an illumination part.
(B) Observation relies on a high-NA objective, a tube lens (L), and a high-speed camera (CAM), while a
filter blocks the scattered trapping laser. (C) A sample chamber was 3D printed for confining a thin film of
particle solution between two parallel coverslips. Holes on both sides allow inserting optical fibers for trapping
a particle inside. (D) Illumination is provided via a fiber-coupled LED in Köhler geometry (discussed later).
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4 Characterization of fiber traps

In detail, the sample chamber consists of a part for mounting within the optical setup’s
microscope, while exhibiting two slots for microscope coverslips on both sides as well as two
holes for inserting optical fibers on the other ends. The free output end of an optical fiber,
in particular, was mounted on a three-axis micro-precision stage as well, which thus allowed
for a well-controlled insertion through one of the holes of the chamber as well as for a
precise displacement under the custom-built microscope for optical trapping. A few ten
microliters of the suspended particle solution were subsequently pipetted between the
170 µm thick coverslips of the chamber that are spaced 0.5mm apart and confined there
during the experiment via adhesion.

Illumination

The illumination within the optical microscope was provided via a fiber-coupled light
emitting diode (LED) at a wavelength of λ = 455 nm (Thorlabs M455F3), which was
connected to a multi-mode fiber (MMF) of core diameter 2a = 105 µm and NA of 0.22
(Thorlabs M18L). Here, the principle of Köhler illumination was applied for ensuring a
homogeneously illuminated sample as well as avoiding an image of the source (commonly
referred to as lamp filament) within the sample and the final image plane. Generally,
this reduces image artifacts and provides a high contrast image of the sample, which is
particularly important for minimizing pixelation effects when retrieving trapped particle
motion (discussed in further detail within subsection 4.1.2).

As schematically illustrated within Figure 4.3A, the implementation of Köhler illumina-
tion in principle demands the following order of components:

1. collector or collimating lens of focal length fc

2. field stop

3. optional f ield lens (focal length ff )

4. aperture stop

5. condenser lens (fn).

The rays that pass through the different components can principally be categorized into
image formation and illumination rays. While orange lines denote the image formation
(or marginal) rays in Figure 4.3A, blue lines, in contrast, represent the illumination
(or principal) rays. In particular, the two types of rays are conjugate to each other, if one
is collimated, the other one exhibits a focus, and their bandwidth product is fixed via the
etendue of the optical system. The planes of maximum collimation, however, which are
commonly referred to as conjugate image planes, can be grouped into field (collimated
illumination rays) and aperture planes (collimated image formation rays).

Specifically, principal rays determine the size of the image, while marginal rays, on the
other hand, define the resolution of the optical system via the effective numerical aperture
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4.1 Retrieving trapped particle motion

NA ∝ sin θ. Adjusting the field stop thus changes the amount of light that is incident
onto the sample plane, while adjusting the aperture stop, however, changes the contrast of
the sample and the depth of field via the effective NA. As previously mentioned, this is
of particular importance when retrieving trapped particle motion and generally allows
reducing the influence of pixelation.
A lens, in principle, performs a Fourier transformation after twice its focal length fi,

converting previously collimated rays into a focal spot. The actual size of the spot, however,
specifically depends on the prior beam divergence θi−1, yielding ∅i = 2fi tan θi−1 in air.
After a further propagation distance of 2fi+1, this effect is reversed via a second lens
(commonly referred to as a 2fi + 2fi+1=̂4f -system), which finally results in an inversed,
scaled image of magnification M = f2/f1. Here, a combination of aspheric lenses with
fc = 6.24 mm, ff = 150 mm and fn = 8 mm was used, effectively yielding an illuminated
focal spot of diameter ∅ = 150 µm and NA = 0.16 within the sample plane.

Instead of changing the aperture stop, however, it is particularly useful to adjust the NA
via a combination of lenses for maximum illumination efficiency. This effectively allows
reducing the exposure time, thus minimizing image blur. Figure 4.3, B to D, shows several
example images of dual beam fiber traps in water using different illumination NAs.
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Fig. 4.3. Schematic beam path and adjustment of Köhler illumination within the optical setup for
observing trapped particles. (A) The principle of Köhler illumination relies on an odd number of lenses that
image the source into an intermediate plane to avoid overlapping with the sample plane. Image resolution and
contrast, i.e., numerical aperture (NA), are changed via the marginal rays (orange), while principal rays (blue)
adjust the size of the illumination spot (details see main text). (B–D) Adjustment of the illumination NA for
the example of a dual beam fiber trap, where (B) a very low NA leads to the formation of fringes, (C) the
system is perfectly adjusted, and (D) the NA is too high, which results in poor image contrast.
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4 Characterization of fiber traps

4.1.2 Particle tracking routines

In the following, an overview of implemented techniques for the retrieval of trapped particle
motion is given. Within this context, the recorded high-speed videos were first cropped to
an area of interest (AOI) containing relevant information about the motion of a particle
(Figure 4.4A). Subsequently, the intensity of the recordings was linearized in order to cover
the entire dynamic range. Finally, every video was analyzed frame-by-frame while tracking
the displacement of the particle in every image.
However, no comparison between individual images was made, yet each frame was

effectively treated independently of its preceding one. Here, two techniques for extracting
the displacement of a particle in individual frames are presented, both finally yielding
its time-dependent trajectory. Specifically, these represent a fitting routine (Figure 4.4B)
and an image shift algorithm (Figure 4.4C) as discussed in detail in the following.

Fit method

A simple method for tracking the displacement of a trapped particle is principally given
via a fitting routine (Figure 4.4B). Here, the specific aim is to approximate the particle’s
intensity distribution in every frame via a jinc-function (see Equation 2.13a) added on
top of a non-zero static background. In general, this approach is very fast and yields
decent results in case the intensity profile allows for a simple description. One advantage,
in particular, is given by the possibility to describe non-rotational symmetric profiles.
A main drawback, on the other hand, represents the inaccuracy or even failure to retrieve
the displacement if the particle is located close to the border or partially leaves the frame.
Compared to other routines, however, the final trajectories a more prone to noise.

Shift algorithm

One alternative to retrieving trapped particle motion via the fit method represents the
implementation of an image shift algorithm (Figure 4.4C). This technique principally
relies on the application of a sub-pixel shift ∆x to each frame I(x) in real space via the
multiplication of a linear phase in the Fourier domain. The displacement x+ ∆x of the
particle is then varied while minimizing the deviation to the mirrored image I(−x)[44,45,131]:

I(x+ ∆x) = F−1
{
F {I(x)} e−2πik∆x

}
(4.1a)

∆x = min
∆x

{
[I(x+ ∆x)− I(−x−∆x)]2

}
. (4.1b)

Here, F denotes the Fourier transformation and k the grid of the transformed image in
the Fourier space. This method principally benefits from its robustness and yields a very
high accuracy with sub-pixel precision, which effectively allows for combining the centered
image stack into one high resolution image of the particle that represents the entire video.
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4.1 Retrieving trapped particle motion

For example, this allows for analyzing the size of a particle (Figure 4.4F) in comparison
to reference images taken via scanning electron microscopy (SEM). A main drawback,
however, results from the comparison of a frame to its inverse, which specifically requires
a high degree of symmetry of the particle in every frame.

Pixelation

If the images are poorly adjusted in contrast, e.g., due to excessively high NA illumination
(Figure 4.3D), the effect of pixelation occurs (Figure 4.4D). Here, the information contained
within the relevant pixels is not sufficient and the retrieved particle displacement tends to
integer values (Figure 4.4E). In particular, this also occurs if the static background within
each image is subtracted via the minimum of every pixel across all frames. Nevertheless,
since the previous fitting routine is more prone to pixelation, the image shift algorithm
was applied within all experiments. Once adjusted, the tracking algorithm then reliably
yields the final trajectory of a trapped particle (Figure 4.4G).

             

        

  

 

 

 
 
 
  
  
  

 

 

Final track

                   

                  

 

 

  

  

  

 
 
 
 
 
  
 
  
 
 
 
 
          

      

     

     

Image
analysis

2µm
𝑦

𝑥
Recorded video crop 

to AOI

Fit

Shift

       

 
 

       
 

  

  

retrieval failretrieval success

frame raw frame fitFit alg.

              

                        

 
  
 
 
 
   
  

   

     

Pixelation effectD E F

G

B

A

centered frame

raw frame Shift alg.C

Fig. 4.4. Tracking algorithms for retrieving trapped particle motion. (A) Recorded videos are cut to an
area of interest (AOI) that contains relevant information about the particle. (B) A fit of its intensity profile
represents a simple and fast method, however, it yields inaccurate results. (C) A trapped 2 µm silica bead is
tracked via shifting each frame until maximum symmetry is reached (see main text). (D–E) In contrast to
pixelized fitting results, this yields sub-pixel accuracy. (F) Example of combining the centered stack into one
high resolution image representing the entire video (bottom right in C) for subsequently analyzing particle size,
which is in perfect agreement with scanning electron microscopy (SEM). (G) Final trajectory of a trapped bead.
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4 Characterization of fiber traps

4.2 Analysis of fiber trap performance

Determining its stiffness κ, which represents a key quantity for a comparison (details see
section 3.3), essentially plays an important role when analyzing the performance of a
particle trap. Various different techniques exist for verifying the trapping of a particle
from its previously obtained time-dependent trajectory x(t) principally exist. In general,
these can be categorized into purely spatial (subsection 4.2.1) and tempo-spectral techniques
(subsection 4.2.2), as presented and discussed within detail in the following.

4.2.1 Purely spatial techniques

One straight-forward approach for determining the stiffness κ of a trap effectively relies on
directly observing the trapping force Ftrap or the displacement ∆x of a trapped particle
via, e.g., the Stokes drag force method or a quadrant photo diode (QPD)[95,99,117]. The prior,
in particular, relies on applying an external force Fext to the particle via, e.g., a viscous
flow that displaces the sample. A large displacement ∆x = x− x0 of the particle from its
equilibrium x0 in response to the applied external force Fext can thus directly be measured,
which hence determines the stiffness κ of the trap. However, this procedure easily suffers
from external influences that distort the sensitive motion of the particle and also does not
allow for detailed investigation of neither particle nor medium[99].

A QPD, on the other hand, represents a reliable and accurate alternative to the previously
discussed concept of image-based particle tracking. Here, the displacement of a particle
(commonly in the order of a few ten nanometers) is effectively measured via the interference
of a laser beam that is incident onto its surface. Subsequently, the beam is scattered into
one of the four quadrants of the QPD, which effectively allows for immediately determining
the displacement of the particle within the trap.

Equipartition

Analyzing the retrieved displacement ∆x = x−x0 of a trapped particle from its equilibrium
(Figure 4.5A) via a histogram, in particular, yields its local distribution (Figure 4.5B).
This principally allows directly obtaining the underlying trap potential U(∆x) (Figure 4.5C)
by a Boltzmann distribution (Equation 3.3). Here, the variance 〈(∆x)2〉 of displacement
inside a harmonic potential U(x) = κx2/2 is related via the equipartition theorem[95,99,117]:

1
2κ〈∆x

2〉 = 1
2kBT. (4.2)

Determining the stiffness κ of the trap via this technique, however, only yields reliable
and accurate results if its potential U(∆x) is nearly harmonic and the particle is trapped
long enough to satisfy statistics via covering the entire effective region of the trap.
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Fig. 4.5. Spatial analysis of tracked motion of a trapped particle. (A) Tracked motion of a particle
inside a fiber-based optical trap in water. (B) Local distribution of A, where the variance of the displacement
yields the stiffness κ of the trap. (C) On-axis trap potential of B obtained via a Boltzmann distribution.
The trap potential is nearly perfectly harmonic due to the Gaussian distribution of the particle displacement.

4.2.2 Tempo-spectral methods

In general, the previously presented spatial techniques are limited to information that is
directly accessible. A time (for details see section 3.2) or frequency domain-based analysis
of the particle trajectory x(t), however, effectively represents a sophisticated approach
usually revealing more details about its motion and behavior within the trap.

Autocorrelation

A correlation of the time-dependent displacement ∆x(t) of a particle with itself for later
times t+ ∆t represents a simple technique for analyzing its behavior within the trap[132]:

〈
∆x(t+ ∆t)∆x(t)

〉
= kBT

κ
e−|∆t|/τc with τc = kBT

κD
. (4.3)

In principle, this directly yields the trap stiffness κ, where τc denotes the mean lifetime
of confinement (or trap relaxation time) that is related to the diffusion D of the particle.
Figure 4.6A exemplarily demonstrates this for the previously tracked trajectory x(t) of a
trapped particle (Figure 4.5A). In particular, the motion is correlated for large delays ∆t,
which is represented via the exponential decay of the autocorrelation.

Mean square displacement

The mean square displacement (MSD) of a trapped particle (see section 3.2), however,
yields information about temporal processes. This specifically allows identifying external
forces[81,96,97] and is displayed in Figure 4.6B (log.-log. plot) for the previous example:

〈
(∆x(∆t))2

〉
= 2Dτc

(
1− e−∆t/τc

)
+ ε2. (4.4)
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4 Characterization of fiber traps

Here, ε2 denotes experimental noise that results from the computer-based recording and
the finite precision in retrieving the trapped particle motion. Specifically, the MSD exhibits
a linear slope ∼ 2D∆t for short lag times ∆t that is proportional to the displacement of
the particle via the free diffusion D. On long timescales, however, this behavior saturates
into a plateau ∼ 2Dτc = 2kBT/κ, which effectively describes the confinement inside the
trap and thus directly yields its stiffness κ.

Power spectrum

In contrast to the previously discussed MSD of a trapped particle, however, the power
spectrum (PS) of a trajectory is obtained via its Fourier transformation F . In principle,
this yields information about the spectral repetition of occurrences[132–134]:

PLorentz(f) =
∣∣∣F{x(t)}

∣∣∣2 = 2D/(2π)2

f 2
c + f 2 + ε2 with 1

2πfc
= τc. (4.5)

Theoretically, a power spectrum is described via an ideal Lorentzian profile with f ,
the frequency, and fc = κD/(2πkBT ), the corner frequency at which a PS drops to
P (f) = 1/2. This is visualized in Figure 4.6C for the previously retrieved displacement
of a trapped particle (Figure 4.5A) and allows determining the stiffness κ. Specifically,
the PS exhibits a 1/f 2 spectral dependence, which equivalently to the MSD represents the
random Brownian noise of the particle that is proportional to its free diffusion D. Here,
the confinement within the trap is represented by a plateau ∼ 2D/(2πfc)2 on the low
frequency side of the spectrum. Again, ε2 denotes an experimental noise error.
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Fig. 4.6. Tempo-spectral analysis of trapped particle motion. (A) Autocorrelation of the previously
tracked motion of a trapped particle. The exponential decay describes the correlated motion for large temporal
delays, which yields the stiffness κ of the trap. (B) Log.-log. plot of the mean square displacement (MSD) for
the same trajectory. The particle displacement is freely diffusive for short lag times and saturates into a plateau
on long timescales. This describes the confinement within the trap and yields the stiffness κ. (C) Log.-log. plot
of the power spectrum (PS) of the trajectory, where the motion is confined within the trap for low frequencies
and freely diffusive otherwise. The PS drops to 1/2 at the corner frequency, which yields the trap stiffness κ.
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4.2 Analysis of fiber trap performance

Influence of errors

In principle, the previously introduced tempo-spectral methods for analyzing the trap
stiffness κ increase within their complexity in Figure 4.6, A to C. While the autocorrelation,
in particular, represents a simple and robust technique, frequency domain methods, on the
other hand, such as, e.g., the power spectrum (PS), specifically, are more prone to errors.
Here, noise in general, systematic errors (bias) as well as acquisition errors (alias and
motion blur) distort the signal[134,135] and are discussed in detail in the following.

Systematic errors

Applying least sum of squares (LSQ) fitting to experimental data in principle only yields
correct results if errors are normally distributed[134–136]. However, since experimental data
is usually correlated, this yields a biased fit (Figure 4.7A). The correlation of MSD data,
in particular, results from the fact that each data point within a certain lag time ∆ti is
counted multiple times for different lag times ∆tj . Nevertheless, this is directly to account
for via including fit weights wi = 1/i, since the ith lag time consists of imax/i correlated
data points[81]. Describing correlated PS data, however, is more complicated.
One solution to correct for normally distributed errors, in particular, represents com-

pressing the data prior to fitting. Therefore, in principle different methods exist, however,
all rely on grouping the data into separate bins or blocks. While for binning, a number
of N subsequent points is averaged into one bin, for blocking, in contrast, the entire data
is first split into a number of N blocks, followed by averaging into one compressed block.
Nevertheless, this results in compressed data of length L = imax/N in both cases.
A particular advantage of blocking over binning is that, e.g., subsequent blocks are

allowed to overlap to prevent spectral leakage at their intersects (Welch’s method)[134,137].
Here, this is applied to all experimental data first, and the compressed data is subsequently
fitted via minimizing a bias-free maximum likelihood estimate (MLE)[134–136]:

χ2 = min
∑
f

(
Pexp(f)
Pfit(f) + logPfit(f)

)
, (4.6)

where χ2 denotes the fit residuals, Pexp(f) a measured PS, and Pfit(f) its desired fit.

Acquisition errors

Since a PS generally deviates from its ideal Lorentzian shape (Figure 4.7B), further
correction terms need to be included within the fit. Finite sampling, e.g., leads to aliasing,
where thermal noise f > fNyq = 1/(2∆t) (the Nyquist frequency) is perceived as lower
frequencies that contribute to the PS[132–134]. Moreover, motion artifacts arise from the
finite camera exposure, averaging the displacement of a trapped particle over the exposure
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4 Characterization of fiber traps

time τe and thus blurring the obtained image. Within the MSD, in particular, this is
straight-forwardly to accounted for via an additional error ε2 visible in the bottom left
corner. The influence of image acquisition and blur on a PS, however, is given via[132–134]:

Palias(f) =
∞∑

n=−∞
P (f + 2nfNyq) (4.7a)

Pblur(f) = P (f) sinc2 (πfτe) . (4.7b)

Figure 4.7C reveals motion blur as the main error source particularly at high frequencies.

Overall reliability

Infinite compression, however, asymptotically yields a perfect fit for only two data points.
Figure 4.7D shows the behavior of the fit parameters fc, D, the resulting stiffness κ, and the
error χ2 for fitting single power spectra. Here, a compression of eight blocks represents
the best trade-off between a minimum χ2 while keeping the entire power-dependent data
set[45,138] in agreement (Figure 4.7E), thus being applied to all following data.
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Fig. 4.7. Influence of systematic and acquisition errors on the reliability of spectral analysis results.
(A) Fitting a power spectrum (PS) using a least-squares routine yields inaccurate results due to correlated
experimental data. (B) To obtain reliable results, the data is compressed and fitted using a maximum likelihood
estimate (MLE, for details see main text). (C) Motion blur is the main error influence particularly at high
frequencies. (D) Data compression reduces the error of the fit without significantly affecting its parameters.
(E) Here, compression via eight blocks yields the best agreement within the entire power-dependent data set.

40



5
Dual fiber focus trap

After the necessary prerequisites for analyzing trapped particles and fiber-based traps
were introduced before, this chapter focuses on the concept of a dual fiber optical trap.

In contrast to a single fiber solution, which in principle exhibits the highest flexibility but
bears only few options for adjustment, the simplest approach, from a fabrication point of
view as well, relies on using two optical fibers[60,61,64]. This allows the compensation of axial
scattering forces, while effectively enabling applications such as optical micro-manipulation
of trapped cells[64–66] as well as fiber-based Raman spectroscopy[62].
The dual fiber focus trap presented in this chapter represents a special type of dual

fiber trap based on two nanobore fibers (NBFs). Specifically, these exhibit a central chan-
nel (bore) inside their core, yielding a focal spot in front of each facet (Figure 5.1, compare
refs. [45, 57]). Ideally, both foci are brought to overlap within the optical trap, which
effectively represents the key advantage of this hybrid fiber-based (see subsection 2.1.2)
particle trap over the diverging beams found within regular dual fiber traps.

silica

core

nanobore

particle

r,Ʇ

z,‖

Dual fiber focus trap

Fig. 5.1. Artistic illustration of a dual fiber focus trap in water (compare ref. [45]). The concept relies
on two identical nanobore fibers with counter-propagating beams. Each beam exhibits a focus due to a central
bore inside the fiber core. Optical trapping of a particle in the center is greatly enhanced if both foci overlap.

Within this chapter, first, an individual nanobore fiber is characterized (section 5.1),
followed by estimating the dual fiber focus trap performance compared to a regular
dual beam fiber trap (section 5.2). Finally, optical trapping of individual objects is
experimentally demonstrated, analyzed, and compared (section 5.3).
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5 Dual fiber focus trap

5.1 Fiber characterization
For a detailed characterization of the dual fiber focus trap, first, the beam emitted by
an individual fiber is analyzed. Here, its profile is spatially recorded via a fluorescence
measurement, followed by estimating its numerical aperture (NA) being of particular
importance within optical trapping. Finally, the emitted light is spectrally analyzed in
order to determine the optimum operating wavelength of the dual fiber focus trap.

5.1.1 Spatial analysis

The key difference between the previously introduced nanobore fiber (NBF) and a con-
ventional step-index single-mode fiber (SMF) is the presence of a central channel (bore)
inside the core of the NBF that runs along its entire length[4,53,55]. Figure 5.2A presents a
scanning electron microscope (SEM) image of the cross-section of an NBF used through-
out all experiments (compare ref. [45]). Here, the diameter of the core approximately
yields 2a = 3.4 µm, the outer diameter of the fiber is 180 µm, the inner diameter of the
central channel yields 2b = 0.7 µm, and the fiber exhibits a refractive index contrast of
∆n = 8 · 10−3 between the core and the cladding.

Fundamental mode diffraction

The unique geometry of the NBF effectively results in a fundamental mode that is notably
different from the one obtained from a conventional SMF. In contrast to an HE11 mode
(see Figure 2.1), in particular, the fundamental NBF mode exhibits a central minimum as a
result of the evanescent field that leaks into its channel. Figure 5.2B exemplarily illustrates
the calculated fundamental mode profile for a wavelength of λ = 635 nm. The donut-
shaped mode of the NBF, specifically, enables certain applications such as the detection
of nanoparticles[4], excitation of surface plasmons within metallic wires[55], absorption
spectroscopy of liquids[53] as well as trapping of individual particles (compare ref. [45]),
which is within the scope of this work.

Here, its application effectively relies on the diffraction (see subsection 2.2.2) of the
donut-shaped fundamental mode. Upon freely propagating along the optical axis z,
the central minimum vanishes, and the mode diffracts into a focal spot after approximately
zf ≈ 7 µm in water. After a total distance of z ≈ 16 µm, however, the beam focus
completely transforms into a Gaussian profile with a subsequent divergence equivalent to
the beam of a conventional SMF (compare refs. [45, 57]). Figure 5.2C exemplarily shows
the diffracted donut-shaped NBF mode in water, which was calculated using the beam
propagation method (BPM, see section 2.2.2). A qualitative explanation, for example,
relies on two laterally separated (by the channel diameter 2b) parallel Gaussian beams
that interfere after a certain distance z of propagation [57].
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5.1 Fiber characterization

Experimental verification

In order to experimentally verify the calculated beam profile displayed in Figure 5.2D,
the beam of the NBF was recorded via the emission of a fluorescent dye[57]. Specifically,
a continuous wave (CW) laser at a wavelength of λex = 532 nm was used for exciting its
fundamental mode, effectively reaching an optical power of P1 = 50 mW at the output of
the NBF. For the recording, an amount of 2mg of the fluorescent dye Rhodamine 6G (R6G,
Sigma Aldrich R4127) was dissolved in 10ml of ultra-pure water, resulting in a final
concentration of 200 ppm while ensuring unsaturated fluorescence.1

For confining the dye solution, a reservoir was created via two parallel strips of double
sided tape on a microscope slide and subsequently sealed with a coverslip. This effectively
left a small channel into which the NBF was inserted, while ensuring a flat interface for
observation. A few hundred microliters of the fluorescent solution were pipetted onto the
sample slide and retracted into the channel via capillary forces. Here, scattered laser light
was blocked using a notch filter (Thorlabs NF533-17), and the unsaturated fluorescent
emission at a wavelength of λem = 590 nm was finally recorded with a custom-built
optical microscope (see Figure 4.2) as illustrated in Figure 5.2E.
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Fig. 5.2. Fundamental mode and beam profile of a nanobore fiber (NBF) in water at a wavelength
of 635 nm. (A) Scanning electron microscope (SEM) image of the cross-section of an NBF exhibiting a central
bore inside its core. (B) Calculated profile of the fundamental mode. An evanescent field leaks into the bore,
yielding the central minimum. (C–D) Propagation of the calculated fundamental mode. The minimum vanishes
after 3 µm, diffracts into a focal spot (7 µm), and the beam diverges similar to a Gaussian beam 16 µm behind
the facet of the NBF. (E) Recorded beam via the unsaturated fluorescence1 of the dye Rhodamine 6G (R6G).

1Ensures that fluorescent emission scales linearly with excitation intensity. 43



5 Dual fiber focus trap

The measured beam of the NBF (Figure 5.2E) effectively exhibits a profile very similar
to the one of a candle[57], while being qualitatively in line with the calculation. In order
to estimate its NA, here, the calculated profile (Figure 5.2D) was fitted to the equations
describing a diffraction limited focal spot (see Equations 2.13a and 2.13b). For water
at a wavelength of λ = 635 nm, this specifically yields NA = 0.25. This procedure is in
principle justified, since the NBF represents a hybrid SMF (see subsection 2.1.2) that
emits a diffraction limited beam (see subsection 2.2.2).

5.1.2 Spectral analysis
To determine the cut-off wavelength of the fundamental mode of the NBF (see sub-
section 2.1.1), its spectral response was measured under the influence of bending[139]

(Figure 5.3A). In principle, this procedure relies on the fact that weakly guided fiber modes
(normalized frequency of V < 2.405) are associated with a low refractive index con-
trast between the core and the cladding and are thus more susceptible to bending loss.
This specifically yields a rapid decrease of the loss within the regime of multi-mode guidance
(V > 2.405) that appears in the recorded optical spectrum[139] (Figure 5.3B).

For measuring the spectral response of the NBF, the fiber was excited using a broadband
super continuum laser (NKT Photonics SuperK Compact) that emits a wavelength range
of λ = 440 . . . 2150 nm. Here, an optical power of P1 = 7.75 mW at a wavelength of
λ = 532 nm was reached at the fiber output. An optical post of 1′′ diameter was used
to loop the NBF around, and its response to bending was subsequently measured using
a spectrometer (Ando AQ-6315). Figure 5.3 illustrates the obtained bending spectra,
revealing that a wavelength of λ = 635 nm lies well within the regime of single-mode
guidance for ensuring a fundamental mode operation of the dual fiber focus trap.

                  

               

   

   

   

   

   

   

   

 
 
 
 
  
 
  
  
  
 
 
  
 
  
 
 
 

              

           

            

               

 

  

  

  

  

   

 
 
 
 
  
 
  
 
 
 
  
 
 
 

  
 

   

  
 

  
 
  
 
 
 
 
  
 
  
 
 
 
  
 
 
 

 
 

  
 
 
  

  
 
 

            

              

Measured bending spectraA Loss and single-mode cut-offB

Fig. 5.3. Measured loss as a function of wavelength, obtained from bending the nanobore fiber (NBF)
to determine its single-mode (SM) cut-off. (A) Spectral response to bending the NBF around an optical
post of one inch diameter. (B) Resulting loss in linear (left) and logarithmic scale (right). The exponential
slope denotes the transition to multi-mode guidance within the NBF, yielding its SM cut-off. This effectively
ensures a fundamental mode operation of the dual fiber focus trap at a wavelength of 635 nm.
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5.2 Tunable optical trapping

5.2 Tunable optical trapping

A common motivation for a dual fiber optical trap in general results from the fact that the
individual fiber beams exhibit NAs that are insufficient for optical trapping on their own
(see subsection 3.3.1). Figure 5.4A exemplarily demonstrates a dual fiber trap with
counter-propagating beams[60,61,64], which effectively represents the basis for the previously
introduced dual fiber focus trap (compare ref. [45]). Here, a polystyrene bead of diameter
2R = 1.75 µm was optically trapped in the center between two nanobore fibers (NBFs)
within an aqueous solution (see subsection 4.1.1) at a low power of P1,2 = 7.5 mW measured
at their respective outputs. The NBFs individually exhibit numerical apertures of 0.25
(see previous section) that are insufficient for optical trapping with a single fiber alone,
however, in combination effectively allow the compensation of optical forces ~Fopt(r, z)
along the radial (r) and particularly the axial direction z.
Using two optical fibers, in addition, opens up the possibility of tuning the trap,

which effectively represents a key advantage over an optical trap that is based on only a
single fiber. Here, a straight-forward adjustment relies on varying the distance d between
both fibers (as well as controlling their individual powers P1,2), being also achievable with
conventional single-mode fibers (SMFs)[45,60,140]. Another option for tuning the dual fiber
trap involves changing their inclination[43,60,138], however, this requires their displacement
as well in order to maintain a stable equilibrium in the center between both fibers and is
(as well as individually adjusting their powers P1,2) thus not considered here.

In the following, two different implementations of dual beam fiber traps that are
specifically based on (i) two identical commercial SMFs and (ii) the previously introduced
NBFs are compared in detail. First, a qualitative description of the trap tunability is given
(subsection 5.2.1), followed by approximating their performance via a semi-analytical model
(subsection 5.2.2). Finally, a rigorous full numerical simulation of the trap performance
using finite element methods (FEMs) is presented (subsection 5.2.3).

5.2.1 Qualitative description

Figure 5.4, B and D, illustrates the calculated intensity I0(r, z) of the beam that is emitted
by a commercial SMF (Thorlabs SM450, core diameter 2a = 3 µm) and its profile I0(z)
along the optical axis z (r = 0). Here, the monotonous near Gaussian intensity distribution
stands in direct contrast to the beam of the NBF (core diameter 2a = 3.4 µm, bore diameter
2b = 0.7 µm), which exhibits a non-monotonous profile I0(z) along z. This is visualized
in Figure 5.4, C and E, and results from the previously discussed diffraction of the
fundamental mode that yields the focal spot. Specifically, both profiles were calculated for
water at a wavelength of λ = 635 nm and normalized to the maximum intensity of their
respective outputs (Figure 5.4, B and C).
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5 Dual fiber focus trap

A key advantage of the dual fiber focus trap concept over using two conventional
SMFs, in particular, represents the possibility to overlap both NBF foci. Specifically,
this allows adjusting the performance of the dual fiber trap via their interplay and thus
to address different independent combinations of radial and axial confinement (compare
ref. [45]) for controlling the behavior of a trapped particle inside. However, generally
not the sum I+ = I1 + I2 of the individual counter-propagating beam intensities I1,2 but
rather their difference I− = I1 − I2 is of importance. A particle is effectively trapped
where the difference I−(r, z) between both fiber beams vanishes and the resulting optical
forces ~Fopt(r, z), i.e., the axial scattering force ~Fscat(z) (see Equation 3.8) along z, are
balanced (Figure 5.4A). For example, this allows the creation of multiple variable trapping
sites using, e.g., a standing wave or sophisticated beam profiles[108,110,121].
Within a dual fiber trap of two identical optical fibers that are axially separated

by the distance d, while both exhibit monotonous profiles of their individual beam
intensities I0(r, z), in general only one stable trapping site in the center between both
fibers at z0 = d/2 exists (given they emit the same powers P1,2). Figure 5.4, F and G,
displays the intensity difference I−(r, z) for two counter-propagating beams (gray arrows)
emitted by the fibers within a dual fiber trap for the example of (i) two commercial SMFs
(Figure 5.4F) and (ii) two NBFs (Figure 5.4G) separated at different inter-fiber distances d.
Here, the intensity I1(r, z − z0) of the beam emitted by the left fiber ranges linearly from
white (zero) to cyan (maximum) and the intensity of the right fiber beam I2(r, z0 − z)
from white to magenta. This results in a blue tone where the intensities I1,2(r, z) of both
beams and hence the resulting optical forces ~Fopt(r, z) are balanced, thus indicating the
region of stable confinement within the trap.
Controlling the separation distance d between both fibers in principle represents a

simple concept to dynamically adjust the optical potential of the dual fiber trap, while the
final performance mainly depends on a steep gradient of the dual beam intensity profile.
Decreasing the distance d in a dual SMF trap (Figure 5.4F), in particular, yields a
monotonous increase of the optical trap performance, although a single SMF effectively
exhibits a negative NA due to its diverging Gaussian beam (Figure 5.4D). The calculated
beam profile of a single NBF, in contrast, previously revealed NA = 0.25 for the focal spot
located approximately zf ≈ 7 µm in front of the fiber facet (Figure 5.4E).
Overlapping both NBF foci (Figure 5.4G) increases the NA of the dual fiber trap

significantly, which effectively represents a key advantage of the dual fiber focus trap over
a dual SMF trap especially at short inter-fiber distances d. Here, the optimum separating
distance d between two NBFs in principle lies at dopt = 2zf . Fitting the resulting intensity
distribution of the two counter-propagating NBF beams to Equations 2.13a and 2.13b for
an inter-fiber distance of dopt = 14 µm yields a maximum effective NA of 0.36 for the dual
fiber focus trap. Again, the calculation assumes water as the immersion medium and an
operating wavelength of λ = 635 nm.
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Fig. 5.4. Implementation and tuning of a dual beam fiber trap in water at a wavelength of 635 nm.
(A) Micrograph of a dual fiber trap with counter-propagating beams. A polystyrene bead of 1.75 µm diameter
is optically trapped in the center between both fibers. (B) Calculated intensity of the fundamental mode and
(D) of the beam emitted by a commercial SMF, exhibiting a monotonous near Gaussian profile. (C,E) Same
for the NBF exhibiting a non-monotonous beam intensity profile due to the diffraction of its fundamental mode,
yielding a focal spot 7 µm in front of the fiber. (F–G) Intensity difference of two counter-propagating beams
(gray arrows) based on D and E for different fiber separations. The left beam intensity ranges from white to
cyan and the right one from white to magenta. Optical trapping is stable where the difference vanishes (blue).

5.2.2 Semi-analytical model

In the previous subsection, only a qualitative analysis of the performance and tunability
of a dual fiber trap was carried out. As this procedure is principally limited in its
amount of detail, the key quantity for comparison, the stiffness κ, still remains unknown.
In the following, a model for computing the tuning capability of the optical trap and its
stiffness κ is thus presented, which, however, still relies on an approximation.

A key advantage of a semi-analytical model over a rigorous full numerical analysis via,
e.g., a finite element method (FEM) simulation is apparent in its reduced computational
effort. In particular, this is achieved via considering only specific on-axis scenarios in the
Rayleigh approximation[12,95] and, subsequently, extending them to the macroscopic case
via one-dimensional integration (similar to Equation 3.9), thus significantly minimizing
computational duration. Here, specifically the scenarios of inter-fiber distances d =
50, 40, 30, 20, 10 µm for a dual fiber trap were treated, while the results for two NBFs of
the dual fiber focus trap are exemplified by graphs in Figure 5.5, A to D.2

2Beam intensities I0(r, z) again calculated for water immersion at a wavelength of λ = 635 nm. 47



5 Dual fiber focus trap

Model limits

Describing the performance of an optical trap for a confined particle requires considering
optical gradient (~Fgrad) and scattering (~Fscat) forces (see Equations 3.7 and 3.8). Their
analytical validity, however, is only given within the Rayleigh regime for nanoscopic
particles much smaller than the wavelength of operation[12,95]. Treating macroscopic
particles much larger than the operating wavelength, such as the 2R = 2 µm silica beads
used within the experiments (see subsection 4.1.1 and section 5.3), in the Mie regime, on
the other hand, effectively requires a rigorous numerical calculation that is based on, e.g.,
an FEM simulation (subsection 5.2.3). Nevertheless, the forces retain their proportionality
and directly scale with the incident intensity I0(r, z).

Radial confinement

The only contributing optical force ~Fopt for stable confinement within a dual fiber trap along
the radial direction r in the center between both fibers at z0 = d/2 in principle represents
the radial gradient force ~Fgrad(r, z0). For a point dipole[95,117], this force is proportional
to the gradient ∇r of the total intensity I+(r, z0) = I1(r, z0) + I2(r, z0) that results from
the sum of the two individual counter-propagating beam profiles. The on-axis optical
potential Uopt(r, z0) is thus proportional to the integral over the gradient force ~Fgrad(r, z0) in
the center of the trap at z0 and hence directly proportional to twice the intensity 2I0(r, d/2)
of the beam emitted by a single fiber:

Uopt(r, z0) = −
∫
~Fgrad(r, z0) dr ∝ −

∫
∇rI+(r, z0) dr = −2I0(r, d/2). (5.1)

Often, the on-axis optical potential Uopt(r, z0) is approximated via a harmonic trap
potential Utrap(r, z0) = 1

2κ⊥r
2 for small displacements r ≈ 0 around the center of the trap

along the transverse (⊥) direction of both fibers. Figure 5.5A exemplarily demonstrates
this for two counter-facing NBFs that are separated by the distance d = 20 µm.

Axial confinement

Stable optical confinement of a particle along the axial direction z at r = 0 within a dual
fiber trap, in contrast, mainly relies on compensating the axial scattering forces ~Fscat(0, z)
along the optical axis z. For weakly focused beams, in particular, such as the ones
emitted by the NBFs and the monotonous profile of a conventional SMF, the axial
gradient force ~Fgrad(0, z) can generally be neglected. In the dipole approximation[95,117],
specifically, the total scattering force ~Fscat(0, z) that has to be compensated along z

is directly proportional to the intensity difference I−(0, z) = I1(0, z − z0)− I2(0, z0 − z)
between the individual profiles of the two counter-propagating beams. Equivalent to the
previously discussed gradient force ~Fgrad, the on-axis optical potential Uopt(0, z) is thus

48



5.2 Tunable optical trapping

proportional to the integral over the scattering force ~Fscat(0, z):

Uopt(0, z) = −
∫
~Fscat(0, z) dz ∝ −

∫
I−(0, z) dr =

∫
{I0(0, d− z)− I0(0, z)} dz.

(5.2)
Again, the on-axis potential Uopt(0, z) is approximated via a harmonic trap poten-

tial Utrap(0, z) = 1
2κ||(z− z0)2 for small displacements z ≈ z0 around the center of the trap

along the axial (||) direction parallel to the optical axis z. Figure 5.5B presents this for
the dual fiber focus trap at an inter-fiber distance of d = 20 µm.

Macroscopic approximation

To describe the behavior of a macroscopic particle within the optical trap, here, an approx-
imation was made. This specifically consisted of integrating the optical forces ~Fopt(r, z)
over the particle size along the respective axes r, z in one dimension in order to obtain
the on-axis optical potentials Uopt(r, z) (Figure 5.5, C and D). Here, only trapping in the
center of the dual fiber trap at z0 = d/2 was considered, which effectively represents the
only stable trapping site for the monotonous beams emitted by two conventional SMFs
(see Figure 5.4F). Figure 5.5, C and D, exemplarily presents the on-axis optical poten-
tials Uopt(r, z) for a dual fiber focus trap that is axially separated by different inter-fiber
distances d for the radial direction r and the axial direction z, respectively.
Figure 5.5D effectively reveals that a minimum fiber separation dmin for stable optical

trapping along the axial direction z between both NBFs exists, which is specifically given
via twice the focal length 2zf ≈ 14 µm of the beam that is emitted by a single NBF
(dmin = 2zf). For d > dmin, in particular, the axial scattering forces ~Fscat(z) of both fiber
beams are balanced, and stable optical trapping is possible in the center of the dual fiber
trap at z0. However, if both focal maxima cross, i.e., for d < 14 µm, a central compensation
is no longer possible as visible in Figure 5.5D for an inter-fiber distance of d = 10 µm.
In this case the description of optical trapping principally requires considering the axial
gradient force ~Fgrad(z) or off-center trapping sites (compare ref. [45] and subsection 5.2.3),
which, nevertheless, is beyond the scope of this model.

Optical trap stiffness

The stiffness κ⊥,|| of the harmonic trap potentials Utrap(r, z) (harmonic approximation of
the curves in Figure 5.5, C and D) for small displacements around the center of the trap
effectively denotes the key quantity for analyzing and comparing the performance of the
individual implementations of fiber-based optical trapping (see section 3.3). Figure 5.5E
shows the trap stiffness κ⊥,||(d) in the transverse (⊥, top: linear scale) and the axial
(||, bottom: logarithmic scale) fiber direction of the dual fiber trap as a function of the
inter-fiber distance d for both dual NBF and dual SMF traps.
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Approximated tunabilityE

Fig. 5.5. Approximated on-axis optical potentials and tunability of the dual fiber focus trap in water
calculated for a wavelength of 635 nm. (A) Sum of the intensity profiles of two NBFs (20 µm separation)
and resulting gradient along the radial direction in the center of the trap as basis for the on-axis optical potential.
(B) Difference of the two NBF profiles and proportional on-axis optical potential along the axial direction.
(C) Approximated on-axis potentials for a dual fiber focus trap of different separations along the radial and
(D) the axial direction in the center of the trap. To obtain the harmonic on-axis trap potentials (dotted curves
in A and B), the optical potentials are averaged over a moving frame of the particle size prior to integration.
(E) Tunability of the approximated stiffness for a dual NBF compared to a dual SMF trap as a function of
fiber separation along the transverse (⊥, top in lin. scale) and the axial (||, bottom in log. scale) direction of
the dual fiber trap. The curves reveal a general dependence similar to the profile of the beam that is emitted
by a single fiber, which results in axially unstable trapping for two NBFs separated by less than 14 µm.

Since the optical potential Uopt(P ) ∝ P scales linearly with the power P within the
trap[45,114,138], this effectively allows simultaneously adjusting the value κ⊥,||(P ) and the
ratio κ⊥(d)/κ||(d) between the transverse and the axial component of the stiffness κ⊥,||(P, d).
In particular, this enables access to explicit combinations as well as a high degree of control
over the behavior of the trap. Here, the contrast between stable trapping and unstable
anti-trapping behavior within the dual NBF trap specifically allows for tuning the ratio of
the stiffness κ⊥,||(d) via the fiber separation d, thus granting access to unique combinations
that are practically inaccessible to dual SMF traps (compare ref. [45]).

The axial instability of optical trapping within the dual fiber focus trap for inter-fiber
distances d < dmin, however, yields a significantly reduced performance in the transverse
and the axial component of the stiffness κ⊥,||(d) below dmin ≈ 14 µm as seen in Figure 5.5E.
Interestingly, the overall dependence of the stiffness κ⊥,||(d) for both dual fiber trap
implementations behaves similar to the intensity profile I0(2z) of the beam emitted by a
single fiber, thus allowing a rough estimate for a qualitative comparison.
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5.2 Tunable optical trapping

5.2.3 Numerical analysis

In the previous subsection, the tunability of dual fiber traps was approximated for specific
scenarios of on-axis trapping, yielding discrete curves for the stiffness κ⊥,||(d) (Figure 5.5).
Here, a rigorous FEM simulation was carried out3 via the Barton formalism for macroscopic
particles (compare refs. [45, 61, 113] and Equation 3.9), which additionally allows for
variations of the size 2R (y-axis) and off-center trapping at different fiber distances d (x-axis
of Figure 5.6). Specifically, the color represents the normalized stiffness κ⊥,||(d, 2R)/P1,2

in water at a wavelength of λ = 635 nm (P1,2 denotes the fiber output power).
Overall, the dual NBF trap exhibits a greater stiffness κ⊥(d) (Figure 5.6A) than the dual

SMF trap (Figure 5.6B) with a peak at d = 14 µm, in both cases matching Figure 5.5E very
well. For small NBF separations d < 10 µm, however, the increase of κ||(d) (Figure 5.6C)
differs notably from the flat dependence of κ||(d) within the dual SMF trap (Figure 5.6D)
and from the axial instability in Figure 5.5E. This results from the focus of the NBF beam
and its axial gradient force ~Fgrad(z), which here was included in the simulation and hence
contributes to stable trapping sites outside the trap center once all optical forces ~Fopt(r, z)
are balanced. Nevertheless, the results depend only little on the particle size 2R.

Nanobore fiber ||

Nanobore fiber ⊥ Single-mode fiber ⊥

Single-mode fiber ||

A B

C D

Fig. 5.6. Simulated power normalized stiffness for a dual fiber trap in water at a wavelength of
635 nm as function of particle size and fiber separation. (A) Stiffness in the transverse (⊥) direction for
a dual NBF and (B) a dual SMF trap. The NBF overall exhibits a greater stiffness than the SMF with a
maximum at 14 µm separation. (C) Stiffness in the axial (||) direction for dual NBF and (D) dual SMF trap. In
contrast to the constant stiffness of the SMF, the one of the NBF increases significantly below 10 µm separation
due to its focus and the resulting gradient force. All plots show only weak dependence on the particle size.

3Simulation by Martin Šiler, Institute of Scientific Instruments of the CAS, Brno (CZ), in ref. [45]. 51



5 Dual fiber focus trap

5.3 Experimental demonstration

For an experimental verification of the performance enhancement of the dual fiber fo-
cus trap over a regular dual beam fiber trap, tuning its trap stiffness κ(P, d) via the
optical power P and the fiber separation d is discussed first (subsection 5.3.1). This is
followed by comparing the results of different techniques for analyzing the performance
(subsection 5.3.2). Finally, an outlook is given on its application within different trapping
scenarios, including Escherichia coli bacteria as a more sensitive probe for measuring the
trap performance (subsection 5.3.3).

5.3.1 Tunable optical trapping

As previously discussed in section 5.2, a dual fiber trap principally enables simultaneously
adjusting the optical powers P1,2 and the distance d between both fibers[45,60,114]. Effectively,
this grants access to unique combinations of the trap stiffness κ⊥,||(P1,2, d) while allowing
the control of the individual components along the transverse (⊥) and the axial (||)
direction of the fiber optical trap independently (see Figures 5.5E and 5.6).
To experimentally verify the tunability of a dual fiber trap and to compare the perfor-

mances of dual nanobore fiber (NBF) and dual single-mode fiber (SMF) trap, a continuous
wave (CW) laser that emits a power of P0 = 100 mW at a wavelength of λ = 635 nm
was used for exciting the fundamental modes of the two different fibers (see Figure 5.4,
B and C). Here, the same NBF (core diameter of 2a = 3.4 µm, channel diameter of
2b = 0.7 µm) and SMF (core diameter of 2a = 3 µm) as already introduced in section 5.1
and subsection 5.2.1 were used, while both fibers were independently excited to optical pow-
ers of P1,2 = 30 mW measured at their respective outputs. Specifically, the experiment was
carried out in ultra-pure water with a 1:2500-fold dilution of silica beads (Micromod Inc.,
diameters 2R = 2 µm), resulting in a final particle concentration of c ∼ 5 · 106 cm−3.
Approximately 50 µl of the particle solution were pipetted into the sample chamber (Fig-
ure 4.2C, details of the setup see subsection 4.1.1), and the experiment was started as
soon as a single bead was stably confined in the center of the trap.
Figure 5.7A illustrates an experimental implementation of a dual fiber focus trap

of two identical NBFs with counter-propagating beams (green arrows) that are axially
separated by an inter-fiber distance d. Here, the dashed green lines indicate the boundaries
of the respective fiber facets inside the sample chamber, while the water filled central
channel (bore) of both NBFs is clearly identified as a black bar due to its good refractive
index contrast to silica. A custom-built optical microscope was used for observing the
motion x = (r, z) of a trapped bead, which here was imaged via a 40× dry objective
(Olympus MPLN, NA = 0.65) in combination with a tube lens of focal length ft = 250 mm.
Moreover, the illumination was provided via a fiber-coupled light emitting diode (LED) at
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a wavelength of λ = 617 nm (Thorlabs M617F2), while scattered laser light was blocked
using a notch filter of central wavelength λ0 = 633 nm (Thorlabs NF633-25).

In order to properly analyze the motion x⊥,||(t) of an individual trapped bead, high-speed
videos were recorded for all measurements as a small area strip containing only the relevant
information about its motion (dashed yellow rectangle in Figures 5.7A and 5.7B indicating
the recording area). Here, the videos were recorded at a high frame rate of 1/∆t = 1000 fps
for a duration of tmax = 30 s, while the exposure time was τ = 0.7 ms. After recording,
the videos were cropped to an area of interest (AOI) around the bead (dashed black
square in Figure 5.7B) and subsequently passed to a tracking algorithm for retrieving its
motion x⊥,||(t) (details of the tracking routine see subsection 4.1.2).

Power tuning

Figure 5.7C exemplarily displays the trajectory x⊥,||(t) of a bead that was optically trapped
in the center at z0 = d/2 between the two NBFs of a dual fiber focus trap (Figure 5.7,
A and B) for two different powers P (power 2 < power 1). Here, its trajectory x⊥,||(t)
was obtained using the image shift algorithm, i.e., the independent retrieval of its dis-
placement ∆x(ti) (relative shift) in every frame ti via centering the cropped AOI of
the recorded video (compare refs. [44, 45]). However, since the total optical power P
(sum of the individual fiber powers P1,2) linearly scales the stiffness κ⊥,||(P ) ∝ P of the
optical trap[45,114,138], this effectively yields an increased standard deviation σ of the trajec-
tory x⊥,||(t) (Figure 5.7C) as well as a broader local distribution ρ(x⊥,||) for lower powers P .
This is visualized in Figure 5.7D via the 2σ boundary (including 95% of the data) for the
near Gaussian shaped distribution, being principally in line with the predicted behavior of
a trapped particle[95] (see Figures 3.2D and 4.5B).

To obtain the power normalized stiffness κ⊥,||/P1,2 of the dual fiber trap (see Figure 5.6),
the laser beam was attenuated using optical density (OD) filters. Within all measurements,
filters of OD0.1, 0.3, 0.6 and 1.0 were used, which effectively results in a near linear
reduction of the power P1,2 at each fiber output. At every power P1,2, the trajectory x⊥,||(t)
of a trapped particle was obtained from a recorded video and afterwards analyzed via
its mean square displacement[81,96,97] (MSD, see Equation 4.4) for determining the stiff-
ness κ⊥,||(P1,2) ∝ P1,2 and finally the slope. In order to account for potential variations
of the diameters 2R within the batch of particles, the experiment was restarted once a
trapped bead was lost or a second one diffused into the trap throughout the measurement,
hence specifically ensuring a general validity for a quantitative comparison.
Figure 5.7E exemplarily compares the recorded power slope of the optical trap stiff-

ness κ⊥,||(P1,2) for the two different fiber traps, i.e., dual NBF and dual SMF trap,
both being separated at an inter-fiber distance of d = 10 µm. Here, the results reveal that
optical trapping with the dual fiber focus trap is principally possible at this short fiber
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separation d, and that the dual NBF trap performs better than the dual SMF trap overall.
Specifically, it exhibits a greater trap stiffness κ⊥,||(P1,2) along both (⊥ and ||) directions,
which is in good agreement with the approximate calculation presented in Figure 5.5E
as well as with the numerical FEM simulation of Figure 5.6.
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Fig. 5.7. Optical trapping of a 2 µm diameter silica bead and experimental demonstration of power
tuning with a dual fiber trap in water. (A) Experimental implementation of a dual fiber focus trap consisting
of two identical nanobore fibers with counter-propagating beams (green arrows). The dashed green lines indicate
the respective fiber facets, and the horizontal black bar represents the water filled central bore. (B) Videos of a
single trapped bead were recorded at 1000 fps only of the area containing relevant information about its motion
(dashed yellow rectangle in A). After recording, the videos were cropped to an area of interest (AOI) around
the bead (dashed black square) for tracking its motion. (C) Tracked trajectory and (D) local distribution
of a bead for two different optical powers. Due to the power dependent stiffness of the trap, a lower power
(power 2 < power 1) yields a broader standard deviation σ of the bead position, as indicated by the 2σ boundary
including 95% of the data. (E) Recorded power dependent stiffness of the trap at a wavelength of 635 nm,
yielding the power normalized slope for the example of 10 µm fiber separation. The dual NBF trap performs
better than the dual SMF trap, i.e., reveals a greater stiffness for a trapped 2 µm diameter silica bead.

Distance tuning

In order to experimentally demonstrate tuning the normalized stiffness κ⊥,||(d)/P1,2 via
adjusting the inter-fiber distance d of the dual fiber trap, the separation between both
fibers was decreased from d = 50 . . . 10 µm in steps of ∆d = 10 µm, as previously presented
in Figure 5.5, C and D. Specifically, Figure 5.8A illustrates the optical trapping of a
2R = 2 µm silica bead in water between two NBFs with counter-propagating beams
(green arrows), i.e., the dual fiber focus trap, for different inter-fiber distances d (top:
d = 50 µm, bottom: d = 10 µm). For every separation d, an individual set of videos was
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recorded for five different powers P1,2 as shown in Figure 5.7E, thus effectively yielding a
total of 5× 5 values for the stiffness κ⊥,||(P1,2, d). To account for potential variations of
the diameters within the batch of particles, the experiment was restarted once if a trapped
bead was lost or a second one diffused into the trap during the measurement. Essentially,
this was repeated for the dual SMF trap as visualized in Figure 5.8B.
Figure 5.8C exemplarily displays the one-dimensional (⊥ or || to the fiber orientation)

local distribution ρ(x⊥,||) and underlying potential Uopt(x⊥,||) for an optically trapped bead
between the two fibers of a dual fiber trap being separated by different inter-fiber distances d
(distance d2 > distance d1). According to the theory of trapping[95], the underlying
potential Uopt(x⊥,||) effectively allows approximation via a harmonic potential Utrap(x⊥,||) =
1
2κ⊥,||x

2
⊥,|| if the resulting local distribution ρ(x⊥,||) exhibits a near Gaussian shape (details

see Figure 4.5, B and C). Here, the opening factor of the trap potential Utrap(d) reveals
a greater stiffness κ⊥,||(d) for the dual fiber trap at smaller separations d, i.e., d1 < d2,
which is principally in line with Figure 5.5, C and D.

Measured tunability

Potential
tuning

C

D

Distance tuning dual nanobore fiber trap

10µm

50µm fiber separation

trapped bead

5µm

water filled nanobore

10µm

50µm fiber separation

5µm

trapped bead

Distance tuning dual single-mode fiber trap

A

B

Fig. 5.8. Experimental comparison of distance tuning with a dual nanobore fiber (NBF) and a dual
single-mode fiber (SMF) trap for a 2 µm diameter silica bead in water. (A) The distance between two
NBFs and (B) two SMFs with counter-propagating beams (green arrows) is varied from 50 µm (top) to 10 µm
(bottom) in steps of 10 µm, while the dashed green lines indicate the respective fiber facets. For every separation,
videos of a single trapped bead were recorded at 1000 fps for five different powers using optical density (OD)
filters to attenuate the laser. (C) The local distribution and underlying potential for a trapped bead broaden
significantly with increased fiber distance (distance 2 > distance 1), while a harmonic approximation yields the
trap stiffness. (D) Obtained power normalized stiffness at a wavelength of 635 nm for the ⊥ (top: lin. scale)
and || direction (bottom: log. scale). The results reveal that the dual NBF overall performs better than the
dual SMF trap particularly at short distances due to its focus, which is perfectly in line with previous findings.
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Figure 5.8D depicts the obtained normalized stiffness κ⊥,||(d)/P1,2 (recorded for all inter-
fiber distances d as in Figure 5.7E) for the ⊥ (top: lin. scale) and the || direction (bottom:
log. scale, compare ref. [45]). Based on a total of 2× 5× 5 recorded videos, the obtained
results are perfectly in line with previous findings (detailed comparison see Figure 5.9,
E and F), confirming an increasing stiffness κ⊥,||(d)/P1,2 for decreasing fiber separations d
within both dual fiber traps. Specifically, the dual NBF trap performs better than its dual
SMF counter-part overall, yet particularly for small inter-fiber distances d as clearly visible
within the || component of the stiffness κ||(d)/P1,2 for d = 10 µm separation. As already
predicted, this results from the focus of the NBF beam and its strong axial gradient
force ~Fgrad(z) along the propagation direction z, thus effectively ensuring stable optical
trapping and providing enhanced performance at smallest inter-fiber distances d.

5.3.2 Comparison of results

As mentioned earlier, the trap stiffness κ⊥,|| presented in Figures 5.7E and 5.8D was specifi-
cally determined via a mean square displacement (MSD) analysis of the previously tracked
trajectory x⊥,||(t) of a trapped bead. For examining its motion, however, in principle a
broad range of different techniques exist, which specifically allow verifying the trapping as
well as effectively comparing the trap performance (see section 4.2).

Figure 5.9 illustrates the experimental results obtained from using different techniques,
which in principle can be grouped into spatial (Figure 5.9A) and tempo-spectral methods
(Figure 5.9, B to D). Overall, the results exhibit an extraordinarily high degree of similarity
and are perfectly in line with the previously discussed models for the tunability of a
dual fiber trap (Figure 5.9, E and F, see section 5.2), thus emphasizing their reliability.
In particular, spatially analyzing a trapped particle via the equipartition theorem[95,99,117]

(Figure 5.9A, see Equation 4.2) and the autocorrelation[132] of its tracked motion (Fig-
ure 5.9B, see Equation 4.3) yield almost indistinguishable results. As a matter of fact,
both techniques effectively consider the entire length of a particle trajectory x⊥,||(t) while no
specific temporal analysis of occurring events is performed, which thus justifies considering
the autocorrelation as a semi-spatio-temporal method as well.
A time domain-based MSD analysis[81,96,97] of trapped particle motion (Figure 5.9C,

see Equation 4.4), on the other hand, yields small differences specifically in the reduced
error margins of the normalized axial stiffness κ||(d)/P1,2. In principle, this results from
distortions, such as tracking errors in the fit as well as particle oscillations and drift,
which are effectively revealed via this more accurate technique. A spectral domain analysis
via the power spectrum[132–134] (PS) of the particle trajectory x⊥,||(t) (Figure 5.9D, see
Equation 4.5), however, comes closest to accurately representing the simulated performance
within its error margins. Nevertheless, at the cost of precision particularly within the
transverse component of the stiffness κ⊥(d)/P1,2 due to the required compression of
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correlated experimental data (for details see subsection 4.2.2), this represents the most
demanding technique in terms of complexity and adjustment.

Simulation

Power spectrumD

AutocorrelationB

Mean square displacementC

EquipartitionA

Semi-analytic approx.F

Finite element methodE

(exp.) Spatial (exp.) Tempo-spectral

Fig. 5.9. Comparison of experimental and predicted results for a 2 µm diameter silica bead within a
dual fiber trap at a wavelength of 635 nm. (A) Spatial and (B–D) tempo-spectral analysis of experimental
results via (A) the equipartition theorem, (B) the autocorrelation, (C) the mean square displacement (MSD),
and (D) the power spectrum (PS) of previously obtained particle trajectories. The results agree very well
and exhibit only minor differences within their error margins due to using differently complex techniques
(see main text). (E) Rigorous finite element method (FEM) simulation and (F) semi-analytical approximation
of the optical trap stiffness. Both models accurately represent the experimental observations, specifically along
the ⊥ direction, and (E) even match observed details along the || direction due to included axial gradient force.

The simulated results (Figure 5.9, E and F) represent the experimental observations
with good accuracy, where the dual NBF trap also performs better than the regular dual
SMF trap. For the rigorous FEM simulation (Figure 5.9E), in particular, stable optical
trapping along the || direction within the dual fiber focus trap below a fiber separation
of d = 14 µm can be attributed to the included axial gradient force ~Fgrad(z) resulting
from the focus of the NBF beam. In addition to considering stable off-center trapping,
being responsible for the significantly reduced axial performance around d ≈ 20 µm, this,
however, is not included within the semi-analytical approximation for the stiffness κ||(d)
(Figure 5.9F), which explaines the significant deviation of the curves. Nevertheless,
the approximation model effectively yields a fast, accurate and reliable prediction of the
stiffness κ⊥,|| for the dual fiber trap in terms of agreement with the experiment, principally
representing a good approximation for weakly focused beams along the ⊥ direction.
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In the following, the temporal MSD analysis of a trapped particle trajectory is thus
effectively referred to as the method of choice when comparing the performance of fiber traps.
Specifically with respect to matching the simulations as well as reliably yielding the smallest
errors throughout all presented techniques, it reveals the largest amount of detail and
most accurately represents the pronounced dip within the axial stiffness κ||(d)/P1,2 around
d = 20 µm inter-fiber distance. In conclusion, the results for κ⊥,||/P1,2 differ by one order
of magnitude between the transverse and the axial performance of the dual fiber trap,
particularly being in line with literature reported values[43,86,114] (see Table 5.1).

5.3.3 Application outlook

In the previous subsection, a quantitative comparison with a regular dual beam fiber trap
was made in order to demonstrate the enhanced tunability and performance of the dual
fiber focus trap. This subsection, however, is dedicated to giving a qualitative outlook
on potential applications of optical trapping with the dual fiber focus trap. Specifically,
the trap is based on the same NBF as in previous experiments (core diameter of 2a = 3.4 µm,
channel diameter of 2b = 0.7 µm), while here, the conditions such as particle type and
operating wavelength are altered for the case of the dual NBF focus trap. The experiments
were individually carried out within ultra-pure water, while all particle solutions were
diluted to final concentrations of c ∼ 5 · 106 cm−3 each (details see subsection 4.1.1).

Trapping scenarios

Due to its generally low selectivity to a specific kind of trapped particle, a dual fiber trap
in principle allows for confining a broad range of different quantities, sizes, shapes, and
materials of particles aside from the previously demonstrated individual 2R = 2 µm silica
beads. Confining multiple particles simultaneously within an optical trap, however, yields
the earlier introduced effect of optical binding[115–117] (see subsection 3.3.1 and Figure 5.10,
B and D). Therefore, no quantitative analysis of the trap performance is effectively carried
out here, but rather potential extensions of optical trapping scenarios with the dual fiber
focus trap are qualitatively demonstrated.

Figure 5.10, A and B, for example, illustrates the optical trapping of one (A) and two (B)
silica beads of 2R = 2 µm diameters being confined between two NBFs in the center of a
dual fiber focus trap at optical powers of P1,2 = 50 mW and a wavelength of λ = 532 nm.
In Figure 5.10, C and D, in contrast, this is respectively visualized for a single (C)
and multiple (D) polystyrene spheres of 2R = 5 µm diameters. Figure 5.10, E and F,
on the other hand, demonstrates the optical trapping of different individual (E) and
two separated (F) inactivated Escherichia coli bacteria of approximately 1 µm × 3 µm
size, which were confined via powers of P1,2 = 20 mW at a wavelength of λ = 638 nm.

58



5.3 Experimental demonstration

In contrast to both types of spherical particles (Figure 5.10, B and D), coupling between
the rod shaped bacteria due to optical binding[115–117] is not observed here.
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Fig. 5.10. Demonstrated optical trapping for different quantities, sizes, materials, and shapes of
particles with the dual fiber focus trap in water. (A) Single and (B) multiple silica beads of 2 µm diameter
trapped between two nanobore fibers (NBFs) at optical powers of 50mW and a wavelength of 532 nm. (C) Same
for one and (D) three polystyrene spheres of 5 µm diameter confined in the center of the trap. The coupling
between individual particles (B and D) reveals the effect of optical binding (see main text). (E) Single and
(F) two individual inactivated Escherichia coli (E. coli) bacteria trapped at powers of 20mW and a wavelength
of 638 nm. The insets in E display different E. coli bacteria being individually trapped between the two NBFs.

In principle, particles of larger diameters 2R facilitate optical trapping at lower powers P
via increasing the normalized stiffness κ(2R)/P [12, 95]. This effectively allows for certain
dual beam fiber applications[61] specifically in life sciences, such as, e.g., the fiber-based
Raman spectroscopy of large cells[62]. However, as generally found within optical traps,
controlling the quantity of trapped particles remains challenging, since optical binding
yields the formation of long chains[116,140,141]. In return, this attracts even more objects
to the center of the trap, which thus increases the range of optical forces ~Fopt and the
effective trapping area – an undesired consequence for precise local operation.

Escherichia coli probe

Contrasting previous experiments, in particular, where the rotational symmetry of trapped
particles was effectively ensured via spherical beads, here, the influence of elliptical objects
on their behavior within the dual fiber focus trap is investigated. Escherichia coli (E. coli)
bacteria of rod-like shapes (see Figure 5.10E) in principle provide ideal probes for measuring
their response within the optical trap, while here, specifically, they were inactivated and
thus exhibit no self-propelled motion as of flagellar rotation[2]. Here, the tracking of
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their motion was thus performed via the same routine as previously shown in Figure 5.7,
B and C (details see subsection 4.1.2), however in this instance, no rotational diffusion[142]

was considered. Nevertheless, it was demonstrated in the past that E. coli bacteria are
attracted to similar focal beam profiles[63], while their orientation with respect to the
optical trap, especially, is strongly influenced by the trap itself[2,20,63].
Here, the trapping experiment was carried out with bacteria of approximately 1 µm×

3 µm in size, which were diluted at a ratio of 1:100 from their stock solution to a final
concentration of c ∼ 5 · 106 cm−3. A fiber-pigtailed laser diode emitting an optical power
of P0 = 70 mW at a wavelength of λ = 638 nm (Thorlabs LP637-SF70) was used for
exciting both nanobore fibers of the dual fiber focus trap individually, resulting in optical
powers of P1,2 = 20 mW measured at their respective outputs. In accordance with previous
experiments, in particular, the same NBF and a similar trapping procedure (Figure 5.8A)
were applied via varying the inter-fiber distance d from d = 35 . . . 10 µm in steps of a
few microns as presented in Figure 5.11A. The imaging, however, was changed to a 60×
dry objective (NA = 0.85) in combination with a tube lens of focal length ft = 200 mm
(details see Figure 4.2), while the illumination was provided via a fiber-coupled LED
of wavelength λ = 455 nm (Thorlabs M455F3). Here, the exposure time for high-speed
recording (frame rate 1/∆t = 1000 fps) the trapped motion was τ = .97 ms.

10µm

35µm fiber separation

Dual fiber focus trap with E. coli bacterium

trapped
E. coli

5µm

Measured tuning sensitivityA B

Fig. 5.11. Optical trapping of an Escherichia coli (E. coli) bacterium and measured sensitivity to
tuning the dual fiber focus trap in water. (A) The separation between two nanobore fibers (NBFs) with
counter-propagating beams (green arrows) was reduced from 35 µm (top) to 10 µm (bottom) in steps of a
few microns while a single E. coli bacterium was trapped in the center. The dashed green lines indicate the
respective fiber facets. (B) Measured power normalized trap stiffness at a wavelength of 638 nm as a function
of fiber separation for the ⊥ (top: lin. scale) and the || direction (bottom: log. scale) compared to a 2 µm
diameter silica bead. Presumably due to its orientation with respect to both NBFs within the optical trap (A),
the bacterium reacts as a very sensitive probe particularly to the perfectly overlapping foci of both beams at
14 µm (⊥ direction) and to the theoretically predicted performance drop around 20 µm separation (|| direction).

Figure 5.11B displays the analyzed results of the normalized stiffness κ⊥,||(d)/P1,2 for
a single trapped E. coli bacterium along the transverse (⊥, top: lin. scale) and the
axial direction (||, bottom: log. scale) for different fiber separations d. Compared to
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the behavior of a trapped spherical bead of 2R = 2 µm diameter from the previous
measurement (Figure 5.8D), the elliptical bacterium experiences a completely different
response to tuning the dual fiber focus trap. In general, it acts as a more sensitive probe
for measuring the optical trap performance and specifically exhibits a more pronounced
reaction within the transverse component of the stiffness κ⊥(d) at exactly d = 2zf = 14 µm.
This presumably results from its particular shape that yields its orientation with respect
to both fibers within the optical trap as clearly visible in Figure 5.11A. Along the axial
direction, however, no enhancement of the trap stiffness κ||(d) due to the axial gradient
force ~Fgrad(z) for small d is visible. Nevertheless, a more accurate representation of the
significant performance drop at d ≈ 20 µm is revealed, which raises the question about the
influence of the trapped object length.

5.4 Chapter discussion

Due to the unique beam profile of the nanobore fiber with its focal spot, the dual fiber focus
trap discussed in this chapter represents a cost-efficient and straight-forward enhancement
over a regular dual fiber trap. Experimentally tuning the separation distance d between
the two fibers of a dual beam fiber trap in principle revealed that the dual fiber focus trap
performs better than a regular dual single-mode fiber trap at short inter-fiber distances
d < 20 µm, particular along the || direction, while the experimentally obtained results
exhibit a good agreement with simulated predictions. Moreover, the performance of
optical trapping with a dual fiber trap is about one order of magnitude higher within the
transverse than the axial direction and increases significantly for smaller fiber separations d.
This allows individually adjusting the optical trap performance along the transverse
and axial directions independently, which effectively enables combinations of the trap
stiffness κ⊥,||(d) that are inaccessible to regular dual single-mode fiber traps.

Table 5.1 provides an overview of similar literature reported dual fiber trapping concepts.
Compared to the different listed dual fiber traps, the here obtained results for κ⊥,|| are
in particularly good agreement. Specifically, they benefit from the unique tunability and
simplicity of the dual fiber focus trap that is currently unavailable to other implemen-
tations. Via a high degree of freedom and the flexibility of inclination, an inclined dual
fiber trap[43,138] comes closest to the tunability of the dual fiber focus trap, nevertheless,
it requires additional handling in return. When compared to a dedicated yet more difficult
to implement 3D printed, lensed dual fiber trap[86], however, the dual fiber focus trap
concept demonstrated in this work is effectively limited in its performance.
Further improvements of the dual fiber focus trap can be achieved through, e.g., the

actual geometry of the nanobore fiber, since changing the core (2a) and the central
bore (2b) diameter has a significant impact on the evolution of the fundamental mode.
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Tab. 5.1. Overview of literature reported similar dual beam fiber-based optical trapping concepts.
The results presented in this chapter are highlighted in gray and are in good agreement with similar concepts.
The dual fiber focus trap particularly benefits from unique tunability and simplicity over comparable approaches.

Type of
fiber trap

Particle size
& material

Stiffness κ⊥, κ||
[pN/µm/mW] Key features Reference

Inclined dual
fiber trap 3 µm silica 6.4 · 10−2

1.8 · 10−2
+ flexibility
− handling [43]

Dual fiber
nano tips 1 µm polyst. (5.0 . . . 6.0) · 10−2

(0.2 . . . 2.2) · 10−2
− fabrication [114, 143]

Dual fiber
focus trap

(2× 0.25 NA)
2 µm silica (2.3 . . . 7.0) · 10−2

(0.1 . . . 1.6) · 10−2
+ tunability
+ simplicity this work, [45]

Lensed dual
fiber trap

(2× 0.3 NA)
1 µm polyst. (1.3 . . . 2.7) · 10−1

(0.3 . . . 1.4) · 10−2
+ performance
− fabrication [86]

This specifically yields a greater slope of the fiber-adjacent side of the focal spot[57] and thus
effectively a higher NA for the intensity profile I(r, z) of two counter-propagating beams.
Moreover, independently adjusting the individual optical powers P1,2 emitted by each of
the two fibers as well as changing their inclination[43,60,138] in principle represent additional
improvements of the dual fiber focus trap.

Potential future applications include, e.g., the rotation of individual trapped objects via
adjusting the optical fiber mode[66] as well as subsequently analyzing rotational diffusion[142].
In principle, this allows extending the scope of applications to more complex shaped living
objects aside from the trapped E. coli bacteria, e.g., for investigating their motility
within the optical trap[2,63]. Specifically combining the dual fiber focus trap with well-
established techniques in life sciences opens up the possibility for applications such as, e.g.,
fiber-based Raman spectroscopy of individual trapped cells[62] as well as their optical
micro-manipulation[64,65] for, e.g., tumorous tissue diagnosis.
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For optical trapping of freely diffusing micro-objects in water, the previous chapter
introduced the concept of a dual fiber trap (compare ref. [45]), which additionally

allows for quantitatively distinguishing between different types of optically trapped particles
via accessing their physical properties such as, e.g., size and shape. While noteworthy
results were obtained, however, this concept bears several disadvantages, namely the lack of
flexibility, integrability and usability in difficult to reach remote environments. Therefore,
using an optical trap that is based on only a single flexible fiber beam, which is the scope
of this chapter (compare ref. [46]), represents a sophisticated solution to increase flexibility,
ease of use as well as enabling remote operability. This effectively enables applications
such as, e.g., fiber-based in vivo endomicroscopy, imaging and Raman spectroscopy[37–42]

as well as optical sensing[2,63] and precise micro-manipulation[21,44].
The divergence of a fiber beam, however, particularly remains a key issue in reaching

earlier mentioned high numerical apertures of NA > 0.8 as required within single beam
fiber optical trapping[44,61,83]. An often reported solution, for example, relies on increasing
the NA via implementing a focusing optic on the tip of a hybrid optical fiber[52,86,144]

(HOF, see subsection 2.1.2 and Table 6.1 for a detailed overview). Here, the fundamental
concept for creating a high NA focal spot in front of the fiber principally relies on fusion
splicing a length-invariant piece of a single-mode fiber (SMF) to a sub-millimeter short
section of a multi-mode fiber (MMF, compare refs. [46, 145, 146]). This allows expanding
the SMF beam in order to accommodate the full NA of a focusing lens, here specifically
being implemented directly onto the facet of the HOF.
The unique combination of a diffractive lens structure, i.e., a meta-lens[67], that is

interfaced with an HOF is namely referred to as a meta-fiber in the following (compare
refs. [42, 46, 84]). Here, this is specifically implemented onto the fiber tip using three-
dimensional (3D) optical printing, i.e., direct laser writing (DLW). On the basis of a
careful design, this effectively enables diffraction limited focusing of the meta-fiber beam
as schematically visualized within Figure 6.1, while reaching an ultra-high NA of 0.88.
Illustrated in the inset of Figure 6.1, the measured focal spot in particular forms the
necessary requirement for flexible fiber-based remote optical trapping of individual freely
diffusing particles in water using only a single SMF.
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light
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single-mode fiber
functionalized
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Fig. 6.1. Schematic visualization of an ultra-high NA meta-fiber optical trap (compare ref. [46]).
A single-mode fiber is used as the input and functionalized at its output side for enlarging the usable fundamental
mode cross-section, yielding a hybrid optical fiber (HOF). Its facet is structured with a diffractive meta-lens,
creating a diffraction limited focal spot for optical trapping of single particles in water. The inset illustrates the
measured spot at a wavelength of 660 nm, revealing an ultra-high numerical aperture of NA=0.88.

In the following, first, the fundamental concept of a meta-fiber is introduced in detail
(section 6.1), including the implementation of a functionalized hybrid fiber, 3D optical
printing of a diffractive lens structure as well as a discussion about the limits of the meta-
lens design. This is succeeded by characterizing the diffraction limited performance of the
hybrid meta-fiber device, including a detailed analysis of potential aberrations (section 6.2).
Finally, the chapter is concluded with an experimental demonstration of single meta-fiber-
based optical trapping of individual silica microbeads as well as biologically relevant
Escherichia coli (E. coli) bacteria, and the obtained results are compared to similar
implementations and discussed in detail (section 6.3).

6.1 Meta-fiber concept
One solution to implement a beam shaping element on the tip of an optical fiber[50,52,122],
e.g., is to reduce the thickness of a bulk refractive optic[37,122,146] into a thin diffractive
optical element[82,86,147] (DOE, details see Figure 2.3). In the following, a diffractive
focusing lens is termed as meta-lens (compare refs. [46, 67, 84] and Table 6.1 for a
detailed overview of similar concepts). Since a meta-lens represents a special type of
phase element, it requires a well-defined phase of the incident beam (see Figure 2.4).
Therefore, two possible options for its implementation exist:

1. To make use of the well-defined wavefront of a single-mode fiber (SMF), exhibiting a
flat phase upon its emission from the facet, the meta-lens is implemented directly onto
the core of the SMF[147,148]. In principle, this is achieved via traditional (deep-UV or
electron-beam) lithography (EBL) or focused ion beam (FIB) milling, while requiring
large-scale machinery and clean room facilities for high resolution.
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2. Femtosecond (fs)-direct laser writing (DLW), in contrast, commonly also referred to
as three-dimensional (3D) optical printing[52,122,149], represents a fast, cost-efficient,
and reliable alternative relying only on conventional laser laboratory equipment.
Due to its lower resolution, however, this requires a prior expansion of the well-defined
SMF beam to accommodate a sufficiently large number of phase elements[52,86].

In this section, first, expanding the SMF beam with its predictable phase resulting from
the well-defined wavefront is demonstrated (subsection 6.1.1). Subsequently, a lithography-
based fabrication technique for micro-structuring the meta-lens, i.e., DLW, is presented in
detail (subsection 6.1.2). Finally, the section is concluded with a discussion about limiting
factors in the meta-lens design with respect to applying DLW and interfacing with optical
fibers (subsection 6.1.3).

6.1.1 Beam expansion
A key requirement for proper operation of a DOE, such as the previously introduced
meta-lens, represents a well-defined phase of the incident beam. Here, this is effectively
ensured via using an approximately 50 cm long piece of a conventional SMF with a core
of diameter 2a = 3.5 µm (Thorlabs 630HP). In order for the SMF to comply with the
design and implementation of the diffractive lens, however, the usable cross-section of
its fundamental HE11 mode (see Figure 2.1) needs to be enlarged. Specifically, the SMF
is thus functionalized via fusion splicing a short section of a multi-mode fiber (MMF)
of larger core (2a = 105 µm, Thorlabs FG105LVA) to its end (compare refs. [46, 145, 146]),
thus resulting in a functionalized single-mode fiber (see subsection 2.1.2).
Figure 6.2A demonstrates the concept of a large core functionalized hybrid SMF,

while Figure 6.2B illustrates an implemented example of a fusion spliced short beam
expansion section of length L. Here, various different samples of lengths ranging from
L = 400 . . . 800 µm were in principle fabricated (visualized in Figure 6.2C), while only
fibers of L ≥ 720 µm effectively provide sufficiently enlarged beams for reaching funda-
mental mode diameters of about ∅ ≈ 90 µm complying with the design of the meta-
lens. In particular, this agrees with the estimated numerical aperture of NAfiber =
nSiO2 sin

(
arctan

(
∅
2L

))
≈ 0.09 for the SMF, as resulting from a Fourier transformation

and its obtained angular spectrum of the calculated fundamental mode (details see Fig-
ure 2.4, D and E). In the following, two samples are specifically referred to as (i) sample 1:
L1 ≈ 720 µm and (ii) sample 2: L2 ≈ 750 µm (compare ref. [46]).
For all fabricated samples, images of the fiber mode were recorded, as exemplarily

presented for sample 1 (L1 ≈ 720 µm length) in Figure 6.2D. Here, a continuous wave (CW)
laser diode emitting an optical power of P0 = 120 mW at a wavelength of λ = 660 nm
(Thorlabs L660P120) was used for exciting the fundamental mode (details of the setup and
the optical microscope for recording the mode images see subsection 4.1.1). Specifically,
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coupling efficiencies of η > 60% were reached to verify the excitation and guidance of only
the fundamental hybrid SMF mode. Towards the end of the fiber, where the guided mode
spreads out to the boundary of the silica cladding in air, total internal reflection (TIR)
occurs, i.e., guiding in air. This effectively yields an interference pattern with the guided
mode in the core, which is visible as the rings in Figure 6.2D. To obtain the mode field
diameter (MFD, see subsection 2.1.1) of the guided mode, the azimuthal average of the
intensity I(r, ϕ) for the coordinate ϕ was calculated in order to preserve radial symmetry,
and its 1/e2 value was subsequently determined, as displayed for sample 1 in Figure 6.2E.
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Fig. 6.2. Concept and experimental implementation of a functionalized hybrid single-mode fiber
operating at a wavelength of 660 nm. (A) Concept of a large core hybrid optical fiber, consisting of a
single-mode fiber (SMF) of small core (4 µm diameter) combined with a multi-mode fiber (MMF) of larger
105 µm diameter core. (B) Example of an experimental implementation via fusion splicing the MMF section to
the SMF. The dashed red line represents the expanded beam inside. (C) Recorded mode diameters of samples
with lengths between 400 µm and 800 µm. Here, sample 1 has a length of 720 µm, and sample 2 one of 750 µm.
All samples exhibit numerical apertures of 0.09. (D) Recorded mode of sample 1 (720 µm), and (E) azimuthal
average of the intensity profile with fit for the mode diameter. The ring pattern results from total internal
reflection at the silica-air boundary of the MMF and interference with the guided mode inside the core.

Instead of fusion splicing a short beam expansion section onto the tip of the SMF,
optical printing of a transparent spacer via 3D direct laser writing[86,150] effectively represent
another solution to homogeneously illuminate an attached optic. Within the following,
the technique of DLW for 3D optical printing of a diffractive meta-lens directly onto the
facet of the large core hybrid SMF is presented in detail.
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6.1.2 Direct laser writing

When comparing reports on interfacing beam shaping elements with optical fibers[42,52,122]

(for a detailed overview see Table 6.1), it stands out that a majority of these concepts rely on
lithography-based implementations. In general, these can be categorized into conventional
molding and lift-off procedures[51,147,148] and mask-less direct writing techniques[52,59,149].
Femtosecond (fs)-direct laser writing (DLW), in particular,commonly also referred to
as direct laser lithography or three-dimensional (3D) optical printing[86,122], represents
a mask-less technique relying on two-photon absorption-based polymerization[52,59,149]

via the formation of so-called voxel cells (as for volume pixels, Figure 6.3B). Not only
do these principally allow for transparent micro-optical elements on the order of the
wavelength[52,59,149], but effectively represent the building blocks enabling the creation of
arbitrary 3D structures[52,86,122] (Figure 6.3A).
In contrast to structuring dielectrics such as, e.g., Si or TiO2 via traditional (deep-)

UV or electron-beam lithography (EBL)[42,151], the 3D-capability of DLW provides a key
advantage over EBL, which in principle only allows patterning in 2D, and effectively led
to its application here. Alongside not requiring large-scale machinery and clean room
facilities to achieve high resolution, DLW particularly stands out by its ease of use via
relying only on conventional laser laboratory equipment, thus providing a straight-forward,
small-scale, cost-efficient, fast and reliable technique in terms of reproducibility.
For optical printing, here, a commercial system (Photonic Professional GT, Nano-

scribe GmbH) was used, consisting of a fs-pulsed laser at a wavelength of λ = 780 nm that
is tightly focused via a 63× oil immersion objective (Zeiss Plan-Apochromat, NA = 1.4)
into a viscous drop of polymeric negative photoresist. Figure 6.3 demonstrates various
examples of experimentally implemented structures using DLW, while here, specifically,
the IP-Dip photoresist (Nanoscribe GmbH) was used. However, in principle a broad range
of different resists exist[152,153], such as IP-L 780, e.g., which effectively increases mechanical
stability, thus allowing for 3D structures of high aspect ratios[154] as exemplarily illustrated
in Figure 6.3A for the printed sample of total height ≈ 675 µm.

Here, all samples were developed in a PGMEA bath (Sigma-Aldrich 484431) for 20min,
followed by a 2min NovecTM (Sigma-Aldrich SHH0002) rinse after printing. Figure 6.3B
displays an example of polymerized voxel cells, representing a zoomed-in region of a laser
written thin diffractive lens that is visualized in Figure 6.3C. Specifically, the voxel cells
are only formed where the local peak intensity Imax of the fs-laser pulse exceeds a certain
threshold that initiates the polymerization, which thus locally hardens the resist[52,149].
After washing out non-polymerized residue for revealing the final structure, this generally
yields lateral feature sizes of ≈ 100 nm with aspect ratios of 1:3.

For stronger bonding between silica substrates and 3D printed microstructures for optical
trapping applications in water, here, the substrates were treated via a silanization process
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prior to DLW. Overall, this generally improves chemical and mechanical stability and effec-
tively yields a better adhesion between SiO2 and the polymer[155,156]. Here, substrates were
first activated via an oxygen plasma for 1min (150W power), followed by overnight
immersion within 1% 3-(Trimethoxysilyl)propyl methacrylate (Sigma-Aldrich 440159)
dissolved in ethanol, and finally dried with nitrogen. Figure 6.3D exemplarily shows the
process of laser writing a diffractive meta-lens structure on the facet of an optical fiber,
where the white bar represents the writing laser that is scanned via two galvanic mirrors.

10µm

facet
lens

Meta-lens on fiber

Written diffractive lens

10µm

Example of 3D printed object

100µm

67
5µ

m

Writing on fiber facet

20µm

structure
fiber

writing laser

A B C

D FE Meta-lens structure

5µm

Polymerized voxel cells

2µm

Fig. 6.3. Examples of experimentally implemented structures using 3D direct laser writing (DLW).
(A) Example of an optically printed 3D structure reaching a total height of 675 µm. (B) Voxel cells resulting
from femtosecond (fs)-pulsed laser induced two-photon absorption. The negative photoresist polymerizes
only where the peak intensity of the laser pulse exceeds a certain threshold. (C) Laser written example of a
diffractive lens on a planar substrate. (D) Process of laser writing a diffractive meta-lens structure (dashed
green circle) on the flat-cleaved tip of an optical fiber (dashed cyan circle). The white bar shows the scanned
writing laser. (E) Finished result of D, showing an example of an optically 3D printed meta-lens on a fiber tip.
(F) Close-up image of the central region of E, effectively revealing the discretized structure of the meta-lens.

Before printing on its facet, however, the optical fiber was flat-cleaved, while no additional
polishing or cleaning of its tip was performed. Figure 6.3E depicts a finished example of a
meta-fiber, where a base layer of h = 5 µm height was printed first in order to promote
strong mechanical connection. Here, a close-up image of the central region in Figure 6.3F
effectively reveals the discretized meta-lens structure, specifically requiring an approximate
printing time of t = 1 h for a final height of h = 3 µm (compare ref. [46]).

68
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As generally found within optical techniques, however, a bottleneck lies within the applied
wavelength λ, both for imprinting, i.e., encoding a structure, as well as for its later read-out,
i.e., the decoding. Here, DLW imposes limits to the meta-lens design via the minimum
achievable printing resolution ∆x, which is implied by the wavelength λ and is discussed
within the following. One solution to decrease the wavelength-dependent resolution ∆x(λ),
e.g., represents the principle of stimulated-emission-depletion (STED)-DLW[157–159].

6.1.3 Lens design limits

In the design of an optically printed meta-lens, principally two main limiting factors arise,
both in encoding, i.e., printing, as well as in decoding, i.e., later read-out of the phase
structure (compare ref. [46]). Effectively, these are caused by different origins, however,
both are implied by wavelength-dependent properties of the respective laser sources:

1. Aliasing The spatial discretization of a phase element, in particular, establishes
limits to the maximum resolvable phase change between two adjacent pixels via the
minimum lateral resolution ∆x (implied by the printing process and the wavelength λ
of the used writing laser). Defined via the Nyquist-Shannon theorem[160], in case this
limit is violated, this effectively yields the issue of undersampling, i.e., aliasing.

2. Coherence A finite spectral bandwidth ∆λ of the used trapping laser during the read-
out process, on the other hand, effectively limits the requires coherent interference of
wavefronts emerging from all phase elements of the diffractive meta-lens. This mainly
affects the geometry and thus the effective NA of the printed lens.

Within the following, these two limits are discussed individually, while here, the design
of the meta-lens was specifically calculated for its operation within an aqueous medium.

Aliasing (writing)

Since a meta-lens in principle represents a phase-element, it is effectively prone to aliasing
when spatially discretizing its phase profile φ(x) within the computer-based implementation
of DLW (compare refs. [46, 84, 161]). The Nyquist-Shannon theorem[160], in particular,
defines the maximum resolvable phase change ∆φ(x) between two adjacent pixels:

∣∣∣∣∣∆φ∆x

∣∣∣∣∣ ≈
∣∣∣∣φ′(x)

∣∣∣∣ < π

∆x, (6.1)

where ′ denotes the derivative with respect to the lateral coordinate x.
However, the pixel pitch ∆x, generally does not represent the actual width of the

finest spatially resolvable feature size d as of the Abbe criterion (see Equation 2.14),
since voxel cells are effectively polymerized only above a certain threshold Imax via the
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two-photon process (see subsection 6.1.2). Within the optical printing here, a pixel
specifically consists of multiple half-overlapping voxels (see Figure 6.3B) set to a lateral
resolution, i.e., hatching, of 50 nm and vertical stacking, i.e., slicing, of 200 nm, being
well below the Abbe resolution limit. For a diffractive polymer lens of phase profile φ(x),
height h = λ/(nl − nm) ≈ 3 µm and refractive index nl operating within an aqueous
medium of refractive index nm, this yields ≈ 16 layers including the base layer.
In case Equation 6.1 is violated, however, the imprinted profile of the meta-lens is

effectively undersampled, i.e., aliased, and higher diffraction orders emerge. While the
focal length f , in principle, remains constant, the constructively contributing fraction of the
lens diameter ∅ and thus the geometric numerical aperture of NA = nm sin

(
arctan

(
∅
2f

))
particularly are reduced. Figure 6.5A exemplarily illustrates the design of an undersampled
diffractive lens (resolution ∆x = 500 nm, diameter ∅ = 125 µm, focal length f = 50 µm,
resulting nominal NA ≈ 0.8), whose simulated focusing in air for an incident plane wave is
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Fig. 6.4. Influence of lateral resolution on the effective numerical aperture (NA) of a diffractive lens.
(A) Example design of an aliased lens (nominal 0.8NA, 500 nm resolution), and (B) simulated focusing in air.
The undersampled region in A (dashed green square) lowers the effective NA by contributing to higher diffraction
orders while keeping the focal length constant. (C) Experimentally recorded focal plane at a wavelength of
660 nm for a laser written example of A. The bright spots on the edges indicate aliasing. (D) Influence of
resolution and (E) dispersion on the effective NA in water for two different phase profiles (see main text).
An alias-free operation at NA≥ 0.8 for single beam optical trapping requires at least a resolution of 350 nm at a
wavelength of 660 nm. (F) Recorded focal plane of the sample in C, written at an alias-free 300 nm resolution.
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demonstrated in Figure 6.4B. Here, an example sample of this lens was optically printed
onto a planar substrate, and its focusing was experimentally recorded at a wavelength
of λ = 660 nm as visualized for the focal plane in Figure 6.3C. Specifically, aliasing is
revealed via the higher diffraction orders as the bright spots towards the edges of the
printed structure, overall being in line with the simulation presented in Figure 6.4B.
In Figure 6.4D, the incremental phase change, i.e., the derivative φ′(r) with respect

to the radial coordinate r, of Equation 6.1 for the ideal profile of a diffractive asphere
(see Equation 2.8, φ′ideal(r) = −kr/(f 2 + r2)1/2, solid line) is compared to the parabolic
approximation of a spherical lens (see Equation 2.9, φ′par(r) = −kr/f , dashed line,
compare ref. [46]). Here, k = 2πnm/λ denotes the wavenumber in water, and both
functions are normalized to their radial coordinate r reaching unity at the edges of the lens.
This specifically reveals how the minimum achievable resolution ∆x limits the maximum
resolvable inter-pixel phase change ∆φ and thus the usable fraction of the diameter ∅
as well as the effective geometric NA of the lens. Towards the edges (r → 1), in particular,
the ideal profile φideal(r) exhibits less curvature than the parabolic approximation φpar(r),
thus being used in the following for achieving a higher NA of the diffractive lens while
principally requiring the same printing resolution ∆x.

Figure 6.4E depicts the dispersion of the phase profile φ(r, λ) as a function of the trapping
laser wavelength λ, which strongly affects the minimum resolution ∆x(λ) required to
prevent aliasing. Here, a wavelength of λ = 660 nm requires a minimum resolution of
∆x(λ = 660 nm) = 350 nm for alias-free operation of a diffractive lens with an NA of
at least 0.8 in water (required within single beam optical trapping, compare refs. [44,
46, 83]). Figure 6.4F experimentally confirms the alias-free operation of an exemplary
written sample of the same planar lens structure as previously displayed in Figure 6.4C,
which here, in contrast, was printed at a resolution of ∆x = 300 nm.

Coherence (read-out)

Since the concept of a diffractive lens with its discretized phase structure (see Figure 6.3F)
effectively relies on the Huygens-Fresnel principle (see subsection 2.2.2), a sufficiently
large number of elements is required for imprinting its phase and shaping the wavefront
of an incident beam. Here, the focusing efficiency is assumed to increase with the
number of elements, i.e., the pixels within a computer-generated phase mask, and highest
performance with respect to the NA (at least ≥ 0.8) is thus achieved in case all wavefronts
emerging from the phase structure interfere coherently.
However, the spectral bandwidth ∆λ and the resulting coherence length Lcoh =

λ2/(nm∆λ) of a trapping laser effectively limit the contribution of the entire meta-lens
diameter ∅, which corresponds to a number ofNFres = φ

(
∅
2 , λ

)
/(2π) Fresnel zones (see sub-

section 2.2.1 and Figure 6.5A). For maximum performance and efficiency, the coherent
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interference of all radial Fresnel zones thus demands (compare ref. [46]):

Lcoh > λNFres. (6.2)

Figure 6.5A demonstrates the influence of spectral properties, i.e., wavelength λ and band-
width ∆λ, of a trapping laser on the number of coherently interfering Fresnel zones FFres

and the resulting effective geometric NA for a diffractive lens in water. For reaching
sufficiently high NA ≥ 0.8 at a wavelength of λ = 660 nm, a spectral bandwidth of
∆λ < 15 nm is effectively required, here specifically being ensured via a CW laser diode
(Thorlabs L660P120, ∆λ = 13 nm) that is consistently used throughout all following consid-
erations. Figure 6.5B illustrates a map of influenced geometric parameters, i.e., diameter ∅
and focal length f , of the meta-lens, as well containing all previously discussed design limits
for a coherent operation in water at a wavelength of λ = 660 nm. While the minimum
achievable resolution ∆x within 3D printing and the attributed effect of aliasing represent
limitations for high NAs, the bandwidth ∆λ and the resulting coherence length Lcoh of a
trapping laser particularly represent key limitations for ultra-high NAs.
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Fig. 6.5. Calculated influence of spectral bandwidth on the coherent operation of a high numerical
aperture (NA) meta-lens in water. (A) Number of interfering Fresnel zones and resulting effective geometric
NA as a function of wavelength and spectral bandwidth of the trapping laser. A high NA≥ 0.8 for single
beam optical trapping demands fewer than 15 nm bandwidth. (B) Resulting geometry, i.e., lens diameter and
focal length, for coherent operation of the meta-lens at a wavelength of 660 nm. While resolution and aliasing
represent key limitations for high NAs (sample 1: 55 µm focal length at 330 nm resolution), ultra-high NAs
(sample 2: 50 µm at 300 nm resolution) are mainly limited by a finite bandwidth and resulting coherence of the
trapping laser. Both samples exhibit diameters of 90 µm, corresponding to 0.84NA and 0.89NA, respectively.

Here, two samples of the same lens diameter ∅ = 90 µm (consistently used throughout
all following calculations and experiments) but of different remaining parameters (lateral
resolution ∆x1,2 and focal length f1,2 with corresponding nominal NA1,2) were printed:

(i) sample 1 (L1 ≈ 720 µm): f1 = 55 µm, designed NA1 = 0.84, ∆x1 = 330 nm, and

(ii) sample 2 (L2 ≈ 750 µm): f2 = 50 µm, designed NA2 = 0.89, where the minimum
resolution within two-photon based optical printing was assumed to be ∆x2 = 300 nm.
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In the following, characterizing sample 2, particularly, is discussed based on experimen-
tally recording its focusing performance to verify the ultra-high NA2 of 0.89.

6.2 Focusing performance
While previously, the concept of a large core functionalized hybrid fiber (see Figure 6.2)
and the individual design of a high NA diffractive meta-lens were discussed in detail
(Figure 6.5B), this section in particular focuses on their explicit combination. For its proper
operation while achieving diffraction limited performance in combination with the hybrid
SMF (which requires correctly representing its phase and thus considering the incident
wavefront), however, the design of the meta-lens needs to be adapted. Ideally, a Shack-
Hartmann wavefront sensor consisting of a microlens array is thus used for characterizing
an incident beam, since an incorrectly represented wavefront in the diffractive meta-lens
design effectively results in incorrect operation.

Within this section, first, a preliminary analysis of (i) errors due to an general wavefront
uncertainty and (ii) specifically a spherical aberration resulting from the wavefront of the
hybrid SMF is carried out (subsection 6.2.1). Finally, a detailed experimental investigation
via measuring the focusing performance and the NA of the adapted meta-lens design that
is implemented on the facet of a large core functionalized hybrid fiber, i.e., the meta-fiber,
completes the section (subsection 6.2.2, compare ref. [46]).

6.2.1 Wavefront errors

As previously mentioned, an incorrectly represented wavefront within the design and the
implementation of a diffractive meta-lens in combination with an optical fiber effectively
leads to an erroneous operation. In principle, these errors are of different origins:

1. wavefront errors resulting from a general uncertainty of the wavefront, and

2. specifically a spherical aberration due to disregarding the fiber wavefront.

In the following, these two errors are discussed individually, while first, the influence of
a general wavefront uncertainty on the focusing performance of a diffractive lens is qualita-
tively investigated within an experimental comparison. Subsequently, the performance of
the meta-lens is determined within a simulation in order to quantitatively analyze spherical
aberrations and particularly to adapt the specific design of the meta-fiber.

Unknown wavefront

Here, a qualitative experimental comparison between various examples of incident wave-
fronts (Figure 6.6, A to C, details see Figure 2.4) and their influence on the combination
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with optically 3D printed diffractive lenses (Figure 6.6, D and E) is made. Specifically,
all experiments were carried out at a wavelength of λ = 660 nm, while the lenses were
designed with respect to operating within their intended media (air or water).

A plane wave of flat phase Φplane(x, y) = 0, whose intensity I(x, y) is given in Figure 6.6A,
in combination with a planar lens (Figure 6.6D) yields the expected result of an Airy disc in
the focal plane as shown within Figure 6.6F. Principally, the focal spot is nearly diffraction
limited, but here appears comparably large due to the low NA lens. The mode profile of a
multi-mode fiber (MMF), however, as exemplarily visualized in Figure 6.6B, with its not
only chaotic but totally incoherent wavefront (see Figure 2.4, A to C), effectively yields a
much larger focal spot when interfaced with the same planar lens, which is presented in
Figure 6.6G. Due to incoherent emission at its facet, the resulting focal spot exhibits a
diameter of ∅spot = 2f tan(arcsin(NAfiber)) as predicted by geometric optics.
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Fig. 6.6. Influence of different experimental wavefronts on the focusing performance of diffractive
lenses at a wavelength of 660 nm. Different combinations of (A–C) incident wavefronts with (D) a planar
diffractive lens or (E) a fiber corrected meta-lens yield (F–G) different respective patterns in the focal plane.
(A) The flat phase of a plane wave combined with the planar lens in D results in (F) a near diffraction limited
focal spot. (B) A multi-mode fiber (MMF) of chaotic phase and incoherent wavefront in combination with D
yields a larger spot diameter as obtained by geometric optics. (C) The spherical wavefront of a hybrid optical
single-mode fiber (SMF) combined with the planar lens in D results in (H) a spherical aberration of the focus.
(E) A fiber corrected meta-lens design is required to achieve (I) diffraction limited focusing performance.
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Figure 6.6C, in contrast, displays the fundamental HE11 mode of a hybrid single-mode
fiber (SMF, details see Figure 6.2D), which principally exhibits a well-defined spherical
phase Φfiber(x, y) (see Figure 2.4, D to F). Combined with a planar diffractive lens
(Figure 6.6D), in particular, this yields a spherical aberration as depicted in Figure 6.6H.
For diffraction limited focusing, however, as shown in Figure 6.6I, this specifically demands
canceling the spherical fiber wavefront phase Φfiber(x, y) first, using an adapted meta-lens
design (Figure 6.6E), followed by shaping the incident beam via imprinting the new phase
of the diffractive focusing lens (compare Figure 2.4, G to I, and ref. [46]).

To determine the influence of a spherical wavefront on the focusing performance of the
meta-fiber, its interfacing with a diffractive lens was quantitatively analyzed via explicitly
simulating the scenarios shown in Figure 6.6, H and I, as discussed in the following.

Spherical aberration

In contrast to Figure 6.6, H and I, where generic wavefront errors were only qualitatively
compared, here, the diffraction limited (see subsection 2.2.2) performance of the meta-fiber,
as quantitatively analyzed within a simulation, is discussed. Specifically, all calculations
assume its operation in water at a wavelength of λ = 660 nm, and the focusing was
calculated using the beam propagation method (BPM, details see subsection 2.2.2).
After emerging from the aperture of a conventional SMF, wavefronts of the divergent
beam are curved with a radius of R(z) = z

[
1 + (zR/z)2

]
and the fiber effectively acts

as a negative spherical lens of focal length −f = R(z) ≈ z for propagation distances
z � zR ∼ 10 . . . 30 µm (typical Rayleigh lengths in the visible, see Equations 2.6c and 2.6b).
Figure 6.7, A and B, shows the calculated beam profile, i.e., the intensity I(r, Lmin) and the
phase Φ(r, Lmin), of a hybrid SMF for a beam expansion section of minimum length
Lmin = 720 µm, where the fiber exhibits the phase (see Equation 2.7 and Figure 2.4F):

Φfiber(r, Lmin) ≈ kLmin − arctan(Lmin) + kr2

2Lmin
, (6.3)

and k = 2πnm/λ is the wavenumber within the aqueous medium of refractive index nm.
The spherical phase Φfiber(r, Lmin) of the fiber, however, additionally contributes to the

overall phase Φtot(r, f, L) = Φmeta(r, f)+Φfiber(r, L) of the combined meta-fiber system, i.e.,
meta-lens of focal length f on expansion section of length L, which effectively yields a
spherical aberration due to its curved wavefront. Figure 6.7, C to E, exemplarily illustrates
the simulated focusing performance for a diffractive meta-lens of phase Φmeta(∅, f2) =
mod (φideal(90 µm, 50 µm), 2π), i.e., sample 2 of designed NA2 = 0.89, which is illuminated
via the calculated beam of the hybrid fiber (Figure 6.7, A and B, compare ref. [46]).
While the inset in Figure 6.7C displays the focal plane, where the dashed line denotes
the Airy width, the intensity profiles I(r, z = 0) and I(r = 0, z) along the focal symmetry
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6 Meta-fiber trap

axes are given in Figure 6.7, D and E, respectively. For determining the NA, the profiles
were fitted along their respective directions according to the diffraction theory (details see
Equations 2.13a and 2.13b) as represented by the dashed curves, while the dotted lines
indicate the full width half maximum (FWHM) of the focal spot.

Due to the uncorrected fiber wavefront curvature, the focal region suffers from a negative
spherical aberration, i.e., the retarded focusing of marginal rays, which is effectively visible
as the opposite effect to that obtained from a spherical lens (see Figures 2.3B and 2.5,
D and F). This reduces the NA of the meta-fiber by ∼ 0.1 to NA < 0.8, yielding an
axial shift of the focal plane by ∆f ∼ 5 µm. To improve the focusing performance of
the meta-fiber for reaching ultra-high NAs, however, the concept relies on including a
correction term for the spherical aberration of the fiber wavefront. Therefore, the spherical
phase Φfiber(r, L) of the hybrid fiber is canceled first, followed by shaping the incident
beam and imprinting the new phase Φmeta(r, f) of the meta-lens (details see Figure 2.4,

Corrected fiber wavefront

Axial profile

Spherical wavefront aberration

Fiber intensity & phase

Axial profile

A B

C

D

E

F

G

H

Fig. 6.7. Calculated spherical aberration and correction for diffraction limited performance of a
meta-fiber in water at a wavelength of 660 nm. (A) Intensity and (B) phase profile of the beam emitted
by a large core functionalized hybrid single-mode fiber (SMF). The fiber exhibits a near Gaussian intensity
profile and a well-defined spherical phase. (C) Rotational symmetric, (D) radial and (E) axial profile along the
symmetry axes of the focal region indicated by the dotted lines in C when interfacing the hybrid fiber with a
planar diffractive meta-lens (inset: focal plane, dashed: width of Airy function). The solid green lines represent
the measured curves, the dashed one the fit according to the diffraction theory, and the dotted ones the full
width half maximum (FWHM) of the focal spot. A positive spherical aberration due to the curved wavefront
of the SMF reduces the designed numerical aperture (NA) by ∼ 0.1 to NA< 0.8 (see main text). (F–H) Same
as in C–E for implemented correction of the curved fiber wavefront within the meta-lens design. The fitted
intensity profiles reveal a diffraction limited ultra-high NA of 0.88 for the focal spot of the meta-fiber.
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6.2 Focusing performance

G and H). Here, the spherical aberration as an example of a phase anomaly, in particular,
allows for straight-forward correction via a diffractive optic, i.e., the phase-type meta-lens,
thus representing a key advantage over traditional refractive optics.

Figure 6.7, F to H, in contrast, shows the simulated focusing performance for a meta-fiber
(sample 2, designed NA2 = 0.89) that particularly includes the wavefront correction, i.e.,
Φtot(r, f2, Lmin)− Φfiber(r, Lmin). Here, a minimum length of Lmin = 720 µm was assumed
to be sufficiently long for a free expansion of the SMF mode across the MMF section
and filling the entire lens aperture, effectively yielding a very high numerical aperture
of NAsim = 0.88. Directly compared to the uncorrected design, however, the included
wavefront correction exhibits a flat phase Φfiber(r) in the focal plane being only modulated
by a value of π, and represents a perfect match of the simulated profile with the design
parameters, i.e., f2 = 50 µm focal length. Specifically, the simulated NAsim of 0.88 deviates
only little from the designed value of NA2 = 0.89 as a result of numerical errors and the
illumination with a Gaussian profile instead of a plane wave.

However, due to experimental tolerances within the precision of cleaving a short section
of the beam expansion fiber as well as the unavailability of a Shack-Hartmann wavefront
sensor for characterizing individual samples, here, a generic meta-lens design was applied
to all functionalized fibers. This specifically assumes an underestimated expansion section
of length Lmin, effectively yielding an over-corrected positive spherical aberration (see Fig-
ure 2.5, D and F) due to a stronger curvature of the fiber wavefront than an overestimated
length of L > Lmin. Nevertheless, this generally has a smaller impact on the performance
than an under-corrected negative spherical aberration (Figure 6.7, C and E) and as well
leaves room for possible deviations of the actual from the assumed fiber wavefront within
the meta-lens design for the correct length L of the expansion section. To confirm the
simulated ultra-high NAsim of 0.88 (designed NA2,theor = 0.89), the focusing performance
of sample 2 was experimentally analyzed as discussed in the following.

6.2.2 Implemented meta-fiber

While previously, only a qualitative comparison (Figure 6.6, E and I) and a simulation
(Figure 6.7) revealed the diffraction limited performance of the meta-fiber, here, its experi-
mentally determined focusing for confirming the simulated ultra-high numerical aperture
of NAsim = 0.88 is discussed. Therefore, a continuous wave (CW) laser diode of emission
wavelength λ = 660 nm and bandwidth ∆λ = 13 nm (Thorlabs L660P120) was used for
coupling light into a final implementation of the meta-fiber. In particular, this included
the spherical wavefront corrected design of the diffractive meta-lens being implemented on
the facet of a large core functionalized SMF, i.e., sample 2 (MMF length L2 ≈ 750 µm,
focal length f2 = 50 µm, nominal NA2 = 0.89, see Figure 6.3, E and F).
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6 Meta-fiber trap

Here, the beam profile of the meta-fiber was imaged from the front using an inverted
microscope (similar to Figure 4.2), consisting of a 60× water dipping objective (Nikon CFI
Apo NIR, NA = 1.0), followed by an achromatic tube lens of focal length f = 300 mm and a
CMOS camera (Basler acA640-750uc, 4.8 µm pixel size). Specifically, the tip was immersed
from the top into a water reservoir created around the objective using paraffin, followed by
scanning the focal region along the axial direction z using a piezo-driven objective collar
(Mad City Labs Nano-F100) in steps of ∆z = 100 nm. At every step, micrographs for three
different exposure times of τ = 0.1, 1, 10 ms were taken and subsequently combined into
high-dynamic range (HDR) images noise of floor < 10−5. Finally, the resulting HDR images
were individually sub-pixel centered using the image shift algorithm (see subsection 4.1.2),
averaged over the azimuthal coordinate ϕ (Figure 6.8, E and F, compare Figure 6.2E
and ref. [46]), and axially stacked (Figure 6.8, E and G).
Figure 6.8 demonstrates the experimentally recorded beam profile of a meta-fiber

(sample 2) with diffraction limited performance in the focal region. In Figure 6.8, A to D,
cross-sections of various different intermediate positions z through the focus are illustrated,
where Figure 6.8C visualizes the focal plane and the dashed circle represents the width of

Axial stack

A B C D

E F

Sample

Axial profile G

Radial profile

Focal region

Fig. 6.8. Experimental focal scan verifying the diffraction limited ultra-high numerical aperture (NA)
of the meta-fiber in water at a wavelength of 660 nm. (A) Micrograph of the sample plane and (B–D) of
different intermediate axial planes in the focal region. (B,D) Negative and positive end of the full width half
maximum (FWHM) range, respectively, and (C) focal plane as indicated by the arrows. The dashed circle
denotes the width of the Airy function. (E) Rotational symmetric, (F) radial and (G) axial profile relative
to the focal plane along the symmetry axes as indicated by the dotted lines in E. The solid curves represent
the measured profiles, the dashed ones the respective fits to the diffraction theory, and the dotted ones the
FWHMs of the focal spot. The fitted intensity profiles reveal an ultra-high NA of 0.88 for the focal spot,
experimentally confirming the diffraction limited operation of the meta-fiber and the prior simulated results.
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the Airy function. The radially dependent intensity I(r, z = 0) and the profile I(r = 0, z)
on the optical axis z are displayed in Figure 6.8, F and G, respectively, while both profiles
were fitted to the corresponding equations describing a diffraction limited focal spot
(Equations 2.13a and 2.13b).

Here, the measured value of NAmeas = 0.88 experimentally confirms the diffraction
limited ultra-high NA, while being in excellent agreement with the previous simulation and
matching the result of NAsim = 0.88 (NA2,theor = 0.89). The positive spherical aberration
in Figure 6.8, E and G, at a relative position of z = ±3 µm (opposite to the simulated
scenario in Figure 6.7, C and E), in particular, results from the over-corrected wavefront
curvature – an effect of the implemented generic design for an expansion section of length
Lmin = 720 µm instead of the longer L2 ≈ 750 µm of sample 2 here.

6.3 Meta-fiber optical trapping
The key aim for previously analyzing the meta-fiber focusing performance in such detail par-
ticularly represents demanding NA > 0.8 for optical trapping of freely diffusing individual
micro-objects in water along all three spatial dimensions simultaneously with only a single
beam (compare refs. [44, 46, 83]). In this context, first, the trapping of individual silica
microbeads and Escherichia coli bacteria (both identical to as in chapter 5) with a single
meta-fiber was experimentally demonstrated (subsection 6.3.1). Subsequently, its perfor-
mance with respect to trapping the silica beads was analyzed (subsection 6.3.2). Finally,
the obtained results are assessed in terms of trapping performance, and a comparison to
similar literature reported concepts is drawn (subsection 6.3.3).

6.3.1 Experimental demonstration

Here, all trapping experiments were carried out within aqueous solutions at a wavelength
of λ = 660 nm, while a continuous wave (CW) laser diode emitting an optical power
of P0 = 120 mW (Thorlabs L660P120) was used for coupling light into a functionalized
meta-fiber (sample 1: focal length of f1 = 55 µm, designed NA1,theor = 0.84, and sample 2:
f2 = 50 µm, measured NA2,meas = 0.88). Specifically, both samples reached optical powers
of P > 30 mW (sample 1: P1 = 31 mW, sample 2: P2 = 33.5 mW) measured at their
respective outputs after the combined system of hybrid fiber with diffractive meta-lens tip.
For a consistent particle concentration c throughout all experiments, here, the silica beads
of diameters 2R = 2 µm (Micromod Inc.) were diluted at a ratio of 1:2000, while the
Escherichia coli (E. coli) bacteria were 1:10-fold diluted from their stock solution within
ultra-pure water, both yielding final concentrations of c ∼ 6 · 106 cm−3.

For optical trapping, a drop of a few ten microliters of the particle solution was pipetted
into the windowed sample chamber (see Figure 4.2C), and the tip of a hybrid meta-fiber
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6 Meta-fiber trap

was subsequently immersed into the liquid. Within all measurements, a custom-built
microscope consisting of a 50× dry objective (Olympus MPLFLN, NA = 0.8), followed by
an achromatic tube lens of focal length ft = 200 mm (Thorlabs AC254-200-A-ML),
was used for imaging the motion of a trapped particle from the side (details of the setup
see Figure 4.2). Meanwhile, scattered trapping laser light was blocked using a notch filter
of central wavelength λ0 = 658 nm (Thorlabs NF658-26). Here, homogeneous Köhler
illumination (see Figure 4.3) was provided via a fiber-coupled light emitting diode (LED)
of wavelength λ = 455 nm (Thorlabs M455F3), which was connected to a multi-mode fiber
(Thorlabs M18L, core diameter of 2a = 105 µm and NA of 0.22).

Figure 6.9A exemplarily demonstrates a 2R = 2 µm diameter silica bead that was
optically trapped along all three spatial dimensions simultaneously using only a single
hybrid meta-fiber (sample 1, f1 = 55 µm focal length, designed NA1,theor = 0.84). In Fig-
ure 6.9B, in contrast, trapping of a biologically relevant E. coli bacterium in front of
sample 2 (f2 = 50 µm, NA2,meas = 0.88) is exemplarily illustrated, while the bacterium was
effectively trapped on timescales of several minutes. Specifically, no degradation of neither
the trapped object (tested damage threshold P > 50 mW) nor the functionalized meta-fiber
(Imax ∼ 6mW/µm2) was observed, while the samples have been continuously reused over
the course of weeks. The insets in Figure 6.9, A and B, display 5× magnifications of the
trapped particles as indicated by the dashed circles, respectively.
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Fig. 6.9. Optical trapping of a silica bead and an Escherichia coli (E. coli) bacterium in water with
a single meta-fiber at a wavelength of 660 nm. (A) Silica bead of 2 µm diameter in front of sample 1
(55 µm focal length, designed numerical aperture NA1 =0.84), and (B) E. coli bacterium in front of sample 2
(50 µm focal length, measured NA2 =0.88), both optically trapped along all three spatial dimensions using a
single meta-fiber. The insets show 5× magnifications of the trapped particles as indicated by the dashed circles.
(C) Obtained time-dependent trajectory and (D) histogram of the tracked displacement for the silica bead
in A along the transverse (⊥) and the axial (||) direction with respect to the orientation of the meta-fiber trap.
The bead was effectively trapped for more than one minute within a volume smaller than the focal region.
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For analyzing the performance of a meta-fiber with respect to optical trapping, high-speed
videos of a single trapped silica bead were recorded at a high frame rate of 1/∆t = 1000 fps
for a minimum duration of tmax > 60 . . . 75 s. Here, the exposure time τ was set to as
low as τ = .01 ms within all recordings in order to minimize the influence of motion blur,
which heavily impacts and distorts the statistical properties (see Figure 4.7C). Subsequently,
the trajectory of a trapped bead was retrieved from a recorded video using the image
shift algorithm (details of the tracking routine see subsection 4.1.2), effectively yielding
its dynamic displacement ∆x⊥,|| along the transverse (⊥) and the axial (||) direction
with respect to the orientation of the trap and ultimately its complete time-dependent
trajectory x⊥,||(t). Figure 6.9C exemplarily visualizes this for the more than one minute
long trajectory x⊥,||(t) of the trapped bead depicted in Figure 6.9A, where specifically a
displacement within a volume smaller than the focal region was revealed as presented in
Figure 6.9D (compare Figure 6.8E and ref. [46]).

6.3.2 Performance analysis

In order to quantitatively assess the trapping performance of the meta-fiber, subsequently,
the dynamics of a trapped bead (diameter 2R = 2 µm) were analyzed. However, due to
additionally required considerations of rotational diffusion[142] and effectively a more
complex tracking routine, the motion of the confined elliptically shaped E. coli bacteria
was thus not analyzed here. Nevertheless, this principally allows for, e.g., identifying self-
driven motion of trapped objects within optical traps[2,63].
Figure 6.10, A and B, demonstrates the mean square displacement (MSD) and the

power spectrum (PS), respectively, of the retrieved trajectory x⊥,||(t) (Figure 6.9C) of a
trapped bead (compare subsection 4.2.2 and ref [46]). In principle, both techniques allow
for quantitatively analyzing the temporal and spectral properties of its motion as well
as filtering potential error influences within the trajectory x⊥,||(t). Here, two important
characteristics of its motion are revealed: (i) a linear slope for short lag times ∆t ∼ 0
(MSD) and high frequencies 1/∆t� 0 (PS), resulting from the free diffusion D of the bead,
and (ii) a plateau for long lag times ∆t� 0 and low frequencies 1/∆t ∼ 0, respectively,
denoting its confinement within the meta-fiber-based optical trap.
For the MSD illustrated in Figure 6.10A, in particular, no particle drift on timescales

of more than one minute is visible. Furthermore, no superimposed secondary oscillatory
motion of the trapped bead appears as a distinct peak within the PS of Figure 6.10B.
Moreover, little to no aliasing as of high frequency noise as a result of motion blur is present
within the PS, specifically being attributed to the low exposure time of only τ = 0.01 ms.
Overall, the results of both PS and MSD are in excellent agreement, while the latter was
thus chosen as the method of choice for trap analysis within the following.
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To determine the power normalized stiffness κ⊥,||/Pi of the meta-fiber trap, in particular,
the motion of an optically trapped individual silica bead was tracked at different power
levels Pi. Therefore, variable optical density (OD) filters were introduced before the meta-
fiber in order to attenuate the laser beam. For all measurements, filters of OD0.1, 0.2, 0.3,
0.6 and 1.0 were used, effectively resulting in a near linear reduction of the optical power Pi
at the meta-fiber output. Here, Figure 6.10C displays the MSD-analyzed power-dependent
trap stiffness κ⊥,||(Pi) for sample 1 (designed NA1,theor = 0.84) and sample 2 (measured
NA2,meas = 0.88) along two (⊥ and ||) spatial dimensions.

A B CMean square displacement Power spectrum Measured trap stiffness

Fig. 6.10. Experimental analysis of optical trapping and performance of two different meta-fiber
samples for a 2 µm diameter silica bead in water. (A) Mean square displacement (MSD) and (B) power
spectrum (PS) for an exemplary retrieved trapped bead trajectory. The linear slope represents the free diffusion
of the bead, and the plateau denotes its confinement within the meta-fiber optical trap. Both techniques reveal
a drift- and nearly motion blur-free behavior of the trapped microbead and yield similar results. (C) Analyzed
trap stiffness at a wavelength of 660 nm based on the MSD (A) for different optical powers and both meta-
fiber samples. Sample 2 (NA=0.88) overall performs better than sample 1 (NA=0.84) and exhibits a greater
stiffness along the transverse (⊥) than the axial (||) direction due to a smaller aspect ratio of its focal region.

In principle, the transverse stiffness κ⊥ of the meta-fiber trap is about one order of
magnitude larger than κ|| along the axial direction, particularly being attributed to the
large focal aspect ratio that impacts the distribution of particle displacement ∆x⊥,||
(compare Figures 6.8E and 6.9D and ref. [46]). Due to its tighter focus, here, the ultra-high
NA2,meas = 0.88 of sample 2 effectively yields a better performance, i.e., stronger trapping
with larger stiffness κ⊥,||, compared to the lower but still high NA1,theor = 0.84 of sample 1.

6.3.3 Comparison of results

When comparing the normalized stiffness (sample 2: κ⊥,||/P2 = (10.5, 1.1)·10−2 pN/µm/mW)
for the two spatial dimensions, respectively, the single meta-fiber trap performs about a
factor of three better than the previously discussed dual fiber focus trap (compare Table 5.1
and ref. [45]). Here, the same trapped beads of 2R = 2 µm diameter were used, however,
previously a total power of P = P1 +P2 = 60 mW was applied, which thus demonstrates the
importance of the NA within optical trapping. Compared to other diffractive optical traps,
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in particular, the single meta-fiber trap (1 × 0.88 NA2) performs almost one order of
magnitude better than a diffractive dual fiber trap[86] (2× 0.7 NA) of similar concept and
up to three times better than a planar silicon meta-lens trap[162] of even higher NA = 0.96,
specifically emphasizing the efficiency of this concept here.

In comparison to a holographic optical fiber trap[44] (NA > 0.8), however, the obtained
results exhibit a factor of two lower normalized stiffness κ⊥,||/P . This presumably results
from a higher contribution of axial scattering forces ~Fscat(z) ∝ λ−1 for shorter wavelengths λ
(here: λ = 660 nm compared to λ = 1064 nm within ref. [44]). A detailed summary of the
trapping results, here, including the previously obtained ones of chapter 5, is presented in
Table 8.1 within the conclusion of this work.

Table 6.1 summarizes the results of this chapter and gives a comparison to similar
literature reports on HOFs interfaced with focusing elements, specifically including demon-
strated trapping applications. When comparing the here obtained results to the listed
concepts, in particular, it stands out that none of the diffractive optical implementations
allow for trapping using only a single fiber beam (compare refs. [46, 82, 86]). Due to
their limited NA, however, these approaches often require, e.g., additional surfaces for
compensating the axial scattering force ~Fscat(z).

Tab. 6.1. Overview of similar reported concepts of hybrid optical fibers (HOFs) interfaced with
focusing optics. The results presented in this chapter are highlighted in gray, while representing the concept
of the highest implemented NA based on a diffractive optic (PCF denotes a photonic crystal fiber).

Working
principle

Fabrication
technique

Lens
material

Fiber
type

Wave-
length

Numerical
aperture

Trapping
application Ref.

Refractive
microprism

two-photon
lithography polymer 4 SMF

bundle 1070 nm 1.15 water
(theor.)

red blood/
tumor cells [37]

Diffractive
meta-lens

fs-direct
laser writing polymer 1 SMF +

MMF spliced 660 nm 0.88 water 2 µm beads/
E. coli

this
work,
[46]

Digital
holography

spatial light
modulator – 1 MMF 1064 nm > 0.8

water 1.5 µm beads [44]

Diffractive
meta-lens

fs-direct
laser writing polymer 2 SMFs +

spacer print. 808 nm 0.7 water 1 µm/
0.5 µm beads [86]

Plasmonic
nanorods

focused ion
beam milling Au 1 PCF 1550 nm 0.37 air – [148]

Refractive
GRIN lens

stack &
draw + glue SiO2

1 SMF +
spacer glued 976 nm 0.16 air 2 µm beads

(on surface) [120]

Refractive
microlens

laser
exposure polymer 1 SMF +

MMF spliced 980 nm ?
8 µm beads/
yeast cells
(on surface)

[145]

Diffractive
Fresnel
plate

focused ion
beam milling SiO2

1 SMF +
MMF spliced 980 nm ?

8 µm beads/
yeast cells
(on surface)

[82]

With respect to solely the NA, in particular, it is remarkable that the highest values
have been reported when lithography was applied as fabrication[37,86]. This highlights
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the significance of choosing DLW for implementing the design here, which effectively
provides full three-dimensional optical trapping along all spatial dimensions simultaneously
with only a single hybrid meta-fiber while reaching an ultra-high numerical aperture of
NA = 0.88. Similar concepts of comparably high NA, in contrast, explicitly require, e.g.,
non-commercial optical fibers or extensive additional equipment such as, e.g., a spatial light
modulator (SLM) or large-scale and cost-intensive clean room facilities[44,82,148]. The here
presented concept, however, solely relies on a low-cost and commercially available SMF
and MMF, while the prior specifically benefits from its independence on length and
robustness against external influences such as, e.g., bending the fiber.

6.4 Chapter discussion
Based on one single-mode fiber (SMF) that is spliced to a short multi-mode fiber (MMF)
section for expanding its beam and accommodating the full NA of a 3D printed diffractive
meta-lens on its facet, the hybrid meta-fiber concept presented in this work effectively allows
for diffraction limited focusing while reaching an ultra-high NA = 0.88 as experimentally
confirmed. This specifically enables flexible remote optical trapping of freely diffusing
micro-objects using only a single fiber, which was experimentally demonstrated for the
example of individual silica microbeads and biologically relevant E. coli bacteria in water.
Here, the trapped particles were confined along all three spatial dimensions simultaneously
to within a volume smaller than the focal region on timescales of several minutes, while no
degradation of neither sample nor particle was observed for powers of up to P = 50 mW
and the samples have been continuously reused over the course of weeks.
Compared to similar reports on concepts of HOFs interfaced with focusing optics,

effectively, the here presented concept of a hybrid meta-fiber device benefits from its simple,
low-cost, and reliable implementation as well as from its general flexibility, integrability
and usability within difficult to reach remote environments. In principle, this allows further
extending its scope of applications for including, e.g., high-resolution microscopy[84,151],
fiber-based in vivo endomicroscopy, imaging and Raman spectroscopy[37–42] as well as
optical sensing[2,63] and precise control and micro-manipulation[21,44].

Potential improvements are given by, e.g., using a narrow band laser for better coherent
operation of the meta-lens, i.e., the contribution of all phase-lens elements, thus increasing
the usable cross-section and the NA to near-immersion limited values[151,163]. Ultimately,
precisely cleaving the expansion fiber as well as better characterization of each sample
via, e.g., using a Shack–Hartmann sensor for individual wavefront analysis, followed by
correcting the meta-lens to match the respective expansion length, in principle allows for
reducing the over-corrected wavefront error, i.e., positive spherical aberration.
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Electrical trapping of particles effectively represents an alternative to the previously
discussed concepts of optical fiber traps in case particle properties are incompatible,

e.g., due to limited transparency. Electrical forces, in particular, are important within
biological applications due to the Stern layer[123] that surrounds freely diffusing objects
(see Figure A.1 in the appendix). This enables applications such as the electrical trapping
of bacteria[16], single DNA[89] and protein molecules[6], and sorting of biological cells[25].
Here, the concept uniquely relies on combining an electrophoretic Paul trap with an

optical fiber[23,58,164]. To comply with the circular fiber geometry, in particular, a surface-
electrode point Paul trap of three concentric electrode rings[68] (see Figures 3.7D and
A.2 in the appendix for its working principle) was implemented directly onto the facet of
a hybrid optical fiber (HOF, see subsection 2.1.2). This specifically allows contacting the
electrical trapping structure on its front via microstructured wires inside the HOF[58,75,76]

from the back, effectively representing a key advantage only enabled via the HOF. Figure 7.1
schematically depicts the concept of a fiber point Paul trap, which is based on a microwired
HOF and a circular symmetric facet-electrode trapping structure.

Fig. 7.1. Concept of a fiber point Paul trap for electrically trapping charged particles in water. Wires
inside a hybrid optical fiber contact an electrode structure on its facet. An alternating radio frequency (RF)
voltage over ground (GND) is applied at its rear, creating an electric potential for charged particles in the front.

In the following, the electrical design of the fiber point Paul trap is presented (section 7.1,
for optical properties see Figure A.5 in the appendix), followed by its specific implementa-
tion (section 7.2). Finally, an experimental demonstration of electrically trapping charged
beads using an implemented trap is discussed as an outlook (section 7.3).1

1Due to extensive implementation, here, the level of results is lower than within previous chapters. 85
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7.1 Electrical design
A radial symmetric surface-electrode trap, i.e., a point Paul trap[68], specifically matches
the circular geometry of an optical fiber[23,58]. In order to maintain its radial symmetry,
here, the electrical contacting of the trapping structure is provided from the back using
a microwired HOF[58,75,76] (details see Figure 7.1 and subsection 7.2.1). In the following,
its design is particularly limited to the simplest scenario of three concentric planar rings
(for details see Figure 3.7, D and G), where a rapidly alternating (AC) voltage Vac of radio
frequency (RF) w is applied to the central electrode of radial coordinate r1 < r < r2.
This effectively creates an electric potential Φ(r, z, t) for a charged particle that is trapped
at a height z0 above the surface, and can as well be described analytically using the
approximation of an infinitely extended gapless plane[68,130]:

Φ(r, z, t) = Vac cos(ωt)
∫ ∞

0
J0(kr) [r2J1(kr2)− r1J1(kr1)] e−kz dk, (7.1)

where Jν represents the Bessel function of first kind and order ν.
The on-axis ponderomotive potential 〈Ψ(z)〉 ∝ |∂zΦ(0, z)|2 (see Equation 3.15, ∂z = ∂/∂z

denotes the partial derivative with respect to the axial height z), however, can principally
be approximated via a harmonic trap potential 〈Ψ(z)〉 ∼ Λ2(z − z0)2 with geometric
coefficient Λ. Optimizing 〈Ψ(z)〉 for a maximum trap depth Ψmax = 〈Ψ(zmax)〉, where
zmax ∼ 2z0 denotes the turning point of the confinement (Figure 7.2B), specifically yields
r1 ≈ 0.65z0 and r2 ≈ 3.58z0 [68]. Figure A.2 in the appendix exemplarily demonstrates
〈Ψ(r, z)〉 for the optimized geometry of a concentric three ring point Paul trap calculated
using Equation 7.1, while Figure A.3 illustrates its approximation via an ideal quadrupole of
Λ = 1. The coefficient of this particular geometry here, in contrast, is given via Λ(r1, r2) ≈
0.47, yielding a maximum trap depth of Ψmax ≈ 0.02Ψ4rod with Ψ4rod = V 2

ac/z
2
0 · Γ, where

Γ = Q2/(mω2[4 + b2]) is defined as the ponderomotive factor.
For realizing the trap onto the facet of an optical fiber, first, the influence of a finitely

extended design of the point Paul trap on the resulting ponderomotive potential 〈Ψ(r, z)〉
was analyzed within a simulation (subsection 7.1.1). This is followed by optimizing the
electrode geometry, while including inter-electrode gaps to prevent electrical shortcuts (sub-
section 7.1.2). Here, all calculations were carried out using a finite element method (FEM)
solver (COMSOL®) for an electrophoretic operation of the fiber trap within any speci-
fied medium. This particularly includes de-ionized water[103,105], which acts as a perfect
dielectric insulator and thus does not influence the calculation of the design.

7.1.1 Fiber compatibility

To match the finite diameter ∅ of an optical fiber, the trap radius r2 < r3 < ∞ of
the outermost ring electrode was varied while keeping the geometry of the remaining
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two identical, i.e., at their optimum dimensions r1 ≈ 0.65z0 and r2 ≈ 3.58z0 [68]. Here,
a radio frequency (RF) voltage was applied to the central ring, while the innermost
(0 < r < r1) and the outermost (r2 < r < r3) electrodes were kept on ground (GND)
and the remaining area of the infinitely extended plane was unassigned as visualized
in Figure 7.2A. In Figure 7.2B, the on-axis trap potential 〈Ψ(0, z)〉/Ψ4rod is presented,
reaching the maximum value of Ψmax/Ψ4rod ≈ 0.02 for significantly large trap extensions,
i.e., 2r3 = 50z0, and decreasing for smaller diameters ∅ = 2r3.
For a trade-off between a feasible extension of the point Paul trap regarding the cross-

section of an optical fiber and a reasonable depth of the trap potential Ψmax, here, a trap
diameter of 2r3 = 20z0 was chosen. This yields a trapping height of z0 = 15 µm for a
diameter of ∅ = 300 µm, reaching an efficiency of η = Ψmax/(0.02Ψ4rod) = 95% compared
to an infinite trap. Subsequently, gaps of wg = 3 µm width were introduced between the
three individual concentric rings to prevent electrical shortcuts up to Vac = 10 V, and an
aperture of 2a = 8 µm diameter was included in the center for unperturbed transmission
of light from the fiber core for sufficiently large mode diameters. Figure 7.2C displays the
resulting geometry with an efficiency of η = 92%, and Figure 7.2D summarizes the study.

Trap potential in finite geometry

GNDRF

0.05

0

Trap potential including gaps

fiber core 
aperture

gaps

trapping height z0

0.05

0

A B

C D

trapping height z0

GND

Fig. 7.2. Calculated design efficiency for a finitely extended point Paul trap within arbitrary media.
(A) Trap potential for a finite geometry, where Γ = Q2/(mω2[4 + b2]) denotes the ponderomotive factor.
The radius of the outermost ring was varied while on ground (GND), a radio frequency (RF) voltage was
applied to the central one, and the white area was unassigned. (B) Resulting on-axis trap potential along the
vertical dashed line in A for different trap diameters, reaching the maximum possible trap depth for significantly
large extensions and decreasing for smaller ones. (C) 3 µm wide gaps were included between the electrodes to
prevent electrical shortcuts, and an 8 µm diameter aperture for the fiber core was introduced in the center.
(D) Summary of the study, yielding an efficiency of 95% for the finite geometry and 92% with electrode gaps.
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7.1.2 Structure optimization

Subsequently, a parametric sweep of the widths we1 of the innermost and we2 of the central
electrode of a concentric three ring point Paul trap was carried out. Here, a combination
of the widths we1 and we2 that yield a particular trapping height of z0 = 15 µm was
targeted, as principally predicted via the analytical gapless plane approximation (details see
Equation 7.1). Due to the specific design (see Figure 7.2C), in particular, the width we3

of the outermost electrode for a fiber of diameter ∅ = 300 µm, including inter-electrode
gaps of width wg = 3 µm and a central aperture of 2a = 8 µm, is effectively given via
we3 = ∅/2− (a+ we1 + we2 + 3wg).
Figure 7.3, A and B, compares the analytical results of Equation 7.1 to the ones

obtained from the simulated parametric sweep, where the inter-electrode gaps specifically
exhibit no significant influence on the trapping height z0 of the underlying point Paul trap
geometry[128]. Subsequently, the maximum trap depth Ψmax of the on-axis ponderomotive
potential 〈Ψ(z)〉 for the widths we1 and we2 yielding z0 = 15 µm was calculated, as compared
in Figure 7.3, C and D, for Equation 7.1 and the parametric sweep, respectively. Figure 7.3E
shows the resulting optimized geometry of the concentric three ring point Paul trap, which is
given via we1 = 5 µm, we2 = 36 µm and we3 = 96 µm, and exhibits an efficiency of η = 92%
for the on-axis trap potential 〈Ψ(z)〉.

GND
5µm

GND
96µm

fiber core 
aperture

8µm

gaps
3µm

RF
36µm

A B

C D

E Optimized geometry

Fig. 7.3. Optimization of the geometry for a three ring electrode point Paul trap of 300 µm diameter.
(A) Trapping height above the surface for widths of the innermost ground (GND) electrode and the central radio
frequency (RF) electrode, calculated via the approximation of an infinite plane. (B) Simulated trapping height
for a finite trap diameter of 300 µm, including inter-electrode gaps of 3 µm width and a central aperture of
8 µm diameter. (C) Theoretical trap efficiency for an infinite plane, defined as unity when reaching the maximum
possible on-axis trap depth, and (D) simulation for the 300 µm diameter trap. Only specific combinations for a
trapping height of 15 µm were targeted (indicated by the dashed line), yielding a maximum efficiency of 92%
for the finite trap. (E) Optimized resulting geometry and on-axis trap potential for the 300 µm diameter trap.
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7.2 Fiber trap implementation

Due to nearly reaching the maximum possible trap depth of Ψmax ≈ 0.02, here, the final
trapping geometry can effectively be described using Equation 7.1, and a coefficient of
Λ(we1, we2) ≈ 0.47 was thus assumed in the following when considering stable trapping.
Nevertheless, a further improvement and adaptive tuning of the trap potential 〈Ψ(r, z)〉
can be achieved when applying a static (DC) potential Udc to the innermost ring[68]

(see Figure A.4 in the appendix). The design of the microstructured fiber for contacting
the structure, including its optical properties, however, is shown in Figure A.5.

7.2 Fiber trap implementation

The unique concept of the fiber point Paul trap effectively relies on a microwired
HOF[58,75,76] for electrically contacting a trapping microstructure on its facet (see Figure 7.1).
Prior to implementing an electrode structure on its tip, however, the concept specifically
requires planarizing the hybrid fiber in order to comply with wafer-based microfabrication
technology. Here, this is achieved via a multi-step process, which consists of microwire
implementation and subsequently polishing its facet, followed by employing state-of-the-art
microtechnology including layer deposition, electron-beam lithography (EBL), physical dry
etching and resist removal.[51,165]. Figure 7.4 schematically demonstrates the workflow of
the experimental implementation procedure.

Ion-beam etching

Microwire filling

microstructured
optical fiber

Fiber mounting & polishing

mount

polished
facet

Layer deposition

Au
resist

Electron-beam lithography

Au

Resist removal & rear contacting

trapping 
structure

electrical contacting

A B C

D E F

Fig. 7.4. Scheme of the experimental workflow for the implementation of a fiber point Paul trap.
(A) Alloy wires are implemented inside a microstructured optical fiber via pressure assisted melt filling[75].
(B) The microwired fiber is glued into a silica capillary, mounted inside an aluminum disc, and both facets are
subsequently polished to obtain smooth surfaces. (C) A 50 nm thin gold film is vapor deposited, followed by
spin coating a negative photoresist. (D) The negative resist layer is microstructured via electron-beam
lithography (EBL), and (E) the uncovered gold film is dry etched using a reactive ion-beam. (F) Any remaining
resist is chemically removed, and steps 3–6 are repeated for implementing the rear contacting structure.
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7 Fiber point Paul trap

In the following, the experimental implementation of electrically conducting wires inside
a microstructured fiber (subsection 7.2.1) and the fabrication of the electrode structures
on both fiber ends via EBL (subsection 7.2.2) are presented in detail.

7.2.1 Microwire filling

For electrically contacting a point Paul trap on the facet of an optical fiber, a microstruc-
tured fiber was used, which was filled with a low melting alloy via a routine referred to as
pressure assisted melt filling[75]. Here, a three-fold symmetry of the fiber geometry was
chosen, effectively providing access to each of the three concentric electrode rings via three
contact points as demonstrated within Figure 7.5A. Specifically, the fiber core of diameter
2a = 5 µm is surrounded by a ring of three small holes of 3 µm diameter at pitches of 6.5 µm
and by two rings of 10 µm diameter holes at pitches of 30 µm and 75 µm, respectively
(details of the optical design see Figure A.5 in the appendix). Figure 7.5B illustrates
the microstructured design, and Figure 7.5C visualizes an example of the experimental
implementation, i.e., the drawn Paul fiber.

Within the pressure assisted melt filling, here, the low melting alloy Au80Sn20 (80% gold,
20% tin) was used, effectively decreasing the high melting temperature TAu = 1064 ◦C
of pure gold to only Talloy = 280 ◦C [166]. This reduces material tension due to thermal
contractions when cooling down from the melting temperature Talloy, thus resulting in
longer continuous microwires inside the HOF. Specifically, a 125 µm diameter Au80Sn20
wire was inserted into a larger capillary with inner diameter of 220 µm, which was fusion
spliced to an L ∼ 20 cm long piece of the microstructured Paul fiber. This matched its
∅ = 300 µm outer diameter as exemplarily displayed in Figure 7.5D, while particular care
was taken not to collapse the delicate central holes of 3 µm diameter.

Subsequently, the fiber was sealed on its other end and evacuated for a duration of t ∼
1 . . . 2 h, while reaching pressures of p ∼ 10−4 mbar. This was followed by heating the fiber
to T ∼ 1000 ◦C in order to break potential oxide layers surrounding the alloy wire, and argon
gas pressure of p ∼ 50 bar was ultimately applied for a duration of t ∼ 20 . . . 30 min to
fill the microholes. Afterwards, the fiber was cooled down, effectively yielding centimeter
long pieces of continuous microwires inside the hybrid Paul fiber. Figure 7.5E depicts
an example of an experimentally implemented microwired Paul trap fiber from the side,
and Figure 7.5F shows its facet from the front.
However, heating to T ∼ 1000 ◦C leaves the fiber extremely fragile, which was taken

care of via gluing a short piece into a capillary mounted within an aluminum disc (see
Figure 7.4B). Figure A.5 in the appendix demonstrates the experimentally determined
optical influence of the metallic microwires inside the hybrid Paul fiber. In the following,
the implementation of the microstructured trapping and contacting electrodes on the
respective facets of the microwired Paul fiber is presented in detail.
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Fig. 7.5. Design and implementation of a microwired Paul trap fiber. (A) Design of the microstructured
fiber, exhibiting a three-fold symmetry for contacting each of the concentric electrodes via microholes. (B) The
fiber core is surrounded by three small holes of 3 µm diameter for contacting the inner ring and by two rings of
10 µm diameter holes for the central and the outer ring, respectively. (C) Experimental realization of A and B,
showing the excellent agreement of the drawn microstructured fiber with the design. (D) Pressure-assisted
melt filling of microwires inside the Paul fiber shown in C. A low melting alloy wire (Au80Sn20) was inserted
into a larger inner diameter capillary from the left that was spliced to the Paul fiber. (E) The fiber was heated
to above the alloy melting point and 50 bar pressure was applied for 20. . . 30min, yielding centimeter long
pieces of continuous microwires inside the hybrid fiber. (F) Resulting cross-section of a microwired Paul fiber.

7.2.2 Electrode structuring

The final implementation of the fiber point Paul trap, which is conceptually illustrated
in Figure 7.6A, relies on first, planarizing the fiber in order to comply with wafer-based
microtechnology. Therefore, a short piece of the microwired fiber was glued (Norland
Adhesives) into a silica capillary, mounted within an aluminum disc, and both sides were
polished to obtain smooth surfaces as exemplarily visualized in Figure 7.6B. Subsequently,
state-of-the-art microfabrication technology was employed for structuring both fiber facets,
including vapor deposition of a ≈ 50 nm thin gold film, electron-beam lithography (EBL),
reactive ion-beam etching and final chemical resist removal.[51,165].

Figure 7.6C displays an example of an experimentally implemented fiber point Paul
trap, which was mounted onto a printed circuit board (PCB) for electrical contacting,
and Figure 7.6D depicts its rear side. Here, macroscopic wires were soldered onto the
PCB and microscopic wires were bonded to structural contact electrode pads, which are
shown enlarged in Figure 7.6E demonstrating the implemented contacting structure on the
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7 Fiber point Paul trap

rear facet of the microwired HOF with its clearly visible three-fold contacting geometry.
The concentric trapping structure on the front fiber facet is illustrated in Figure 7.6F,
again showing the implemented in-fiber microwires for electrically contacting the three
individual electrode rings from the back via the HOF.
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Fig. 7.6. Final experimental implementation of a fiber point Paul trap. (A) Scheme of a fiber point Paul
trap, which consists of bottom contact electrodes, a microwired hybrid fiber in between, and microstructured
electrodes on its front facet for trapping charged particles. (B) For microstructuring via electrode-beam
lithography (EBL), the microwired Paul fiber was first planarized via gluing it into a silica capillary mounted
within an aluminum disc, followed by polishing both facets. (C) Final implementation of a fiber point Paul trap
mounted on a printed circuit board (PCB) for electrically contacting its bottom. (D) Rear side of the PCB,
showing the electrical contacting via macroscopic soldered wires and microscopic bond wires to connect the
bottom electrodes. (E) Enlarged center, displaying the contacting via the in-fiber microwires. (F) Enlarged
center of C, depicting the implemented on-fiber trapping structure on the front facet of the point Paul fiber.

7.3 Experimental demonstration

For an experimental demonstration of electrical trapping with the implemented fiber point
Paul trap, here, carboxyl (COOH−) functionalized 2R = 3 µm diameter polystyrene beads
(Polysciences) were 1:1000-fold diluted from their stock solution within de-ionized water
to a final concentration of c ∼ 2 · 106 cm−3. A few microliters of the aqueous solution
were pipetted onto the trap, which is visualized in Figure 7.7, A and B, and sealed with a
microscope coverslip and a layer of double sided tape. Specifically, the surface charge Q
of the beads was assumed from a comparable stated electron density of 2 µmol/g [167],
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yielding a charge to mass ratio of Q/(e0m) ≈ 1.2 · 106 fg−1 (e0 = 1.602 · 10−19 C denotes
the elementary charge) that is in line with literature reports[102,103,105].
However, since the actual surface charge Q remains an unknown, this particularly

complicates the correct adjustment of trap parameters, i.e., AC voltage Vac and frequency ω,
thus possibly yielding an incorrect operation of the trap and finally unstable trapping.
Nevertheless, since the final fiber trap design can closely be described via the analytical
model (details see Equation 7.1), here, the geometric coefficient was assumed as Λ ≈ 0.47,
and the trap was operated at a voltage of Vac = 1 V and a frequency of ω = 2π · 500 kHz.
For the designed trapping height of z0 = 15 µm, specifically, this results in the dimensionless
parameters a = 0, q ∼ 0.1 and b ∼ 1, effectively yielding an estimated electrophoretic trap
stiffness of κ ∼ 100 pN/µm (see Equations 3.14b, 3.14c and 3.16).
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Fig. 7.7. Experimental demonstration of electrical trapping with a fiber point Paul trap. (A,B) The
trap was loaded with charged 3 µm diameter polystyrene beads suspended in de-ionized water. (C–E) Once
turned on and operated at an alternating voltage of 1V and a frequency of 500 kHz, charged beads were
immediately confined along an equipotential ring around the trap center. Avoiding the center presumably
results from an excessive number of repulsive charged beads, the effect of dielectrophoresis (DEP) that is
always present in addition to electrophoresis (EP) within aqueous media, or an incorrectly operated trap due to
unknown surface charges. Nevertheless, the observations clearly reveal the capability of the electrical fiber trap.

As displayed in Figure 7.7, C to E, turning on the trap led to an immediate reaction of
the charged beads while confining them on a ring around its center. Since their motion is
damped via u(t) ∝ exp(−t/τ) (see Equation 3.17), they reach an equilibrium u(t) < 1/e2

in water after approximately τ ∼ 0.2ms. Here, their confinement along the equipotential
ring instead of in the center of the trap presumably results from an excessive number of
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charged beads or the effect of dielectrophoresis (DEP), which is principally always present
within aqueous media in addition to pure electrophoretic (EP) trapping of charged particles.
Leading to the ring-type distribution, this effectively complicates the observation of pure
EP trapping due to the electrochemical double layer2 and thus a detailed analysis.
Unfortunately, the device quit working after a few seconds and, due to time- and

cost-intensive multi-step process fabrication (see Figure 7.4) with low sample yield3,
no additional quantitative measurement confirming the operation of the fiber point Paul
trap via an improved high-speed recording of the sub-millisecond processes was possible.
However, surface coating or undercutting the trapping structure via, e.g., chemical wet
etching, potentially improves operation of the trap[128,168]. This effectively prevents surface
charges on the silica between the gold covered electrodes, which otherwise distort the
electric potential Φ(r, z). Moreover, experimentally verifying the actual shape of the
potential possibly improves correct adjustment of the fiber point Paul trap.

7.4 Chapter discussion
Within this chapter, the alternative concept of a fiber point Paul trap for electrical trapping
of charged particles was presented as an outlook, including its design, implementation,
and a qualitative experimental demonstration. An immediate reaction of charged 2R =
3 µm diameter polystyrene beads to operating the trap at Vac = 1 V and ω = 2π ·
500 kHz was observed, which led to their confinement along an equipotential ring around
the center of the trap. This presumably results from an excessive number of charged
beads or the effect of DEP, which principally overlays pure EP forces in water due to
screened charges. In particular, the stiffness κ of the electrical fiber trap was estimated
as κ ∼ 100 pN/µm, yet sensitively depends on the specific trap parameters q and b,
which potentially enables a broad range of tunability. Unfortunately, the device quit
working after a few seconds, which thus prevented the improved high-speed recording of
establishing a trapping equilibrium happening within under a millisecond in water.

Specifically the unknown electric potential Φ(r, z) and any surface charges, both for the
trapped beads as for the trap itself, complicate correct EP operation due to providing
only an estimated adjustment of parameters, thus possibly resulting in unstable trapping.
Potential improvements, for example, include experimentally verifying the actual geometry
of Φ(r, z) or undercutting the electrodes to prevent surface charges as distorting influences.
However, since EP trapping effectively relies on net charges Q that are generally present
on any surface, switching to DEP potentially provides better control due to reducing
this influence. This principally enables applications such as, e.g., DEP combined Raman
spectroscopy[16], which in particular all benefit from a flexible single fiber trap geometry
in case the Paul fiber is unmounted from the bulky aluminum disc.

94 2A diffuse oppositely charged layer screens the bead’s surface charge (Fig. A.1 in the appendix).
3Total of one working sample within one year.



8
Conclusion and outlook

Within this chapter, the different concepts of particle trapping using hybrid optical
fibers presented throughout this work are summarized. Specifically, the discussed

concepts and obtained results are assessed (section 8.1), and the work is concluded with
giving a future perspective at the end (section 8.2).

8.1 Assessment of results
In chapters 2–4, the essential prerequisites for understanding optical phenomena and
hybrid optical fibers (chapter 2), free diffusive and trapped motion of microscopic objects
under confining influences (chapter 3) as well as methods for analyzing fiber-based particle
traps (chapter 4) were introduced. Subsequently, three different concepts of HOF traps
were presented and discussed in chapters 5–7, including experimental demonstrations of
their application for trapping freely diffusing particles in water. Specifically, the concepts
represent two optical, i.e., a dual fiber focus trap (chapter 5) and a single meta-fiber
trap (chapter 6), as well as one electrical fiber point Paul trap as an outlook (chapter 7),
whose obtained results are assessed in the following and concluded in Table 8.1.

Dual fiber focus trap

The concept of a dual nanobore fiber (NBF) focus trap presented in chapter 5 principally
represents a simple and straight-forward enhancement over a regular dual single-mode
fiber (SMF) optical trap. Specifically, the unique beam profile of the NBF exhibits a focal
spot that allows adjustment of the optical trap performance along the transverse and
the axial direction independently via tuning the separation distance between both fibers.
In particular, this unlocks combinations of the trap stiffness that are currently inaccessible
to conventional fiber optical trap, which here was predicted via both a semi-analytical
approximation model and a finite element method (FEM) simulation. Finally, the enhance-
ment was experimentally confirmed via optically trapping freely diffusing individual
2 µm diameter silica beads in water using two different dual fiber trap configurations.

Compared to different fiber optical traps, the dual fiber focus trap benefits from its unique
tunability and simple implementation while only relying on cleaving a piece of a hundreds
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of meters long drawn fiber. Effectively, no time demanding post-processing is required,
which in combination with its versatility is currently unavailable to other configurations,
thus representing a unique feature and key advantage of the concept presented in this work.
However, compared to a more flexible and simpler to integrate single fiber optical trap[46],
the NBF particularly suffers from its low numerical aperture (NA) requiring a dual fiber
trap configuration, which thus limits its integrability and trapping performance.

Meta-fiber trap

The hybrid meta-fiber trap that was discussed in chapter 6, in contrast, effectively enables
flexible, robust, and remote optical trapping of freely diffusing particles in water using
only a single fiber. Specifically, it is based on a length-invariant piece of an SMF being
fusion spliced to a sub-millimeter short section of an MMF for expanding the SMF beam
and accommodating the full NA of a three-dimensional (3D) optically printed diffractive
meta-lens on its facet. Here, the detailed meta-lens design, the implementation of both,
the HOF and the 3D printed focusing lens, as well as the diffraction limited performance of
an implemented meta-fiber were demonstrated, while particularly the designed ultra-high
NA of 0.88 in water was experimentally confirmed.

Subsequently, a single meta-fiber was exemplarily applied for optically trapping individual
silica microbeads and biologically relevant Escherichia coli (E. coli) bacteria in water,
specifically confining them to within less than the focal volume for minutes at optical
powers of up to 30mW. However, compared to the dual NBF focus trap and similar
HOF traps, in particular, the meta-fiber benefits from its simple, low-cost, reliable,
and reproducible implementation. This effectively allows for a stand-alone and simple to
integrate single fiber optical trap providing flexible and robust usability within difficult to
reach remote scenarios. Nevertheless, the here presented concept principally suffers from
its demand for post-processing and general limitation to transparent particles.

Fiber point Paul trap

In contrast to the two concepts of fiber-based optical traps, in chapter 7, the alternative of a
fiber point Paul trap for electrically trapping charged particles was discussed as an outlook.
Its design, implementation, and a qualitative application of trapping COOH− surface
charged 3 µm diameter polystyrene beads was experimentally demonstrated, for which an
immediate reaction to operating the fiber trap was observed. This particularly led to their
confinement along an equipotential ring around the center instead of in the center of the
trap as respectively achieved within both fiber optical traps. Unfortunately, the electrical
trap quit working shortly, and, due to extensive fabrication1, repeated high-speed recording
and a quantitative analysis of the established trapping (happening within under 1ms
in water) as respectively carried out for both fiber optical traps was thus not possible.

96 1Approximately one sample per year.



8.2 Future perspective

The discussed possible origins, i.e., a large number of charged beads or dielectrophore-
sis (DEP) that overlays the targeted pure electrophoretic (EP) trapping in water, represent a
fundamental difference to the optical trapping concepts. For those, particle interaction
as of optical binding is relatively simple to avoid, since excessive particles are ejected
from the comparably small effective trapping volume automatically. This makes the
fiber-based electrical trapping of individual particles particularly difficult due to its sensi-
tive stability dependent on applied voltage, frequency, and specifically unknown particle
charge, thus limiting reliability and repeatability. Nevertheless, although requiring the
most intensive post-processing of all presented concepts, here, the estimated trap stiffness
yields the highest value, however, sensitively depends on the parameters q and b.

Summary and comparison

Table 8.1 summarizes the obtained results of the HOF-based particle trapping concepts
discussed throughout this work. Specifically, the key features of the different presented
concepts are listed and a future perspective on envisioned potential applications is given,
as discussed in further detail within the following section.

Tab. 8.1. Summary and comparison of hybrid fiber particle trapping results obtained within this work.
The dual fiber focus trap and the meta-fiber trap represent concepts of hybrid optical fiber traps, while the fiber
point Paul trap represents a hybrid electrical fiber trap. The listed potential applications were not explicitly
demonstrated within the scope of this work but provide an envisioned future perspective.

Type of
fiber trap

Demonstrated
trapping

Stiffness κ⊥,
κ|| [pN/µm] Key features Potential

applications Reference

Dual fiber
focus trap

2 µm silica,
5 µm polyst.
beads, E. coli

0.7 . . . 2.1,
0.03 . . . 0.5
(2 · 30 mW)

+ tunability
+ simplicity
− integrability

optical
sensing &

spectroscopy

chapter 5,
[45, 62, 64,

65]

Meta-fiber
trap

2 µm silica
beads, E. coli

3.5, 0.4
(33.5mW)

+ ultra-high NA
+ flexibility
+ reliability

in vivo
imaging &

manipulation

chapter 6,
[21, 42, 44,

46]

Fiber point
Paul trap

3 µm polyst.
beads (ring)

∼ 100
(estimated,

1V)

+ performance
+ potentially
generic use

− complexity

particle
sorting

chapter 7,
[25, 90,
124]

8.2 Future perspective
In the following, potential further improvements of the hybrid fiber-based particle trapping
concepts presented throughout this work and concluded in Table 8.1 are discussed in detail.
Ultimately, a vision on future applications is given specifically with respect to optical,
electrical and a multi-disciplinary combination of applications.
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Optical manipulation and sensing

Optical manipulation, in particular, represents a vastly growing field including applications
such as, e.g., the creation of multiple time varying trapping sites[18,44,108]. Here, the dual
fiber focus trap, for example, allows for coherently interfering sophisticated beam profiles,
individually adjusting the optical powers emitted by each of the two fibers as well as for
changing their inclination[43,60,138]. In principle, these all represent further improvements,
effectively enabling applications such as, e.g., the generation of conveyor and tractor beams
for the transport and delivery of trapped particles[108–110].

Moreover, the counter-propagating beam concept of the dual fiber focus trap in principle
enables a full range of optical sensing applications particularly in life sciences. Specifically,
these include, e.g., the controlled stretching of individual trapped cells[64–66,118] for their
3D observation and physical analysis via microscopy as well as studying membrane
mechanics, which effectively enables, e.g., tumorous tissue diagnosis. Of further interest,
in particular, is the concept of rotating single trapped cells via adjusting the optical
fiber mode[66]. This can potentially be implemented via further improving the specific
geometry of the nanobore fiber, since changing the diameter of the core and the central
bore has a significant impact on the evolution of the fundamental mode[45,57].

In situ and in vivo operation

Extending the scope of applications of the ultra-high NA single meta-fiber trap, however,
to more complex shaped living objects aside from the trapped E. coli bacteria, e.g.,
allows for in situ motility sensing within the optical trap[2,63] as well as subsequently
investigating rotational diffusion[142]. Here, further improvements of the meta-fiber trap in
principle include precisely cleaving the expansion fiber as well as characterizing a sample
and correcting the meta-lens to match the respective length of the expansion section.
Particularly in combination with using a narrow band laser source, this potentially allows
increasing the NA to near-immersion limited values[151,163].
In principle, this enables a broad range of potential future applications specifically in

life sciences, including high-resolution microscopy[84,151] as well as fiber-based imaging[38,39]

and in vivo endoscopy[40,42]. Here, the flexibility of the single meta-fiber device, in
particular, is perfectly suited for applications within difficult to reach remote environments,
such as high precision in situ[44] or even in vivo optical control and manipulation of, e.g.,
biological cells on sub-micron scales through membranes within living organelles[21].

Multi-disciplinary combinations

Although not explicitly demonstrated experimentally within the scope of this work due to
time- and cost-intensive multi-step process fabrication with low sample yield, the fiber point
Paul trap in principle allows for electrical trapping of biologically relevant species[6,16,89]
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as well, including, e.g., individual cells or bacteria. In particular, this is possible via either
EP or DEP trapping, thus enabling the trapping of individual neutral and nontransparent
particles as well, using DEP. However, as required charges for EP trapping are generally
found on any surface, combining the electrical fiber trap with the DEP mechanism
effectively provides a broader range of stable control over single trapped specimen. This
reduces the dependence on charged particles, while, nevertheless, it was revealed that the
charged fiber itself specifically complicates the electrical trapping. Possible solutions are,
e.g., experimentally verifying the actual potential geometry, undercutting the electrodes,
or removing the fiber from its aluminum mount.

In principle, these potential improvements of the fiber point Paul trap allow extending
its scope to a range of multi-disciplinary applications, including, e.g., the sorting of
mesoscopic objects such as biological cells with respect to certain properties apart from
their charge[25,90,91,124]. Effectively combining each of the concepts of hybrid fiber-based
particle traps presented within this work with well-established techniques in life sciences,
for example, opens up the possibility for applications such as, e.g., the chemical detection
and sensing of molecular compositions of individual trapped cells via fiber-based[37,38,62]

Raman spectroscopy[15,16]. This concept particularly stands out by using only one device
for trapping, excitation and collection of the spectral signal of the trapped object of interest
in front of the facet via the same fiber.
Ultimately, combining the presented concepts of fiber-based optical traps with the

electrical fiber point Paul trap, e.g., bears the advantage of having two independent
trapping mechanisms within the same fiber. For example, this enables trapping different
kinds of particles simultaneously with only one device while observing their interaction.
This can be of particular use within applications such as the transport and delivery of single
particles[108–110], e.g., shuttling single ions as qubits for quantum computation and estab-
lishing large-scale infrastructure networks[8,22], or observing sub-molecular processes[5,19]

as well as cooling and measuring atomic transitions[7,23,98].
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Fig. A.1. Principle of the electrochemical charge double layer (the Stern layer, adapted from [169]).
A layer of diffuse oppositely charged ions of a surrounding fluid are attracted to the surface charge of a particle
via the Coulomb force, thus screening it electrically. The static first layer represents the Stern layer, while the
slipping plane denotes the effectively screened charge, i.e., the ζ potential, of the particle within the fluid.
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A.1 Working principle of a point Paul trap
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Fig. A.2. Working principle and calculated potentials of a surface-electrode point Paul trap. (A) Elec-
tric potential for three concentric rings of alternating polarity, i.e., radio frequency (RF) and ground (GND),
inside an arbitrary medium, and (B) planar view of the area in A. The alternating polarity creates a saddle
point above the center. (C) Resulting ponderomotive trap potential, and (D) planar view of the area in C as
the square of the potential gradient, i.e., the normalized electric field. The vanishing gradient of the saddle
point creates the trapping point. (E) Profiles along the horizontal and (F) the vertical dashed lines. Trapping
around the center can be approximated via a damped harmonic oscillator (dotted parabolic curve).
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Fig. A.3. Calculated approximation of the point Paul trap via an ideal hyperbolic quadrupole. (A) Nor-
malized electric potential for a planar point Paul trap, and (B) its approximation via a three-dimensional (3D)
ideal quadrupole. The plot shows only the central region of the trap, where the innermost disc and the
outermost ring are on ground (GND) and a radio frequency (RF) potential is applied to the ring in between.
(C,D) Resulting normalized trap potential of A and B, respectively. (E) Profiles along the horizontal and
(F) the vertical dashed lines in C and D, and resulting trapping force as the ponderomotive potential gradient.

Vertical profile

Horizontal profileA EC

B FD

Fig. A.4. Calculated tunability of the point Paul trap potentials via applying a DC bias voltage[68].
(A) Normalized electric potential for the AC-only case, where the innermost ring is kept on ground (GND) and
a radio frequency (RF) voltage is applied to the second ring. (B) A static DC bias voltage is applied to the
innermost ring, which lowers the trapping height above the surface. (C,D) Resulting normalized trap potential
of A and B, respectively. The DC bias voltage also tightens the ponderomotive potential. (E) Profiles along
the horizontal and (F) the vertical dashed lines in C and D, respectively. The DC bias voltage shifts the axial
trapping position and increases the potential barrier that is required to escape the electrophoretic Paul trap.
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A.2 Optical properties of the microwired Paul fiber
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Fig. A.5. Design and measurement of the optical properties of the drawn Paul fiber. (A) Calculated
V parameter for a wavelength of 785 nm as function of core diameter and refractive index contrast. A 5 µm
diameter core, doped with 1.6% Al2O3, is designed for an operation just below the single-mode (SM) cutoff.
(B) Calculated modal dispersion, where the fundamental mode cuts off at 785 nm. (C) Micrograph of the
drawn fiber. The result closely matches the design, where a core of 5.5 µm diameter is surrounded by three
small holes of 3 µm diameter and by three larger ones of 12 µm diameter. (D) Simulated mode for a wavelength
of 785 nm. The small holes (set to metallic wires) close to the core have no influence on the profile of
fundamental mode. (E) Measured mode profile at a wavelength of 785 nm, where the holes are filled with the
alloy Au80Sn20, forming microwires along the fiber axis. The measurement perfectly agrees with the simulation
shown in D. (F) Measured loss of the microwired fiber, where the coupling was optimized for a wavelength
of 785 nm. The loss increases significantly for longer wavelengths due to the metallic wires close to the core.
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