1,918 research outputs found

    An Automated Design-flow for FPGA-based Sequential Simulation

    Get PDF
    In this paper we describe the automated design flow that will transform and map a given homogeneous or heterogeneous hardware design into an FPGA that performs a cycle accurate simulation. The flow replaces the required manually performed transformation and can be embedded in existing standard synthesis flows. Compared to the earlier manually translated designs, this automated flow resulted in a reduced number of FPGA hardware resources and higher simulation frequencies. The implementation of the complete design flow is work in progress.\u

    Time Driven Priority Router Implementation and First Experiments

    Get PDF
    This paper reports on the implementation of Time-Driven Priority (TDP) scheduling on a FreeBSD platform. This work is part of a TDP prototyping and demonstration project aimed at showing the implications of TDP deployment in packet-switched networks, especially benefits for real-time applications. This paper focuses on practical aspects related to the implementation of the technology on a Personal Computer (PC)-based router and presents the experimental results obtained on a testbed network. The basic building blocks of a TDP router are described and implementation choices are discussed. The relevant results achieved and here presented can be categorized into two types: qualitative results, including the successful integration of all needed blocks and the insight obtained on the complexity related to the implementation of a TDP router, and quantitative ones, including measures of achievable network utilization and of jitter experienced on a fully-loaded TDP network. The outcome demonstrates the effectiveness of the presented implementation while confirming TDP points of strengt

    Multistage Switching Architectures for Software Routers

    Get PDF
    Software routers based on personal computer (PC) architectures are becoming an important alternative to proprietary and expensive network devices. However, software routers suffer from many limitations of the PC architecture, including, among others, limited bus and central processing unit (CPU) bandwidth, high memory access latency, limited scalability in terms of number of network interface cards, and lack of resilience mechanisms. Multistage PC-based architectures can be an interesting alternative since they permit us to i) increase the performance of single software routers, ii) scale router size, iii) distribute packet manipulation and control functionality, iv) recover from single-component failures, and v) incrementally upgrade router performance. We propose a specific multistage architecture, exploiting PC-based routers as switching elements, to build a high-speed, largesize,scalable, and reliable software router. A small-scale prototype of the multistage router is currently up and running in our labs, and performance evaluation is under wa

    Operational and Performance Issues of a CBQ router

    Get PDF
    The use of scheduling mechanisms like Class Based Queueing (CBQ) is expected to play a key role in next generation multiservice IP networks. In this paper we attempt an experimental evaluation of ALTQ/CBQ demonstrating its sensitivity to a wide range of parameters and link layer driver design issues. We pay attention to several CBQ internal parameters that affect performance drastically and particularly to “borrowing”, a key feature for flexible and efficient link sharing. We are also investigating cases where the link sharing rules are violated, explaining and correcting these effects wheneverpossible. Finally we evaluateCBQ performance and make suggestions for effective deployment in real networks.

    Flexible programmable networking: A reflective, component-based approach

    Get PDF
    The need for programmability and adaptability in networking systems is becoming increasingly important. More specifically, the challenge is in the ability to add services rapidly, and be able to deploy, configure and reconfigure them as easily as possible. Such demand is creating a considerable shift in the way networks are expected to operate in the future. This is the main aim of programmable networking research community, and in our project we are investigating a component-based approach to the structuring of programmable networking software. Our intention is to apply the notion of components, component frameworks and reflection ubiquitously, thus accommodating all the different elements that comprise a programmable networking system

    Network on chip architecture for multi-agent systems in FPGA

    Get PDF
    A system of interacting agents is, by definition, very demanding in terms of computational resources. Although multi-agent systems have been used to solve complex problems in many areas, it is usually very difficult to perform large-scale simulations in their targeted serial computing platforms. Reconfigurable hardware, in particular Field Programmable Gate Arrays (FPGA) devices, have been successfully used in High Performance Computing applications due to their inherent flexibility, data parallelism and algorithm acceleration capabilities. Indeed, reconfigurable hardware seems to be the next logical step in the agency paradigm, but only a few attempts have been successful in implementing multi-agent systems in these platforms. This paper discusses the problem of inter-agent communications in Field Programmable Gate Arrays. It proposes a Network-on-Chip in a hierarchical star topology to enable agents’ transactions through message broadcasting using the Open Core Protocol, as an interface between hardware modules. A customizable router microarchitecture is described and a multi-agent system is created to simulate and analyse message exchanges in a generic heavy traffic load agent-based application. Experiments have shown a throughput of 1.6Gbps per port at 100 MHz without packet loss and seamless scalability characteristics

    High Speed Networking In The Multi-Core Era

    Get PDF
    High speed networking is a demanding task that has traditionally been performed in dedicated, purpose built hardware or specialized network processors. These platforms sacrifice flexibility or programmability in favor of performance. Recently, there has been much interest in using multi-core general purpose processors for this task, which have the advantage of being easily programmable and upgradeable. The best way to exploit these new architectures for networking is an open question that has been the subject of much recent research. In this dissertation, I explore the best way to exploit multi-core general purpose processors for packet processing applications. This includes both new architectural organizations for the processors as well as changes to the systems software. I intend to demonstrate the efficacy of these techniques by using them to build an open and extensible network security and monitoring platform that can out perform existing solutions
    corecore