2,106 research outputs found

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Microprocessor fault-tolerance via on-the-fly partial reconfiguration

    Get PDF
    This paper presents a novel approach to exploit FPGA dynamic partial reconfiguration to improve the fault tolerance of complex microprocessor-based systems, with no need to statically reserve area to host redundant components. The proposed method not only improves the survivability of the system by allowing the online replacement of defective key parts of the processor, but also provides performance graceful degradation by executing in software the tasks that were executed in hardware before a fault and the subsequent reconfiguration happened. The advantage of the proposed approach is that thanks to a hardware hypervisor, the CPU is totally unaware of the reconfiguration happening in real-time, and there's no dependency on the CPU to perform it. As proof of concept a design using this idea has been developed, using the LEON3 open-source processor, synthesized on a Virtex 4 FPG

    Real-time human action recognition on an embedded, reconfigurable video processing architecture

    Get PDF
    Copyright @ 2008 Springer-Verlag.In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine (SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. “motion history image”) class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfiured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments.DTI and Broadcom Ltd

    FPGA implementation of real-time human motion recognition on a reconfigurable video processing architecture

    Get PDF
    In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine(SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. ``motion history image") class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfigured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments

    Secure extension of FPGA general purpose processors for symmetric key cryptography with partial reconfiguration capabilities

    No full text
    International audienceIn data security systems, general purpose processors (GPPs) are often extended by a cryptographic accelerator. The paper presents three ways of extending GPPs for symmetric key cryptography applications. Proposed extensions guarantee secure key storage and management even if the system is facing protocol, software and cache memory attacks. The system is partitioned into processor, cipher, and key memory zones. The three security zones are separated at protocol, system, architecture and physical levels. The proposed principle was validated on Altera NIOS II, Xilinx MicroBlaze and Microsemi Cortex M1 soft core processor extensions. We show that stringent separation of the cipher zone is helpful for partial reconfiguration of the security module, if the enciphering algorithm needs to be dynamically changed. However, the key zone including reconfiguration controller must remain static in order to maintain the high level of security required. We demonstrate that the principle is feasible in partially reconfigurable field programmable gate arrays (FPGAs) such as Altera Stratix V or Xilinx Virtex 6 and also to some extent in FPGAs featuring hardwired general purpose processors such as Cortex M3 in Microsemi SmartFusion FPGA. Although the three GPPs feature different data interfaces, we show that the processors with their extensions reach the required high security level while maintaining partial reconfiguration capability

    A High-level Methodology for Automatically Generating Dynamic Partially Reconfigurable Systems using IP-XACT and the UML MARTE Profile

    Get PDF
    International audienceDynamic Partial ReconïŹguration (DPR) has been introduced in recent years as a method to increase the ïŹ‚exibility of FPGA designs. However, using DPR for building com- plex systems remains a daunting task. Recently, approaches based on Model-Driven Engi- neering (MDE) and UML MARTE standard have emerged which aim to simplify the design of complex SoCs, and in some cases, DPR systems. Nevertheless, many of these approaches lacked a standard intermediate representation to pass from high-levels of descriptions to ex- ecutable models. However, with the recent standardization of the IP-XACT speciïŹcation, there is an increasing interest to use it in MDE methodologies to ease system integration and to enable design ïŹ‚ow automation. In this paper we propose an MARTE/MDE approach which exploits the capabilities of IP-XACT to model and automatically generate DPR SoC designs. We present the MARTE modeling concepts and how these models are mapped to IP-XACT objects; the emphasis is given to the generation of IP cores that can be used in the Xilinx EDK (Embedded Design Kit) environment, since we aim to develop a complete ïŹ‚ow around their Dynamic Partial ReconïŹguration design ïŹ‚ow. Finally, we present a case study integrating the presented concepts, showing the beneïŹts in design efforts compared with a purely VHDL approach and using solely EDK. Experimental results show a reduction of the design efforts required to obtain the netlist required for the DPR design ïŹ‚ow from hours required in VHDL and Xilinx EDK, to less the one hour and minutes for IP integration

    Generation of reconfigurable circuits from machine code

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. TelecomunicaçÔes. Universidade do Porto. Faculdade de Engenharia. 201

    Cost and energy efficient reconfigurable embedded platform using Spartan-6 FPGAs

    Get PDF
    Modern FPGAs with run-time reconfiguration allow the implementation of complex systems offering both the flexibility of software-based solutions combined with the performance of hardware. This combination of characteristics, together with the development of new specific methodologies, make feasible to reach new points of the system design space, and make embedded systems built on these platforms acquire more and more importance. However, the practical exploitation of this technique in fields that traditionally have relied on resource restricted embedded systems, is mainly limited by strict power consumption requirements, the cost and the high dependence of DPR techniques with the specific features of the device technology underneath. In this work, we tackle the previously reported problems, designing a reconfigurable platform based on the low-cost and low-power consuming Spartan-6 FPGA family. The full process to develop the platform will be detailed in the paper from scratch. In addition, the implementation of the reconfiguration mechanism, including two profiles, is reported. The first profile is a low-area and low-speed reconfiguration engine based mainly on software functions running on the embedded processor, while the other one is a hardware version of the same engine, implemented in the FPGA logic. This reconfiguration hardware block has been originally designed to the Virtex-5 family, and its porting process will be also described in this work, facing the interoperability problem among different families

    High level modeling of Partially Dynamically Reconfigurable FPGAs based on MDE and MARTE

    Get PDF
    International audienceSystem-on-Chip (SoC) architectures are becoming the preferred solution for implementing modern embedded systems. However their design complexity continues to augment due to the increase in integrated hardware resources requiring new design methodologies and tools. In this paper we present a novel SoC co-design methodology based on aModel Driven Engineering framework while utilizing the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology permits us to model fine grain reconfigurable architectures such as FPGAs and allows to extend the standard for integrating new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The overall objective is to carry out modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformations of these models, automatically generate the necessary specifications required for FPGA implementation
    • 

    corecore