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Abstract

This work presents a system for automated generation of a hardware description that implements a
dedicated accelerator for a given program. The accelerator is run-time reconfigurable, named the
Reconfigurable Fabric (RF) and is tailored to perform computationally demanding section of the
analyzed program. Previously available information regarding CDFGs (Control and Data Flow
Graph) is treated with the developed toolchain in order to generate information that characterizes
this RF, as well as information used to reconfigure it at runtime. The RF may perform any of the
given CDFGs it was tailored for, and is expandable to variable depths and widths at design time.
The RF is organized in rows with operations in a grid like structure. Any operators may be con-
nected to any operation inputs within the RF and likewise any outputs may be connected to inputs
of following rows. The number of input operands and results is also design time parameterizable.
The RF reutilizes hardware between its mapped CDFGs. The developed toolchain also generates
the communication routines to be used at run-time. The system is triggered transparently by bus
monitoring. Speedups vary according to communication overhead and the type of graph being
computed, ranging from 0,2 to 65.
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Chapter 1

Introduction

The power and performance walls of current processing architectures are becoming a relevant

issue as the present day technologies are steadily hitting their maximum performance point [2].

As size decreases and the density of circuits increases there is no effective way to dissipate heat

and ensure better power efficiency. Multiple core CPUs are the current solutions, being the easiest

architecture to expand upon. However, they will eventually meet the same difficulties. So, the

solution is to design new computing architectures.

Dynamic reconfiguration is a growing research field due to its promising results, and although

the notion of configurable hardware has existed since the 60’s [3] the creation of a fully au-

tonomous and runtime reconfigurable system has yet to be achieved.

Amongst the several approaches to dynamic reconfigurable systems the main objective of all

remains the same: how to configure flexible, custom created, hardware at run-time to optimize

computing efficiency of the overall system? The task of custom designing hardware manually,

ASICs or ASIPs, is arduous in itself, so the difficulty rests on finding a consistent, scalable and

flexible methodology or runtime algorithm that could, potentially, generate hardware as efficient

as a custom design.

So, the difficulties of the reconfigurable systems approach start at the very beginning, when the

attempt is made to try and identify when and at what level of software execution the reconfiguration

effort should be made. The following step is to determine how that possible hardware structure

should be generated and interconnected. This would have to be done in such a manner that does

not compromise the already present hardware, and, ideally, that allows interfacing with other static

hardware in the system. If possible, the reconfigurable hardware would also allow for maximum

transparency from the point of view of a software toolchain, making any changes to compiling

tools and APIs unnecessary.

The now more widespread use of high level software programming languages, with libraries

for use directly on microprocessors (with no Operating System) add to the task of identifying

software execution flow during runtime. Although the full tool flow of software programming

1



2 Introduction

(compiling, assembling and linking) results in uniform binary code regardless of the toolchain

used, a potential difference of execution structure exists between microprocessor architectures,

programming languages and compilers used, which could result in different efficiencies in the

detection of the data flow in a program.

Several approaches, at several levels, have already been studied and successfully implemented

with very promising results, both in computing efficiency as well as power consumption. These

approaches, although effective, are mostly proofs of concept, and so, they are not feasible for

common use and commercial deployment. Even the few commercial attempts made have had

little market penetration and the implementations based on FPGA exclusive architectures have

been academic only.

This project aims to design another proof of concept based on the most interesting aspects of

these implementations while also adding a different approach to reconfiguration methodology.

Specifically, this project is oriented towards the automatic, runtime, generation of dedicated

hardware from machine code in a single FPGA (Field-Programmable Gate Array). Possible im-

plementation alternatives are explored further in the document, however, a generic objective is the

acceleration of computationally intensive cycles in programs by utilizing hardware that is run-time

reconfigurable. Ideally, the transparency from the point of view of the software toolchain will be

close to total.

Since FPGA technology will be the development platform targeted for this project, it will be

given the most relevance in terms of research concerning dynamic systems throughout this docu-

ment. However, other technologies exist and have been used to test implementations of systems

with the same objectives of performance and cost presented by dynamic hardware.

1.1 Dissertation Structure

In this document, a small contextualization of the theme under study has been presented. Follow-

ing are 6 other chapters.

Chapter 2 details the state of the art, contains a concise comparison between computing tech-

nologies and an analysis of related works. In chapter 3 the objectives and some preliminary designs

are presented. In chapter 4 the currently implemented system is detailed, followed by chapter 5

which explains the toolflow designed to support the system. Chapter 6 presents the obtained re-

sults and, finally, chapter 7 contains a small description of possible future modifications off the

implemented system.



Chapter 2

State of the Art

The most relevant technology in the field of reconfigurable computing is the FPGA [4]. It is the

most flexible in terms of reconfiguration and can be used to perform either standalone computing

(FPGA based systems) or hybrid computing (standard GPPs in parallel execution with FPGAs).

Hybrid computing allows for a softer transition to reconfigurable systems, from the point of

view of higher level development. However, their full potential is bottlenecked by the system

they are coupled too (if the FPGA is implemented as an expansion IO card in the system). The

bottleneck is reduced if the FGPA fabric is implemented directly in-chip, along with the CPU,

which is know as a hybrid-core.

Hybrid-cores contrast with heterogeneous computing. In this last method of computing, a

single, fixed instruction set processor executes the desired application while resorting to dedicated

hardware peripherals for acceleration. With hybrid-cores, the idea is to extend the instruction

set to two (potentially more) in a single memory addressing space by coupling co-processors

to the system One example of this architecture is the commercially available Convey HC-1 [5],

which has a GPP coupled with a reconfigurable co-processor based on a Xilinx Virtex 5 FPGA.

However, this kind of approach, and without going into much detail, may involve modifications in

the software toolchain or introduces new SDKs to develop configuration data for the co-processor:

"(...) a Personality Development Kit (PDK) provides a toolset that allows users to develop their

own personalities for specific applications" [6]. This is out of the scope of this document.

Fully FPGA based computers may provide a greater degree of scalability and the bottlenecks

found in the current computing architectures maybe reduced, depending on the interconnections

between FPGAs. The downside is the inherent necessity of shifting development to a domain

that is purely hardware centered. This not only implies a longer development time but also the

introduction of new development software as well as requiring specialized knowledge in the field

of hardware design, which is something that the currently settled development chains are resistant

too.

Looking more closely at embedded systems, there are several technologies relevant to the

process of creating dedicated hardware for a specific application: ASICs, ASIPs or FPGAs. Being

that the purpose is reconfiguration, the focus of this document is on the latter, however, a small

3
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technology comparison is as follows. How these technologies relate and have been, or can be,

reused for reconfiguration is also briefly described.

• GPPs (General Purpose Processors): like those commercially available for use in personal

computers. GPPs are easy to deploy and their toolchains are standardized. However, they

have a static instruction set, and are made to be coupled to a heterogeneous system. Thus,

they fail to be application specific and comparatively with other computational approaches

they perform worse and have increased power consumption.

Implementing one of these processors on an FPGA is a possibility when creating a recon-

figurable system, the choice depends on the functional structure desired for the system.

• ASICs (Application Specific Integrated Circuits): as the name implies, they are circuits

designed to efficiently perform a particular task. They have the greatest development cycle

and are not reconfigurable. However, their performance may be as good as the technology

and their design allows. The goal of reconfigurable systems is to shorten development time

of systems tailored for a specific application while aiming for the efficiency provided by

ASICs.

Essentially, reconfigurable systems seek to either create or utilize dedicated hardware at

runtime, be it more or less fine grained. Granularity is the measure of reconfigurability

and the behaviour of a dynamic system is based not only on this characteristic but several

others.The relevant ones depend on the application in question, however, a few are: re-

configuration overhead, interconnectivity and changes to toolflow. This last characteristic

is specially relevant. Depending on the reconfigurable architecture chosen there may be a

need to change to software toolchain. Ideally, no change would be required and any pro-

gram written in conventional programming languages would be possible to execute and be

accelerated on the reconfigurable system.

• ASIPs (Application Specific Instruction-set Processor): a GPP-type architecture whose in-

struction set is tuned to the application. This presents the same disadvantages as an ASIC

but is more permissive in terms of flexibility while being less permissive relative to an actual

GPP.

Creating several ASIPs, as soft-core processors, at runtime in a reconfigurable system is

also an alternative. Of course this implies properly identifying the necessary instruction set,

and seeing as though processors execute instructions involving reading and writing from

memory, such accesses would also have to be managed. There would also have to exist,

potentially, communication between processors if, for instance, one program is distributed

amongst several processors. This adds to the difficulty of the profiling of the application and

its hardware mapping.
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2.1 Related Work

As previously stated, this project is focused on a reconfigurable system on a single FPGA. Similar

projects, all from academia, are reviewed and their most similar characteristics to this project’s

goal are critically analysed in the following section.

Generally speaking, implementations of reconfigurable architectures can be characterized based

on a few basic properties. Among these: the level of coupling to a GPP, if any, the granularity of its

reconfigurable hardware, the type of hardware in the reconfigurable fabric (combinational only or

sequential), the structure of the reconfigurable hardware itself, whether or not memory operations

are allowed (dynamic memory allocation, pointer operation or access to data memory for read-

/write), capacity, method for Data flow Graph (DFG) and Control Flow Graph (CFG) detection

and mapping [7] and, most importantly, the practical speedup of execution attained and Instruction

Level Parallelism (ILP, the amount of instructions that can be executed in parallel at any stage of

the reconfigurable hardware).

Some approaches prefer to start the reconfiguration effort at source code level [8, 9, 10, 11],

yet others prefer to diminishing the influence on the software toolchain and perform the optimiza-

tion at binary level, arguing that supporting standard binary level is also an added bonus to the

acceptance and flexibility of these systems.

In one way or another, these implementations seek to attain automatic instructionset exten-

sion [12]. ASIPs, being the halfway point between ASICs and GPPs, shorten design time for

application specific implementations. However, they are still a deviation from the standard de-

sign flows applied today, so, the automatic creation of an instruction set would greatly increase

field flexibility and make the development times shorter for application specific circuits as well as

increase performance.

2.1.1 Warp Processing

Warp Processing is an FPGA based runtime reconfigurable system [13, 14, 15, 16] that involves

binary decompiling, which begins with the detection of cycles [17] in the program, known as

profiling. A dedicated module performs the profiling and several others decompile the running

binary into high level cycles which are then mapped into the remaining FPGA fabric by custom

CAD tools. The target FPGA is a custom built device with a simpler interconnection architecture

designed to simplify the execution of the CAD tools. The software execution is then shifted to the

mapped hardware for those identified sections, the operands of the instructions being fetched via a

Data Address Generator. The system is, thus, fine grained and loosely coupled and is fully FPGA

based, containing a MicroBlaze soft-core processor. Although effective and completely transpar-

ent to the programmer, Warp Processing has its limitations. For instance, it only detects small

loops in the running program. Identifying and mapping more complex hardware for more compli-

cated loops would greatly increase the effort of the SoC CAD tools as well as increase mapping

time. Also it does not support floating point operations, pointer operations or dynamic memory

allocation. Another disadvantage is the inability to explore parallelism of execution between the
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generated hardware and the soft-core processor seeing as tough the binary is altered, and it also

does not allow for multiple soft-core processors taking advantage of the reconfigurable fabric.

Despite this, a MicroBlaze based warp processing system was successfully implemented in [18]

which allowed multiple processors to utilize the available reconfigurable fabric, although intro-

ducing hardware overhead for each additional desired processor. The capability of having a multi-

processor system coupled with any sort of hardware accelerator is non trivial as it raises several

issues, such as the management of access to the reconfigurable fabric and compatibly mapping

one or more dataflows in the fabric.

Already mentioned and worthy of note in this implementation, and discussed in detail in [14,

19, 20] is the simplified configurable fabric (SCLF) utilized to speedup the mapping and algo-

rithms of the on-chip CAD tools.

The SCLF itself is a network of switch matrices interconnecting several small LUTs which

implement all the operations of the mapped hardware. Alongside this interconnection network are

registers to store results, additional hardware to manage memory access and a 32 bit MAC (mul-

tiplier accumulator). The addition of this piece of dedicated hardware derives from the common

occurrence of these operations in embedded systems, thus making it more effective to implement

in a hardwired manner, instead of in the SCLF. The entire set of modules is denominated WCLA.

As for the CAD tools, having a full chain of synthesis and place & route tools on-chip would

be demanding in terms of memory and execution time. Thus, in the cited paper, a set of simplified

mapping tools, ROCPAR, was developed for the WCLA described in related papers. This tool

suite simplifies already existing algorithms by allowing only small software kernels to be mapped

and assuming that only a limited set of more typical dataflows will be present in said kernels.

A detailed look at the routing tool within this suite is published in [19]. In this implementation

the SCLF is modified to contain flip-flops within the LUTs of the fabric, and they may either be

bypassed or used to construct the desired hardware.

Although an advantage from the point of view of hardware generation efficiency it introduces

a constraint on the system, being that the mapped hardware will be generated in such a manner that

compatibility with this reconfigurable fabric is possible. In other words, the full potential for op-

timization is perhaps lost by not utilizing a fully blank FPGA fabric. However, doing so would be

a computationally demanding task. In fact, the authors state that their tool suite generates results

that are less efficient than more complex placement and routing algorithms that are ran offline.

However, the obtained routing results are still competitive with the VPR algorithm [21] and they

also present a comparison testing between the entire ROCPAR tool suite and the Xilinx ISE. Even

though the computational effort and memory demands are greatly reduced, the requirements are

still up to 8MB of memory to execute these synthesis tools. Also, the SCLF introduces consid-

erable hardware overhead for connections between LUTs, which also represent not only pipeline

delay but also static power consumption.

For the benchmarked applications (several from the EEMBC and Powerstone suites) the aver-

age speedup attained was 5.8, with a reduction of power consumption of 57% on average.
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2.1.2 Thread Warping

In [22, 16] a multi threaded approach to warp processing was taken. The implicit parallelism

found in threaded applications makes them prime candidates for hardware acceleration. However,

threads are handled by operating systems, so it becomes necessary to develop a radically different

architecture that supports communication with the OS running on the GPP. Also, the OS has to be

made aware of the new resources the FPGA circuits represent so that it can map thread executions

on it as it would map them on other computing cores. For this purpose, and API was developed to

allow for this interface.

Specifically, the thread warping mechanism comes into play when there isn’t a sufficient num-

ber of micro processors available to execute the queued threads (for a mono processor layout, this

means more than one thread). The on-chip CAD tools, now heavily modified, monitor the OS’s

thread queue for any opportunities of optimization. Once a thread is identified and as not yet been

optimized, it is processed by the CAD tools to generate a corresponding circuit. The original bi-

nary may or may not be updated, depending on whether the thread was implemented only partially

in hardware, or fully. The generated circuit is then stored, in case it is unmapped but needed again

if its corresponding thread is queued for execution at a later point.

Added to the effort of binary decompilation, detection of software kernels, synthesis and map-

ping is added the step of properly identifying memory accesses between threads as to avoid vi-

olation of resource accesses or the creation of race conditions. However, the authors identified

regular patterns of resource access between threads and perform a reduced number of memory

reads to feed the instantiated accelerators. Still, additional hardware is required such as DMAs

(up to one per accelerator or accelerator group) and OS support is required in order to synchronize

thread queueing. Several other disadvantages and limitations exists, however they are mostly OS

oriented and as such, out of the scope of this paper.

Still, despite all the current limitations and the great amount of alterations needed in the fabric

and the functioning of the CAD tools, speedups averaging 169 times were obtained with thread

warping.

A small summary of the Warp Processing system found in [15], along with the CCA architec-

ture discussed in the following section.

2.1.3 AMBER and CCA

Besides warp processing, many other implementations utilize application profiling. Generally,

profiling involves monitoring instruction memory for backwards branches in an attempt to iden-

tify controlled loops and determining which of those loops should be mapped into hardware. The

decision criteria for the choice varies, being it the number of occurred backwards branches, the

type of dataflow detected in that code segment or the existence of supported instructions. Often,

higher level compilers will unroll explicitly stated loops and thus the loop control structure is lost

at the binary level. One of the implemented techniques in the papers presented by Vahid et al. [16]

was the recovery of this information at profile time to better utilize the hardware acceleration.
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Another was operator strength promotion, which recovers multiplications that were previously

optimized into a series of additions and shifts targeting the compile time architecture. Of course

this is only relevant because the architecture of the WCLA already contains a 32 bit MAC. In a

different architecture the optimal situation may have been the processing and hardware mapping

of the compiler simplified multiplication, seeing as tough it may allow for ILP in a reconfigurable

fabric. Considering this, an obvious optimization to be done at graph detection level is the trans-

formation of complex expressions into simple sequences which are mappable and parallelizable.

With AMBER, presented in [23, 24, 25, 26], a profiler design is utilized alongside a sequencer

which stores previously created microcode for the developed accelerator and initiates its execution

by comparing the current program counter (PC) with stored information. The dynamic hardware

consists of a reconfigurable functional unit, RFU, which is controlled by configuration bits to

perform a given operation. The RFU is configured whenever a Basic Block (a sequence of instruc-

tions delimited by branches), detected by the profiler, is executed over a determined threshold.

Note that this implies the proper detection of the Basic Block’s dataflow graph and control flow

graph at profile time. This is also true for the Warp Processing architecture which requires this

information to synthesize circuits. In the case of the RFU, the same information is utilized to map

the data flow directly into the existent pipeline of the RFU. Internally, the RFU is composed of

several FUs, that can perform logical and mathematical operations, interconnected by multiplexers

controlled by configuration bits. The data is feed into the RFU by direct access to the register file

of the GPP it is coupled too. Also note the number of inputs and outputs as well as the number of

FUs the authors claim to be optimal for the MiBench test suite (8 inputs, 6 outputs and 16 FUs). It

provides a rough measure of the necessary amount and characteristics of reconfigurable hardware

to have available in order to map the kind of graphs obtained in embedded applications.

It allows for fast configuration switching. However, it binds the accelerator to the processor,

in a 1:1 relation. If several processors were to be embedded, and communicating, the hardware

overhead for each HW acceleration architecture might become considerable. An improvement

would be to have reconfigurable fabric shared by all running soft-cores in the FPGA, and somehow

control and multiplex the access to the mapped hardware. This would allow for multiple CPUs to

share already implemented hardware, assuming compatible clocks and the possibility to account

for delicate timing issues in cross-processor communication. This does not exclude the possibility

of keeping recent and most used configurations for fast switching. This however, would be more

difficult to implement due to the nature of the interconnections from the GPP to the RFU. The

RFU is integrated in the GPP as another element of its functional pipeline. Therefore, such a

system is not discrete and portable in such a way that can be applied to closed commercial soft-

core processors such as the MicroBlaze and PowerPC. Also, the result of a particular sequence of

instructions is fetched from either the accelerator or the output of the GPP pipeline, this means

that, in case of a Custom Instruction being executed the GPP will still be processing and there

will be no possibility of exploring parallel execution. Also, as mentioned, the coarse grain nature

of the RFU makes it impossible to map all the detected Basic Blocks, thus reducing the potential

for optimization. On the other hand the temporal overhead for mapping is severely reduced when
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compared, for instance, with Warp Processing.

The authors utilize the nomenclature Custom Instruction to refer to a graph that can be mapped

on the RFU and further detail on their treatment in [27]. A temporal partitioning algorithm is used

to break down data flow graphs and transform them into mappable segments. Another way to

solve the issue of mapping large optimizable segments into a smaller reconfigurable pipeline was

a small architectural change. By Connecting the FUs in the RFU in a spiraling fashion, a longer

pipeline was achieved, making the system more flexible [24]. This of course introduces more

complexity in the mapping algorithm. Further work on this architecture produced a heterogeneous

RFU [28]. The reason for this modification was the fact that small groups of instructions (two or

three) instructions are often executed in a particular order. That is, many of the RFU configurations

were similar (at least for the selected benchmarks) and so the level of generalized interconnection

permitted by the architecture was superfluous, introducing propagation delay due to multiplexers.

Thus, by replacing the simpler FUs in the fabric with more dedicated ones, able to perform more

that one operation in sequence, they eliminated the need to insert the connection multiplexers that

were present in the homogeneous RFU layout. The removal of their propagation delay allowed

for a faster completion of the mapped instructions, which means a higher speedup. Also, the

configuration overhead decreases, as is expected of a layout that is essentially more coarse grained.

Despite the speedup and mapping percentage gains claimed to be obtained with this approach, note

the additional effort of properly identifying subgraphs and their associated mapping and routing on

the non uniform RFU. In fact, several modifications had to be introduced to the graph discovery

and mapping tools, as well as storing more detailed graph information in memory to allow the

level of efficient mapping obtained on this more restrictive architecture. A further modification

was the merging of configuration data for CIs with similar, or equal, flows, which reduces memory

requirements. This provides an interesting measure of how fine or coarse grained a reconfigurable

architecture needs to be in order to allow speedups on the kind of embedded applications in the

MiBench suite (which is intended to be a good representative of embedded applications in general).

A very similar system is the CCA presented in [29, 15]. A reconfigurable array of FUs coupled

to an ARM processor. In short, the detection of CFGs and DFGs is done by delimiting the code re-

gion to be mapped to hardware by custom inline assembly instructions. This, though it diminishes

the transparency level from the point of view of the software toolchain (even more so because

the compiler is further modified to reorganize the code to ease the replacement phase at runtime),

greatly decreases the effort of run-time application profiling and its associated hardware overhead.

Note that the identification of data and control graphs in said delimited regions is done at compile

time, which implies an even greater modification of the toolchain. However, a dynamic discovery

mode is also supported, in which the graphs are detected at run time. The dynamic graph discovery

method is based around the rePLay framework presented in [30], which identifies large clusters

of sequential instructions as atomic frames. This is heavily based on trace caches and instruction

reuse, which fall out of the scope of this architecture review. However, as a small note, the execu-

tion of these frames is controlled by branches whose validity is asserted during frame execution,

if the assertion fails, the frame is discarded. The notable difference in this approach is the usage
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of these frames to discover several subgraphs that are mappable within one larger control flow, i.e.

one large frame may not be itself mappable (unsupported operations or to much data dependence)

but may contain several subgraphs that are. In contrast, the AMBER architecture begins reconfig-

uring its hardware only by a threshold of execution of Basic Blocks, which limits its application

range. In other words, the CCA detects graphs by utilizing the trace cache principle (an optimiza-

tion technique already widely implemented in commercial GPPs) and AMBER only by branch

detection. Either approach involves dynamically altering the microcode instruction stream during

execution of the program, although at different stages in the GPPs pipeline. These instructions

will themselves configure the CCA and provide it with the sequence of instructions and data to

perform the calculations contained in the associated graph. Therefore, it is also a form of binary

translation. In detail, the CCA is a triangularly shaped set of FUs, much like the AMBER ac-

celerator architecture. Significant differences are the graph discovery methods and the supported

operations of the FUs in the reconfigurable arrays. In the CCA architecture, two types of FUs were

chosen, one for 32 bit addition/subtraction and another for logical operations, with no support for

multiplication or shift operations. This decision was motivated by an empirical analysis that in-

dicated that for the most part (over 90%) the detected graphs could be executed without resorting

to such operations. Another key difference lies in the internal connections allowed between FUs,

and the number of inputs and outputs. The CCA is less flexible, disallowing the connection of FUs

on the same level and possessing only 4 inputs and 2 outputs (this decision however was based

on previous studies [7] that indicated that a larger size would bring little advantage if memory

operations were not supported). Thus, the CCA approach was claimed to be able to map 82% of

the subgraphs discovered by their dynamic graph discovery and the AMBER approach 90.48%.

Consider however the previously stated point in the differences in graph discovery, which may

influence the results of the mapping as different graphs are discovered. A more valid compari-

son would be the speedup attained: 10% average for AMBER and 26% for CCA. Although the

CCA was apparently more restrictive in its reconfigurable hardware, its better performance may

be justified by its more comprehensive treatment of the detected graphs and the detection itself.

Note however that this complex algorithm for graph analysis incurs in a large memory overhead.

In these two architectures memory operations are disallowed because they cannot be mapped into

their respective reconfigurable hardware. This is in contrast to the DIM Reconfigurable System,

summarized next. Both the CCA and the AMBER architecture permit a certain level of instruction

parallelism within their own reconfigurable units, dictated their width.

2.1.4 DIM

The DIM Reconfigurable System [15, 10] also works based on a reconfigurable array and a binary

translation mechanism from which the system gets its name. Essentially this binary translation is

DFG detection and transformation into configuration for the array. A distinguishing characteristic

is that this transformation occurs in parallel to program execution. The GPP accesses instruction

memory to execute the program and concurrently the DIM system accesses the same memory

to identify mappable instruction sequences. Similarly to the CCA architecture, this allows for
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detection of more heterogeneous code regions to map, not being limited to very specific kernels of

execution.

Like previous approaches, the moment to switch to hardware execution is indexed by the GPPs

PC, and also, the data to be operated on is fetched directly from the register file. This last feature is

only possible, in any implementation, because of the tight coupling between the custom hardware

and the GPPs pipeline, if such was not the case, a different method would have to be used to fetch

operands, such as the Warp Processing approach. However, that approach is limited to sequential

or regular memory accesses, whereas the DIM system is capable of accessing random addresses

at runtime. By feeding the load/store units with addresses calculated by ALUs in previous rows

a memory access becomes possible at any point of array, allowing for mapping of graphs that

include these instructions . This also implies support for pointer operations, with the system being

able to read and write from and to memory positions not known at compile time.

The reconfigurable array is also tightly coupled to the GPP as another pipeline element. Like

warp processing, the optimization is totally transparent to the software toolchain, and unlike the

previously presented implementations its greater coarse granularity, much like the heterogeneous

architecture for the AMBER processor, allows for less configuration data and its quicker genera-

tion with smaller hardware overhead and memory requirements. By being coupled to the processor

pipeline, and seeing as though the configuration of the array is controlled by the PC, there are 3

available clock cycles (derived form any GPPs pipeline) before the data reaches the array. In case

this is not enough (if there are too many operands to fetch), the processor will be stalled, however,

if three cycles suffice there will be no additional delay in the pipeline. This is unlike the CCA

architecture in which the configuration is given to the array via the bits in the micro operations

themselves along the GPPs pipeline.

In terms of structure the DIM array it is composed of a set of uniform rows and columns

containing a number of ALUs that can perform standard mathematical operations, a lesser number

of dedicated multipliers and the load/store modules. Although floating point operations are not

supported, they could easily be added as another FU in the array, seeing as tough operations

with variable latencies are supported. Interconnection, like other implementations, is done with

multiplexers, which chose the inputs from the register file or from the previous row in the array.

Propagation of results from one row to the next and so forth without operating on the values in

the context bus (the bus that carries the values of the graphs throughout the array) is also possible,

to permit the reuse of values in operations further down the line without the need of additional

memory writes and reads. This also means that only the last value pertaining to a particular target

register is actually written to that register, seeing as tough any intermediate results will have been

handled inside the array.

The speedups obtained with the DIM architecture were measured in several configurations

regarding the size of the reconfiguration cache (which stores configurations ready to be applied

when indexed by the PC) and the GPP it was coupled too (simulations done with the Simplescalar

Toolset). A speedup of 2.5 on average is claimed, as well as 55% energy savings on average.
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2.1.5 Chimaera

A much earlier system was the Chimaera [9] [31], reconfigurable array. The Chimaera archi-

tecture is also tightly coupled to the processor, getting the inputs from the register file. Unlike

other tight coupled solutions, the Chimarea has a LUT based reconfigurable array, in which the

interconnections are made with control muxes. It is most similar with the SCLF in that regard.

A difference however, is the capability to partially reconfigure its RFU, row by row. Each row

has its own configuration and can fetch its own operands from registers that shadow the register

file or from preceding rows. Seeing as though an operation is composed of one or more rows in

sequence, not all the rows in the array are necessary to implement short operations. So it is possible

to have the RFU ready to perform a variable number of operations without needing to reconfigure.

Of course this involves checking all the mapped operations for each RFU operation encountered

in the instruction stream but this overhead might be smaller than the constant reconfiguration

overhead one would encounter if several operations were to be performed alternatively for a long

period of time. Dataflow detection and the creating of configurations for the array is performed

at compile time, meaning an alteration of the toolchain is required. Specifically a specialized

compiler and linker that generated and place instructions and configuration data relative to the

RFU in the resulting binary. The detection and treatment of the instruction stream as well as

management of the RFU is done by additional logic that is integrated with the GPP so it can

redirect and coordinate execution.

The configuration overhead is quite large, needing 1674 bits per row. Implementations such as

the CCA required only 245 for the entirety of their largest array. Additionally, each RFU operation

permits only nine inputs, one output and no memory operations. The multiplicity of operations

that can be mapped on the RFU will diminish this overhead over time however.

2.1.6 GARP

The GARP architecture [8] has the GPP control the reconfigurable hardware directly, as well as

permitting some control in the opposite direction, such as the array stalling the processor and

requesting memory accesses. So, several instructions had to be added to its set (the base ISA

being that of a MIPS-II) such as instructions that allow moving data in and out of the array into

its own register file. The system also requires modification of the toolchain, adding an auxiliary

program to generate a configuration for the compiler and modifying MIPS assembler to support

the new instructions.

The configuration program works as a compiler for a dedicated language that specifies array

configurations. In other words, there is no automatic graph discovery, and the optimization effort

is manual.

The reconfigurable fabric consists of CLBs organized in a matrix, quite similar to ones found

in FPGA architectures. Each row contains one specialized control block that serves as the interface

between the array and the GPP. These blocks can cause interruptions of execution and memory

transfers to or from the array. Besides these, a larger number (16 + 7 per row, the 16 being aligned
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with the processor data word) of logic blocks implement the actual arithmetic and logic. Like

Chimaera, several configurations can be in the array at once as one operation may not need to

utilize all the available rows. Like an FPGA fabric connections between adjacent horizontal and

vertical CLBs are allowed (which permits carry logic), additionally, 4 buses carry data in and

out of the array and also serve to supply reconfiguration bits, a separate wire network is used to

interconnect CLBs. Each block can individually be set up to serve as a pair of LUTs, a dedicated

3 input adder/subtractor/comparator, shifter or a 4-way multiplexer. Though multiplication is not

supported directly, it can be more easily mapped by the 3 input adders. The previously mentioned

memory accesses are performed trough a memory bus and by forwarding control signals form the

operating CLBs to the control CLBs. The array views the memory structure as a GPP would,

supporting caching and page faults.

Of note are the separate clock domains, the processor clock and the array clock which oper-

ates is sequential logic. This clock is active for a specified number of clock cycles, this value is

determined at the start of each array instruction, meaning that when no instruction is being per-

formed there is no clock being fed to the array, avoiding useless propagation of data. Also, the

array’s clock counter serves to coordinate access to its results and to check when reconfiguration

is allowed.

To reduce the configuration effort, the wire network that interconnects does not need any

configuration. Instead, it is organized in such a fashion that only one CLB can drive a particular

wire and, thus, all the others can read it. The network is then broken into wire segments, to allow

different data contexts in the fabric. So, to compare with the Chimaera architecture, configuring

each row of the GARP fabric requires 1536 bits, roughly the same. However, since the CLBs

are more coarse grained, the number of rows needed to implement a custom instruction may be

smaller.
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Chapter 3

Design Goals and General Approach

3.1 Objectives

Generally speaking, the final objective would be to develop a system that is capable of auto-

matically generating a functional hardware description, given information regarding the data and

control flow of a program. With that description information, map one or several statically held

hardware elements which perform computations to a portion of FPGA fabric. Afterwards, config-

ure the placed hardware by routing its operands and results through a simpler set of control bits

that dictate the interconnections of the selected library elements. Thus creating a Reconfigurable

Fabric (RF), which performs calculations that are equivalent of those found in the originating

software.

The more adequate manner in which the elementary operations are to be stored and how the

description is to be constructed is also a target of study, as it dictates the underlying architecture.

Regarding this aspect, the Reconfigurable Fabric should be viewed as peripheral on the GPPs bus,

thus making the access to/from the fabric much more transparent and standardized. Since the Mi-

croBlaze (MB) soft-core processor will be utilized, using an FSL (Fast Simplex Link) connection

is also an option. Added to this, allowing access to the fabric by multiple soft-core processors

would be a secondary objective, as well as exploring parallelism between the GPP and the fabric,

parallelism in the fabric itself and sharing mapped resources between graphs.

3.2 Design Rationale

There are several reasons for this choice of functionality. For instance simply to test of a differ-

ent approach and to develop a system of mixed granularity and more flexibility that could adapt

to different embedded application requirements on the field. The usual operations in embedded

systems do not require fine grained application, however, by simply editing the libraries in the

reconfigurable module, more or less granularity could be attained. Also there is yet to be a system

that can map all the desired code regions to hardware without considerable hardware and temporal

overhead.

15
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Figure 3.1: System Overview

Such an architecture would also allow for loose coupling to any kind of GPP, so long as the

respective instruction set is supported by the reconfiguration module. Although this introduces

greater communication and hardware overhead, as well as a greater temporal overhead in terms of

mapping, the advantage is the application flexibility and the potential to have a completely stan-

dalone reconfigurable fabric that can be applied transparently. Also, the loose coupling doesn’t

require altering the GPPs pipeline, ideal for closed soft-core processors, and doesn’t require sev-

eral reconfigurable fabrics and associated hardware to allow acceleration for several embedded

soft-cores in the same FPGA.

This would allow the system to steer away from any form of binary translation or transforma-

tion of any kind besides the interpretation of the instructions read from the GPP. This is because

binary decompilation is computationally expensive, and a very robust decompilation mechanism

would have to be put into place in order to ensure proper functioning (which is very time consum-

ing). Also avoiding the alteration of the original binary is also somewhat desired to ensure that

the GPP can continue to execute the program normally in case the reconfigurable fabric is fully

mapped, or in use by another GPP.

To properly test the system and compare the results generated by it and non-accelerated al-

ternatives, the utilized benchmarks will depend on the final status of the developed accelerator

regarding its support for DFGs and CFGs (CDFGs).

3.3 Preliminary Proposal for System Architecture

The following section details some preliminary approaches to the layout of a Reconfigurable Fab-

ric and its interface with the remaining system modules. These layouts were developed with a

system that utilized an ICAP peripheral in mind. Available in some FPGAs, ICAP allows for edit-

ing the FGPA’s run-time configuration based on partial bitstreams that target a specific area of the

FPGA.
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Figure 3.2: Fabric Alternative 1, simple horizontal wiring

The reconfiguration module would be able to access a limited number of Block RAMs (BRAMs)

depending on implementation. The proposed architecture for access to instruction memory would

make the GPP triggering the reconfiguration process transparent to the reconfiguration module.

Once the bitstream is constructed the ICAP module would map that into the reconfigurable fabric

(the ICAP module may be connected to a different bus [32]). Also, the reconfiguration module

would hold information about the already mapped hardware, stored bitstreams, construct graphs

by reading instruction memory and may be responsible for fetching data to feed to the fabric. The

GPP would have to run a single thread application with no operating system. Additionally, either

the GPP would be required to have at least two custom assembly instructions to send signals to

the reconfiguration module in order to instate graph discovery for a region of code encapsulated

by those instructions, or the reconfiguration module would itself monitor the instruction bus and

contain algorithms that performed the task of finding appropriate regions online. Still to deter-

mine is the method of data input into the fabric without involving direct access to the register file.

Something similar to the Warp Processing architecture would be ideal, with direct access to data

BRAMs. However, this was functional in that design because the data accesses were sequential.

In this case an input of n from any memory positions are desired. So, it is necessary to store infor-

mation about the memory addresses associated with each custom hardware module as well as the

PC that triggers its execution.

Regarding fabric architecture, a rigid layout is difficult to envision without knowledge of the

method for data retrieval and storing of other configuration data. However a few approaches are

conceptualizable.

One alternative for the fabric layout is as presented in figure 3.2. Assuming ease of bistream

concatenation and mapping, as well as ease of connection of the custom hardware outputs to the

static fabric interconnection network, the fabric would be greatly simplified. Horizontal wires

would run at the top of the fabric either providing inputs or fetching outputs from the custom
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Figure 3.3: Fabric Alternative 2, wire matrix

hardware. The interconnection overhead would be minimal, and ideally with no delay. The in-

puts/outputs would be fetched/put into/from a register bank that would be seen, from the point of

view of the peripheral bus, as a simple memory device. Of course this would limit the amount

of operands that could be set as inputs and, consequently, the number of custom hardware blocks

placed (as they could produce only as many outputs as the registers allow). However, previous

approaches show that, for embedded applications, the number of inputs and outputs settles at rel-

atively low values (around 9 to 4 inputs and 1 to 4 outputs depending on graph discovery and

architecture). So, adding this limitation should not be restrictive. The outputs would appear in the

output positions a determined number of clock cycles later. To synchronize with the GPP, a clock

inhibiting mechanism can be used (i.e. stall the processor).

In case a more complex fabric is required, an approach such as the one in figure 3.3 would

be a possibility, dividing the area in cells. Although a decrease in the simplicity of the fabric, it

may facilitate the interconnections to the input/output registers. However, this would limit the area

permitted for each custom hardware module. One alternative is to replace each said module with

a simple library element instead, which would eliminate the need to concatenate bitstreams, and

interconnect each element with a switch matrix similar to the SCLF. Of course this would, in turn,

limit the area of the library element to map to each cell.

To support clocked custom hardware, a clock signal is required. Since different custom hard-

ware modules will have different library elements the maximum clock permitted may vary. A

simplification, as opposed to having several clocks, is to have a clock generator, as in figure 3.4

for the whole fabric. This clock would be regulated by the maximum delay found in the mapped

elements (adjusting at every mapping).
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Figure 3.4: Clock generator, would supply clocked hardware elements

3.4 Graphs

As stated in previous chapters, constructing CFGs and DFGs is a necessary step in order to imple-

ment a data-path. Even without the notion of parallelism, it is necessary to identify the input data

of a particular region of software along with the operations performed upon it in order to design

hardware that replicates that behaviour.

To specify, CFGs dictate a flow of control operations whose results control execution of loop

based operations. DFGs represent solely the data-path itself, or in other words, useful data.

Operands and results propagate through them according to the CFG which also dictates when

and at which point the computation for that DFG is completed. Both will be generically referred

to as graphs from now on.

The graphs that will be target of study will derived from computational loops. In other words,

constructs such as for and while, or equivalent, result in cyclical computations upon data that,

if repeated intensively, will become the most time consuming operations of a program. Control

structures such as if or case (which, at assembly level, are branch instructions), delimit regions of

code in segments called Basic Blocks, which will compose the control represented by CFGs. So,

a graph may have one or more points where its execution is completed.

In section 4.3 are presented the considered approaches for an architecture capable of imple-

menting the computations and control flows of graphs of this kind.

3.4.1 Graph Characteristics

In an abstract fashion such as the example in figure 3.5, a graph may be represented by placing

operations in individual rows, each row containing operations that may be executed in parallel and

which propagate their results to any following operations spanning either one or more rows. In the

example given, no manner to control the execution is represented, i.e. a CFG.
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Figure 3.5: An example Data Flow Graph detailing data dependencies and operations

Logically, the type of operations found within the graphs, their data dependencies, the amount

of parallelism and the amount of input data itself directly dictates the type of hardware more ap-

propriate, or strictly necessary for their support, as was seen by the implementations summarized

in chapter 2.

Adding to these, there is also the presence of load/store instructions (memory access), the span

of connections, the manner in which data is feed into the graph at each iteration and whether or

not the graph contains more than one exit point. If a graph contains one exit point, it is considered

atomic, if several, it is named non-atomic. So, four possible combinations exist considering the

exit points and the absence or presence of memory operations. Of course the remaining graph

characteristics make for many more types of graphs, but these two especially create combinations

which require a more sophisticated hardware layout in order to support them (though the span of

connections introduces similar considerations). Also, non-atomic graphs may also be treated as

atomic iterations. Further detail on this is found in section 3.5.2, in which the types of graphs thus

supported by this implementation are explained. Section 3.5.3 details why some graphs where not

considered.

Regardless of necessities found at hardware design level, from a purely conceptual point,

these types of data flows are good candidates for optimization for the sheer level of instruction

parallelism they possess. The higher the parallelism of a graph the more potential is present for

acceleration. For instance, in a MicroBlaze processor, a machine cycle (i.e. one assembly in-

struction) may take as long as 3 clock cycles (although an instruction is completed every clock

cycle due to the processor’s pipeline). If the example in figure 3.5 represented a group of MicroB-

laze instructions, they would take a total of 8 clocks cycles to execute in the best case scenario.

That is, without intermediate operations to move values to and from registers and assuming that

the instructions themselves (opcodes) were readily present in local memories or cache. On the

other hand, a parallel execution by an architecture capable of being feed the input values A, B,

C and D simultaneously would complete execution in only 2 clock cycles. In truth, many more

communication delays are introduced, as will be show later, but acceleration is still possible.
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3.5 Graph Extractor

In order to generate sets of graphs such as these, a Java implemented Graph Extractor [33] was

utilized, which also provides information about the CPU registers involved in the operations.

In related works, graph detection was done at either online or offline time, with more or less

intrusive approaches. Generally, online approaches observe the running program and, as such,

extract graph information from low level execution, offline approaches attempt to generate the

same information from high level source code. Here however, the analysis is performed offline

and at low level.

The Graph Extractor analyses the instruction stream of a program running over a Microblaze

simulator. So, what is observed is the sequence of instructions that the simulated program would

perform at runtime. From there it is possible to extract information regarding repetition of par-

ticular segments of code delimited by branch instructions, i.e. Basic Blocks, to determine data

dependencies and, also, to determine a particular repetitive pattern of a number of these Basic

Blocks.

Essentially, the Extractor works with three types of instruction trace units [34] [35]. They are:

the instructions themselves, the BasicBlocks and SuperBlocks.

SuperBlocks consist of sequences on BasicBlocks which, at runtime, contain only forward

jumps. To clarify, a BasicBlock is delimited by a branch, and the branch destination is either

dictated at compile time of by the operators passed to the branch. During runtime (in simulation)

if a sequence of BasicBlocks is detected in such a manner that none jumps to an address lesser than

its own (i.e. backwards), those BasicBlocks can be grouped into a SuperBlock. So the SuperBlock

is a structure that can only be constructed at runtime.

In order to detect a graph, these instruction trace units, each of its own granularity (SuperBlock

being the largest), can be grouped into a MegaBlock, which is a repeating pattern of the selected

trace unit. Analyzing instruction stream in order to identify a pattern results in a large working set

of data. Hence the notion of the SuperBlock.

So, a MegaBlock may be constructed from a trace of SuperBlocks simply by stipulating that

the starting address of each SuperBlock (which is the address of first BasicBlock which composes

it) is now an identification. This way a repeating pattern SuperBlocks can be found. Thus, a

MegaBlock (graph) may be constructed by analysing a much smaller group of identifiers, the

SuperBlock addresses, instead of the complete instruction stream.

The output generated by the Graph Extractor is then utilized by the tools explained in chapter 5.

The output files themselves are explained in the following section.

3.5.1 Graph Extractor Output Files

The Extractor generates several output files per graph it detects. These files detail the operations,

connections and Microblaze registers involved in the execution of the graph. It is capable of

detecting both atomic and non-atomic graphs and displaying the information accordingly, as well

as performing a number of other instruction stream analysis tasks.
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andi r3, r5, 1
or r3, r3, r6
addik r4, r4, 1
addk r6, r3, r3
xori r18, r4, 32
bneid r18, -20 //branch instruction
sra   r5, r5

Figure 3.6: An example of a graph that was built by assembly analysis, along with the originating
code

Besides these files, which are inputs to the following tools in the toolchain, the Extractor

generates graphical representations of the graphs. Such an example is the graph in figure 3.6.

This graph already presents MicroBlaze instruction set instructions and their connections, as

they were determined by analysis (although still detached from any hardware structure). The

origin of the input data is already identified to be a group of registers from the MB register file

(one register per 32 bit operand). Likewise, so is the destination of the outputs, although those

connections are not represented (for clarity). The output registers need not be as many as the

input registers and there is no direct relation between the two. Any result of any operation may

be placed at any output register. This graph representation contains both the DFG and the CFG

for the cyclical computation it represents. The righthand operations are performed only to have

their results checked by the branch operation (which is an exit of the graph), thus triggering its

completion. Although in this example the only data inputs originate from register file of the MB,

the already mentioned memory accesses are much more commonly found (as data intensive loops

require more operands to be moved and result in more values being altered). In many instances,

some operations are executed while having one of their operators constant through all iterations,

i.e. those operators are either compile time constants or observed to be constant during instruction

stream analysis. So, support for setting these values in hardware will also be necessary (as they

cannot be retrieved from the processors register file like the remaining inputs). The graph is

also atomic, having only one exit point. Also show in this representation, the execution of the

graph continues after each iteration by propagating the results of iteration n to iteration n + 1 (i.e.

connection of one or more of its outputs into the inputs of the operations in previous rows). Thus,

eventually, a value will be fed to the control instruction that will end the execution.



3.5 Graph Extractor 23

--Megablock Stats--
#iterations:29
#original instructions: 7
original instructions x iterations: 203

--Liveness Analysis--
3 live-ins (REG4, REG5, REG6)
5 live-outs (REG18, REG3, REG4, REG5, 
REG6)

--Misc--
Does not have memory store instructions
Does not have memory load instructions
#Side-exits:1
startPc:0x880001A0
CPL (AtomicGraph):0
CPL (NonAtomicGraph):0

--Exit Addresses for NonAtomic Graphs--
Exit1:0x880001BC

Figure 3.7: Example Stats File - These output files contain information about what processor
registers are involved in the graph and where, in memory, the graph is located.

The data in this representation is also kept in the two files utilized by the developed tools. They

are the graph Stats File as exemplified in figure 3.7, and the graph Operations file, in figure 3.8.

These two examples of these files explained here are relative to the graph presented previously in

figure 3.6.

Concerning the graph Stats file, it presents a listing of the input and output registers of the

MicroBlaze, that is, the registers that contain the input data to be given to the RF and the registers

to which the output data of the RF will be stored too. It details also the presence or absence of both

load or store instructions and, importantly, the starting PC of the graph. The previously mentioned

PCs the Injector reacts to are these extracted values that indicate where, in memory, the repeating

instruction pattern begins to occur.

Related to this parameter are a few hardware design choices that are not immediately appar-

ent. As stated before, a MegaBlock is a sequence of SuperBlocks, so, as an example, consider

SuperBlocks named A, B, C and D. Now consider any two sequences of these identifiers which

start at the same identifier, for instance, A-B-B-C and A-D-D-C. These two sequences would form,

in turn, a sequence of instructions expressable as a graph, and feasible for implementation. How-

ever, the Injector contains only a graph table which allows it to associate each PC with an ID and

trigger the functioning of the system for that graph. In this case, both graphs would have the same

starting PC, as they start at the same block. So, no obvious solution is present as to how to distin-

guish between graphs at runtime utilizing only the memory address present on the instruction bus.

More data would be required at runtime, and that would be the sequence of the SuperBlock’s PCs

themselves, i.e. a detection of the sequence A-B-B-C or any other in question. In section 4.2.1, a
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OP:2
operation:addik
level:1
numInputs:2
inputType:livein
inputValue:REG4
inputType:constant
inputValue:1
numUsedOutputs:1
outputId:0
outputFanout:1

EX:5
operation:bneid
level:3
numInputs:2
inputType:internalValue
inputValue:4,0
inputType:constant
inputValue:-20
numUsedOutputs:0
exitCondition:false
exitId:1

Figure 3.8: Example Operations File - Excerpt from a Operations file, displays operation and
connection information as well as to which GPP registers the outputs should be redirected

possible hardware support to handle this issue is briefly discussed.

Also in the Stats file, is the number of total instructions that would be required in software to

execute the graph. From these values a rough estimate of performance increase can be derived as

will be shown later.

Regarding the file detailing the operations of the graph, it is a simple listing of MicroBlaze

instructions detailing the instruction itself, where its operands originate from, the number of use-

ful outputs from that operation and the fanout of each output of an operation. The inputs of an

operation can either come from the input registers themselves, from outputs of other operations

or are constant. Operations of type EX are branches, and, as such, the exit points of the graph.

They contain a extra field indicating if the branch is to be taken if the condition expressed by it is

either true or false. For instance branch if greater or equal or branch if not greater or equal, thus

allowing for any combination expressable in software. From this information, the placement of

operations and routing of operands and results in the selected architecture is performed, as will be

shown in section 5.1.

3.5.2 Supported Graph Types

The implemented system was constructed in order to support automated hardware description for

graphs such as the one in figure 3.6. In short, this graph is atomic, and possesses no memory

accesses, receiving and outputting all its data back into the register file of the MB. These are the

kinds of graphs the implemented architecture and toolflow is capable of executing in custom made
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hardware. However, non-atomic graphs are also supported by treating them as atomic iterations,

equal to the concept of frames used in the rePlay framework [30]. In short, a non-atomic graph

may end its execution at any of the intermediate exit points it contains, thus prompting the recovery

of the output data at that point and the return to an appropriate position in code memory. However,

the entire iteration may simply be invalidated, returning to the very start of the graph.

So, as is currently implemented, if any branch triggers, the iteration of the graph is aborted,

and execution is returned to the beginning of the corresponding software region while returning

the results of the previous iteration. The software execution would continue normally from that

point and branch out at the same branch instruction that had caused the hardware to complete its

execution.

This will become clearer once the hardware structure is presented but to summarize, the cur-

rent architecture does not support memory accesses and supports atomic graphs and graphs with

multiple exit points treated as atomic iterations.

That leaves three possible combinations of graph types that, although considered, were deemed

more appropriate for later design iterations. They are explained in the following subsection, sub-

section 3.5.3.

3.5.3 Unsupported Graph Types

Unsupported characteristics of graphs are, as mentioned, memory accesses and graphs with mul-

tiple exit points (in which intermediate results may be recovered).

Regarding the memory accesses, the reason as to why they are made more difficult to sup-

port is the very nature of the typical processor and memory structure. Such as a von Neumann

architecture, as is the case for the system utilized for development. Unlike other operations found

within graphs, such as additions and logical operations (exclusive ors, barrel shifting, etc.), mem-

ory reading and writing are, obviously, not mathematical in nature, and require accessing and

external peripheral, i.e. a memory. When a processor wishes to read data or to fetch instructions

from memory, it requires support for pipeline stalling to account for the access delay and dedicated

interfaces to communicate with memory controllers. So, to store and retrieve data from a recon-

figurable fabric this behaviour would have to be mimicked (as it is with any memory accessing

peripheral). The consequent problem is developing a hardware structure flexible enough so that it

can both permit memory access and maintain a coherent flow of data by controlling execution of

operations in a much more strict way and so that it can also be easily scalable.

Implicitly, this forces the internal architecture into something considerably more rigid, and

data output and input points would have to be defined. To clarify, the point of execution in which

the graph might necessitate to store or retrieve a value from memory could be any, and so, hardware

to execute it would have to be prepared to properly wire such data to and from any random location

(i.e. operation) within the graph.

Additionally, consider a graph driven from a high level loop that retrieves information based

on the value of a data pointer. Such an access pattern might be irregular, and so, determining what

memory positions to access would not be trivial without information contained in the running low
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level code. However, the DIM Reconfigurable System deal with this problem efficiently, at the

cost of having LSUs (Load and Store Units) at all execution levels.

As for non-atomic graphs, several things would be required for their support. As stated before,

a graph is composed of operations either derived from online or offline analysis, and the control

structures associated delimit regions where the execution either continues or stops in order to,

alternatively, execute something else. In terms of code, this corresponds to Basic Blocks which

are all executed in sequence until a branch condition is such that the execution stops. So, when

executing graphs in hardware, and the execution terminates normally at any one possible point,

it is necessary to know from which processor instruction to continue execution in software. In

other words, upon returning from hardware execution the processor now contains updated data,

and must start executing instructions from a point where context is properly maintained. This

implies keeping track of memory positions associated with each possible branch, and also to know

which results to return to the processor at each of those branches. That is, a branch located in the

middle of the graph will most likely prompt a return for data found at that point in the execution.

Supporting the simultaneous connection of any operation output directly to the outputs of the

reconfigurable fabric is, most likely, not trivial to manage.



Chapter 4

Prototype Organization and
Implementation

The previously outlined functionalities and architectural layouts were not all put into place in the

working version of the reconfiguration system.

However, and although it differs from the defined preliminary approach, mainly in terms of

architecture, it still covers the main objective of generation of reconfigurable circuits from machine

code for an FPGA target.

The implementation alternatives are further explained in the following sections but, in short,

the different outlined approaches were developed mainly due to consideration of what tasks were

and were not appropriate for online and offline execution. This, coupled with tool flexibility and

ease of development led to a few distinct layouts.

In general terms, the implemented tool flow allows for the analysis of a given program (com-

piled for an embedded environment) and extraction of graph information from that program. With

that information a combined hardware description based on Verilog parametry and language con-

structs is generated. Along with that, information regarding the runtime configuration of the Re-

configurable Fabric (RF) is created along with assembly level code that permits writing to and

reading from the RF. This RF allows for execution of several graphs, although only one at a time,

according to its current runtime configuration. Both the toolflow and the capabilities of the RF

and the method for its description are explained in chapter 5 and section 4.3 of this chapter respec-

tively. In order for the system to function, no alteration of the running binary is necessary, there is

a single interfacing point between the GPP and the entirety of the reconfigurable system that can

be easily placed or removed, as it’s interfaces, and the interfaces of all system modules, are stan-

dard bus connections. So, the modules of the system retain a considerable level of transparency,

allowing for their individual replacement or altering of their interfaces without compromising sys-

tem functionality. This leaves room for several possible alterations with potential performance

improvements as explained in chapter 7.

The development platform was an FPGA development board. The were no hard requirements

for the platform except for one: support for ICAP so as to allow runtime reconfiguration of the

27
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conceptual Reconfigurable Fabric. So, the selected platform was a Digilent Atlys which is built

around a Xilinx Spartan-6 LX45 FPGA. In this board there are two external memories present, a

non volatile flash memory and a volatile DDR2. As will be understood later, these two memories

dictate much of the system layout. Attached to this platform are the standard development envi-

ronments for designing soft-core processor systems, namely, Xilinx’s ISE Design Suite. Included

in this toolkit is Xilinx’s Platform Studio (XPS), which is an embedded processor design tool. It

allows for system design by interconnecting desired IP (Intellectual Property) cores and allows for

integration with software development, automatically generating a bitstream which contains both

the hardware design and the software application properly initialized in the processors associated

program memory. Also in the tool suite there is Xilinx’s PlanAhead environment which allows for

manual placement of modules within the FPGA. This feature seemed promising in regards to one

of the initially considered approaches as is explained in the following sections.

4.1 Architecture Overview

The architectural modifications that were made to the preliminary design, in an early stage after

testing and choosing development platforms, were determined by what toolflows were available

and what were the limitations of these tools. A more detailed study into what was and was not

feasible for implementation with said tools and platform dictated these modifications. However,

the basic functioning remained the interpretation of the instruction stream of a GPP and, with

appropriate treatment of that information, generate reconfiguration data for a module capable of

altering its internal operations, thus producing data for a particular software intensive kernel.

To reiterate, the preliminary design described a system in which a GPP would execute code

located in BRAMs (Block RAMs). This code would have to be altered at a few set points, that

would have to be manually determined, with custom instructions that would delimit a code region

to be analyzed and mapped to hardware. The analysis would begin by capturing the instructions

being read into a reconfiguration module via a tap in the GPPs instruction bus. This runtime

analysis would determine DFGs and CFGs and associate these operations to previously stored

bitstreams, each representing an operation of finer or coarser granularity. These would then be

merged to form a final bitstream that would be mapped, via a PLB (Processor Local Bus) ICAP

peripheral, onto the Reconfigurable Fabric (RF). In addition to this, data regarding the currently

mapped operations and their connections would have to be kept in this reconfiguration module and

it would also have to intervene the next time the GPP began to execute the now mapped hardware,

shifting its execution from software to the RF.

Upon further inspection, several implementation difficulties, and some concepts left vague,

around this design lead to the modifications and developments which are explained in the following

sections.

Section 4.1.1 details a first iteration and section 4.1.2 presents final adopted architecture

overview and its functioning.
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Figure 4.1: Initial Architecture

4.1.1 Initial Architecture

This initial layout was similar to, but more defined, than the preliminary designs.

First, the location of the benchmarking code for the GPP was changed, due to code size. Ini-

tially conceptualized to be in BRAMs some benchmarks proved to large for the available capacity

of these memories, which are available within the FPGA. So, the code to be optimized was re-

located to an external RAM. This relocation implied a different interface for instruction stream

monitoring. The monitoring and control of the instruction stream had to be moved to the GPPs

instruction bus that accesses external volatile memories (containing the application loaded by a

bootloader), its PLB interface.

The second crucial change was the method through which portions of code are identified as

good candidates for dedicated hardware, and how this dedicated hardware is produced and con-

figured. Initially, the idea of a tap into the GPPs instruction bus was proposed so the instruction

stream could be monitored and analyzed in real time, thus producing equivalent hardware. How-

ever, several setbacks quickly appear with this method. Analysis of the instruction stream is an

algorithm intensive task (potentially more so than the program which is being targeted for opti-

mization). So, being that this kind of analysis could only be performed by a soft-core processor

(or a similar method through which implementation of synthesis tools could be supported) each

instruction read by the GPP would have to be captured into a second MicroBlaze and properly

interpreted and inserted into a CDFG being built at run time. This would of course imply the

buffering of the captured instructions (perhaps into unpractical sizes) and maybe a faster clock

frequency for this processor alone in an attempt to diminish delay and buffer size.
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Simply put, the overhead of the complete task of analyzing the instruction stream, constructing

hardware for those computations, mapping it to the reconfigurable fabric, and, from that point on,

intersecting to GPP at the proper moment at which to use that hardware becomes to large to be

acceptable as an online task. So, many functionalities were distributed amongst system modules,

with most being changed to offline tasks, leaving as the only online functions the reconfiguration

of the fabric with offline generated information, the intervention to switch execution to hardware

and the actual GPP initiated communication with the fabric so as to utilize it.

Thus, the tasks set to be offline are performed by a toolkit developed to extract DFGs and

CFGs from a particular compiled program (ELF file) and generate hardware and reconfiguration

information. The toolkit, its functions and the generated information are explained in detail in

chapter 5.

So, the approach was changed to an architecture that could interface with the GPPs instruction

stream and, by monitoring it, detect the start of regions of code previously transfered into hardware

by the offline tools. This allows for the reduction of connections between the GPP and the modules

responsible for reconfiguration (i.e. the system elements become more transparent than the initial

approach). The module responsible for interfacing with the instruction bus, later developed as the

PLB Injector, communicates with a soft-core which performs reconfiguration tasks (namely the

reconfiguration of the RF with tool generated information) by FSL (Fast Simplex Link).

The reconfiguration module (RM) was chosen to be a Microblaze for the ease of debug found

at software level, although, as will be explained, it could easily be removed from the final design

without loss of functionality.

The following subsection explains the further changes made to this architecture upon a second

iteration and the data flow and functioning of the system. The most significant change was the

complete abandonment of the ICAP method of configuration. This choice is explained in sec-

tion 4.3 detailing the internal composition of the Reconfigurable Fabric, which details the gradual

shift to an architecture that does not need the kind of capabilities that ICAP provides. Any alter-

ations performed over the reconfigurable lead, of course, major changes in how reconfiguration

information is generated and how the overall system works, as it is the main module of the design.

4.1.2 Current Architecture

The currently implemented system has an architecture that is represented by figure 4.2. This

final implementation retained the basic functional layout that was aimed for by the architecture

presented in the previous subsection. However, as stated, the key differing point is the lack of

any ICAP peripheral, as such functionalities became unnecessary for the chosen RF architecture.

Also, it permits that the system be implemented in any FPGA target that does not support this

feature.

So, the system is now composed of considerably discrete elements: the PLB Injector, which

monitors and alters the contents of the GPPs instruction bus and is further explained in section 4.2;

the GPP itself, a regular MicroBlaze soft-core; the RM, a MicroBlaze utilized for reconfiguration
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Figure 4.2: Current Architecture

tasks; segments of tool generated code placed in DDR2 memory which are explained in sec-

tion 5.2; and the RF itself which functions solely through memory mapped registers and whose

final adopted architecture is described in subsection 4.3.3. The system is built around the PLB

bus, utilizing only standard interfaces. The code to optimize is placed in flash memory and loaded

into DDR2 at boot.

Since every single instruction to be executed by the GPP has to be monitored in order to for

the system to be aware of its current state, the use of cache had to be disabled. If the GPP fetches

a number of instructions into cache, it will later consult these memories to retrieve the instructions

and, so, they will not pass through the bus monitoring peripheral, the Injector.

The functioning of the system is as follows, assuming that the starting point is one where all the

configuration information has been generated and all graphs of interest have been constructed as

hardware. The GPP begins execution of the software bootloader present in its local code memories

(BRAMs) in order to load the desired program into volatile a external memory (DDR2) from the

flash memory. Simultaneously, the RM performs a similar operation, copying to known DDR2

memory positions segments of code that include operations that store/load values from/to the

GPPs register file to/from the RF. To clarify, these Code Segments (CS) are also tool generated

and held statically in the RM’s BRAM program memory. They are written to be executed by

the GPP in replacement of the code it would normally execute to perform the computations now

mapped to hardware (each graph being associated to a particular segment of tool generated code)

and are further explain in chapter 5.
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After the GPP has loaded the program, it then executes it as it normally would, without inter-

ference until the PLB Injector stalls it by injecting into the instruction bus a branch that maintains

the GPPs PC at the same value. The moment where the stall occurs is dictated by an internal graph

table that associates a graph ID to a specific memory address. The memory addresses contained

in this table are those that indicate the start of a block of code who’s operations have been mapped

into the RF, therefore, the Injector stalls the GPP thus beginning the process of utilizing the gen-

erated hardware. Simultaneous to the stall, it communicates the graph ID to the RM via FSL. The

RM the consults the information statically held in its own code regarding the configuration for that

particular graph. It then reconfigures the fabric so it performs the given graph. The reconfigura-

tion information is, amongst others, the routing setup of the operations (which outputs connect to

which inputs). The RM then responds, via FSL, with Microblaze instruction set instructions that

will, when placed in the instruction bus by the Injector, cause the GPP to branch to a memory

position that contains the tool generated code segment that communicates with the fabric. From

this point, neither the Injector nor the RM are required to intervene. The code now being executed

loads the operands contained in the register file to the memory mapped input registers of the RF

followed by a start signal. While the RF is operating the GPP checks for a completion flag. When

done, the GPP retrieves the results to its register file, and then returns to its previous location in the

original program code via a branch back that is part of the code segment. The program execution

continues as normal, now that the values in the register file are such that the branches delimiting

the code blocks mapped to hardware will fail, i.e. the graph will not execute in software.

This way, the intervention of the reconfigurable system happens in a very punctual manner

and in a completely transparent way to the processor and its internal register values (no internal

modifications are necessary).

4.2 The PLB Injector

As explained, a method was required to tap into the GPPs instruction stream in order to have that

information redirected to a module responsible for performing reconfiguration tasks. Since it was

stipulated that the GPP would be accessing code in external memory, this module needs to function

as a passthrough for the Microblaze’s PLB instruction bus.

So, this peripheral has two PLB ports, one serving as a slave and another as a master. The

Injector acts as a regular PLB interface from the point of view of the GPP, permitting this processor

to connect its master IPLB (Instruction PLB) interface into the Injector’s slave port as it would

connect it to an actual bus. The master port of the Injector then connects to the bus itself. While it

allows for the bus signals to pass unaltered, it captures them in order to send them to the RM for

processing and will also alter the instruction being returned into the GPP by the bus.

While initially this module was designed to only retrieve instructions from bus, its functional-

ity was quickly expanded to also alter the instruction stream once the system architecture attained

a more solid design. Since the complete system aimed to not alter the running binary, there was no

evident way to trigger the use of the RF after it had been prepared for use. So, the Injector permits
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this behaviour by altering the instruction stream in order to make the GPP jump to a predeter-

mined memory position that holds a Code Segment previously loaded into the RAM that allows

for communication to and from the fabric.

In short, the Injector contains a table of Program Counters (PCs), or in other words, memory

addresses, that are associated to the beginning of regions of code that were translated into graphs

and successfully mapped to hardware. So, it is the task of the RM to, from a specific PC received

by its interface with the Injector, reconfigure the RF to perform the operations that correspond to

that graph, before replying to the Injector with a specific, previously calculated memory position,

to which the GPP must branch.

This communication overhead from the Injector to the RM, adding to this processor’s software

delay plus the reply back to the Injector is far too great to be performed during the time it would

take for one instruction to be read into the GPP (i.e. several instructions would pass during that

time), and a loss of execution context would occur (the values in the GPPs register file would be

altered). So, when it is necessary for the Injector to wait for a reply from the RM it is capable of

stalling the GPP by altering the instruction into a branch to the same line (PC = PC + 0) before

the actual instructions is read into the GPP. The interface with the RM is done by a point to point

connection implemented through the FSL interface, which allows for very fast communication.

There is, however, the issue of two or more graphs having coinciding memory addresses, and,

as such, creating ambiguity as to which graph is to be executed in hardware. This was previously

mentioned in section 3.5.1 and now that the Injector has been explained the nature of the problem

becomes apparent. For this reason, the Injector also performs detection of branch instructions.

This feature was developed for pattern detection in order to allow for the identification of graphs
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at runtime by determining which pattern of repeating SuperBlocks (or a trace unit of another gran-

ularity) was occurring. Although conceptually functional, it was not utilized because it demanded

further changes in the hardware layout (coupled to the necessity of knowing the starting PCs of

SuperBlocks in order to detect that type of trace units). So, for the current time, the toolkit does

not allow for two or more graphs that share the same starting memory position to be implemented

for simplicity.

Regardless, the Basic Block Detector would be the apparent solution to this problem, identi-

fying the sequences of SuperBlocks and afterwards communicating to the RM an ID very much

in the same manner as the current implementation. This would of course require that the graph

iterate in software at least once so that the sequence could be found. Also, the maximum number

of SuperBlocks that composed the MegaBlock (i.e. the graph would dictate the maximum size

of pattern detection meaning the Basic Block Detector would require more area on the FPGA de-

pending on this factor. For now, this is not being performed, thus limiting the system to one graph

per PC merely because of this ambiguity, in terms of the RF, there is no limitation of this nature.

4.2.1 Design Considerations

As implied, the Injector acts as a signal passthrough for a PLB bus. XPS does not have wizard

supported creation of modules of this type. So, utilizing the Injector as a peripheral in the XPS

environment required a few manual modifications of peripheral descriptions.

Firstly, manual editing of peripheral description files is necessary. The most important file

is the MPD (Microprocessor Peripheral Description) file. This file details how the peripheral is

viewed by XPS. Several parameters need to be either edited or set. Namely, the peripheral type

needs to be a BUS, as the GPPs instruction bus port can only connect to this type of interface.

Also the Injector needs to have BUS interfaces itself, one Slave and one Master, to act as a pass-

through. To retrieve the signals output by the GPP to the BUS (in order to know what signal inputs

and outputs the pass-through needs) the GPPs MPD can be inspected or, alternatively, a custom

peripheral with a PLB bus interface can be created the signals can be derived from there. This

procedure can also be performed to retrieve the signals necessary for the FSL connection.

By connecting the GPP’s IPLB to the Injector’s master port any peripherals on the actual PLB

bus disappear from the GPPs memory map, in this case, external memory is no longer present.

So, software applications can’t be compiled and linked to reside in those memory locations. The

workaround is a simple, one time, manual editing of the linker script.

Regarding the precise moment in which the Injector alters the instruction stream, it may not be

any. One identified situation was the injection of an instruction to branch to the same line (while

the Injector is waiting for a replay from the RM) after an IMM instruction. This instruction loads

a special register with an immediate 16 bit value, and is used before other instructions that require

and immediate operands of 32 bits, such as absolute branch instructions. A relative branch (taken

to PC plus the lower 16 bits of the branch instruction) becomes absolute if performed after an

IMM. So, if the Injector began forcing the GPPs PC to the same value by injecting a branch after

an IMM (which could have occurred randomly depending on the running program), the injected
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branch would become absolute and the behaviour would be undefined. No graph, however, was

identified to start after an IMM instruction.

Another issue is the possibility of a false positive. The memory address of any graph needs

only to pass through the Injector in order for it to be detected as such. In some cases, these memory

addresses are placed on the bus by the GPP when they will not, in the end, utilize the retrieved

instruction. This happens due to the MicroBlaze’s delay branches, or even branches without delay,

as can be seen in listing 4.1.

1 ...

88001318: add r5, r5, r5

3 8800131c: bgeid r5, -4 // a backwards branch to 88001318

88001320: addik r29, r29, -1 // while executing this instruction

5 // the value 88001324 is on the memory port

// of the bus, through the Injector

7 88001324: add r5, r5, r5 // this is the start of the graph

88001328: addc r3, r3, r3

9 ...

Listing 4.1: Injector false positive

Branch instructions may be delayed so that the MicroBlaze may execute the instruction follow-

ing that branch. While executing that instruction, the processor places a request for the instruction

following that on the bus. It will not execute it however, since the delayed branch will now trig-

ger, causing the processor to branch backwards and discarding the instruction fetched from the

memory position following a branch (or two memory positions following a delayed branch). The

solution is to not only detect when the graph PC occurs, but to also detect if the next memory

address the GPP would access would be the one immediately after that. Since this only occurs if

the processor is in fact executing the instruction that is the start of the graph, this confirms that the

fetching of that instruction (the appearance of the graph PC in the Injector) was not a false positive

and that the GPP would be entering the memory region corresponding to the graph.

4.3 Alternative Architectures for the Reconfigurable Fabric

The Reconfigurable Fabric (RF) is the element of the system that produces outputs from given

inputs through a set of operations who’s layout and interconnections are determined by the de-

scription tools and run-time configuration information.

From the start, the RF was to have a standardized memory mapped interface to the PLB bus. In

this manner, the GPP may write inputs to the appropriate registers and, by polling a status register,

determine the moment at which to retrieve outputs. The memory positions of the input and output

registers are generated by the toolkit by starting from the base address of the fabric extracted from

the XPS environment.

The three main alternatives for the internal design of this module are presented in the follow-

ing subsections. They differ on the method through which the fabric itself is reconfigured, on
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the flexibility each alternative provides and, consequently, on how the graphs and their configura-

tions would have to be represented as data structures to support operation with each alternative.

Common to all the alternatives are a few characteristics that define the fabric, namely, its width

(maximum parallelism), depth (maximum execution level), the number of available inputs and

output registers and the necessary runtime configuration information.

4.3.1 Dynamic Architecture for the Reconfigurable Fabric

The fully ICAP implementation of the RF was developed with the idea of a mixed granularity fab-

ric in mind, very much like the preliminary proposals. This first approach was designed to work

along a fully online system, that would detect graphs and construct a hardware representation at

runtime from bitstreams previously stored in the RM memory. The bitstreams would be merged to

form a module that contained, implicitly, all the connections between operations and the connec-

tion to the fabric’s output registers. In other words, this fabric would have only, as static elements,

the input and output registers and the necessary logic to control its operation. The remaining space

allocated to the fabric within the FPGA would be unprogrammed (meaning blank), and would be

the target of reprogramming via ICAP with the generated information.

The RM would have, in static program memory, a library of modules to be matched against

the detected graph in a structure such as the following:

1 //module structure

struct module {

3 enum module_class mod_class;

//A_ADD, A_MUL, A_BRA, L_AND, L_ORL, etc

5 int *mod_bitstream;

int mod_blen;

7 //bitstream length

int mod_numins, mod_numouts;

9 int commutative;

int delay;

11 //combinational delay

};

Listing 4.2: Module Structure

The data structure would maintain information about the type of module (the operations it

could perform), its bitstream, the bitstream’s length, the number of inputs and outputs of the

module and any other data deemed necessary to map the modules at runtime. The types of modules

that could be stored in the library could perform any desired operations, from simple additions,

multiplications and logical operations to more complex mathematical operations, such as square

roots or powers. This was later proven difficult and cumbersome approach by for reasons stated

in the following paragraphs, but it was this concept that permitted the approach based on a mixed

granularity system. An important field was thought to be the combinatory delay that particular

bitstream represented. As explained in the preliminary design, it was conceptualized that the

fabric would have a software controlled clock to maximize its frequency to the point allowed by



4.3 Alternative Architectures for the Reconfigurable Fabric 37

the mapped operations. Hence the need for the delay of each brick, the maximum delay would

also have to be computed at map time. However, even synthesis tools predict these maximum

limits with difficulty, which makes this conceptual feature unlikely to be functional (unless very

conservative calculations are made).

During online detection of graphs the RM would construct a software representation of the

hardware to be mapped by performing the necessary parallelism and data dependency discovery.

However, this type off mapping would imply knowledge about both the data organization of a

bitsteam and knowing how to extract their information in such a way as to create a final bitstream

containing the concatenation off all individual parts plus their connections. The additional reason-

ing behind this is the hopeful reduction of control bits. If bitstream tools allowed, concatenation

of several circuits could provide a much faster way to interconnect operations within the Recon-

figurable Fabric (RF), eliminating the need for a high number of configuration bits needed for

interconnection multiplexers or other devices and also removing their delay and reducing the area

required. Although the method of altering information of the stored bitstreams so their placement

on the FPGA changed to the desired position (i.e. to an appropriate position within the fabric) was

relatively straight forward, the main problem was assuring the routing could be properly and ef-

ficiently performed. Specifically, how to generate and maintain information regarding the current

wiring in the FPGA? This is, in fact, the most complex task that has to be performed by com-

mercial synthesis tools. Performing routing for several mapped bitstream concatenations (each

representing a graph) requires that no wiring is crossed (as the FPGA is single layered) and adding

to that there was no apparent way to treat for the multiple drive that each graph would impose on

the output registers. Although in an offline environment this could be treated with high impedance

signals and choice of output via selection bits this appeared non-trivial for this architecture.

So, a different concept, which abandoned the process of merging bitstream information, was

created in an effort to standardize the connections between operations and to/from the output and

input registers. Its conceptual architecture is presented in figure 4.4.

The RM would still maintain a library of bitstreams corresponding to elementary operations

(from now on called bricks) and would now simply perform several ICAP accesses to map each

one and its connections. This of course makes the system inherently fine grained. This approach

would rely on ICAP’s minimum permitted granularity of reconfiguration to create a grid like struc-

ture in which to place operations. So, the signal routing would be done implicitly, that is, bricks

would need to have their outputs and inputs standardized to allow for removal of one, placement

of other, while assuring that the signals still propagated properly. In truth, a routing effort is also

necessary, by creating bricks that serve as passthroughs to lead the wires to appropriate places.

When the detection of graphs shifted to an offline task, this approach, as well as the previous,

remained valid, simply relying on graph information already in memory, one that described the

position and type of modules to map as determined by the offline graph analysis tools. Information

such as the following would be produced to instantiate all the bricks composing a graph:

//graph1

2 int graph1_nummodules = n;
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int graph1_moduletype[n] = {A_ADD, A_MUL, etc..}

4 int graph1_module_placement[n*2] = {x1, y1, x2, y2, etc..}

//paired values of frame offset

6 //relative to fabric start (upper left corner)

Listing 4.3: C Level Graph Instantiation

The RM would utilize this information to configure the RF at runtime with the appropriate

bitstreams in the specified locations, or would reutilize already mapped bricks. The moment of

reconfiguration would happen by detecting when the GPP was about to execute a particular block

of code that the RM would know, thanks to the statically held tool generated information, how to

map to hardware.

However, regardless of where the graph detection was performed, this type of mapping would

require, as was implied, knowledge about both the data organization of a bitstream file and know-

ing how to extract information from said files in such a way as to create a file containing the

concatenation off all individual parts plus their connections. Adding to that, the access time to

the ICAP peripheral would represent a considerable overhead, and the protocol messages used to

communicate with this module would have to be implemented as well.

However, it would not be feasible to assume that any one operation could be synthesized and

successfully placed in a region of the FPGA that ensured it stayed within the minimal granularity

of the ICAP access (and some type of operations utilize dedicated resources in the FPGA, which

is not homogeneous, hence the loss of the notion of a standardized brick). But the most problem-

atic issue was, once again, ensuring that the inputs and outputs of each brick were located at a

correct position, which proved rather difficult to accomplish, and impossible without specialized
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toolflows. To clarify, whereas the original routing problem present in the merged bistream sce-

nario was related to knowledge of how to route a signal throughout the entire fabric at runtime,

this is relative to the location computed (in synthesis time), of a single module’s inputs and outputs

in order to ensure that they overlap when placed adjacent to another module. These are the kinds

of features available with Xilinx PlanAhead, the manual placement tool with which it is possible

to create more intuitive placement restrictions such as the ones required for this approach. While

initially deemed ideal for development of this type of layout for the RF there were impediments

to the use of the features it provides. A Module-Based Partial Reconfiguration toolflow allows for

specification of modules that are meant for later addressing over ICAP and reconfigured. So, their

input and output ports must be, and can be, locked in position via boundary modules named Bus

Macros. However, one bus macro would have to be placed at each border of each reconfigurable

module (which in this design would be the bricks themselves). It is easy to conclude that a large

number of bus macros would be necessary to do this (to cover each grid border), which would

create a large spatial overhead and greatly increase the difficulty of automatizing the generation of

the fabric module itself in development time. Additionally, Module-Based Partial Reconfiguration

was not supported on Spartan-6 targets.

Also, this approach would require larger initial temporal overhead and would offer nothing

after an extended period of time (after all graphs had been identified and mapped). For instance, to

map the example given in figure 4.4, seven accesses to the ICAP module would have been required,

that is, a larger number than the actual operations (and still not accounting for routing to input

and output registers). The system would reconfigure one brick at a time, that being the minimal

reconfiguration granularity permitted by each ICAP access, and, as such, the overhead would be

too great (although one time only). For these reasons, and also because graph identification and

treatment is being done offline, it would not be reasonable to follow this approach. The mapping

and routing algorithms would also have been, possibly, more complex to implement.

Common to both alternatives, knowing the absolute fabric position for each system iteration

(i.e. each alteration and consequent synthesis) would be required. Automating the propagation

of this information amongst tools might not have been trivial and, generally, it would strays from

known, more linear, toolflows.

Still, in an effort to reduce the use of bus macros and also the number of accesses to ICAP

necessary due to the need of passthrough bricks, the following redesign was created.

4.3.2 Partially Dynamic Architecture for the Reconfigurable Fabric

This approach was meant to simplify the effort found in interconnecting bricks through the previ-

ously described ICAP method. In this design, represented in figure 4.5, ICAP would still be used

to map only the operations themselves. The routing would be done by means of crossbar connec-

tions between each row of operations. This would also greatly simplify the mapping effort, i.e.

the absolute location of each brick would lose relevance as the crossbar would be able to connect

any of the outputs of a row to any of the inputs of the next row. So, only the vertical position of

a brick remains relevant, as data precedences must be maintained. The routing information would
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Figure 4.5: Partially ICAP based fabric

then have to be generated differently, consisting in a set of control bits for the crossbars instead of

locations for bricks solely dedicated to wiring.

The bricks would be maintained in a runtime library by the RM in the same data structure as

with the previous design, however, no placement information would have to be generated by the

tools.

Each row of the fabric would then start from the initial state of having no bricks mapped and

as graphs were detected the needed bricks would be placed in the appropriate row. The RM would

maintain information of the currently mapped bricks which would allowed them to be reused from

graph to graph. In other words the looser mapping constraints and the very nature of how the

entire graph is constructed and routed (i.e. not in a closed, software computed, bitstream) would

permit the reuse of individual bricks between graphs, seeing as though only one graph is executing

at any one time. In other words, the graphs can be matched in terms of necessary hardware, or, to

formalize, Graph Matching can be performed. This would also be possible with a Fully Dynamic

approach, but it would complicate routing every time more graphs that reutilized bricks were

mapped. Additionally, the number of Bus Macros required would equal the number of rows of the

fabric plus two (for interfacing with input and output registers), a large reduction comparatively

with the Dynamic design in subsection 4.3.1.

However, interconnection of operations that span more that one row would still have to be done

with passthrough operations, thus increasing the number of ICAP accesses beyond the number of

actual operations (but still a more reduced number than the Dynamic design).

The main concerns with this approach were the size occupied by the crossbars on the FPGA

(being N to M muxes, their size grew at an elevated rate, for instance, 2560 LUTs required for a 12

to 16 demultiplexer) and, as with the fully ICAP based fabric, the specialized tool flows necessary

to work with partial bitstreams and the method through which those bitstreams are allowed to be
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placed and properly routed (i.e. bus macros).

To solve the problem regarding the size of the crossbars an architecture that only permitted

connections from the output of a brick to the brick bellow or to the two adjacent to that one was

considered. The reasoning was that N to M connections might not have been frequently required,

being possible to construct the graph even limiting the connections supported. However, this

implied that the effort would be less focused on the data routing itself and would be, once again,

split to the placement as well (as bricks may need to be adjacent so that connection is possible).

Although not invalid, it was a far to restrictive approach in terms of possibly supported graphs.

Also, the crossbars would also need to have an upper limit of inputs as well as outputs, as these

characteristics that cannot be changed at runtime. So this means that, while graph discovery was

occurring, there would come a point were the width of the fabric would be filled to the maximum

supported limit. Then, either no more graphs could be mapped or some bricks would have to be

changed, which introduce the need to remap graphs once again if needed creating a larger temporal

overhead if many switches occurred.

Regardless, the lack of support for partial reconfiguration based projects on the target platform,

the cumbersome design flow, and the spatial and temporal overhead were the motivators for a

design who’s generation was shifted to offline tools. Adding to that, was the seemingly non trivial

matter of how to control execution in a fabric structure that could place operations

4.3.3 Semi-Static Architecture for the Reconfigurable Fabric

This was the final iteration upon the internal design of the fabric and, consequently, on the method

through which its description and reconfiguration information is generated. Considering the un-

reasonable overheads and design effort involved with the dynamic based approaches, coupled with

already present shift of graph detection to offline time, the elaboration of the RF itself may also

be moved to an offline task. The rationale, as was previously mentioned, is that there would be

little advantage to having a system whose capabilities were based on reconfiguring portions of the

FPGA whose final composition had already been dictated and would not be susceptible to change.

Although a complete runtime reconfiguration system would be, conceptually, the most versatile,

several impediments hinder its design. And even if such was not the case, a system with such a

level of flexibility is only justified in environments of quickly changing computational demand, as

is not the case for embedded systems who could benefit greatly for dedicated acceleration hard-

ware without forcing a design flow through the costly and long lasting steps involved in hardware

design.

4.3.3.1 Fabric Description

Unlike the other approaches, this fabric was fully written in HDL, but in such a manner that its

heavily parameter based design allows for automatic, tool performed alteration. Specifically, it

can be expanded in both width and depth (with some limitations of practical nature), the neces-

sary bricks are instantiated and correctly placed at synthesis time, all the inputs, outputs, control
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registers and routing registers as well as necessary wiring for all signals is created solely by re-

sorting to Verilog constructs and parametry. Namely, generate loops instantiate all the necessary

logic according to information contained in parameters and parameter arrays that are generated

by the placement and routing tools. In the same manner, all wires and instantiated and assigned

values from the memory mapped registers or a bit selection is performed on large arrays of bits

on a particular range in order to direct them to or from the correct modules. A Verilog parameter

is a numerical value that utilized to control certain characteristic for hardware instantiation by the

synthesis tools. Parameters may be passed into modules at instantiation time in order to alter port

widths (number of bits) and other aspects.

So, even though this fabric is considerably more static than a dynamic approach, the toolchain

created permits rapid description of any variation of this layout, instantiating a piece of dedicated

hardware for a compiled program in a way no different from creation of a standard user peripheral.

The complete toolflow and its outputs are explained in chapter 5;

Most relevantly, this method solves all the previous problems of placement and routing, as

the RF is a hardware module completely within the standard hardware design flow for FPGAs.

The description of the fabric is done by altering header files containing the previously mentioned

parameters that describe the fabric in its entirety. As an example, the following is an array of

parameters that specify the operations themselves, for a small fabric, along with some others that

specify basic characteristics:

parameter NUM_IREGS = 32’d4;

2 parameter NUM_OREGS = 32’d5

//nr of input and output registers

4 parameter NUM_COLS = 32’d5;

parameter NUM_ROWS = 32’d3;

6

parameter [ 0 : (32 * NUM_ROWS * NUM_COLS) - 1 ]

8 ROW_OPS = {

//this is the top of the fabric

10 ‘A_ADD, ‘A_ADD, ‘A_BRA,

‘L_AND, ‘PASS, ‘PASS,

12 ‘A_SUB, ‘B_NEQ, ‘NULL

//this is the bottom

14 };

Listing 4.4: Verilog Parameter Arrays

Besides these, the tools generate many more arrays and parameters to fully characterize the

RF.

Thus, another feature of this design is the ability to instantiate bricks in which one of the

operands is constant. As show before in the graph descriptions in section 3.4, many graphs contain

operations in which one operator is constant. With the previous approaches for the fabric architec-

ture this had not been addressed. One alternative would have been the creation of a register bank

of constant values for use or either alter the bitstream of each brick to include that constant value

within the brick. However, these ideas would have been met with the same difficulties that led
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to the abandonment of those fabric designs, namely, how to properly and quickly route operands

and results. With a offline created fabric, the flexibility of description allows for this feature in the

same manner that the bricks themselves are instantiated. Two parameters are passed to each brick

detailing whether or not an operation has two variable operators or only one, along with the value

of the constant operator in the latter case. It is also possible to have a brick that either operates on

two variable inputs, or with only one input and a stored constant value, which is also dictated by

parametry (this type of brick is possible to instantiate, although it was not utilized for reasons later

explained).

Also, Graph Matching is also performed at a tool level, when the fabric description is con-

structed. That is, the necessary hardware is minimized to the essentials to perform all desired

graphs. So, the fabric supports execution of several graphs (as many as the tools process suc-

cessfully and in a number that will not result in an RF too large to place in the FPGA, although

conceptually any number).

An important aspect is support for feeding the fabric with a different clock from that off the

PLB bus. Currently, the RF is receiving its clock from the bus interface, but the internal operations

within the fabric are, in some cases, considerably superior to the frequency of the bus. So feeding

a higher clock would result in higher acceleration. However, clock synchronization would have to

be considered in order to maintain hardware coherency. One solution is to have the clock of the

fabric set to a multiple of the bus clock, but this is not always achievable.

As was stated in section 3.5.2, non-atomic iterations are not supported, as well as graphs which

contain memory accessing operations. So, despite functional, there is room for improvement and

in chapter 7 some alterations to this layout are discussed that might provide support for these

features at a later iteration.

4.3.3.2 Fabric Structure

So, structure wise, this RF is composed of the same kind of elementary operations, or bricks,

in a grid like layout. Arranged horizontally, on the same row, are operations that have no data

dependencies. The results of each row are propagated to the next via switchboxes that allow for N

to M connections.

As with the Partially Dynamic design, routing operands and results through a distance that

spanned more that two rows was addressed. Although in that approach the problem was solvable,

a passthrough (or a chain, if the span was of several levels) operation to propagate the data would

occupy the same minimal granularity of ICAP as any other brick, which is wasteful in terms of

space for a simple wiring. With a statically coded fabric the problem disappears. Along with it,

the issue of maintaining each brick within that same minimal granularity is also solved, as it no

longer applies. While in previous approaches the bricks were elements whose bitstreams were

statically held, they are now simple HDL modules which will be matched against the instructions

found in a extracted graph by the tools.

Also supported by the fabric are variable number of inputs and outputs from a brick. Meaning

that expansion for other kinds of operations beyond those implemented now would be simplified.
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Figure 4.6: Semi-Static Fabric - The switchboxes function by receiving their selection bits from
the memory mapped routing registers, the bricks have a variable number of inputs and outputs and
may be reused between graphs

The toolkit also takes variable inputs and outputs into account while generating routing informa-

tion. Related to this, and importantly, the fabric also supports operations that modify the GPPs

Carry bit. To be more correct, the carry result (in 32 bits to standardize connections) is propagated

to the outputs registers, or to wherever it is necessary, as with any other 32 bit result. Similarly

the upper 32 bits of a multiplication may also be treated this way. The code that the GPP executes

in order to retrieve results from the fabric is capable of verifying the value of the output register

containing the carry result and setting or clearing the GPPs Carry bit accordingly.

Each row registers its results (including passthroughs), meaning that a full iteration through

the fabric consists of a number of clocks equal to its depth. At the end of the first iteration the

results are fed back into the fabric, causing a cyclical flow of data that will terminate when one of

the exits conditions is true. Note however that, although each row consists of a register stage, the

fabric is not pipelined. Because the next iteration depends on data retrieved from the previous, it

is impossible to have the fabric filled with useful data and producing one iteration result at every

clock. Thus, the number of clocks that it takes to complete execution is the number of iterations

times the depth of the fabric. This carries a penalty to smaller graphs, as they will be subject to a

depth equal to that of the deepest graph (which dicatates the depth of the RF), slowing down their

execution.

Flexibility wise, as is implied, the fabric may execute any number of graphs as there are pos-

sible combinations of operator routing. Of course the useful ones are those that correspond to the

routing configuration generated by the tools that perform graph analysis. Switching configuration
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from one graph to another will take as much time as is required to write to all routing registers.

An approximate formula for this is show in the following section.

Once routing is done the fabric can be used to perform computations of a graph corresponding

to that routing scheme. Since one iteration is completed in as many clock cycles as the RF’s depth,

the total number of clock cycles required to execute a graph, assuming the fabric is already routed,

can be estimated, roughly, by the expression given in equation 4.1. Let TFC be the total number

of clock cycles, NItrs the number of iterations the graph will perform and DepthF the depth of the

fabric.

TFC = DepthF ×NItrs (4.1)

Adding to this is the access time the GPP is subject to by communication through the bus.

This depends on how many operands that particular graph requires to be loaded into the fabric and

results to retrive. These overheads are explained in section 6.1.

As will be shown later, the instructions the GPP executes to communicate with the fabric

themselves introduce delay if repeated in great numbers since they are in external memory. In

the previous equation, the delay of communication is expressed as a function of the number of

inputs and outputs times the number of PLB access clocks. However, the number of Microblaze

Instructions that need to be performed in order to write and read those values is greater than

the sum of inputs and outputs of the graph (explained along with the description of the tools in

section 5.2).

Note that the synthesis was only performed in Xilinx ISE, and with no other tools such as

MentorGraphics Precision or Altera Quartus. The constructs and hardware instantiation loops

might not be fully portable from tool to tool, even tough the utilized syntax is within Verilog

specifications.

4.3.3.3 Switchbox Routing

Regarding the switchboxes, they retain a crossbar-like structure to facilitate tool development.

As mentioned in section 4.3.2, limiting the interconnection scheme constraints the placement of

bricks, and may reduce reutilized resources between graphs (as bricks can no longer be placed at

any horizontal position). So a generalized approach was taken. The tools were written to later

allow for definition of placement constraints, which facilitates further iterations on the hardware

architecture regarding this issue.

The switchbox itself is a simple module that receives a set of bits allowing it to chose which

input to place at each output. The inputs of a switchbox are the outputs of the bricks present in

the row preceding it, and its outputs are, in turn, the inputs of the row of bricks following that

switchbox. The number of bits necessary to control the switchbox is, therefore, dependant on

the number of inputs and outputs. The total number of routing registers necessary is dictated by

the total sum of the bits needed to control each switchbox and these are, in turn, determined by

the width of the fabric (i.e. the maximum number of outputs to choose from), as expressed in
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Nr. Selection Bits
Total Inputs 2 3 4 5 6

15 2 2 3 3 4
30 3 4 5 6 7
50 4 6 7 9 10
65 5 7 9 11 13

Table 4.1: The number of routing registers necessary is a direct function of the maximum selection
width and the number of brick inputs within the fabric.

equation 4.2. Let Maxbits be the maximum number of bits needed to represent the widest row,

Totalins the total number of brick inputs, Totalbits the total number of bits needed and NrRouteregs

the number of routing registers required.

Totalbits = Maxbits×Totalins (4.2)

NrRouteregs = (Totalbits +32−1)÷32; (4.3)

So, the routing information for all levels is concatenated across all registers, or in other words,

a single register does not necessarily contain routing bits for a single level, it may contain infor-

mation for any number of levels.

To clarify, the maximum number of selection bits considered is determined by the maximum

number of outputs of all rows (i.e. find which row has the maximum number of outputs to choose

from and the number off selection bits for all rows is computed from that). Of course this causes

that switchboxes with less inputs (in other words, placed after a row with outputs less than the

maximum number) have superfluous selection bits, but it was a required workaround to some

lack of flexibility present in the Verilog language (as were several others). Some considerations

regarding this can be found in section 4.3.3.6.

Mentioned before was the need to have the Injector stall the GPP while the RM reconfigured

the fabric for a graph. As is obvious at this point, the greater the number of routing registers the

longer the access time from the RM to the PLB bus in order to write to these registers. So, it

cannot be assured that the RM will reconfigure the fabric quickly enough as to immediately have

the Injector branch the GPP to the Code Segment for that graph, thus the need to have the GPP

wait. This reconfiguration time is, of course, one of the overheads of the system, all of which are

presented in section 6.1.

Regardless, table 4.1 details some possible combinations of input and outputs within the fabric

(between rows) that lead to different cases of required registers.

Clearly, as the necessary number of routing registers increases, the more delay the reconfigu-

ration of the fabric introduces. For a program that requires constant switching between reconfigu-

rations, this might be harmful to the speedup, or even result in a slowdown. The final result would

depend on the size of the graph as well, as there is a trade off that involves checking if a graph
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is worthwhile to be implemented in hardware. If too small, the communication overhead would

exceed the original software computation time.

A simple solution is found however. By replacing all the routing registers with a simple graph

selection register, the reconfiguration time for a graph of any size would be constant. The RF itself

would hold a look up table with the necessary configuration bits instead of having and external

source provide them. Tool-wise, the generated information would be the same and would be

provided as parameters, similar to all the other arrays that describe the RF, at synthesis time.

Although this was implemented, it was not deeply tested, with the current configuration remaining

for development purposes. However, relocating the routing information to within the RF itself

would eliminate the possibility of creating a great number of graphs by changing the routing

register to whichever value was desired. From a practical standpoint, this seems useless, however,

if the system were to be expanded to include online functionalities such as the discovery of more

graphs, new routing information would have to be created and could not, at that point, be inserted

into the RF if the routing registers were not visible from the bus.

4.3.3.4 Memory Mapped Registers

The memory mapped registers the fabric utilizes are detailed in Figure 4.7. Being that the fabric

is custom designed for each set of graphs it can execute, the number of input and output registers

vary, along with the number of routing registers necessary to configure the connections to and from

the operations. The remaining registers are static in number, being implementation independent.

Input and output registers have straightforward functions, the values need to be written to the

inputs prior to commencing the calculations and the results are read from the outputs once they

are concluded. The routing registers are filled with values generated by offline tools and so, like

the inputs, they merely need to be written to before calculations begin. No online computation for

routing values is performed. A detailed look into a routing register can be found in section 5.1.

The feedback register serves the same purpose, however, it routes only the results contained in the
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Input Registers
Output Registers Nr. Sel. Bits 7 8 9 10 11

4 2 14 16 18 20 22
8 3 21 24 27 30 33
9 4 28 32 36 40 44

Table 4.2: Number of bits necessary for feedback routing for a given number of inputs and outputs.

last row of the fabric back into the first. The reason as to why this routing information is held

separate from the rest was for simplicity of tool design and RF design. Of course this limits the

number of outputs and inputs of the fabric, as it has to be able to feed any output into any input

and a single register (32 bits) will not suffice for all the configuration bits necessary over certain

numbers, as seen in table 4.2.

To clarify, a combination of inputs and outputs is supported as long as the number of bits

required to represent all output registers multiplied by the number of input registers does not

exceed 32 bits. This, of course means, there is a dependency of values between the two limits (16

inputs limit the system to 4 outputs for instance). Still, this was deemed irrelevant considering

that the typical number of inputs and outputs the extracted graphs presented was far bellow these

values. Both the contents of the routing registers and the feedback register are wired into the

appropriate switchboxes, the parametry of the fabric being able to dictate which bits within the

registers correspond to which switchbox.

The Masks register is utilized to enable or disable certain exit points within the fabric. To

clarify, if several graphs are utilized to built the fabric then all the operations composing the graphs

will be present in the fabric. Along with each graph, there is at least (and, in an atomic graph, at

most) one operation which outputs a 1 bit result indicating the termination of the graph, i.e. an exit

point. So, while data is propagating through the fabric following certain connections as to perform

a particular graph, random data will also be entering all the operations whose results are not being

considered. The exit conditions however, may result in false positives with this random data. So,

masks are necessary to consider only the exit points pertinent to that graph. Since only one register

is used for masking, and since only 1 bit is required to activate or disable an exit point, only 32 exit

points are supported in the fabric. It is a limitation, but easily expandable and not very restrictive

for purposes of testing as the number of exits for the graphs extracted from the tested programs

proved to be bellow this limit. Like the routing, the masking options could be parameters feed at

synthesis time, with all the same advantages and consequences.

The Start register is merely used to signal the fabric to start executing the graph for which

it was routed for, using the data now present in the input registers. In truth, it serves another

purpose, the value loaded into the Start register will be the maximum number of iterations the

fabric performs before aborting. In other words, although the fabric computes until one of the exit

points is true, that being its normal execution, a maximum number of iterations was included as a

failsafe in case the fabric goes into an undesired cyclical state in which the data never changes (i.e.
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no exit condition is ever true). Although in theory this should never happen, as the tools generate

the correct hardware description and configurations, this feature was left in.

The Status register contains bit level information, that is, control and status bits. Figure 4.8

details the contents of the Status register. Only 6 control bits are necessary, bits 31 to 6 are

reserved. First fail indicates if the graph has completed execution normally in its first iteration.

This is a necessary verification because completion of a graph in this condition is a special case.

If it occurs, the GPP cannot retrieve the results from the output register, as they have no valid data

since no iterations were performed on the RF.

Not mentioned before to keep the functional description of the system clear, the RF returns the

results of the iteration before the last. This is because the computations that are part of the CFG

are performed alongside the DFG in the fabric. If the graph contains only one exit point, this is not

problematic. For graphs with multiple exits points treated atomically this is not the case. Since the

system branches the GPP back to the start of the memory region containing the graph instructions,

the processor will not have the correct data to skip execution of the graph in software (i.e. trigger a

branch), as the retrieved values are those resulting from executing the graph up to an intermediate

point. In other words, executing the graph in hardware up to the last iteration would be supported

if multiple exits were also supported. In this implementation, the RF returns the results of the

penultimate iteration. Thus, the GPP returns to software, executes the graph instructions and ends

execution of that graph at the correct branch (the same one that caused the RF to finish execution).

This means that if the first iteration triggers an exit, no useful data is to be read from the RF,

in such a case, the GPP does not need to execute the code which retrieves the values of the output

registers, merely returning to software.

Control Exit indicates normal termination of execution. It is the bit that the GPP polls while

waiting to retrieve outputs. Aborted is related to the previous feature described for the Start Regis-

ter. This bit will be set when the fabric executed beyond the maximum number of iterations. The

Busy bit is set while the RF is processing, similarly, the Graph done bit is clear during that time.

Both switch values at the end of execution.

Finally, the Context Register is associated with the situation that justifies the existence of the

First fail bit. Explained in more detail in the chapter describing the toolkit, this register holds the

original value of one of the registers in the GPPs register file, as the latter needs to be used for

instructions that load and store values to from and to the fabric. In short, it is an auxiliary register.

In a particular case, two graphs may share exactly the same routing, in which case only the

masking register needs altering, in order to choose which exit point is to be considered. Such

cases occur when very similar, or identical, cycles in high level code differ only on the stopping

condition, i.e. greater or equal than or simply greater than.
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4.3.3.5 Supported Operations

Currently the RF contains the following individual modules that correspond to the bricks. The

relationship between each module and each MicroBlaze instruction is nearly 1:1. The following

listing is a C file which is part of the Graph2Bricks tool explained in section 5.1, but its contents

may be presented here simply for the purpose of listing the supported operations.

#define NUM_MODULES 21

2 enum module_class {

UNKN,

4 PASSTHROUGH,

A_ADD, //all adds

6 A_ADDC, //all adds with carry

A_SUB, //all subtractions

8 A_MUL, //all multiplications

A_BRA, //barrelshift right arithmetic

10 A_SRA, //shift right arithmetic

L_SRL, //shift right logical

12 L_XOR, //logical xor

L_AND, //logical and

14 L_ORL, //logical or

L_BRL, //barrelshift right logical

16 L_BLL, //barrelshift left logical

B_EQU, //branch if equal to 0

18 B_NEQ, //branch if not equal to 0

B_BGT, //branch if greater than 0

20 B_BGE, //branch if greater or equal to 0

B_BLT, //branch if lesser than 0

22 M_STO,

M_LD //memory operations (not implemented)

24 };

Listing 4.5: Operations Supported by the RF

Some trivial operations which are very similar to the ones in this listing are not currently

implemented simply because none of the considered benchmarks contained these operations, such

as a barrel-shift left arithmetic. Since both the fabric and the tools are prepared to deal with

variable inputs and outputs adding another type of brick should be a simple modification granted

that the operation does not present any kind of special behaviour such as modifying SPRs (Special

Purpose Registers) on the GPP (actually, one of these is supported, the recovery of the carry, but

that implied modifications elsewhere as is show later in section 5.2).

4.3.3.6 Design Considerations

The RF is functional within its limits. However, a few design difficulties were found during the

development of the fabric. Related to this, the fabric does possess some limitations in terms of

description at a source code level.
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All are relative to the flexibility of the Verilog language, and were worked around by generating

a number of auxiliary parameter arrays.

Tied to the problem following explained is the notion of array or port in HDL design. Either

are considered to be a bus of bits of any desired size. However, when we wish to represent,

for instance, two numbers of 32 bits, an array of 64 bits is utilized, and the desired numbers

are accessed by addressing the upper and lower 32 bits as is the wanted case. These are called

flat arrays, in which several values are treated as a larger, wider, value. Note that support for

multidimensional arrays exists. A multidimensional array would be addressed in much the same

way as an array is accessed in a language such as C. For instance, array[0] and array[1] (each

being 32 bits), as opposed to array[31 : 0] and array[ 63 : 32 ]. However, these arrays cannot be

passed from module to module, and are overall, counter-intuitively, more restrictive. In fact, the

common practice is to utilize flattened arrays, and perform appropriated addressing.

So, the most significant limitation in Verilog’s hardware instantiation loops that is, in this case,

related to array handling, was the lack of auxiliary variables to control bit selection. For instance,

consider a Verilog generate loop, which is a construct such as this:

genvar k;

2 generate

for(k = 0; k < 3; k = k + 1) begin: gen_example

4 wire [7:0] outs;

6 assign outs = inputs[ 8 * (k + 1) - 1 : 8 * k ];

//consider a previously existing signal named inputs

8 //[ 7 : 0 ] for k = 0

//[ 15 : 8 ] for k = 1

10 //[ 23 : 16 ] for k = 3

end

12 endgenerate

Listing 4.6: Verilog Generate Example 1

This is a simplified example of the type of construct present in the HDL description of the

fabric. It illustrates the main issue found with language flexibility. The genvar k is a variable that

controls the instantiation loop. No other variables are supported to control other aspects of the

instantiation. In this case, outs needs to be assigned a particular bit range from one, larger, input

array. If the assignment is regular, the construct is functional. That is, if we wish to assign to the

three instances of the wire arrays named outs (loops instantiate wires, or signals, of the same name

by adding a prefix to that name) same sized parts of the input value then one control variable is

enough to determine which bits to retrieve, as the progression is linear. However, consider a case

in which we would wish to assign to several signals different sized selections of one, larger, input

signal. This involves two things, knowing how large the selection if for each assignment (size

of the bit range), and knowing where that assignment starts. It is this last necessity that causes a

problem, as the linear increase of a variable such as k will not result in irregular selection ranges.

To clarify:
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parameter params[3] = {32’d2, 32’d4, 32’d1};

2 //number of bytes, consider this a paramter array generated

//by tools

4

genvar j;

6 generate

for(j = 0; j < 3; j = j + 1) begin: gen_example_2

8 wire [ 8 * (params[k] + 1) : 0 ] outs;

//wiring for param[k] bytes

10

//this would be required

12 assign outs = inputs[ 8 * params[k] - 1 + STARTING_BIT

: STARTING_BIT ];

14

//how to compute STARTING_BIT?

16 //STARTING_BIT = STARTING_BIT + params[k];

//a declaration such as the one above, or any

18 //variation on it, is not supported

//regardless of the datatype of STARTING_BIT

20 //(genvar, integer or parameter)

end

22 endgenerate

Listing 4.7: Verilog Generate Example 2

The number STARTING_BIT would have to be derived from the cumulative number of bytes

already assigned in previous iterations, and there is no valid manner in which to compute these

values in synthesis time. The constructed workaround was to generate these values as separate

parameter arrays, which in the presented case would be the following:

parameter comulative_params[3] = {32’d0, 32’d2, 32’d6};

2 //in this manner, they could be addressed by a genvar

//which has linear progression and the correct, non linear values

4 //could be retrieved

Listing 4.8: Verilog workaround arrays

This kind of irregular array addressing is found throughout many connections and wirings

within the fabric. For instance, directing inputs to into a particular row, in which each brick

accepts a different number of inputs, and the addressing would have to be something such as: the

first 32 bits for the first brick, followed by the next 64 bits for the second brick and again 32 for the

last. As stated before, the tools generated many parameter arrays in order to describe the entirety

of the fabric. Four of these arrays serve the purpose of a workaround around this issue.

Also, as stated before, the number of bits utilized to perform selection utilizing the switchboxes

will always be dictated by the maximum number of outputs on all rows. It is due to similar issues

that this choice was made, as each row would indeed have its own number of selection bits, and

properly wiring the correct parts of an array would involve a much more complex bit selection
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from the originating 32 bit routing registers, as all the routing information is placed across all

registers as was show previously.

So, the manner in which the fabric is described does present some design issues, and might

introduce similar problems in the future. Specifically, if further iterations are to be performed in

order to support more complex graphs and different kinds of execution control. This includes the

already mentioned non-atomic graphs and memory access. The type of description being utilized

may not be flexible for such alterations and, also, future changes to the Verilog standard and

consequently the synthesis tools might compromise the validity of the written code.

However, more significantly, the heavily parametrized approach was an attempt to describe a

module in a manner slightly atypical in comparison to standard hardware design. In other words,

current hardware description languages might not be, natively, geared to this kind of design.

In retrospect, a safer approach might have involved generating actual Verilog code via custom

tools. The reasoning for the implemented description was a diminishing of deviations from the

standard hardware toolchain, and, in fact, to determine whether such design flows were appropriate

for designing this manner of reconfigurable modules.
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Chapter 5

Implemented Tools

The hardware layout detailed in section 4.1.2, along with the RF design presented in 4.3.3 were

created to work upon graphs as those briefly presented in section 3.4.

So, in order to fully arrive at a functional system it is necessary to start from the abstract graph

structure and construct a flow that permits describing the necessary hardware, its configuration

and means of communication. Each developed tool has a considerable degree of transparency and

flexibility and the near entirety of the toolchain is aided by scripts that automate calls and file

handling.

This chapter presents the utilized and developed tools that implement the required steps in

order to achieve a functional reconfigurable system.

5.1 Graph2Bricks

The conversion from Graph information to the hardware representation presented in the descrip-

tion of the RF in section 4.3.3 is done by this tool, which is implemented in C.

It’s inputs are the Extractor generated files regarding operations, their inputs and connections,

as exemplified in figure 3.8. It generates both the Verilog parameter description of the fabric as

well as the graph table required by the PLB Injector. Also, it calculates the contents of the routing

registers for each graph that it processes, for use by the RM.

5.1.1 Main features

Graph2Bricks works on one graph at a time, but is capable of keeping context between calls. The

context of execution comprises the current status of the fabric as well as routing information. To

clarify, upon one call of the program with one input graph, brick placement and switchbox routing

information is generated for that graph alone. Upon the next call, the tool considers the already

computed status of the fabric in mapping the subsequent graphs, and also may need to recompute

the values of the routing registers as will be explained bellow.
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To clarify, the term mapped in previous chapters referred to the hardware itself, already im-

plemented in a particular position in the fabric. In this context, a mapped operation refers to the

information currently kept in the tool generated files for later implementation.

To keep this information, a generation file is created and later updated at each call with infor-

mation regarding the bricks, their positions, the types of inputs, the grid’s current depth and width,

amongst others. The following is an excerpt of this file:

Generated graphlayout files: 1

2 Number of ops on grid: 36

Number of reused bricks on grid: 0

4 Number of inputs: 3

Number of outputs: 6

6 Grid depth: 6

Grid width: 7

8 Numexits: 1

Current grid ILP: 5, 6, 7, 6, 6, 6

Listing 5.1: Graph2Bricks Generation File

This file also keeps the routing information of all already processed graphs. The need for

this will be better understood after the explanation regarding the generation of the routing register

values presented in section 5.1.2. Related to this, the program is capable of rejecting the processing

of input files that do not meet certain criteria, for instance, the existence of unsupported operations

in the input files, or the execution is aborted if it is determined that the feedback routing exceeds

the supported number of bits. In these cases the Generation File is not updated.

The Generation File is, however, only an auxiliary data container. So, one of the actual useful

outputs of this program are files such as this:

1 //routing regs for graph0

int graph0routeregs[NUMROUTEREGS + NUMFEEDBACKREGS] =

3 { 0x14080200, 0x35415210, 0x2c6880bb,

0x18561688, 0x3511ac2c, 0x119};

5 //routing regs array

int *graphroutings[1] = {graph0routeregs};

7

//masks for branches

9 int branchmasks[1] = {0x1};

Listing 5.2: C Level representation of routing registers

This is a file containing the values of the routing registers and masking register for a single

graph. This is the C code that the RM utilizes to reconfigure the fabric. How the values of the

routing registers are computed is explained further, in section 5.1.2. When generated, this file will

contain as many routing register arrays as graphs, each array with the same number of elements,

and the masks arrays will hold one value per graph. Besides this file, Graph2Bricks generates a

Verilog header containing information as presented in example code 4.4. This file, containing

all the bricks necessary to perform the graphs the program has processed, is what is included in

hardware synthesis. Besides this file, the program also outputs hardware descriptions of the same
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nature solely for the graph under analysis. In other words, it both produces the sum hardware

description as well descriptions for each graph.

The graph table for the PLB Injector is an equally simple file with a Verilog parameter array

detailing the starting memory addresses of the graphs:

1 localparam NUM_PCS = 3;

localparam [ 0 : 32 * (NUM_PCS) - 1] GRAPH_PCS = {32’h880001ec

3 , 32’h880012e4

, 32’h8800138c};

Listing 5.3: Verilog Program Counter array for the Injector

These are the addresses, specified at synthesis time, which will cause the Injector to trigger the

process of utilizing the RF, as was explained in the overview of the current system in section 4.1.2.

In this example, three addresses are contained within the Injector, meaning that three graphs where

mapped to hardware by the tools, and will trigger the functioning of the RF once the GPP reaches

the respective memory positions.

Another auxiliary file that is created contains simple environment information to be passed to

the next tool in the chain, described in section 5.2. It contains the number of input and output

registers, as well as the number of routing registers along with the base address of the fabric. The

need for these values will be later explained.

The program is able to parse MicroBlaze operations that correspond to the supported brick

types found in listing 4.5 but is not restricted to that set. In terms of flexibility, Graph2Bricks

was written to permit quick expansion to other Instruction Set Architectures (ISA), requiring only

adding the instructions composing that instruction set to header files. The program supports se-

lection of one of the supported architectures upon call (although only MicroBlaze was utilized for

development). So, in the same manner, adding bricks types (i.e. new operations) to the application

is equally simple.

To support this, the tool was written to be able to parse operations with any number of inputs

or outputs and route any output to any input. In that sense, it is not strictly bound to the hardware

architecture of the RF. Regarding constant operators, it is also able to output information that

configure the bricks so that the proper operator is taken as a constant (for instance, in a subtraction

operation, creating a brick that either implements a - constant or b - constant).

Regarding the relationship between the parsed MicroBlaze instructions and the bricks, it is

not necessary 1:1. That is, each instruction does not necessarily imply a brick (hardware mod-

ule) that matches it and only it. Some generalization was attempted, and achieved up to a point.

Any type of addition at MicroBlaze level (add with carry, add without carry, add with immediate

value or register value) can be performed by the same addition module in the fabric. However,

some operations are to specific to generalize. Still, this does not compromise flexibility in any

respect. Overall, the entirety of the application is written in considerably discrete modules, made

as transparent and independent as possible.



58 Implemented Tools

5.1.2 Generating Routing Information

As mentioned, the RM is the module of the system that contains information regarding the routing

of the fabric. This information is utilized to configure the fabric at any moment where a particular

graph is to be executed. Graph2bricks being the tool that works upon information regarding oper-

ation connections in order to place them, becomes also the appropriate place within the toolflow

to generate these routing values.

To better understand the layout of the routing information within a register, consider the ex-

ample graph in figure 5.1.

In this figure is represented a possible interconnection of operations within the RF. The routing

values to be generated for this, or any graph, include the connection of input registers to the top

of the fabric, connections between rows and the connections to output registers. As stated before,

the widest number of outputs dictates the number of bits used to perform a selection. In this case,

row 1 has the most outputs, 5. So, 3 bits would be required to represent a range from 0 to 4. Each

group of 3 bits is referred to as a block.

The total number of inputs in the fabric is 14 accounting for the output register (bricks with a

constant operator do not have their second input represented, but it is necessary to count it). So, the

total number of bits required is 3 times 14, totaling 42, which means 2 routing registers are needed.

The registers are represented with the LSB at the right, and each block is represented in decimal

notation. The numerical value of the block corresponds to the output identification of the previous

row, from the position of the block itself in the register are derived the input identifications for that

row. To clarify, the switchbox in Row 0 would be feed the first 6 blocks and attribute to its output

nr. 4 input nr. 2.

As the figure shows, some bits of the registers are not used, marked as don’t care. In Register

1, these bits correspond to the most significant bits of the register that were not utilized, as only

42 are required. In Register 0, the 2 most significant bits of the register are also not utilized since

the size of the block is 3 (only 10 groups of 3 bits fit 32 with 2 bits remaining). As for sixth and

seventh blocks of the same register, these would correspond to the first input anl and the second

input of bra. Although not used (as the brick is operating on a constant value) as Verilog does

not allow for a module to have a variable number of ports (i.e. existence of non-existence of the

port based on a parameter). So, the ports must exist, but are left unconnected, which is a design

hindrance related to the manner utilized to describe the RF.

In terms of multiple calls to this tool, maintaining current information about brick placement

is fairly obvious. It is required to re-utilize bricks between graphs and to produce a final represen-

tation of hardware for all the graphs. The reason for maintaining routing information as well now

becomes apparent. If the number of selection bits required for the graph increases, by increasing

of the maximum number of outputs in any row, then the routing tags will have to be placed in

different locations in the routing registers. In fact, a larger number of registers is likely to be re-

quired. So, the solution is to store this information in a structure that is abstract from the routing

registers but in fact contains the same information and to recalculate the routing registers at every
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0 to 2,  2 to 1,  4 to 3

0 to 0,  0 to 1,  1 to 2,  2 to 3,  3 to 4

1 to 2,  1 to 0,  2 to 1

0 to 0

add add bra

anl pass pass

sub bne

4 Input registers

1 Output register

Exit condition(s)

13

7

0 1 32

0

...x 0 2 1 4 0 2 x 3 2 1 0 0x x

Register 0Register 1

2 reserved bits

Don't care

Row 0Row 1Row 2

Output register

1

Figure 5.1: Routing Example - Inputs and outputs are numbered left to right, branches have indi-
vidual numbering, as they are not treated in the same manner.
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call, if necessary.

//represents a routing of an input to an output in a generic fashion

2 struct routing {

int fromX, //upper level X coordinate, output

4 toX; //lower level X coordinate, input

int route_lvl;

6 //what level is this referring too

};

Listing 5.4: Abstract routing structure

So the alteration of the fabric’s width creates the need for re-routing, however, the fabric

may also be increased in depth if the tool is called with a graph with greater depth than those

before. In such a case, the fabric will now need to propagate the data of smaller (less deep) graphs

downwards in order to feed them back or route them to the output registers. In order to do that

more passthrough operations are required to propagate the signals downwards. So, in terms of

routing, more registers will be required and their value will have to be computed. Consequently,

more information will have to be stored in the Generation File for all the runs of the tool.

In fact, one of the issues with the fabric’s structure is the number of passthroughs required

even for simple graphs. As was seen before in the dynamic approaches to the fabric architecture,

placement of passthroughs would exceed placement of the operations themselves. The same is

true here, the passthrough placement creating a pyramid of passthroughs, each lower row requiring

more than the previous (to guide the new results of each new row and the previous ones back to

the input of the fabric). Although the passthrough operation itself is only wiring and so does not

introduce any logic, all the operations in the fabric are registered so for an elevated number of

passthroughs an equally elevated number of registers to hold their outputs at each row. This effect

can be seen, for instance, in figure 5.7.

5.1.3 Constraints and Optimizations

In the same way that it is expandable to other architectures (i.e. processors), the tool has a flex-

ible system for constraint specification. The two sets of constraints considered for generating a

description for the developed hardware architecture are relative to the operations themselves, and

the placement of those operations. Although both adding a new ISA or altering the constraints

requires recompilation, the modification effort and time is small and punctual.

Regarding operation constraints, they are all related to the capabilities of the fabric themselves.

The operations composing a graph are parsed and data structures are initialized with all relevant

data. Upon parsing, the program verifies a set of conditions that must be met if the graph is to

be expressed as hardware. For now, the considered restrictions on operations to be mapped have

been already presented while describing the hardware. The currently utilized constraints are the

maximum supported of inputs and outputs and whether or not that parsed instruction, part of the

considered ISA, has an equivalent hardware operation available (i.e. a brick). Initially, a restriction

that only allowed one output per brick was in place at fabric level, that is, in its HDL description.
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However, the fabric was later further developed to potentially support any number of inputs and

outputs, so the constraints regarding this could be lifted. However, the constraint system can also

be used not only to generate information which is within the capabilities of the fabric, but also

to dictate restrictions that might be wanted simply for design purposes. That is, restricting the

maximum width wanted, or not allowing particular types of operations for reasons of available

resources or area.

Without going into needless detail, restrictions are held in an array of functions, each function

being a restriction:

1 //constraint check

int (*op_constraint_funcs[NUM_OP_CONSTRAINTS])

3 (struct operation *currentop) =

{op_numinputs, op_numoutputs, op_validclass};

Listing 5.5: Graph2Bricks Constraints

So, the addition or removal of constraints from the constraint vector could be easily imple-

mented by call time switches once a large enough library of constraints warranted such a feature.

Regarding mapping constraints, the utilized system is the same, and the current constraints are

actually better regarded as optimizations, although any could be added that acted as a placement

constraint. As stated during the description of the RF in section 4.3.3, and also in the sections

describing the non implemented approaches, two or more graphs can be overlapped in terms of

operations. In other words, they can be matched. So, since the implemented fabric is capable

of routing any output of a row to any input, its a simple matter of verifying the current state

of the fabric as to find operations already mapped to be re-utilized if needed, or possible. So,

one of the optimizations performed when placing bricks, is the reuse of already mapped bricks.

This way, the necessary hardware is reduced. The program attempts to reuse bricks as much as

possible. As presented before, bricks can either receive two variable inputs or one variable input

and a constant input. A brick with 2 variable operators can be reused without limit for graphs

that utilize the operation it implements, however, a bricks with an defined constant value (set by

a previously parsed graph) can only be reused between graphs that utilize that same value. This

is also supported even if the constant operator is operator A instead of operator B, but only if the

operation is commutative. If these conditions are not met, a new brick is required. Naturally, the

same addition brick for instance, cannot be utilized to perform two distinct additions by the same

graph, seeing as though that addition is either in parallel or on another level.

In the previous chapter, in the description of the adopted RF, it was mentioned that a brick

could also operate with both two variable operators and with only one operator and a set constant

value, selecting one or another functioning at run-time. That hardware feature ended up not being

utilized because this tool does not yet generate that configuration information. Implementing it

would simply require further software iterations and add nothing to functionality, contributing only

to a reduction of fabric size. So, Graph2Bricks can also activate or deactivate the use of double

typed bricks. This is an example of editing mapping constraints. Regardless, having double typed
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Figure 5.2: Graph2Bricks FlowChart - A summary of the tasks the program performs. Generation
and verification of routing information and placement of passthroughs was one of the most time
consuming features to implement.

bricks would have allowed to reduce space, but would have introduced reconfiguration delays and

additional memory mapped registers to configure, at runtime, the operating mode of the bricks.

Another aspect regarding operation mapping is relative to passthroughs. Passthroughs are

operations in which the output is equal to the input. They are required to wire operands that span

more than one row, which is a very frequent characteristic of graphs. So, they are the only bricks on

the grid which are not derived from the instructions themselves, but from their connections. Like

all the other bricks, their outputs are registered. So, one option was included that dictates a small

aspect of passthrough placement. Consider a situation where two operations on one row require

the same output from one brick two rows above. One option would be to place one passthrough in

the intermediate row for each brick in the lower row. The other, is to place only one, and then feed

the two bricks the output of that one passthrough. Although seemingly the same, the difference

lies in the hardware behaviour. Whereas placing two passthroughs creates 2 32 bit registers (the

outputs) each with a fanout of 1 (to the brick below), the second alternative creates only 1 32 bit

register with a fanout of 2 (to both bricks). This option was introduced in order to test if there was

any observable trade off between area and altering of the fanout of the registers in terms of clock

frequency.

Also, after verification of operation constraints, the program performs some trimming opti-

mizations, removing needless information from the parsed operations. For instance, the second

operand of a branch instruction, which is the relative jump value of the branch operation. This has
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no equivalency in terms of hardware, as the return to software is handled by the code generated by

the Graph2Hex tool explained below.

So, to reiterate, the flowchart in figure 5.2 of this program summarizes, in a general fashion,

the steps performed to generate the described information.

5.2 Graph2Hex

While Graph2Bricks generates information regarding the hardware description, this program acts

as a simple assembler that generates communication routines. As with Graph2Bricks, the pro-

gram can be easily adapted to any ISA and keeps execution context between calls, although it

only needs to store a minimal amount of information as the graphs do not influence each other’s

communication routines.

Since no knowledge of the internal connections of the operations is necessary, this tool only

requires inputs regarding which GPP registers are to be loaded to to fabric, and to which registers

the results are to be recovered too. So, the input files to this tool are ones such as the example

in figure 3.7. Graph2Hex also requires an output file from Graph2Bricks that contains the base

address of the fabric and the number of input and output registers. This ties in as to why both tools

cannot work in parallel, as is displayed in the toolflow in section 5.3. In order for this program

to know the number of input and output registers on the fabric, Graph2Bricks must be run first in

order to determine these numbers (which are attained after the fabric is described by processing

the outputs of the Graph Extractor). The numbers are required in order for Graph2Hex to know

the addresses to write to and read from while assembling the code.

5.2.1 Main features

As an output, the program generates several files, one per graph, that contain the communication

with the RF via the PLB bus, utilizing the MicroBlaze’s load and store instructions to write and

read from the fabric as well as some other auxiliary instructions. One example of this output is

as seen in figure 5.3 (instructions omitted for brevity). These routines are referred to as Code

Segments (CS).

Graph2Hex first generates code that saves the value of one of the GPPs registers to the RF’s

Context Register. This is necessary because one register of the GPP will have to be utilized in

order to perform the required memory loading and storing instructions in a more efficient manner.

As explained before, the IMM instruction is used to allow the following instruction to work with

immediate values of 32 bits.

So, an absolute value operation requires 2 instructions, one loads the IMM, and the second

is the instruction itself which contains the lower 16 bits (the IMM is then cleared, needing to be

reloaded). Its quick to conclude that, for instance, 5 registers to load to fabric would result in 10

instructions if absolute loads were used. So, relative loads and stores are being used, in which only

1 instruction is required per load/store by keeping the upper 16 bits in one of the registers in the

register file.
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Save context of MB register 
(needed if 1st iteration fail): 
0x880f0064: 0xb000c4e0
0x880f0068: 0xfba00050
Load const live-ins: 
Load live-ins: 
0x880f006c: 0xb000c4e0
0x880f0070: 0xfba00004
Set address offset: 
0x880f0074: 0xb000c4e0
(...)
Load itercount(start signal): 
0x880f0080: 0x23a0ffff
(...)
Wait for fabric: 
0x880f008c: 0xb000c4e0
(...)

Restore live-outs: 
Set address offset: 
0x880f009c: 0xb000c4e0
(...)
Restore live-outs that holds carry: 
0x880f00a8: 0xb000c4e0
(...)
Recovering last live-out: 
0x880f00c0: 0xb000c4e0
(...)
Jump back:
0x880f00c8: 0xb0008800
0x880f00cc: 0xb80c12e4

popcnt8-2-stats.txt
Percentual gain (instructions reduced too): 45.000000

Figure 5.3: Graphhex File - A simple sequence of instructions that write all inputs to the RF and
later recovers them. Allows for recovery of values into carry. These instruction sequences are
named Code Segments, and each represents one communication routine with the RF.

Still, the need for the Context Register is only justified by coupling the previous explanation

with the fact that the fabric may conclude execution at the very first iteration. Thus, the contents

of the register used to as part of the instructions would be lost upon return to software, and a loss

of execution context would occur. Maintaining the original value in the Context Register allows

for its recovery.

Following this, the instructions that copy the contents of the appropriate GPP registers to the

RF, as interpreted from the Stats file, are written. Instructions to send the start signal and to poll

Status Register follow. After the execution is completed, the output registers of the RF are copied

back to the destination registers of the GPP. In the example given, there is also code to retrieve a

carry result. While the load instruction provided by the MicroBlaze ISA allows a value from the

RF directly to the register file, the Carry bit of the processor is held in a special register which is

bit addressable. So code must be generated to check for the value present in the output register,

and set or clear the Carry bit.

The file also outputs a gain factor. This is the ratio of instructions that the GPP would perform,

at most, in software execution, versus the number of instructions needed to communicate with the

fabric. This does not include the time required for hardware execution, it is merely a measure of

reduction in terms of MicroBlaze instructions.

Related to this, in section 4.3.3.2 a formula for estimating the execution time of a graph was

introduced, equation 4.1. Now understanding the entirety of the communication routine, this can

be adjusted to include the equations found in section 6.1, relative to system overheads.

Currently, Graph2Hex generates instructions that the MicroBlaze executes through the PLB

bus, i.e. memory loading a storing. The fact that the Code Segments are in external memory

introduces considerable overhead. One possible adaptation would be to have the system function

in a one to one connection from the GPP to the RF, detailed in section 7.1.
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5.3 Toolflow

The complete toolflow of the system is as detailed in figure 5.4. These are the steps necessary to

describe an RF and generate all the necessary configuration information.

As a final clarification as to how to tools connect the following is a short description of the

flow.

Firstly, the code must be imported into the XPS development environment in order for the

compilation tools to link the program into the appropriate memory positions, resulting in an ELF

file properly placed in memory (in this case, the program is placed at the start of the DDR2

RAM). Now the ELF may be passed through the Graph Extractor, which will generate the files

presented above regarding the graphs (which are identified as being in DDR2). Graph2Bricks and

Graph2Hex may now be run over the previous output. Due to the dependency of the latter on

the number of inputs and outputs provided by the former, Graph2Bricks must be ran first. An

alternative would be to have an intermediate tool to generate that information for both, making

their executions independent. This does not compromise any functionality however. These two

tools will then generate all the necessary hardware information.

With the Verilog headers now generated, hardware synthesis can be performed for the RF and

the Injector, resulting in netlists for both peripherals. The assembly code to be executed by the

GPP is ran through an auxiliary script that places it in C containers so it can be included by the

RM and copied to DDR2. The final system may now be generated, resulting in a bitstream ready

to be transfered to the FPGA.

In order to execute the segment of the toolflow containing Graph2Bricks and Graph2Hex,

several auxiliary scripts were created that automate the calls to the programs and generate other

auxiliary files, such as the C files utilized by the RM (containing the CSs). These scripts consult

the program’s directory for input files and call the tools for each input file. At the end of all

executions the outputs are copied to other folders as to permit the execution of following tools.

Encapsulating these scripts is a single script. So the output of the system, up to the point of the

hardware descriptions and header files, can be generated by a single run of a script, assuming that

appropriate input files were placed in the tools directories.

Although the toolflow starts at source code, no tool performs a static analysis of the source

code, as the Extractor receives the instruction stream from a simulator. The need to start from

the source code of the applications appears because the program needs to be properly linked into

the address of the external memory so as to have the tools pick up the correct addresses in turn.

However, if the program to be ran is small enough to fit in BRAMs this problem may not appear.

Since the memory addresses of the BRAMs for any processor in the system start at zero, an ELF

previously linked will most likely have been linked from this address onwards as well, maintaining

coherence. If this this is not the case, there is no way to relink an executable ELF file, thus the

flow must start from the source code.
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Figure 5.4: Complete Toolflow Diagram - these are the necessary steps to arrive at a functional
reconfigurable fabric.
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add r5, r5, r5
bgeid r5, -4
addik r29, r29, -1

Figure 5.5: Example Graph - a small example graph to demonstrate the output of the tools

5.3.1 Toolflow Example Output

The following is the result of passing the Graph Extractor outputs relative to the simple graph

in figure 5.5 through the explained tools. The CS to perform communication for this graph is

in figure 5.6. A graphical representation of the resulting fabric and it’s routing registers is in

figure 5.7. The Verilog parameters that describe the fabric are represented in listing 5.6 and the

related address table for the Injector is as presented in listing 5.7.

//Verilog fabric parameters:

2 parameter MAX_WIDTH = 32’d4;

parameter NUM_COLS = 32’d4;

4 parameter NUM_ROWS = 32’d2;

parameter NUM_IREGS = 32’d2;

6 parameter NUM_OREGS = 32’d3;

parameter NUM_ROUTEREGS = 32’d1;

8 parameter NUM_FEEDBACK_REGS = 32’d1;

10 parameter [ 0 : (32 * TOTAL_EXITS) - 1 ] NEGATE_EXITS = {32’d1};

parameter [ 0 : (32 * NUM_ROWS) - 1 ] ROW_NUMINS = {32’d4, 32’d4};

12 parameter [ 0 : (32 * NUM_ROWS) - 1 ] ROW_NUMOUTS = {32’d4, 32’d4};

parameter [ 0 : (32 * NUM_ROWS) - 1 ] ROW_NUMOPS = {32’d2, 32’d4};

14 parameter [ 0 : (32 * NUM_ROWS) - 1 ] ROW_NUMEXITS = {32’d0, 32’d1};

parameter [ 0 : (32 * NUM_ROWS * NUM_COLS) - 1 ] ROW_OPS = {

16 //this is the top of the fabric

‘A_ADD, ‘A_ADD, ‘NULL, ‘NULL

18 , ‘B_BGE, ‘PASS, ‘PASS, ‘PASS };

//this is the bottom

20

parameter [ 0 : (32 * NUM_ROWS * NUM_COLS) - 1 ] INPUT_TYPES = {

22 ‘INPUT_ONLY, ‘CONST_ONLY, ‘NULL, ‘NULL

,‘INPUT_ONLY, ‘INPUT_ONLY, ‘INPUT_ONLY, ‘INPUT_ONLY };

24

parameter [ 0 : (32 * NUM_ROWS * NUM_COLS) - 1 ] CONST_VALUES = {

26 32’h0, 32’hffffffff, ‘NULL, ‘NULL

,32’h0, 32’h0, 32’h0, 32’h0 };

Listing 5.6: Example Graph Parameters - some content of this file is still omitted for brevity
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1 localparam NUM_PCS = 1;

localparam [ 0 : 32 * (NUM_PCS) - 1] GRAPH_PCS = { 32’h88001314};

Listing 5.7: Example Graph Table of PCs

Save context of MB register
 (necessary if 1st iteration fail): 
0x880f0000:imm     -15136
0x880f0004:swi     r29, r0, 40
Load live-ins: 
0x880f0008:imm     -15136
0x880f000c:swi     r29, r0, 4
Set address offset: 
0x880f0010:imm     -15136
0x880f0014:addi    r29, r0, 0
0x880f0018:swi     r5, r29, 0
Load itercount(start signal): 
0x880f001c:addi    r29, r0, -1
0x880f0020:imm     -15136
0x880f0024:swi     r29, r0, 20
Wait for fabric: 
0x880f0028:imm     -15136
0x880f002c:lwi     r29, r0, 36
0x880f0030:andi    r29, r29, 4
0x880f0034:bnei    r29, -12
Check for exit status: 
0x880f0038:imm     -15136
0x880f003c:lwi     r29, r0, 36
0x880f0040:andi    r29, r29, 32
0x880f0044:beqi    r29, 20
...

Return if First fail true: 
0x880f0048:imm     -15136
0x880f004c:lwi     r29, r0, 40
0x880f0050:imm     -30720
0x880f0054:brki    r0, 4884
Restore live-outs: 
Set address offset: 
0x880f0058:imm     -15136
0x880f005c:addi    r29, r0, 0
0x880f0060:lwi     r5, r29, 28
Restore live-outs that holds carry: 
0x880f0064:imm     -15136
0x880f0068:lwi     r29, r0, 24
0x880f006c:bnei    r29, 12
0x880f0070:msrclr  r29, 4
0x880f0074:bri     8
0x880f0078:msrset  r29, 4
Recovering last live-out: 
0x880f007c:imm     -15136
0x880f0080:lwi     r29, r0, 32
Return Jump:
0x880f0084:imm     -30720
0x880f0088:brki    r0, 4884

executable-4-stats.txt
Percentual gain (instructions reduced too): 55.555557

 

Figure 5.6: Example GraphHex - communication routing for this graph from the GPP to the RF.
The instructions have been decoded into their original mnemonics for clarity
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Figure 5.7: Example Graph Layout - resulting hardware layout and routing information



Chapter 6

Results and Conclusions

The implemented prototype was tested with 6 simple benchmarks to provide a proof of concept of

the entire architecture and to observe the behaviour of the system in terms of speedups. As was

stated before, the Injector allows the disabling of the entire acceleration system via a switch, and

so, the benchmarks were ran with the system deactivated and then activated. The architecture was

as explained in section 4.1.2.

Since the RF did not permit memory operations, the working set of graphs was somewhat

reduced. Thus, each benchmark was based on a simple loop or two nested loops that performed

operations on single variables (i.e. no array accessing). The benchmarks utilized only contained,

usually, one graph useful for implementation due to their simplicity. These graphs were found

encapsulated within a function call. So, the results presented in section 6.2.1 are for one graph per

benchmark. In order to test the functionality of an RF implementing several graphs, a benchmark

was written that included calls to all the functions of previous benchmarks (merge). In other

words, merge contains 6 graphs which were sucessfully translated into a hardware description.

These results are presented in section 6.2.2.

Five of the utilized benchmarks were generic routines, Even Ones, Hamming, Count, Pop

Count and Reverse. The last is a benchmark taken from the SNU Real-Time Benchmarks suite [1],

namely, Fibonacci. In appendix A an excerpt of code from each benchmark and the graphical

representation of the implemented graph for that benchmark are presented along with detailed

result tables for each one. All the benchmarks had changeable parameters that allowed for testing

the same benchmark for a different number of calls of the graph, for instance. These can be

better understood by consulting the code found in the referenced Appendix. A call of a graph is

understood to be either the execution of the code from which the graph was derived, if used in a

software context, or the utilization of the RF to perform that graph, if used in this context.

The tested graphs are quite similar amongst each other, due to the current status of develop-

ment of the prototype, but they still provide a measure of speedup and prove the transparency of

the system as well as the functioning of the toolflow. One detected graph was functionally sup-

ported but not tested as the amount of passthroughs required to route it exceeded FPGA resources.

Altough passthroughs are registered, they could be implemented as simple wiring, as the RF does
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Figure 6.1: System Overheads - The variable overheads are those that could be improved with
some alterations to the system. The factors that contribute to each segment of time are detailed
within the corresponding box (not to scale).

not act like a pipeline and data is only retrieved after a number of clocks corresponding to an

iteration. This was not tested however.

6.1 Causes for Overhead

To better understand the comparative results in the next section, figure 6.1 summarizes, once again,

the functioning of the system while representing the overheads it is subject to.

Although these overheads greatly add to the total time required to run the program via acceler-

ation and, so, lower the achievable speedups, the factor that should be considered for comparison

is the computation time within the fabric. It is this time that is a measure of the gain achieved by

automatically detecting and generating a hardware description for graphs. Of course a reduction

of the overhead is important, and manners through which it can be reduced are later discussed in

section 7.1.

Regarding the computation time of the graph itself, it is as expressed by equation 4.1. So, if

all overheads were to be eliminated this would be the true factor of speedup for the system. Of

course, the speedup would be proportional to the parallelism possible, for a given graph.

Now that previous sections explained the functioning of the system, the remaining time can be

expressed by the following equations.

The routing overhead is a direct function of the number of routing registers present in the

system, so, this overhead can be expressed by equation 6.1. Consider that each access utilizing the

PLB bus (to write to each register) can be as long as 23 clock cycles, expressed as NAc (worst case

scenario as measured with ChipScope Analyzer, a signal analysis tool). Let NrRR be the number

of routing registers and TCR the total number of clock cycles this overhead introduces.

TCR ' NAc×NrRR (6.1)
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Adding to this is the time the RM requires to execute its own program. Considering it is found

in BRAMs, this time is negligible relative to the given equation.

The overhead caused by loading and retrieving values from the RF is relative to the Code

Segment itself. It is a direct function of how many instructions compose that CS. The CSs are in

external memory and so must be fetched (in fact, the approximate 23 clock cycles required for an

access over the PLB bus were measured from an access to external memory). So, consider the

previous variables and let NCSInst be the number of instructions that make up the Code Segment

and TCS the total number of clock cycles.

TCS ' NCSInst ×NAc (6.2)

So the complete time that is required to perform a graph in hardware is the sum of the PLB

access time for writing all the inputs to the fabric and reading the outputs plus the time it takes for

the computations themselves to be performed within the fabric, adding to the constant overheads

which can be neglected.

So, the total time is as expressed by equation 6.3.

TC ' TCR +TCS +TFC (6.3)

6.2 Comparative Results

The objective of the system was the acceleration of detected graphs via custom hardware descrip-

tion. So, as stated, the comparative factor of interest is the computation time within the graph to

determine the gain derived from parallelism. However, the system does suffer from considerable

overhead, as is shown later in table 6.6. So, to have a good term of comparison for the speedup

obtained by the system, it will be compared with a reference system composed solely by a Mi-

croblaze Processor, running a benchmark located in external memory, with data and instruction

caches enabled (with 2Kb of size) as well as a barrel shifter and multiplier.

Since there was no immediate way to measure the actual computation time within the RF in

runtime, the following values are derived from equation 4.1 found in section 4.3.3. Unlike the

other formulas that calculate overhead, this formula is not affected by any estimation errors, and

the actual values of computation within the fabric may actually be derived by simulation alone.

The execution times were extracted via a timer peripheral added to the system. The segments

of code that were translated into graphs were encapsulated between a call to start the timer, and a

call to stop it. These calls introduce further constant delay as show later in appendix A. The timer

returns the number clock cycles it has counted, so, all the values relative to hardware and software

execution in the following tables are expressed in this unit. The measured values were retrieved

via a UART peripheral.
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Table 6.1: Result excerpt for RF system versus a Cache enabled system

Even Ones Hamming Fibonacci PopCnt(inner)
Calls 100 400 100 400 100 400 100 400
HW 121575 483243 117249 465992 142552 753468 121590 483261
SW(cache) 24087 95494 24106 95506 36058 563308 29775 118275

Speedup 0,2 0,2 0,21 0,2 0,25 0,75 0,24 0,24
(a) benchmarks with 1 parameter

Count Reverse PopCount
Calls of Graph 100 400 100 400 Iterations 128 512
HW 112930 448761 125848 500427 HW 2210 3285
SW (cache) 7084 27484 27106 107495 SW (cache) 1139 3837

Speedup 0,06 0,06 0,22 0,21 Speedup 0,52 1,17
I = 8 I = 32 Bits = 1

Count Reverse PopCount
HW 121528 483204 136604 543475 HW 4963 8486
SW (cache) 14085 55489 52695 209894 SW (cache) 4627 17693

Speedup 0,12 0,11 0,39 0,39 Speedup 0,93 2,08
I = 18 I = 64 Bits = 3

(b) benchmarks with 2 parameters

6.2.1 Results for an RF implementing a single graph

Versus a cache enabled software-only system the RF prototype achieves worse results in terms of

speedup in most cases, although it evens out the overheads in some. The overhead introduces the

most time when the graph repeats a large number of times and an equal number of communication

routines are needed to utilize the RF.

The four benchmarks in table 6.1a were tested varying the number of calls of the function

containing the graph. At every call, the system was triggered to utilize the RF. For Even Ones,

Hamming and PopCount (inner) the speedup is constant regardless of number of calls. Regarding

this last benchmark, it contains an nested loop. Both the inner and outer loop were detected as

separate graphs and both were tested, the refered table containing the results for the inner loop.

The graphs for these three benchmarks iterate a number of times that is constant from call to

call (it is a constant value built-in the fabric itself). So, more calls add the same amount of time

to both the hardware and the software, keeping the speedup constant. Unlike these, Fibonacci

contains a graph whose number of iterations is dependent from one of the input values. In this

case, that input value is the number of the call itself. That is, the graph iterates once in the first

call, twice in the second and so forth. Since a complete iteration completes within the fabric

quicker than at software level, with a sufficient number of iterations, the overhead introduced by

communication begins to even out. For a total of 400 calls that results in 80200 iterations through

the fabric. For each call, the time spent in the fabric increases with the number of iterations while

the communication time remains constant. Thus, the total sum of the overheads, for all calls of the
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Table 6.2: Result excerpt for RF system versus a Cache disabled system

Even Ones Hamming Fibonacci PopCnt(inner)
Calls 100 400 100 400 100 400 100 400
HW 121575 483243 117249 465992 142552 753468 121590 483261
SW 502760 2008477 502792 2008501 754830 11873707 623027 2489356
Speedup 4,14 4,16 4,29 4,31 5,3 15,78 5,12 5,15

(a) benchmarks with 1 parameter

Count Reverse PopCount
Calls of Graph 100 400 100 400 Iterations 128 512
HW 112930 448761 125848 500427 HW 2210 3285
SW 144267 574461 566026 2261542 SW 19819 76501

Speedup 1,28 1,28 4,5 4,52 Speedup 8,97 23,29
I = 8 I = 32 Bits = 1

Count Reverse PopCount
HW 121528 483204 136604 543475 HW 4963 8486
SW 291875 1164937 1105908 4420991 SW 92697 368024

Speedup 2,4 2,41 8,1 8,13 Speedup 18,68 43,37
I = 18 I = 64 Bits = 3

(b) benchmarks with 2 parameters

graph, grows linearly while the computation time grows according to an arithmetic series.

Table 6.1b presents some results for the benchmarks in which two parameters were varied.

One is the number of calls, the second (indicated below the tables) is a parameter that alters

either the characteristics of the graph (as is the case for the outer loop of PopCount) or alters

the number of iterations per call of graph. Further detail on this is found in appendix A. Count

and Reverse present similar behaviours. As with the results in table 6.1a an increase in number

of calls maintains the speedup constant for the same reasons. Likewise, increasing I increases

the number of iterations (which equal I) and, so, an increase in speedup is also verified. For the

PopCount benchmark the table presents the results slightly differently. From this benchmark was

extracted a single graph that encompassed it’s entire nested loop. So, the graph is called only

once but, like Fibonacci, with a variable number of iterations. Altering its Bits parameter, unlike

other benchmarks, alters the depth of the fabric. When Bits = 3, the fabric is 9 rows in depth and

contains 20 operations. The fact that the communication routine is only called once shows in the

number of clock cycles required to compute the graph in hardware. They are much lower than the

remaining benchmarks. In fact, due to this, PopCount evens out relative to software execution for

a much smaller number of iterations performed in the RF. Fibonacci only achieves a speedup of

0,75 for 400 calls of the graph (80200 iterations) while PopCount demonstrates a speedup of 1,17

for only 512 iterations even in the smallest version of its graph.

Table 6.2 presents the speedups of the hardware execution times versus a cache disabled ref-

erence system. The conclusions to be derived from these results are the same as those explained
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Table 6.3: Estimated results for a zero overhead system versus a Cache enabled system. HW(RF)
is as derived by equation 4.1.

Even Ones Hamming Fibonacci PopCnt(inner)
Calls 100 400 100 400 100 400 100 400
HW (RF estimate) 9600 38400 9600 38400 15150 240600 9600 38400
SW (cache) 24087 95494 24106 95506 36058 563308 29775 118275

Speedup 2,51 2,49 2,51 2,49 2,38 2,34 3,1 3,08
(a) benchmarks with 1 parameter

Count Reverse PopCount
Calls of Graph 100 400 100 400 Iterations 128 512
HW (RF) 2400 9600 9600 38400 HW (RF) 384 1536
SW (cache) 7084 27484 27106 107495 SW (cache) 1139 3837

Speedup 2,95 2,86 2,82 2,8 Speedup 2,97 2,5
I = 8 I = 32 Bits = 1

Count Reverse PopCount
HW (RF) 3600 14400 19200 76800 HW (RF) 1152 4608
SW (cache) 9885 38685 52695 209894 SW (cache) 4627 17693

Speedup 2,75 2,69 2,74 2,73 Speedup 4,02 3,84
I = 18 I = 64 Bits = 3

(b) benchmarks with 2 parameters

before. The difference lies in the increase of software execution times. Seeing as though the

presence of cache accelerates execution by a near constant factor for all benchmarks (approxi-

mately 21), the speedup values are affected by the same factor. Now that the GPP is fetching

all its instructions from the same memory (DDR), these values begin to show that the speedup is

attained by the ratio of CS instructions versus the number of instructions that would be performed

in regular software execution. A difference in speedup between PopCnt (inner) and the remaining

benchmarks is more noticeable in this scenario. Unlike Even Ones or Hamming, PopCnt (inner)

results in more operations within the RF for the same depth, giving it a higher count of Instructions

Per Clock (IPC) than the remaining benchmarks, as shown in table 6.5.

Table 6.3 contains some of the estimates of speedups that would be attained relative to cache

enabled execution if the system had zero overhead. That is, if the communication routines intro-

duced no delay. Chapter 7 discusses ways to diminish their impact.

6.2.2 Results for an RF implementing multiple graphs

The benchmark written to test both the runtime reconfiguration capabilities of the RF and the rout-

ing and placement information generated by the tools calls each of the 6 functions of the utilized

benchmarks alternatively. In other words, one function which contains one graph is called, and

the RF is used to perform it; following that, another function is called, the RF is then reconfigured

for that graph and the graph is performed in hardware. Since the 6 functions are being called
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Table 6.4: Results for merge

n 100 200 300 400 500
HW 882352 1798852 2740767 3715146 4716849
SW 3068240 7611737 13631430 21127314 30099397

Speedup 3,48 4,23 4,97 5,69 6,38

n 100 200 300 400 500
SW (cache) 146044 361494 646952 1002401 1427844

Speedup 0,17 0,2 0,2 0,24 0,3

n 100 200 300 400 500
HW Estimate (fabric) 55950 141900 257850 403800 579750

Potential Speedup 2,61 2,55 2,51 2,48 2,46

alternatively there is a reconfiguration overhead between each utilization of the RF. Each graph is

called n times, so a total of 6×n reconfigurations of the RF are performed.

The benchmark was compiled so has to have each graph iterate the same number of times as

the individual results presented previously. Even Ones, Hamming , PopCount (inner) and Reverse

iterate 32 times per call of the graph, Count iterates 8 times. The graph derived from the outer

loop of PopCount was not implemented. Table 6.4 summarizes the results for this benchmark.

Table 6.5 contains information regarding the amount of bricks within the RF for each bench-

mark. The tools manage to reutilize a considerable amount of resources when mapping all 6 graphs

to the RF. For all graphs, the number of passthroughs required to implement the connections of

operands and results exceeds the number of actual operations. However, the RF for all graph man-

ages to reverse that ratio, containing more operations than passthroughs, and avoiding the mapping

of an additional 38 passthroughs, as well as an additional 21 operations. As a consequence, the

FPGA resources required for the this RF are less than the total sum of the resources required for

each individual RF. Relative to that sum, aproximately 50% of LUTs are required and 25% of

Table 6.5: Brick usage and multiple graph RF resource reutilization

Benchmark OP Bricks Passthroughs IPC Config. Bits Pass/OP Ratio
Count 6 6 2 72 50,00%
Even Ones 6 10 2 87 37,50%
Fibonacci 6 9 2 87 40,00%
Hamming 6 9 2 81 40,00%
PopCount (inner) 8 7 2,67 84 53,33%
Reverse 7 7 2,33 81 50,00%
merge 19 10 2,08 212 65,52%

OP Bricks Passthroughs Config. Bits
Sum for all benchmarks 39 48 492

Ratio to RF for merge 48,72% 20,83% 43%
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Table 6.6: Communication overhead

HW (RF estimate) HW Comm. Cycles Overhead
count 12000 603793 591793 98,01%
even_ones 48000 603793 555793 92,05%
fibonacci 375750 1017340 641590 63,07%
hamming 48000 582248 534248 91,76%
pop_cnt (inner) 48000 603818 555818 92,05%
reverse 48000 625284 577284 92,32%
merge 579750 4716849 4137099 87,71%

Flip-flops. In terms of routing registers, each benchmark requires 4, and merge requires 8, as it is

a wider RF. From the registers, not all bits are used (as explained before), so the useful number of

bits within the registers for each graph is also considerably low, as the RF is a dedicated descrip-

tion for that graph alone. For merge, the required number of bits is also considerably reduced. The

depth for all the RFs is 3.

6.2.3 Overhead

Table 6.6 contains some examples of the overhead measured for the tested benchmarks. All bench-

marks are presented, as well as merge. The overheads are for the case in which the number of calls

of the graph is 500. The depth of the RF is 3 for all cases. All the graphs iterate, within the RF,

32 times except for Count which iterates 8 times and Fibonacci which iterates a variable number

of times. The number of estimated clock cycles required to compute the graph in the RF are sub-

tracted from the actual measured value achived, thus attaining the number of clock cycles which

correspond to the overhead. Since Fibonacci iterates a much larger number of times than the

remaining, more time is spent within the RF, diminishing its overhead.

6.3 Conclusions

The benchmarks utilized to test the system were put through the toolchain explained in both sec-

tion 3.5 and section 5. The previously explained output files and hardware descriptions allowed for

the implementation of small, but functional, dedicated hardware peripherals through the use of the

standard synthesis tools utilized afterwards, namely, Xilinx ISE and XPS. As is, the current imple-

mentation of the toolchain allows for a near automated generation of these hardware descriptions

and their configuration data. So, the toolchain produces outputs useful for implementation.

Regarding the architecture itself, a few aspects leave room for improvement or modification.

However, it was proven that the layout is functionally sound. With no interference at a software

development level it allows for an considerably transparent adaptation of an embedded system

to allow for the use of a custom created hardware accelerator, tailored to the target application’s

most repetitive software kernels. As for the description of the RF, being based on HDL constructs

alone allows for further transparency in terms of design, but is perhaps limited by what the current
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hardware description languages allow. An advantage of the overall architecture is the relatively

loose coupling between system modules, allowing for easy modifications as to perform further

development iterations.

Although the implemented graphs utilized to test the system were relatively simple in structure,

the computational results were verified to be correct. Also, even though the documented results

for the benchmarks were derived from systems in which the RF has one graph alone, it was also

tested with 6 simultaneous, computationally useful, graphs. This last test is specially important

as proof of both the proper functioning of the routing capabilities and the validity of the routing

information as well as the reuse of already mapped resources by several graphs.

Current issues with the system are relative to communication overhead and the support for

more complex graphs, possibly including memory access. For a system not coupled to external

memories, an interface with other types of memory buses would have to be developed. Related to

this, support for cache would have to be added in order to obtain considerably enhanced speedups.

These issues are discussed in chapter 7. Another aspect is the fact that many tasks are being

performed offline. Although this reduces runtime overhead it does lengthen deployment time.

Another issue are the resource requirements of the switchboxes, which were left as crossbars to

facilitate development. For a system in which graphs are detected offline, restrictions on connec-

tions make sense in order to reduce resources. However, for an online system, in which graphs are

not known before they are constructed, a rich interconenction scheme may be required to ensure

support for any detected graph. Reduced interconnection capabilities may still be employed, at the

risk of inability to map some of the graphs detected at run-time.
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Chapter 7

Possible Modifications and
Improvements

7.1 Improving the Current System

The current prototype system is functional within the stated limits for graph support. However,

there is some room for optimization. The RM and its interfaces, as well as the routing scheme

based on visible, memory mapped, registers was left as is to aid in design. But their functions can

be relocated and the whole system greatly simplified. Figure 7.2 illustrates this point. Without

introducing any modifications, the current architecture is a halfway point to a design that might

allow for detection of graphs at run-time, as it is more flexible and the RM may be utilized to

perform this detection and generate new CSs and routing information.

The whole system could be reduced to the RF, the Injector, and a modified version of the

currently in place bootloader (which loads the program from flash).

The current function of the auxiliary Microblaze is to, at boot, copy the tool generated assem-

bly to DDR2 memory, thus acting as a bootloader of sorts for the Code Segments. It’s second and

third tasks are the listening for graph requests over FSL and responding with the proper pair of

instructions that permit jumping to the address where the CSs are located and, lastly, re-routing

the RF at each request. This, however, can be information completely held in hardware and in the

Code Segments themselves. The Injector can hold a lookup table matching graph PCs to memory

positions of CSs and the bootloader the GPP contains, to copy its program from flash memory, can

copy the CSs as well (assuming these were placed in flash). These would hold the instructions to

re-route the fabric as well, as they already hold the instructions to load and recover data.

So, to achieve a functional system such as this, virtually no alteration in the toolchain is re-

quired. The resulting functional flow would be as such: at boot, the GPP copies the program

from flash to DDR, as well as copying the Code Segments to locations known by the Injector (this

module must now know them beforehand, as there is no communication between it and any other

module); after that, the program may run; when a graph PC is detected, the Injector will branch the

execution to a Code Segment; in those instructions will be contained the writing of input values to
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Figure 7.1: Possible Adaptation of Current System - Simple removal of auxiliary Microblaze and
minor modifications to the PLB Injector would create a much more efficient and non intrusive
system

the fabric, the configuring of routing by writing to routing registers, and the retrieval of outputs as

well as the jump back. Also mentioned before, the information provided by the routing registers

could be given at synthesis time, reducing the number of memory mapped registers to one graph

selection register, which would result in an even smaller reconfiguration time and shorter CSs. The

variable reconfiguration overhead associated with re-routing the fabric, would be come constant.

Note that the CSs would now have to be placed in a different location previous to booting. In

the current prototype the RM holds the CSs in its BRAMs before copying them to DDR so they are

accessible by the GPP. Without the RM, they would have to placed in memory in another fashion.

For instance, written to flash along with the program, and copied into DDR by the GPP.

A system such as this would alter the estimates presented previously slightly, as no configura-

tion overhead would be present from the Injector to the RM, from the RM to the RF and finally

from the RM to the Injector. The only, more accurately measurable, overhead would be the execu-

tion of the Code Segments, and thus, a measure of the speedup can be attained by considering the

relationship of the original number of instructions versus the instructions in the Code Segments.

An estimate of the full time it would take for a graph to be completed with this architecture

would be as expressed in equation 7.1. Let TC be the total number of clock cycles and TCS and TFC

as computed previously, note that NCSInst now accounts for the additional instructions to have the

GPP write a value to a graph selection register.

TC ' TCS +TFC (7.1)

The total time would be a function only of the computation itself and the communication.

Relative to the interface of the RF, this could also be adapted, although requiring deeper design
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Graph 
PCs

Memory 
address (PC)

Code 
Segment

Addresses

Opcode
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PLB Passthrough (bus signals)

Figure 7.2: Simplified Injector - eliminating the FSL connection and keeping the necessary in-
structions to be injected in the Injector itself simplifies the system

alterations. As was shown by the equations estimating the PLB access time to the fabric as well

as the results, the Code Segments executed make up a great portion of time spent utilizing the

RF. Although not much compared to the time of execution of the larger graphs, this time could be

reduced by utilizing an FSL interface. However, this modification would limit the number of GPPs

utilizing the fabric to 1. This alteration would imply modifying Graph2Hex, as to generate Code

Segments that contained FSL writing and reading instructions and would require implementing

a protocol based communication between the GPP and the RF, as the FSL is a point to point

connection, that is, memory mapped registers would no longer exist (which would also require

that all routing information be kept within the RF itself).

As for memory support, the memory operations within graphs would adapt better to the current

RF if they could be transformed in a manner that allowed the removal redundant or useless stores

and loads or the relocation of these operations to the periphery of the computations (i.e. only at

the start and end).

7.2 LMB Injector

The largest delay in the system however is the PLB bus. To specify, the DDR2 memory in which

the program code is held must be fetched by accessing this bus, thus introducing great execution

delay in the system. Although necessary for large programs, an external memory might be needless

if the program’s size is reduced enough for local memories. So, in order to support a system based

only on these memories, a few more alterations would be required.

One would be the location of the Code Segments in flash as explained before.

Another would be the introduction of the LMB Injector.The developed Injector was designed

for the PLB bus, due to the need of containing benchmarks in external memory. However, local

memories such as BRAMs are more appropriate for storing programs of reduced size. So, the only

alteration required in order to adapt the system is the alteration of the Injector in order to allow
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for it to behave as a LMB (Local Memory Bus) passthrough. The LMB is the interface utilized by

the MicroBlaze processor to access local memories. Adding to that, the Microblaze only allows

for caches in a system with external memories, as BRAMs are themselves fast enough to compete

with cache access (caches are in fact implemented in BRAMs). So, without even adapting the

system for cache support considerable speedups could be attained.

Still, a tighter coupling between the Injector and the GPP might facilitate the development of

a system such as this while also permitting caches. The Injector would instead be placed between

the GPP and the cache memories (which are, in turn, connected to any other memories).

7.3 Other Aspects

The following are minor hypothetical modifications to the system with the aim of expanding its

functionality. They were not tested nor analyzed in depth but they aim to demonstrate the flexibility

of the system in terms of alterations.

7.3.1 Interconnection Scheme

In order to reduce the resources utilized by the switchboxes, the tools could be adapted to generate

a row-by-row description of dedicated switchboxes. These would only provide the connections

necessary for their respective row. Though conceptually simple, this step would require modifica-

tion of the parameter-based description of the RF.

7.3.2 Working with Cache

As stated before, data and instruction caches have been disabled for the GPP. All the presented

approaches had not considered cache. Regarding the implemented system, the Injector needs to

monitor at which point in execution the GPP is, in order to know whether or not it is about to

enter a block of code mapped to hardware. Had cache been used, this information might not

pass through this peripheral. However, disabling cache results in a performance reduction. So, a

workaround to this is to disable the cache around regions of code that are known, by inspection,

to contain the mapped graphs (and that will have to pass through the Injector).

The MicroBlaze soft-core processor libraries contain a small set of functions that allow for

this behaviour. Such as:

#include "xil_cache.h"

2

Xil_ICacheInvalidate();

4 Xil_ICacheEnable();

6 Xil_DCacheInvalidate();

Xil_DCacheEnable();

Listing 7.1: MicroBlaze Cache Enabling/Disabling Functions
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However, since the measurements of speedup were only performed for those segments of code,

as was explained, enabling cache for other regions would only accelerate execution of program

regions that would execute as software only. In absolute terms this would, of course, be desired,

but the target measurements in this case were the computational times within the RF.

7.3.3 Working with Pre-Compiled ELFs

Show previously in the toolflow of the system, the starting point was the source code of the pro-

gram to be optimized. The only reason as to why the flow must start from source code is only so

as to assure that the resulting ELF is linked to the proper memory locations for the system under

design in XPS.

In truth, the application, after compiled, is placed in flash and copied to DDR2 RAM. Currently

it is being copied to a starting memory position so as to coincide with the addresses as seen by the

ELF (the addresses the application was linked too). However, absolute memory positions are only

relevant if absolute jumps exist within the code.

So, seeing as though ELFs can’t be relinked with tools such as Object Copy (objcpy), a

workaround to working with pre-compiled ELFs is to have the Injector correct the absolute mem-

ory positions.

To clarify, pre-compiled ELFs are linked to other memory positions, but once the application

is copied to DDR2 to a different starting point, the offset will always be the same. Since the only

instructions that need correcting are absolute jumps (so as to not have the execution branch to

an undesired memory position) the Injector can easily alter the instructions as to correct for this

offset.
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Appendix A

Detailed Results

This appendix contains the most relevant data derived from testing the system with the previously

mentioned benchmarks. The following sections present one benchmark each. For each one, the

code originating the graph that was implemented and the graphical representation of the graph

itself are presented. Tables relative to each benchmark detail both the measured execution times

(expressed in number of clock cycles) and the values derived from utilizing the approximation

formulas as given in section 6.1. Values in rows named as HW Estimate (total) are computed by

equation 6.3.

Also presented are some characteristics of the resulting fabric, such as FPGA resource require-

ments and the depth of the fabric (the most relevant parameter as it is related to the duration of one

iteration).

The obtained values for the estimated hardware execution time are lower than the actual mea-

sured value due to the method of measuring and instructions surrounding the area mapped to

hardware. While the timer peripheral is being accessed (to deactivate it), the instructions are still

being fetched from external memory, thus adding to the measured time. Likewise, the timer is ac-

tivated before, or outside, loops or calls of functions that enclose the graph so as to avoid intrusion.

In the following tables, the estimated number for these instructions is also computed. The values

for hardware and software execution are expressed in clock cycles.
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A.1 Even Ones

A.1.1 Even Ones Graph and Source Code

1 int evenOnes(int temp, int Num) {

int Cnt = 0;

3 int i;

//this loop results in a graph

5 //the threshold Num was a constant value of 32 for all runs

for(i=0; i<Num; i++) {

7 Cnt ^= (temp & 1);

temp >>= 1;

9 }

return Cnt;

11 }

Listing A.1: Even Ones Source Code

Figure A.1: Tested Graph for Even Ones
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A.1.2 Even Ones Result Tables

n 100 200 300 400 500
HW 121575 242136 362690 483243 603793
SW 502760 1004669 1506570 2008477 2510380

Speedup 4,14 4,15 4,15 4,16 4,16

n 100 200 300 400 500
SW (cache) 24087 47891 71695 95494 119283

Speedup 0,2 0,2 0,2 0,2 0,2

n 100 200 300 400 500
HW Estimate (total) 87892 175692 263492 351292 439092
Estimation error 33683 66444 99198 131951 164701
Equivalent Instrs. 14,64 14,44 14,38 14,34 14,32

n 100 200 300 400 500
HW Estimate (fabric) 9600 19200 28800 38400 48000

Potential Speedup 2,51 2,49 2,49 2,49 2,49

Table A.1: Detailed results for Even Ones

Fabric Depth Max. Freq. (MHz) Nr. Routing Registers
3 132,83 4

Nr Iterations per call of graph CS Length
32 34

Slice Registers Slice LUTs Fully used LUT-FF pairs
Total 54576 27288 2690
Used 1152 2330 794

% 2,11% 8,54% 29,52%

Table A.2: Fabric Characteristics for Even Ones
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A.2 Hamming

A.2.1 Hamming Graph and Source Code

1 int hammingDist(int i1, int i2) {

int i;

3 int result = 0;

int xor1 = i1 ^ i2;

5 sum += (input) & 1;

//this loop results in a graph

7 for(i=0; i<32; i++) {

result = (xor1 & 1) + result;

9 xor1 = xor1 >> 1;

}

11 return result;

}

13

//which is called "n" times

15 for(i=0; i<n; i++) {

result = hammingDist(i, i+1);

17 acc += result;

}

Listing A.2: Hamming Source Code

Figure A.2: Tested Graph for Hamming
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A.2.2 Hamming Result Tables

n 100 200 300 400 500
HW 117249 233493 349751 465992 582248
SW 502792 1004686 1506598 2008501 2510401

Speedup 4,29 4,3 4,31 4,31 4,31

n 100 200 300 400 500
SW (cache) 24106 47918 71708 95506 119307

Speedup 0,21 0,21 0,21 0,2 0,2

n 100 200 300 400 500
HW Estimate (total) 83292 166492 249692 332892 416092
Estimation error 34049 67093 100151 133912 166248
Equivalent Instrs. 14,76 14,57 14,5 14,47 14,45

n 100 200 300 400 500
HW Estimate (fabric) 9600 19200 28800 38400 48000

Potential Speedup 2,51 2,5 2,49 2,49 2,49

Table A.3: Detailed Results for Hamming

Fabric Depth Max. Freq. (MHz) Nr. Routing Registers
3 138,08 4

Nr Iterations per call of graph CS Length
32 32

Slice Registers Slice LUTs Fully used LUT-FF pairs
Total 54576 27288 2022
Used 1086 1738 803

% 1,99% 6,37% 39,71%

Table A.4: Fabric Characteristics for Hamming



90 Detailed Results

A.3 Reverse

A.3.1 Reverse Graph and Source Code

int reverse(int Word) {

2 int I;

int WordRev = 0;

4 //this loop results in a graph which iterates 32 times,

//a value of 64 for the threshold was also used

6 for(I=0; I<32; I++) {

WordRev |= (Word & 1);

8 WordRev = WordRev << 1;

Word = Word >> 1;

10 }

return WordRev;

12 }

//called "n" times (ranges from 100 to 500 were tested)

14 for(i=0; i<n; i++) {

acc += reverse(i);

16 }

Listing A.3: Reverse Source Code

Figure A.3: Tested Graph for Reverse
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A.3.2 Reverse Result Tables

N 100 200 300 400 500
HW 125848 250701 375566 500427 625284
SW 566026 1131194 1696364 2261542 2826705

Speedup 4,5 4,51 4,52 4,52 4,52
SW (cache) 27106 53897 80696 107495 134295

Speedup 0,22 0,21 0,21 0,21 0,21
HW Estimate (total) 78296 156496 234600 312800 391000
Estimation error 47552 94205 140966 187627 234284
Equivalent Instrs. 20,67 20,48 20,43 20,39 20,37
HW Estimate (fabric) 9600 19200 28800 38400 48000

Potential Speedup 2,82 2,81 2,8 2,8 2,8
Values for I = 32

N 100 200 300 400 500
HW 136604 272236 407849 543475 679109
SW 1105908 2210922 3315959 4420991 5526024

Speedup 8,1 8,12 8,13 8,13 8,14
SW (cache) 52695 105086 157495 209894 262295

Speedup 0,39 0,39 0,39 0,39 0,39
HW Estimate (total) 78392 156400 234600 312800 391000
Estimation error 58212 115836 173249 230675 288109
Equivalent Instrs. 25,31 25,18 25,11 25,07 25,05
HW Estimate (fabric) 19200 38400 57600 76800 96000

Potential Speedup 2,74 2,74 2,73 2,73 2,73
Values for I = 64

Table A.5: Detailed results for Reverse

Nr. Routing Registers Max. Freq. (MHz)
4 132,83

I Fabric Depth CS Length Nr iterations per call of graph
32 3 34 32
64 3 34 64

Slice Registers Slice LUTs Fully used LUT-FF pairs
Total 54576 27288 2098
Used 1070 1779 754

% 1,96% 6,52% 35,94%

Table A.6: Fabric Characteristics for Reverse
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A.4 Fibonacci

A.4.1 Fibonacci Graph and Source Code

For this graph, the number of iterations is dependant on one of the input parameters. So the ratio

from overhead to time spent on the RF is variable.

int fib(int n) {

2 int i, Fnew, Fold, temp,ans;

Fnew = 1; Fold = 0;

4 i = 2;

//a graph with a variable number of iterations per each call

6 while( i <= n ) {

temp = Fnew;

8 Fnew = Fnew + Fold;

Fold = temp;

10 i++;

}

12 return Fnew;

}

14 //called "n" times (ranges from 100 to 500 were tested)

//graph iterates "i" times per call

16 for(i = 0; i < n; i++)

acc += fib(i);

Listing A.4: Fibonacci Source Code [1]

Figure A.4: Tested Graph for Fibonacci
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A.4.2 Fibonacci Result Tables

n 100 200 300 400 500
HW 142552 315638 519621 753468 1017340
SW 754830 2984934 6691229 11873707 18532381

Speedup 5,3 9,46 12,88 15,76 18,22

n 100 200 300 400 500
SW (cache) 36058 141809 317564 563308 879066

Speedup 0,25 0,45 0,61 0,75 0,86

n 100 200 300 400 500
HW Estimate (total) 93442 216792 370142 553492 766842
Estimation error 49110 98846 149479 199976 250498
Equivalent Instrs. 21,35 21,49 21,66 21,74 21,78

n 100 200 300 400 500
HW Estimate (fabric) 15150 60300 135450 240600 375750

Potential Speedup 2,38 2,35 2,34 2,34 2,34

Table A.7: Detailed results for Fibonacci

Nr. Routing Registers Max. Freq. (MHz)
4 121,56

Fabric Depth CS Length Nr Iterations per call of graph
3 34 i

n Nr iterations (total)
100 5050
200 20100
300 45150
400 80200
500 125250

Slice Registers Slice LUTs Fully used LUT-FF pairs
Total 54576 27288 2812
Used 1168 2369 727

% 2,14% 8,68% 25,85%

Table A.8: Fabric Characteristics for Fibonacci
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A.5 Count

A.5.1 Count Graph and Source Code

1 int count(int Word) {

int I;

3 int NumOnes = 0;

//the values for the threshold for

5 //"I" utilized were 8, 12 and 18

for(I=0; I<8; I++) {

7 NumOnes += (Word >> I) & 1;

}

9 return NumOnes;

}

11 //called "n" times (ranges from 100 to 500 were tested)

for(i=0; i<n; i++)

13 acc += count(i);

Listing A.5: Count Source Code

Figure A.5: Tested Graph for Count
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A.5.2 Count Result Tables

N 100 200 300 400 500
HW 112930 224867 336816 448761 560707
SW 144267 287649 431058 574461 717873

Speedup 1,28 1,28 1,28 1,28 1,28
SW (cache) 7084 13884 20684 27484 34288

Speedup 0,06 0,06 0,06 0,06 0,06
HW Estimate (total) 76092 152092 228092 304092 380092
Estimation error 36838 72775 108724 144669 180615
Equivalent Instrs. 16,02 15,82 15,76 15,72 15,71
HW Estimate (fabric) 2400 4800 7200 9600 12000

Potential Speedup 2,95 2,89 2,87 2,86 2,86
Values for I = 8

N 100 200 300 400 500
HW 112930 224871 336818 448759 560704
SW 203307 405757 608205 810652 1013112

Speedup 1,8 1,8 1,81 1,81 1,81
SW (cache) 9885 19485 29085 38685 48294

Speedup 0,09 0,09 0,09 0,09 0,09
HW Estimate (total) 77292 154492 231692 308892 386092
Estimation error 35638 70379 105126 139867 174612
Equivalent Instrs. 15,49 15,3 15,24 15,2 15,18
HW Estimate (fabric) 3600 7200 10800 14400 18000

Potential Speedup 2,75 2,71 2,69 2,69 2,68
Values for I = 12

N 100 200 300 400 500
HW 121528 242094 362649 483204 603763
SW 291875 582901 873923 1164937 1455958

Speedup 2,4 2,41 2,41 2,41 2,41
SW (cache) 14085 27885 41689 55489 69285

Speedup 0,12 0,12 0,11 0,11 0,11
HW Estimate (total) 79092 158092 237092 316092 395092
Estimation error 42436 84002 125557 167112 208671
Equivalent Instrs. 18,45 18,26 18,2 18,16 18,15
HW Estimate (fabric) 5400 10800 16200 21600 27000

Potential Speedup 2,61 2,58 2,57 2,57 2,57
Values for I = 18

Table A.9: Detailed Results for Count
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Max. Freq. (MHz)
99,3

Fabric Depth CS Length Nr. Routing Registers
3 32 4

I Nr iterations per call of graph
8 8

12 12
18 18

Slice Registers Slice LUTs Fully used LUT-FF pairs
Total 54576 27288 1679
Used 926 1433 680

% 1,70% 5,25% 40,50%

Table A.10: Fabric Characteristics for Count
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A.6 PopCount

A.6.1 PopCount Graph and Source Code

PopCount contains a parameter that, when altered, creates a differently shaped graphs. This is due

to and unrolled loop that appears, and varies in length, according to this parameter. As it can be

seen in the benchmark’s code, listing A.6, by varying the bits parameter, the operations within the

inner loop will repeat that number of times. If a small enough number is used the loop is unrolled,

and what is detected as a graph is the outer loop. If bits = 3 this results in the largest graph tested,

containing 20 operations. Since this graph is only called once, the number of software instructions

that it contains can be easily found in the outputs of the Graph Extractor.

1 for (i=0; i<N; i++) {

input = i;

3 sum = 0;

for (j = 0; j < bits; j++) {

5 sum += (input) & 1;

input = input/2;

7 }

output += sum;

9 }

Listing A.6: PopCount Source Code

Figure A.6: Tested Graph for PopCount for parameter Bits = 1
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A.6.2 PopCount Result Tables

N 128 256 512 1024 2048
HW 2210 2535 3285 4906 7907
SW 19819 38718 76501 152087 303292

Speedup 8,97 15,27 23,29 31 38,36
SW (cache) 1139 2035 3837 7417 14579

Speedup 0,52 0,8 1,17 1,51 1,84
HW Estimate (total) 1189 1573 2341 3877 6949
Estimation error 1021 962 944 1029 958
Equivalent Instrs. 44,39 41,83 41,04 44,74 41,65
HW Estimate (fabric) 384 768 1536 3072 6144

Potential Speedup 2,97 2,65 2,5 2,41 2,37
Values for Bits = 1

N 128 256 512 1024 2048
HW 2728 3483 5091 8105 14246
SW 33314 65705 130494 235056 519196

Speedup 12,21 18,86 25,63 29 36,45
SW (cache) 1797 3333 6405 12550 24847

Speedup 0,66 0,96 1,26 1,55 1,74
HW Estimate (total) 1665 2433 3969 7041 13185
Estimation error 1063 1050 1122 1064 1061
Equivalent Instrs. 46,22 45,65 48,78 46,26 46,13
HW Estimate (fabric) 768 1536 3072 6144 12288

Potential Speedup 2,34 2,17 2,08 2,04 2,02
Values for Bits = 2

N 128 256 512 1024 2048
HW 4963 6095 8486 13103 22337
SW 92697 184477 368024 735137 1469349

Speedup 18,68 30,27 43,37 56,1 65,78
SW (cache) 4627 8979 17693 35091 69914

Speedup 0,93 1,47 2,08 2,68 3,13
HW Estimate (total) 2164 3316 5620 10228 19444
Estimation error 2799 2799 2866 2875 2893
Equivalent Instrs. 121,7 120,83 124,61 125 125,78
HW Estimate (fabric) 1152 2304 4608 9216 18432

Potential Speedup 4,02 3,9 3,84 7,61 15,17
Values for Bits = 3

Table A.11: Detailed Results for PopCount
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BITS Nr. Routing Registers Max. Freq. (MHz)
1 4 137,26
2 6 132,59
3 11 133,63

BITS Fabric Depth CS Length Nr. SW Instructions (total)
1 3 31 6126
2 6 33 11231
3 9 33 31682

BITS Slice Registers Slice LUTs Fully used LUT-FF pairs
1 900 1356 661 (41,44%)
2 1833 3242 1507 (42,24%)
3 2648 5454 2030 (33,43%)

Total 54576 27288

Table A.12: Fabric Characteristics for PopCount
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A.6.3 PopCount (inner) Graph

Figure A.7: Tested Graph for PopCount (inner)

A.6.4 PopCount (inner) Result Tables

n 100 200 300 400 500
HW 121590 242158 362713 483261 603818
SW 623027 1245137 1867245 2489356 3111467

Speedup 5,12 5,14 5,15 5,15 5,15

n 100 200 300 400 500
SW (cache) 29775 59275 88775 118275 147777

Speedup 0,24 0,24 0,24 0,24 0,24

n 100 200 300 400 500
HW Estimate (total) 83292 166492 249692 332892 416092
Estimation error 38298 75666 113021 150369 187726
Equivalent Instrs. 16,65 16,45 16,38 16,34 16,32

n 100 200 300 400 500
HW Estimate (fabric) 9600 19200 28800 38400 48000

Potential Speedup 3,1 3,09 3,08 3,08 3,08

Table A.13: Detailed Results for PopCount (inner)
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Fabric Depth Max. Freq. (MHz) Nr. Routing Registers
3 137,97 4

Nr Iterations per call of graph CS Length
32 34

Slice Registers Slice LUTs Fully used LUT-FF pairs
Total 54576 27288 2071
Used 1059 1757 745

% 1,94% 6,44% 35,97%

Table A.14: Fabric Characteristics for PopCount (inner)
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A.7 Merge

A.7.1 Merge Source Code

This benchmarks contains calls to the 6 functions from which the previous graphs are extracted.

The implemented graph for PopCount was the one derived from its inner loop, and all graphs

iterate 32 times save for Fibonacci, which iterates a variable number of times, and Count, which

iterates 8 times. The effect o Fibonacci’s variable iteration count can be seen in the increase of

speedup with the number of calls.

1 for (i=0; i<N; i++){

acc += evenOnes(i,32) + count(i);

3 acc += reverse(i) + fib(i);

acc += hammingDist(i, i+1) + popcount(i);

5 }

Listing A.7: Merge Source Code

A.7.2 Merge Result Tables

n 100 200 300 400 500
HW 882352 1798852 2740767 3715146 4716849
SW 3068240 7611737 13631430 21127314 30099397

Speedup 3,48 4,23 4,97 5,69 6,38

n 100 200 300 400 500
SW (cache) 146044 361494 646952 1002401 1427844

Speedup 0,17 0,2 0,24 0,27 0,3

n 100 200 300 400 500
HW Estimate (total) 509050 1048100 1617150 2216200 2845250
Estimation error 373302 750752 1123617 1498946 1871599
Equivalent Instrs. 162,31 163,21 162,84 162,93 162,75

n 100 200 300 400 500
HW Estimate (fabric) 55950 414900 257850 403800 579750

Potential Speedup 2,61 2,55 2,51 2,48 2,46

Table A.15: Detailed Results for Merge
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Max. Freq. (MHz)
85,19

Fabric Depth CS Length (average) Nr. Routing Registers
3 33 8

I Nr iterations per call of graph (average)
100 31,08
200 39,42
300 47,75
400 56,08
500 64,42

Slice Registers Slice LUTs Fully used LUT-FF pairs
Total 54576 27288 6958
Used 1719 6325 1086

% 3,15% 23,18% 15,61%

Table A.16: Fabric Characteristics for Merge
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