5 research outputs found

    Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    Get PDF
    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties

    A fast and accurate energy source emulator for wireless sensor networks

    Get PDF
    The capability to either minimize energy consumption in battery-operated devices, or to adequately exploit energy harvesting from various ambient sources, is central to the development and engineering of energy-neutral wireless sensor networks. However, the design of effective networked embedded systems targeting unlimited lifetime poses several challenges at different architectural levels. In particular, the heterogeneity, the variability, and the unpredictability of many energy sources, combined to changes in energy required by powered devices, make it difficult to obtain reproducible testing conditions, thus prompting the need of novel solutions addressing these issues. This paper introduces a novel embedded hardware-software solution aimed at emulating a wide spectrum of energy sources usually exploited to power sensor networks motes. The proposed system consists of a modular architecture featuring small factor form, low power requirements, and limited cost. An extensive experimental characterization confirms the validity of the embedded emulator in terms of flexibility, accuracy, and latency while a case study about the emulation of a lithium battery shows that the hardware-software platform does not introduce any measurable reduction of the accuracy of the model. The presented solution represents therefore a convenient solution for testing large-scale testbeds under realistic energy supply scenarios for wireless sensor networks

    Design and Implementation of a Generic Energy-Harvesting Framework Applied to the Evaluation of a Large-Scale Electronic Shelf-Labeling Wireless Sensor Network

    Get PDF
    Most wireless sensor networks (WSNs) consist of battery-powered nodes and are limited to hundreds of nodes. Battery replacement is a very costly operation and a key factor in limiting successful large-scale deployments. The recent advances in both energy harvesters and low-power communication systems hold promise for deploying large-scale wireless green-powered sensor networks (WGSNs). This will enable new applications and will eliminate environmentally unfriendly battery disposal. This paper explores the use of energy harvesters to scavenge power for nodes in a WSN. The design and implementation of a generic energy-harvesting framework, suited for a WSN simulator as well as a real-life testbed, are proposed. These frameworks are used to evaluate whether a carrier sense multiple access with collision avoidance scheme is sufficiently reliable for use in emerging large-scale energy harvesting electronic shelf label (EHESL) systems (i.e., 12000 labels in a star topology). Both the simulator and testbed experiments yielded an average success rate up to 92%, with an arrival rate of 40 transceive cycles per second. We have demonstrated that our generic energy-harvesting framework is useful for WGSN research because the simulator allowed us to verify the achieved results on the real-life testbed and vice versa

    Design and Implementation of a Generic Energy-Harvesting Framework Applied to the Evaluation of a Large-Scale Electronic Shelf-Labeling Wireless Sensor Network

    Get PDF
    Most wireless sensor networks (WSNs) consist of battery-powered nodes and are limited to hundreds of nodes. Battery replacement is a very costly operation and a key factor in limiting successful large-scale deployments. The recent advances in both energy harvesters and low-power communication systems hold promise for deploying large-scale wireless green-powered sensor networks (WGSNs). This will enable new applications and will eliminate environmentally unfriendly battery disposal. This paper explores the use of energy harvesters to scavenge power for nodes in a WSN. The design and implementation of a generic energy-harvesting framework, suited for a WSN simulator as well as a real-life testbed, are proposed. These frameworks are used to evaluate whether a carrier sense multiple access with collision avoidance scheme is sufficiently reliable for use in emerging large-scale energy harvesting electronic shelf label (EHESL) systems (i.e., 12000 labels in a star topology). Both the simulator and testbed experiments yielded an average success rate up to 92%, with an arrival rate of 40 transceive cycles per second. We have demonstrated that our generic energy-harvesting framework is useful for WGSN research because the simulator allowed us to verify the achieved results on the real-life testbed and vice versa

    Wireless sensor networks with energy harvesting: Modeling and simulation based on a practical architecture using real radiation levels

    Full text link
    This paper presents a new energy-harvesting model for a network simulator that implements super-capacitor energy storage with solar energy-harvesting recharge. The model is easily extensible, and other energyharvesting systems, or different energy storages, can be further developed. Moreover, code can be conveniently reused as the implementation is entirely uncoupled from the radio and node models. Real radiation data are obtained from available online databases in order to dynamically calculate super-capacitor charge and discharge. Such novelty enables the evaluation of energy evolution on a network of sensor nodes at various physical world locations and during different seasons. The model is validated against a real and fully working prototype, and good result correlation is shown. Furthermore, various experiments using the ns-3 simulator were conducted, demonstrating the utility of the model in assisting the research and development of the deployment of everlasting wireless sensor networks.This work was supported by the CICYT (research projects CTM2011-29691-C02-01 and TIN2011-28435-C03-01) and UPV research project SP20120889.Climent, S.; Sánchez Matías, AM.; Blanc Clavero, S.; Capella Hernández, JV.; Ors Carot, R. (2013). Wireless sensor networks with energy harvesting: Modeling and simulation based on a practical architecture using real radiation levels. Concurrency and Computation: Practice and Experience. 1-19. https://doi.org/10.1002/cpe.3151S119Akyildiz, I. F., & Vuran, M. C. (2010). Wireless Sensor Networks. doi:10.1002/9780470515181Seah, W. K. G., Tan, Y. K., & Chan, A. T. S. (2012). Research in Energy Harvesting Wireless Sensor Networks and the Challenges Ahead. Autonomous Sensor Networks, 73-93. doi:10.1007/5346_2012_27Vullers, R., Schaijk, R., Visser, H., Penders, J., & Hoof, C. (2010). Energy Harvesting for Autonomous Wireless Sensor Networks. IEEE Solid-State Circuits Magazine, 2(2), 29-38. doi:10.1109/mssc.2010.936667Ammar, Y., Buhrig, A., Marzencki, M., Charlot, B., Basrour, S., Matou, K., & Renaudin, M. (2005). Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. Proceedings of the 2005 joint conference on Smart objects and ambient intelligence innovative context-aware services: usages and technologies - sOc-EUSAI ’05. doi:10.1145/1107548.1107618Vijayaraghavan, K., & Rajamani, R. (2007). Active Control Based Energy Harvesting for Battery-Less Wireless Traffic Sensors. 2007 American Control Conference. doi:10.1109/acc.2007.4282842Bottner, H., Nurnus, J., Gavrikov, A., Kuhner, G., Jagle, M., Kunzel, C., … Schlereth, K.-H. (2004). New thermoelectric components using microsystem technologies. Journal of Microelectromechanical Systems, 13(3), 414-420. doi:10.1109/jmems.2004.828740Mateu L Codrea C Lucas N Pollak M Spies P Energy harvesting for wireless communication systems using thermogenerators Conference on Design of Circuits and Integrated Systems (DCIS) 2006AEMet Agencia Estatal de Meteorolgía 2013 http//www.aemet.esPANGAEA Data Publisher for Earth & Environmental Science 2013 http://www.pangaea.de/Zeng, K., Ren, K., Lou, W., & Moran, P. J. (2007). Energy aware efficient geographic routing in lossy wireless sensor networks with environmental energy supply. Wireless Networks, 15(1), 39-51. doi:10.1007/s11276-007-0022-0Hasenfratz, D., Meier, A., Moser, C., Chen, J.-J., & Thiele, L. (2010). Analysis, Comparison, and Optimization of Routing Protocols for Energy Harvesting Wireless Sensor Networks. 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. doi:10.1109/sutc.2010.35Noh, D. K., & Hur, J. (2012). Using a dynamic backbone for efficient data delivery in solar-powered WSNs. Journal of Network and Computer Applications, 35(4), 1277-1284. doi:10.1016/j.jnca.2012.01.012Lin, L., Shroff, N. B., & Srikant, R. (2007). Asymptotically Optimal Energy-Aware Routing for Multihop Wireless Networks With Renewable Energy Sources. IEEE/ACM Transactions on Networking, 15(5), 1021-1034. doi:10.1109/tnet.2007.896173Ferry, N., Ducloyer, S., Julien, N., & Jutel, D. (2011). Power/Energy Estimator for Designing WSN Nodes with Ambient Energy Harvesting Feature. EURASIP Journal on Embedded Systems, 2011(1), 242386. doi:10.1155/2011/242386Glaser, J., Weber, D., Madani, S., & Mahlknecht, S. (2008). Power Aware Simulation Framework for Wireless Sensor Networks and Nodes. EURASIP Journal on Embedded Systems, 2008(1), 369178. doi:10.1155/2008/369178De Mil, P., Jooris, B., Tytgat, L., Catteeuw, R., Moerman, I., Demeester, P., & Kamerman, A. (2010). Design and Implementation of a Generic Energy-Harvesting Framework Applied to the Evaluation of a Large-Scale Electronic Shelf-Labeling Wireless Sensor Network. EURASIP Journal on Wireless Communications and Networking, 2010(1). doi:10.1155/2010/343690Castagnetti, A., Pegatoquet, A., Belleudy, C., & Auguin, M. (2012). A framework for modeling and simulating energy harvesting WSN nodes with efficient power management policies. EURASIP Journal on Embedded Systems, 2012(1). doi:10.1186/1687-3963-2012-8Alippi, C., & Galperti, C. (2008). An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(6), 1742-1750. doi:10.1109/tcsi.2008.922023Xiaofan Jiang, Polastre, J., & Culler, D. (s. f.). Perpetual environmentally powered sensor networks. IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005. doi:10.1109/ipsn.2005.1440974Simjee, F., & Chou, P. H. (2006). Everlast. Proceedings of the 2006 international symposium on Low power electronics and design - ISLPED ’06. doi:10.1145/1165573.1165619Sánchez, A., Climent, S., Blanc, S., Capella, J. V., & Piqueras, I. (2011). WSN with energy-harvesting. Proceedings of the 6th ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks - PM2HW2N ’11. doi:10.1145/2069087.2069091Renner C Jessen J Turau V Lifetime prediction for supercapacitor-powered wireless sensor nodes Proc. of the 8th GI/ITG KuVS Fachgesprächİ Drahtlose Sensornetze(FGSN09) 2009TI Analog, Embedded Processing, Semiconductor Company, Texas Instruments 2013 http//www.ti.comWSNVAL Wireless Sensor Networks Valencia 2013 www.wsnval.comSanchez, A., Blanc, S., Yuste, P., & Serrano, J. J. (2011). RFID Based Acoustic Wake-Up System for Underwater Sensor Networks. 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems. doi:10.1109/mass.2011.103Fan, K.-W., Zheng, Z., & Sinha, P. (2008). Steady and fair rate allocation for rechargeable sensors in perpetual sensor networks. Proceedings of the 6th ACM conference on Embedded network sensor systems - SenSys ’08. doi:10.1145/1460412.1460436Moser, C., Thiele, L., Brunelli, D., & Benini, L. (2010). Adaptive Power Management for Environmentally Powered Systems. IEEE Transactions on Computers, 59(4), 478-491. doi:10.1109/tc.2009.15
    corecore