3,207 research outputs found

    FPGA-based Anomalous trajectory detection using SOFM

    Get PDF
    A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15\% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board

    Efficient hardware debugging using parameterized FPGA reconfiguration

    Get PDF
    Functional errors and bugs inadvertently introduced at the RTL stage of the design process are responsible for the largest fraction of silicon IC re-spins. Thus, comprehensive func- tional verification is the key to reduce development costs and to deliver a product in time. The increasing demands for verification led to an increase in FPGA-based tools that perform emulation. These tools can run at much higher operating frequencies and achieve higher coverage than simulation. However, an important pitfall of the FPGA tools is that they suffer from limited internal signal observability, as only a small and preselected set of signals is guided towards (embedded) trace buffers and observed. This paper proposes a dynamically reconfigurable network of multiplexers that significantly enhance the visibility of internal signals. It allows the designer to dynamically change the small set of internal signals to be observed, virtually enlarging the set of observed signals significantly. These multiplexers occupy minimal space, as they are implemented by the FPGA’s routing infrastructure

    Synthetic retina for AER systems development

    Get PDF
    Neuromorphic engineering tries to mimic biology in information processing. Address-Event Representation (AER) is a neuromorphic communication protocol for spiking neurons between different layers. AER bio-inspired image sensor are called “retina”. This kind of sensors measure visual information not based on frames from real life and generates corresponding events. In this paper we provide an alternative, based on cheap FPGA, to this image sensors that takes images provided by an analog video source (video composite signal), digitalizes it and generates AER streams for testing purposes.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    PRODUCTIVELY SCALING HARDWARE DESIGNS OVER INCREASING RESOURCES USING A SYSTEMATIC DESIGN ANALYSIS APPROACH

    Get PDF
    As processor development shifts from strict single core frequency scaling to het- erogeneous resource scaling two important considerations require evaluation. First, how to design systems with an increasing amount of heterogeneous resources, and second, how to maintain a designer’s productivity as the number of possible con- figurations grows. Therefore, it is necessary to determine what useful information can be gathered from existing designs to help predict or identify a design’s potential scalability, as well as, identifying which routine tasks can be automated to improve a designer’s productivity. Moreover, once this information is collected, how can this information be conveyed to the designer such that it can be used to increase overall productivity when implementing the design over increasing amounts of resources? This research looks at various approaches to analyze designs and attempts to distribute an application efficiently across a heterogeneous cluster of computing re- sources through the use of a Systematic Design Analysis flow and an assortment of productivity tools. These tools provide the designer with projections on the amount of resources needed to scale an existing design to a specified performance, as well as, projecting the performance based on a specified amount of resources. This is accomplished through the combination of static HDL profiling, component synthesis resource utilization, and runtime performance monitoring. For evaluation, four case studies are presented to demonstrate the proposed flow’s scalability on a small scale cluster of FPGAs. The results are highly favorable, providing orders of magnitude speedup with minimal intervention from the designer

    Techniques for Processing TCP/IP Flow Content in Network Switches at Gigabit Line Rates

    Get PDF
    The growth of the Internet has enabled it to become a critical component used by businesses, governments and individuals. While most of the traffic on the Internet is legitimate, a proportion of the traffic includes worms, computer viruses, network intrusions, computer espionage, security breaches and illegal behavior. This rogue traffic causes computer and network outages, reduces network throughput, and costs governments and companies billions of dollars each year. This dissertation investigates the problems associated with TCP stream processing in high-speed networks. It describes an architecture that simplifies the processing of TCP data streams in these environments and presents a hardware circuit capable of TCP stream processing on multi-gigabit networks for millions of simultaneous network connections. Live Internet traffic is analyzed using this new TCP processing circuit

    A modified model for the Lobula Giant Movement Detector and its FPGA implementation

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of an approaching object and the proximity of this object. It has been found that it can respond to looming stimuli very quickly and trigger avoidance reactions. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper introduces a modified neural model for LGMD that provides additional depth direction information for the movement. The proposed model retains the simplicity of the previous model by adding only a few new cells. It has been simplified and implemented on a Field Programmable Gate Array (FPGA), taking advantage of the inherent parallelism exhibited by the LGMD, and tested on real-time video streams. Experimental results demonstrate the effectiveness as a fast motion detector
    corecore