
Efficient Hardware Debugging
using Parameterized FPGA Reconfiguration

Alexandra Kourfali
Department of Electronics and Information Systems

Ghent University

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Email: alexandra.kourfali@ugent.be

Dirk Stroobandt
Department of Electronics and Information Systems

Ghent University

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Email: dirk.stroobandt@ugent.be

Abstract—Functional errors and bugs inadvertently introduced
at the RTL stage of the design process are responsible for the
largest fraction of silicon IC re-spins. Thus, comprehensive func-
tional verification is the key to reduce development costs and to
deliver a product in time. The increasing demands for verification
led to an increase in FPGA-based tools that perform emulation.
These tools can run at much higher operating frequencies and
achieve higher coverage than simulation. However, an important
pitfall of the FPGA tools is that they suffer from limited internal
signal observability, as only a small and preselected set of
signals is guided towards (embedded) trace buffers and observed.
This paper proposes a dynamically reconfigurable network of
multiplexers that significantly enhance the visibility of internal
signals. It allows the designer to dynamically change the small
set of internal signals to be observed, virtually enlarging the
set of observed signals significantly. These multiplexers occupy
minimal space, as they are implemented by the FPGA’s routing
infrastructure.

I. INTRODUCTION

As embedded systems are becoming more complex, errors

in the specification, the design and the implementation are

unavoidable. Therefore, designers should get proper verifica-

tion tools to test their design for errors before it is imple-

mented, especially for Application-Specific Integrated Circuits

(ASICs), because then errors can not be fixed. Ensuring a de-

sign’s functional correctness, within time-to-market constraints

continues to stand as one of the biggest challenges for today’s

ASIC design teams. In fact, studies revealed that 35 to 45

percent of the total ASIC development effort is spent on

verification [1] and this fraction continues to grow due to the

constant increase of chip complexity. Moreover, those studies

reveal that debugging consumes about 60 percent of the total

verification effort and is the fastest growing component. Thus,

verification and particularly hardware debugging has become

one of the biggest challenges in designing ASICs.

Software simulation (e.g. Mentor Graphics’ ModelSim [2])

has been the standard way to verify and debug circuits,

primarily due to its ease of use. For example, designers are

able to view the behaviour of any internal signal in their circuit

and they can detect design errors, fix them and re-simulate.

However, it is often impractical to simulate complete systems,

because software simulation scales badly, as it becomes slower

when the design is bigger. Furthermore, the complexity of in-

tegrated circuits continues to increase, consistent with Moore’s

Law.

In order to overcome the limitations of software simulation,

circuit designers have turned to Field-Programmable Gate

Arrays (FPGAs), which are off-the-shelf integrated circuits

that can be configured to implement any digital circuit for

the simulation of their complete systems. This is called FPGA

emulation. It allows early access to hardware tests before the

tape-out (the final result of the design cycle for ICs).

FPGA designs operate several orders of magnitude faster

than software simulation, while achieving a low-cost per unit

and cost less than a fabrication spin [3]. They provide lookup

tables or LUTs, equivalent to tens of millions of ASIC gates.

Although the faster emulation cycle leads to new opportunities

in error diagnosis, verification with FPGA emulation has its

own challenges, such as lack of on-chip signal observability.

On-chip signal observability normally is enhanced by instru-

mentation of the design [4] prior to implementation. These

instruments record the values of a subset of signals into

embedded memories. These memories are used to record a

history of the important signals (or nets), during normal device

operation [5]. Then, an engineer can use this information to

understand the behaviour of the system. The drawback of this

technique is that only a limited amount of such instruments

can be inserted due to resource constraints. Therefore, the

subset of signals that can be observed is small as well.

Another drawback is that the signals have to be selected

before compilation. Hence, observing a new subset of signals

requires the circuit to be re-instrumented and recompiled, a

process that can take hours [6]. Additionally, the insertion of

the debug circuitry and the preselection of signals can alter

the place and route of the design and can potentially create

other problems, such as the user circuit may no longer fit in

the FPGA device, or artificial timing limitations caused by the

debugging circuitry.

In this paper, we propose ASIC debug acceleration and

enhanced internal signal visibility by occasionally changing

the subset of observed signals without requiring a complete

recompilation. For this, we introduce parameterized configu-

rations (PConf), into the debug cycle of ASICs. A PConf is an

FPGA configuration bitstream with some of its bits expressed

as Boolean functions of parameters. They can be used to

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.95

277

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55824448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�����
��		

���

�	

���
��

����� ��

�	�
�	

������
	���

�����������
�����
 �������������
�����

��������������������		

Fig. 1. FPGA’s logic and routing resources

efficiently and quickly generate specialized configuration bit-

streams by evaluating the Boolean functions. The specialized

bitstreams have slightly different properties and functionalities.

With the use of PConf only reconfiguration is needed at

debug time and the time consuming recompilation step is

avoided. Because reconfiguring even a complete FPGA is very

fast compared to recompilation (tens of milliseconds versus

minutes to hours), the debug-cycle is sped up significantly.

Moreover, the area overhead is reduced. This is achieved by

implementing the extra instrumentation (multiplexers) through

the use of parameterized reconfiguration of the FPGA’s logic

and routing infrastructure.

II. PRELIMINARIES

A. Parameterised FPGA Configurations

An FPGA is an array of programmable logic blocks and

a configurable routing network. FPGAs implement combina-

tional logic (of up to K variables) by using K-input LUTs.

Figure 1 illustrates the logic and routing resources available

within an FPGA. This functionality is highly dependent on the

programming bitstream that is shifted into the FPGA’s SRAM

configuration cells.

An application can be parameterised when some of its inputs

are infrequently changing compared to the other inputs. Instead

of implementing these (parameter) inputs as regular inputs,

in our approach these inputs are implemented as constants

and the design is optimized for these constants. When the

parameter values change, the design is re-optimised (automat-

ically) for the new constant values by reconfiguring the FPGA.

This technique can be applied in hardware systems that can

be parameterized with parameters that define different circuit

instances that can be optimized on the fly by reconfiguring

for the current set of parameter values. Lately this tool has

been extended and can also support parameterisation of both

logic and routing resources [7]. This technique is visualised

in Figure 2.

B. FPGA Functional Debug

The modern integrated circuits have come to be extremely

large devices which are proving to be difficult to simulate.

����������

	
�	

���

���
��

�

��

��� ���

 ����
� ��

���
 ������� !"��� ���� !#�$����� !"���

����������

� � ��

��"#!����$#�"�����#��%����

��"���#�"������ $&�!"�#� $
����������������

�

��

���

���

���

���
���
���
���
���

�%����������
� $&�!"�#� $
��������	
��������	
��������	
��������	

���

Fig. 2. FPGA’s parameterised logic and routing resources

Researchers are forced to mature their functional verification

methodologies to address increasing complexity of ASIC

designs. FPGA emulation and prototyping have gained pop-

ularity but the tools are still inefficient as they either fail to

handle the lack of internal signal visibility or they have several

debugging and reimplementing cycles.

Commercial signal capture tools are currently offered by

the two major FPGA vendors: Xilinx’s ChipScope Pro and

Altera’s SignalTap II. These tools work by embedding logic

analyzer IP (composed of signal probes, trigger monitors, trace

buffers and data offload logic) into the user-circuit during

regular compilation. A similar, but device-neutral, product is

offered by Synopsys as Identify, offering similar functionality.

However, although it is possible to modify the trigger con-

ditions (but not the trigger signals) at runtime, changing the

signals under observation does require FPGA recompilation.

Instrumentation is only done after a failure is observed. FPGA

compile times are significant. Another vendor-neutral tool

called Certus, allows pre-instrumentation of a large set of

interesting signals in the FPGA prior to compilation. Then,

during debugging, a small subset of signals can be selected

for both observation and triggering. This provides significantly

more runtime flexibility to designers than in other tools, but it

still requires a set of signals to be preselected for observation

before any information about the bugs is known.

Current FPGA trace solutions operate mainly on the design

before place and route. These tools will instrument the original

user circuit with trace buffers and their connections before

mapping, making less resources available for the original

design. In real life designs, even for ASICs/multi-core pro-

cessors, significant memory resources are allocated for tracing,

reducing available resources for the design itself, as it is shown

in Fig. 3(a). In [10], the authors pre-insert trace buffers into

their FPGA ahead of time, and perform low level bitstream

modification using incremental techniques to connect them

to the desired signals. However, this technique still requires

some pre-reservation of FPGA resources, preventing their use

by the original design. Also, for every new bug that has to

be observed, gaining access to additional signals demands

a re-build of the design. The complexity of synthesis and

278

user circuit

trace instrumentation

mux network

FPGA

(a) conventional (b) proposed

FPGA

Fig. 3. Figure (a) demonstrates the dedicated area for debugging and figure
(b) the proposed approach for elimination of this area and integration of the
debugging flow inside the user circuit.

place & route tools can require multiple hours to complete

and additional routing stress may cause a design to become

unroutable. An improved approach is a debugging workflow

that brings good visibility to FPGA-based debugging [11].

A Virtual Overlay Network [12] is used as the basis for the

observations, that multiplexes the signals into the trace buffers

that are inserted into the free FPGA resources and unnecessary

re-spins are avoided. However, this technique relies on spare

resources being available which is not always the case.

During FPGA functional debug, when unexpected function-

ality is observed, a set of signals is selected to be traced.

Conventionally, this demands a design recompilation to link

the signals to be observed to the trace buffers. As a result,

it can take hours to compile large designs [13]. Moreover,

the number of signals to be traced during each debugging

cycle has to be small and thus you need to use reconfiguration

instead of just including all signals. This flow is described in

Fig. 4(a).

III. OVERVIEW OF THE PROPOSED APPROACH

Our debugging infrastructure is completely integrated inside

the normal CAD flow, in order to alter as less as possible

the critical path delay and prevent additional routing stress

when new signals are to be traced and to offer complete

automation of the process. It is outlined in Fig. 4(b). According

to this flow, when a designer provides a synthesizable design,

the signal parameterisation step sets up the debugging infras-

tructure. Then, for some selected nets the tool automatically

annotates them as parameters, inserts multiplexers that connect

each net output to trace buffers and the adapted place and

route tool (TPaR) is used to map the FPGA device layout

on the technology library of the SRAM-based FPGA to be

used. Moreover, it applies the PConf concept and creates a

virtual intermediate level of multiplexers. Finally, a generalised

bitstream is created that also contains boolean functions. At

the end of these steps, before the bitstream is loaded within the

FPGA configuration memory, the tool evaluates the boolean

����������������	�
�����
�������������������
�������
�

����
�����'���	
���
���������	
���

��
��

��
���

�	���
��

������
����������
����	����

�	���

������������
�
	����

�����
�����'���	
����

��
��

��

��� �	���
��

������ �	���

��������������	����

�������	�
���
���������

�����������������
���������

���������
	�� �����	���	
������
	��

�	�	��
������
�����

���'���	
���������	
���

� ����!

"�������
�#�

�
��
��

��
��
�

������
�#�

���������
	���
	����

�	�	��
�������
����	�������
���

Fig. 4. Proposed debug flow. The two discrete stages offline and online boost
time efficiency.

function and creates a specialised bitstream. The detailed

description of the approach is reported in the following section.

The proposed methodology relies on creating a (virtual, in-

termediate) bitstream that contains Boolean functions, instead

of solely logic-0 and logic-1, according to an optimisation

technique used for implementing a PConf on an FPGA.

Therefore, by implementing parameterised configurations the

extra recompilations are avoided, since only an evaluation

of a boolean function is needed, instead of recompilation

and/or reconfiguration. Moreover, there are no FPGA resources

dedicated to the inserted multiplexers, as it is shown in

Fig. 3(b), as these elements are implemented in the PConf.

This technique offers signal selection during debug-time. This

is done within strict timing constraints and minimal increase

in the area overhead.

IV. PARAMETERISED-BASED DEBUGGING

The proposed approach consists of two phases: the offline

phase and the online phase. The generalised stage is created

only once, where all signals are multiplexed to trace-buffers.

Then, during the online stage, for each debugging cycle the

design can be partially reconfigured with specific signals. The

signals that are not traced at the same time can share routing

resources (based on the parameter settings).

A. The generic stage

The method used to apply our technique enables automatic

generation of PConfs starting from parameterised HDL de-

scriptions and is based on the same steps as conventional

FPGA tool flows: synthesis, technology mapping, placement

and routing [8].

1) Synthesis: The synthesis step can be performed by any

tool that is able to synthesise functional blocks to an FPGA

flow and communicate directly with ABC, that is a part of the

VTR flow [9], a common academic FPGA CAD flow. At this

279

Fig. 5. Schematic of the generic stage of the proposed tool flow.

point the design is ready for signal parameterisation. Figure 5

describes this stage of the tool flow.

2) Signal Parameterisation: The added step in the normal

CAD flow can automatically detect and parameterise the

internal signals that will be later used for debugging. In more

detail, at this stage, extra instrumentation is added, that will

be able to assign all signals to trace-buffers. This has to be

performed in such a way that after the new modifications,

the new description remains synthesizable. The solution is to

automatically add multiplexers that will connect the signals

to trace-buffers. These signals are annotated as parameters, as

they will change (but less frequently than the other signals)

depending on the set of signals that will be observed during

the online stage. They will indicate whether or not a signal has

to be observed in a certain debugging run. The multiplexers

are then implemented not in the regular resources but in the

FPGA’s reconfiguration resources, reducing the overhead sig-

nificantly (3,5X smaller designs on average). So we basically

have almost the same size as for the original circuit but now

for an extended circuit with all possible inputs multiplexed to

trace-buffers. The entire process is automated, so the designer

will not need to manually select signals to be connected to

trace-buffers, as the tool handles that. Fig. 6 demonstrates in

PCOnf

FPGA

FPGA

Fig. 6. Demonstration of the separate layers. The user circuit, the parame-
terised multiplexers and the trace buffers respectively.

different layers how the signal parameterisation is achieved.

The bottom layer shows the FPGA and the signals that need

to be observed. Then the virtual level adds the infrastructure

that multiplexes the signals to trace buffers. We can therefore

observe that we no longer need the dedicated FPGA resources

that are claimed before implementation, for the multiplexer

network and for the trace buffers that is shown in Fig. 3(a).

3) TCON Technology Mapping: During technology map-

ping, the parameterized Boolean network generated by the syn-

thesis step is not directly mapped onto the resource primitives

available in the target FPGA architecture, but intermediately

on abstract primitives that introduce and allow the reconfig-

urability of the logic and routing resources. At this point, the

extra multiplexers added to guide the internal signals to trace

buffers have their selection bits parameterised into boolean

functions and mapped in the virtual abstract primitives.

4) TPaR Placement and Routing: Next, the Tuneable Place

and Route tool (TPAR) places and routes the netlist and

performs packing, placement and routing with the algorithms

TPack, TPlace and TRoute. These algorithms can enable

routing of circuits where their routing resources can be reused

during the debugging turns and drastically reduce the area

usage. At the end of the computationally intensive offline stage

the TPaR creates a PConf. Here, a new signal selection during

debugging, translates directly into a new evaluation of the

function that represents the selected signals. Then it can be

reconfigured with Dynamic Partial Reconfiguration (DPR).

B. The specialisation stage

In this stage, the boolean functions are evaluated for a

specific parameter value by the Specialized Configuration

Generator (SCG) to generate a specialized bitstream. Usually

the SCG is implemented on an embedded processor. The

280

Benchmark #Gate Initial SM ABC Proposed (TLUT/TCON)
stereov. 215 208 553 590 190(8/332)
diffeq2 419 422 1719 1819 325(2/712)
diffeq1 582 575 2556 2659 491(4/1065)
clma 8381 4461 23694 23219 7707(1252/7935)
or1200 3136 3084 9769 10958 3004(9/2986)
frisc 6002 2747 11517 11412 5881(2333/4910)
s38417 6096 3462 20695 21040 6204(1495/5597)
s38584 6281 2906 20687 21032 6204(1495/5597)

TABLE I
AREA RESULTS IN #LUTS: THE SECOND COLUMN CONTAINS THE INITIAL

DESIGN IN TERMS OF LUTS. THE OTHER COLUMNS CONTAIN THE AREA

RESULTS AFTER THE INSERTION OF THE DEBUGGING INFRASTRUCTURE.
SM (SIMPLEMAP) AND ABC ARE THE CONVENTIONAL MAPPERS. THE

LAST COLUMN DESCRIBES THE RESULTS OF OUR PROPOSED TECHNIQUE.

Fig. 7. Area results in terms of look-up tables.

embedded processor is responsible to swap the specialized

bitstream into the configuration memory using the HWICAP.

During the specialisation stage (online phase), for each

debugging cycle the network is partially reconfigured with

the exact signals the designer wishes to trace at that spe-

cific instance. The multiplexer network added with the sig-

nal parameterisation tool is reconfigured with the specialised

solution which is evaluated according to the signals that a

designer wishes to observe. Here, only the configuration cells

of all the routing switch boxes and the connection boxes for

the memory resources will be reprogrammed, instead of the

full recompilation and/or reconfiguration, as it is the case in

related work. Hence, the total wire length is reduced making

the proposed technique feasible. However, this online step will

be future work, as we first focus on the area gains of the first

part of the tool flow.

V. EXPERIMENTAL STUDY

In order to evaluate our proposed method, we have modified

PConf with a signal parameterisation step, in order to integrate

the debugging infrastructure as part of the flow.

A. Area Usage

The first experiments were conducted with the ISCAS89 and

the VTR benchmarks. Starting with the synthesised benchmark

(.blif netlist), we run the signal identification and parameterisa-

tion part of the flow. This produces a new .blif file and a .par

Benchmark Golden SimpleMap ABC Proposed
stereov. 4 5 5 4
diffeq2 14 15 15 14
diffeq1 15 15 15 14
clma 11 11 11 11
or1200 27 28 28 27
frisc 14 14 14 14
s38417 7 8 8 7
s38584 7 8 8 7

TABLE II
DEPTH RESULTS. THE FIRST COLUMN DESCRIBES THE LOGIC DEPTH OF

THE DESIGN. THE OTHER COLUMNS SHOW THE DEPTH RESULTS AFTER

THE ADDITION OF THE DEBUGGING INFRASTRUCTURE AND MAPPING

WITH DIFFERENT MAPPERS.

file. The first remains as closely as possible to the original

design, while the latter is used to give an indication to the

mapper for which signals the PConf should be applied. Then,

TCONMap was used to map the design in the abstract logic

and reconfiguration resources.

The area results after mapping are shown in Table I. The re-

sults indeed indicate that we only need the area for the original

circuit, instead of the sum of areas of the initial and the added

circuitry. This enables us to include debugging infrastructure

without much area overhead, as there was a little area overhead

after the insertion of the debugging infrastructure, compared

to the initial benchmark. Hence, the adding debugging can be

done with low overhead so that (almost) all free space can

be used for trace buffers and less is needed for the routing

infrastructure to the trace buffers. The debugging infrastructure

can then be incrementally added in almost full FPGAs. The

area results are shown in Table I. We compare the area results

of our method with two conventional tools that are often used

in FPGA mapping. The first is SimpleMAP and the second

is ABC that is additionally a part of the VTR flow. The area

produced with the proposed method is approximately 3,5X

smaller than with the conventional mappers, and it can be of

similar size with the original design before debugging. These

are shown in Fig. 7. If we subtract the original design’s LUT

utilization from the proposed LUT utilisation and define this

as the resources used for the added debugging infrastructure.

We can thus observe that there is a high usage of tuneable

LUTs and mostly tuneable connections. This is an indicator

that the (reconfigured) routing infrastructure is used for our

multiplexers, instead of LUTs.

B. Critical Path Delay

Our technique can reduce the critical path delay of the

new design with its added functionality for debugging, by

reducing the number of LUTs and the routing infrastructure

on the critical path. (Table II) shows that the logic depth

(inversely related to clock speed) of the design, after adding

the extra debugging infrastructure, was either remained the

same or reduced, compared to the two conventional mappers.

In [14] is shown that with the use of the PConf method, the

critical path delay can be up to 8 times smaller compared

to the conventional mappers. In fact, it can be of similar

size as the original circuit, after the addition of the extra

281

hardware . Indeed, in this experimental study, after adding the

extra routing infrastructure, the critical path delay remains the

same compared to the original circuit (without any debugging

infrastructure). However, the trade off of the area overhead

versus the routing infrastructure that is added has to be

investigated further.

C. Timing Impact

1) Compile-time Overhead: In the proposed debugging

technique that uses the PConf method, there are a lot of

multiplexers that have to be implemented in the routing

infrastructure. Even though the routing is only used when

the parameters are activated, many routing resources are

needed to make this possible. This has a large impact on the

parameterised router (taking a lot of time to find a suitable

routing). It can also lead to a shortage of routing wires in

heavily congested regions where many signals are chosen

to be debugged. Early experiments indicate that with the

use of the PConf technique we have 3 times less cables

(5316 with parameterised resources Vs 15699 for normal LUT

architecture for small designs), and runtimes can be up to 3

times faster for place and route for the same designs. Moreover

we can have up to 4 times less CLBs. However, our router will

need further adaptations to support the congested regions in

order to handle larger designs.

2) Run-time Overhead: The runtime overhead depends on

the number of times the emulator needs to be reconfigured

and on the time to evaluate the PConf and to reconfigure the

bits that changed. The time overhead can be expressed as the

single specialization time (for specializing the FPGA once)

multiplied by the number of times a new signal set will be

activated. The evaluation time is used to evaluate the Boolean

functions in the parameterized configuration produced by the

offline generic stage of the tool flow (maximum 50 μs). Thus,

each parameterised configuration can be 3 orders of magnitude

faster than a full reconfiguration (176 milliseconds for a Xilinx

Virtex-5 FPGA). Also, assuming the FPGA design runs at 400

MHz (which is quite fast for an FPGA implementation) and

the debug loop in Figure 4(b) can be executed in 4 clock ticks

(which requires a fully pipelined design), the 50 μs overhead

corresponds with the time needed to perform 5000 debugging

turns on the FPGA fabric. So the overhead is only amortised if

significantly more debugging cycles than 5000 are performed

before a new signal needs to be observed. This is a reasonable

number for large designs. So for larger designs, the overhead

becomes smaller relative to the debugging turn.

VI. CONCLUSION AND FUTURE WORK

A low overhead debugging method is proposed. The main

(parameterised) debugging infrastructure is presented, which is

meant for both emulation approaches (for ASIC verification)

and on-line in field debugging approaches (for FPGA design

verification) and it includes increasing design observability.

This infrastructure is embedded within the circuit implemen-

tation and is only invoked when a debugging parameter is set.

Therefore, this infrastructure is always present (and hence a

recompilation for new signals to be observed is never needed)

but does not require much additional area. Hence, thanks to

the fact that there is low overhead over the original imple-

mentation, we can add the debugging functionality almost for

free.

In future, the reconfiguration time of the place and routing

solution produced with the PConf method will be further

investigated to handle the congested routing due to our ex-

cessive use of the multiplexers that are implemented in the

routing resources for the debugging infrastructure. Moreover,

the implementation of a critical signal selection technique is

planned, in order to reduce the parameters that are automati-

cally produced by the tool flow. Thus, we will be able to limit

the compile time overhead and the area overhead even further.

ACKNOWLEDGMENT

The first author is sponsored by a Ph.D. grant of the Flemish

Fund for Scientific Research (FWO). This work was supported

by the European Commission in the context of the H2020

FETHPC EXTRA project (#671653).

REFERENCES

[1] M. Abramovici, P. Bradley, and K. Dwarakanath, “A reconfigurable
design-for-debug infrastructure for socs,” in Design Automation Confer-
ence, 2006 43rd ACM/IEEE, 2006.

[2] Mentor Graphics, “ModelSim User’s Manual,” 2012.
[3] Hutchings, Brad L. and Keeley, Jared, “Rapid Post-Map Insertion of

Embedded Logic Analyzers for Xilinx FPGAs,” in Field-Programmable
Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual Inter-
national Symposium on, 2014.

[4] Xilinx, “Chipscope pro software and cores (v14.3),” 2012.
[5] E. Hung, A. S Jamal and S. Wilton, “Maximum flow algorithms for

maximum observability during FPGA debug,” in Field-Programmable
Technology (FPT), 2013 International Conference on, 2013.

[6] S. Chin and S. Wilton, “An analytical model relating fpga architecture and
place and route runtime,” in Field Programmable Logic and Applications,
FPL 2009. International Conference on, 2009.

[7] E. Vansteenkiste, Brahim Al Farisi, Karel Bruneel, and Dirk Stroobandt,
“TPAR: Place and route tools for the dynamic reconfiguration of the
FPGA’s interconnect network, ” in Transactions on Computer-Aided
Design of Integrated Circuits and Systems, IEEE, 2014.

[8] Karel Heyse, Karel Bruneel, and Dirk Stroobandt, “ Mapping logic
to reconfigurable fpga routing, ” in Field Programmable Logic and
Applications (FPL), 2012 22nd IEEE International Conference on, 2012.

[9] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose
and V. Betz, “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” in ACM Trans. Reconfigurable Technol. Syst., 2014.

[10] Graham, P. and Nelson, B. and Hutchings, B., “Instrumenting Bitstreams
for Debugging FPGA Circuits,” in Field-Programmable Custom Comput-
ing Machines, 2001. FCCM ’01. The 9th Annual IEEE Symposium on,
2001.

[11] E. Hung and S. Wilton, “Scalable signal selection for post-silicon de-
bug,” in Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 21, 2013.

[12] E. Hung and S. J. Wilton, “Towards simulator-like observability for
fpgas: a virtual overlay network for trace-buffers,” in Proceedings of
the ACM/SIGDA international symposium on Field programmable gate
arrays, FPGA ’13, 2013.

[13] Z. Poulos, Yu Shen Yang, Anderson, J., Veneris, A. and Bao Le,
“Leveraging reconfigurability to raise productivity in FPGA functional
debug,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2012, 2012.

[14] Alexandra Kourfali and Dirk Stroobandt, “Test set generation almost
for free using a run-time FPGA reconfiguration technique,” in Test
Symposium (LATS), 16th IEEE Latin-American,, 2015.

282

