227 research outputs found

    FPGA-based module for SURF extraction

    Get PDF
    We present a complete hardware and software solution of an FPGA-based computer vision embedded module capable of carrying out SURF image features extraction algorithm. Aside from image analysis, the module embeds a Linux distribution that allows to run programs specifically tailored for particular applications. The module is based on a Virtex-5 FXT FPGA which features powerful configurable logic and an embedded PowerPC processor. We describe the module hardware as well as the custom FPGA image processing cores that implement the algorithm's most computationally expensive process, the interest point detection. The module's overall performance is evaluated and compared to CPU and GPU based solutions. Results show that the embedded module achieves comparable disctinctiveness to the SURF software implementation running in a standard CPU while being faster and consuming significantly less power and space. Thus, it allows to use the SURF algorithm in applications with power and spatial constraints, such as autonomous navigation of small mobile robots

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    An Optoelectronic Stimulator for Retinal Prosthesis

    No full text
    Retinal prostheses require the presence of viable population of cells in the inner retina. Evaluations of retina with Age-Related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) have shown a large number of cells remain in the inner retina compared with the outer retina. Therefore, vision loss caused by AMD and RP is potentially treatable with retinal prostheses. Photostimulation based retinal prostheses have shown many advantages compared with retinal implants. In contrary to electrode based stimulation, light does not require mechanical contact. Therefore, the system can be completely external and not does have the power and degradation problems of implanted devices. In addition, the stimulating point is flexible and does not require a prior decision on the stimulation location. Furthermore, a beam of light can be projected on tissue with both temporal and spatial precision. This thesis aims at fi nding a feasible solution to such a system. Firstly, a prototype of an optoelectronic stimulator was proposed and implemented by using the Xilinx Virtex-4 FPGA evaluation board. The platform was used to demonstrate the possibility of photostimulation of the photosensitized neurons. Meanwhile, with the aim of developing a portable retinal prosthesis, a system on chip (SoC) architecture was proposed and a wide tuning range sinusoidal voltage-controlled oscillator (VCO) which is the pivotal component of the system was designed. The VCO is based on a new designed Complementary Metal Oxide Semiconductor (CMOS) Operational Transconductance Ampli er (OTA) which achieves a good linearity over a wide tuning range. Both the OTA and the VCO were fabricated in the AMS 0.35 µm CMOS process. Finally a 9X9 CMOS image sensor with spiking pixels was designed. Each pixel acts as an independent oscillator whose frequency is controlled by the incident light intensity. The sensor was fabricated in the AMS 0.35 µm CMOS Opto Process. Experimental validation and measured results are provided

    Real-time Neuromorphic Visual Pre-Processing and Dynamic Saliency

    Get PDF
    The human brain is by far the most computationally complex, efficient, and reliable computing system operating under such low-power, small-size, and light-weight specifications. Within the field of neuromorphic engineering, we seek to design systems with facsimiles to that of the human brain with means to reach its desirable properties. In this doctoral work, the focus is within the realm of vision, specifically visual saliency and related visual tasks with bio-inspired, real-time processing. The human visual system, from the retina through the visual cortical hierarchy, is responsible for extracting visual information and processing this information, forming our visual perception. This visual information is transmitted through these various layers of the visual system via spikes (or action potentials), representing information in the temporal domain. The objective is to exploit this neurological communication protocol and functionality within the systems we design. This approach is essential for the advancement of autonomous, mobile agents (i.e. drones/MAVs, cars) which must perform visual tasks under size and power constraints in which traditional CPU or GPU implementations to not suffice. Although the high-level objective is to design a complete visual processor with direct physical and functional correlates to the human visual system, we focus on three specific tasks. The first focus of this thesis is the integration of motion into a biologically-plausible proto-object-based visual saliency model. Laurent Itti, one of the pioneers in the field, defines visual saliency as ``the distinct subjective perceptual quality which makes some items in the world stand out from their neighbors and immediately grab our attention.'' From humans to insects, visual saliency is important for the extraction of only interesting regions of visual stimuli for further processing. Prior to this doctoral work, Russel et al. \cite{russell2014model} designed a model of proto-object-based visual saliency with biological correlates. This model was designed for computing saliency only on static images. However, motion is a naturally occurring phenomena that plays an essential role in both human and animal visual processing. Henceforth, the most ideal model of visual saliency should consider motion that may be exhibited within the visual scene. In this work a novel dynamic proto-object-based visual saliency is described which extends the Russel et. al. saliency model to consider not only static, but also temporal information. This model was validated by using metrics for determining how accurate the model is in predicting human eye fixations and saccades on a public dataset of videos with attached eye tracking data. This model outperformed other state-of-the-art visual saliency models in computing dynamic visual saliency. Such a model that can accurately predict where humans look, can serve as a front-end component to other visual processors performing tasks such as object detection and recognition, or object tracking. In doing so it can reduce throughput and increase processing speed for such tasks. Furthermore, it has more obvious applications in artificial intelligence in mimicking the functionality of the human visual system. The second focus of this thesis is the implementation of this visual saliency model on an FPGA (Field Programmable Gate Array) for real-time processing. Initially, this model was designed within MATLAB, a software-based approach running on a CPU, which limits the processing speed and consumes unnecessary amounts of power due to overhead. This is detrimental for integration with an autonomous, mobile system which must operate in real-time. This novel FPGA implementation allows for a low-power, high-speed approach to computing visual saliency. There are a few existing FPGA-based implementations of visual saliency, and of those, none are based on the notion of proto-objects. This work presents the first, to our knowledge, FPGA implementation of an object-based visual saliency model. Such an FPGA implementation allows for the low-power, light-weight, and small-size specifications that we seek within the field of neuromorphic engineering. For validating the FPGA model, the same metrics are used for determining the extent to which it predicts human eye saccades and fixations. We compare this hardware implementation to the software model for validation. The third focus of this thesis is the design of a generic neuromorphic platform both on FPGA and VLSI (Very-Large-Scale-Integration) technology for performing visual tasks, including those necessary in the computation of the visual saliency. Visual processing tasks such as image filtering and image dewarping are demonstrated via this novel neuromorphic technology consisting of an array of hardware-based generalized integrate-and-fire neurons. It allows the visual saliency model's computation to be offloaded onto this hardware-based architecture. We first demonstrate an emulation of this neuromorphic system on FPGA demonstrating its capability of dewarping and filtering tasks as well as integration with a neuromorphic camera called the ATIS (Asynchronous Time-based Image Sensor). We then demonstrate the neuromorphic platform implemented in CMOS technology, specifically designed for low-mismatch, high-density, and low-power. Such a VLSI technology-based platform further bridges the gap between engineering and biology and moves us closer towards developing a complete neuromorphic visual processor

    Domain-Specific Computing Architectures and Paradigms

    Full text link
    We live in an exciting era where artificial intelligence (AI) is fundamentally shifting the dynamics of industries and businesses around the world. AI algorithms such as deep learning (DL) have drastically advanced the state-of-the-art cognition and learning capabilities. However, the power of modern AI algorithms can only be enabled if the underlying domain-specific computing hardware can deliver orders of magnitude more performance and energy efficiency. This work focuses on this goal and explores three parts of the domain-specific computing acceleration problem; encapsulating specialized hardware and software architectures and paradigms that support the ever-growing processing demand of modern AI applications from the edge to the cloud. This first part of this work investigates the optimizations of a sparse spatio-temporal (ST) cognitive system-on-a-chip (SoC). This design extracts ST features from videos and leverages sparse inference and kernel compression to efficiently perform action classification and motion tracking. The second part of this work explores the significance of dataflows and reduction mechanisms for sparse deep neural network (DNN) acceleration. This design features a dynamic, look-ahead index matching unit in hardware to efficiently discover fine-grained parallelism, achieving high energy efficiency and low control complexity for a wide variety of DNN layers. Lastly, this work expands the scope to real-time machine learning (RTML) acceleration. A new high-level architecture modeling framework is proposed. Specifically, this framework consists of a set of high-performance RTML-specific architecture design templates, and a Python-based high-level modeling and compiler tool chain for efficient cross-stack architecture design and exploration.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162870/1/lchingen_1.pd

    Numerical solutions of differential equations on FPGA-enhanced computers

    Get PDF
    Conventionally, to speed up scientific or engineering (S&E) computation programs on general-purpose computers, one may elect to use faster CPUs, more memory, systems with more efficient (though complicated) architecture, better software compilers, or even coding with assembly languages. With the emergence of Field Programmable Gate Array (FPGA) based Reconfigurable Computing (RC) technology, numerical scientists and engineers now have another option using FPGA devices as core components to address their computational problems. The hardware-programmable, low-cost, but powerful “FPGA-enhanced computer” has now become an attractive approach for many S&E applications. A new computer architecture model for FPGA-enhanced computer systems and its detailed hardware implementation are proposed for accelerating the solutions of computationally demanding and data intensive numerical PDE problems. New FPGAoptimized algorithms/methods for rapid executions of representative numerical methods such as Finite Difference Methods (FDM) and Finite Element Methods (FEM) are designed, analyzed, and implemented on it. Linear wave equations based on seismic data processing applications are adopted as the targeting PDE problems to demonstrate the effectiveness of this new computer model. Their sustained computational performances are compared with pure software programs operating on commodity CPUbased general-purpose computers. Quantitative analysis is performed from a hierarchical set of aspects as customized/extraordinary computer arithmetic or function units, compact but flexible system architecture and memory hierarchy, and hardwareoptimized numerical algorithms or methods that may be inappropriate for conventional general-purpose computers. The preferable property of in-system hardware reconfigurability of the new system is emphasized aiming at effectively accelerating the execution of complex multi-stage numerical applications. Methodologies for accelerating the targeting PDE problems as well as other numerical PDE problems, such as heat equations and Laplace equations utilizing programmable hardware resources are concluded, which imply the broad usage of the proposed FPGA-enhanced computers

    Floorplan-Aware High Performance NoC Design

    Full text link
    Las actuales arquitecturas de m�ltiples n�cleos como los chip multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) han adoptado a las redes dentro del chip (NoC) como elemento -ptimo para la inter-conexi-n de los diversos elementos de dichos sistemas. En este sentido, fabricantes de CMPs y MPSoCs han adoptado NoCs sencillas, generalmente con una topolog'a en malla o anillo, ya que son suficientes para satisfacer las necesidades de los sistemas actuales. Sin embargo a medida que los requerimientos del sistema -- baja latencia y alto rendimiento -- se hacen m�s exigentes, estas redes tan simples dejan de ser una soluci-n real. As', la comunidad investigadora ha propuesto y analizado NoCs m�s complejas. No obstante, estas soluciones son m�s dif'ciles de implementar -- especialmente los enlaces largos -- haciendo que este tipo de topolog'as complejas sean demasiado costosas o incluso inviables. En esta tesis, presentamos una metodolog'a de dise-o que minimiza la p�rdida de prestaciones de la red debido a su implementaci-n real. Los principales problemas que se encuentran al implementar una NoC son los conmutadores y los enlaces largos. En esta tesis, el conmutador se ha hecho modular, es decir, formado como uni-n de m-dulos m�s peque-os. En nuestro caso, los m-dulos son id�nticos, donde cada m-dulo es capaz de arbitrar, conmutar, y almacenar los mensajes que le llegan. Posteriormente, flexibilizamos la colocaci-n de estos m-dulos en el chip, permitiendo que m-dulos de un mismo conmutador est�n distribuidos por el chip. Esta metodolog'a de dise-o la hemos aplicado a diferentes escenarios. Primeramente, hemos introducido nuestro conmutador modular en NoCs con topolog'as conocidas como la malla 2D. Los resultados muestran como la modularidad y la distribuci-n del conmutador reducen la latencia y el consumo de potencia de la red. En segundo lugar, hemos utilizado nuestra metodolog'a de dise-o para implementar un crossbar distribuidRoca Pérez, A. (2012). Floorplan-Aware High Performance NoC Design [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17844Palanci
    • …
    corecore