

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS ON

FPGA-ENHANCED COMPUTERS

A Dissertation

by

CHUAN HE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2007

Major Subject: Electrical Engineering

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS ON

FPGA-ENHANCED COMPUTERS

A Dissertation

by

CHUAN HE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Mi Lu
 Wei Zhao
Committee Members, Guan Qin
 Gwan Choi
 Jim Ji
Head of Department, Costas N. Georghiades

May 2007

Major Subject: Electrical Engineering

iii

ABSTRACT

Numerical Solutions of Differential Equations on

FPGA-Enhanced Computers. (May 2007)

Chuan He, B.S., Shandong University;

M.S., Beijing University of Aeronautics and Astronautics

Co-Chairs of Advisory Committee: Dr. Mi Lu
 Dr. Wei Zhao

Conventionally, to speed up scientific or engineering (S&E) computation programs

on general-purpose computers, one may elect to use faster CPUs, more memory, systems

with more efficient (though complicated) architecture, better software compilers, or even

coding with assembly languages. With the emergence of Field Programmable Gate

Array (FPGA) based Reconfigurable Computing (RC) technology, numerical scientists

and engineers now have another option using FPGA devices as core components to

address their computational problems. The hardware-programmable, low-cost, but

powerful “FPGA-enhanced computer” has now become an attractive approach for many

S&E applications.

A new computer architecture model for FPGA-enhanced computer systems and its

detailed hardware implementation are proposed for accelerating the solutions of

computationally demanding and data intensive numerical PDE problems. New FPGA-

optimized algorithms/methods for rapid executions of representative numerical methods

such as Finite Difference Methods (FDM) and Finite Element Methods (FEM) are

designed, analyzed, and implemented on it. Linear wave equations based on seismic

data processing applications are adopted as the targeting PDE problems to demonstrate

the effectiveness of this new computer model. Their sustained computational

performances are compared with pure software programs operating on commodity CPU-

based general-purpose computers. Quantitative analysis is performed from a hierarchical

set of aspects as customized/extraordinary computer arithmetic or function units,

iv

compact but flexible system architecture and memory hierarchy, and hardware-

optimized numerical algorithms or methods that may be inappropriate for conventional

general-purpose computers. The preferable property of in-system hardware

reconfigurability of the new system is emphasized aiming at effectively accelerating the

execution of complex multi-stage numerical applications. Methodologies for

accelerating the targeting PDE problems as well as other numerical PDE problems, such

as heat equations and Laplace equations utilizing programmable hardware resources are

concluded, which imply the broad usage of the proposed FPGA-enhanced computers.

v

DEDICATION

To my wonderful and loving wife

vi

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ...v

TABLE OF CONTENTS ..vi

LIST OF TABLES ... viii

LIST OF FIGURES...ix

1 INTRODUCTION..1

2 BACKGROUND AND RELATED WORK..4

2.1 Application Background: Seismic Data Processing...4
2.2 Numerical Solutions of PDEs on High-Performance Computing (HPC)

Facilities ...6
2.3 Application-Specific Computer Systems ...7
2.4 FPGA and Existing FPGA-Based Computers..9

2.4.1 FPGA and FPGA-Based Reconfigurable Computing9
2.4.2 Hardware Architecture of Existing FPGA-Based Computers......................10
2.4.3 Floating-Point Arithmetic on FPGAs...13
2.4.4 Numerical Algorithms/Methods on FPGAs...14

3 HARDWARE ARCHITECTURE OF FPGA-ENHANCED COMPUTERS
FOR NUMERICAL PDE PROBLEMS...16

3.1 SPACE System for Seismic Data Processing Applications17
3.2 Universal Architecture of FPGA-Enhanced Computers20
3.3 Architecture of FPGA-Enhanced Computer Cluster..23

4 PSTM ALGORITHM ON FPGA-ENHANCED COMPUTERS28

4.1 PSTM Algorithm and Its Implementation on PC Clusters...............................28
4.2 The Design of Double-Square-Root (DSR) Arithmetic Unit...........................32

4.2.1 Hybrid DSR Arithmetic Unit ...32
4.2.2 Fixed-point DSR Arithmetic Unit ..36
4.2.3 Optimized 6th-Order DSR Travel-Time Solver...38

4.3 PSTM Algorithm on FPGA-Enhanced Computers ..40
4.4 Performance Comparisons ...43

5 FDM ON FPGA-ENHANCED COMPUTER PLATFORM...................................48

5.1 The Standard Second Order and High Order FDMs ..50
5.1.1 2nd-Order FD Schemes in Second Derivative Form50
5.1.2 High Order Spatial FD Approximations ..54

vii

 Page

5.1.3 High Order Time Integration Scheme..59
5.2 High Order FD Schemes on FPGA-Enhanced Computers61

5.2.1 Previous Work and Their Common Pitfalls ...61
5.2.2 Implementation of Fully-Pipelined Laplace Computing Engine63
5.2.3 Sliding Window Data Buffering System..64
5.2.4 Data Buffering for High Order Time Integration Schemes..........................73
5.2.5 Data Buffering for 3D Wave Modeling Problems74
5.2.6 Extension to Elastic Wave Modeling Problems...76
5.2.7 Damping Boundary Conditions..78

5.3 Numerical Simulation Results..80
5.3.1 Wave Propagation Test in Constant Media..81
5.3.2 Acoustic Modeling of Marmousi Mode ..84

5.4 Optimized FD Schemes with Finite Accurate Coefficients88
5.5 Accumulation of Floating-Point Operands ..94
5.6 Bring Them Together: Efficient Implementation of the Optimized FD

Computing Engine..98

6 FEM ON FPGA-ENHANCED COMPUTER PLATFORM103

6.1 Floating-Point Summation and Vector Dot-Product on FPGAs106
6.1.1 Floating-Point Summation Problem and Related works106
6.1.2 Numerical Error Bounds of the Sequential Accumulation Method109
6.1.3 Group-Alignment Based Floating-Point Summation Algorithm111
6.1.4 Formal Error Analysis and Numerical Experiments113
6.1.5 Implementation of Group-Alignment Based Summation on FPGAs.........116
6.1.6 Accurate Vector Dot-Product on FPGAs ...122

6.2 Matrix-Vector Multiply on FPGAs ..124
6.3 Dense Matrix-Matrix Multiply on FPGAs ...131

7 CONCLUSIONS..138

7.1 Summary of Research Work ..138
7.2 Methodologies for Accelerating Numerical PDE Problems on FPGA-

Enhanced Computers..141

REFERENCES...145

VITA ..152

viii

LIST OF TABLES

TABLE Page

 1 FPGA-Based Reconfigurable Supercomputers ...11

 2 Error Property of the Hybrid CORDIC Unit with Different Guarding Bits.......35

 3 Rounding Error of the Conversion Stage with Different Fraction Word-
Width ...38

 4 Errors of the Fixed-Point CORDIC Unit with Different Word-Width and
Guarding Bits ..38

 5 Performance Comparison of PSTM on FPGA and PC46

 6 Performance Comparison for Different HD Schemes59

 7 Performance Comparison for High-Order Time-Integration Schemes61

 8 Comparison of FP Operations and Operands for Different FD Schemes66

 9 Comparison of Caching Performance for Different FD Schemes......................72

 10 Size of Wave Modeling Test Problems...81

 11 Performance Comparison for FD Schemes on FPGA and PC83

 12 Coefficients of 3 FD Schemes with 9-Point Stencils ..92

 13 Errors for the New Summation Algorithm..115

 14 Comparison of Single-Precision Accumulators ..120

ix

LIST OF FIGURES

FIGURE Page

 1 Demonstration of Seismic Reflection Survey ... 4

 2 Coupling FPGAs with Commodity CPUs.. 12

 3 The SPACE Acceleration Card ... 18

 4 Architecture of FPGA-Enhanced Computer ... 21

 5 FPGA-Enhanced PC Cluster ... 22

 6 2D Torus Interconnection Network on Existent PC Cluster 25

 7 The Relationship Between the Source, Receiver, and Scatter Points 29

 8 Hardware Structure of the Hybrid DSR Travel-Time Solver 33

 9 Output Format of the Conversion Stage.. 37

 10 Hardware Structure of the Fixed-Point DSR Travel-Time Solver 37

 11 Hardware Structure of the PSTM Computing Engine 43

 12 A Vertical In-Line Unmigrated Section ... 44

 13 The Vertical In-Line Migrated Section .. 44

 14 (2, 2) FD Stencil for the 2D Acoustic Equation .. 52

 15 Second-Order FD Stencil for the 3D Laplace Operator53

 16 (2, 4) FD Stencil for the 2D Acoustic Equation..56

 17 4th-Order FD Stencil for the 3D Laplace Operator ..56

 18 Dispersion Relations of the 1D Acoustic Wave Equation and Its FD
Approximations...57

 19 Dispersion Errors of Different FD Schemes ..59

 20 Stencils for (2-4) and (4-4) FD Schemes ..60

 21 2D 4th-Order Laplacian Computing Engine ...64

 22 Stripped 2D Operands Entering the Computing Engine via Three Ports..........67

 23 Stripped 2D Operands Entering the Computing Engine via Two Ports............68

 24 Block diagram of the buffering system for 2D (2, 2) FD Scheme69

 25 Sliding Window for 2D (2, 4) FD Scheme..70

 26 Function Blocks of the 2D (2, 4) FD Scheme ...71

x

FIGURE Page

 27 Block Diagram and Dataflow for 2D (4, 4) FD Scheme74

 28 Function Blocks of the Hybrid 3D (2, 4-4-2) FD Schemes75

 29 Marmousi Model Snapshots (t=0.6s, 1.2s, 1.8s, and 2.4s. Shot at x=5km)85

 30 Numerical Dispersion Errors for the Maximum 8th-Order FD Schemes
with 23, 16, or 8 Mantissa Bits..89

 31 Structure of Constant Multiplier ...92

 32 Comparisons of Dispersion Relations for Different FD Approximations93

 33 Dispersion Errors for Different FD Approximations ..94

 34 Binary Tree Based Reduction Circuit for Accumulation95

 35 Structure of Group-Alignment Based Floating-Point Accumulator..................97

 36 Structure of 1D 8th-Order Laplace Operator ..99

 37 Structure of 1D 8th-Order Finite-Accurate Optimized FD Scheme................100

 38 Conventional Hardwired Floating-Point Accumulators (a) Accumulator
with Standard Floating-Point Adder and Output Register; (b) Binary
Tree Based Reduction Circuit ...107

 39 Structure of Group-Alignment Based Floating-Point Summation Unit..........118

 40 Implementation for Matrix-Vector Multiply in Row Order127

 41 Matrix-Vector Multiply in Column Order ..128

 42 Implementation for Matrix-Vector Multiply in Column Order.......................130

 43 Blocked Matrix-Matrix Multiply ..134

 44 Blocked Matrix-Matrix Multiply Scheme...136

1

1. INTRODUCTION

Numerical Evaluation of scientific or engineering problems governed by Partial

Differential Equations (PDEs) numerically is in general computationally-demanding and

data intensive. In typical numerical methods such as Finite Difference Methods (FDM),

Finite Element Methods (FEM), or Finite Volume Methods (FVM), etc., PDEs are

discretized in space to bring them into finite-dimensional subspace and solved by

standard linear algebra subroutines. Spatial discretizations for realistic Scientific and

Engineering (S&E) problems could easily result in millions, even billions, of discrete

grid points, which correspond to large linear system equations with the same number of

unknowns. If the problem was time-dependent, in order to simulate the transient

behavior of the problem, we may need to solve the linear system equations for hundreds

to thousands of discrete time steps. Furthermore, if the problem was nonlinear, we have

to resort to iterative methods to guarantee the convergence of the numerical solutions,

which means solving multiple linear system equations in each time evolution step.

Typical applications of numerical PDE problems include but are not limited to

Computational Fluid Dynamics (CFD), computational physics, computational chemistry,

weather forecast/climate modeling, seismic data processing/reservoir simulation, etc.

The last two decades have seen rapid improvements in performance and

complexity of digital computers. Without any doubt, the most convenient computing

resources for solving numerical PDE problems are commodity computers. With the

continuing renovation of Very Large-Scale Integration (VLSI) semiconductor

manufacturing technology, modern commodity CPUs now consist of hundreds of

millions of transistors and work at internal clock rates up to several GHz. Their low

price and flexible program-controlled execution mode attain commodity CPU-based

general-purpose computers feasible for almost all kinds of applications. However,

because a large portion of silicon area inside CPUs is committed to sophisticated control

This dissertation follows the style of Microprocessors and Microsystems.

2

 logics, the transistor utilization and energy efficiency of such devices are generally poor.

Moreover, although the nominal speed of commodity CPUs are skyrocketing, in reality,

only a small fraction of their peak performance could be delivered for our

computationally-intensive and data-demanding problems. Solving such problems may

easily take people hours, days, weeks, even months. Some large-scale problems continue

to be unsolvable in an acceptable period of time even on today’s fastest supercomputer

platforms.

An alternative is to build special-purpose computer systems for specific problems

at hand using Application-Specific Integrated Circuits (ASIC) as the core components.

Compared with commodity CPU-based general-purpose computers, a majority of in-chip

transistors could be devoted to useful computations/operations so that such application-

specific systems could achieve much higher computational performance (100X ~ 1000X)

with better transistor utilization as well as energy efficiency. However, this approach

presents problems such as lack of flexibility, long developing period, and its high Non-

Recurrent Engineering (NRE) costs. If the high cost could not be amortized with mass

product, this approach would be expensive.

The emergence of Field Programmable Gate Array (FPGA) devices gives people

another option to construct a new class of FPGA-based computers. FPGA is one type of

“off-the-shelf” digital logic devices, the same as commodity CPUs. Inside an FPGA chip,

there are numerous regularly-distributed island-like programmable hardware resources

such as logic slices, SRAM blocks, hardwired multiplier blocks, or even processor

blocks. Design engineers can configure/program these hardware resources at runtime to

perform a variety of basic digital logics such as AND, OR, NOT, FLIP-FLOP etc.

Multiple similar or different programmable slices can cooperate to implement complex

arithmetic or functionalities with the help of surrounding programmable interconnection

paths. This so-called In-System-Programmability (ISP) consumes a considerable silicon

area and causes FPGA-based hardware implementation working at a much slower speed

than ASIC chips. However, FPGA devices have the potential to accommodate tens, even

hundreds, of similar or different arithmetic/function units so that the aggregate

3

computational performance may still be much higher than what is provided by a

commodity CPU. Furthermore, users can utilize the same FPGA-based system to

accelerate different problems with the help of the delightful ISP property. From this

point of view, FPGA-based computer works as “middleware” between the pure

hardware-based approaches (ASICs) and the pure software-based approach (commodity

CPUs). It has the potential to provide users with high computational power and while

maintaining acceptable flexibility.

This thesis will explore the feasibility of utilizing FPGA resources to accelerate

computationally-demanding and data intensive numerical solutions of PDE problems.

The research work can be divided into three main parts: the first part proposes a new

hardware architecture model as “FPGA-enhanced Reconfigurable Computers”, which

takes distinguished features of numerical PDE problems into account so that significant

performance improvement could be expected. It begins with an introduction of the

motivation for FPGA-enhanced computers, related work, and other background

information. Then it discusses the system architecture of this new computer model and

its detailed implementation as a single workstation as well as a parallel cluster system.

 The second and the third parts of this thesis discuss conceivable methods to

accelerate FDM and FEM on the proposed FPGA-enhanced computer platform. Here, I

select linear wave equations based on seismic data processing applications as the

targeting PDE problems. A hierarchical set of aspects as customized/extraordinary

computer arithmetic or function units, compact but efficient system structure and

memory hierarchy, and FPGA-optimized software algorithms/numerical methods are

proposed and analyzed together with detailed implementations. A great variety of

experiments comparing sustained computational performance of these numerical

methods running on FPGA-enhanced computers with commodity CPU-based general-

purpose computers are carried on to show the superiority of this new computer system.

All results can also be applied to accelerate the solutions of other numerical PDE

problems such as heat equations, Laplace equations, thereby implying the broad use of

the proposed FPGA-enhanced computers.

4

2. BACKGROUND AND RELATED WORK

2.1 Application Background: Seismic Data Processing

Seismic reflection survey is the most widely used geophysical exploration

technique in the petroleum industry and plays a key role in locating underground oil and

gas reservoirs for more than sixty years. The basic equipment for the field survey is a

source producing impulsive seismic waves, an array of geophones receiving

underground echoes, and a multi-channel wave signal displaying and recording system.

This method is quite simple in concept: The Earth is simply modeled as stratified

medium with material properties such as velocity, density, anisotropy, etc. Impulsive

seismic waves are excited on the ground and propagate downward into the Earth. When

they encounter interfaces of rock layers, the waves will be reflected back and recorded

by an array of geophones deployed on the ground. The elapsed time and amplitudes of

reflections could be used to determine underground rock layers’ depths and attitudes.

The main purpose of seismic data processing is to reduce noises embedded in the

reflected seismic signals and convert them into interpretable images of subsurface

structures [1].

Figure 1. Demonstration of Seismic Reflection Survey

5

Two main procedures dominate seismic data processing flow: seismic modeling

and seismic migration. The mathematical model of energy propagating inside the Earth

is acoustic wave equations (2.1) or elastic wave equations (2.2), which can be classified

into hyperbolic PDEs.

FtzyxP
zyx

zyxzyx
t

tzyxP
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇•∇−

∂
∂),,,(

),,(
1),,(),,(),,,(2

2

2

ρ
νρ (2.1)

ikkijjiiiit v σσσρ ∂+∂+∂=∂ (2.2a)

() iijjjjiiiit vvvv ∂+∂+∂+∂=∂ µλσ 2 (2.2b)

()ijjiijt vv ∂+∂=∂ µσ (2.2c)

Seismic modeling is a forwarding problem that simulates the scattering field

arising when an impulsive source excites an underground region with known physical

properties. Seismic migration is an inverse problem that estimates these physical

properties using measured data as initial or boundary conditions. In conventional seismic

data processing flow, modeling and migration are two intimately related procedures.

They perform iteratively with one’s output acting as input to the other: Process start

from an initial estimate of underground parameters. Migration methods are then used to

collapse diffractions produced by underground scattering points or faults and move

dipping reflectors to their physical subsurface locations. After abstracting parameters by

analyzing the migrated underground image, modeling procedures are employed to

produce a so-called ground “seismogram”. By comparing the ground seismogram with

the measured dataset, it is possible to indicate where the previous estimations of

underground parameters are inaccurate and revise the estimations correspondingly. The

process will repeat until the difference between two consecutive iterations is sufficiently

small. Mathematically, seismic migration is not a well-posed problem, i.e., boundary

conditions provided by the measured dataset are not enough to produce a unique solution.

So in general, three to five of such iterations are necessary to obtain an acceptable

migrated underground image [2].

Seismic modeling/migration is now the central and culminating step of seismic

data processing, and may easily devour 70 to 90 percent of CPU time of the entire

6

process flow. They are all time-consuming procedures: Even for the simplest acoustic

cases, the workload for solving large-scale 3D wave propagation problems could easily

exceed the capability of most contemporary computer systems. Although the

computational power of commodity computers keeps doubling every 18 months

following Moore’s Law, by utilizing more and more innovative migration methods, the

total elapsed time for processing a 3D middle-scale region is always kept in one week to

one month for almost three decades. Old migration methods such as phase-shift or

Kirchhoff migration are computationally efficient and affordable for most customers.

However, their imaging resolution is not good enough to depict clearly complex

underground structures with lateral velocity variation or steep dips. New methods such

as frequency-space migration or Reverse Time Migration (RTM) that directly solve

acoustic/elastic wave equations would provide infinitely improved accuracy. However,

their intensive computational workloads for 3D full-volume imaging are hard to

undertake, even for institutes that able to afford the high costs of operating and

maintaining supercomputers or large PC-cluster systems. In reality, finishing a

designated seismic processing task in a reasonable time period is still much more

important than obtaining a better result using improved modeling/migration methods [3].

2.2 Numerical Solutions of PDEs on High-Performance Computing (HPC) Facilities

In the past decade, numerical computing efforts have grown rapidly with

performance improvements of general-purpose computers and parallel computing

environments. Although the nominal frequency of commodity CPUs is skyrocketing, the

real utilization of the peak performance for our targeting problems are in general very

poor. The main reason for this inefficiency is that a large portion of transistors in today’s

commodity CPUs are utilized for control logics or to provide flexible data flow, which

attains the prevalent Von Neumann computer architecture model not well-suited for

most numerical computing applications. Consequently, many scientific/engineering

problems are extremely time-consuming or even unsolvable on contemporary general-

7

purpose computers, especially when large 2D or 3D geometrical regions are designated

as computational domain. It seems that there will always be an urgent demand for more

powerful and faster computer systems.

Sustained Floating-Point (FP) performance, which is often represented in terms of

Megaflops or Gigaflops, is a key factor in measuring the computational performance of a

computer system. Numerical computing applications are generally data intensive as well

as computationally demanding. Correspondingly, numerical algorithms/methods always

exhibit low FP-operation to memory-access ratio, require considerable memory space for

intermediate results, and tend to perform irregular indirect addressing. These intrinsic

properties inevitably result in poor caching behavior on general-purpose computers due

to their complex system architecture and memory hierarchy. A huge gap always exists

between the theoretical peak FP performance of a commodity CPU and the realistic

running speed of a program. Pure software methods, from high-level parallelism on PC-

Cluster system [4] to low-level memory and disk optimization [5] or even instruction-

reordering [6] are exhausted to accelerate the execution of numerical applications.

However, even with careful hand optimization, only a few numerical subroutines such as

dense matrix multiply or Fast Fourier Transformation (FFT) can achieve 80~90 percent

of a CPU’s peak performance; For most others, 20~30 percent is very common; with

some CPU utilization even reaching as low as 10 percent or even less than 5 percent in

realistic applications [7]. Consequently, many large numerical simulation tasks cannot

be executed routinely except in institutes that can afford high costs of operating and

maintaining supercomputers or large PC-cluster systems.

2.3 Application-Specific Computer Systems

Application-specific computers are computer systems customized for particular uses,

rather than as general-purpose computers. Application-specific computing is an active

R&D area, both in academia and in industry. Traditionally, it aims at building for each

algorithm/application a specific hardware device – the Application-Specific Integrated

8

Circuit (ASIC) chip, to achieve better implementation in terms of hardware resources,

performance, cost, and energy requirements. While general-purpose computing deals

with sequential algorithms or concurrent sequential processes, application-specific

computers deal with parallel algorithms running in a physical space-time domain. From

the technological point of view, it is not a difficult task to design an application-specific

ASIC chip and use it as the core component to construct a fully-customized special-

purpose computer system with much higher computational performance than general-

purpose computers. However, this approach encountered several practical barriers such

as high NRE costs, especially for today’s VLSI manufacturing technology; long

development period, which tends to devour most of the performance advantages; and the

most important reason: lack of flexibility.

One widely-cited successful example of special-purpose computers is the 17-year-

old GRAPE (short for GRAvity PipE) project managed by a group of computer scientists

and astrophysicists at the University of Tokyo [8] [9]. The success of this project rests

on the ability to solve a special problem that was hard to solve on general-purpose

computers. This project had resulted in the GRAPE family of special-purpose computers.

GRAPE was built as a Newtonian force accelerator in the form of an attached

acceleration card working in a way similar to graphic accelerators. When simulating a

typical large-scale gravitational N-body problem, almost the entire original program is

unchanged and still run on the host computer, while only the gravitational force

calculations in the most innermost loop are replaced by a function call to the special-

purpose hardware. Compared with commodity CPUs that use only a small fraction of

their transistors in arithmetic computations, GRAPE essentially utilized almost all

available transistors inside the ASIC chip instantiating arithmetic units. In other words,

the key trick of GRAPE to outperform general-purpose computers is to optimize the

utilization of transistors for a specific application. The single board version of GRAPE-6,

which was developed after 2000, achieved the peak performance at 500G flops when

coupled to a conventional PC workstation as front end. Such a simple combination could

bring about astonishing computational power, equivalent to 1000 contemporary personal

9

computers, to the desk of an individual astrophysicist. Although the prospect of this

product line is fascinating, GRAPE had proven to be too far from success in business:

only tens of different versions of GRAPE systems were sold (or donated) to major

astrophysical institutes around the world.

2.4 FPGA and Existing FPGA-Based Computers

2.4.1 FPGA and FPGA-Based Reconfigurable Computing

 Field Programmable Gate Array (FPGA) is one tpye of “Commercial-Off-The-

Shelf” (COTS) digital logic devices that contains numerous island-like programmable

hardware resources surrounded by programmable interconnection paths. Design

engineers can configure/program such devices at runtime to perform a variety of tasks

from basic digital logics to complex function and arithmetic units. FPGAs were noticed

in the beginning for their advantages of allowing implementation of customized logic

functions and to be reconfigured on-the-fly, thus removing most of the NRE costs from

new digital system designs. For these reasons, they have been widely utilized as glue

logic, or to build prototyping systems.

As we introduced above, for small designs and/or low production volumes, ASIC

becomes a less attractive solution because of its high NRE costs. We predict that this

trend would be even more distinct in the future because this cost would be even higher

with the evolution of semiconductor manufacturing technology. The emergence of

FPGA devices shed new light on these applications. Xilinx, one of the major

manufacturers of FPGA devices, even defines its products as hardware-programmable

high density ASIC with the time to market and cost advantages over standard ASIC

products.

As the cost per gate of FPGAs declines, embedded and high-performance systems

designers are being presented with new opportunities for accelerating their applications

using FPGA-based hardware platforms. These COTS semiconductor devices are far

more flexible than commodity CPUs in that users are not bounded by a given instruction

10

set anymore. By designing all instructions/dataflow explicitly from the bottom up and

programming the chips, users now have a dataflow machine without necessity to decode

instruction flow on-the-fly. Such FPGA-based systems combine the general-purpose

computing models with the hardware oriented application-specific computing model into

a new computing model as reconfigurable computing. It adds to ASICs the flexibility

inherent in the programming of Von Neumann computers, while at the same time,

maintaining the hardware efficiency inherent in ASICs. Software and hardware are no

longer viewed as two completely separated concepts. Traditional software-related topics

such as languages, compilers, libraries, etc. are also key components of programmable

hardware designs. Furthermore, the re-programmability of these devices allows users to

execute different hardware algorithms/procedures on a single device in turn, just as large

software packages run on conventional computers. These new computing platforms

effectively bridge the performance gap between traditional software programmable

microprocessor-based systems and application-specific platforms based on ASICs.

2.4.2 Hardware Architecture of Existing FPGA-Based Computers

With the initial emergence of FPGA-based computing platforms in the 1990s, for

the first time in computer engineering society, scientists and engineers had an option to

customize their own low-cost but powerful “FPGA-based computers” for specific

problems at hand. Such application-specific systems had been widely used to speedup

almost all kinds of fixed-point based Digital Signal Processing (DSP) applications. Such

problems are in general computation-bounded, so their executions could be significantly

accelerated by taking advantage of FPGAs’ high computational potential. As listed in

Table 1, some institutes/companies designed and built stand-alone high-performance

“FPGA-based application-specific supercomputers” as substitutes to conventional

general-purpose computers. Although all of these systems achieved impressive

performance improvements over contemporary supercomputers for their targeting

11

applications, most of them were built for demonstration purpose only, so are in general

too expensive to be affordable for most potential users in academy or industry.

Table 1. FPGA-Based Reconfigurable Supercomputers

Systems Manufacturer Year Number of
FPGAs Applications Hardware

Costs

BEE-2 [10] UC Berkeley 2005
5 per Blade

200 per Rack

Radio

astronomy
$ 500K

Starbridge

[11]
NASA 2005 11 per system

Aeronautics

& astronautics
$ 150K

DN8000K1

0 [12]
DINI Group 2005 16 per board

Digital circuit

emulation
-

Although FPGAs have the potential to provide much higher computing power than

commodity CPUs, they tend to be inefficient for certain types of operations such as

branch, condition, and variable-length loops so are unsuitable for accelerating control-

dominating applications. A natural choice is to couple them with commodity CPUs so

that the execution of software could be accelerated by mapping the most

computationally-intensive instructions into FPGAs and leaving all other subroutines still

running on CPUs. From now on, I will use “FPGA-enhanced general-purpose

computers” or simply “FPGA-enhanced computers” to refer to this class of computer

systems. By far, there are three popular ways to introduce FPGA resources into a

computer system: as adds-on card attached to standard peripheral interface such as PCI

or VME [13] [14], as a coprocessor unit coupled with CPU directly [15], or as a

heterogeneous processing node connected to computers’ system/memory bus [16].

Generally speaking, the tighter FPGA is coupled with CPU in a computer system, the

more accelerations it could achieve due to lower administration overhead and wider

communication bandwidth.

12

Figure 2. Coupling FPGAs with Commodity CPUs

The traditional and also the cheapest way of introducing FPGA resources into

commodity computers is to attach FPGA-based PCI or VME card to peripheral bus of a

computer. Almost all key components on such cards are COTS semiconductor devices,

and so are cheap and can be easily replaced or upgraded. Comparatively, introducing

FPGA resources via system memory buses or dedicated connections changes the

architecture of the host machine so would be relatively expensive. The resulting

computer system can be classified as Un-Symmetric Multi-Processor (USMP) machine,

different from the prevailing Symmetric Multi-Processor (SMP) architecture because

FPGAs are introduced into the system as inhomogeneous computing resources. One

obvious benefit of such systems is that CPUs and FPGA devices are now sharing the

same memory space so that data exchanging between them is convenient and fast. On

the down side, this approach doesn’t introduce additional memory space/bandwidth

except for a limited number of SRAM modules working as FPGA’s cache/buffer space.

Because most numerical PDE problems we considered here are memory bandwidth

bounded; furthermore, memory bus arbitration complicates quantitative performance

analysis, the achievable acceleration of the targeting applications on such systems is hard

to predict but would not be optimistic.

There are only a few publications [17] [18] addressing the topic of memory

hierarchy and data caching/buffering structures on such systems. This is partly because

most existing FPGA-based systems are customized for data-streaming based real-time

DSP applications, which are in general computation-bounded and require only a limited

number of memory spaces for inputs, outputs, and intermediate results. In such systems,

13

FPGA and memory resources are always abundant and onboard hardware architecture

/interconnection pattern are all well-tailored for particular applications. Also, people

tend to use local SRAM or even in-chip SRAM slices as working space so that simple

and straightforward data buffering arrangements would be enough for satisfactory

computational performance.

2.4.3 Floating-Point Arithmetic on FPGAs

Floating-point computations dominate numerical solutions of PDEs. Standard

IEEE-754 compliant floating-point arithmetic units are costly on FPGAs because they

consume significantly more programmable hardware resources than their fixed-point

counterparts. Recently, as FPGA continues to grow in density, people start noticing its

high potential in floating-point computations. A large-scale FPGA chip now consists of

hundreds of thousands of island-like reconfigurable logic slices. Considering that a

typical floating-point arithmetic unit consumes hundreds to thousands of logic slices, a

single FPGA device has the potential to accommodate tens, or even hundreds, of similar

or different floating-point arithmetic units so that the aggregate computing power could

be much higher than what is provided by a commodity CPU. All in-chip programmable

hardware resources can be easily customized into different arithmetic units at runtime.

This In-System-Programmability leads FPGA to a very attractive option for applications

requiring extraordinary arithmetic units that are unavailable in commodity CPUs. Fine-

grain (or low-level) parallelism is an important property of FPGA-based computer

systems: Different arithmetic units can manipulate their own data sets concurrently, or

they can work together in a pipelined manner to increase data throughput significantly.

The interconnections among those units could also be customized to match the

requirements of specific algorithms so that high sustained data throughput could always

be achieved.

In 1994, Fagin et al [19] first testified the feasibility of implementing single-

precision floating-point arithmetic units on FPGAs, though the computational

14

performance was uncompetitive to contemporary commodity CPUs. Since then, as

FPGAs continue to grow in density and speed, their attainable floating-point

performance increases significantly faster than commodity CPUs. Architectural changes,

such as the introduction of on-chip hardwired multipliers further accelerate this trend. In

[20], the authors predicted that FPGA devices would yield three to eight times more

peak performance than commodity CPUs by 2009.

With the help of commercial or open-source parameterized floating-point libraries

[21] [22], floating-point computations on FPGA-based platform is now straightforward

and convenient. However, this simple implementation will cost considerable hardware

resources and lead to excessive computation latency, which may be inappropriate in

reality. Efforts were made to investigate the use of customized floating-point formats [23]

or fixed-point format [24] directly to address such problems. However, all these

approaches inevitably result in excessive numerical errors and lead to doubtable

solutions for rigorous numerical scientists.

2.4.4 Numerical Algorithms/Methods on FPGAs

Migrating software algorithms/numerical methods onto FPGA-enhanced

computers are relatively straightforward: while leaving almost all software subroutines

still running on the commodity CPU of the host machine, only the most time-consuming

kernel portion of the program are replaced by a subroutine calling for the help of FPGAs.

Limited by on-chip hardware resources so far, low-level structural or behavioral

hardware description languages (VHDL, Verilog, or System C) are still users’ common

choices to achieve high hardware resources utilization. High-level languages such as C

or FORTRAN are based on instruction-driven model so generally cannot result in

efficient implementation [25]. Graphic languages such as Xilinx System Generator [26]

and Starbridge Viva [11] are other interesting options but seem only suitable for simple

DSP applications. Research on automated software fit-in has been conducted [27] for a

long time with limited achievements, and is, thereby, considered far from practical.

15

Since 2000s, increasing research efforts have been conducted for solving

numerical PDE problems on FPGA-based platforms. Highlights of research on this track

include computational fluid dynamics [28], computational electromagnetics [29], and

molecular dynamics [30], to name a few. Although most demonstrated impressive

acceleration over contemporary commodity computers, these results were normally

obtained by migrating software subroutine directly into application-specified FPGA-

based platforms, and hence may be inefficient, expensive, and incompatible with

industrial standards. We believe that most commonly-used software

algorithms/numerical methods are well-tuned for commodity computers, and so, in

general are nonideal for FPGA-based platforms. In order to achieve much higher

computational performance, one should design and/or customize new

algorithms/methods for their specific applications. Furthermore, these new algorithms

must be flexible and robust so that a wide range of commercial FPGA-based platforms

could accommodate it effectively and efficiently. Unfortunately, research in this

direction is rare.

16

3. HARDWARE ARCHITECTURE OF FPGA-ENHANCED

COMPUTERS FOR NUMERICAL PDE PROBLEMS

As we discussed in Section 2.4, coupling FPGA resources with commodity CPUs

is currently the most feasible way to construct a hardware-reconfigurable computer

system with acceptable flexibility at a reasonable cost. Most existing FPGA-enhanced

computers that have been proposed in recent years are mainly specified for real-time

DSP applications with streamed input/output. Their memory hierarchy is simple because

in general, DSP algorithms have relatively localized computational patterns, and so do

not require complicated data structures or large memory space for intermediate values.

However, numerical methods/algorithms for PDE problems in general exhibit low

floating-point operation to memory-access ratio, require considerable memory space for

intermediate results, and tend to perform irregular indirect addressing for complex data

structures. These intrinsic properties inevitably result in poorly sustained computational

performance on existing FPGA-enhanced computer systems as well as modern general-

purpose computers.

In this section, a new hardware architecture model of the FPGA-enhanced

computer is proposed taking into consideration special computational patterns of our

targeting problems. When referring to computer architecture, we use the definition from

Hennessy & Peterson’s famous computer architecture book [31], which refers not only

to the Instruction Set Architecture (ISA) of a machine, but also to its detailed

implementation. ISA conventionally serves as the boundary between software and

hardware. However, on FPGA-enhanced computers, this boundary is blurred. FPGA’s

In-System-Programmability (ISP) provides users with multiple choices in customizing

ISA for their specific problems. For example, users can select either to express

sequences of instructions implicitly with internal data paths, or they can customize

function/arithmetic units to extend the ordinary instruction set. Furthermore, users are

free to specify data buffering/caching sub-system utilizing in-chip programmable RAM

blocks or distributed registers according to specific requirements of an algorithm.

17

Correspondingly, it is now users’ responsibility to take care of almost all circuit design

details such as latency, timing, data consistency, cache replacement policy, etc.

3.1 SPACE System for Seismic Data Processing Applications

Because of the lack of appropriate commercial FPGA-based platforms, in 2003, we

had to propose an imaginary FPGA-based acceleration card [32] called SPACE (Seismic

data Processing Accelerator with reConfigurable Engine) for our computationally-

demanding and data intensive seismic data processing applications. Acting as a

hardware-programmable coprocessor board attached to an Intel-based workstation via

local PCI bus, SPACE consists of three main components: FPGA chip, external memory

modules, and PCI interface circuit (Figure 3). All of these components are COTS

devices, so can be easily replaced or upgraded in the future. The main difference

between this design and those we introduced in Section 2.4 is that we do not depend on

the system memory space of the host machine as working space. Alternatively, we select

to integrate multiple large-capacity memory modules with dedicated memory controllers

onboard. This design stresses the simplicity of hardware architecture as well as its

capability to manipulate a large amount of input/output data set or intermediate values.

The resulting FPGA-enhanced computer platform is also proven to be appropriate for

other large-scale numerical PDE problems.

The kernel component of SPACE is an up-to-date Xilinx Vertex II Pro series

FPGA chip, which contains a large array of programmable logic slices, along with

special function units such as block RAMs, hardwired multipliers, and gigabit serial

transceivers. The reason for integrating only one of the largest contemporary FPGA

devices on board is based on the consideration that in-chip programmable routing

resources are abundant and much more reliable than wires running on PCB boards. For

complex algorithms or large problems, multiple SPACE cards could be attached to a

single PC workstation to expand programmable hardware resources as well as memory

spaces.

18

XILINX
XC2VP70 DDR

RAM
DDR
RAM

PCI INTERFACE

RAM

RAM

PCI BUS

Figure 3. The SPACE Acceleration Card

As we mentioned above, data manipulating capability of a computer system is a

pivotal factor for rapidly solving numerical PDE problems. This unfeasible requirement

forces us to integrate as many dedicated memory channels as possible into our design to

broaden data paths between FPGA device and its external memory. In order to expand

memory capacity and bandwidth on SPACE, we integrate two kinds of memory modules

with dedicated memory controllers: Two large dual-port static RAM modules acting as

high-speed data buffer, and four DDR-RAM modules for saving large data volume up to

several Gigabytes. These memory modules are connected directly to the FPGA chip,

with a portion of programmable logic resources employed to construct their dedicated

memory controllers. For example, a DDR-RAM controller consumes hundreds of logic

slices, which is only a trivial fraction of programmable hardware resources inside a large

FPGA device. With abundant memory resources, all data and parameters could be

placed in-core so that the communication pressure on the local PCI bus is effectively

alleviated. Moreover, the main memory of the host workstation can be reduced

correspondingly.

The aggregated external memory bandwidth of the proposed SPACE platform is

over 20 GByte per second, which is over 3 times wider than a typical PC workstation.

19

The interconnections among these external memory channels and on-chip

arithmetic/function units could be customized on-the-fly with the help of internal

programmable routing paths. Consequently, appropriate memory hierarchy could always

be adopted for specific problems at hand. Furthermore, users can explicitly manage the

access to those independent memory channels so that much higher memory bandwidth

utilization could be achieved. However, restricted by the total number of programmable

I/O pins of an FPGA device, a limited number of dedicated memory channels could be

integrated in practice. Therefore, we predict that external memory-bandwidth would still

be the performance bottleneck especially for our targeting numerical PDE problems.

A standard 33MHz PCI bridge chip is used to provide the I/O interface between

the coprocessor board and the host workstation, through which about 100Mbyte/s of

continuous data transfer rate can be achieved. The narrow I/O bandwidth might become

a severe performance bottleneck preventing us from taking full advantage of FPGA’s

computational potential. Fortunately, we can easily replace it with a 66MHz PCI,

64bit/133MHz PCI-X, or the newest 16X PCI-Express, which can provide people with

up to 8GB/s data transfer rate in two directions. However, as the IO bandwidth

bottleneck is greatly alleviated, the communication latency between CPU and FPGA

caused by PCI controller may pose another problem.

Three years after the SPACE platform was proposed, we noticed that commercial

products with similar structures are now being introduced into the market. Minor

differences may exist, such as integrating several small but cheap FPGAs, supporting

only SRAM or SDRAM modules to save costs, or utilizing part of FPGA resources to

implement PCI interface instead of a dedicated PCI controller, those three main

components: FPGA devices, large-capacity memory, and PCI interface are indispensable.

The emergence of these products also indicates that industry is beginning to not only

show its interest in FPGA-based computing technique, but it is also trying to solve

realistic problems using the technique.

20

3.2 Universal Architecture of FPGA-Enhanced Computers

Based on experiences drawn from the SPACE project, we believe that by applying

FPGA-based reconfigurable computing technology, we can accelerate the executions of

a wide range of numerical PDE problems. Our belief is based on the fact that some

kernel subroutines of these programs consume a large portion of the programs’

execution time. These subroutines are usually short in length and, hence, are suitable to

be accelerated by FPGA. However, the concept of FPGA-based hardware reconfigurable

computing is currently still not widely accepted. Also, because standard hardware

architecture for such computers has not been developed yet, it is apparent that academia

and industry still hesitate in adopting FPGA resources into new mainframes. Grounded

on this situation, we abstract in this section a universal architecture of FPGA-enhanced

computer model for rapid solution of numerical PDE problems. Besides the capability to

accommodate a wide range of S&E problems, we also stress the simplicity of its

hardware implementation. We ask the resulting FPGA-enhanced computer system to

have a comparable price to a conventional PC workstation. Other appropriate properties,

such as compatibility and scalability, are also taken into consideration.

What we proposed is still an FPGA-based acceleration card attached to commodity

computers as shown in Figure 4. As the SPACE system, it integrates multiple large

memory modules onboard with dedicated memory controllers as working space.

Abundant on-board memory space and wide memory bandwidth partly compensate for

the relatively narrow IO bandwidth because we can always set subroutines running in-

core. IO only happens at the beginning and the end of the process, and therefore will not

dominate a program’s total running time. The FPGA board and its host computer work

as two loosely coupled systems with their dedicated memory space. Original software

subroutine could be easily migrated to this new FPGA-enhanced computer platform by

invoking the FPGA board as subroutine. Only the most time-consuming kernel

subroutines are accelerated by FPGA so that the software migration workload is modest

and the correctness of accelerated results can be easily verified.

21

Figure 4. Architecture of FPGA-Enhanced Computer

Instead of proposing a new computer model with fixed architecture, here we tend

to specify only guidelines so that computer designers could have more choices in tuning

the hardware structure of their FPGA-enhanced computers systems. For example, we do

not specify how many SRAM or SDRAM modules/channels on such systems. Indeed,

because we adopted an extremely simplified architecture with only FPGA, memory, and

CPU interface circuit as core components, we always tend to utilize as many external IO

pins of the FPGA device for dedicated memory controllers as possible. With these

physical external memory channels deployed on board, users can customize the memory

hierarchy based on the demands of specific applications utilizing FPGA’s internal

programmable routing paths as well as SRAM slices and distributed registers. The clock

frequencies applied to FPGA devices and external memory modules are within the same

range at hundreds of Millions Hz. Therefore, we could treat all internal and external

memory elements as a flat memory space to simplify system architecture and save FPGA

resources; or we could introduce complicated caching or buffering schemes to further

enhance data reusability and improve utilization of external memory bandwidth.

Besides the choices for memory hierarchy, system designers also have the freedom

to select appropriate IO interface between FPGA and CPU. IO bandwidth decides where

to place the dividing line between hardware and software, and therefore plays a key role

in determining weather a specific application could be accelerated effectively. The

22

relatively narrow IO bandwidth provided by peripheral bus such as PCI or VME might

become a severe performance bottleneck preventing us taking full advantage of on-board

FPGA’s computational potential. Fortunately, some commodity CPU vendors now start

opening their system bus for exterior access. For example, AMD’s Opteron processor

could support three high-speed HyperTransport links, which provide up to 19.2 GB/s

aggregated data communication bandwidth. With the help of these point-to-point paths,

FPGA resources now could be placed much closer to commodity CPU with much lower

administration overhead. They can even select to share the same system main memory

space, although it would not result in significant performance improvements for our data

intensive numerical PDE problems.

Figure 5. FPGA-Enhanced PC Cluster

Old PC Cluster systems could be easily upgraded to FPGA-enhanced PC Cluster

by inserting the acceleration card to each processing node as shown in Figure 5. The

existence of FPGA resources doesn’t affect the original functionality of host machines

so that this upgrade is transparent to old software. The original interconnection network

is untouched so that parallel efficiency of the new FPGA-enhanced PC Clusters is at

23

least as good as its predecessor, although the limited network bandwidth might pose a

severe performance bottleneck. An additional newly-deployed interconnection network

could be introduced, utilizing FPGA’s on-chip Multi-Gigabit Transceivers (MGTs). We

will explain this approach and analyze its performance in detail in the next section.

3.3 Architecture of FPGA-Enhanced Computer Cluster

As we mentioned above, multiple FPGA-enhanced computers could be easily

interconnected via high-speed commodity network to construct an FPGA-enhanced PC

cluster system. However, most prevailing Local Area Network (LAN) standards such as

Gigabit Ethernet, InfinityBand, Myrinet, etc., do not provide well-scaled performance,

especially when the number of interconnected processing nodes exceeds thousands. The

main reasons for this so-called “thousand-processor barrier” are shared physical data

links (Switching technique may alleviate this problem to a certain level.) as well as

overhead of network protocols.

To improve the scalability of the proposed FPGA-enhanced PC cluster system, we

introduce another interconnection network into the system utilizing FPGAs’ on-chip

Multi-Gigabit Transceivers (MGTs). A single FPGA chip contains 8~20 dedicated

MGTs, each of which could provide a point-to-point data link with raw communication

bandwidth up to 10 Gigabits per second. For better compatibility, users could select to

construct network interfaces with embedded standard protocol utilizing FPGA resources.

Furthermore, because there is no specific network protocol binding with these physical

resources, we are free to customize our own simplified data communication links for

improved bandwidth utilization and shorter communication latencies. Multiple dedicated

network interfaces also give us the freedom to select topology of this new

interconnection network. Besides simply utilizing standard high-speed commodity

network to augment total effective bandwidth, we can introduce localized

interconnection data links among adjacent reconfigurable computing nodes. The

topology could be set as ring (2 communications channels per node), 2D mesh/torus (4

channels per node), 3D cube (6 channels per node), or their hybrid. The corresponding

24

network performances are all well-developed, so that specific algorithms could select

appropriate network topology to improve their parallel efficiency.

We use seismic wave modeling and migration problems as an example to

analyze/predict the performance of high-order FDM on the proposed FPGA-enhanced

PC cluster. (Details of the underlying numerical methods can be found in Section 5.1.)

For such problems, a 2D torus interconnection network is a good choice to effectively

balance the performance and system complexity. Suppose we plan to upgrade a

convenient PC Cluster system mounted on multiple industrial standard cabinets. A

sketch of the resulting reconfigurable computer cluster with 2D torus network is shown

in Figure 6. (Only new interconnection paths are shown here; the original network

remains unchanged, so is ignored.) Each FPGA acceleration card is required to equip at

least four external physical data link ports built with FPGA’s on-chip MGTs. Standard

high-speed network optical-fiber or copper cable could be used for these point-to-point

communication paths depending on their lengths. The deployment and driving of these

short links between neighboring processing nodes would be easy and convenient.

Here, we consider only the simplest 3D acoustic wave modeling problems in large-

scale 3D space and assume follows:

25

Figure 6. 2D Torus Interconnection Network on Existent PC Cluster

1. Z-axis is shorter than x- and y-axis. In other words, the number of spatial grids along

z-direction is much less than the numbers along other two directions. Here we set

this number as 2000, which corresponds to 10 kilometer depth if the sampling

interval is 5 meters.

2. The entire spatial domain is divided into m-by-n sub-domains along x- and y-

directions. Each reconfigurable processing node contains enough FPGA and RAM

resources for accommodating all spatial grid values as well as necessary parameters

of one sub-domain.

3. The 2D torus interconnection network provides independent point-to-point

communication paths, which do not interfere with each other and can work

concurrently.

The first example is to show the capacity of the proposed platform for handling

large problems. Suppose each FPGA-enhanced processing node contains a large sub-

domain with 81052000500500 ×=×× spatial grids. We need at least four memory

spaces of the same size to save wave field values as well as media parameters such as

velocity and density required by 2nd-order time evolution scheme. Therefore, the

26

memory space on each acceleration card should be at

least GBytewordsG 824105 8 ==×× , which is feasible with today’s high-density

SDRAM modules.

Suppose we use 10th-order spatial FD scheme to simulate the propagation of waves.

The number of floating-point operations we required to update the wave field value at

one grid point for one time-marching step is about 50. So the total number of floating-

point computations on each processing node is 108 105.250105 ×=×× . When running on

a general-purpose computer with 1G FLOPS sustained floating-point performance, this

task could be finished in 25 seconds. (Here, we ignore the performance degradation

caused by the network.) However, if we ran the same job on the proposed FPGA-

enhanced PC cluster system, a conservative 5G FLOPS sustained performance is

achievable so that the job could be finished in only 5 seconds. Please notice that the

performance improvement is achieved from FPGA’s superior computational power

solely because IO communication doesn’t pose a performance bottleneck here.

Consider the performance of the newly deployed 2D torus interconnection network.

At every time-marching step, each FPGA-enhanced processing node needs to exchange

boundary node values with its four neighbors. Simple calculations show that there are in

total 8108.42000490490 ×≈×× internal spatial nodes and about 7102× boundary

points. Values of these boundary points are exchanged with neighbors via four on-board

MGTs simultaneously, so the lower-bound of the communication bandwidth for each

MGT port is 20 million bytes per time-marching step. It also equals to only

3258102 7 =÷×× M bits per second, which is only a tiny fraction of what is provided

by an MGT port.

Now, we consider a much smaller problem with only 71022000100100 ×=××

spatial grids in each sub-domain. The total number of on-board memory space required

in this case is about 320 Mbytes. The total number of floating-point computations is 1G

for each time step, which could be finished in 0.2 second on the proposed FPGA-

enhanced PC cluster system.

27

The ratio of the number of internal points and boundary points is changed

dramatically. We now have 71062.1 × internal points and 6108.3 × boundary points. It

also means that the ratio of communication to computations is now much larger than the

previous case. Thereby, the conventional commodity interconnection network would not

work efficiently in this case. For the customized 2D torus interconnection network, the

lower-bound of the communication bandwidth for each MGT port is now 3.8 million

bytes per time-marching step, which equals to 1522.08108.3 6 =÷×× M bits per second,

still only a fraction of what is provided by a MGT port.

From these two examples, we can conclude that the computational performance of

our finite deference based wave modeling problem is now decided solely by the

computational power of the FPGA-enhanced processing node with the help of the new

2D torus interconnection network. If the problem size is not too small, we can even

execute computations and communications sequentially without significant performance

degradation.

28

4. PSTM ALGORITHM ON FPGA-ENHANCED COMPUTERS

4.1 PSTM Algorithm and Its Implementation on PC Clusters

Diffraction summation based Pre-Stack Kirchhoff Time Migration (PSTM)

algorithm is one of the most popular migration methods in seismic data processing

because of its simplicity, robustness, and good target-orientation [33]. This algorithm is

derived from Huygens’ Principle and mathematically provides a high-order approximate

integral solution to acoustic wave equations (2.1) [34]. Practical PSTM tasks for large-

scale 3D seismic surveys are computationally intensive and cannot be used routinely

except in institutes/companies able to afford the high cost of operating and maintaining

supercomputers or large PC-cluster systems. In this section, I will use this algorithm as

the first example to show the remarkable computational power of the proposed FPGA-

enhanced computer system. Specifically, when operating on commodity computers, this

algorithm consumes over 90 percent of CPU time to execute its short but time-

consuming kernel subroutines for billions of iterations. By accelerating the evaluations

of these kernel subroutines with a customized arithmetic unit, our new FPGA-based

solution operated over 10 times faster, allowing people to produce a satisfied

underground image a lot faster.

Before we continue, I will briefly explain several specialized terms which will be

referred in this document. In seismic reflection survey, an array of thousands of

geophones is regularly distributed across the ground surface to detect the intensity and

elapsed time of reflected seismic waves. The time-series recorded by each geophone

during an exploding experiment (one shot) is called a “seismic trace”, which is

characterized by the ground positions of the source and the receiver. The set of traces

recorded by all receivers during one shot forms a “common shot gather”. The data set

collected from a large number of experiments of multiple shots at all receiver positions

forms a 5D data volume),,(tgsD , where),(ss yxs = and),(gg yxg = are the surface

coordinates of the shot and receiver, t is the elapsed time of the recorded dataset.

29

Define “two-way travel time” as the duration of an acoustic impulse starting from

the shot position, reflecting at the scatter point, and then traveling back to the ground

receiver, the total down-up two-way travel time is determined by:

2

2
2

2

2
2

ττ

ττ
V
R

V
STTT RsSR +++=+= (4.1)

Where ST is the travel time from the shot point to the scatter point; RT is the travel

time from the scatter point to the receiver point; S and R are the distances between the

surface mirror of the underground scatter point and the shot point or receiver point,

respectively; τ is the pseudo-depth of this scatter point in the output section; and τV is a

priori estimation of the Root Mean Square (RMS) velocity at point τ . Figure 7

schematically shows the relationship between the source, receiver and scatter points in a

2-D profile.

Source ReceiverS R

Scatter
Point

ST RT

Mirror

Figure 7. The Relationship Between the Source, Receiver and Scatter Points

The PSTM algorithm assumes that the energy of a sampled point 0t in an input

trace is the superposition of reflections from all the underground scatter points that have

the same travel time 0tTSR = for the fixed source and receiver positions. Therefore, for

one sample point on an input trace with known source and receiver coordinates, its

energy should be spread out to all possible scatter points according to its travel time SRT .

The locus of all possible scatter points with travel time SRT in a constant velocity

30

medium is also depicted in Figure 7, which constitute an ellipse in 2D profile following

the geometric definition. In order to retrieve all underground scatter points, the energy of

an input trace must be distributed to all possible scatter points correctly, after which the

energy from different input traces is added together at each pseudo-depth point in the

output section. For amplitude preserving PSTM, additional oblique factor calculations

[35] [36] and corresponding multiplications of this factor are also indispensable.

The PSTM algorithm is computationally intensive: we need to evaluate the two-

way travel time in Equation (4.1) iteratively for enormous times. The computational

complexity of this algorithm is)(gsyx NNNNNO ⋅⋅⋅⋅ τ for 3D cases [37]. Traditionally,

only high performance super-computers can finish this time-consuming 3D PSTM

algorithm within an acceptable time period. Recently, PC cluster has emerged as a cheap

and efficient alternative to supercomputers. A PC cluster system consists of one or

several servers and many workstations interconnected via high-speed network. Taking

advantage of commodity hardware and Linux OS, a PC cluster system sometimes could

achieve performance that is comparable to supercomputers at an affordable price for

network non-intensive applications.

PSTM algorithm could be parallelized ideally when running on PC cluster systems

with limited network bandwidth. The server of the cluster broadcasts input traces to all

workstations and each workstation migrates these input traces into its local output

section),,(τyx . Once all input traces are migrated, the server collects all partial results

from workstations and forms a final migrated image. Ignoring the initial parameter

distribution step and the final data collection step, the only data flow is to broadcast

input traces from the server to workstations, and there is no communications among

those workstations. By parallelizing the migration task in output surface

coordinates),(yx and sequentially iterating over the pseudo-depth axis τ [38], the

communication between the server and workstations is minimized. Algorithm 1 is the

kernel portion of PSTM procedure executed on every workstation.

The performance provided by a PC cluster system is nearly linear to the number of

interconnected workstations for this parallelized PSTM algorithm. However, when

31

additional workstations are inserted into the system, the shared communication channel

becomes a performance bottleneck. Furthermore, the reliability problem inevitably

becomes a serious one for systems with thousands of interconnected workstations.

Employing more powerful workstations can effectively alleviate these problems at the

cost of increased system price.

Algorithm 1. Program Flow of PSTM Kernel Subroutine Running on PC

Workstations

......

Receieve one input trace from server

Prepare parameters for this trace

For every local output trace in this workstation

 For every pseudo-depth point on this output trace

 Calculate travel time TSR for this output point -

 -associated with the position of this input trace

 IF (TSR > Tmax)

 THEN finish this output trace

 Fetch data from input trace indexed by TSR

 Anti-aliasing filtering

 Calculate oblique factor

 Scaling the selected input data by oblique factor

 Accumulate scaled input data to this output point

 End

End

......

32

4.2 The Design of Double-Square-Root (DSR) Arithmetic Unit

As we mentioned in Section 4.1, the evaluation of two-way travel time defined by

Equation (4.1) is the most time-consuming part of the PSTM algorithm. It contains five

multiplications, three additions, and two square-root operations, ten floating-point

computations in total. Division by velocity in this equation can be replaced by

multiplication using slowness table, which is the reciprocal of velocity. To complicate

the situation, there is no hardwired floating-point square-root arithmetic units integrated

inside most commodity CPUs. People have to rely on software routines to approximate

their values, which leads to the evaluations of square root tens, even hundreds, times

slower than standard computer arithmetic such as multiplication and addition. Because

the evaluation of a square root poses a severe performance bottleneck and will dominate

the total running time of PSTM algorithm, people sometimes refer to Equation (4.1) as

the “Double Square Root (DSR) equation”.

The simplest and most straightforward (although not the most preferred) way to

evaluate the DSR equation on FPGAs is to construct a large computing engine with ten

standard floating-point arithmetic units. To ensure high computational throughput, each

arithmetic units in the computing engine should be fully-pipelined internally. However,

besides consuming too many hardware resources, the latency of a fully-pipelined square-

root unit is almost ten times more than a pipelined multiplier or adder. Correspondingly,

the accumulated pipelining latency of the large computing engine would become a

serious issue and significantly degrade its achievable computational performance.

4.2.1 Hybrid DSR Arithmetic Unit

It is not always the best solution for an FPGA-based system to implement an

algorithm by simply mapping software subroutines into its programmable hardware

resources. Taking into consideration special properties of an algorithm along with

characteristics of FPGA would always produce a hardware-efficient solution. For the

33

PSTM algorithm, CORDIC [39] unit is a good choice to evaluate sT and RT in Equation

4.1 by regarding 22 YX + as a vector norm in 2D Cartesian coordinates. CORDIC is a

vector-rotation-based hardware algorithm for evaluating trigonometric and other

transcendental functions using only hardwired shifters and adders [40]. The highly

regular structure attains it appropriately for FPGA-based implementation. Now the

computing engine needs only two multiplications, two CORDIC units, and one addition

to evaluate the DSR equation, which achieves more than 50% of resources reduction.

Subtractor MUX SubtractorCarry
Sign

Carry

FIFO
Unfolded

Barrel
Shifter

yx ee −

xm.1 ym.1 xe ye

'xm 'ym 'xe

FIFO FIFO

Unfolded CORDIC FIFO

'xe"xm "ym

MUX Adder

.

.

.

Bit4

Bit0

'xe22 "" yx mm +

mantissa exponent

Leading Bit

TS/TR

Exchanging
Stage

Alignment
Stages

CORDIC
Stages

Normalization
Stage

Figure 8. Hardware Structure of the Hybrid DSR Travel-Time Solver

To be compatible with ordinary seismic data processing software, the input and

output values of the arithmetic units in our design should all be in floating-point format.

34

Floating-point CORDIC in pure hardware is expensive because of the indispensable

normalization and alignment stages before and after every CORDIC iteration. According

to characteristics of our application, we designed a modified floating-point/fixed point

hybrid CORDIC unit. This arithmetic unit can provide similar, or even better, error

bound than standard floating-point arithmetic, but consumes nearly the same hardware

resources as pure fixed-point CORDIC. Figure 8 shows the corresponding hardware

structure.

This hybrid CORDIC unit has the following unique properties, which

distinguishes this design from others [41]:

• It utilizes fully pipelined hardwired add-and-shift stages, so can achieve much higher

computational throughput than the recursive implementation proposed in [41].

• The first stage accepts two floating-point inputs and converts them into an internally

aligned floating-point format. The exponent of these two aligned operands is kept

unchanged while two mantissas are fed into a pipelined fixed-point CORDIC unit as

inputs. The word width of the mantissas is extended to ensure high numerical

accuracy.

• The alignment of two floating-point inputs guarantees the same dynamic range as

standard floating-point arithmetic. The extended word width of mantissas ensures the

same, or even better, numerical error bound.

• The physical character of the application implies that all inputs to the CORDIC unit

are positive numbers. By parallel comparison of two exponents and two mantissas,

we can decide which operator is larger in one pipeline stage. So an exchanging stage

is placed in front of those alignment stages to eliminate one costly barrel-shifter.

• Ordinary CORDIC algorithm needs two additional leading bits to prevent overflow

because the largest amplitude gain is 2.33. The first exchanging stage in our design

eliminates the first °45 rotation, so changes the processing gain to 1.647.

Correspondingly, only one aditional leading bit is needed here.

• No Leading-Zero-Detector (LZD) is needed in this new implementation. LZD is

used in ordinary CORDIC units for normalizing intermediate results of floating-point

35

arithmetic. Its implementation is not as easy as it looks. Ordinarily, complex

hardware structures such as array or tree would be involved [42].

• The final normalization step of the floating-point multiplication
V

X 1
⋅ is eliminated

because the carry bit of the exponent subtraction in the exchanging stage can absorb

the possible exponent increment.

• Only the vector norm output of the CORDIC unit is needed, so we can save about 33

percent of FPGA resources by omitting the Z channel output completely.

• The final floating-point addition of sT and RT is simpler than an ordinary floating-

point adder because all of these two operators are positive so that subtraction doesn’t

need to be taken into account.

In order to analyze the error property of our design, a C program was used to

simulate the exact iterative operations of the proposed CORDIC unit. In every single

experiment, we randomly create one million pairs of single-precision floating-point

numbers as inputs. Outputs of the proposed hybrid CORDIC unit are compared with

results produced by standard double-precision floating-point arithmetic. Maximum

errors and average errors are recorded/calculated and their values are amplified by 202 .

Table 2. Error Property of the Hybrid CORDIC Unit with Different Guarding Bits

Word-width/Guarding Bits Average Error (ppm) Max. Error (ppm)

25/0 0.0376 0.305

25/1 0.0181 0.170

25/2 0.0092 0.075

25/3 0.0046 0.034

25/4 0.0023 0.018

25/5 0.0012 0.009

floating-point 0.0260 0.12

36

Table 2 shows the simulation results of the proposed hybrid CORDIC unit for

fixed word-width b=25 (One bit is added for preventing overflow.) with different

guarding bits. Computational errors with single-precision floating-point arithmetic for

the same operations are also listed as references. We can observe from this table that a

25-bit hybrid CORDIC unit with two additional guarding bits provides people with

similar precision as single-precision floating-point arithmetic. If the same average

relative error criteria is acceptable, a 25-bit CORDIC with one additional guarding bits is

enough.

4.2.2 Fixed-point DSR Arithmetic Unit

A more ambitious design tries to take into consideration the physical meaning of

two-way travel time. The value of travel time is used in the final accumulation stage as a

time index to fetch the proper sampling point in input traces. Its value should be

bounded by the moment of the last sample in an input trace maxT , which is less than 16

seconds in most realistic cases. The sample interval of input trace is usually coarser than

1ms. If we treat those time indices as fixed-point numbers, much simpler fixed-point

arithmetic could be employed to evaluate Equation (4.1). Figure 9 shows the fixed-point

format used in this approach and Figure 10 is the structure of the fixed-point DSR travel

time solver.

According to the preceding analysis, the worst-case absolute errors of time indices

should be smaller than 0.5ms, which means the error bound for every fixed-point

CORDIC channel is 0.25ms. There are two error sources: the rounding error produced

by the first conversion stage that converts two floating-point numbers into aligned fixed-

point values, and the computation error introduced by the fixed-point CORDIC unit.

Table 3 lists average and maximum rounding errors caused by the conversion stage with

different fraction word width. Implementation results of the fixed-point CORDIC unit

with different word-width and guarding-bits are listed in Table 4.

37

5 Integer Bits Fraction Bits

Radix-Point
Figure 9. Output Format of the Conversion Stage

Conversion Counter Conversion

S/V

T0

R/V

CORDIC CORDIC

Adder

TS TR

TSR
Figure 10. Hardware Structure of the Fixed-Point DSR Travel-Time Solver

We can conclude from these two tables that computational errors would dominate

our final results. Obviously, 19-bit fixed-point CORDIC with zero guarding bit (5

integer bits and 13 fraction bits) is the best choice. Another bonus of this pure fixed-

point travel-time solver approach is that the 0T can be easily generated by an integer

counter.

Although this fixed-point travel-time solver is practical for the engineering

standard and could save considerable FPGA hardware resources, a weak point of this

implementation is that the result produced by fixed-point CORDIC would be too coarse

to be utilized as inputs to interpolation methods. Therefore, we will use only the hybrid

CORDIC approach in the following performance comparison.

38

Table 3. Rounding Error of the Conversion Stage with Different Fraction Word-

Width

Fraction Word-width Ave. Rounding Error Max. Rounding Error

10 0.000236 0.000691

11 0.000118 0.000345

12 0.000059 0.000174

13 0.000030 0.000087

Table 4. Errors of the Fixed-Point CORDIC Unit with Different Word-Width and

Guarding Bits

Word-width/Guarding Bits Average Error Max. Error

17/0 0.000123 0.000669

17/1 0.000077 0.000386

17/2 0.000066 0.000312

18/0 0.000061 0.000337

18/1 0.000042 0.000240

18/2 0.000038 0.000198

19/0 0.000033 0.000193

19/1 0.000029 0.000172

19/2 0.000027 0.000141

4.2.3 Optimized 6th-Order DSR Travel-Time Solver

The travel time in Equation (4.1) is a 2nd-order approximation to the following

Taner’s travel time equation [43] for horizontally stratified medium model:

L++++= 6
4

4
3

2
21

2 XcXcXccTX . (4.2)

39

Where X is the offset and kc are priori-estimated coefficient tables associated

with the output section. (For example, 2
1 τ=c and 22

1

τV
c =)

The accuracy will be improved significantly when factoring higher order series

into the travel time calculation. People may prefer the 4th-order or 6th-order schemes

because the evaluation of the coefficients for higher than 6th order terms are impractical.

In our design, we adopt the optimized 6th-order scheme proposed by Sun et al. [44] as

follows:

)()(
66

R
R

S
SSR T

RccT
T
SccTT +++= (4.3)

Where

4
3

2
21 ScSccTS ++= (4.4)

4
3

2
21 RcRccTR ++= (4.5)

The definitions and values for the first three coefficients are the same as Equation

(4.2), but the 4c term is modified by taking other higher order terms into account,

thereby resulting in the coefficientcc .

The hardware implementation of the optimized 6th-order DSR travel time solver is

a direct expansion of our previous design. The evaluation of Equation (4.3) is

straightforward. Equation (4.4) and (4.5) can be rewritten as:

22
3

22
21)()(XcXccTX ++= . (4.6)

Obviously, two cascaded CORDIC units can finish this calculation.

Three coefficients table are needed in this scheme compared with only one RMS

velocity table in the previous case. So each evaluation of SRT has to access three

coefficients from memory. Now, memory capacity and its bandwidth could become a

problem for this scheme.

40

4.3 PSTM Algorithm on FPGA-Enhanced Computers

Although the programmable hardware resources inside an FPGA chip have

increased greatly in recent years, they are still not rich enough to fit in a complicated

program. The hardware-software hybrid approach is the most feasible way to accelerate

a program on FPGA-enhanced computer platform. In order to be an effective alternative,

FPGA-based solutions should be at least one-order faster than software executed on

traditional CPU-based computers. Although some kernel subroutines could be

accelerated significantly by FPGA, governed by Amdahl’s Law (Refer to Equation (4.7)

~ (4.9) in Section 4.4), the overall acceleration of a program may not be satisfactory

because of the existence of un-accelerated subroutines.

The feasibility of applying FPGA technology to accelerate the PSTM algorithm is

based on the fact that over 90 percent of the CPU time of the program is consumed by

billions of iterations of inner loops. This short but time-consuming kernel subroutine is

suitable for acceleration by the FPGA device. As we mentioned in Section 3, good

acceleration results depend greatly upon where to place the dividing line between

hardware and software. In our design, this line is placed to balance the computational

workload between FPGA and CPU: we always tend to exploit most of FPGA’s

computational potential accelerating the execution of a program, at the meantime, still

keep enough workload running on the host machine to saturate its computing power.

Algorithm 2 shows the program flow of the PSTM kernel subroutine executed on

FPGA-enhanced PC workstations. The bold portion of the program is now migrated into

FPGA. We can easily tell that the dividing line of hardware and software was placed so

that two of the most inner loops are executed in FPGA. All related computations are

executed in-core, in other words, there are no intermediate results transferring via the

interface between the acceleration card and the host CPU, except in the initial

transmission of input traces. There are only trivial differences between Algorithm 1 and

Algorithm 2, which means that the software migration workload is trivial. The new

PSTM program running on the FPGA-enhanced PC workstation is almost the same as

41

the software version except that it invokes the FPGA-based acceleration card as a

subroutine. Input traces are transmitted into the card as input parameters. When all

calculations regarding one input trace and all local output traces are finished, a signal is

sent back from FPGA to the host machine to activate the transmission of the next input

trace. After all input traces are processed, the final output result is read from the

acceleration card for display or further processing steps. When running on an FPGA-

enhanced PC cluster system, because the execution of the program’s inner loops are

accelerated significantly by FPGAs, more input traces could be processed in unit time.

Obviously, the actual data transferal rate via the interconnection network would be much

higher than before. Because most traffic is to broadcast input traces from the server to

workstations, the additional communication overhead in general introduce only

moderate performance degradation.

Algorithm 2. The Program Flow of the Accelerated PSTM Kernel Subroutine

........

For every input trace in a field data volume

Prepare parameters for this trace

 Download this trace and its parameters to SPACE

 For every output trace allocated to this board

 For every pseudo-depth point on this output trace

Calculate travel time Tsr for this output point-associated with the position

- of this input trace

 IF (Tsr > Tmax)

 THEN finish this output trace

 Fetch data from input trace indexed by Tsr

 Anti-aliasing filtering

 Calculate oblique factor

 Scaling fetched data by oblique factor

42

 Accumulate scaled input data to this output point

 End

 End

End

........

Figure 11 is the structure of one customized computing engine for evaluating the

bolded section of the PSTM algorithm shown in Algorithm 2. In order to achieve a high

computing speed at one accumulation per clock cycle, every arithmetic unit inside the

computing engine is carefully designed to maximize its data throughput. They also are

carefully deployed inside the FPGA chip because their physical layout will affect the

data flow paths, which in turn affect the sustained execution speed. If there were still

free FPGA resources available on board, several identical computing engines could be

instantiated to manipulate their own data sets concurrently. Furthermore, multiple FPGA

boards could be attached to a single host workstation to increase its computing power

dramatically.

43

Conversion

Adder

CORDIC

Oblique
Factor Table

Multiplier

Conversion

Input Trace
Buffer

Accumulator

Multiplier

Conversion

CORDIC

0T S
V
1

R

ST RT

SRT

Multiplier

output Trace
Buffer

FIFO

.)(Addr

.)(Addr .)(Addr

)(Data

)(Read

)(Write

Figure 11. Hardware Structure of the PSTM Computing Engine

4.4 Performance Comparisons

In this section, I compare the computational performance of the FPGA-specific

PSTM algorithm with its pure software counterpart running on a referential Intel P4

2.4GHz workstation. The performance comparison contains precision comparison and

speed comparison. A real 3D input data volume that contains 186512 input traces is used

as input. Each trace has 1500 samples with a 4ms sampling interval. The 3D output

image cube contains 90 by 500 surface positions, by about 1500 pseudo-depth points per

output trace.

44

Figure 12. A Vertical In-Line Unmigrated Section

Figure 13. The Vertical In-Line Migrated Section

Figure 12 shows the image of a vertical in-line section selected from the stacked

input data. Figure 13 is the migrated image for the same output section created by a

simulation program, which imitates the same operations and precision as the FPGA-

based hardware design. This migrated image is nearly the same as the result produced by

45

the pure software version of the PSTM algorithm running on the referential workstation.

Notice that migration provides people with a clearer and more reliable underground

image and facilitates detailed and easily recognizable subsurface structures. For example,

the inclination of the reflection event A is increased in Figure 13; the vague event B in

Figure 12 is clarified and turned into a syncline at the same position in Figure 13.

Define an elementary computation as all the calculations required for each input-

output point pair to calculate the two-way travel time, oblique factor, anti-aliasing

filtering and output accumulation. The total number of all elementary computations for

this data volume is about 644 billions taking the migration aperture and the

maxT limitation into consideration. The total execution time of the original program

operating on the referential Intel workstation is 206570 seconds, in which more than

98% (202468 Seconds) are consumed by elementary computations and less than 2%

(4102 Seconds) by others. In the following quantitative performance analysis, we use

CORET as the elapsed time for all the elementary computations, OTHERT as the time for

other assistant works including initialization, data preparation, communication, etc. We

have:

OTHERCORESOFT TTT += (4.7)

The proposed FPGA-specific PSTM computing engine accelerates only the

elementary computations and leaves all other operations to the host machine. So the new

total execution time will be:

OTHERCOREHARD TTT += ' (4.8)

According to Amdahl’s Law, the overall speeding-up is:

pCoreSpeedu
ionCoreFraactonCoreFractiHARD

SOFT

T
T

Speedup
+−

==
)1(

1 (4.9)

Table 5 lists the performance comparison results for the designated task between

the referential Intel workstation and the proposed FPGA-based approach with different

configurations.

46

Table 5. Performance Comparison of PSTM on FPGA and PC

Configurations
Clock

Frequency
(Hz)

FPGA
Resources

Occupation

Kernel Code
Speed

(million/s)

Kernel Code
Speedup

Overall
Speedup

Intel P4
Workstation 2.4G NA 3.2 1 1

 One Computing
Engine 50M 18.6 50 15.6 10.8

Two Computing
Engine 50M 32.8 100 31.2 16.4

Four Computing
Engine 50M 61.4 200 62.4 22

The following observations can be drawn from Table 5:

• The execution speed of a single FPGA-specific PSTM computing engine is 15.6

times faster than the speed of the referential Intel workstation. This impressive result

is credited to the fully pipelined structure of the computing engine.

• The acceleration of the kernel subroutine of PSTM algorithm would increase linearly

with the number of in-chip computing engines, but the overall acceleration is

bounded by OTHERT , which is constant for a designated processing task. A bigger task

will increase the proportion of elementary computations and the overall acceleration

will rise accordingly.

• The density (hardware resources) of an FPGA device will restrict the number of in-

chip PSTM computing engines. On the other hand, computational performance of

this algorithm could be further improved by integrating larger FPGA devices on

board in the future.

• Memory bandwidth is another bottleneck, especially when more PSTM computing

engines are integrated into one FPGA chip. Employing faster memory modules (for

example, DDR400) or more dedicated memory controllers partially alleviates this

problem.

47

• This comparison doesn’t take into consideration the speed degradation caused by

pipeline stalls. In the hardware-based implementation of the PSTM algorithm,

switching to next input/output traces would lead to control hazard, which is similar

to branching stall of a pipelined commodity CPU. This control hazard is hard to

predict because of the changing migration aperture, and so cannot be avoided.

Theoretically, simply flashing a pipeline will cause at most 10% of performance

degradation taking into consideration the gap between the number of pseudo-depth

points per output trace and the number of pipeline stages in the computing engine.

48

5. FDM ON FPGA-ENHANCED COMPUTER PLATFORM *

In this section, we will introduce our work on accelerating Finite Difference

Methods (FDM) on the proposed FPGA-enhanced computer platform. FDM is one of the

oldest, but the most popular, numerical methods for solving various scientific &

engineering problems governed by ODEs or PDEs. Although extremely computationally

intensive, this class of methods is always a user’s first choice because of its simplicity

and robustness. Furthermore, such methods have the capability for dealing with complex

geological models, which in general could not be handled effectively by Fourier

transformation or other approximation methods. In the past decade, FD-based numerical

modeling efforts for transient wave propagation problems in computational acoustics,

computational electromagnetics, or geophysics fields have grown rapidly with

performance improvements in commodity computers and parallel computing

environments. Various software techniques, from high-level parallelism on PC-Cluster

system to low-level memory and disk optimization, or even instruction-reordering, have

been developed to accelerate the execution of these simulation tasks. However, these

procedures are still time-consuming, especially when the geometrical size of the

computational domain is much larger than the wavelength of sources. Therefore, they

cannot be used routinely, except in institutions able to afford the high cost of operating

and maintaining high-performance computing facilities.

This section is organized as follows: In Section 5.1, the standard second-order and

high-order FD schemes for acoustic wave equations are derived based on Taylor

expansion, and their deficiencies in numerical accuracy and computational costs are

analyzed in detail. In Section 5.2, after a brief review regarding the state-of-art of

solving linear wave modeling problems on FPGA-based systems, I present in detail our

solutions to accelerate FDM on the proposed FPGA-enhanced computer platform. I first

* Reprinted with permission from “Optimized high-order finite difference wave
equations modeling on reconfigurable computing platform” by C. He et al., 2007.
Microprocessors and Microsystems, 31 103-115. Copyright 2007 by Elsevier.

49

introduce our design of the fully-pipelined FD computing engine and the sliding

window-based buffering subsystem using the (2, 4) FD scheme as an example. Next, I

extend this design to higher order schemes in time and in space to demonstrate its good

scalability. For 3D cases, I propose the partial caching scheme utilizing external SRAM

blocks as page buffer. The floating-point operation to memory-access ratio of FD

schemes is analyzed and compared to emphasize its impact on achievable sustained

computational performance of this implementation. Absorbing Boundary Condition

(ABC) is one of the most troublesome parts of these modeling tasks, but is pivotal to the

accuracy of final results. In this work, I adopt artificial damping layers to absorb and

attenuate outgoing waves. This simple Damping Boundary Condition (DBC) scheme

introduces only moderate additional workload and consumes limited hardware resources,

so would be perfect for our high-order FD-base implementation.

Section 3 provides the performance comparisons between the new FD computing

engine implemented on Xilinx ML401 FPGA evaluation platform and its pure software

counterpart running on a P4 workstation. Conventionally, scientists in this field select to

compare only the execution time of numerical experiences to show the superiority of

their FPGA-based solutions over general-purpose computers. However, these

comparisons did not take into account other cost factors such as system complexity,

commonality, etc., so is more or less unfair for PC-based solutions. Here, the fairness of

the performance comparison is emphasized. The aim is to facilitate results of this

research work convincing for people who are familiar with coding on conventional

software environment.

 Standard floating-point arithmetic units are the main components of the resulting

high-order FD computing engine and consume most in-chip programmable hardware

resources. Sometimes, the computing engine for complex PDE problems may require

tens, even hundreds, of such arithmetic units, which might be unfeasible for systems

with limited FPGA resources. From Section 4, I introduce our efforts to address this

problem with improved numerical methods/algorithms. I first present our design of

FPGA-specific FD schemes using optimization methods. A heuristic algorithm is

50

proposed to adjust FD coefficients so that considerable hardware resources could be

saved without deteriorating numerical error properties. In Section 5, I propose a group-

alignment based summation algorithm to accumulate those floating-point products

produced by coefficient multipliers in floating-point/fixed-point hybrid arithmetic. This

hardware-based algorithm can result in similar, or much better, worst-case absolute and

relative numerical errors as standard floating-point arithmetic with only a fraction of

hardware resources consumed. Also the total number of pipeline stages required for the

new FD computing engine could be reduced significantly.

5.1 The Standard Second Order and High Order FDMs

5.1.1 2nd-Order FD Schemes for Wave Equations in Second Derivative Form

Linear wave equations are in general represented in first derivative form. It is well

known that they can also be written in second derivative form without losing generality

[45]. Representing linear wave equations in second derivative form has no benefit for

conventional Finite-Difference Time-Domain (FDTD) algorithms executed on general-

purpose computers. However, as we will see later in this section, it plays a key role in

our FPGA-based solution to improve the efficiency of memory access.

Let’s consider the simplest 2D scalar acoustic case in the form of second-order

linear PDE, which relates the temporal and spatial derivatives of the vertical pressure

field as follows,

),,(),,(
),(

1),(),(),,(2
2

2

tzxftzxP
zx

zxzx
t

tzxP
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇•∇−

∂
∂

ρ
νρ (5.1)

Where P is the time-variant scalar pressure field (pressure in vertical direction)

excited by an energy impulse),,(tzxf ;),(zxρ and),(zxv are the density and acoustic

velocity of underground media, which are all known as input parameters for wave

modeling (forwarding) problem.

51

Define the gradient of a scalar field S as: z
z
Sx

x
SS vr

∂
∂

+
∂
∂

≡∇ and the divergence of a

vector field V
v

 as,
z
V

x
VV zx

∂
∂

+
∂
∂

≡•∇
v

, Equation (5.1) describes the propagation of acoustic

waves inside 2D or 3D heterogeneous media with known physical properties. The

numerical modeling problem we considered here is to simulate the time evolution of the

scalar pressure field P at each discrete grid point in 2D or 3D space accurately. It is

straightforward to extend the numerical methods and corresponding hardware

implementation proposed here to other FD-based numerical simulations. For example,

the classical 3D Maxwell’s equations in computational electromagnetic problems can

also be rewritten as three second-order wave equations in x , y , or z direction

respectively with similar but more complex forms as Equation (5.1).

We assume underground media a constant density to further simplify Equation (5.1)

as follows,

),,(),,(),(),,(2
2

2

tzxftzxPzxv
t

tzxP
=∆−

∂
∂ (5.2)

Here, 2

2

2

2

2

2

zyx ∂
∂

+
∂
∂

+
∂
∂

≡∆ stands for the Laplace operator. Notice that the

vector field),,(tzxPV ∇=
v

 in Equation (5.1) disappears here and the input and output of

this Laplace operator are all scalars. This new equation is still practical for 2D and 3D

acoustic modeling problems and widely used in seismic data processing field.

FDM starts from discretizing this continuous equation into discrete finite-

dimensional subspace in time and/or space. Given the values of variables on the set of

discrete points, the derivatives in the original equation are then expressed as a linear

combination of those values at neighboring points. Equation (5.2) is usually discretized

on unstaggered grids, where the second-order spatial differential operators are

approximated by the standard 2nd-order central FD stencil as follows,

() () ()2
,,

22
,

21
,,

1
, 2 dtOfPvdtPPP n

ki
n
kiki

n
ki

n
ki

n
ki ++∆⋅⋅+−⋅= −+ (5.3)

and

52

()

() ()
() ()22

2
1,,,1,

2
,1,,1

,
2 22

dzOdxO
dz

PPP
dx

PPP
P

n
ki

n
ki

n
ki

n
ki

n
ki

n
kin

ki ++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +⋅−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +⋅−
=∆ −+−+ (5.4)

Here we use ()2∆ represent the 2nd-order accurate FD approximation of the Laplace

operator. The subscripts in these equations mark the spatial positions of discrete pressure

field values or parameters; superscripts mark the time points when pressures are

evaluated. dx and dz define the spatial interval between two adjacent grids in x or z

direction, respectively. dt stands for the time-evolution step.

Equation (5.3) shows us the second-order time-evolution scheme and equation (5.4)

is the second-order FD scheme evaluating the spatial Laplace operator. Figure 14 depicts

the corresponding FD stencil in 2D space. We also draw the 3D spatial stencil of ()2∆ in

figure 15. All grid points that are involved in calculation are marked out in these figures.

We can observe in Figure 14 that six grid values together with one parameter value (kiv ,)

are needed to evaluate 2D pressure field P at grid point),(ki to a future time step. Five

of those grid values come from the present pressure field at this spatial point and its four

orthogonal neighbors; the last one is the pressure value at the same grid point but from

previous time step.

Figure 14. (2, 2) FD Stencil for the 2D Acoustic Equation

53

Starting from two known wave fields working as initial conditions, FD wave

modeling tasks progress the evaluation of wave propagation grid point-by-grid point and

time step-by-time step. Realistic seismic wave modeling problems may have thousands

of discrete grid points along each spatial axis. So the total number of grid points in

computational space could be in the millions for 2D cases or in the billions for 3D cases.

The number of discrete time evolution steps is at least the same as the number of discrete

spatial points along the longest axis according to Courant-Friedrichs-Lewy (CFL)

stability condition [46]. Correspondingly, FD solutions of such time-dependent problems

are in general computationally demanding as well as data intensive.

Figure 15. Second-Order FD Stencil for the 3D Laplace Operator

However, the extraordinary computational workload of FDM is not the entire story:

finite difference approximations also introduce numerical truncation errors. Such errors

arise from both the temporal and spatial discretizations and can be classified into

numerical dispersion errors, dissipation errors, and anisotropy errors. Here, I omit

tedious mathematical theories of numerical analysis but give the readers an intuitive

explanation that numerical errors would cause the high frequency wave components

propagating at slower speeds, damped amplitudes, or wrong directions in numerical

54

simulations than in the reality. These errors will accumulate gradually, finally destroy

the original shape of wave sources after propagating over a long distance or time period.

Here, we use the FD scheme shown in Equation (5.3) and (5.4) as an example, which is

of second order accuracy with respect to time and space (a so-called (2, 2) FD scheme).

To show the effects of spatial discretization only, we assume that the temporal derivative

term can be approximated precisely by reducing time-evolution step)(dt . If we select

the spatial sampling interval to be 20 points per shortest wavelength, the simulation

results obtained by this (2, 2) FD scheme are considered satisfactory only in moderate

geological area, generally a computational domain on the order of 10 wavelengths [47].

For waves propagating over longer distances, the spatial interval required by this (2, 2)

scheme should be further refined, leading to an enormous number of spatial grid points

and time-evolution steps, impractical memory requirements, and unfeasible

computational costs. This is the main motivation of the development of higher-order FD

schemes. We have to point out that the famous Yee’s FDTD method, which has been

widely adopted for electromagnetic modeling problems, is also a (2, 2) FD scheme but

for the first derivative Maxwell equations discretized on staggered spatial grids. So, it

also suffers the same numerical errors we discussed above, although they are in general a

little less serious.

5.1.2 High Order Spatial FD Approximations

We first consider spatial higher-order FD schemes and remain the second-order

time-evolution stencil in equation (5.3) unchanged. Numerical derivative of a function

defined on discrete points can be derived from Taylor expansion. The goal of the so-

called maximum order FD schemes [48] is to attain accurate approximation by canceling

as many the lower order terms in Taylor expansion formula as possible. The first un-

cancelled Taylor series term determines the formal truncation error and the accuracy

order of the corresponding finite difference scheme. For example, the one-dimensional

Taylor expansion along x-axis at dxix ⋅±=)1(for P is,

55

() () ()
L+

∂
∂

+
∂

∂
±

∂
∂

+
∂

∂
⋅±=± 4

44

3

33

2

22

1
)(

24
)(

6
)(

2
)()()(

x
xPdx

x
xPdx

x
xPdx

x
xPdxxPxP iiii

ii (5.5)

When we add these two equations together to eliminate odd derivative terms at the

right hand side, we have:

()
() ()()4

4

42

2
11

2

2

12
)()(2)()(dx

x
Pdx

dx
xPxPxP

x
xP iiii Ο+

∂
∂

−=
+−

−
∂

∂ +− (5.6)

Equation (5.6) shows us that the difference (truncation error) between the second

derivative of P and its FD approximation
()2

11)()(2)(
dx

xPxPxP iii +− +− is proportional

to ()2dx . That is where the name of (2, 2) FD scheme shown in Equation (5.3) and (5.4)

originates. Applying the same idea to more discrete points along the x-axis, we can

cancel out higher order truncation terms, so the resulting approximation to the second

derivative operator would be more accurate in the sense of truncation errors.

Systematically, we can approximate
2

2

x
P

∂
∂ to ()thm2 accurate order by linear

combination of the values of P at ()12 +m discrete grid points as follows,

() ()

()
()()m

m

r
riri

m
ri

m
m

i dxO
dx

PPP

x
xP 2

2
1

02

2

2)(
+

+⋅+⋅
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂ ∑
=

−+αα
 (5.7)

where ∑
=

−

+−
−⋅−=

m

r

rm

rmrmr
m

1

2
1

0)!()!(!
!2)1(2α (5.8)

and
)!()!(!

!2)1(
2

1

rmrmr
mrm

r +−
−= −α (5.9)

which are all selected to maximize the order of the first un-cancelled truncation term.

Expanding the higher-order FD schemes to y- and z-axis is straightforward, so a

class of ()thm2 -order FD approximation of the Laplace operator in 2D or 3D space can

be obtained. Similar to the standard (2, 2) FD scheme, we draw in Figure 16 the FD

stencils for (2, 4) FD scheme in 2D space. The 3D spatial stencil for ()4∆ is also shown

in Figure 17. We observe that more spatial grid values around the grid point),,(kji are

required to evaluate the Laplacian value at the central position.

56

Figure 16. (2, 4) FD Stencil for the 2D Acoustic Equation

Figure 17. 4th-Order FD Stencil for the 3D Laplace Operator

Although the evaluations of Equation (5.7) are much more complex than Equation

(5.4), higher-order FD schemes have higher-order un-cancelled truncation term, which

57

leads to much smaller approximation errors. This property can be clearly depicted by

dispersion relations plotted in Figure 18, which is obtained by taking Fourier transform

of the governing equation and its approximation in time and space. An intuitive criterion

is that the dispersion relation of FD schemes should be close enough to the ideal wave

equation. In other words, the dispersion error caused by numerical approximations

should be kept as small as possible. From this figure, we can tell that higher-order

schemes have less dispersion error for gradually larger wave-numbers, thereby leading

to improved results. Put it another way, by using high-order FD schemes, we can enlarge

the spatial sampling interval so that the number of grid points can be reduced without

deteriorating accuracy criterion [49]. Figure 19 shows the dispersion error between the

ideal wave equation and its approximations. We can easily draw the same conclusion

from this figure as from Figure 18.

Figure 18. Dispersion Relations of the 1D Acoustic Wave Equation and Its FD

Approximations

58

Figure 19. Dispersion Errors of Different FD Schemes

We designed a simple experiment to show the effectiveness of higher-order FD

schemes. Here, we simulate the propagation of an exponentially-attenuated single-

frequency sine wavelet in 1D homogenous media (constant velocity) along the x-axis.

The time-evolution step is set small enough to attain negligible temporal truncation

errors. We try to determine the spatial sampling interval where the power of numerical

errors is reduced to be around 0.1 percent of the total energy of the original wavelet after

it propagates a distance of 400 wavelengths. The simulation results are concluded in

Table 6 for different FD schemes. We can observe that the (2, 16) FD scheme needs only

1600 spatial grids in our test (a propagation distance of 400 wavelengths times four

points per wavelength), which is about five times less than (2, 4) scheme or over ten

times less than the standard (2, 2) FD scheme. The reduction in the number of grid

points will become much more significant if we apply higher order schemes to 2D or 3D

cases. Please note that the propagation distance for the standard (2, 2) FD scheme is set

to be 40 wavelengths because the FD scheme is incapable of simulating the wavelet

59

propagating for hundreds of wavelengths accurately with a reasonable spatial sampling

interval.

Table 6. Performance Comparison for Different HD Schemes

FD
schemes

Propagation
Distance

(Wavelength)

Grid Density
(Grid/Wavelength)

Total Number
of Grid Points

Relative Error
Power

(2, 2) 40 40 1600 0.0024

(2, 4) 400 19 7600 0.0037

(2, 8) 400 7 2800 3.8e-4

(2, 16) 400 4 1600 0.0010

However, high-order FD schemes are ineffective for abrupt discontinuous media,

so people tend to be conservative in enlarging spatial sampling interval. The result is that
the decrement of spatial points achieved by high-order FD schemes in general is not

enough to compensate for the additional computations they introduced. That explains

why high-order schemes are always more computationally expensive than the standard

second order schemes and why they are seldom utilized in reality.

5.1.3 High Order Time Integration Scheme

People also hope to enlarge the time-evolution step by adopting high-order time

integration schemes so that the numerical simulations could be more accurate.

Unfortunately, it has been proven that any Taylor-expansion based higher-order

approximation to the second derivative in time in equation (5.2) leads to unconditional

unstable schemes [50]. An alternative is the modified wave equation introduced by

Dablain in [49] as follows,

60

()
() () () ()

() ()()PvvdtPv

Pv
t

dtPvdtO
t
Pdt

t
P

dt
PPP

mmm

mm
nnn

)22(2)22(2
2

)2(2

)22(2
2

22
)2(24

4

42

2

2

2

11

12

1212
2

−−

−
−+

∆∆⋅+∆=

∆
∂
∂

⋅+∆=+
∂
∂
⋅+

∂
∂

=
+−

 (5.10)

By applying the original wave equation (5.2) twice to its second-order FD

approximation, the second-order temporal truncation error hidden in equation (5.3) is

compensated by a higher-order spatial Laplacian term, which results in a class of (4, 2m)

FD schemes. The coefficient ()2dt of the compensation term allows the accurate order of

its FD approximation two less than the original Laplace operator. For example, Taylor

expansion-based 4th-order accurate approximation to the right-hand-side of equation

(5.10) leads to a 13-point FD stencil in space. This spatial stencil is shown in Figure 20

together with the 9-point stencil for (2, 4) FD scheme. As for computational cost, the

modified wave equations almost double the number of floating-point operations for

every time step because of the existence of the position-variant parameter),(zxv .

Figure 20. Stencils for (2-4) and (4-4) FD Schemes

 Here, I also applied this new approach to the previous experiment to show its

effectiveness. From Table 7, we observe that the time-marching step is enlarged greatly

when we migrate to the 4th-order time-integration scheme. This impressive result is

61

partly attributed to the simple experiment we selected. As we mentioned above, the time

evolution step is constrained by the Courant-Friedrichs-Lewy (CFL) stability condition,

so is related to spatial sampling interval. For realistic wave modeling problems in abrupt

discontinuous media, the progress in time step is not always good enough to remedy the

additional computational costs it introduced, which is the same case that we encountered

in spatial higher-order schemes.

Table 7. Performance Comparison for High-Order Time-Integration Schemes

FD schemes Grid Density
(Grid/Wavelength)

Number of
Grid Points

Time-Marching
Step

Relative Error
Power

(2, 4) 19 7600 0.001 3.7e-3

(4, 4) 19 7600 0.008 3.0e-4

(4, 8) 7 2800 0.008 2.3e-3

(6, 8) 7 2800 0.02 5.4e-3

5.2 High Order FD Schemes on FPGA-Enhanced Computers

5.2.1 Previous Work and Their Common Pitfalls

Recently, as FPGA continues to grow in density, people start trying to accelerate

FD-based numerical PDE problems on an FPGA-based hardware platform. Compared

with pure software running on commodity computers or pure hardware-based ASIC

devices, FPGA technology can provide people with a compromise between the best

flexibility of software and the highest computational performance of fully-customized

hardware. The idea of accelerating acoustic wave simulations using the fully-

customized hardware system for geophysical applications can be traced back to the

1990s [51]. The first attempt to implement an FPGA-based stand-alone seismic data

processing platform was described in [52]. For computational electromagnetics problems,

62

several authors proposed their FPGA-based solutions to accelerate the standard Yee’s

Finite-Difference Time-Domain (FDTD) algorithm from the early 1990s [53] [54].

Recent work in this field can be found in [55-58].

Although most recent efforts on this track reported impressive acceleration over

contemporary general-purpose computers, we can observe that some common pitfalls

exist in their FPGA-based system designs and performance comparisons. The first

problem is that people still tend to build their application-specific FPGA-based hardware

platforms, where the FPGA devices are simply used as an alternative to ASIC to reduce

the high NRE costs. In these systems, hardware architecture and interconnection pattern

are well-tailored for particular applications so that the computational potential of FPGA

devices could be completely bring into play. However, system costs of such a fully-

customized approach would still be much higher than commodity computers and the

system flexibility would be poor.

“Toy” problems were commonly used as examples to demonstrate performance

improvements of FPGA-based systems over commodity computers. Onboard FPGA

resources and memory space are always abundant so that the scalability of FPGA-based

hardware systems is usually left out of consideration. External memory bandwidth never

imposes a performance bottleneck, which is not the case for most data intensive

applications in reality. Small but fast onboard SRAM modules or internal RAM blocks

were selected as working space for small problems, which made the FPGA-based

solutions expensive or unrealistic for most real-life problems. Correspondingly, the

resulting performance comparisons are more or less unfair for commodity computers.

Software algorithms are commonly migrated to an FPGA-based system directly

without or with only limited modifications such as instruction rescheduling or arithmetic

unit customization. We know that most existing software algorithms and numerical

methods are well-tuned for commodity CPUs, so may not be ideal for FPGA-based

systems. As we will see later in this section, we emphasize modifying or designing new

numerical methods/algorithms specified for this new computing resources so that

satisfactory accelerations could be expected.

63

The last problem exists in performance comparison between FPGA-based systems

and commodity-CPU based general-purpose computers. Sometimes, the comparisons are

made between one PC workstation and a complex FPGA-based system with multiple

FPGA chips; sometimes naïve software implementation is used as reference without

careful performance tuning. Such comparison results are unconvincing for people who

are accustomed to working on commodity computers with conventional software coding

environment.

5.2.2 Implementation of Fully-Pipelined Laplace Computing Engine

As we introduced in Section 2, the fundamental hindrance of simulating wave

propagation problems numerically is the massive data volume along with the complex

numerical algorithms. Specifically, memory bandwidth available between the computing

engine (FPGA) and onboard memory modules has been proven a bottleneck preventing

people taking full advantage of FPGA’s computational potentials [32, 57, 58]. In this

section, I try to alleviate this bottleneck by adopting high-order FD methods together

with a fully-customized in-chip memory subsystem. Sustained high computational

throughput would be achieved by effectively mapping all related computations into the

proposed FPGA-enhanced computer system without changing memory bandwidth

requirements. Also, those common pitfalls we just mentioned are taken into

consideration to facilitate these new computing resources appropriate for realistic

applications.

We select realistic seismic acoustic and elastic modeling problems as our target

applications. These simulation tasks are conventionally solved by the standard second-

order FD schemes in a parallel computing environment. To overcome numerical

deficiencies of these low-order schemes, we resort to high-order FD schemes that are

seldom being adopted in reality because of their enormous computational cost. Here,

because of the adoption of large-scale FPGA devices, in which people could easily

integrate tens to hundreds of standard floating-point arithmetic units, computational

64

power does not seem to be a serious problem. This fact encourages us to adopt higher

order FD schemes for better numerical performance.

The implementation of high-order FD schemes with standard floating-point

arithmetic units on FPGA is simple and straightforward. For example, Figure 21 depicts

the block diagram and dataflow of a 2D 4th-order Laplacian computing engine with 15

pipelined floating-point arithmetic units based on Equation (5.7). We can easily observe

the adder tree structure with embedded constant multipliers. All arithmetic units are

pipelined internally to achieve high data throughput. It is convenient to extend this

design to higher-order schemes with more arithmetic units and tree levels. For example,

a 16th-order 2D Laplace operator can be easily constructed with 33 adders and 20

multipliers.

Figure 21. 2D 4th-Order Laplacian Computing Engine

5.2.3 Sliding Window Data Buffering System

However, in order to operate the large computing engine in its full speed to

produce one output at each clock cycle, we need to feed it with a new set of operands at

the same speed. This unfeasible data manipulation requirement forces people to integrate

as many dedicated memory channels as possible onto their FPGA-based system. DDR-

SDRAM can provide high bandwidth at relatively low price, so it becomes a prevailing

65

choice as large capacity onboard memory. The number of dedicated memory channels

available on FPGA-based systems could be significantly more than, but still comparable

to, commodity computers. For example, an up-to-date PC workstation has two DDR

memory channels compared with four on the FPGA-based coprocessor platform

presented in [58], which is the top record to our best knowledge. To complicate the

situation, the bandwidth utilization is usually poor in practice due to the random-access

nature of most applications. Previous designs in [56-58] tried to migrate the software

version of Yee’s FDTD algorithm directly into their customized FPGA-based platform.

Their efforts concentrated on integrating more hardware arithmetic units into FPGA so

that the aggressive computational speed of their designs would exceed commodity

computers. This approach is very effective, with much higher acceleration than with

contemporary PCs. However, the memory bandwidth bottleneck will finally be reached

and after that, no more improvement will be obtained.

Consider first the standard second-order FD scheme. We rewrite Equation (5.3)

and (5.4) here and ignore the source term,

() () n
kiki

n
ki

n
ki

n
ki PvdtPPP ,

22
,

21
,,

1
, 2 ∆⋅⋅+−⋅= −+ (5.11)

()

() () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +⋅−
+

+⋅−
=∆ −+−+

2
1,,1,

2
,1,,1

,
2 22

dz
PPP

dx
PPP

P
n
ki

n
ki

n
ki

n
ki

n
ki

n
kin

ki
 (5.12)

We need one velocity and six pressure values in total to evaluate these two

equations for one grid point at position),(ki . As for the computational costs, we have

five additions and two multiplications to approximate the 2D Laplace operator; another

one multiplication and two additions are needed to calculate the final result. (Three

multiply-by-two operations are ignored because they can be easily merged into adjacent

arithmetic units.) The ratio of floating-point computations to memory accesses is 710 ,

so its execution speed on commodity computers would be decided by main memory

bandwidth but not the CPU’s nominal speed.

Although higher-order schemes reduce the total number of grid points by

complicating the computations at each grid point, they do require more operands in their

computational stencils. Sequentially, the ratio of computations and memory accesses

66

remains virtually unchanged. Table 8 lists the number of floating-point operations and

the number of operands required by different FD schemes to update the wave field at one

spatial grid point for one time-evolution step. We note that the FP operations to operands

ratio is always less than 2. This observation means that this class of methods is memory

bandwidth bounded, which explains why only 20-30% of a commodity CPU’s peak

performance could be achieved when running on general-purpose computers. It is also

the reason why high-order schemes result in only limited benefits and are, therefore,

seldom put into practice in reality.

Table 8. Comparison of FP Operations and Operands for Different FD Schemes

FD Schemes (2, 2) (2, 4) (2, 8) (2, 16)

Total FP Operations 11 21 33 57

Total Operands 7 11 19 35

Here, we try to find appropriate on-chip memory structure by exploring data

dependencies of the numerical algorithms so that the limited onboard memory

bandwidth could be utilized more wisely. Define “row” as a line of spatial grids along

the X-axis and “column” as a line of grids along Z-axis in 2D space. Because little

optimization can be applied to equation (5.11) to reduce its computations or memory

accesses, we consider equation (5.12) only. Our approach evaluates the 2D wave field

grid by grid along the column. It can be visualized as moving a striped 2D operands

mesh into the fixed computing engine via its input ports. Figure 22 depicts this idea,

where only data dependencies along Z-axis are explored. If the evaluation of 1
,
+n

kiP starts

when the operand at grid point),(ki reaches the center of the computing engine, we can

notice that almost all pressure values we needed to calculate 1
,
+n

kiP have been

encountered/used except the value of n
kiP 1, + . This observation implies that if we could

store some used grid values inside the FPGA chip temporarily, we may avoid accessing

67

the same data repeatedly from external memory, thereby saving a significant amount of

memory bandwidth. This idea is reflected in the implementation in Figure 23, where

values at grid points of a whole column)1(:, −k are saved in the computing engine.

Notice two input ports are needed here, one less than the previous case.

Figure 22. Stripped 2D Operands Entering the Computing Engine via Three Ports

68

Figure 23. Stripped 2D Operands Entering the Computing Engine via Two Ports

This basic idea is almost the same as on-die data caches appearing in most modern

commodity CPUs. However, the caching mechanism used in general-purpose computers

is too complex and expensive to be implemented on FPGA-based hardware platform.

Furthermore, it does not work well for our targeting numerical PDE problems because of

their unfeasible data manipulation requirements. We need to design an efficient on-chip

data-caching mechanism specified for the problem at hand. Figure 24 illustrates the

block diagram of the data buffering system we designed for FD methods on FPGA-

enhanced computer system.

In this design, we utilize two cascaded FIFOs as data buffers, each of which has

the capacity to contain a whole row of discrete grid values. In general, the number of

sampling points in each row is in the low thousands, so can be efficiently implemented

with one or several SRAM blocks inside the FPGA device. Pressure values are fed into

69

the FPGA chip from one input port at the bottle of the first FIFO and discarded at the top

of the last one. We delay the calculation of 1
,
+n

kiP a whole row until the grid value n
kiP 1, +

enters our data buffer so that all operands we need to evaluate equation (5.12) are

available inside FPGA chip. Taking into consideration the grid value 1
,
−n

kiP at the previous

time step, the parameter kiv , that is needed for calculating equation (5.11), and also the

inevitable save back operation, we need only four memory accesses to update wave field

values at one grid point for one time-marching step. In theory, this is the best result that

can be achieved by a data caching system. We also introduce simple input caching

circuits after SDRAM modules to hide their irregular data-accessing pattern.

Consequently, input data can be fed into the buffering structure at a constant speed and

the computing engine can be fully pipelined to achieve high computational throughput.

We will revisit this input cache design in Section 5.3.

Figure 24. Block Diagram of the Buffering System for 2D (2, 2) FD Scheme

70

The principle of this data buffering system can also be abstracted into a sliding

window as we demonstrated in Figure 25. Here, I use (2, 4) FD scheme in 2D space to

show the good scalability of this design. We rewrite the equations here with the source

term ignored,

() () n
kiki

n
ki

n
ki

n
ki PvdtPPP ,

42
,

21
,,

1
, 2 ∆⋅⋅+−⋅= −+ (5.13)

()

()

()2

2,1,,1,2,

2

,2,1,,1,2

,
2

2

2

2

,
4

12
1

3
4

2
5

3
4

12
1

12
1

3
4

2
5

3
4

12
1

dz

PPPPP

dx

PPPPP

z
P

x
PP

n
ki

n
ki

n
ki

n
ki

n
ki

n
ki

n
ki

n
ki

n
ki

n
ki

n

ki

n
ki

−−++

−−++

⋅−⋅+⋅−⋅+⋅−
+

⋅−⋅+⋅−⋅+⋅−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=∆

 (5.14)

Figure 25. Sliding Window for 2D (2, 4) FD Scheme

71

Suppose we have in total I rows and J columns of spatial grids in 2D computational

domain. The memory buffering system can be imagined as moving a siding window

(grids enclosed by the bold line in Figure 25) that buffers ()1*4 +J continuous grids

inside the 2D mesh. In addition, there are nine active points inside this window, whose

values can be sent to the computing engine simultaneously via internal data paths. By

connecting the input port of the sliding window with external memory, only one external

read is needed to move the sliding window one grid right.

Figure 26. Function Blocks of the 2D (2, 4) FD Scheme

Figure 26 illustrates the block diagram and dataflow of the sliding window

buffering system for the (2, 4) FD scheme. We use four cascaded FIFOs as our data

buffer, each of which has the capacity to save a whole row of grid values. We delay the

72

evaluation of 1
,
+n

kiP until the grid value n
kiP ,2+ enters our buffering structure from onboard

memory so that all the operands we need are available to the computing engine. Taking

memory accesses for grid value 1
,
−n

kiP , parameter kiv , , and the save back operation into

account, we still need on more than four memory accesses to evaluate one time-

evolution step at one grid point.

The extension of figure 26 to (2, 2m) FD schemes is simple and straightforward.

Now (2m) cascaded FIFOs are needed to build the sliding window. Correspondingly, we

have to delay the calculation of 1
,
+n

kiP for m rows to ensure all necessary operands

appearing at correct positions in the buffering circuit. Inevitably, some arithmetic units

should be inserted into the Laplacian computing engine and additional pipeline stages

might be needed to guarantee the sustained computational throughput. In Table 9, we

extend table 8 with two additional rows showing the number of external memory

accesses and floating-point operation to memory access ratio for different FD schemes.

Table 9. Comparison of Caching Performance for Different FD Schemes

FD Schemes (2, 2) (2, 4) (2, 8) (2, 16)

Total FP Operations 10 20 32 56

Total Operands 7 11 19 35

External memory accesses 4 4 4 4

FP operations to

memory accesses ratio
2.5 5 8 14

The most exciting observation is that although the memory bandwidth required by

FD methods running on commodity computers increase linearly with the accuracy order,

this requirement remains unchanged for our design on FPGA-enhanced computers, i.e.,

the number of memory accesses to evaluate one time-evolution step at one grid point is

73

always kept at four for different FD schemes if the data-buffering system could be

implemented in-core. Correspondingly, the floating-point operations to memory accesses

ratio continues to increase with the order of FD schemes, which implies improved data

reusability. The only costs we pay for higher-order accuracy are on-chip memory blocks

and conventional addition or multiplication arithmetic units, which are all abundant

inside an up-to-date high density FPGA device. This result encourages us to adopt

extraordinarily higher-order FD schemes in our design to further enlarge the spatial

sampling interval until we reach the extreme at two samples per shortest wavelength,

which is bounded by the Nyquist-Shannon sampling theorem.

5.2.4 Data Buffering for High Order Time Integration Schemes

Consider the modified wave equation we derived in Section 5.1.3: it is

straightforward to allow us to extend our previous design of (2, 4) FD scheme to (4, 4)

FD scheme based on its 13-point stencil shown in Figure 20. Unfortunately, this simple

extension is only practicable for homogeneous media. (v is a constant inside the

computational domain.) For inhomogeneous cases, because the coefficient varies in

space, this approach would lead to additional computations and much more complex

hardware architecture.

Rewriting equation (5.10) in the following form leads to a two-step scheme

without degrading accurate order,

()
() ()⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆⋅+∆=

+− −+
nn

nnn

PvdtPv
dt

PPP)2(2
2

)4(2
2

11

12
2 (5.15)

Based on this expression, two Laplacian computing engines could be employed

together with dedicated data buffering circuits to evaluate its right-hand-side: the first

one is used to evaluate the Laplacian of n
kiP , to 2nd-order accuracy. Next, the compensated

pressure field is fed into the second 4th-order accurate Laplacian unit to finish the

calculation of 1
,
+n

kiP . Figure 27 illustrates the corresponding block diagram and dataflow

design. Notice that another velocity buffering circuit is required here.

74

Figure 27. Block Diagram and Dataflow for 2D (4, 4) FD Scheme

5.2.5 Data Buffering for 3D Wave Modeling Problems

Extending the sliding window buffering system to 3D space is also straightforward,

but the hardware implementation will become less efficient than 2D cases. Now, we

need several large-capacity FIFOs to buffer 2D pages instead of 1D grid lines. Practical

3D wave simulations in general contain hundreds to thousands of grid points along each

spatial axis. Correspondingly, the capacity of page buffers could easily reach several

millions of words, which is almost approaching the maximum capacity of internal block

memory inside an up-to-date FPGA chip. We now have to sacrifice some onboard

memory bandwidth to meet the buffering requirements. Correspondingly, the caching

behavior would not be optimal in these cases.

Fortunately, as we proposed in Section 3, there are multiple high-speed low-

latency SRAM modules integrated on the FPGA-enhanced computer platform, which

can be easily customized as page buffers with simple control logics. Thanks to the

excellent scalability of high-order FD schemes, we can even adopt different accuracy

order and different sampling interval for different spatial axis to accommodate the

75

specific hardware architecture of the platform. For example, if there are two onboard

SRAM modules, each of which has enough capacity to contain one 2D page, we can

select the standard 2nd-order FD scheme in Z-direction with fine sampling interval. This

arrangement requires only two X-Y page buffers at runtime and doesn’t affect the choice

of FD schemes in the other two directions. Their orders can still be customized freely

according to available hardware resources inside the onboard FPGA device. Figure 28

depicts the block diagram of the hybrid (2, 4-4-2) FD scheme.

Figure 28. Function Blocks of the Hybrid 3D (2, 4-4-2) FD Schemes

76

5.2.6 Extension to Elastic Wave Modeling Problems

We now extend this design to elastic wave modeling problems. The 3D linear

elastic wave equation can be represented as 9 first-order PDEs in Cartesian coordinates

as follows [59],

ikkijjiiiit v σσσρ ∂+∂+∂=∂ (5.16a)

() iijjjjiiiit vvvv ∂+∂+∂+∂=∂ µλσ 2 (5.16b)

()ijjiijt vv ∂+∂=∂ µσ (5.16c)

Where λ and µ are Lame parameters, ρ is density, kjiv ,, are particle velocities,

ijσ are stress tensor components, and we have jiij σσ = for isotropic media. Staggered

descretization for Equations (5.16) is always considered beneficial because all first-order

finite difference stencils are naturally centered around relevant unknowns spatially and

temporally, which leads to less numerical dispersion and efficient 2nd-order in-place

time-evolution scheme. There are in total, 12 floating-point values at each discrete grid

point: 3 media parameters, 3 particle velocities, and 6 independent stress tensor

components. At the beginning of each time-evolution step (which is divided into two

half steps), all 12of these floating-point values are read out from external memory. After

FD computations, 9 updated wave field variables should be re-written. As for the

computational cost, (2, 2) staggered FD scheme requires more than 90 floating-point

operations at each grid point, and the number for the staggered (2, 4) FD scheme is about

140. This large number partly explains why only low-order FD schemes could be

adopted for elastic wave simulations in reality. However, we should note that the

underlying FD-based numerical algorithms for elastic modeling problems do not

significantly differ from acoustic cases. So, all of the basic ideas for FD computing

engine and sliding window buffering structure we proposed before are still practicable.

It is possible to design a large computing engine with hundreds of FP arithmetic

units, although this approach may reach the capacity extreme, which one of the largest

FPGA could support. An alternative is to divide this large computing engine into two

77

smaller ones for Equation (5.16a) and equation (5.16b, c), respectively. Thanks to

FPGA’s run-time reconfigurability, the host machine can reconfigure FPGA resources in

seconds so that those two smaller computing engine can work alternately, each answers

for half of one time-marching step.

Now, the basic idea of FD methods on FPGA-enhanced computers is clear: An

efficient on-chip sliding window data-buffering circuit is placed between the FD

computing engine and onboard memory modules using internal RAM blocks as the core

component. By exploring data dependency properties of high-order FD schemes as well

as the specific wave modeling problems, this data buffering system is capable of

providing a new set of input operands to the FD computing engine at every clock cycle.

Although operand stencils of high-order schemes are much wider than the standard

second-order method, the number of external memory accesses to evaluate one time-

evolution step at one grid point is kept unchanged. In other words, the onboard FPGA

device effectively absorbs all additional computations introduced by high-order accuracy

without speed penalty.

Because the clock rate applied to the FD computing engine and external memory

modules is within the same range at hundreds of millions Hz, the bandwidth of onboard

memory would be saturated rapidly and considerable FPGA resources would be wasted.

Considering the (2, 2) FD scheme we proposed in Section 5.2.3, the computing engine

for this simplest case consists of ten floating-point arithmetic units (seven additions and

three multiplications), which cost only a small portion of hardware resources even for

the fastest fully-pipelined implementation. By choosing high-order FD schemes, we can

always complicate the computations as necessary to increase the floating-point

computations to memory accesses ratio and alter the performance bottleneck back to the

computing engine. In other words, by adopting appropriate high-order FD schemes, we

can always find a point at which the utilization of the FPGA resources and onboard

memory bandwidth are well balanced. Moreover, high-order FD schemes allow larger

sampling intervals so that the total number of spatial grid points is considerably reduced.

78

Consequently, memory bandwidth requirements for the same problem decrease in an

indirect way.

5.2.7 Damping Boundary Conditions

Seismic modeling problems are naturally posed in unbounded spatial domain,

which of course are infeasible for digital computer based numerical simulations. A

conventional approach is to surround the truncated computational domain with artificial

layers, in which non-physical Absorbing Boundary Conditions (ABC) are applied. ABCs

are designed to absorb or damp outgoing waves and ensure the consistency of the

simulation results with respect to the solution of the original problem. Although it is not

the kernel portion of numerical methods, ABCs always plays a pivotal role in numerical

modeling tasks: a bad ABC would contaminate the entire simulation result gradually,

and finally ruin any accuracy we have already gained. Ideal ABCs provide excellent

attenuation property, but require only a few artificial layers to minimize additional

computational costs. Unfortunately, these two aspects are contradictory to each other.

Specifically for our wave field simulation tasks, an effective ABC scheme could easily

introduce over 20 percent of additional workload. Previous FPGA-based

implementations chose to ignore this troublesome problem deliberately [58] or simply

migrate the software version without modification [57]. The later solution inevitably led

to a complicated implementation and consumed considerable hardware resources.

One-way wave equations-based ABCs such as Clayton [60], Mur’s [61], and

Hidgon’s [62] can only effectively absorb waves with small incident angle, and so are

unsuitable for high accuracy simulations. By adopting variable splitting technology,

Perfectly Matched Layer (PML) [63] can provide nearly perfect attenuation with only a

few artificial layers, and so becomes more and more popular in computational

electromagnetics and acoustic/elastic wave modeling fields since the 1990s. Despite of

its excellent effects, PML introduce non-physical variables in its absorbing boundary

layers, thereby leading to many more computations than the first approach. One common

79

problem for these two classes of ABCs is that the FD stencils they introduced inside

absorbing boundary layers have different forms for different layers, or even different

positions. Although not a problem for general-purpose computers, these ABCs would

lead to complicated hardware implementation on FPGAs. Another problem is their high-

order variations are either too complex to construct efficiently or inconsistent with

internal high-order FD schemes.

Damping Boundary Conditions (DBC) was first introduced by Orlianski as sponge

layer [64] in 1977. Although its performance was improved significantly later in the

1980s by Cerjan [65] and Burns [66], they still do not attract attention because the

required thickness of damping layers may easily exceed hundreds when used with

conventional low order FD schemes, and so are extremely inefficient in computational

cost. The situation is significantly changed once we combine DBC with high-order FD

schemes. Here, we select to modify the original wave equation by introducing a simple

exponentially damping term. Consequently, a unified equation that governs both the

truncated computational domain and absorbing boundary layers is obtained. This

artificial damping term could be imagined as another media-related parameter to imitate

natural wave attenuations caused by media’s viscosity. Its value is set to be zero inside

the original physical domain, but in damping layers, the attenuation intensity is enhanced

exponentially from inner to outer.

Compared with those complex boundary equations introduced by other ABCs, this

single equation approach is extremely attractive for our FPGA-based solution because of

its simplicity and consistency: only one additional FP multiplier and a short damping

coefficients table are required in its hardware implementation. Moreover, high-order

internal FD schemes now are in the same form as absorbing boundary layers except the

damping coefficients, which can be simply assumed as another media-related parameter.

In other words, the modified wave equation has a physical correspondence. As we

introduced before, high-order FD schemes are capable of enlarging spatial sampling

interval without deteriorating numerical accuracy. Consequently, the damping layers

with the same physical thickness as before now contain much less grid points. Our

80

numerical tests show that 20~40 damping layers are enough to provide satisfactory

damping results for high-order schemes, results in only less than 5~10 percent of

additional computations for realistic simulation tasks.

5.3 Numerical Simulation Results

In this section, we use two examples to show the correctness and effectiveness of

the PFGA-based high-order FD methods for seismic acoustic wave modeling problems.

Table 10 shows their computational workload and storage requirement. These two

problems are selected carefully to ensure that they can be fit into our hardware

development platform. The target FPGA-based prototyping platform we used in this

work is an entry-level Xilinx ML401 Virtex-4 evaluation board [67]. Although this

board provides only limited onboard hardware resources (one XC4LX25 FPGA chip

embedding 24,192 Logic Cells, 48 DSP Slices and 72 18-kb SRAM Blocks; 64MB

onboard DDR-SDRAM modules with 32-bit interface to the FPGA chip; and 9Mb

onboard ZBT-SRAM with 32-bit interface.), it does contain all necessary components

we need to validate our design. The development environments are Xilinx ISE 6.3i and

ModelSim 6.0 se. The simulation results are compared with their software counterparts

running on an Intel P4 3.0 GHz workstation with 1GB memory. The referential C

program is compiled on Linux OS using Intel C++ v8.1 with optimization for speed (-O3

–tpp7 and –xK). About 20 percent of CPU’s peak performance is achieved.

The implementation of the FD computing engine is based on the block diagrams

presented in Figure 26. As we show in Table 10, there are over one million discrete grids

for each problem. Onboard DDR-SDRAM spaces are assigned as working space. These

storage units are organized as four arrays to save the previous pressure field, the present

pressure field, the unknown future pressure field, and the velocity table, respectively. In

order to utilize the bandwidth of external DDR-SDRAM more efficiently, an aditional

cache circuit is constructed for each data array using two on-chip RAM Blocks at the

interface between SDRAM modules and internal data-buffering subsystem. This input

81

cache contains two parallel-working 512-word data buffers, each of which can accept a

whole physical column of data values from SDRAM. They operate in swapping manner

to hide the irregular data accessing and periodic refreshing behavior of SDRAM

components. This implementation isolates the data-buffering system and the computing

engine from the memory interface circuits. Correspondingly, a constant high-speed

computational throughput could be achieved.

Table 10. Size of Wave Modeling Test Problems

 2D Constant Media 2D Marmousi Model

Number of Spatial Grids 11001100 × 7702340 ×

Total Time Steps 6000 8250

Storage Requirements 4 Million Words 4 Million Words

Number of Grid
Computations

91026.7 × 101049.1 ×

5.3.1 Wave Popagation Test in Constant Media

The first example is designed to show the computational performance of our

FPGA-based FD computing engine compared with the referential PC workstation. It is a

simple 2D seismic modeling task in constant velocity media with 10001000× spatial

grids and 6000 time-integration steps, which, in total, leads to 9106× grid computations.

DBC is applied to 50 outer layers on all four boundaries to achieve a nearly-perfect

absorbing result, which increases the total number of grid computations to 91026.7 × . In

other words, the introduction of DBC leads to a 20 percent additional workload. We

82

purposely remain the total number of spatial grids fixed for different FD schemes to

evaluate the acceleration attributed purely to our hardware implementation.

Utilizing the onboard 100MHz oscillator, we simply set the clock rate applied to

onboard DDR-SDRAM modules at 100MHz and to the computing engine at 50MHz.

(The maximum clock frequency for the DDR-SDRAM modules on the ML401 platform

is 133MHz. So, the theoretical maximum computational throughput is 66 million grids

per second.) Compared with the fifty million grid-per-second peak computational

throughput, the speed of our implementation is degraded for less than 2 percent because

of pipeline stalls. These stalls occur mainly when we swap input/output caches and when

we flush the cascaded data FIFOs at the beginning of each time-marching step.

We modified the single-precision floating-point adder and multiplier proposed in

[68] as our arithmetic units. The floating-point multiplier unit is constructed as a

constant multiplier to save on-chip DSP slices. The floating-point adder is also

redesigned by ignoring some impossible exceptions. Our simulation results of the

software and hardware implementations for different FD schemes are shown in Table 10.

The choice of FD schemes is restricted by available in-chip programmable hardware

resources on the entry-level evaluation board. We must admit that the performances of

referential software program might be further improved by low-level tuning and

optimizations. However, this approach is so experience-intensive that only specialists

could benefit from it [69].

The results shown in Table 11 are satisfactory considering the entry-level

evaluation board we used in this test. The most exciting observation in this table is that

the aggregate FP performance of the FPGA-based implementation keeps increasing with

the order of FD schemes so that a nearly constant grid pressure updating rate is

maintained. Comparatively, the sustained FP performances for high-order FD schemes

on commodity computers are reduced significantly due mainly to the poor Level-2

caching behavior. We emphasize again that the limited main memory bandwidth of the

evaluation board considerably restricts the clock rate we applied to the FD computing

engine. For example, a typical fully-pipelined floating-point arithmetic unit such as a

83

multiplier or adder can work at over 200 to 300 MHz on FPGAs. Suppose we had

integrated one 200MHz 72-bit DDR-SDRAM memory module on the FPGA-enhanced

computer platform, (This is what we generally have in today’s commodity computers.)

Because the aggressive onboard memory bandwidth is 800 million words per second,

this imaginary platform could allow our computing engine to operate at a sustained

speed of 200 million grid computations per second, which is four times faster than the

result we obtained on the ML401 platform. Furthermore, if there were more dedicated

memory channels available on board, we can select to construct multiple FD computing

engines and let them work concurrently to process their own dataset. Because of the

nearly perfect parallelism of FD methods, the computational performance would be

scaled almost linearly.

Table 11. Performance Comparison for FD Schemes on FPGA and PC

Hardware Implementation

FD
schemes

Software
Computational

Throughput
(Million Grid

/ second)

Computational
Throughput

(Grid/second)
Speedup

Resource
Utilization

(RAM Blocks/
DSP Slices/

Logic Slices)
(2, 2) 33.27 49.71 1.49 14/10/4885

(2, 4) 27.53 49.63 1.80 18/22/7212

(2, 8) 19.90 49.50 2.49 26/30/9732

(4, 4) 15.10 48.38 3.20 26/30/9818

84

5.3.2 Acoustic Modeling of Marmousi Mode

In this example, we apply our FPGA-based FD methods to accelerate a realistic 2D

seismic modeling problem. The Marmousi model is a prevailing 2D model with a

complex underground structure. It was synthesized in the 1990s and had been widely

used as a benchmark in the seismic data processing industry for calibrating migration

(imaging) algorithms. The 2D grid mesh covers a geographical domain of 9200m by

3000m with 4m sampling interval, which leads to 7502300× spatial grids, 8250 time-

integration steps for 3 second wave traveling time, and so 1010432.1 × grid computations

in total.

20 damping layers are attached on the left, right and bottom of the computational

domain to absorbing outgoing energies, while at the mean time, free surface boundary

condition is applied on the top. The DBC introduces only less than 3 percent of

additional computational workload. We excite the 2D field with a Ricker wavelet at

x=5000m, z=8m. The maximum frequency in source wavelet is set at 80Hz. Figure 29

shows the Marmousi velocity model together with four snapshots obtained by the finite-

accuracy optimized (2, 8) FD computing engine (see Section 5.4 for details) on the ML-

401 evaluation board. We can notice that there are no visible numerical reflections

arising from the vicinity of boundaries, which reveals the effectiveness of our DBC

scheme.

85

Fi
gu

re
 2

9.
 M

ar
m

ou
si

 M
od

el
 S

na
ps

ho
ts

 (t
=0

.6
s,

1.
2s

, 1
.8

s,
an

d
2.

4s
. S

ho
t a

t x
=5

km
)

86

Fi
gu

re
 2

9.
 C

on
tin

ue
d

87

Fi
gu

re
 2

9.
 C

on
tin

ue
d

88

5.4 Optimized FD Schemes with Finite Accurate Coefficients

Using IEEE-754 compliant floating-point cores as core components to construct

the high-order FD computing engine on FPGAs, although straightforward and

convenient, will consume considerable hardware resources and leads to excessive

pipeline stages. As we mentioned above, constructing a 16th-order 2D Laplace

computing engine needs 53 floating-point arithmetic units (33 adders and 20 multipliers).

The number will rise to about 140 if we decide to build a staggered 4th-order FD

computing engine for elastic modeling problems [59]. For these complex cases, the

computing engine becomes too big to be accommodated in even the largest FPGA

device. In [57], the authors tried to solve electromagnetic FDTD methods using pure

fixed-point arithmetic on FPGAs. Although significant hardware resources were saved,

the well-bounded worst-case numerical error provided by standard floating-point

arithmetic was destroyed. Correspondingly, this approach might work well in some tests,

but it is not guaranteed to produce correct result for every problem without formal error

analysis.

In this work, we decide to remain the floating-point format of wave field values

unchanged, while adjusting those FD coefficients to simplify the implementation of

floating-point arithmetic and save programmable hardware resources in FPGA. Because

values of those floating-point FD coefficients span in a wide range, representing them in

a fixed-point format will lead to excessive binary bits. Another option is to remain the

floating-point representation, but customize their format by rounding the mantissa

portion to fewer binary bits than the standard. Unfortunately, this approach has only

limited impact and will lead to unacceptable numerical dispersion errors in most cases.

In Figure 30, we compare dispersion errors of the maximum 8th-order FD scheme with

accurate FD coefficients, the scheme that truncate the mantissa portion of its FD

coefficients to 16 binary bits, and the scheme that use only 8 mantissa bits. We can

observe that simply truncating mantissas may save us only minimal programmable

hardware resources but not too many. For example, we may use customized floating-

89

point format with 16 mantissa bits without significantly deteriorating numerical features.

If we were overly aggressive by choosing only 8 binary bits, the numerical dispersion

error becomes unacceptable.

Figure 30. Numerical Dispersion Errors for the Maximum 8th-Order FD Schemes

with 23, 16, or 8 Mantissa Bits

We attack this problem by means of improved numerical algorithms/methods. We

try to design a new class of FPGA-specific FD schemes, which can be implemented

much more efficiently with similar numerical performance and computational accuracy

as the standard maximum order FD schemes. As we introduced above, maximum order

FD schemes determine their coefficients by cancelling as many the lower order Taylor

expansion terms as possible. Although optimal from a mathematical standard, by

examining the dispersion relation plotted in Figure 18 and 19, we can tell that this class

of FD schemes provides excessive accuracy within low wave-number band at the cost of

rapidly-worsening numerical performance in high wave-number band. To compensate

for this disadvantage, we designed a new class of FD schemes by improving their

90

numerical dispersion relation rather than pursuing formal accuracy representation. This

class of methods also utilizes central ()12 +m -point stencil to approximate each spatial

second derivative term. By dropping the requirement of maximizing the order of un-

cancelled truncation term, we now need only the least necessary accuracy order to keep

our FD schemes numerically convergent to the original PDE. The values of all

remaining FD coefficients in Equation (5.7) are optimized to minimize the square of

phase-speed errors of the discretized wave equation inside its working wave-number

band, which also corresponds to a frequency domain Least Square (LS) error criterion.

Keeping the LS criterion in mind, we now further optimize these FD coefficients

so that they can be represented by only a few binary bits without seriously deteriorating

its frequency-domain dispersion relation. This optimization is meaningless for

commodity computers with standard floating-point arithmetic units. However, its

advantage on FPGA-enhanced computers is obvious: For FPGA devices without

hardware multipliers, fewer partial sums would lead to less occupation of programmable

hardware resources; FPGA devices with on-chip multipliers can also benefit from this

approach because of the reduction of latency. Mathematically, this is a constrained

optimization problem, which can be solved by standard methods such as the Simplex

method [70]. In practice, Simplex may stagger at concave points or even diverge when

the problem is ill-conditioned. To address this problem, in this work, we designed a class

of finite-accurate FD coefficients optimization algorithm, which is a simple heuristic

approach to reach sub-optimal results.

Algorithm 3. Finite-accurate FD coefficients optimization

Calculate all (m+1) LS-based optimal coefficients mr
m
r L0=α

For r = m down to 2

 Restore the leading one of the mantissa portion of m
rα

 Round it to the most six significant bits

91

 Solve the LS problem with mrk
m
k L=α as constraint conditions

End

Set m
0α equals to ∑

=

⋅
m

r

m
r

1
2 α for consistency

Round m
0α and m

1α to 18-bit fixed-point format

In this algorithm, the largest two coefficients in the middle of FD stencils are

represented by 18-bit fixed-point format because their values are pivotal to the

performance of numerical dispersion relation. (The number 18 is selected because of the

word-width of on-chip multipliers inside Xilinx’s FPGA devices.) For all others, we

represent them in floating-point format with only six mantissa bits so that corresponding

multiplications can always be finished by an on-chip multiplier within one clock cycle.

Further hardware optimization is possible if we select to make use of some new features

of up-to-date FPGA devices. We always normalize the leading bit of these coefficients

to be 1 by shifting so that all six bits are effective in our representation. Expressing

exponents of these coefficients explicitly are unnecessary because the corresponding

exponent adjustment can be easily implemented by adding a constant to the original

exponent of the multiplicand. Figure 31 shows us the structure of this fully-customized

floating-point constant multiplier. We note that the word-width of the product could be

42 or 31 according to the word-width of the coefficient.

92

Figure 31. Structure of Constant Multiplier

We notice from the algorithm that those FD coefficients are decided one by one

from the smallest to the largest. This sequence is critical to the final numerical accuracy

of this class of FD methods. An intuitive explanation is that once rounding errors are

introduced into large coefficients, it is difficult to compensate by only adjusting those

smaller ones.

Table 12. Coefficients of 3 FD Schemes with 9-Point Stencils

FD schemes
Coefficients

Maximum 8th-order Optimal Finite-accuracy (Hex.)
4
0α 2.8472223 2.9555101 2.9552002(403d2200)

4
1α 3.2000000 3.3781638 -3.3778076(c0582e00)

4
2α 0.4000000 0.4969828 0.4970703(3efe8000)

4
3α 0.0507937 0.0828245 -0.0830078(bdaa0000)

4
4α 0.0035714 0.0084953 0.0085449(3c0c0000)

A simple example is used to show the effectiveness of this heuristic optimization

algorithm. We select FD schemes with 9-point stencil, so there are in total five unknown

93

coefficients. We also restrict the normalized working wave-number band to be less than

0.5, which corresponds to four spatial sampling points per shortest wavelength. Table 12

lists values of these coefficients for the 8th-order FD scheme, the full-accurate optimal

scheme, and our finite-accurate scheme. Figure 32 plots dispersion relations for these

three FD schemes together with the ideal wave equation. Figure 33 is an amplified

version of Figure 32, showing us numerical errors caused by FD approximations. We

also show in these figures the dispersion relation of the maximum 16th-order FD scheme

as reference. From these figures, we can observe that optimized FD schemes provide

much wider effective working wave-number band than maximum-order schemes at the

cost of negligible approximation error. Furthermore, our finite-accurate schemes can

provide similar performance as full-accurate optimal schemes with much simpler

coefficient representations.

Figure 32. Comparisons of Dispersion Relations for Different FD Approximations

94

Figure 33. Dispersion Errors for Different FD Approximations

5.5 Accumulation of Floating-Point Operands

In previous sections, we introduced our design of a fully-customized data buffering

system to improve data reusability. This sliding window-based structure is constructed to

feed the FD computing engine a new set of operands at every clock cycle so that the

wave-field grids can be updated at the same speed. Correspondingly, all of those

constant coefficient multipliers work parallel to create a new set of products, after which

the intermediate results are accumulated set by set at the same speed to achieve sustained

high computational throughput.

A fully-pipelined floating-point adder tree structure, as shown in Figure 34, is most

people’s first choice to meet the requirements. However, it is not always the best choice

for us to implement a numerical algorithm/method by simply mapping the software

subroutine or computations into FPGA. Specifically, for summation of floating-point

operands, this naive binary-tree based reduction circuit has the following pitfalls:

95

• Floating-point addition is one of the most complicated computer arithmetic, which in

general, costs an FPGA device several hundreds of Logic Slices. Only the largest and

most expensive FPGA chips can provide enough programmable resources to

accommodate tens of floating-point adders demanded by FD schemes with wide

stencils.

• In order to achieve high data throughput, a floating-point adder in general consists of

seven to ten sub-stages. A large adder tree structure can easily introduce hundreds of

pipeline stages, which may complicate the internal data buffering design, and also

affect the pipelining efficiency because of the start-up latency.

Figure 34. Binary Tree Based Reduction Circuit for Accumulation

In this section, we propose a group-alignment based summation algorithm to

accumulate those floating-point products produced by coefficient multipliers in floating-

point/fixed-point hybrid arithmetic. This hardware-based algorithm can result in similar,

or even better, worst-case absolute and relative errors as ordinary summation methods

using standard floating-point arithmetic. Also, the total number of pipeline stages

required for the new FD computing engine would be reduced significantly. As we will

introduce in the next section, the combination of the optimized FD coefficient

multipliers and the group-alignment based summation unit would save us considerable

96

hardware resources while implementing on FPGA-enhanced computers. Consequently,

higher-order FD schemes could be adopted for better numerical performance. Here, we

bring out the basic idea of this approach and postpone detailed numerical analysis and

proof to the next section.

Our goal is to design an FPGA-specific numerical algorithm to compute the

floating-point summation ∑
=

=
n

i
isS

1
 with similar or better relative and absolute errors

than the standard IEEE-754 compliant floating-point arithmetic. Furthermore, the

algorithm’s hardware implementation should be compatible with the proposed FPGA-

enhanced computer platform. It is asked to accept a new set of floating-point inputs and

produce a new output in the same format at each clock cycle if pipelining technique is

properly applied. Here, we propose the group-alignment based floating-point summation

algorithm as follows:

Algorithm 4. Group-alignment based floating-point summation

Input: A set of n floating-point numbers s1, s2, …, sn from preceding multipliers

Output: The summation result nsssS +++= L21

1. Split each summand si into two portions as Mantissa and Exponent and restore every

Mantissa portion Mi to normalized form Fi.

2. Find the largest Exponent Emax within Ei

3. Calculate (Emax -Ei) for i=1 to n

4. Shift Fi to right by (Emax -Ei) bits, round the shifted fractions to nearest if necessary.

5. Sum up all shifted Fi

6. Normalize the summation result into IEEE- compliant format.

The basic idea of this group-alignment based summation algorithm is relatively

straightforward: Instead of the original floating-point adder tree structure, where the

97

comparison of exponents and the addition of shifted mantissa are scattered in different

adders, we now collect them to form an exponent comparison tree in Step 2 and a fixed-

point adder tree in Step 5. The hardware correspondences for other steps such as 1, 3,

and 4 are also clustered together so that only one pipeline stage is needed for each

function step. The advantage of this arrangement is obvious: We now do not have to

round or normalize every intermediate addition result at the final stage of each floating-

point adder. Instead, only one step at the end of this large summation unit is sufficient.

Correspondingly, we can save almost half of reconfigurable hardware resources in

FPGA-based implementation, and the total number of pipeline stages is reduced

significantly. Figure 35 shows us the structure of this group-alignment based floating-

point accumulator.

Figure 35. Structure of Group-Alignment Based Floating-Point Accumulator

98

5.6 Bring Them Together: Efficient Implementation of the Optimized FD

Computing Engine

We’ve proposed a new class of optimized finite-accurate FD schemes, whose FD

coefficients are optimized to be represented by only a few binary bits without

deteriorating numerical accuracy criterions. Furthermore, we replace the subsequent

costly floating-point adder tree by a floating-point/fixed-point hybrid accumulator

utilizing group-alignment technology. The resulting fully-pipelined FD computing

engine with finite accurate coefficients can provide similar, or even better, worst case

relative and absolute rounding errors than ordinary design using standard floating-point

arithmetic, but consumes only a fraction of programmable hardware resources.

As an example, the 9-point finite-accurate FD computing engine is implemented on

an entry-level Virtex-4 ML-401 evaluation board. FPGA resource occupations, as well

as computational performance, are analyzed and compared with our previous designs

using standard single-precision floating-point arithmetic units. We rewrite the 9-point

1D Laplace operator as follows:

()
()()8

2

4

1

44
0int9

2

2)(
dxO

dx

PPP

x
P r

ririripo

i

+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
+⋅+⋅

=
∂
∂ ∑

=
−+− αα

 (5.17)

Those constant values of coefficients 4,,0
4

L=rrα for different FD schemes can be found in

Table 9.

Ignoring the division by ()2dx , which can be easily absorbed into those constant

coefficients, there are, in total, 5 multiplications and 8 additions. The fully-pipelined

implementation shown in Figure 36 is based on standard single-precision floating-point

arithmetic. It costs 20 embedded 18X18 multipliers and over 3,300 Logic Slices. The

total number of pipeline stages is about 50.

99

Figure 36. Structure of 1D 8th-Order Laplace Operator

An in-depth observation reveals that for this straightforward implementation,

considerable hardware resources are wasted mostly on unnecessary normalization or

alignment stages before and after every floating-point arithmetic unit. Moreover,

inappropriate rounding on intermediate results may significantly jeopardize the

numerical accuracy of ill-conditioned summations. In our new implementation, the

optimized finite-accurate FD computing engine is customized globally to eliminate

redundant operations. A floating-point/fixed-point hybrid approach is adopted, where the

input and output values of this computing engine are all in floating-point representations

to be compatible with conventional data processing software, but almost all internal

stages use fixed-point arithmetic to save hardware resources as well as pipelining

latencies. Figure 37 shows the corresponding hardware structure.

100

Fi
gu

re
 3

7.
 S

tr
uc

tu
re

 o
f 1

D
 8

th
-O

rd
er

 F
in

ite
-A

cc
ur

at
e

O
pt

im
iz

ed
 F

D
 S

ch
em

e

101

Utilizing embedded hardware multipliers may result in efficient and high-speed

implementation for computation-dominated applications. However, because their layout

inside an FPGA chip is pre-assigned to satisfy algorithms with some special patterns,

one might always feel that the position constraints seriously limit their utilization for the

application at hand. One important benefit of the optimized finite-accurate FD

coefficients is that only the largest two coefficients in the middle of FD stencils are in

18-bit fixed-point format, which is ideal with embedded 18X18 multipliers. All other

coefficients are represented by only six binary bits. The corresponding multipliers can be

constructed efficiently by distributed logic slices. For example, a fixed-point 24-by-6

bits fully-pipelined parallel multiplier costs less than 90 logic slices. Moreover, there are

no particular position constraints for it so that this multiplier could be placed anywhere

inside an FPGA device.

Another benefit is not so obvious: In Figure 36, considerable global

interconnection resources inside the FPGA chip are consumed to send operands to first-

level adders. This structural property inevitably leads to cumbersome layout and low

clock frequency, especially for FD schemes with wide stencils. By adopting the finite-

accuracy optimized FD schemes, hardware resources required by coefficient

multiplications decrease significantly, and so we are now allowed to exchange the

arithmetic order of first-level additions and subsequent multiplications as we show in

Figure 37. Although the number of coefficient multipliers is almost doubled, they

occupy similar, or even less, hardware resources than before. Because most data paths

are localized, the computing engine can now work at a much higher clock rate.

Consequently, better computational performance would be achieved.

Utilizing nine unfolded barrel shifters, outputs of nine constant multipliers are

aligned to the one with the largest exponent. Round-to-nearest scheme is applied to

every shifter. In our implementation, the word-width of these barrel shifters is set to 42

bits conservatively, which is also equal to the largest word-width of those products

produced by preceding multipliers.

102

This new floating-point/fixed-point hybrid approach provides much better worst

case error bound than standard floating-point arithmetic with less than half of

programmable hardware resources consumed. Our implementation costs only 6

embedded 18X18 multipliers and about 1500 Logic Slices, which corresponds to less

than 20% of available FPGA resources on the evaluation board. Furthermore, the regular

layout and localized interconnections of this design lead to much higher computational

throughput, especially for FD schemes with wide stencils. The clock rate applied to the

computing engine is about 200MHz for 13 pipeline stages or 230MHz for 15. Higher

clock rate can also be achieved if more pipeline stages are introduced. Simplicity and

scalability are other desirable properties of this design. Choosing more fraction bits into

the new summation unit consumes negligible additional hardware resources, but can

significantly improve numerical error bounds.

103

6. FEM ON FPGA-ENHANCED COMPUTER PLATFORM

In this section, we will introduce our work on accelerating Finite Element Methods

(FEM) on the proposed FPGA-enhanced computer platform. The origins of FEM can be

traced back to the 1940s, when they were developed to solve complex structural

modeling problems in civil engineering. Mathematically, the solution is based either on

eliminating the differential equation completely (steady state problems), or rendering the

PDE into an equivalent ordinary differential equation (ODE), which is then solved using

standard numerical methods. Today, FEM has been generalized into an important branch

of applied mathematics for numerical modeling of physical systems in a wide variety of

scientific & engineering fields such as electromagnetics, fluid dynamics, climate

modeling, reservoir simulation, etc.

As we’ve already learned in Section 5, the primary challenge in solving PDEs is to

approximate the equation to be studied with an expression that is numerically consistent

and stable. By doing so, the numerical solution would finally converge with the original

PDE if appropriate discretization is applied. In other words, errors hidden in input data

sets and emerging from intermediate calculations would not accumulate severely, and

would eventually lead to contaminated results. Just as in FDM, FEM begins with mesh

discretization of a continuous physical domain into a set of discrete sub-domains so that

the original infinite-dimensional equation is projected into finite dimensional subspace.

From this point of view, FDM could be treated as a special case of FEM. However,

FDM requires the entire computational domain to be discretized with rectangular shapes

or simple alternatives. Moreover, the discretization must be sufficiently fine to resolve

both the high-frequency wavelet components and the smallest geometrical feature.

Consequently, large computational domains could be developed, which would result in

extraordinary computational workload. Comparatively, FEM is a good choice for

solving PDEs over a large computational domain with complex boundaries and minute

geometrical features, or when the desired precision varies over the entire domain. For

104

instance, when simulating weather patterns on Earth, it is more important to make

accurate predictions over land than over the wide-open sea.

The first step of FEM is meshing, which is the process of breaking up a continuous

physical domain into smaller sub-domains (elements). For example, surface domains

may be subdivided into triangular or quadrilateral shapes, while volumes may be

subdivided into tetrahedral or hexahedral shapes. Although mesh generation is a key

portion of FEM and will decide the final approximation accuracy, it is only one of the

pre-processing steps of FEM and consumes a small portion of the total execution time.

Moreover, mesh generation methods in general integrate complex control-dominated

subroutines such as automatic grid generation or adaptive mesh refinement, and

therefore could not be accelerated effectively with today’s PFGA devices.

The final and most time-consuming step of FEM is the solution of large linear

system equations generated by discretizing PDE. Basic Linear Algebra Subprograms

(BLAS) are standard toolkits for scientists and engineers to perform such linear algebra

operations. Because of their popularity, these subroutines are always well-tuned by

software vendors, and therefore execute very fast on commodity computers. We know

that the computational complexity of the solution of a linear system equations using

standard linear algebra methods such as Gaussian Elimination (GE), QR or LU

factorization is ()3nO , where n is the number of system unknowns. Consequently, such

conventional methods are considered feasible only for small problems, with up to

thousands of system unknowns. For most realistic numerical PDE problems, where large

linear system equations with millions, even billions, of unknowns are involved, such

computation-dominated methods are generally impractical. Fortunately, the matrices

derived from such problems are sparse (most entries of the matrix are zero). So, another

class of linear system equations solvers, called iterative methods, could be applied for

their rapid (but inaccurate) solutions.

Because of all the reasons mentioned above, in this work, we decide not to

reference mesh generation subroutines of FEM, but investigate FPGA-specific methods

for rapid solutions of basic BLAS subroutines on the proposed FPGA-enhanced

105

computer platform. We will introduce our work on accelerating all three levels of BLAS

functionality as Level-1 regarding vector operations, Level-2 regarding matrix-vector

operations, and Level-3 regarding matrix-matrix operations. Results of this work can be

applied directly to accelerate the solution of dense/sparse linear system equations.

Floating-point arithmetic is always preferable to fixed-point arithmetic in

numerical computations because of its ability to scale the exponent for a wide range of

real numbers. With commercial or open-source parameterized floating-point libraries [21]

[22], floating-point computations on FPGAs become straightforward and convenient.

However, this standard approach requires much more programmable hardware resources

than their fixed-point counterparts. Moreover, it leads to excessive computation latency.

For example, constructing a fully pipelined single-precision floating-point adder on

Xilinx Virtex-II Pro device consumes over 500 logic slices with 16 pipeline stages [71].

Analogously, a double-precision unit with similar performance costs nearly 1000 logic

slices with over 19 pipeline stages.

For specific S&E problems at hand, it is always possible, and indeed desirable, to

adopt customized floating-point formats by making tradeoffs among accuracy, area,

throughput, and latency [72] [73]. Efforts were also made to investigate the possibility of

replacing floating-point operands and operations by fixed-point arithmetic thoroughly

[74] [57]. However, most of these works only demonstrated these feasibilities by

numerical evidences without rigorous mathematical proofs, and therefore were

unconvincing for religious numerical scientists.

Instead of directly enhancing the capability of standard floating-point arithmetic, in

this work, we select to boost the computational performance of basic BLAS subroutines

on FPGAs by improving their numerical accuracy and hardware efficiency. Here, we

interpret improved numerical accuracy as similar, or even better, relative/absolute

rounding error compared with software subroutines using standard floating-point

arithmetic. Hardware efficiency means that the resulting implementation consumes

comparable or less hardware resources on FPGAs than existing conventional designs,

106

but can always achieve better sustained execution speed with only moderate start-up

latency.

6.1 Floating-Point Summation and Vector Dot-Product on FPGAs

6.1.1 Floating-Point Summation Problem and Related Works

Floating-point summation is such an important operation in numerical

computations that some computer scientists even suggested to import it into general-

purpose CPUs as “the fifth floating-point arithmetic” [75]. Unlike other fundamental

floating-point arithmetic, summation is not well-conditioned because of so-called

“catastrophic cancellations” [76], i.e. small relative errors hidden in inputs might lead to

significant relative error in output. To complicate the situation, the sequence of

consecutive additions will also affect the final sum, resulting in un-unique solutions for

the same input data set on different computer platforms with different programming

languages or software compilers [77]. On the bright side, this un-uniqueness relieves us

from strictly obeying the IEEE standard in our FPGA-based implementation. The only

constraint imposed in our design is to select the exact solution as accuracy criterion.

Given a set of n floating-point numbers nsss ,,, 21 L with small relative errors Mε ,

our goal is to design an FPGA-specific numerical algorithm as well as its hardware

implementation to compute the summation of ∑
=

=
n

i
isS

1
 accurately and efficiently.

Specifically, we assume that the summation unit has only one input port to feed in

summands as well as one output port to send out final results. This assumption is

consistent with the memory-bandwidth-bounded property of floating-point summations

because there is only one addition corresponding to each summands.

The following criteria are used to compare the performance of our FPGA-based

design with others:

107

a. Efficiency. The summation unit consumes comparable FPGA programmable

hardware resources and can work at a similar or even higher speed as a conventional

fully-pipelined floating-point accumulator.

b. Throughput. The fully-pipelined summation unit should work at its highest sustained

speed, accepting a new summand at every clock cycle without excessive pipelining

stalls.

c. Latency. The summation result should be available with only moderate latency after

the last summand entering this arithmetic unit.

d. Accuracy. Summation results of this new arithmetic unit should have similar, or

better, relative and absolute errors than results produced by the standard sequential

accumulation algorithm utilizing IEEE-754 compliant floating-point arithmetic.

Figure 38. Conventional Hardwired Floating-Point Accumulators (a) Accumulator

with Standard Floating-Point Adder and Output Register; (b) Binary Tree Based

Reduction Circuit

108

At first glance, a simple accumulator using one floating-point adder with its

registered output connecting to one of the adder’s input ports can do the job perfectly

(Figure 38(a)). However, unlike a single-cycle fixed-point accumulator whose output

can be fed back to the input port immediately as intermediate results for consecutive

summations, the data dependency associated with the pipelined floating-point adder will

severely slow down the data throughput of the corresponding accumulator. This

deficiency doesn’t meet the requirement we just mentioned in criterion (b). Another

extreme is to accumulate n floating-point numbers using a binary tree based reduction

circuit with ()1−n adders and n2log tree levels (Figure 38(b)). If the pipelining technique

was properly applied, this approach can accept a new set of inputs and produce a new

output at each clock cycle. Therefore, this approach is too extravagant for our single

input/output unit and won’t result in efficient implementation as we required in criterion

(a).

One possible way to address the data dependency problem caused by pipelined

addition is to introduce a “schedule” circuit and carefully-designed input/intermediate-

sum buffers [78]. This approach treats all intermediate-sums the same way as input

summands, and so the original summation task with ()1−n summations and

n summands are now converted to ()1−n additions of ()22 −n addends. With the help

of efficient data buffering design, ideally this task could be finished by an adder within

()1−n clock cycles. However, limited by the only external input port of the summation

unit, the adder has to rely on its own output to feed back operands, which may not

always arrive on time because of the adder’s deeply-pipelined internal stages. In order to

finish the summation task as soon as possible, the main task of the scheduler is to

monitor the internal dataflow of the pipelined adder and try its best to feed the adder’s

two input ports with operands. Because considerable idle cycles would always be

inserted at the beginning and the end of the process, latency may become a potential

problem for this approach, especially when n is not a large number. Moreover, the

scheduler requires considerable register resources to buffer inputs and intermediate-sums,

which may be unfeasible on FPGAs without internal SRAM blocks.

109

In [79], the authors proposed a technique called “delayed addition” to remove carry

propagation from the critical paths of pipelined integer or floating-point accumulations.

The resulting FPGA-based implementation meets our requirements for high-throughput

and low-latency. However, because considerable hardware resources are consumed to

construct Wallace-tree based 3-2 compressors as well as overflow detection/handling

circuit, this summation unit is four times more expensive than what we expected in

criterion (a). Furthermore, unlike the design in [78], where the accuracy of the final

result is guaranteed by the standard floating-point adder, the authors only demonstrated

the feasibility of their approach by simple numerical tests without rigorous proof, and so

its correctness and accuracy is still questionable.

6.1.2 Numerical Error Bounds of the Sequential Accumulation Method

Over the last few decades, people devised and analyzed many numerical

algorithms for accurately computing floating-point summation. However, most of these

software approaches are based on sorting the input data set in increasing or decreasing

order by absolute value. Their computational complexity is dominated by

sorting ()()nnO log⋅ , so is much more expensive than the naïve sequential accumulation

method.

Here, we first analyze error properties of sequential accumulation. Then, we use

the result as reference to steer our new FPGA-specific summation algorithm. Assuming

the rounding scheme of a computer with standard floating-point arithmetic is round-to-

nearest-even, we have the following error bounds for fundamental floating-point

arithmetic [80]:

Lemma 1: Let Mε be the unit rounding-off on a computer with standard floating-point

arithmetic (242−=Mε for single-precision arithmetic, or 532−=Mε for double-precision

arithmetic). Then the absolute error and relative error for fundamental floating-point

operations (op can be either ÷×−+ or,,,) can be represented as:

110

Myopxyopxyopxfl ε⋅≤−)()((6.1)

Myopxyopxyopxfl ε≤−)()((6.2)

Keeping this result in mind, we can easily prove by mathematical induction the

following lemma:

Lemma 2: Let Mε be the unit rounding-off on a computer with standard floating-point

arithmetic. Then the absolute error and relative error bounds for floating-point

summation: nsssS +++= L21 introduced by the naïve sequential accumulation

algorithm can be represented as:

()
{ } Mn

MnS

nnsss

nsssSSfle

ε

ε

)1(,,,max

)1()(

21

21

−⋅⋅≤

−⋅+++≤−=

L

L
 (6.3)

M
n

nS n
sss
sss

S
e

ε)1(
21

21 −⋅
+++

+++
≤

L

L (6.4)

where
n

n

sss
sss

+++

+++

L

L

21

21 is the relative condition number of floating-point

summation.

Proof:

Let ()ii sssflS +++= L21 . From Lemma 1, we have:

)1()1()1)(()(1211121212 εεε +++=++=+= ssssssflS (6.5)

Similarly,

)1()1)(1(
)1)(1()1)(()(

23212

211232323

εεε
εεε

+++++
++=++=+=

ss
ssSsSflS (6.6)

Continuing in this way, we can prove by induction that:

)1()1)(1(
)1()1()1()1)(1)((

)1)(()(

1121

12312121

111

−−−−

−−

−−−

++++++
+++++++=

++=+=

nnnnn

nn

nnnnnn

ss
sss

sSsSflS

εεε
εεεεε

ε

L

LL (6.7)

Where 1,,2,1 −=≤ niforMi Lεε

111

Because 1<<Mε , we have the following two relations:

Mn n εδεεε)1)(1(1)1()1)(1(121 +−+≤+++ −L (6.8)

niforinnii ,,3,2)1)(1(1)1()1)(1(11 LL =++−+≤+++ −+ εδεεε (6.9)

where δ is also a tiny quantity and can be absorbed into Mε without affecting the

final conclusion. We choose to ignore it from now on.

The worst-case absolute rounding error can be represented as:

() { } MnMn

MnMMnn

nnsssnsss

snsnsSSe

εε

εεε

)1(,,,max)1(

)1()1(1())1(1(

2121

21

−⋅⋅≤−⋅+++≤

++−++−+≤−=

LL

L
 (6.10)

Correspondingly, the relative error can be represented as:

M
n

n

n

n n
sss
sss

S
e

ε)1(
21

21 −⋅
+++

+++
≤

L

L
 (6.11)

We also note from Equation (6.7) that the naïve sequential accumulation method

doesn’t result in a unique solution for different summation sequences. The “less than or

equal to” signs in expression (6.3) and (6.4) imply that the error bounds here are tight.

Putting it another way, we may always encounter the worst case if we mistakenly choose

summation sequence or input data set.

6.1.3 Group-Alignment Based Floating-Point Summation Algorithm

The un-uniqueness of floating-point summations relieves us from strictly

complying with the IEEE standard. Here, we select the exact solution as the only

accuracy criterion and propose the group-alignment based floating-point summation

algorithm as shown in Algorithm 5.

We notice that this new algorithm is almost the same as Algorithm 4 we proposed

in Section 5.5 for accumulating intermediate results produced by FD coefficient

multipliers. Indeed, we can consider Algorithm 5 as a generalized version of Algorithm

4: The same group-alignment technique is also applied as before. The main difference is

that the input dataset is now sequentially fed into the only input port of the hardwired

112

summation unit. Correspondingly, internal data buffering is necessary here. However,

the size of the input dataset could range from as few as three to as many as millions.

Sometimes it is even impossible to buffer all elements of the dataset on a chip. To

relieve this capacity constraint, we have to partition the input dataset into small group of

summands and apply the group-alignment based summation method group by group.

Therefore, the complex synchronization circuit is indispensable for automatic

partitioning with only moderate idle cycles. We will revisit the detailed implementation

of the summation circuit on FPGAs in Section 6.1.5.

Algorithm 5. Group-alignment based floating-point summation

Input: A set of n floating-point numbers s1, s2, …, sn which are partitioned into groups

with m summands

Output: The summation result nsssS +++= L21

For k=1 to n/m

1. Split each summand si in this group into two portions as Fraction and Exponent.

Restore the hiding bit in Fi to form the mantissa Mi.

2. Find the largest Exponent Emax within Ei

3. Calculate (Emax -Ei) for i=1 to m

4. Shift Mi to right by (Emax -Ei) bits, round the shifted fractions to nearest-even if

necessary.

5. Sum up all shifted Mi using fixed-point arithmetic

6. Feed rounded Msum together with Emax to the subsequent simplified floating-point

accumulator

End

Normalize the final summation result to IEEE- compliant floating-point format.

113

6.1.4 Formal Error Analyses and Numerical Experiments

We predict intuitively that this group-alignment technique facilitates floating-point

summations more accurately than standard arithmetic because almost all rounding errors

arising in partial-sums within a group are eliminated except the last one in Step 6. To

prove the correctness of this declaration, let’s consider the group-alignment based

summation with m summands. Because this algorithm utilizes the same monotone

rounding scheme (round-to-nearest, towards-zero or away-from-zero) as standard

floating-point arithmetic, averaging will have the same effect on rounding error

propagations. Here, we analyze the worst case errors only.

Theorem 1: The group-alignment based floating-point summation algorithm can always

result in a unique solution for the same summand group, regardless of the accumulation

sequence.

Proof: In Step 4 of the algorithm, all summands within a group are aligned to the one

with the largest exponent. Also, because a fixed-point accumulator is used in Step 5,

which introduces no rounding errors in computations, a unique solution can always be

achieved regardless of the sequence by which those summands are accumulated.

Let M'ε be the unit rounding-off on a computer with the new summation unit. Its

value now equals to half of the minimal quantity represented by the mantissa

accumulator, which is set to be the same as standard floating-point arithmetic

temporarily, i.e., 23 fraction bits for single-precision inputs or 52 bits for double-

precision. Numerical error analyses show us the following result:

Theorem 2: The group-alignment based summation algorithm achieves similar, or even

better, worst case relative and absolute errors than the sequential accumulation algorithm

with standard floating-point arithmetic, depending on the choice of M'ε .

114

Proof: After aligning all mantissas of summands to the one with the largest exponent,

the absolute rounding error for each right-shifted floating-point summand except the

largest one (which introduces no rounding error assuming the number itself is exact.) can

be represented as:

{ } Mmi ssse ',,,max' 21 ε⋅≤ L (6.12)

The worst case absolute error of the summation after fixed-point aligned-mantissa

accumulation is:

() { } MmS sssme ',,,max1' 21 ε⋅⋅−≤ L (6.13)

The corresponding maximum relative error is:

{ } ()

() M
m

m

M
m

mS

m
sss
sss

m
sss
sss

S
e

'1

'1
,,,max'

21

21

21

21

ε

ε

⋅−⋅
+++

+++
≤

⋅−⋅
+++

≤

L

L

L

L

 (6.14)

Comparing Expression (6.13) and (6.14) with (6.3) and (6.4), we conclude that

Theorem 2 holds.

Observing Expression (6.14), we note another efficient method to further improve

error bounds: It is convenient to decrease M'ε on FPGA-based solutions by using more

fraction bits to represent/manipulate those aligned summands and corresponding fixed-

point summations. On the contrary, this approach is painful on commodity computers

because users have to simulate high-accurate floating-point operations (double-extended

or double-double) by software subroutines [81].

115

Table 13. Errors for the New Summation Algorithm

Fraction bits
Maximum/Average

absolute error
(Condition number)

Maximum relative error
 (Condition number)

23 5.14e-7/9.03e-8(73.5) 0.143 (4.13e+6)

24 2.68e-7/4.94e-8(1.58) 0.0857 (4.13e+6)

25 1.08e-7/1.72e-8(1.98) 0.0857 (4.13e+6)

26 5.22e-8/2.77e-9(4.51) 0.0182(5.97e+6)

27 1.86e-8/1.78e-9(2.49) 6.85e-4(1.71e+5)

28 7.45e-9/5.06e-10(2.88) 1.08e-4(1.43e+5)

29 3.73e-9/1.36e-10(2.06) 7.65e-5(2.35e+5)

32 2.33e-10/2.24e-12(16.72) 2.13e-6(3.25e+4)

Single-precision 5.29e-7/4.02e-8(1.45) 0.0857(4.13e+6)

A MATLAB program is used in this work to demonstrate error properties of our

new summation algorithm. We first create one million groups of single-precision

floating-point operands as input data sets, each of which contains ten uniformly-

distributed random summands ranging from -0.5 to 0.5. The group-alignment based

summation is executed for each input data set and the worst case absolute and relative

errors are recorded and compared with results produced by the sequential accumulation

algorithm with standard single-precision arithmetic. Using double-precision arithmetic

results as a reference, Table 10 lists the recorded maximum/average absolute errors and

maximum relative errors for the new summation algorithm utilizing different fraction

bits. Relative condition numbers of summations are also calculated to show their impacts

on final results. Important observations are listed as follows:

• The same conclusion as Theorem 2 regarding the worst case/average absolute errors

can also be drawn from the first column in Table 10. Furthermore, these errors

decrease proportionally to the number of fraction bits we adopted. This observation

correlated well with the error expression (6.13).

116

• Numerical stability theory [82] tells us that:

errorrelativeInputnumberConditionerrorrelativeOutput ×≤ (6.15)

We note that catastrophic cancellations happened in those listed worst cases in

column two because of large condition numbers. Initial relative errors hidden in the

input data set are magnified dramatically so that error digits in solutions are now

much closer to the most significant digit. Here, we cannot observe a clear relation

between errors and the number of fraction bits as in column 1. The reason is that

these bad-conditioned cases are still far from the worst ones so that most details are

hidden by the “less than or equal to” sign in Expression (6.14). Indeed, we can easily

create a floating-point data set with all digits of their summations contaminated.

• Comparatively, condition numbers listed in column one are all moderate. An

intuitive explanation to this coincidence is that when condition number of summation

is small, most significant operands have the same sign so that the absolute error

bound in expression (6.13) is tight. However when condition number of summation

is large, results are much smaller than the largest operands. Correspondingly, those

significant operands tend to have opposite signs and cancel others.

• Although the new summation algorithm has improved worst-case error bounds, it

doesn’t mean that this approach can always produce better results for every input

data set. For example, the average absolute error for our algorithm with 23 fraction

bits is about twice as bad as the conventional sequential accumulation approach

using single-precision arithmetic. Indeed, it is a little unfair to compare these two

cases because the conventional implementation of single-precision floating-point

addition in general has three more guarding bits.

6.1.5 Implementation of Group-Alignment Based Summation on FPGAs

Using the simplest single-precision floating-point accumulator as an example, we

introduce in detail our implementation of the group-alignment based summation

algorithm on FPGAs. Extending this design to double-precision or extended-precision is

117

easy and straightforward with nearly the same computational performance if appropriate

pipelining stages were inserted. An entry-level Virtex II Pro evaluation board [81] is

used as the target platform. The software development environments are Xilinx ISE 7.1i

and ModelSim 6.0 se. Figure 39 shows the hardware structure of the summation unit.

The following features distinguish this design from others [78] [79]:

• To be compatible with conventional numerical computing software, the inputs and

outputs of our summation unit are all in floating-point representations. But almost all

internal stages use fixed-point arithmetic to save hardware resources as well as

pipelining stages.

• Floating-point operands are fed into the single input port sequentially at a constant

rate. Two local feed-back paths connect outputs of the single-cycle fixed-point

exponent comparator and the mantissa accumulator with their inputs respectively,

and so will not result in pipeline stalls.

• With the help of two external signals marking the beginning/end of input groups or

datasets, our design can always achieve the optimal sustained speed without the

knowledge of summation length. Furthermore, multiple sets of inputs can be

accumulated consecutively with only one pipeline stall between them.

• The synchronization circuit automatically divides a long input dataset into small

groups to take advantage of the group-alignment technique. Grouping is transparent

to exterior and will not cause any internal pipeline stalls.

• The maximum size of a summand group is set to 16 in our implementation so that

the corresponding group FIFO can be implemented efficiently by logic slices. The

size of a group can also be easily reduced or enlarged to achieve better performance

for particular problems.

118

Fi
gu

re
 3

9.
 S

tr
uc

tu
re

 o
f G

ro
up

-A
lig

nm
en

t B
as

ed
 F

lo
at

in
g-

Po
in

t S
um

m
at

io
n

U
ni

t

119

• Once the group FIFO contains a full summand group or the summation-ending signal

is received, the synchronization circuit commands the exponent comparator to clear

its content after sending the current value to the maximum exponent buffer. Starting

from the next clock cycle, mantissas in FIFO are shifted out sequentially. Their

exponents are also subtracted from the current maximum exponent one by one to

produce differences for the pipelined mantissa shifter. While at the mean time, the

next group of operands is moved in to fill vacant positions.

• The word-width of the barrel shifter is set to 34 bits (32 fraction bits) conservatively,

so the fixed-point accumulator needs four more bits to prevent possible overflow.

However, according to error analysis in Table 1, a 30-bit accumulator with 24

fraction bits is enough to achieve similar accuracy as the standard single-precision

floating-point arithmetic.

• The single-cycle 38-bit group mantissa accumulator becomes the performance

bottleneck of our design, preventing us from further improving the clock rate applied

to the summation unit. Instead of using the costly Wallace-tree adder to remove the

carry-chain from the accumulator’s critical path [79], we simply disassemble the

large fixed-point unit into two smaller ones. With their respective integer bits to

prevent overflow, the resulting two 21-bit fixed-point accumulator now can work at a

much higher speed.

• The normalization circuit accepts outputs from the fixed-point accumulator(s) and

the exponent buffer, and converts them into normalized floating-point format. It also

consists of Leading-Zero-Detector (LZD) and pipelined left shifter as standard

floating-point adder. However, because the data throughput of this stage is at least

half of all front-end circuits, a more economic implementation can always be

achieved.

• For long summations with multiple summand groups, another group summation

stage using conventional floating-point adder is required to accumulate all group

partial-sums. Because its data throughput is just 1/16 of the front-end, pipelining

inside the adder will not cause any data-dependency problem. Furthermore, the

120

foregoing normalization circuit and the floating-point adder can be combined to save

a costly barrel shifter as well as other unnecessary logics.

• For applications where latency was an unimportant issue, On-chip block RAMs

could also be used as FIFO to buffer a whole dataset instead of a small group of

input data. Correspondingly, the synchronization circuit could be simplified

considerably and the final floating-point accumulator is unnecessary.

Table 14 lists the performance of the new single-precision floating-point

summation unit together with two other approaches proposed in [78] and [79]. They are

Table 14. Comparison of Single-Precision Accumulators

 Group-alignment ① Scheduling [78] Delayed-addition [79]

Target device Virtex II Pro Virtex II Pro Virtex-E

Area (Slices) 443 (716) 633 (n=24)
~900 (n=216) ② 1095 CLBs

Speed (MHz) 250 180 (n=24)
~160 (n=216) 150

Pipeline
stages 14 (23) 20 5 ③

Latency
(cycles)

n<16: 2n+12 (21)
n>16: 44 (53)

()nn 2log203 +⋅≤

5 + 46ns

Numerical
accuracy Proved Guaranteed ④ Not guaranteed④

① Two numbers are listed at some places in this column for without and (with) the
final group summation stage.
② One SRAM block is required for data buffering.
③ The final addition and normalization stage uses combinational logic, so is not
pipelined.
④ The accuracy of [78] is guaranteed by the standard floating-point adder. In [79], the
authors provided only simple numerical tests without rigorous proof.

121

compared with each other based on sustained FLOPS performance, internal buffer

requirements, latencies, etc. We observe that this new floating-point/fixed-point hybrid

summation unit can provide much higher computational performance, less FPGA

resource occupations, as well as more practical latency than previous designs.

Furthermore, choosing more fraction bits for the fixed-point accumulator consumes

negligible additional RC resources, but can significantly improve numerical error bounds

of the summation.

Although the aforementioned summation algorithm can always provide similar or

better absolute and relative error bounds than standard floating-point arithmetic, it still

cannot avoid the occurence of catastrophic cancellation in some worst cases. Indeed, we

can easily cook up floating-point data sets, where the initial relative errors hidden in

inputs are magnified dramatically so that all digits of the final result are contaminated.

The only way to completely eliminate inevitable cancellations is to use the “exact

summation” approach [82]. Assuming that all floating-point inputs are represented

exactly, rounding error happens when the word width of an accumulator is not enough to

contain all effective binary bits of intermediate results. This method adopts an extreme

solution to address this problem: It converts all floating-point inputs to ultra-wide fixed-

point format so that fixed-point arithmetic can be used to reach an error-free solution.

After that, a normalization stage is utilized to round the solution to appropriate floating-

point format. A careful analysis shows us that nearly 300 binary bits is necessary to

represent a single-precision floating-point number in fixed-point format, or over 2000

bits for double-precision cases. Even if such an ultra-wide register is acceptable, the

underlying huge shifting/alignment stage and the unavoidable carry-chain of the fixed-

point accumulator will pose a severe performance bottleneck to this approach. Indeed, to

the best of our knowledge, there is no actual attempt to use this method in practice.

 It is possible to construct an error-free floating-point summation unit on the

proposed FPGA-enhanced computer platform. However, this unit would be much more

consumptive and significantly slower than standard floating-point arithmetic. For some

special cases where extremely accurate or even exact solutions are mandatory,

122

constructing such a rounding-error-free floating-point summation unit would be still

worthwhile.

6.1.6 Accurate Vector Dot-Product on FPGAs

Given two column vectors of floating-point numbers T
naaaA],,,[21 L=

and T
nbbbB],,,[21 L= , we want to accurately calculate their inner product:

∑
=

⋅==
n

i
ii

T baBAC
1

 (6.16)

where the superscript “T” stands for the transpose of a vector or matrix. By

accuracy, we mean better numerical error bound than the results produced by direct

calculations using standard floating-point arithmetic.

We can easily observe that the only difference between summation and dot product

is those element-wise multiplications, and so the group-alignment based summation

technique we proposed above can also be applied here for accurate solutions of vector

dot-product. However, these multiplications introduce a new problem. To expose this

potential problem, let’s consider the simplest case: the dot-product of two two-element

vectors TaaA],[21= and TbbB],[21= . Starting form Lemma 1, we have:

() ()()
()() ()()()

()() ()()()()
() () ()

() () ()
()() ()()322231112211

32223111322

3112221112211

3222111

222111

2211

111
11

εεεε
εεεεε

εεε
εεε

εε

+×++×+×+×≈
×+×+×+

×+×+×+×+×=
++×++×=

+×++×=
×+×

babababa
bababa

bababababa
baba

babafl
baflbaflfl

 (6.17)

After ignoring high-order rounding error terms in Equation (6.17), we can observe

that numerical errors produced by multiplications (21 ,εε) have similar magnitude as

addition error (3ε), and so should also be take into consideration for accurate solutions.

Specifically, we cannot simply round the product of each pair of vector elements to

standard floating-point format as we used to do on commodity CPU based general-

123

purpose computers. Some CPUs do provide so-called “Fused Multiply-Addition (FMA)”

unit/instruction, where a floating-point accumulator is placed adjacent to the multiplier

so that the rounding error introduced by multiplications could be called off. However,

most software compilers do not yet support this function because it tends to complicate

instruction scheduling, and may eventually slowdown the execution.

The group-alignment based floating-point summation unit as shown in Figure 38

could be easily extended to vector norm or dot-product unit by attaching a simplified

floating-point multiplier to its input port. This multiplier accepts two standard floating-

point operands at each clock cycle; normalizes them; and multiplies their mantissas.

Then, the product and the sum of exponents are fed to inputs of following summation

unit with all post-processing stages eliminated. For obtaining an accurate dot-product

result, all effective bits of input mantissa products should be kept so that the numerical

errors produced by multiplications (21 ,εε) could be removed. In the mean time, the

word-width of the barrel shifter and the fixed-point accumulator in the summation unit

should also be extended correspondingly for better numerical error bound.

As we introduced before, the implementation of the Time Domain or Frequency

Domain Finite Difference (FDTD or FDFD) computing engine could also profit from

this technique by replacing the conventional costly floating-point adder tree with a

group-alignment based summation unit. Moreover, the same technique can be applied to

other linear algebra routines such as matrix-vector multiply, matrix-matrix multiply, etc.

to efficiently decrease FPGA resource occupations and reduce pipeline stages without

negative impact on computational performance or numerical accuracy. We will present

our related works in following sections.

124

6.2 Matrix-Vector Multiply on FPGAs

The operations of floating-point matrix-vector multiply (GEMV) is defined as:

∑
=

⋅=
n

j
jiji xAy

0
 (6.18)

Where A is a dense nn× matrix; x and y are two 1×n vectors.

After decomposing matrix A into n row vectors, the matrix-vector multiply can be

treated as n dedicated vector dot-products. Correspondingly, the FPGA-based matrix-

vector multiply engine can be constructed easily as a straightforward extension of the

dot-product unit we proposed in Section 6.1. We already know that the main factor

restricting the computational performance of pipelined summation or dot-product units is

the contradiction between the long pipelines required for high throughput and data

dependency among neighboring calculations. Specifically for the problem we considered,

when the dimension of the matrix is larger than the depth of the pipelining stages of the

FMA unit, adequate inherent low-level parallelism could be easily exploited so that

simple scheduling can eliminate the potential data dependency problem. Suppose all

elements of A, x, and y are saved in external memory (which is the case for most

realistic numerical PDE problems). Because x is used as the only common column

vector, there would be at least ()nn 22 + memory accesses and ()22n floating-point

operations in total. The ratio between external memory accesses and floating-point

operations is nearly two, which reveals the memory-bandwidth-bounded property of this

subroutine.

The only work we can find that discusses this topic is in [7], where an FPGA-based

matrix-vector multiply unit was proposed and its sustained performance was analyzed

and compared with the same subroutine operating on contemporary general-purpose

computers. External memory bandwidth of a typical FPGA-based system is, in general,

millions of words per second, which is at the same level as the data throughput of fully-

pipelined floating-point arithmetic units such as multiplier or adder in FPGA. A few

125

parallel-running arithmetic units could easily saturate all available external memory

bandwidth, leaving considerable FPGA resources unused.

Here, we try to utilize these unused FPGA resources for some useful work so that

the computations of matrix-vector multiply could be benefited. First, a floating-point

FMA can be constructed based on the group-alignment based summation unit we

proposed in Section 6.1. This new FMA unit also works in pipelined manner accepting

two operands ()jij xandA at each clock cycle. All intermediate results
10 −=

⋅
njjij xA

L
 for

each iy are buffered as one group of data using on-chip SRAM blocks. Correspondingly,

the synchronization circuit of the summation unit is simplified significantly and the final

floating-point accumulator is eliminated. The relatively long start-up latency cause by

row buffering is leveraged because of the relatively large matrix size, so that the

computational performance only drops slightly. Although this new approach doesn’t

alleviate the memory bandwidth bottleneck, it can evaluate iy to higher accuracy at

nearly the same speed by simply extending word width of the barrel shifter and the

fixed-point accumulator. Comparatively, standard high-accurate floating-point

arithmetic units are costly on FPGAs with considerably degraded performance. High-

accurate result is always preferable when matrix A is bad-conditioned. Scientists [83]

proposed pure software methods to achieve higher accurate results (double-extended,

double-double, or quadruple precision) using only standard floating-point arithmetic

(single or double precision) at the cost of 4~10 times of slowdown. Correspondingly, we

can say that our new approach significantly improves the computational performance of

high-accurate matrix-vector multiply in an indirect way.

Because the memory bandwidth limitation is always present, preventing us from

further improving the sustained FLOPS performance of this subroutine, one of our

choices is to construct an appropriate data buffering system to attain the most from the

limited resources. Specifically, the data dependency existing in summations of

consecutive products is the only issue that could be addressed by the buffering system.

Assume the matrix is large and can only be stored in external memory. For small

problems where in-chip RAM blocks could accommodate all elements of at least one

126

input/output vector, we have two choices to construct the data buffering system: The

first one is to calculate matrix-vector multiply in row order just as Equation (6.18)

implies. Here, Matrix entries are read into FPGA row by row and multiplied by the input

vector x, whose elements are all buffered inside FPGA’s RAM blocks. Multiple RAM

blocks can support multiple operands accesses from x simultaneously so that a number

of multipliers can work in parallel if the accumulative external memory bandwidth is

wide enough for reading in the same number of operands from the matrix. The

corresponding FPGA-specific hardware algorithm is listed in Algorithm 6. Figure 40

shows the diagram and dataflow of the FPGA-based hardware implementation.

Algorithm 6. Matrix-vector Multiply in row order

Input: nn× dense matrix A saved in external memory

 1×n input vector x saved in s SRAM blocks in FPGA chip. The number s block

contains vector entries ()1,,2,, −+++ snisisii L .

Output: xAy ⋅=

For i = 1 to n

For j = 1 to n/s

Read in matrix entries () sjsjiA ∗+∗− :11, from external memory

For k =1 to s do parallel

 () () ksjksjik xAp +∗−+∗− ⋅= 11,

End For

∑
=

=
s

k
kj pq

1

End For

∑
=

=
sn

j
ji qy

/

1

End For

127

Matrix A in External Memory
s=4, n/s=2

In-chip Cache

X

X

Vector x in s SRAM Blocks,
Each has n/s entries

3, +jia

2, +jia

1, +jia

jia ,
jx

1+jx

2+jx

3+jx

s-parallel
Group-

Alignment
based

Summation
Unit

X

X

n/s-
sequential

Group-
Alignment

based
Summation

Unit

In-chip Cache

i-th Row

y in External Memory

Figure 40. Implementation for Matrix-Vector Multiply in Row Order

We notice that the group-alignment based summation technique is applied twice

here to address the data dependency problem: one in parallel followed by another in

sequence. Although a little costly, this approach does simplify the design for the

buffering circuit as well as internal data flow: the input vector buffer always works in

read-only mode and there are no feed back data paths in this design.

128

The other data buffering scheme is based on the fact that matrix-vector multiply

can also be represented as summation of n scaled column vectors of A as the following

equation shows:

∑
=

⋅=⋅=
n

j
jj xAxAy

0
 (6.19)

A y

X = + =

x y1 y2

Figure 41. Matrix-Vector Multiply in Column Order

Figure 41 depicts the computational scheme of this approach. Here, all elements of

the resulting vector y have their place inside FPGA’s RAM blocks. The matrix is

stripped into blocks of size sn× , and the number of row entries in each block s is

selected carefully so that all of them can be accessed simultaneously from external

memory. Correspondingly, there are s parallel-running multipliers integrated inside the

FPGA device. Although distributed registers are the best place to hold those vector

entries, internal RAM block-based input buffer may still be necessary to hide access lags

of external SDRAM modules. All product values generated at the same clock cycle

together with the relevant partial sum value read from vector y are summed up to update

the same y entry. The troublesome data dependency problem is eliminated easily by this

simple scheduling because consecutive summations are now for different y entries.

Compared with the previous approach, only one parallel group-alignment based

summation unit is needed, but one data feed-back loop is introduced for updating the

129

output vector. On the whole, FPGA-based implementations for these two approaches

will have similar computational performance with similar programmable hardware

resources consumed. Algorithm 7 is the corresponding FPGA-specific hardware

algorithm. The block diagram and data flow of its FPGA-based hardware

implementation is depicted in Figure 40.

Algorithm 7. Matrix-vector Multiply in column order

Input: nn× dense matrix A saved in external memory

 1×n input vector x saved also in external memory

 An in-chip dual-port SRAM as working space for the output vector y.

Output: xAy ⋅=

Set all entries in vector y to be zero

For j = 1 to n/s

Read in vector entries () sjsjx ∗+∗− ,11 from external memory

For i = 1 to n

1. Read in matrix entries () sjsjiA ∗+∗− :11, from external memory

2. For k =1 to s do parallel

3. () () ksjksjik xAp +∗−+∗− ⋅= 11,

4. End For

5. ∑
=

+=
s

k
kii pyy

1

End For

End For

130

3, +jia

2, +jia

1, +jia

jia ,

jx

1+jx

2+jx

3+jx

Figure 42. Implementation for Matrix-Vector Multiply in Column Order

The second approach can be easily extended to handle large matrix-vector multiply

cases, where the input/output vector contains too many entries to be accommodated

inside internal RAM blocks. The output vector y is now saved in external SDRAM

modules together with the matrix. (Sometimes, we are lucky to have external SRAM

modules integrated on board, which can be used to save the vector.) Every partial

matrix-vector multiply related to one matrix strip requires access to this output vector

twice in order to have all of its entries updated. As we introduced above, the

computational performance of matrix-vector multiply is memory-bandwidth bounded,

and so this memory access overhead would result in considerable performance

degradation if the width of each matrix strip was narrow. For example, if we had only 4

row entries for each matrix strip, an additional 50 percent memory accesses would be

131

introduced, and so the sustained performance of the hardwired computing engine would

be degraded by one third. Adopting a wide matrix strip would amortize this overhead

and significantly improve the situation. However, the more matrix strip row entries, the

larger parallel summation unit would be. On the other hand, this approach provides users

with an effective way to maximize the utilization of FPGA resources for useful work.

6.3 Dense Matrix-Matrix Multiply on FPGAs

Given two nn× dense matrix A and B, the operations of matrix-matrix multiply

BAC ⋅= are defined as:

∑
=

⋅=
n

k
kjikij BAC

0
 (6.18)

In contrast to vector dot-product or matrix-vector multiply, matrix-matrix multiply

is a computation-bounded subroutine. For the ideal case where FPGA’s internal RAM

blocks could accommodate all matrix elements of A, B, and C, there would be ()22n

memory accesses and ()32n floating-point operations in total. So the ratio between

external memory accesses and floating-point operations is proportional to n, which

reveals excellent data reusability, especially when n is large. In theory, such

computation-bounded subroutines could always put onboard FPGA devices into full play,

and so achieve much higher sustained computational performance than commodity

CPUs.

In reality, only a small portion of matrix entries could be saved in-chip. For these

cases, block matrix-matrix multiply scheme is the most popular choice, although it may

introduce considerable additional external memory accesses to deal with intermediate

results. For example, if three were only enough in-chip memory spaces for buffering

three ss × blocks of matrix entries, we need to read in 22 s× matrix entries from A and

B for every 232 ss +× floating-point computations. (Here, we ignore purposely the

memory access for saving resulting matrix elements of C because this workload would

be amortized if the matrix size is large.) So, the total number of external memory

132

accesses of this subroutine is
s
ns

s
n 3

2
3 22 =⋅⎟
⎠
⎞

⎜
⎝
⎛ , which depends on s and is much larger

than the ideal case.

A successful design of matrix-matrix multiply on FPGA-based platform implies

building an appropriate internal data buffering subsystem utilizing FPGA’s abundant in-

chip SRAM blocks and distributed registers. Fully exploiting data/computation locality

of the numerical subroutine is pivotal to its success. Specifically, large block size s is

always preferred to eliminate additional external memory accesses. There has been

previous research work, discussing FPGA-based implementation of matrix-matrix

multiply. In [7], the authors investigated the trends in sustainable floating-point

performance of some basic BLAS subroutines for CPU and FPGA. It mainly

concentrated on theoretical peak performance analysis, but not on detailed

implementation. In [84], the authors designed a two-dimensional processor mesh based

on conventional systolic matrix-matrix multiply hardware algorithm. Each processor

node has its own multiply-accumulate unit (MAC) and local memory space and is

responsible for the computations of a consecutive block of matrix C. Elements of matrix

A and B are fed into the computing engine from boundary nodes, and traverse internal

processors via in-chip interconnection paths. The disadvantage of this design is that all

boundary processing nodes import/export operands from/to the outside world so that the

number of input/output ports it requires would be large. In [85] [86], the authors

proposed a one-dimensional processor array to address this problem. Only the first

processing node read matrix A and B from external memory. These values then traverse

all inner nodes in the linear array to participate in all related computations. Once the

procedure is finished, each processing node simply transfers its local results of matrix C

to its neighbors. These results are finally written back to external memory via the first

processing node. One common problem of these designs is that they all require complex

control logics for coordinating communications and interactions among multiple

processing nodes. For example, about 50 percent of FPGA’s programmable hardware

resources are consumed for this purpose in the implementation in [86].

133

In our work, we proposed a new solution for matrix-matrix multiply, which could

achieve much simpler hardware implementation on an FPGA-enhanced computer

platform. This new matrix-matrix multiply unit doesn’t employ multiple processing

nodes but does use a large computing engine with an array of standard floating-point

multipliers followed by one parallel group-alignment based summation unit. A

centralized data buffering subsystem is designed to read operands of matrix A and B

from external memory, caching them in local memory, and distributing them to

arithmetic units in correct sequence. Two crucial problems have to be addressed by the

data buffering circuit: First, good scalability is required so that the block size s could be

modified easily to ensure the computation-bounded nature of the underlying blocked

matrix-matrix multiply schemes; Second, because of the parallel running of multiple

arithmetic units, there are concurrent accesses to multiple operands in one data block.

One large RAM module provides only one or two read/write ports, and so is inapplicable

here. Multiple distributed small RAM blocks would be an appropriate choice. Only

simple control logics are needed here to coordinate their operations. The FPGA-specific

hardware implementation of matrix-matrix multiply is shown in Figure 43.

In this figure, s is simply set to 16. Each matrix block would have

2561616 =× double precision entries. The fully-pipelined computing engine contains 16

modified floating-point multipliers and a large parallel summation unit, and so can finish

16 multiplications and 16 additions at each clock cycle. If we set the computing engine

to operate at 200MHz, its sustained computational performance would be

GM 4.620032 =× FLOPS. By varying the value of s, we can easily change the

computational performance as well as the size of the computing engine.

Multiple matrix C blocks are accommodated inside the in-chip output buffer,

which can be efficiently constructed with FPGA’s in-chip SRAM blocks. This output

buffer circuit has two double word (64-bit) data ports with dedicated read/write logics

and address pins. One of them is connected to an input port of the parallel summation

unit for feeding in previous partial sums of C entries. The other one is for writing back

those updated partial-sums produced by the summation unit. As we will see later,

134

concurrent read and write addresses to the same memory space will always have a fixed

distance, and so will not introduce any conflicts.

Figure 43. Blocked Matrix-Matrix Multiply

A two-level caching circuit is employed to efficiently buffer operands read from

matrix A and B in-chip. 16 dedicated small RAM pieces constitute the first level cache

for matrix A. There are 256 matrix entries (one 1616× block) saved temporarily inside

this caching circuit. So each RAM piece contains only 16 column entries and can be

implemented efficiently with distributed register blocks in FPGA. This caching circuit

135

has two working modes: In the refresh mode, all of those small memory pieces are

interconnected to form a cascaded FIFO with 16 levels; entries of a matrix block are read

out from the second level cache in column order and pushed into the FIFO structure

from its input port at the bottom. We need a total of 256 push cycles to update all entries.

In computation mode, all these RAM pieces work independently and their access is

controlled by a unique 4-bit addressing logic. At each clock cycle, 16 commonly-

addressed entries buffered in these RAMs, who all come from the same row of the

matrix block, are accessed simultaneously while providing operands of matrix A to 16

multipliers. The access of the matrix block will repeat for 16 rounds, with 16 clock

cycles for each round. So in total, the computation mode also last for 256 cycles.

16 dedicated one-double-word registers are used to construct another 16-level

cascaded FIFO for the first-level caching of 16 matrix B entries (one column of a matrix

B block). They also have two working modes: the refresh mode and the computation

mode. However, the switching speed of this caching circuit is 16 times faster than matrix

A buffer. To hide the refresh cycles of both data buffers, two identical caching circuits

are employed. They work in a swapping manner to overlap the refreshing and

computation cycles. Once updated, the operands in matrix B buffers remain unchanged

during the next 16 clock cycles providing another group of operands to multipliers. All

16 products together with the old partial-sum read out from the output buffer, are then

fed into the group-alignment based parallel summation unit simultaneously as a group of

summands. The summation result is written back to the output buffer via another data

port. No data/computation dependency exists in this implementation because

consecutive summations are for different C entries.

We already know that the computing engine needs 256 clock cycles to finish the

computations of two 1616× matrix blocks multiply. On the other hand, the 256-entry

first-level matrix A cache updates its contents every 256 cycles, and in the same time

period, the contents of the 16-entry matrix B cache have been changed for 16 times. In

order to keep the computing engine operating at 200MHz, we need a memory channel

that can afford a data transferring rate at a total of 400M double words per second

136

(3.2GByte/s), which corresponds to the memory bandwidth provided by a 400MHz

DDR-SDRAM module. Fortunately, it is not necessary for these memory channels to be

external. In this design, we introduced another level of large-capacity cache structure to

buffer multiple matrix blocks in-core. A simple block scheduling circuit is employed to

coordinate the multiplication of large matrices with multiple 1616× matrix blocks. We

can simply follow the ordinary block matrix-matrix multiply algorithm as shown in

Figure 44. The special data buffering scheme we adopted here can ensure that the whole

block 2a and the first column of block 3b would be ready in-core immediately after the

multiplication of 11 ba ⋅ so that the computations of 3211 bacc ⋅+⇐ could start without

any pipelining stalls. Once the final results of a block in matrix C are obtained, we have

to save them back to external memory. If the size of the matrices is large enough, this

overhead would be considerably amortized.

Figure 44. Blocked Matrix-Matrix Multiply Scheme

From a perspective outside of the buffering system, the block size of matrix-matrix

multiply is now enlarged because of the existence of the level-2 cache; correspondingly,

the requirement for external memory bandwidth would decrease proportionally. This

second-level cache circuit has four data paths connected to the first level matrix A cache,

matrix B cache, matrix C output buffer, and the external memory channel, respectively.

The block scheduling circuit ensures the transfer rates of the first two data paths being

fixed at 200M double words per second to guarantee the full speed operation of the

computing engine. The data rate of the external memory channel will be determined by

137

the number of matrix blocks buffered in this second-level cache circuit. We can choose

to build the caching circuits with in-chip RAM blocks or onboard external SRAM

modules depending on the available hardware resources at hand. For example, it is

straightforward to build an in-chip second-level cache with 8192 matrix A or B entries.

The block size now becomes 64 and we need 800MByte/s external memory bandwidth

to keep the computing engine operating at its full speed. Or, if we have a 400MHz DDR-

SDRAM channel (3200MByte/s memory bandwidth) and enough FPGA resources on

board, we are allowed to construct a much larger computing engine (64 floating-point

multipliers together with a 64-parallel summation unit) up to 4 times more powerful than

the aforementioned design. The sustained computational performance would be 25.6G

FLOPS, which is much higher than any existing commodity CPU.

138

7. CONCLUSIONS

7.1 Summary of Research Work

In this research work, by proposing new hardware-reconfigurable computer

architecture and designing FPGA-specific software algorithms, we considerably

accelerated the executions of several representative numerical methods on FPGA-

enhanced computers. We successfully demonstrated the impressive computational

potential of the newly-proposed FPGA-enhanced computer system, thereby proving the

feasibility of utilizing FPGA resources to accelerate computationally-demanding and

data intensive numerical computing applications. The following topics had been

investigated systematically in this work:

• Research on “Hardware Architecture Model of FPGA-Enhanced Computers for

Numerical PDE problems”

Targeted at computationally-demanding and data intensive numerical PDE problems,

a new computer architecture model named FPGA-enhanced Computers was

proposed together with detailed implementations as a single workstation as well as a

parallel cluster system. Working in a hardware-programmable/application-specific

manner, the resulting FPGA-enhanced computer system could be implemented

economically with low-cost COTS components, and can therefore achieve much

better price-performance ratio with much lower power consumption. Also, it is

consistent with the prevailing PC-Cluster system and is scalable to a large parallel

system containing abundant reconfigurable hardware and memory resources.

Consequently, a wide range of numerical algorithms/methods could be

accommodated on such a system.

• Research on “Accelerating PSTM Algorithm on the Proposed FPGA-Enhanced

Computer Platform”

Pre-Stack Kirchhoff Time Migration (PSTM) is one of the most popular migration

methods in the seismic data processing field. It represents a class of numerical

139

algorithms/methods that require extraordinary computer arithmetic units that are

relatively slow, or even unavailable, on commodity CPUs. Here, an application-

specific Double-Square-Root (DSR) arithmetic unit was built on the proposed

FPGA-enhanced computer platform to accelerate the evaluation of the algorithm’s

most time-consuming kernel subroutine without losing numerical accuracy. Because

over 90 percent of CPU time is consumed by billions of iterations of the short kernel

subroutine when operating on commodity CPUs, this new FPGA-based approach

could operate more than 10 times faster than contemporary general-purpose

computers, allowing people to produce a satisfying underground image much faster.

• Research on “High-accuracy Floating-point Summation Algorithms on FPGA-

enhanced computers”

Floating-point summation is one of the most important operations in numerical

computations. An FPGA-based hardware algorithm for accurate floating-point

summation is proposed using the group-alignment technique. The corresponding

fully pipelined summation unit is proven to provide similar, or even better, numerical

errors than the standard floating-point arithmetic based sequential addition method.

Moreover, this new design consumes much less FPGA resources, as well as

pipelining stages, than other existent designs, and it achieves sustained working

speed at one summation per clock cycle with only moderate start-up latency. This

new technique can also be utilized to accelerate executions of other linear algebra

subroutines as well as finite difference methods on FPGAs. The possibility of

constructing an error-free floating-point summation unit on the RC platform is also

investigated.

• Research on “Optimized Finite Difference Schemes with Finite Accurate

Coefficients”

Based on maximum-order FD schemes whose coefficients are determined by

cancelling as many lower-order Taylor expansion terms as possible, we proposed a

new class of optimized finite accuracy FD schemes as well as heuristic algorithms to

determine their FD coefficients. This new class of FD schemes has identical

140

computational workload and similar numerical accuracy as conventional high-order

FD schemes, and would therefore be insignificant for commodity CPUs. However,

its implementation on an FPGA-enhanced computer platform would be superior

with much higher computational throughput and less FPGA resources consumption.

• Research on “Finite Difference Wave Equations Modeling on FPGA-enhanced

Computers”

Adopting appropriate temporal and spatial FD schemes and applying results of

aforementioned research works, the execution speed of realistic 2D or 3D seismic

wave modeling problems is improved significantly on the proposed FPGA-enhanced

computer platform. Efficient memory hierarchy and appropriate numerical

algorithms are adopted to alleviate the memory bandwidth bottleneck of this specific

numerical PDE problem.

• Research on “BLAS subroutines on FPGA-enhanced Computers”

The most time-consuming step of FEM is the solution of the large linear system

equations generated from discretized PDEs. Basic Linear Algebra Subprograms

(BLAS) are the standard toolkit necessary for users to solve linear equations. Our

work aims to accelerate the executions of basic BLAS subroutines such as

summation, dot-product, matrix-vector multiply, and matrix-matrix multiply on the

FPGA-enhanced computer platform. Our efforts mainly concentrate on designing

novel data buffering subsystem as well as suitable memory hierarchy to improve data

reusability and save external memory access. By doing so, a wide range of scientific

and engineering problems governed by partial differential equations could be

accelerated on the proposed FPGA-enhanced Computer.

141

7.2 Methodologies for Accelerating Numerical PDE Problems on FPGA-Enhance

Computers

In this section, we conclude conceivable methodologies of solving numerical PDE

problems on an FPGA-enhanced computer. The essential purpose is to achieve higher

sustained computational performance on FPGAs over commodity CPUs.

First of all, FPGA’s computing power comes from the capability inherent in ASICs

as efficient utilization of hardware resources. Unlike commodity CPUs, where a large

portion of transistors are expended for providing program-controlled data flow, FPGA is

capable of dedicating most of its in-chip programmable hardware resources for useful

computations. By exploiting low level parallelism concealed in specific numerical

methods/algorithms, a single FPGA device could accommodate a large computing

engine consisting of tens, even hundreds, of similar or different arithmetic/function units.

These hardwired units could be set to work in parallel for high accumulated performance

or in a pipelined manner to achieve high data throughput. Furthermore, users could

select to customize their own extraordinary arithmetic or function units for improved

computational performance or hardware efficiency.

FPGA’s In-System-Programmability (ISP) is pivotal to utilize its hardware

resources for accelerating the solutions of numerical PDE problems. Such computing

tasks are computationally demanding and data intensive. Their numerical solutions

generally require a series of processing stages or multiple iterations with gradually

improved simulation accuracy. Sometimes, initial trial-runs execute very rapidly,

utilizing aggressive numerical methods. However, they are, in general, prone to

convergence failure, and may even break down. Users have to seek the help of other

robust but costly numerical methods. For example, we already know that seismic

migration problems are governed by acoustic/elastic wave equations whose numerical

solutions are in general time-consuming. Geophysicists may first try to attack a specific

migration task using the relatively fast PSTM algorithm. After several iterations of

inverse/forward procedures, if the migrated underground image is still unsatisfactory,

142

they are forced to resort to the robust but much more expensive Reverse Time Migration

(RTM) algorithm, which is based directly on finite difference solutions of the original

wave equations. However, if the parameters of underground media change abruptly, FD

methods have to adopt excessive fine discretization steps for numerical stability, which,

in turn, leads to unfeasible execution time. In these cases, FEM might be a relatively

more efficient option because of its ability to follow complex boundaries and resolve

minute geometrical features. Based on the results of our research work, all of these

numerical methods can be accelerated effectively on the proposed FPGA-enhanced

computer platform. Just as a large software package operating on general-purpose

computers, users are now free to select different numerical algorithms/methods on the

same hardware-programmable computer platform. The contents switching between

different numerical methods on FPGAs costs only several seconds, thereby are

negligible compared with the long execution time of realistic processing tasks.

Numerical methods/algorithms for PDE problems, in general, exhibit low FP-

operation to memory-access ratio, require considerable memory space for intermediate

results, and tend to perform irregular indirect addressing for complex data structures.

These intrinsic properties inevitably result in poor caching behavior on modern

commodity CPU-based general-purpose computers. Consequently, a significant gap

always exists between their theoretical peak FP performance and the actual sustained

Megaflops value. FPGA-enhanced computers are capable of reconfiguring memory

hierarchy according to the requirements of specific problems. Because the clock

frequencies applied to FPGAs and external memory modules are within the same range

as hundreds of Millions Hz, we can treat all memory elements equally as a flattened

memory space to simplify system architecture; or we can introduce complicated

buffering structures or caching rules to further enhance data reusability and improve

utilization of memory bandwidth.

There are mainly two error sources in numerical computations: the truncation error

and the rounding error. Truncation error is the difference between the true result (for the

actual input) and the result that was produced by algorithms/methods using exact

143

computer arithmetic. In most cases, truncation errors emerge due to numerical

approximations such as truncating an infinite series, replacing derivative by finite

difference, or terminating iteration before convergence. Numerical rounding error is the

difference between the results produced by algorithms/methods using exact arithmetic

and using finite-precision arithmetic. It is mainly due to inaccuracy in the representation

of real numbers as well as the floating-point arithmetic operations on them. Numerical

errors could be eliminated or at least significantly reduced by high-accuracy numerical

algorithms/methods on general-purpose computers. However, the cost we pay for high-

accuracy is more computational workload. For example, a numerical library called

XBLAS consists of almost the same numerical subroutines as the BLAS library but uses

increased floating-point working precision such as double-double, extended double, or

quadruple precision. Subroutines in this library emulate high-accurate floating-point

arithmetic using standard ones. Sometimes, they also have to compute correction terms

in order to take into account the rounding errors accumulated during the computations,

in other words, truncation terms that are normally ignored. Correspondingly, the

execution speed of these XBLAS subroutines is, in general, tens of times slower than

their siblings in BLAS. With the help of hardware-programmable FPGA resources, we

can customize high-performance computing engines specified for high-order numerical

methods so that truncation errors could be significantly reduced. Furthermore, we can

construct our genuine high-accuracy floating-point arithmetic units to reduce numerical

rounding errors with negligible speed penalties.

In summary, we believe and hope to convince others that the high computational

potential of FPGA-enhanced computers would not only exercise a great influence on

hardware architecture design of future computers, but also would have impact on

numerical algorithms/methods when users try to take full advantage of FPGA’s

computational potential. We further boldly predict that such hardware-programmable

resources would follow a similar path as floating-point arithmetic units: first working as

an acceleration card loosely attached to a computer’s peripheral bus, then coupled with

144

commodity CPU as coprocessor, and finally integrated into the same silicon chip with

CPU cores, thereby becoming their indispensable component.

145

REFERENCES

[1] J. K. Costain, C. Coruh, Basic theory in reflection seismology, Elsevier Science,
Amsterdam, Netherlands, 2004.

[2] Oz Yilmaz, S. M. Doherty, Seismic data analysis: Processing, inversion, and
interpretation of seismic data, 2nd edition, Society of Exploration, Tulsa, OK,
2000.

[3] S. H. Gray, Y2K Review Article: Seismic migration problems and solutions,
Geophysics, 66 (2001) 1622-1640.

[4] L. House, S. Larsen, J. B. Bednar, 3-D elastic numerical modeling of a
complex salt structure, in: Expanded Abstracts of SEG 70th Annual Meeting,
2000, pp. 2201-2204.

[5] P. Moczo, M. Lucka, and M. Kristekova, 3D displacement finite differences
and a combined memory optimization, Bulletin Seismological Society of
America, 89 (1999) 69-79.

[6] S. Larsen, J. Grieger, Elastic modeling initiative, part III: 3-D computational
modeling, in: Expanded Abstracts of SEG 68th annual meeting, 1998, pp.
1803-1806.

[7] K. D. Underwood, and K. S. Hemmert, Closing the gap: trends in sustainable
floating-point BLAS performance, in: Proceedings of the 11th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2004, pp.
219-228.

[8] J. Makino and M. Taiji, Special-purpose Computers for Scientific Simulations:
The GRAPE Systems, John Wiley & Sons, Hoboken, NJ, 1998.

[9] The GRAPE Project, GRAPE: A programmable multi-purpose computer for
many-body simulations, <http://grape.astron.s.u-tokyo.ac.jp/grape/>.

[10] C. Cheng, J. Wawrzynek, and R. W. Brodersen, A high-end reconfigurable
computing system, IEEE Design and Test of Computers, 22 (2005), 114-125.

[11] Starbridge, HC-62 board specifications, <http://www.starbridgesystems.com/>.

[12] Dini Group, Product Overview, <http://www.dinigroup.com/>.

[13] C. Petrie, C. Cump, M. Devlin, and K. Regester, High performance embedded
computing using field programmable gate arrays, in: Proceedings of the 8th
Annual Workshop on High-performance Embedded Computing, 2004, pp. 124-
150.

[14] L. Gray, R. Woodson, A. Chau, and S. Retzlaff, Graphics for the long term: An
FPGA-based GPU, <http://www.vmebus-systems.com/>, 2005.

146

[15] Cray, Cray XD1 datasheet, <http://www.cray.com/products/xd1/>.

[16] SGI, SGI RASC RC100 blade datasheet, <http://www.sgi.com/products/rasc/>.

[17] S.J.E. Wilton, Implementing Logic in FPGA memory arrays: Heterogeneous
memory architectures, in: Proceedings of the IEEE International Conference on
Field-Programmable Technology, 2002, pp. 142-149.

[18] C. Ebeling, D. C. Cronquist, P. Franklin, RaPiD-reconfigurable pipelined data
path, in: Proceedings of the 6th International Workshop on Field-
Programmable Logic, 1996, pp. 126-135.

[19] B. Fagin and C. Renard, Field programmable gate arrays and floating point
arithmetic, IEEE Transactions on VLSI Systems, 2 (1994), 365-367.

[20] K. D. Underwood, FPGAs vs. CPUs: Trends in peak floating-point
performance, in: Proceedings of the ACM/SIGDA 12th International
Symposium on FPGA, 2004, pp. 171-180.

[21] P. Belanovic and M. Leeser, A Library of parameterized floating-point
modules and their use, in: Proceedings of the International Conference on
Field-Programmable Logic and Applications, 2002, pp. 657-666.

[22] J. Liang, R. Tessier, and O. Mencer, Floating-point unit generation and
evaluation for FPGAs, in: Proceedings of the 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, 2003, pp. 185-194.

[23] A. A. Gaar, W. Luk, P. Y. Cheung, N. SHirazi, and J. Hwang, Automating
customization of floating-point designs, in: Proceedings of the International
Conference on Field-Programmable Logic and Applications, 2002, pp. 523-533.

[24] M. P. Leong, M. Y. Yeung, C. K. Yeung, C. W. Fu, P. A. Heng, and P. H. W.
Leong, Automatic floating to fixed point translation and its application to post-
rendering 3D wrapping, in Proceedings of the Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 1999, pp. 240-248.

[25] Maya B. Gokhale, Paul S. Graham, Reconfigurable computing: Accelerating
computation with field-programmable gate arrays, Springer-Verlag, New York,
2005.

[26] Xilinx, Virtex-4 user guide, <http://www.xilinx.com>.

[27] V. Betz and J. Rose, Automatic generation of FPGA routing architectures from
high-level descriptions, in: Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2000, pp. 175-184.

[28] D. S. William. R. S. Austars, Towards an RCC-based accelerator for
computational fluid dynamics applications, Journal of Supercomputing, 30
(2004) 239-261.

[29] R. N. Schneider, L. E. Turner, and M. M. Okoniewski, Application of FPGA
technology to accelerate the Finite-Difference Time-Domain (FDTD) method,

147

in: Proceedings of the 10th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2002, pp. 97-105.

[30] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow, Reconfigurable
molecular dynamics simulator, in: Proceedings of the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2004, pp.
197-206.

[31] Patterson and Hennessy, Computer Architecture: A Quantitative Approach.
Third Edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, 2000.

[32] C. He, M. Lu, and C. W. Sun, Accelerating seismic migration using FPGA-
based coprocessor platform, in: Proceedings of the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2004, pp.
207-216

[33] D. Bevc, Imaging Complex structure with semi-recursive Kirchhoff migration,
Geophysics, 62 (1997) 577-588.

[34] F. Audebert, 3-D pre-stack depth migration: Why Kirchhoff, Stanford
Exploration Project, Report 80, 1994.

[35] C. Sun, and R.D. Martinez, Amplitude preserving 3D prestack time migration
for V (z) media, in: Proceedings of the 64th Conference & Exhibition of the
EAGE, 2002, pp.1124-1127.

[36] C. Sun, and R.D. Martinez, Amplitude preserving 3D prestack time migration
for VTI media, First Break, 19 (2002) 618-624.

[37] F. Audebert, 3-D pre-stack depth migration: Why Kirchhoff?, Stanford
Exploration Project, Report 80, 1994.

[38] D. Lumley, and B. Biondi, Kirchhoff 3D pre-stack time migration on the
connection machine, Stanford Exploration Project, Report 72, 1991.

[39] J. E. Volder, The birth of CORDIC, Journal of VLSI Signal Processing, 25
(2000) 101-105.

[40] R. Andraka, A survey of CORIC algorithms for FPGA based computers, in:
Proceedings of the 5th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 1998, pp. 191-200.

[41] K. Kota, and J. R. Cavallaro, Numerical accuracy and hardware tradeoffs for
CORDIC arithmetic for special-purpose processors, IEEE Transactions on
Computers, 42 (1993) 769-779.

[42] E. Antelo, M. Boo, J. D. Bruguera, and E. L. Zapata, A novel design of a two
operand normalization circuit, IEEE Transactions on VLSI Systems, 6 (1998)
173-176.

[43] M. T. Taner and F. Koehler, Velocity spectra-digital computer derivation and
application of velocity functions, Geophysics, 34 (1969) 859-881.

148

[44] C. Sun, H. Wang, and R. D. Martinez, Optimized 6th order NMO correction for
long-offset seismic data, in: Expanded Abstracts of SEG 72nd Annual Meeting,
2002, pp. 2201-2204.

[45] W. C. Chew, Waves and fields in inhomogeneous media, IEEE Press,
Piscataway, NJ, 1995.

[46] J. C. Strikwerda, Finite difference schemes and partial differential equations,
Second Edition, Cambridge University Press, Cambridge, UK, 2004.

[47] I. R. Mufti, J. A. Pita, and R. W. Huntley, Finite-difference depth migration of
exploration-scale 3-D seismic data, Geophysics, 61 (1996) 776-794.

[48] F. Bengt, Calculation of weights in finite difference formulas, SIAM Review,
40 (1998) 685-691.

[49] M. A. Dablain, The application of high order differencing for the scalar wave
equation, Geophysics, 51 (1986) 54-66.

[50] E. Hairer, S. P. Norsett, and G. Wanner, Solving ordinary differential equations,
Springer Press, New York, NY, 1991.

[51] R. P. Bordeling, Seismic modeling with the wave equation difference engine,
in: Expanded Abstracts of Society of Exploration Geophysicists (SEG)
International Exposition and 66th Annual Meeting, 1996, pp. 666-669.

[52] M. Bean, and P. Gray, Development of a high-speed seismic data processing
platform using reconfigurable hardware, in: Expanded Abstracts of Society of
Exploration Geophysicists (SEG) International Exposition and 67th Annual
Meeting, 1997, pp. 1990-1993.

[53] J. R. Marek, M. A. Mehalic, and A. J. Terzouli, A dedicated VLSI architecture
for Finite-Difference Time Domain (FDTD) calculations, in: Proceedings of
the 8th Annual Review of Progress in Applied Computational Electromagnetic,
1992, 546-553.

[54] P. Placidi, L. Verducci, G. Matrella, L. Roselli, and P. Ciampolini, A custom
VLSI architecture for the solution of FDTD equations, IEICE Transactions on
Electronics, E85-C(2002) 572-577.

[55] R. N. Schneider, L. E. Turner, and M. M. Okoniewski, Application of FPGA
technology to accelerate the Finite-Difference Time-Domain (FDTD) method,
in: Proceedings of the 10th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2002, pp. 97-105.

[56] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, D. W. Prather, and M. S. Mirotznik,
Hardware implementation of a three-dimensional finite-difference time-domain
algorithm, IEEE Antennas and Wireless Propagation Letters, 2 (2003) 54-57.

[57] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport, An FPGA implementation
of the two dimensional Finite Difference Time Domain (FDTD) algorithm, in:

149

Proceedings of the 12th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2004, pp. 213-222.

[58] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, P. F. Curt, and D. W. Prather,
FPGA-based acceleration of the 3D Finite-Difference Time-Domain (FDTD)
method, in: Proceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2004, pp. 156-163.

[59] J. Virieux, P-SV wave propagation in heterogeneous media: velocity stress
finite difference method, Geophysics, 51 (1986) 889-901.

[60] R. Clayton and B. Engquist, Absorbing boundary conditions for acoustic and
elastic wave equations, Bulletin Seismological Society of America, 67 (1977)
1529-1540.

[61] G. Mur, Absorbing boundary conditions for the finite-difference
approximation of time-domain electromagnetic field equations, IEEE
transactions on Electromagnetic Computations, 23 (1981) 377-382.

[62] R. L. Higon, Absorbing boundary conditions for difference approximations to
the multidimensional wave equation, Mathematical Computations. 47 (1986)
437-459.

[63] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic
waves, Journal of Computational Physics, 114 (1994)185-200.

[64] I. Orlianski, A simple boundary condition for unbounded hyperbolic flows,
Journal of Computational Physics, 21 (1976) 251-269.

[65] C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef, A nonreflecting boundary
condition for discrete acoustic and elastic wave equations, Geophysics, 50
(1985) 705-708.

[66] D. R. Burns, Acoustic and elastic scattering from seamounts in three
dimensions – a numerical modeling study, The Journal of the Acoustical
Society in America, 92 (1992) 2784-2791.

[67] Xilinx, “ML401 Evaluation Platform User Guide”, <www.xilinx.com>.

[68] G. Marcus, P. Hinojosa, A. Avila, and J. Nolazco-Flores, A fully synthesizable
single-precision, floating-point adder/substractor and multiplier in VHDL for
general and educational use, in: Proceedings of the 5th International Caracas
Conference on Devices, Circuits and Systems (ICCDCS), 2004, pp. 234-243.

[69] G. Chaltas and W. R. Magro, Performance analysis and tuning of LS-DYNA
for Intel processor-based clusters, in: Proceedings of the 7th International LS-
DYNA Users Conference, 2002, pp. 122-132.

[70] W. H. Press, B. P.Flannery, S. A.Teukolsky, and W. T.Vetterling, Linear
programming and the simplex method, in Numerical Recipes in FORTRAN:

150

The Art of Scientific Computing, 2nd ed. 423-436,Cambridge University Press,
Cambridge, UK, 1992.

[71] G. Govindu, L. Zhuo, S. Choi, and V. K. Prasanna, Analysis of high-
performance floating-point arithmetic on FPGAs, in: Proceedings of the 11th
Reconfigurable Architectures Workshop, 2004, pp. 149-158.

[72] A. A. Gaar, W. Luk, P. Y. Cheung, N. SHirazi, and J. Hwang, Automating
customisation of floating-point designs, in: Proceedings of the International
Conference on Field-Programmable Logic and Applications, 2002, pp. 523-533.

[73] E. Roesler and B. Nelson, Novel optimizations for hardware floating-point
units in a modern FPGA architecture, in: Proceedings of the International
Conference on Field-Programmable Logic and Applications, 2002, pp. 637-646.

[74] M. P. Leong, M. Y. Yeung, C. K. Yeung, C. W. Fu, P. A. Heng, and P. H. W.
Leong, Automatic floating to fixed point translation and its application to post-
rendering 3D wrapping, in Proceedings of the Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 1999, pp. 240-248.

[75] U. Kulisch, The fifth floating-point operation for top-performance computers,
Universitat Karlsruhe, 1997.

[76] D. Goldberg, What every scientist should know about floating-point arithmetic,
ACM Computing Surveys, 23 (1991) 5-48.

[77] D. Priest, Differences among IEEE 754 Implementations,
<http://www.validgh.com/goldberg/>.

[78] L. Zhuo, G. R. Morris, V. K. Prasanna, Designing scalable FPGA-based
reduction circuits using pipelined floating-point cores, in: Proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS'05), 2005, pp. 147-156.

[79] Z. Luo and M. Martonosi, Accelerating pipelined integer and floating-point
accumulations in configurable hardware with delayed addition techniques,
IEEE Transactions on Computers, 49(2000) 208-218.

[80] N. J. Higham, The accuracy of floating point summation, SIAM Journal of
Scientific Computing, 14 (1993) 783-799.

[81] Xilinx, XUPV2P board user guide, <www.xilinx.com/univ/xupv2p.html>.

[82] U. W. Kulisch, W. L. Miranker, The arithmetic of the digital computer: A new
approach, SIAM Review, 28(1986) 1-40.

[83] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, et. al., Design,
implementation, and testing of extended and mixed precision BLAS, ACM
Transactions on Mathematical Software, 18(2002) 152-205.

[84] J. W. Jang, S. Choi, and V. K. Prasanna, Area and time efficient
implementation of matrix multiplication on FPGAs, in: Proceedings of the First

151

IEEE International Conference on Field Programmable Technology, 2002, pp.
203-202.

[85] K. Q. Li and V. Y. Pan. Parallel matrix multiplication on a linear array with a
reconfigurable pipelined bus system, IEEE Transactions on Computers,
50(2001) 519–525.

[86] L. Zhuo and V. K. Prasanna, Scalable and modular algorithms for floating-
point matrix multiplication on FPGAs, in Proceedings of the 18th International
Parallel and Distributed Processing Symposium, 2004, pp.433-448.

152

VITA

Name: Chuan He

Address: Institute for Scientific Computation, Texas A&M University
College Station, TX 77843-3404

Email Address: chuanhe@gmail.com

Education: B.S., Electrical Engineering, Shandong University, Jinan, China,
1995

M.S., Electrical Engineering, Beijing University of Aeronautics
and Astronautics, Beijing, China, 1998

Ph.D. Electrical Engineering, Texas A&M University, College
Station, TX, 2007

