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FPGA-based module for SURF extraction

Published in the Journal of Machine Vision and Applications, Heidelberg, Springer (2014).

The final publication will appear at Springer via http://dx.doi.org/10.1007/s00138-014-0599-0.

Copyright notice

The copyright to the Contribution identified above is transferred to Springer-Verlag GmbH Berlin Heidelberg

(hereinafter called Springer-Verlag). The copyright transfer covers the sole right to print, publish, distribute and

sell throughout the world the said Contribution and parts thereof, including all revisions or versions and future

editions thereof and in any medium, such as in its electronic form (offline, online), as well as to translate, print,

publish, distribute and sell the Contribution in any foreign languages and throughout the world.
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Abstract We present a complete hardware and soft-

ware solution of an FPGA-based computer vision em-

bedded module capable of carrying out SURF image

features extraction algorithm. Aside from image anal-

ysis, the module embeds a Linux distribution that al-

lows to run programs specifically tailored for partic-

ular applications. The module is based on a Virtex-5

FXT FPGA which features powerful configurable logic

and an embedded PowerPC processor. We describe the

module hardware as well as the custom FPGA image

processing cores that implement the algorithm’s most

computationally expensive process, the interest point

detection. The module’s overall performance is eval-

uated and compared to CPU and GPU based solu-

tions. Results show that the embedded module achieves

comparable disctinctiveness to the SURF software im-
plementation running in a standard CPU while being

faster and consuming significantly less power and space.

Thus, it allows to use the SURF algorithm in applica-

tions with power and spatial constraints, such as au-

tonomous navigation of small mobile robots.
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1 Introduction

Low prices of digital cameras together with the increas-

ing computational power of nowadays computers are

causing increasing popularity of computer vision meth-

ods. These methods have been successfully employed

in the tasks of reactive navigation of autonomous ve-

hicles [34], object recognition [19], three–dimensional

reconstruction [24], and efficient mapping, localization

and exploration [25,11]. Many of these methods are

based on feature extraction algorithms [18] like Scale

Invariant Feature Transformation - SIFT [31], Gradient

Location and Orientation Histogram - GLOH [22], Lo-

cal Energy based Shape Histogram-LESH [27] or Cen-

ter Surround Extremas-CENSURE [1]. However, these

algorithms are computationally demanding and repre-

sent a significant bottleneck in many computer vision

systems, forcing researchers to focus on improvement of

their speed.

Luckily, the local image feature extractors are easy

to parallelize because they perform the same operations

on different sets of data. This property makes these al-

gorithms ideal candidates for implementation on paral-

lel architectures, like graphics processing units (GPU)

and field programmable gate arrays (FPGA). One of

the most popular local feature extraction algorithms is

the Speeded Up Robust Features (SURF) [5]. Although

its graphics processing unit implementation, the GPU-

SURF [10] achieves real-time performance, it requires to

use an entire PC-based system, which is infeasible in ap-

plications which impose restrictions on hardware power

consumption, dimensions or weight. Such applications

include a wide variety of embedded systems ranging

from robotic navigation [32,35], µUAV autopilot sys-

tems [36,26,2], micro satellite sensing [37,15], to mobile

visual search in commercial cell phones [8].
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1.1 Main contributions

We present a standalone FPGA-based embedded mod-

ule capable of real-time extraction of the Speeded-Up

Robust Features (SURF) from its camera image. The

module processes roughly ten 1024×768 pixel images

per second1, consumes approximately 6 W and occupies

significantly less space than a GPU-based system with

a similar performance. Despite of it’s small size and low

power consumption, the module’s performance is com-

parable to state-of-the-art SURF implementations. To

demonstrate the module’s suitability for applications

with spatial and energy constraints, we show that it can

be used for visual navigation of small mobile robots.

The main contributions of this work are:

– As far as we know, it is the first complete stan-

dalone embedded module for the SURF algorithm,

that includes all steps from image capture to data

transmission while satisfying real time constraints.

– The solution includes a customized baseboard with

fast SSRAM, data storage and other interfaces spe-

cific for machine vision applications.

– The inclusion of an embedded processor running

Linux OS that enables any user to program, com-

pile and run particular applications in the embed-

ded module. In this manner, real-time standalone

embedded developments for many SURF-based ap-

plications can be achieved with little effort, making

the embedded module truly reusable.

Additionally, the work presents the complete FPGA

hardware/software co-design, which gives flexibility to

also add, remove or modify hardware modules for fur-

ther customization.

2 Related Work

Since the Moravec operator [23] was proposed, feature

detection has been a growing field in computer vision,

being the underlying algorithms in many computer vi-

sion systems. The first widely used feature detection

algorithm was the Harris corner detection [13], which is

more robust (to noise, intensity and rotation changes)

than the Moravec algorithm.

Several other feature detection algorithms have been

proposed. One of the most robust approaches is the

Scale Invariant Feature Transform [31] that apart from

detecting features proposes a descriptor that is invari-

ant to scale, rotation and illumination. Fully imple-

mented SIFT has a high computational cost, which has

led to the proposal of its optimized variants [16,12],

GPU [38], FPGA [9,39] and ASIC [14] designs.

1 Considering around 140 descriptors per image.

From the FPGA SIFT implementations, one of the

most complete and closely related to our work is de-

scribed by Bonato et al [6]. They present a complete

on-chip implementation of the SIFT algorithm, using

a Stratix II FPGA with a NIOS II embedded proces-

sor. Using a development board with four CMOS cam-

eras they have tested feasibility of their implementation

for Simultaneous Localization and Mapping (SLAM).

Although they achieved a good performance of 33 ms

per 320×240 frame for feature detection, the NIOS II

software implementation for descriptor creation takes

11.7 ms per detected feature. This restricts the possi-

ble embedded applications of this solution, since to keep

real-time performance, only a few features per frame

can be calculated.

Another approach to achieve robust features with

low computational costs is to propose different detec-

tion and description methods. Bay et al [5] proposed

the Speeded Up Robust Features (SURF) algorithm

that has since become widely used. The SURF detec-

tor is based on a basic approximation of the Hessian

blob detector, relying on integral images to reduce the

computation time. The descriptor uses a distribution of

Haar-wavelet responses within the interest point neigh-

borhood, exploiting the use of integral images to achieve

higher speed. Moreover, the SURF descriptor dimen-

sion can be reduced to 32, lowering not only the time for

descriptor computation, but also for subsequent match-

ing. Comparisons of SIFT and SURF suggest that al-

though SIFT features perform better than SURF fea-

tures, the gain in computational cost outweighs this

for many applications [4]. However, SURF is still com-

putationally demanding and has been implemented on

parallel architectures like GPUs [10] and FGPAs [33,7,

28].

The first published FPGA acceleration of SURF

is [33], that is the basis for our present work. Three

other FPGA implementations of SURF can be found

in literature. Bouris et al [7] present a programmable

logic implementation of the detection and orientation

assignment in a Virtex5 FPGA. They achieve 56 fps in

640×480 pixel images, but these results do not include

the descriptor calculation process and the number of

processed features in the orientation assignment phase

is unclear. Schaeferling et al proposed Flex-Surf [28],

a co-designed implementation featuring a special tile

memory access to reduce memory bandwidth, one of

the bottlenecks of SURF. In their approach, the detec-

tor is implemented in programmable logic, while the de-

scriptor is implemented in software on a PowerPC em-

bedded processor. In [29] they present the use of Flex-

Surf for object recognition tasks. Finally, Battezzati et

al [3] presented a short paper on an SURF architec-
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Flex-Surf Bour-Surf SV-Surf
Frame size 457×630 640×480 1024×768
Octaves, intervals 3, 4 3, 4 2, 4
Detector speed [ms] 759 7.55 102
Descriptor[ms/surf] 1.4 N/A 0.7
Virtex version 5FX70T 5FX130T 5FX70T
Slice Registers 2656 11 457 16 548
Slice LUTs 5450 13 272 15 271
Block RAMs 0 271 86
DSPs 6 50 40
Clock [MHz] 100 200 100
Consumption [W] unknown 20 6

Table 1: FPGA SURF implementation comparison

ture for industrial applications. From this paper it can

be concluded that massive parallelization of the detec-

tion phase in a larger FPGA might boost the SURF

algorithm speed dramatically. Table 1 shows the area

consumption and performance characteristics of Flex-,

Bouris- and SV- SURF implementations. All of these

FPGA SURF versions are implemented in the same

FPGA Family as our proposal, so speed and perfor-

mance comparisons can be done. However, each of the

implementations chooses a different way to deal with

descriptor calculation. The Flex- and SV-SURF imple-

ment the descriptor on the Xilinx PPC in fixed and

floating point respectively, while the Bouris descrip-

tor is wired in FPGA logic. Moreover, the SV-SURF

descriptor omits the orientation assignment phase and

the Bouris implements only the orientation assignment.

Therefore, the descriptor speed in Table 1 is informative

only and should not be used as performance measure.

The rest of the Table 1 contains detector implemen-

tation details, i.e. only the IP cores relevant to detec-
tor calculation are taken into account when estimat-

ing FPGA area consumption. Our implementation is 16

times faster than the Flex-SURF, but occupies more of

the FPGA circuitry. When comparing to Bouris-SURF,

we can see that our detector is slower. However, our

module processes larger images, implements descriptor

calculation and consumes less power. This follows the

known thumbnail rule that better throughput can be

achieved through further parallelization at the cost of

area and power consumption.

Note that both Flex- and Bouris-SURF methods

run on multi purpose development boards. The Bouris-

SURF implementation is tested by loading a reduced

set of images in the Flash memory and therefore its de-

ployment in real world scenarios is rather limited. The

FPGA-based object recognition system [30] includes a

complete processing from image grabbing to informa-

tion output. However, the presented solution is tar-

geted for a particular application, which does not im-

pose a strict real-time restictions. Due to this, it pro-

cesses lower (320×240) resolution images with slightly

lower framerates compared to our implementation. This

would prevent the usage of the module in scenarios like

visual based mobile robot navigation.

Contrary to the aforementioned solutions, our work

presents a complete standalone low power module that

can be easily adapted for applications that use Speeded

Up Robust Features as a core algorithm. We have not

only accelerated the SURF algorithm by implementing

several IP cores in FPGA logic, but also built a hard-

ware baseboard especially customized for machine vi-

sion applications. This baseboard includes the required

power supplies, a camera interface, extra SSRAM mem-

ory, a SD card slot and SATA connectors for chaining

several modules together for multicamera applications.

Thus, the presented low power module can be used

in real life applications. Moreover, we have adapted

a Linux distribution so the applications using the ex-

tracted features can be deployed and tested comfort-

ably.

3 SURF algorithm

The SURF algorithm [5] takes a grayscale image as an

input and returns a set of interest point locations along

with a set of their descriptors, which are partially invari-

ant to viewpoint and illumination changes. The algo-

rithm relies on estimation of Gaussian and Haar wave-

let filter responses by box filters. It processes the image

in four consecutive stages. First, the method calculates

a so-called integral image IΣ, which is used to speed up

the following stages of the algorithm. Then, points of

interest are identified by means of “Fast Hessian” blob

detector, which pinpoints local brightness extrema. In

the third stage, each interest point is assigned an ori-

entation based on the direction of a highest brightness

gradient of its neighbourhood. Finally, the method cal-

culates a multidimensional descriptor from luminance

gradients around the interest point.

3.1 Integral image calculation

The integral image (IΣ) is calculated from the original

image I by means of the following equation :

IΣ(x, y) =

x∑
i=0

y∑
j=0

I(i, j).

The integral image allows to calculate the response of

a box filter of any size by means of three additions.

Exploiting this fact in the following stages of the SURF

algorithm leads to a significant speedup of the entire

method.
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3.2 Interest point detector

The purpose of the second stage is to identify interest

points, which would retain their positions in the per-

ceived scene despite changes in viewpoint and illumina-

tion. These points are located by finding local maxima

of image Hessian determinants approximated by

H(x, y, σ) =

∣∣∣∣Dxx(x, y, σ) Dxy(x, y, σ)

Dxy(x, y, σ) Dyy(x, y, σ)

∣∣∣∣ , (1)

where Dxx(x, y, σ) represents a convolution with an ap-

proximated second order derivative of a two dimen-

sional Gaussian of variance σ. To achieve scale invari-

ance, the algorithm uses filters with multiple sizes, cre-

ating a three dimensional space of determinant results,

called a “scale space”. The scale is quantized to “oc-

taves”, where an octave refers to a series of “intervals”

covering a doubling of scale. The SURF detector ap-

proximates the Gaussian kernels with box filters (see

Figure 1a), which are calculated much faster from the

integral image. Once the scale space is calculated, its

(a) Gaussian and box
filter kernels.

(b) Indoor scene with identified
SURF points

Fig. 1: SURF detector principle and results

local maxima are found and those which pass a prese-

lected threshold indicate position of the interest points.

A typical result of the SURF detector is shown on Fig-

ure 1b.

3.3 Orientation assignment

The interest point is then assigned a “dominant direc-

tion”, which is calculated from the responses of Haar

wavelet filters centered around the interest point. Since

the presented module is primarily aimed for applica-

tions in mobile robotics domain, we assume that its

camera will be oriented horizontally. In this case, the

camera rotation along its optical axis can be obtained

by accelerometric measurements and rotation invari-

ance is not needed. Therefore, our module does not

implement the orientation assignment step.

3.4 Descriptor calculation

The final stage establishes a SURF descriptor from a

square shaped interest point neighborhood. This neigh-

borhood is divided in 16 equal sub-squares, which are

regularly sampled by Haar wavelet filters. Horizontal

dx and vertical dy Haar wavelet responses within each

sub-square are summed to form a vector consisting of∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|, which describes the particu-

lar sub-square. The vectors of all subsquares are chained

to form a 64 dimensional SURF descriptor, which is fi-

nally normalized.

A sign of the Hessian matrix trace calculated during

the detection step is included in the descriptor. Since

interest points are usually found on blob-like structures,

this sign distinguishes light blobs on dark background

and vice versa.

4 Hardware overview

The designed module is based on Avnet AES-MMP-

V5FXT70-G MiniModule Plus. This COTS module of-

fers Xilinx Virtex5 FXT FPGA, 64MB DDR2 SDRAM,

32MB flash, USB 2.0, 1G Ethernet and two 120-pin

expansion connectors for baseboard attachment. The

baseboard has to provide a module with all required

power supplies. Thus the core of our hardware solution

lies in a custom-designed baseboard for this module,

tailored specifically for computer vision applications.

Figure 2 shows main hardware features of our module.

Fig. 2: The module hardware block diagram.
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4.1 Generic baseboard features

The board power supplies, expansion connector, SD

slot, etc. - these elements belong to a group of features

that is useful in almost every embedded system design.

However, our baseboard also contains two SATA con-

nectors. A possible application is to connect a hard-

drive to one of them and gain a noticeably large stor-

age for the embedded project. But the role of the sec-

ond is less obvious – it is wired as a slave port, which

allows to daisy-chain two or more of our modules us-

ing ordinary SATA cable. This feature provides a fast

and low-power link useful e.g. for stereovision applica-

tions. The two stand-offs are designed for a FPGA heat

Fig. 3: The module with an attached camera.

sink, which also helps to hold the mini-module firmly

attached to the baseboard. Since the module has been

used for other image processing methods, which might

have a higher power consumption, a large heatsink has

been placed on top of the FPGA, see Picture 19. How-

ever, this heatsink is not needed when the FPGA is

running the method presented in this article.

4.2 Computer-vision specific baseboard features

The baseboard provides several features that are tai-

lored specifically for the computer vision applications.

The camera connector, located in front of the mod-

ule, contains 25 general purpose IOs as well as filtered

3.3V and 2.5V power supplies. Currently, it is used to

communicate with the OmniVision OV9653 CMOS sen-

sor. The module resolution is 1300×1028 and maximal

frame rate is 120 fps. In current configuration, the cam-

era is set to 30 fps, 1024×768 pixels and YUV 4:2:2

output format.

The GS816032BGT SSRAM has been included to

support demanding memory requirements. It allows the

user to store 4MB of data accessible through a 32bit

200MHz synchronous interface. The most significant

advantage of this memory over the DDR2 SDRAM is

that its contents can be accessed in an arbitrary order

without any bandwidth penalty.

5 Hardware/Software co-design solution

The algorithm to generate the SURF descriptors follows

the original SURF description as closely as possible.

The most time-consuming part of SURF (the interest

point detection) has been selected for hardware imple-

mentation using FPGA logic. The SURF descriptors are

then calculated by software running on the PowerPC-

440 embedded processor incorporated in the Virtex-5

FXT. The BusyBox-based Linux distribution has been

created to make the module easily usable. The custom

hardware-based image processing pipelines are available

to the user thanks to custom-designed kernel module

which controls their operation.

Since the Fast-Hessian detector is computed in hard-

ware, the determinant calculation is done in integer

arithmetic with a limited precision for a specific num-

ber of octaves and scale intervals and limited image size.

Current image size limit is 1024 × 1024 pixels and our

IP cores are designed to calculate determinants in two

octaves and four intervals per octave.

5.1 HW/SW partitioning

To decide which phase of the SURF algorithm to im-

plement in hardware, we have considered the potential

speed gain, complexity of implementation and depen-

dencies of the individual steps. Since the desired mod-

ule application scenario is visual based navigation of

small mobile robots, the SURF detector and descriptor

performance has been tested on a nettop PC2, which

might be carried even by a small robot. The time to

extract n SURF features from one 1024 × 768 image

takes 5200 + 1.4n milliseconds for the PC’s CPU and

105 + 0.1n milliseconds for the PC’s GPU, see Table 2.

This result suggests, that if the number of features re-

quired by the intended module’s application scenarios

would not be too high, the most time consuming phase

of the algorithm is the interest point detection. The vi-

sual navigation algorithm [17] which is intended to be

2 For profiling, we used a NT330-i with Intel Atom 330
1.6GHz, 1GB RAM and nVidia ION graphics card
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used with the module is reported to use about 150 land-

marks. In this case, more than 97% of the CPU time

is spend with interest point detection. Moreover, the

speed of the GPU SURF implementation indicates that

parallelizing the detector achieves a higher speedup fac-

tor than parallelizing the descriptor. Considering the

fact, that migrating the descriptor calculation to hard-

ware is at least as complex as migrating the detector,

we have decided to run the descriptor calculation sim-

ply on the module’s PPC.

5.2 FPGA configuration

Fig. 4: Current overall PSoC architecture

The main role in the FPGA part of our design is

played by several custom-designed reusable blocks de-

scribed in following subsections. All of them conform

to Xilinx XPS IP core specification which allows their

easy integration into arbitrary PSoC design. The most

commonly-used IP core is Schvab Pixel Bus (SPB), a

single-master, multi-slave unidirectional bus with zero

latency and a tiny logic overhead. It is basically an uni-

fied interface between all data processing blocks.

Another important block is the (PDMAB) bridge. It

allows user to feed data to/consume data from the SPB.

Current version provides three SPB slaves and one mas-

ter. This block is connected through its 128-bit PLB

master to Xilinx crossbar switch and allows convenient

direct access to main module memory (64MB DDR2).

Our system is based on a straightforward pipeline-

like structure, that can be reconfigured for different pur-

poses. For example, using the SPB to connect the mas-

ter port of the (PDMAB) to one of its slave ports creates a

simple DMA engine. The following subsections describe

image processing blocks - these can be daisy chained

in the XPS using SPB to obtain an “image processing

chain”. The chain has to have a source of image data

and a sink 3.

Our current design features two processing chains.

The first one ( DCFG → RCSIC → PDMAB ) can grab,

subsample and crop image frames from the attached

camera and store them into the main memory. The sec-

ond one ( PDMAB → IIG → SAFHG → LMF ) can take an

image from main memory, calculate its integral image,

calculate Fast-Hessian responses and search them for lo-

cal maxima. As you can see from Figure 4, the second

chain’s two branches return to PDMAB. The first branch

serves to store integral image data from currently pro-

cessed image into main memory for descriptor calcu-

lation and the second (branch from SAFHG) serves for

possible debugging of SAFHG - it can store Fast-Hessian

results into main memory for later analysis.

Some algorithm parameters – such as number of oc-

taves – are given by the system and IP-core architec-

ture. If the user would wish to change these, he would

need to modify the FPGA design only on the system

level withouth altering the IP cores.

For example the addition of two more octaves would

require branching the second processing chain, subsam-

pling the data stream (RCSIC) and addition of instances

of SAFHG and LMF. This addition wouldn’t slow down the

detector (since the original chain would still be operat-

ing in parallel on 4× larger image) but it would cost a

significant amount of FPGA resources.

The run-time parameters of the image processing

(such as sizes, thresholds, subsampling, memory ad-

dresses) are controllable using ordinary PLB-attached

register banks on appropriate processing blocks. One of

important characteristics of our solution is that thanks

to the DMA capabilities the CPU doesn’t have to touch

the image data until it wants to calculate the descriptor

or send the image through the Ethernet.

5.3 Digital Camera Frame Grabber

The Digital Camera Frame Grabber (DCFG) core is de-

signed to adapt a CMOS camera interface to the SPB.

This core not only transfers data, but also generates

synchronization signals for the SPB from the vertical

and horizontal timing signals of the camera. So far we

have tested this IP with the OmniVision OV9653 cam-

3 Actually it may have more sinks - the SPB is multi-slave.
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era chip, which provides 16 bits per image pixel in YUV

4:2:2 format over an 8-bit data bus.

5.4 Row Column Skipping Image Crop

The Row Column Skipping Image Crop (RCSIC) core is

capable of subsampling and/or cropping images going

through the SPB.

Fig. 5: The RCSIC core scheme.

The image subsampling and cropping is performed

by suppressing a preset number of pixels. Due to sim-

plicity of this core operation, it does not introduce any

delay to the SPB. This core has been added to the de-

sign to allow greater flexibility of the module, because

some applications do not require a full scale image or

process only part of it. For example, the visual mobile

robot navigation presented in [17] requires only the up-

per half of the image. However, in our experiments, we

did not use this core to alter the image. The opera-

tional parameters of this core are run-time modifiable

using configuration registers.

5.5 Integral Image Generator

The Integral Image Generator (IIG) core is responsible

for the integral image generation.

Fig. 6: The IIG core scheme.

The structure and principle of operation of this core

can be seen in Figure 6. As aforementioned the result-

ing integral image is sent not only to the Fast Hessian

Generator, but also to the main memory for later reuse

by the descriptor calculator, see Figure. 4.

5.6 SURF Accelerator - Fast-Hessian Generator

Fig. 7: The SAFHG core block diagram.

The SURF Accelerator - Fast-Hessian Generator IP

core (SAFHG) (Fig. 7) is a key component of SURF de-

tector acceleration. It calculates the Fast-Hessian re-

sponses from the integral image and forms the entire

scale space used by the detector. An important factor

influencing the performance of the determinant calcu-

lation is the optimization of memory access, which is

performed by the MasterController block. This block

outputs integral image data in a parallel optimized or-

der suitable for image second order derivatives calcu-

lations in the TripleMAC blocks. Afterwards, the final

determinant values are calculated by the HessianCalc

block. The resulting stream of determinants, which con-

tains mixed values from two scale space octaves, is split

by the Determinant Block Triple Splitter (DBTS) block.

The following three subsections explain the key compo-

nents of the SAFHG core in more detail.

5.7 Master Controller

This block produces optimally ordered stream of inte-

gral image data suitable for image derivatives calcu-

lation by the Triple MAC blocks. Master controller

iterates through the image data in a 2×2 pixel steps –

this is step referred to as a “determinant block”. One

such “determinant block” requires calculation of 18 de-

terminants (2×2 pixels×4 intervals for the first octave

and additional 2 for the second octave). If we overlay

all box filter masks (for integral image) for all deter-

minants in one block and count how many times each

pixel is read we can count that one determinant block
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calculation requires reading of 576 integral image values

on 405 unique locations inside a 52×52 pixel area. The

main task of MasterController is to read this data as

fast as possible in an optimized order.

Fig. 8: The Master controller core block diagram.

The PixelBuffer inside the MasterController block

contains 56 block RAMs each with the capacity of 36kb.

Each block RAM contains exactly one image line, which

simplifies the address calculation but imposes a con-

straint on a maximum image line length4. The buffer

is divided into four quarters, each of which outputs its

data to one output bus. Each TripleMAC can grab a

value from one bus during one clock cycle. To prevent

the need for re-reading any integral image pixel, all

TripleMACs that require the same image pixel for cal-

culation of one of their determinants have to be able

to store this value at the instant of its presence on one

of the buses. Since every pixel of an integral image is

required for derivative calculation at most 18×, at least

18 TripleMAC blocks are needed. The aforementioned

architectural characteristics imposes restrictions on the

integral image read order as well as on the assignment

of calculated derivatives to the TripleMAC blocks. To

construct this reading sequence we have created a set

of scripts that try to assemble an optimal read sequence

which respects all aforementioned constraints. During

the “placement” process (the pixels are “placed” into

bus cycles) the script tries to first satisfy the pixels

with higher utilization, continuing to less utilized pixels,

while verifying placement conformity to the aforemen-

tioned restrictions. Although the placement method is

based on a relatively simple principle, its result is quite

4 Currently, the image width is limited to 1024 pixels. The
BRAM usage is essentially given by the maximal box filter di-
mension, since all the needed image lines must be in the buffer
for this calculation. Hence, if the design would be ported to a
bigger FPGA with say twice the BRAM resources, the image
width could be also roughly doubled.

satisfying – only less than 10% of bus cycles are idle.

This whole block represents, in fact, something like an

algorithm-optimized cache memory, which plays a key

role in the performance of our solution. Its architecture

has been chosen as a tradeoff between logic utilization,

performance and limitations to the image size.

5.8 Triple MAC

Fig. 9: The Triple MAC core block diagram.

Calculation of an image derivative Dxx, Dyy or Dxy

(see section 3.2) means addition of 8 or 16 integral im-

age values multiplied by a coefficient. Each TripleMAC

core handles calculation of three image derivatives. This

kind of multiplexing in combination with the nature of

a multiply-accumulate task results in a delay in pro-

cessing. The block needs two clock cycles to process a

value with coefficient ±1 and four clock cycles to pro-

cess a value with coefficient ±3. This is because coef-

ficient ±3 is not implemented as a multiplication but

as 3 addition/substractions. The TripleMAC block has

a two position input FIFO to capture the incoming in-

tegral image data when required (this FIFO makes the

read sequence assembly much simpler).

5.9 Hessian Calculator

Fig. 10: The Hessian calculator core block diagram.

This block is responsible for the final calculation of

the Fast-Hessian responses. It is activated as soon as
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the Master Controller finishes the determinant block

data read cycle and the image derivatives are stored

in TripleMAC output registers. It uses a simple state

machine to run through a predetermined sequence in

which it reads the image derivatives from TripleMAC

blocks and calculates the determinants. The calcula-

tion is done using fixed point arithmetic and a certain

degree of precision might be lost due to the necessary

rounding. This is the last important block in the SAFHG

IP core, following is only a simple splitter (DBTS) that

outputs Fast-Hessians to a SPB port appropriately to

their octave.

5.10 Local Maxima Finder

The Local Maxima Finder (LMF) is capable of perform-

ing the thresholding and non-maxima suppression on an

arbitrarily organized multi–dimensional data incoming

through SPB. Its purpose is to search for local maxima

of the determinants calculated by the SAFHG IP core.

There are two of LMF blocks in the processing chain, one

for each scale space octave. Its structure is depicted in

the Figure 11.

Fig. 11: The LMF core block diagram.

The Memory Sink is essentially a FIFO specifically

designed to buffer two dimensional data that are coming

through SPB. Since at this point we are working with

3D scale space data and SPB contains sync signals only

for 2D, we have to know the data order in advance. The

order of scale space data for one pixel is constant due to

a constant calculation order of the SAFHG IP core and

thus we are able to always identify which value belongs

to which scale.

The organization of Fast Hessian data stored in the

Memory Sink depends on the given octave. While the

first octave has data pixels organized in 2× blocks, the

second octave is organized in a pixel by pixel man-

ner. Thus, the first octave needs 4 different offset se-

quences to go through each pixel scale-space neighbor-

hood, while the second octave offset sequence is the

same for every pixel. We have generated these 5 se-

quences using an automation script.

These sequences are passed to LMF sequencer using

VHDL generic map – that means that user is eventually

able to configure which LMF corresponds to which data

layout (octave) using XPS IP core properties. The user

of this core can also write a new offset sequence opti-

mized for his particular data layout and re-use this core

for different project. Hence, the role of LMF sequencer

is to take these pre–configured sequences and apply

them to data in the Memory Sink. When the running

sequence discovers a neighboring data element bigger

than the current comparison pilot element, it is can-

celed and sequencer moves to the new pilot pixel. The

same applies for the comparison with threshold – it is of

course done before the sequence is started. The thresh-

old is run-time adjustable using configuration registers.

During the run of the comparison sequence the neigh-

boring scale–space values are stored to an output buffer,

which is read by the software in case the local max-

ima is discovered and used for position interpolation.

For convenience, the LMF IP Core generates interrupts

when the output buffer contains a configurable amount

of local maxima records

Aside from a quite complex offset calculation the

sequencer has to watch for the data level in the buffer.

Depending on the data layout we either have to store

one or two complete lines of data in the Memory Sink.

One line hast to be stored in the case when the data are

transferred in serialized blocks corresponding to 2×2

pixel areas (1st octave) and two lines are for a case

when the data arrive only in quadruplets correspond-

ing to each pixel (2nd, subsampled octave). So, during

the comparison sequence run a substantial portion of

the Memory Sink has to be protected to prevent data

corruption. The logic has to watch out also for image

boundaries, so that data from two subsequent images

are not mixed together.

5.11 HW/SW co-design summary

In this subsection we summarize the overall operation of

our accelerator, focusing only on the processing chain of

the SURF accelerator and including hardware-software

interactions. Let’s assume we have several images stored

in the main memory at arbitrary locations. First, two

commands per image are written into the command

queue of the PDMAB – one to set the destination of inte-

gral image data and second to set the source image data
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address, size and line length. Since the command queue

has several positions5 we can enqueue several images for

continuous processing. Once the second command is re-

ceived, the PDMAB starts feeding image data into its SPB

master port. These data go through IIG, where integral

image is calculated synchronously. Afterward, the data

continues to the SAFHG for Fast-Hessian calculation –

at this point the data flow is limited using SPB hand-

shake signals. Integral image data stream is also simul-

taneously taken to the PDMAB slave port, which stores

them at a requested location (first PDMAB command).

Fast-Hessian results travel into the LMF blocks where,

if local maxima is found, a new record (maxima and

its neighborhood) is stored in the output FIFO. When

the FIFO fullness reaches a certain level, an interrupt is

generated and the device driver reads the local maxima

records. If the FIFO is not emptied quickly enough and

becomes full, the operation of the processing chain is

stalled – again using the SPB handshake signals. The

software then performs interpolation of the local max-

ima positions and calculates the SURF descriptor using

the pre-stored integral image data in the main memory.

When the PDMAB finishes reading one image, it auto-

matically moves to another (if the commands have been

entered), while the software processing of the first image

is still running, i.e. the PPC is calculating descriptors of

a previous image while a new image is being processed

by the detector chain. The user can control this process

using Linux device nodes.

6 Experiments

The purpose of the performed experiments is to evalu-

ate the overall module performance and test its correct-

ness and applicability in a mobile robot navigation sce-

nario. The module performance is evaluated not only in

terms of the features’ repeatability and distinctiveness,

but also processing speed, power consumption, spatial

demands and the usability in a real world scenario.

Our main concern was the impact of the changes

introduced to the original SURF implementation on

the algorithm ability to establish correct feature corre-

spondences. This could have been severely affected due

to decreased precision of the detector caused by using

fixed-point arithmetics during the Fast-Hessian calcu-

lation. To evaluate the impact on lowering calculation

precision on algorithm efficiency, we have compared the

repeatability and distinctiveness of the CPU-, GPU-

and FPGA-SURF with the Mikolajczyk dataset [20].

Since one of the intended module applications is

ground robot visual localization, mapping and naviga-

5 their number is set by an PDMAB IP core parameter

tion, the distinctiveness of the FPGA-SURF has been

measured with another, larger dataset as well. The lat-

ter dataset is more typical for a mobile robot visual na-

vigation scenario. In a final test, a small mobile robot

has autonomously traversed 1 km long path using the

module as a core component of its navigation system.

6.1 Performance with a classical dataset

The goal of this test is to compare the FPGA-SURF

to the CPU- and GPU- implementations using a well-

known methodic proposed by Mikolajczyk [21]. The re-

peatability calculation has been performed for the orig-

inal CPU version of the detector, which uses double

precision numbers, GPU implementation, which uses

single precision numbers and the FPGA implementa-

tion, which uses fixed point arithmetics.

Since imprecision in detector calculation might af-

fect the following stages, the distinctiveness of the algo-

rithms was tested as well. Both repeatability and dis-

tinctiveness tests were performed on the Mikolajczyk

dataset, which is available online [20] along with a set

of testing scripts.

To achieve a fair comparison, we have removed the

orientation assignment phase from the original imple-

mentations of CPU- and GPU- implementation and set

them to use the same number of octaves as the FPGA-

SURF. Since the orientation assignment has been re-

moved and the extractor is not rotation invariant, we

have tested the repeatability and distinctiveness with

relevant sequences only, i.e. sequences with varying blur,

viewpoint, compression and contrast.
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Fig. 12: Algorithm repeatability and distinctiveness

with the ‘wall’ sequence - view point change

One can see that the repeatability of the FPGA im-

plementation is lower compared to the SURF versions,

which use floating-point arithmetics. However, distinc-

tiveness of the detector is affected only slightly com-

pared to the original implementations. Note the poor

distinctiveness on the ‘graffiti’ dataset, which is caused

by strong rotation of the images.
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Fig. 13: Algorithm repeatability and distinctiveness

with the ‘graffiti’ sequence - view point change
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Fig. 14: Algorithm repeatability and distinctiveness

with the ‘bikes’ sequence - variable image blur
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Fig. 15: Algorithm repeatability and distinctiveness

with the ‘trees’ sequence - variable image blur
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Fig. 16: Algorithm repeatability and distinctiveness

with the ‘Leuven’ sequence - variable image contrast

6.2 Performance in a mobile robot navigation scenario

Since the module is intended primarily for visual based

localization and navigation of small mobile robots, an-
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Fig. 17: Algorithm repeatability and distinctiveness

with the ‘UBC’ sequence - variable jpeg compression

other test has been performed using a dataset typical

for such a task. In case of visual based mapping, the

primary measure of module’s performance is its ability

to track features in a sequence of images captured by

its camera. This ability is closely related with the dis-

tinctiveness of the feature extractor. To establish the

Fig. 18: Typical dataset images

method distinctiveness in real world conditions, we have

decided to use a dataset created by a mobile robot mov-

ing in a park-like environment. The dataset consists of
5000 (1024×768 pixel) images taken by the robot on-

board camera during five 1 km long teleoperated runs

in diverse conditions, see Figure 18. The robot onboard

camera was aimed in the direction of the robot move-

ment, and a picture was taken every time the robot

traveled one meter or performed a sharp turn.

6.2.1 Measuring distinctiveness

To establish the method’s distinctiveness, the images

were streamed through the module which was set to ex-

tract 500 SURF features per image on average. For each

two consecutive images, the tentative correspondences

were established based on the Euclidean distances of

the SURF descriptors. Using the eight-point algorithm

and RANSAC, the viewpoint change (represented by

the fundamental matrix) between the images was cal-

culated. With the calculated viewpoint change, the va-

lidity of tentative correspondences can be established
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by means of epipolar geometry. To check the validity

of each pair, the epipolar lines of the corresponding

points were calculated using the fundamental matrix

and the distance of each point from its epipolar line is

calculated. If the corresponding points lie closer than

2 pixels to the epipolar lines, the correspondence is

marked as valid. The ratio of valid to tentative cor-

respondences of the entire dataset was then considered

as a distinctiveness measure. During this test, the mod-

ule has extracted over 2.5 million features (5000 images

× 500 features/image) and has established over 500 000

tentative correspondences.

6.2.2 Measuring speed

To determine the computational performance of the

module, its speed has been measured by the time needed

to process the individual pictures of the aforementioned

dataset. Such a test reflects the real performance of the

module in a better way that measuring the speed of the

individual parts of the algorithm in separate because it

includes all the overheads, communication delays etc.

For the sake of simplicity, we assume that the detec-

tor speed is not significantly affected by the number of

features while the time to calculate one descriptor is

constant, i.e. the time t to process one image can be

approximated by a linear function

t = tdet + ntdes, (2)

where tdes corresponds to the time needed to generate

one descriptor, tdet corresponds to the detector speed

and n is the number of the extracted features. To es-

tablish both the tdes and tdet constants empirically, we
have measured the time needed to process the entire

dataset with two different threshold values t100 and t500
that were set to obtain 100 and 500 features per image

on average. Processing the dataset with the t100 or t500
thresholds took 14 and 39 minutes respectively, which

corresponds to tdet = 100 ms and tdes = 0.7 ms/feature.

During this experiment, the module extracted over 3

million features (5000 images × 500 features/image +

5000 images × 100 features/image).

6.2.3 Detector and descriptor in parallel

Note that the equation (2) allows to estimate the time

it takes to process one image, i.e. the time needed from

image reception to transmission of its SURF features.

However, when images are streamed to the module con-

tinuously, the detector processes the incoming image

while the descriptor is processing the last detector out-

put, i.e. the detector and descriptor are working in par-

allel most of the time. In this case, the average number

of processed images per second p can be approximated

by

p =
1

max(tdet, navgtdes)
[FPS]. (3)

where navg is the average number of features per im-

age. Equation (3) indicates that the maximal speed of

the module is given by the detector performance and

if number of the detected features navg is lower than

tdet/tdes, the module’s performance is kept at its maxi-

mum. In Section 6.2.2, we have established the tdet and

tdes to 10 ms and 0.7 ms/feature respectively, which in-

dicates that the module can extract ∼ 140 features per

frame while maintaining its maximal processing speed

of 10 FPS. However, if the number of extracted features

navg exceeds 140, the module’s performance will start

to drop as navg increases (see Equation 3). E.g. while

extracting 500 features per image is possible at approxi-

mately 3 FPS, extracting 1500 features takes more than

one second per image. While this might seem imprac-

tical, the module’s intended use, visual-based mobile

robot navigation, does not require a large amount of

image features [17].

6.2.4 Module performance summary

For comparison, we have measured speed and distinc-

tiveness of the original CPU [5] and GPU [10] SURF

implementation in the same way as described in Sec-

tions 6.2. The tests have been performed on a NT330-i

board with Intel Atom 1.6GHz, 1GB RAM and nVidia

ION2 graphics card because of this board’s small size

and low weight. Although the speed of FPGA and GPU

Platform
CPU GPU FPGA

Distinguishability [%] 98 95 95
Detector speed [ms] 5200 105 100
Descriptor speed [ms] 1.4 0.1 0.7
Consumption [W] 24 24 6
Mass [g] 850 850 210
Volume [cm3] 600 600 180

Table 2: Comparison of CPU-, GPU- and FPGA-SURF

implementations is higher than the CPU version, their

distinctiveness is slightly lower. Compared to both GPU

and CPU implementations, the FPGA-based solution is

smaller, lighter and less power demanding.

6.3 FPGA-SURF based navigation system

The experiments described in the previous sections have

been performed offline, i.e. the module has processed a
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pre-collected dataset of images. Since the results in Sec-

tions 6.1 and 6.2.4 indicate that the distinguishability

of the FPGA- and GPU-SURF are similar, one would

expect that they would perform similarly in real-world

scenarios. However, the FPGA-SURF might suffer from

some performance penalty that may not be captured

by the tests described in Sections 6.1 and 6.2. There-

fore, we have performed an additional test that veri-

fies if the FPGA-SURF implementation can be used

in visual-based mobile robot navigation as well as its

GPU-SURF counterpart.

To test the module in a real world scenario, we have

integrated it in a monocular-based mobile robot naviga-

tion system. We have chosen to use the SURFNav [17]

navigation method because of its ability to cope with

diverse terrain, dynamic objects, obstacles, systematic

measurement errors, low visibility, variable lighting con-

ditions and seasonal environment changes. The original

navigation method described in [17] has used the GPU-

SURF algorithm that has the same distinctiveness as

our FPGA-SURF implementation but needs a complete

PC that makes its deployment on smaller mobile robots

difficult.

To show that our solution can overcome the afore-

mentioned constraint, the experimental verification was

aimed at the FPGA-SURF module ability to guide a

small mobile robot. The mobile robot used was based

on an MMP-5 platform from The Machine Lab. Inc.,

equipped with a Gumstix Overo computer. The Gum-

stix computer itself was running the SURFNav naviga-

tion algorithm that allows the robot to autonomously

navigate routes previously taught by a human operator.

Since the Gumstix Overo is too slow to achieve real-

time performance when extracting the SURF and the

robot cannot carry a heavy PC with a sufficient com-

putational power, we have equipped it with the FPGA-

SURF module. The module was connected to the on-

board computer via an Ethernet interface and provided

it with the SURF features.

Fig. 19: MMP-5 robot with the FPGA-SURF module

To perform experimental verification, the MMP-5

robot, which was equipped with the FPGA module, has

been first guided through a required path using a re-

mote control, while storing the detected SURF features

in its memory. The features recognized during this tele-

operated run were then used to create a landmark map

of the environment. Using this map the robot was able

to navigate itself through the environment by matching

the currently seen features to those previously mapped.

A map of an approximately 100 m long indoor trail has

been created and the robot has autonomously navigated

this trail ten times.

Since the test has proven that the module deals with

real-world conditions and FPGA-SURF distinguishabil-

ity is similar to the GPU-SURF method, we can assume

that a robot guided by this module would perform as

well as described in [17]. However, performing experi-

ments as extensive as described in [17] is beyond this

paper scope.

7 Conclusion

We have presented an FPGA-based embedded module

which implements the SURF image feature extraction

algorithm. The presented solution, intended mainly for

mobile robot navigation and mapping, offers similar

distinctiveness and speed as the GPU version of the

original SURF while having lower spatial and power

requirements. The achieved frame rate for 1024×768

pixel images is about 10 FPS, the module dimensions

are 12×8×2 cm, its mass (including camera module
and heat sinks) is 210 g and it consumes less than

6 Watts. Apart from implementing the SURF algo-

rithm, the module embeds a fully functional Linux dis-

tribution, which allows to run applications for further

processing of the acquired features. Thus, the module is

comfortable to use and allows its easy customization for

variety of applications, which impose spatial and com-

putational constraints, but need robust invariant image

feature extraction. To demonstrate the module capabil-

ities, the module was used to create a navigation system

for a small mobile robot and guided the robot over a

1 km long path.

The IP cores occupy about 60% of the FPGA, which

leaves enough space for further module improvement

and optimization. In the future, we would like to in-

crease the FPGA SURF speed by implementing the de-

scriptor phase of the algorithm in the FPGA logic. To

achieve further speedup for most computer vision ap-

plications, we also consider to add IP-cores for feature

matching.
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