22,071 research outputs found

    CABE : a cloud-based acoustic beamforming emulator for FPGA-based sound source localization

    Get PDF
    Microphone arrays are gaining in popularity thanks to the availability of low-cost microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization techniques and speech recognition are proposed by several research groups and companies. In most of the available implementations, the microphones utilized are assumed to offer an ideal response in a given frequency domain. Several toolboxes and software can be used to obtain a theoretical response of a microphone array with a given beamforming algorithm. However, a tool facilitating the design of a microphone array taking into account the non-ideal characteristics could not be found. Moreover, generating packages facilitating the implementation on Field Programmable Gate Arrays has, to our knowledge, not been carried out yet. Visualizing the responses in 2D and 3D also poses an engineering challenge. To alleviate these shortcomings, a scalable Cloud-based Acoustic Beamforming Emulator (CABE) is proposed. The non-ideal characteristics of microphones are considered during the computations and results are validated with acoustic data captured from microphones. It is also possible to generate hardware description language packages containing delay tables facilitating the implementation of Delay-and-Sum beamformers in embedded hardware. Truncation error analysis can also be carried out for fixed-point signal processing. The effects of disabling a given group of microphones within the microphone array can also be calculated. Results and packages can be visualized with a dedicated client application. Users can create and configure several parameters of an emulation, including sound source placement, the shape of the microphone array and the required signal processing flow. Depending on the user configuration, 2D and 3D graphs showing the beamforming results, waterfall diagrams and performance metrics can be generated by the client application. The emulations are also validated with captured data from existing microphone arrays.</jats:p

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    E-Commerce Technologies and Information Systems Curricula

    Get PDF
    The World Wide Web (WWW), as the platform for E-Commerce, is the breeding ground for innovative applications. It is also providing the impetus for development of newer building blocks of information systems (IS) platforms. Today, novel applications such as push-type delivery of information, television style channels, multimedia mail attachments, desktop video-conferencing, and other examples of electronic commerce exist on the web. None of these was in wide use even as late as 1996. How are these technologies different from host-based and client/server technologies? What is the impact, if any, of these technologies on the skills set that IS majors need to have? This paper attempts an answer to the above questions by adopting an adult learning framework. Using the framework, we trace the impact of technology changes on skill requirements and the curricula. An appreciation of the fundamental differences that separate host-based, client/server and web-based platforms and E- Commerce applications can help in understanding this impact

    Slisp: A Flexible Software Toolkit for Hybrid, Embedded and Distributed Applications

    Get PDF
    We describe Slisp (pronounced ‘Ess-Lisp’), a hybrid Lisp–C programming toolkit for the development of scriptable and distributed applications. Computationally expensive operations implemented as separate C-coded modules are selectively compiled into a small Xlisp interpreter, then called as Lisp functions in a Lisp-coded program. The resulting hybrid program may run in several modes: as a stand-alone executable, embedded in a different C program, as a networked server accessed from another Slisp client, or as a networked server accessed from a C-coded client. Five years of experience with Slisp, as well experience with other scripting languages such as Tcl and Perl, are summarized. These experiences suggest that Slisp will be most useful for mid-sized applications in which the kinds of scripting and embeddability features provided by Tcl and Perl can be extended in an efficient manner to larger applications, while maintaining a well-defined standard (Common Lisp) for these extensions. In addition, the generality of Lisp makes Lisp a good candidate for an application-level communication language in distributed environments
    corecore