
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 27(1), 33–48 (JANUARY 1997)

Slisp: A Flexible Software Toolkit for Hybrid, Embedded
and Distributed Applications

JAMES F. BRINKLEY AND JEFFREY S. PROTHERO

Structural Informatics Group, Digital Anatomist Program, Department of Biological Structure, Box 357420,
University of Washington, Seattle, WA 98195, U.S.A. (email: brinkley@u.washington.edu,

jsp@biostr.washington.edu)

SUMMARY

We describe Slisp (pronounced ‘Ess-Lisp’), a hybrid Lisp–C programming toolkit for the development of
scriptable and distributed applications. Computationally expensive operations implemented as separate
C-coded modules are selectively compiled into a small Xlisp interpreter, then called as Lisp functions in a
Lisp-coded program. The resulting hybrid program may run in several modes: as a stand-alone executable,
embedded in a different C program, as a networked server accessed from another Slisp client, or as a
networked server accessed from a C-coded client. Five years of experience with Slisp, as well experience
with other scripting languages such as Tcl and Perl, are summarized. These experiences suggest that Slisp
will be most useful for mid-sized applications in which the kinds of scripting and embeddability features
provided by Tcl and Perl can be extended in an efficient manner to larger applications, while maintaining a
well-defined standard (Common Lisp) for these extensions. In addition, the generality of Lisp makes Lisp a
good candidate for an application-level communication language in distributed environments.

KEY WORDS: exploratory programming; hybrid programming; Lisp; C; Xlisp; World Wide Web; scripting languages

INTRODUCTION

A constant characteristic of software is change. Even in the earliest days of batch computing,
programs continually evolved and grew in response to new requirements. In the current
networked and interactive window-based computing environment, evolutionary change, both
in new software development and in modifications to existing programs, occurs even faster than
before. Thus, there is a trend to replace, or at least to augment, the traditional edit–compile–
link cycle with rapid development environments and to provide hooks that let end-users or
end-programmers customize and extend existing software tools without having to wait for the
next release.

For example, in artificial intelligence research most of the problems are ill-defined1 and
solutions are found by a process of quickly trying out new ideas. Therefore, the language
of choice for AI is often Lisp,2 an extensible language offering sophisticated data structures,
automatic storage management, and support for both interpreted and compiled code.

However, the flexibility of rapid prototyping environments usually comes at the price of
slow execution and/or large programs. When successful research developments are transferred
to a production environment this cost becomes prohibitive, requiring that the program be
completely re-written in a language such as C.3 Because of the high cost of re-coding, much

CCC 0038–0644/97/010033–16 $17�50 Received 20 February 1995
1997 by John Wiley & Sons, Ltd. Revised 9 May 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Washington Structural Informatics Group Publications

https://core.ac.uk/display/9412171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

34 J. F. BRINKLEY AND J. S. PROTHERO

application-oriented AI is done in C from the outset, not only to avoid the high cost of porting,
but also to allow integration with existing applications. However, C lacks the quick turnaround
and automatic storage management of Lisp, while the long compile cycles for C defeat the
original advantage of a rapid prototyping programming environment.

In an effort to obtain the best of both worlds, there is a trend for lower-level languages
such as C to support more high-level facilities (for example, the C++ extensions to C), and
for high-level languages such as Lisp to provide more access to lower-level programming
facilities, such as the foreign function support offered by most contemporary Common Lisp
systems.2 However, both of these approaches have important drawbacks: C++ continues to
lack automatic storage management, for example,4 while Lisp systems still fail to deliver small
executables, and integration of new low-level functionality into a full-scale Lisp environment
remains a tricky task, exacerbated by frequent inaccessibility of the source code.

As a result, an increasing number of systems rely on a hybrid programming approach, in
which production and efficiency-critical code is written in C, while rapid prototyping is done
in a small, interpreted scripting language. This approach originated at the opposite end of the
programming spectrum from the large development environments of AI research labs, where
the need arose to write small quick-and-dirty programs for simple tasks that would either be
too much effort to code in C, or would be too complex to code in existing systems such as the
Unix shell.

One of the most popular examples of the hybrid programming genre is Perl,5 which started
out as a simple report generation language. In addition to providing common programming
constructs, Perl supports extension of the interpreter through both statically linked and dy-
namically loaded libraries, allowing Perl to be interfaced to a variety of systems, ranging
from database engines to graphical user interface toolkits, and extended to handle tasks as far
removed from simple textual report generation as immersive 3D graphics. The latest version
of Perl can also be embedded in existing C programs.

A similar example is Tcl/Tk.6 Tcl is an interpreted, string-based scripting language that
can be extended with new C functions, and embedded in other C programs. This latter
capability was used in the development of Tk,7 a set of Tcl commands that provide access to
the X-windows toolkit, thereby allowing both rapid prototyping of graphical user interfaces,
and dynamic customization of existing interface widgets by rebinding them to modified Tcl
functions.

Both Perl and Tcl/Tk, plus to a lesser extent, a similar scripting package called Python,8 have
become very popular for rapid prototyping of small interactive applications. Perl especially
has been widely used for many of the small cgi- bin scripts that have proliferated on the World
Wide Web.9 These languages have become so popular, in fact, that they have been extended
and used to build much larger applications than they were originally designed for.

However, when these languages begin to be used for purposes other than they were origi-
nally intended, their weaknesses as general programming languages become apparent.10 For
example, both Tcl and Perl lack all simple types other than strings, and all compound types
other than hashtables, plus modern amenities such as garbage collection. Because of the lack of
generality in the original language design, there is no well-defined standard for the inevitable
extensions that make the languages more widely useable, with the result that both Tcl and Perl
have the potential to fragment into incompatible development threads.

An alternative to this potential fragmentation is the use of a well-defined general purpose
language in the first place, initially implementing only a small subset of the language for the
required scripting and communication tasks. Then, when the inevitable extensions are needed,
they can be implemented according to the general language standard. In this manner it may

SLISP 35

be possible to more closely approximate the goal of developing a broad spectrum language
that can be used for both small and large programs.

This goal suggests that it may be worth re-evaluating Lisp, and in particular ANSI standard
Common Lisp, as a scripting language that has the potential to function across the spectrum
of application sizes. Even though full Common Lisp systems are large, subsets of Common
Lisp can be small enough to perform many of the functions that Tcl and Perl were designed
to do.

One of the main drawbacks of Lisp, and probably the largest reason for its declining
popularity, is that it is initially difficult for C or Fortran programmers to understand. However,
once this hurdle is surmounted the many advantages of Lisp become apparent, and in fact,
dialects of Lisp have been used as scripting languages, including Elisp with Emacs for text-
editing,11,12 Autolisp with Autocad for CAD/CAM,13 and GCL with GeomView for scientific
visualization.14

A Lisp interpreter often used for this purpose is Xlisp, a small, portable, Common Lisp
subset that is coded in C and runs on many different platforms ranging from PCs to Unix
workstations.15 Because of its relatively small size and easy accessibility, Xlisp has been ex-
tended to form the basis for several systems, including Xlisp-Stat for statistical calculations,16

Winterp for interfacing with Motif Widgets in the X Windows system17 (with a purpose similar
to Tcl/Tk but not currently receiving as much attention as Tcl), and Xlisp-Plus with additional
Common Lisp functionality.18 In most of these systems, additional C-coded Lisp functions
are added to the basic Lisp functionality of Xlisp, thereby allowing C-coded primitives to be
mixed with Lisp-coded interpreted functions in a hybrid system.

In this paper we describe our experience with Slisp (Skandha Lisp, after our graphics
visualization program Skandha),19 an Xlisp-based programming toolkit that we developed for
use in our research. Slisp attempts to generalize the hybrid approach taken by the other Xlisp
applications, thereby making it relatively easy for application programmers to extend Xlisp
with C-coded functionality according to the Common Lisp standard. The Slisp toolkit allows
for the creation of independent C-coded modules implementing primitive Lisp functions.
These C-coded modules can be mixed and matched with interpreted Lisp to create applications
ranging from small scripts to large, computationally-intensive applications in which Lisp acts
as a glue to tie together large C modules. As with Tcl or Perl, the resulting programs may
be run in several different modes: (1) from the standard Xlisp command-line prompt; (2) as
embedded Lisp within a different C program; (3) as a network server; and (4) as a network
client to another Slisp server.

In the remainder of this paper, we describe the architecture of Slisp as well as example
applications that we have developed in our lab. We then discuss our experiences using Slisp
in comparison with other languages, and in the final section, we present our conclusions as to
when Slisp is an appropriate language to use.

SLISP ARCHITECTURE AND MODES OF OPERATION

Figure 1 shows the basic architecture of Slisp. An Slisp compiled C program (P1. . . P3
in Figure 1) includes routines from xcore, the Lisp interpreter plus basic Lisp functionality
developed by David Betz, plus some number of modules (x1 . . .x4) containing the C-coded
functions specializing it to the task at hand. An Slisp hybrid program (H1 in Figure 1) consists
of an Slisp compiled program P3, augmented by Lisp code defined by the defun special
form, and loaded at runtime.

Figure 2 shows more details of the hybrid program H1 in Figure 1. The compiled C program

36 J. F. BRINKLEY AND J. S. PROTHERO

H1

P3 Lisp codeP1 P2

x1 x2 xcore x3 x4

Hybrid Programs

Compiled
C Programs

Modules

Figure 1. Slisp architecture. Shaded boxes are C code, non-shaded are Lisp code

P3 includes the standard Xlisp main program, which implements the Lisp read-eval-
print loop. Theeval function calls routines in xcore to execute the standard Lisp primitives
such as cons, list, etc. It also calls user-defined routines in modules x3 and x4 to execute
additional Lisp primitives defined in these modules.

As in any Lisp system, the Lisp code itself may be divided into Lisp modules such as L1
and L2, which may or may not correspond to the C modules x3 and x4. Thus, an Slisp program
is usually a hybrid of C-coded Lisp routines designed for fast execution, and Lisp-coded Lisp
routines that glue together the C routines for added functionality.

Any Slisp program may be run in any of four basic modes, shown in Figure 3, which
may in turn be combined to create more complex modes: from the standard Lisp command
line (Figure 3a), embedded within an arbitrary C program (Figure 3b), from a remote Lisp
command line (Figure 3c), or from a different C-based remote client (Figure 3d).

Figure 3(a) shows the basic command-line mode, in which Lisp expressions typed by
the user are processed by the standard Lisp read-eval-print loop. The program P3 is
invoked by the name P3 rather than Xlisp to reflect the fact that it includes the additional
compiled modules x3 and x4.

Figure 3(b) shows that the same Slisp modules may be embedded within an arbitrary C
program P4, anything from a tiny stub to a huge application like AVS,20 by linking it with
the Slisp library function sl Eval Str. This function accepts a string containing a valid
Lisp expression, reads the string to create an internal Lisp structure, then evaluates it in
the same way as the command line version. The resulting internal list structure is converted
to a string and returned to the calling program. It is also possible to pass more complex data
structures between C and Lisp by directly calling the Xlisp data manipulation functions. As in
the Tk extensions to Tcl, we find the embeddability feature particularly useful when adding
Lisp functionality to a C-based graphical user interface development environment.

As shown in Figures 3(c) and 3(d) any Slisp program P3 may be run as a simple server
by executing it from the command line with a -s switch. This switch suppresses prompting
and delimits error messages and return values by configurable control-characters, thereby
simplifying client processing of server output. Since the server uses the standard Lisp read
function, it processes textual input in the same way as the command line version, ignoring
newlines and comments, and waiting until a complete s-expression is read before evaluating
it. Thus, if the client sends an incomplete s-expression, the server will wait until the client
sends the rest of the expression.

SLISP 37

H1

xcore

eval

x4x3 L1 L2

P3 Lisp-code

Figure 2. Structure of an slisp program. Shaded boxes are C code, non-shaded are Lisp code

A server set up in this way may then be invoked by a process on the same or another host,
for example, via the Internet meta-daemon inetd upon connection to a specified port.

If an Slisp program, P5 in Figure 3(c), includes module xnet, which implements the out-
going telnet-protocol connections, it may act as a client to another Slisp program running in
server mode. xnet implements a Lisp function net-eval which simplifies Lisp-level remote
procedure calls by transparently converting the given Lisp expression to text form (taking
advantage of the standard Lisp internal/external representation isomorphism), sending it to
the (possibly remote) server, and converting the text result back to internal form using the
standard Lisp reader. Since any Slisp process that includes xnet may play both client and
server roles, considerable flexibility is afforded in the construction of distributed programs.

The xnet module accesses a library of C functions that establish telnet-protocol connections
using Berkeley sockets. The primary function in this library is sn Eval Str, which has the
same syntax as sl Eval Str in the embedded function library (Figure 3b). An arbitrary
remote C client, P6 in Figure 3(d), can call sn Eval Str directly to pass a string to a remote
Slisp server for evaluation. Because the embedded and remote client evaluation functions have
the same syntax but slightly different names, a simple global replace, followed by linking with
a different library, suffices to convert from an embedded program (Figure 3b) to a distributed
program (Figure 3d). The different names also allow both functions to be used in the same
program.

EXAMPLE SLISP MODULES AND APPLICATIONS

Slisp has been evolving over the past five years within our Digital Anatomist Program,21,22

the long term goal of which is to develop methods for representing and managing structural
biology information within a distributed client-server framework.

Table I shows the Slisp modules that we have implemented to-date. Most modules consist
of both C- and Lisp-coded functions. The C-coded functions are included in one of three
basic Slisp compiled applications, Sl, Siserver and Skandha4, which are then augmented by
interpreted Lisp to produce complete task-specific applications.

38 J. F. BRINKLEY AND J. S. PROTHERO

A B

C D

P6

sn_Eval_Str

Lisp
Code

Lisp
Code

Lisp
Code

Lisp
Code

Lisp
Code

P5

xcore x5 xnet

eval

sn_Eval_Str

P4

xcore x3 x4

eval

sl_Eval_Str

P3

xcore x3 x4

eval

P3

xcore x3 x4

eval

P3

xcore x3 x4

eval

Figure 3. Slisp modes. Shaded boxes are C code, non-shaded are Lisp code. (a) Command-line, in which the user
types Lisp expressions that are evaluated by the Lisp interpreter, (b) embedded within an arbitrary C program P4,

(c) as a network server P3 for an Slisp client P5, and (d) as a network server P3 for an arbitrary C client P6

The bottom rows of Table I show the total number of lines of C and Lisp code for each
application as the sum of the lines for each included module (as measured by wc -l). The
number of lines of C is broken into the total lines of C, and the lines of C exclusive of xcore,
since xcore contains the original Xlisp functionality written by David Betz.

Table II shows the size of the executables in kilobytes (by running the ls -l command)
for the three compiled Slisp applications, compared with executables for three other rapid
prototyping languages that we have installed in our lab.

SLISP 39

Table I. Slisp modules

Modulesa Lines of Code Compiled Apps
C Lisp Sl SiSb Sk4b

xcore Core Xlisp functions 14,047 x x x
xetc Miscellaneous 450 x x x
xnet Network access 267 x

xsybase Sybase access 544 758 x

xhsy Hershey fonts 722 x
xg C-based Xlisp objects 1608 x
xg.3d Basic 3-D graphical objects 37,327 80 x
xg.3d.fileio File input/output 6370 x
xg.3d.gui 3-D graphical user interface 8976 1173 x
xg.3d.image 2-D image processing 5158 167 x
xg.3d.model 3-D models 562 x
xpvd Video disk driver 355 x
xbtp Bitpad driver 3915 x
xavs Communication with AVS 637 x
xgplotlib Machine specific graphics 18,817 x

xsk3 3-D surface display 17,780 7884 x
xmorpho Image segmentationc 2853 x
xscanner Image segmentationd 6606 11,668 x
xmri MR volume visualization 6286 5690 x
xbib Biliographic retrieval 2274 x
xkb Semantic network access 379 x
xeps Music sampler database 602 x

Total lines of Lisp 0 4013 29,515
C excluding xcore 717 994 115,836
C including xcore 14,764 15,041 129,883

aTop group are common modules, second is xsybase module for Siserver, third are modules for Skandha4, last
group are task-specific modules.
bSiS = Siserver, Sk4 = Skandha4.
cManual.
dSemi-automatic, model-based.

Sl

Sl is a minimal Slisp that includes the core Xlisp functionality in the xcore module, a few
miscellaneous Xlisp primitives in xetc and the client capabilities in xnet. Sl has been compiled
and tested under NeXTStep, Silicon Graphics Irix, and HP U/X. It should run on most Unix
platforms because Xlisp has been widely used for years, and in fact is included as part of the
standard X-Window distribution.

Sl by itself contains no Lisp code, and almost all of the C code is that contained in the
original Xlisp distribution. The executable size of 456K is not much larger than the minimal
Tcl distribution, smaller than Perl version 5, and much smaller than Common Lisp.

40 J. F. BRINKLEY AND J. S. PROTHERO

Table II. Executable file sizes

Program Executable (K)
Sl 456
Siserver 664
Skandha4 3603
Tcl 7.5 (tclsh) 328
Perl 5 923
Allegro Commonlisp 4606

Siserver

Siserver includes the xsybase module in addition to xcore and xetc, thereby providing access
to the commercially-available Sybase relational database. Since xsybase requires the Sybase
client library, which is currently only available to us on NeXT,siserver only runs on NeXT. The
xsybase module includes 544 lines of C to implement the primitive Sybase access functions,
and 758 lines of Lisp to implement a Lisp-level object-oriented layer over the database.

The following modules, shown in the lower rows of Table I, are dynamically loaded into
the compiled Siserver executable in order to customize Siserver for specific tasks:

(a) The xbib module provides additional Lisp code to implement a personal bibliographic
management system that is stored in Sybase. The database may be accessed via Lisp-level
command line functions, by a NeXTStep graphical interface, or by a Web-based interface.

(b) The xkb Lisp module calls xsybase C-coded functions to access a semantic network of
anatomic terminology and symbolic relationships (part-of, is-a, etc). Lisp functions,
such as (kb-get-children) and (kb-get-ancestors), traverse the semantic net-
work and perform simple inferences. Siserver, augmented by the xkb lisp functions, is
provided as a server process under inetd, and is accessed by a Macintosh program called
the Digital Anatomist Interactive Atlas, an on-line atlas of anatomy.22 More recently, we
have begun accessing the xkb functions via a Web-based version of the interactive atlas.23

(c) The xeps Lisp module, as an example of an application done just for fun, provides a
different set of Lisp functions that call xsybase to access a sound sample database for
a music synthesizer called the Ensoniq EPS. As in xbib, this module is embedded in a
NeXTStep front end via the sl Eval Str library function. At some point, a separate
module xmidi could be included to control the synthesizer from the Lisp level, and to link
that in turn to interfaces such as NeXTStep, X-Windows or Windows, or to substitute a
different database by re-writing the functions in the xsybase module.

The bottom of Table I shows that the total number of lines of C added by the custom modules
in Siserver is 994, whereas the number of lines of dynamically-loadable Lisp is 4013. Thus,
for Siserver most of the additional code is written in Lisp, with only the minimal C needed to
access the database. The expressive power of Lisp permits complex object-oriented programs
to be developed without the need for ad hoc extensions to the language, yet, like Tcl or Perl,
the small size and accessibility of the Xlisp functions permits the application to be embedded
in a graphical user interface.

SLISP 41

Skandha4

The third compiled application, Skandha4, is an example of large system development that
would be difficult if not impossible to do in a small scripting language such as Tcl or Perl. As
shown in Tables I and II, the Skandha4 executable size of 3.6 M approaches the executable
size of Allegro Commonlisp (4.6 M), and the number of added lines of C (115,836) is much
greater than the number of added lines of Lisp (29,515). Thus, for Skandha4, Lisp is used
more as a scripting language than as the major development language.

The purpose of Skandha4 is to provide a customizable toolkit of efficient functions for mod-
elling, display and animation of biological structures. The structures are often represented by
several hundred thousand polygons, which must be rendered efficiently to achieve reasonable
display rates. Skandha4 meets this efficiency requirement with a set of fundamental C-based
objects and rendering methods, defined in the xg and xg.3d modules shown in Table I, that can
store and process large amounts of floating point and integer data. These objects and methods
are integrated into standard Xlisp data structures, and are thereby treated as first class Lisp
objects that are automatically managed by the Xlisp garbage collector.

The C-based objects are dynamically combined at the Lisp level to create structural models
that can be manipulated to generate 3D animated displays. The fundamental objects can also be
used as the basis for other graphics or image processing tasks. Given these C-based primitives,
a relatively small amount of dynamically-loaded Lisp code can customize Skandha4 to meet
a variety of application-specific needs.

The lower rows of Table I show, in addition to the Siserver modules previously described,
the Slisp modules that were designed to customize Skandha4 in various ways:

(a) Xsk3 implements Lisp-based hierarchical surface modelling and display functions on top
of the basic Skandha4 datatypes, and is the basis for the graphics production environment
used by the anatomists in our group. The module is called xsk3 because it emulates the
look and feel of our earlier program Skandha3, which was written entirely in C.19

(b) Xmorpho retrieves and displays 2D images of biological sections, and supports hand-tracing
of anatomical structures from on-screen images in order to produce 3D reconstructions.

(c) Xscanner24 is a re-implementation of an earlier program called Scanner, developed in
Objective C on the NeXT computer,25 that uses anatomic shape knowledge to semi-
automatically segment (find) structures in medical images.

(d) Xmri adds 3D voxel manipulation and visualization to Skandha4. In this case foundation
objects defined in xg and xg.3d are augmented to process and render 3D volume data
as obtained from magnetic resonance or other medical imaging modalities. Xmri is one
component of a larger project for human brain mapping,26 and as such it employs the xavs
module to communicate with the commercial visualization package AVS for pixel and
voxel processing operations that we did not want to re-invent. Skandha4 has also been
embedded into a C-based AVS module by means of the sl Eval Str function.

Skandha4 has been compiled for Silicon Graphics machines and for the IBM RS6000. Low
level graphics primitives are implemented in the SGI GL language, and are confined to the
xgplotlib module. Therefore, porting to machines based on other graphics standards should
be straightforward.

42 J. F. BRINKLEY AND J. S. PROTHERO

SLISP EXPERIENCE

Slisp has been in development in our lab since 1990, before Tcl and Perl attained their
current popularity. Given the widespread use of these languages, the availability of large
Common Lisp systems and the C++ language, and the impending stabilization of Java27 for
client-side computing on the World Wide Web, it is important to re-assess whether we or
anyone else should continue development in Slisp, or whether we should move to one of these
other languages. Our current conclusion is that we will continue to develop in Slisp where
appropriate, but will also continue to develop in other languages. This conclusion is based
on our experience with Slisp over the past five years, as well as our experience with other
languages such as C, Perl and Tcl.

Historical rationale for Slisp

Slisp evolved from our collective experience with the slow development cycles of C, par-
ticularly with previous versions of the Skandha program for 3D reconstruction and display of
anatomic objects.19 Experience with the earlier programs convinced us that requests for new
functionality were the norm rather than the exception, at least in a research environment. Since
the compiled programs were fairly large, addition of the new functionality often required long
compile cycles to develop and debug, and as a result, many requested features were never
implemented.

We therefore decided to incorporate a scripting language in the next version of Skandha.
However, because of the excessive storage and processing requirements of image and graphics
data, we decided that much of the code would remain in C, and that the scripting language
would serve primarily as a glue to tie together the C-based functions. We decided not to use
Common Lisp because previous experience with Lisp suggested that it is very difficult to exert
precise low-level control over code and data structures, and to efficiently interface them to
C-coded graphics libraries.28

The choice of a rapid prototyping language was dictated by the desire to use a complete
language that could be extended in a well-defined manner. Although Perl and Tcl were
available, they were not as popular as they are now, so the choice was not influenced by the
large number of user-contributed programs that are currently available for these languages.

Xlisp was chosen as the basic language because of its small size, completeness, extensibility
in a standard manner, garbage collector, and the availability of the source code. Garbage
collection by itself was and is one of the main reasons for choosing Lisp over languages like
Perl or Tcl. Xlisp itself, however, was not easily modifiable to include new C functions, which
is why we developed the Slisp toolkit.

Development environment

Our software development group currently includes nine people who program at least some
of the time, five of whom have programmed at least some in Slisp, and three of whom
(including the authors of this paper) have programmed extensively in Slisp. Other languages
in use in our group include C, C++, Perl, Allegro Common Lisp, and the visual programming
language of AVS. A few of the programmers in the group have extensive experience with
Lisp, but most have a C background.

The diverse backgrounds and opinions of our developers have led to discussions about the
relative merits of various languages, including Slisp. Rather than impose a single development

SLISP 43

language, we allow each person to choose the language they think is most suited to the task, but
we require the individual applications to communicate via a standard application programmer’s
interface (API), which we have chosen to be Lisp because of the desire to use a complete
language for communication as well as scripting.

This diverse development environment has allowed us to compare different approaches
along several dimensions that are presented in the next sections.

Software development times

Most of the earlier development in our group was done in C. For example, a NeXTStep image
database system accessed Sybase directly through the Sybase client library,29 and required
over six man-months to build, as compared to about two man-months for the Slisp-based
bibliographic retrieval system, even though the functionality is similar. Similarly, once the
basic Skandha4 C functions were available, the Skandha3 emulator was programmed in much
less time than it took to program the C version, as was the xscanner image segmentation
module.

In general we have found that, after an initial learning curve, Slisp Lisp-level programming
is several times faster than C programming for mid-size programs, where a relatively small
number of C primitives can be combined in many ways at the Lisp level. If a large amount of
C must be written, then it is faster to program in straight C, since there is overhead involved
in integrating C with the Xlisp data structures.

For graphics and imaging in particular we have found that relatively few fundamental
C-based data structures and methods are enough to provide a powerful set of tools for rapid
prototyping of efficient graphics applications. Although both Perl and Tcl can also be extended,
the use of strings as the fundamental data types makes it very difficult to generate these kinds
of efficient graphics primitives.

Small versus large systems

We use C, Perl and Slisp for the rapid development of small programs. We increasingly use
Perl for Web-accessible executable scripts, and for system administration tasks. We also use
Slisp for many small programs, particularly hybrid programs which call Siserver functions to
access Sybase. We are just beginning to look at Tcl/Tk and WAFE30 for rapid prototyping of
X interfaces.

We use C, Common Lisp and Slisp for the development of large programs. Allegro Common
Lisp and C are used to modify programs that are already written in those languages, whereas
Slisp is used to modify and extend the Skandha4 program for graphics and imaging. We
generally no longer use straight C for large systems because of the long compile cycles, and
because we can achieve comparable results in Slisp.

The Siserver program is near the small end of the size spectrum, and Skandha4 is nearer
the large end. Thus, we have found that Slisp can be used at both ends of the spectrum, even
though there are alternative but different languages available at each end.

Efficiency

An important advantage of a hybrid language like Slisp is that new ideas may be rapidly
prototyped in the interpreted language, then speed-critical functions may be re-coded in C for
efficiency. In our experience with this kind of environment, we have generally been able to

44 J. F. BRINKLEY AND J. S. PROTHERO

determine ahead of time what will work in Lisp and what needs to be coded in C. Thus, we
generally have not recoded much in C, even though we could expect some speedup if we did
so.

One example where re-coding made a dramatic difference in efficiency is the xscanner
module. Test runs identified two hotspots in this module: one, a function sampling a 2D image
along an arbitrary line segment; and the other, evaluating the gradient on the resulting 1D data.
Recoding these two Lisp functions in C dropped evaluation times on an 80 contour dataset
from 116 minutes to 25 minutes, a 4.6-fold speedup.

Client-server operations

We currently use Slisp in several client-server configurations. Siserver is run on one Tcp
port with the xbib Lisp code, and on another port with the xkb Lisp code. In both cases the
program is started anew by inetd each time a new connection is made on the specified port,
which means that all the Lisp functions must be loaded. For xbib this load time is significant
enough that the response time is too slow for use as a back end for a Web-based bibliographic
management system, since a new connection is made for each request. For xkb, which loads
only a few Lisp functions, the response time is fast enough that we currently use it for browsing
anatomic terminology and definitions in our Web-based anatomy atlas.23

The speed limitations could be greatly reduced by modifying the main Xlisp routine so that
an Slisp program could run as a server independently of inetd. In this case the Lisp code would
be loaded by the parent process, after which child processes would be forked in response to
client connections. Another approach we have tried is to run Skandha4 in server mode via a
persistent named pipe on the same machine as a Web browser, and to control Skandha4 from
a Web interface. However, this approach requires that the server be on the same machine as
the client.

The server mechanism currently does not include more advanced features such as multi-
threading for efficiency, and distinctions between actual communication (i.e., data) and meta-
data (e.g. authentication). These limitations mean that the servers are primarily useful for
communication among a small number of secure applications, or for access from a Web
server, which is the envisioned mode of operation in our group. However, more advanced
network features could be added if further experience suggests the need.

Re-usability

One of the advantages of a machine-independent scripting language such as Lisp, Tcl or Perl
is that it promotes re-usability by providing an intermediate layer between low level machine-
specific code, and higher-level user interface code. In the case of Slisp, if a significant amount
of code is written at the intermediate Lisp level and a smaller amount is written at both the
higher and lower levels, then previously-written code can be re-used. This re-usability is one
of the main attractions of Tcl and Perl, since user-contributed extensions can be incorporated
into new programs.

Slisp also promotes the development of re-usable code, as illustrated by the bibliographic
management program embodied in the xbib module. At the low level, the foundation of xbib
is a small set of C-coded Lisp functions that access a relational database. These functions
are built upon by Lisp-level code that represents the relational database as a set of objects.
Because of this layered approach it would not be difficult to replace the low-level C-functions
with a different module that accesses a different relational database, or even an object-oriented

SLISP 45

database, while preserving the same higher-level methods.
At the high level the xbib objects and methods present an interface to the programmer or

user that is more application-specific than low level SQL statements, and is therefore more
stable as the database is changed. At the same time, the embedding and remote execution
facilities of Slisp allow this API to be accessed from multiple types of user interface: the
standard Lisp command line (Figure 3a), embedded within a C program (Figure 3b), from a
remote Lisp command line (Figure 3c), or from a different C-based remote client (Figure 3d).

Thus, one way to use the Slisp toolkit is to develop an intermediate Lisp layer that provides
at the high end a relatively domain-specific API, defined in a complete language (Lisp), and
which accesses a set of interchangeable C-coded modules at the low end. If the application is
designed correctly, both the low-level modules and the interfaces which call the API can be
interchanged without requiring major re-writes of the Lisp level code.

Ease of learning

The biggest barrier to using Slisp in our group is the intimidation that C programmers seem
to experience when encountering Lisp code for the first time. Once this barrier is overcome,
Slisp Lisp-level programming is much like Common Lisp programming, except there are
fewer functions to learn.

Slisp programming at the C level is more difficult than straight C programming for several
reasons: (1) it is necessary to understand a fair number of the Xlisp C routines in order to
effectively integrate new functions into Xlisp; (2) it is necessary to protect pointers so they
are not unexpectedly destroyed by the Xlisp garbage collector; and (3) the Xlisp C functions
are only documented in the source code. However, simple functions can be written without
too much difficulty once a few examples are available.

In practice, we have found that a useful division of labor is for one knowledgeable program-
mer to develop C-level Lisp code, while the other programmers program in Lisp to quickly try
out new ideas. When C functions are needed they are often coded by the single programmer
in response to requests from the Lisp level programmers. This division of labor seems to have
occurred in the Tcl and Perl communities as well, since only a few people are developing the
language and adding C-based extensions, whereas many more people are using the languages
at the interpreted level.

Integration with other languages

Slisp is currently only used within our own group. Therefore, one of the main reasons we
are using Perl and possibly Tcl is the availability of a large amount of user-contributed code.
There is also a large amount of code available in C and Common Lisp. Thus, even though Lisp
might be a better language for many tasks, it is usually not worth re-implementing extensions
that have already been developed elsewhere, especially when modern hardware and networks
permit heterogeneous applications to communicate.

For programs written in C, or a language such as Perl or Tcl that can be embedded in
C, Slisp provides a convenient wrapper, since these languages can be embedded in Slisp. In
cases where another language must be at the top level (e.g. Common Lisp or Tk), Slisp can
be embedded in these languages via the C library functions. Slisp can also be run as a client
or server, communicating via Lisp with applications that only need to parse Lisp commands.
Thus, Slisp should work well in heterogeneous environments, and could provide a common
API for communication among diverse applications.

46 J. F. BRINKLEY AND J. S. PROTHERO

Slisp Limitations

As with any other environment Slisp has limitations. Slisp Lisp-level code cannot be com-
piled, so speedups can only be achieved by re-coding in C or by porting to Common Lisp.
However, the ability to port to Common Lisp compiled code is an important advantage that is
not available with ad hoc scripting languages.

C-level code also cannot yet be dynamically loaded in Slisp. The version of Xlisp on which
Slisp is based (version 2.1) is only a subset of Common Lisp, so many of the standard Common
Lisp functions are not available, although they may be coded in C or DEFUN’d in Lisp when
necessary. The current version of Slisp is not compatible with later versions of Xlisp developed
by Tom Almy,18 Luke Tierney16 and Neils Mayer,17 although these versions could be made
compatible since they all stem from the same root, Xlisp. A more serious limitation is that
the Xlisp object system is not compatible with the Common Lisp Object System (CLOS), so
CLOS code cannot be ported directly to Slisp. On the other hand the Xlisp object system is
very straightforward to use, and appears to be semantically equivalent to Objective C.

All these limitations could be overcome if it seemed worthwhile. Since we are currently
using Slisp only within our own research group, and since Slisp is adequate for our purposes,
we have not needed to expend the additional effort towards improving the program. However,
if a sufficiently large user community were to develop then it would be worth addressing some
of these issues. A major advantage of Lisp as a language is that there are well-defined paths
for these extensions and optimizations, paths that are not defined at all for ad hoc languages.

CONCLUSIONS

Our experience with Slisp as well as other languages has shown that, if only because of
personal preference, no one software or hardware architecture is adequate for all tasks. In the
light of this fact, and assuming that the learning barrier has been overcome, the following are
some conclusions we have made about the utility of different languages for various task sizes:

(a) Small tasks can be done in whatever language is most convenient, whether that be C,
Perl, Tcl, Lisp or Java. Perl is particularly convenient for Unix system administration,
Tcl/Tk should be useful for quick X-based programs, and Java will most likely become the
language of choice for Web client-side computing.27

(b) Large experimental AI-like programs are best done in one of the Common Lisps because of
the generality of the language and because of the large amount of source code contributed
by the Lisp community.

(c) Existing code should be used as is whenever possible, as long as it can be made to
communicate with other programs. Slisp can be useful as a wrapper in these cases.

(d) For new applications, Slisp seems to fill a niche somewhere between very small tasks and
very large tasks, that is for medium size programs in which the same customizability and
embeddability that is available for small scripting languages can be extended to larger
programs.

Our evolving lab policy takes these considerations into account, respecting strong ‘religious’
attachments of individuals to particular languages when present, and otherwise encouraging
use of each language in its area of strength, with (whenever practical) Lisp as the lingua franca
connecting the components.

We believe that this policy is a practical one given that contemporary software development,
both at our lab and in the world at large, is becoming steadily less a matter of stand-alone

SLISP 47

monolithic application solutions than of heterogeneous software resources, developed on a
variety of platforms, in a variety of languages, interacting via the network to provide end-user
solutions. In this context, a standard API is essential if we are to have smoothly meshing tools.
We believe Lisp, based on its unexcelled history of stability, extensibility, generality and
smooth evolution over time, is uniquely suited to this critical role, and that Slisp is an effective
and efficient framework for the construction of such cooperative software components.

ACKNOWLEDGEMENTS

This work was funded by National Library of Medicine Grant LM04925, National Library
of Medicine Contract LM13506, National Cancer Institute Grant CA59070, and Human
Brain Project Grant DC/LM02310, co-funded by the National Library of Medicine and the
National Institute on Deafness and Other Communication Disorders. We would like to thank
the following individuals for their help in various aspects of this work: Scott Bradley for the
Web interface to the bib program, Kraig Eno for the xkb module; Kevin Hinshaw for extensive
comments on the manuscript and for the xscanner module with its speedup experiments;
anatomists David Conley, John Sundsten and Peter Ratiu for actually using and providing
valuable feedback about the Slisp tools we produce; and Cornelius Rosse, Greg Heil, Steve
Tanimoto, Bharath Modayur and Rex Jakobovits for discussions and feedback regarding this
manuscript. We would also like to thank David Betz for developing the Xlisp program and for
making it widely available, and the reviewers of the original version of this manuscript, who
provided very helpful suggestions for its improvement.

APPENDIX: AVAILABILITY

The basic Slisp framework is freely available for both commercial and non-commercial use,
with no restrictions other than those described in the general copyright notice associated
with the Slisp distribution. However, this general copyright specifically does not apply to
individual modules developed within the Slisp framework, which may be copyrighted in a
manner determined by the authors. We hope that this approach will result in many freely
available modules (perhaps protected by the GNU Public Library license), but other modules
may be protected for commercial use, and distributed only as executable libraries. How well
this will work is not yet clear, and we have not yet implemented a mechanism for distributing
some modules only as libraries, though it should be relatively straightforward to do so.

The current version of the Slisp framework is available from ftp://ftp.biostr.washington.edu
in the directory pub/slisp/slX.tar.Z, where X is the current version number. This file contains
the Slisp framework, the basic Slisp program Sl, and documentation that should make it
possible to build additional Slisp programs.

REFERENCES

1. R. Fikes, ‘Ai and software engineering-managing exploratory programming’, AAAI-90 Proceedings. Eighth
National Conference on Artificial Intelligence, Cambridge, MA., July 29-August 3 1990, pp. 1126–1127.
MIT Press.

2. D. K. Layer and C. Richardson, ‘Lisp systems in the 1990s’, Communications of the ACM, 34(9), 48–57
(1991).

48 J. F. BRINKLEY AND J. S. PROTHERO

3. J. Eccles, ‘Porting from commonlisp with flavors to c++’, USENIX Proceedings. C++ Conference, Denver,
CO., October 17–21 1988, pp. 31–40. USENIX Assoc., Berkeley, CA.

4. M. Sakkinen, ‘The darker side of c++ revisited’, Structured Programming, 13(4), 155–177 (1992).
5. L. Wall and R. L. Schwartz, Programming Perl, O’Reilly and Associates, Sebastopol, CA., 1992.
6. J. K. Ousterhout, ‘Tcl: an embeddable command language’, Proceedings of the Winter 1990 USENIX Con-

ference, Washington, DC, January 22–26 1990, pp. 133–146. USENIX.
7. J. K. Ousterhout, ‘An x11 toolkit based on the tcl language’, Proceedings of the Winter 1991 USENIX

Conference, Dallas, TX, January 21–25 1991, pp. 105–115. USENIX.
8. A. R. Watters, ‘The what, why, who, and where of python’. UnixWorld Online: Tutorial Article No. 005,

http://www.wcmh.com/uworld/archives/95/tutorial/005.html, September 1995.
9. R. J. Vetter, C. Spell and C. Ward, ‘Mosaic and the world-wide web’, Computer, 27(10), 49–57 (1994).

10. R. Stallman, ‘Why you should not use tcl’. http://minsky.med.virginia.edu/sdm7g/LangCrit/Tcl/RMS-Why-
you-should-not-use-Tcl, September 1994.

11. R. M. Stallman, GNU Emacs Manual, Free Software Foundation, 675 Massachusetts Ave., Cambridge, MA
02139, 1987.

12. H. Halme and J. Heinanen, ‘Gnu emacs as a dynamically extensible programming environment’, Software –
Practice and Experience, 18(10), 999–1009 (1988).

13. M. B. McGrath, ‘Autocad release 11 and autoshade’, Proceedings National Computer Graphics Association
1991, Chicago, IL, April 22–25 1991, pp. 70–74.

14. University of Minnesota Geometry Center, ‘Geomview’. Available by anonymous ftp from geom.umn.edu,
1994.

15. D. Betz, ‘Xlisp: an object-oriented lisp’. Unpublished reference manual for version 2.1, available from
ftp.biostr.washington.edu and other Xlisp ftp sites, 1989.

16. L. Tierney, LISP-Stat: an object-oriented environment for statistical computing and dynamic graphics, Wiley,
New York, 1990.

17. N. P. Mayer, ‘The winterp widget interpreter: an application prototyping and extension environment for
osf/motif’, Motif ’91, First Annual Motif Users Meeting, 1991. Available via World Wide Web from
http://www.eit.com/software/winterp.html.

18. T. Almy, ‘Xlisp-plus’. Available from ftp.biostr.washington.edu and other Xlisp ftp sites, 1994.
19. J. S. Prothero and J. W. Prothero, ‘A software package in c for interactive 3d reconstruction and display of

anatomical objects from serial section data’, NCGA Proceedings, 1989, pp. 187–192.
20. Advanced Visual Systems, AVS User’s Guide, 300 Fifth Ave.,Waltham, MA 02154, 1994.
21. J. F. Brinkley, J. S. Prothero, J. W. Prothero and C. Rosse, ‘A framework for the design of knowledge-based

systems in structural biology’, Proceedings 15th Annual Symposium on Computer Applications in Medical
Care, Baltimore, MD, 1989, pp. 61–65.

22. J. F. Brinkley, K. Eno, and J. W. Sundsten, ‘Knowledge-based client-server approach to structural information
retrieval: the digital anatomist browser’, Computer Methods and Programs in Biomedicine, 40, 131–145
(1993).

23. S. W. Bradley, C. Rosse, and J. F. Brinkley, ‘Web-based access to an online atlas of anatomy: the digital
anatomist common gateway interface’, 19th Symposium on Computer Applications in Medical Care, New
Orleans, October 30–November 1 1995, pp. 512–516.

24. K. P. Hinshaw, R. B. Altman, and J. F. Brinkley, ‘Shape-based models for interactive segmentation of medical
images’, SPIE Medical Imaging 1995: Image Processing, San Diego, February 26-March 2 1995, pp. 771–780.

25. J. F. Brinkley, ‘A flexible, generic model for anatomic shape: application to interactive two-dimensional
medical image segmentation and matching’, Computers and Biomedical Research, 26, 121–142 (1993).

26. J. F. Brinkley, L. M. Myers, J. S. Prothero, G. H. Heil, K. R. Maravilla, G. A. Ojemann and C. Rosse, ‘A
structural information framework for brain mapping’, in S. H. Koslow and M. F. Huerta (eds), Progress in
Neuroinformatics. Lawrence Erlbaum. In press.

27. B. Carlson, ‘A jolt of java could shake up the computing community’, IEEE Computer, 28(11), 81–82 (1995).
28. J. F. Brinkley, R. B. Altman, B. S. Duncan, B. G. Buchanan and O. Jardetzky, ‘Heuristic refinement method

for the derivation of protein solution structures: validation on cytochrome b562’, J. Chem. Inf. Comput. Sci.,
28(4), 194–210 (1988).

29. J. F. Brinkley, ‘A distributed, object-oriented framework for medical image management and analysis: appli-
cation to evaluation of medical image segmentation techniques’, Proceedings IEEE Workshop on Biomedical
Image Analysis, Seattle, June 24–25 1994, pp. 194–203. IEEE Press.

30. G. Neumann and S. Nusser, ‘Wafe – an x toolit based frontend for applications in various programming
languages’, Proceedings USENIX Winter Conference, January 1993.

	INTRODUCTION
	SLISP ARCHITECTURE AND MODES OF OPERATION
	EXAMPLE SLISP MODULES AND APPLICATIONS
	Sl
	Siserver
	Skandha4

	SLISP EXPERIENCE
	Historical rationale for Slisp
	Development environment
	Software development times
	Small versus large systems
	Efficiency
	Client-server operations
	Re-usability
	Ease of learning
	Integration with other languages
	Slisp Limitations

	CONCLUSIONS
	acknowledgements
	AVAILABILITY
	REFERENCES

