1,336 research outputs found

    The Case for Combining a Large Low-Band Very High Frequency Transmitter With Multiple Receiving Arrays for Geospace Research: A Geospace Radar

    Get PDF
    We argue that combining a high‐power, large‐aperture radar transmitter with several large‐aperture receiving arrays to make a geospace radar—a radar capable of probing near‐Earth space from the upper troposphere through to the solar corona—would transform geospace research. We review the emergence of incoherent scatter radar in the 1960s as an agent that unified early, pioneering research in geospace in a common theoretical, experimental, and instrumental framework, and we suggest that a geospace radar would have a similar effect on future developments in space weather research. We then discuss recent developments in radio‐array technology that could be exploited in the development of a geospace radar with new or substantially improved capabilities compared to the radars in use presently. A number of applications for a geospace radar with the new and improved capabilities are reviewed including studies of meteor echoes, mesospheric and stratospheric turbulence, ionospheric flows, plasmaspheric and ionospheric irregularities, and reflection from the solar corona and coronal mass ejections. We conclude with a summary of technical requirements

    A Network of Portable, Low-Cost, X-Band Radars

    Get PDF
    Radar is a unique tool to get an overview on the weather situation, given its high spatio- temporal resolution. Over 60 years, researchers have been investigating ways for obtaining the best use of radar. As a result we often find assurances on how much radar is a useful tool, and it is! After this initial statement, however, regularly comes a long list on how to increase the accuracy of radar or in what direction to move for improving it. Perhaps we should rather ask: is the resulting data good enough for our application? The answers are often more complicated than desired. At first, some people expect miracles. Then, when their wishes are disappointed, they discard radar as a tool: both attitudes are wrong; radar is a unique tool to obtain an excellent overview on what is happening: when and where it is happening. At short ranges, we may even get good quantitative data. But at longer ranges it may be impossible to obtain the desired precision, e.g. the precision needed to alert people living in small catchments in mountainous terrain. We would have to set the critical limit for an alert so low that this limit would lead to an unacceptable rate of false alarm

    Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    No full text
    International audienceDuring summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC) are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI) techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these previously unreported polar cap E-region Bragg scatter Doppler spectral signatures, observed at Casey in December 1996 during SEC/lacuna conditions may be linked to ionosphere irregularities. These irregularities may possibly be generated by primary plasma waves triggered by current-driven instabilities, that is to say, a hybrid of the "modified two-stream" and "gradient drift" instability mechanisms

    Investigating Spatial and Temporal Structuring of E-Region Coherent Scattering Regions Over Northern Norway

    Get PDF
    Recently, it has been shown that the Spread Spectrum Interferometric Multistatic meteor radar Observing Network radar system located in northern Norway is capable of measuring ionospheric E-region coherent scatter with spatial and temporal resolutions on the order of 1.5 km and 2 s, respectively. Four different events from June and July of 2022 are examined in the present study, where the coherent scatter measurements are used as a tracer for large-scale ionospheric phenomena such as plasma density enhancements and ionospheric electric fields. By applying a two-dimensional Fourier analysis to range-time-intensity data, we perform a multi-scale spatial and temporal investigation to determine the change in range over time of large-scale ionospheric structures (>3 km) which are compared with line-of-sight velocities of the small scale structures (∼5 m) determined from the Doppler shift of the coherent scatter. The spectral characteristics of the large-scale structures are also investigated and logarithmic spectral slopes for scale sizes of 100–10 km were found to be between −3.0 and −1.5. This agrees with much of the previous work on the spatial spectra scaling for ionospheric electric fields. This analysis aids in characterizing the source of the plasma turbulence and provides crucial information about how energy is redistributed from large to small scales in the E-region ionosphere

    Development of a system for remote sensing of ionospheric motions and microstructure - The Kinesonde in France, 1970

    Get PDF
    Kinesonde experiment for development of system for remote sensing of ionospheric motions and microstructur

    The Ionospheric Continuous-wave E-region Bistatic Experimental Auroral Radar (ICEBEAR)

    Get PDF
    The Sun drives many atmospheric processes on Earth through solar electromagnetic radiation, the solar wind, and the solar magnetic field. These solar phenomena interact with a region around the Earth where plasma can be formed, the ionosphere. This region is located 60–1000 km above the surface of the Earth, and is of interest to many scientists and engineers due to the interaction between radio waves and plasma. Variations in the ionospheric plasma density can cause disruptions to GPS signals and radio communications. Attempts have been made to measure the ionospheric plasma properties through the use of rockets, satellites, and remote sensing instrumentation. One of the issues with measuring the ionosphere, specifically the lower altitudes of the ionosphere, is that it is expensive to do in situ. Rockets are required for in situ measurements at altitudes of 90–150 km (the E-region of the ionosphere). Rocket launches are expensive, so more efficient remote methods of measuring the E-region are typically used. This includes radars utilizing radio waves to scatter from the ionospheric plasma. From the scattered signal, plasma properties can be derived to provide insight into the physical processes occurring. The Ionospheric Continuous-wave E-region Bistatic Experimental Auroral Radar (ICEBEAR) was developed to probe the E-region of the ionosphere using this mechanism. Through the use of modern radar hardware and techniques, it was possible to obtain simultaneously high temporal (down to 0.1 s) and spatial (≈ 1.5 km) resolution images of ionospheric plasma density perturbations over a 600 km × 600 km field of view. The radar operates at 49.5 MHz and transmits a continuous-wave, pseudo random noise, phase modulated code to obtain these images. The radar is bistatic, with both transmitter and receiver being located in Saskatchewan, Canada, and operated by the University of Saskatchewan. The radar was designed with future improvements in mind, where each transmitter and receiver antenna are individually controlled/sampled. This Ph.D. dissertation describes the dynamics of the ionosphere, the design and construction of ICEBEAR, and presents some preliminary results, exhibiting the exciting modern capabilities of the system

    Improved SuperDARN radar signal processing: A first principles statistical approach for reliable measurement uncertainties and enhanced data products

    Get PDF
    Ground-based radar systems are the best way to continuously monitor medium-to-large-scale features of the near-Earth space environment on a global scale. The Super Dual Auroral Radar Network (SuperDARN) radars are used to image the high-latitude ionospheric plasma circulation, which is produced by magnetosphere-ionosphere coupling processes generated by the interaction of both the solar and terrestrial magnetic fields. While investigating ways to expand the usable data products of SuperDARN to include electron density inferred using a multiple-frequency technique, it was determined that SuperDARN error estimates were lacking sufficient rigour. The method to calculate SuperDARN parameters was developed approximately 25 years ago when available computing resources were significantly less powerful, which required a number of simplifications to ensure both valid data and reasonable processing time. This resulted in very conservative criteria being applied to ensure valid data, but at the expense of both rigorous error analysis and the elimination of some otherwise valid data. With access to modern computing resources, the SuperDARN data processing methodology can be modernized to provide proper error estimates for the SuperDARN parameters (power, drift velocity, width). This research has resulted in 3 publications, which are presented here as Chapters 5, 6, and 7. The error analysis started with a first principles analysis of the self-clutter generated by the multiple-pulse technique that is used to probe the ionosphere (Chapter 5). Next, the statistical properties of voltage fluctuations as measured by SuperDARN were studied and the variance of these measurements were derived (Chapter 6). Finally, the statistical error analysis was propagated to the standard SuperDARN data products using a new First-Principles Fitting Methodology (Chapter 7). These results can be applied to all previously recorded SuperDARN data and have shown a practical increase in data of >50%. This has significant impact on the SuperDARN and space science communities with respect to, for example, global convection maps and their use in global modelling efforts. These results also enable quantitative experiment design facilitating research into using SuperDARN to provide electron density measurements, with a preliminary investigation using the new SuperDARN fitting methodology presented in Chapter 8

    Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Get PDF
    corecore