1,221 research outputs found

    Plasma engineering of microstructured piezo – Triboelectric hybrid nanogenerators for wide bandwidth vibration energy harvesting

    Get PDF
    We introduce herein the advanced application of low-pressure plasma procedures for the development of piezo and triboelectric mode I hybrid nanogenerators. Thus, plasma assisted deposition and functionalization methods are presented as key enabling technologies for the nanoscale design of ZnO polycrystalline shells, the formation of conducting metallic cores in core@shell nanowires, and for the solventless surface modification of polymeric coatings and matrixes. We show how the perfluorinated chains grafting of polydimethylsiloxane (PDMS) provides a reliable approach to increase the hydrophobicity and surface charges at the same time that keeping the PDMS mechanical properties. In this way, we produce efficient Ag/ZnO convoluted piezoelectric nanogenerators supported on flexible substrates and embedded in PDMS compatible with a contact–separation triboelectric architecture. Factors like crystalline texture, ZnO thickness, nanowires aspect ratio, and surface chemical modification of the PDMS are explored to optimize the power output of the nanogenerators aimed for harvesting from low-frequency vibrations. Just by manual triggering, the hybrid device can charge a capacitor to switch on an array of color LEDs. Outstandingly, this simple three-layer architecture allows for harvesting vibration energy in a wide bandwidth, thus, we show the performance characteristics for frequencies between 1 Hz and 50 Hz and demonstrate the successful activation of the system up to ca. 800 Hz.EMERGIA Junta de Andalucía programUniversity of Seville the VI PPIT-USICMS and the CITIUS from the University of Sevill

    Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures

    Get PDF
    This AIP article is published under license by AIP: https://publishing.aip.org/wp-content/uploads/2019/10/AIPP-Author-License.pdfPublishing.https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlAltres ajuts: ICN2 is supported by the CERCA Programme/Generalitat de Catalunya.The widespread use of nanostructures and nanomaterials has opened up a whole new realm of challenges in thermal management, but also leads to possibilities for energy conversion, storage, and generation, in addition to numerous other technological applications. At the microscale and below, standard thermal measurement techniques reach their limits, and several novel methods have been developed to overcome these limitations. Among the most recent, contactless photothermal methods have been widely used and have proved their advantages in terms of versatility, temporal and spatial resolution, and even sensitivity in some situations. Among them, thermoreflectance and Raman thermometry have been used to measure the thermal properties from bulk materials to thin films, multilayers, suspended structures, and nanomaterials. This Tutorial presents the principles of these two techniques and some of their most common implementations. It expands to more advanced systems for spatial mapping and for probing of non-Fourier thermal transport. Finally, this paper concludes with discussing the limitations and perspectives of these techniques and future directions in nanoscale thermometry

    Advanced Nanomaterials for Electrochemical Energy Conversion and Storage

    Get PDF
    This book focuses on advanced nanomaterials for energy conversion and storage, covering their design, synthesis, properties and applications in various fields. Developing advanced nanomaterials for high-performance and low-cost energy conversion and storage devices and technologies is of great significance in order to solve the issues of energy crisis and environmental pollution. In this book, various advanced nanomaterials for batteries, capacitors, electrocatalysis, nanogenerators, and magnetic nanomaterials are presente

    On-chip electrochemical capacitors and piezoelectric energy harvesters for self-powering sensor nodes

    Get PDF
    On-chip sensing and communications in the Internet of things platform have benefited from the miniaturization of faster and low power complementary-metal-oxide semiconductor (CMOS) microelectronics. Micro-electromechanical systems technology (MEMS) and development of novel nanomaterials have further improved the performance of sensors and transducers while also demonstrating reduction in size and power consumption. Integration of such technologies can enable miniaturized nodes to be deployed to construct wireless sensor networks for autonomous data acquisition. Their longevity, however, is determined by the lifetime of the power supply. Traditional batteries cannot fully fulfill the demands of sensor nodes that require long operational duration. Thus, we require solutions that produce their own electricity from the surroundings and store them for future utility. Furthermore, manufacturing of such a power supply must be compatible with CMOS and MEMS technology. In this thesis, we will describe on-chip electrochemical capacitors and piezoelectric energy harvesters as components of such a self-powered sensor node. Our piezoelectric microcantilevers confirm the feasibility of fabricating micro electro-mechanical-systems (MEMS) size two-degree-of-freedom systems which can address the major issue of small bandwidth of piezoelectric micro-energy harvesters. These devices use a cut-out trapezoidal cantilever beam, limited by its footprint area i.e. a 1 cm2^2 silicon die, to enhance the stress on the cantilever\u27s free end while reducing the gap remarkably between its first two eigenfrequencies in the 400 - 500 Hz and in the 1 - 2 kHz range. The energy from the M-shaped harvesters could be stored in rGO based on-chip electrochemical capacitors. The electrochemical capacitors are manufactured through CMOS compatible, reproducible, and reliable micromachining processes such as chemical vapor deposition of carbon nanofibers (CNF) and spin coating of graphene oxide based (GO) solutions. The impact of electrode geometry and electrode thickness is studied for CNF based electrodes. Furthermore, we have also demonstrated an improvement in their electrochemical performance and yield of spin coated electrochemical capacitors through surface roughening from iron and chromium nanoparticles. The CVD grown CNF and spin coated rGO based devices are evaluated for their respective trade-offs. Finally, to improve the energy density and demonstrate the versatility of the spin coating process, we manufactured electrochemical capacitors from various GO based composites with functional groups heptadecan-9-amine and octadecanamine. The materials were used as a stack to demonstrate high energy density for spin coated electrochemical capacitors. We have also examined the possibility of integrating these devices into a power management unit to fully realize a self-powering on-chip power supply through survey of package fabrication, choice of electrolyte, and device assembly

    The Next Generation Space Telescope

    Get PDF
    In Space Science in the Twenty-First Century, the Space Science Board of the National Research Council identified high-resolution-interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific potential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the technologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabilities likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the programmatic approach needed to bring NGST into being. The essential points of this panel discussion have been incorporated into a series of recommendations that represent the conclusions of the workshop. Speakers were asked to provide manuscripts of their presentation. Those received were reproduced here with only minor editorial changes. The few missing papers have been replaced by the presentation viewgraphs. The discussion that follows each speaker's paper was derived from the question and answer sheets, or if unavailable, from the tapes of the meeting. In the latter case, the editors have made every effort to faithfully represent the discussion

    DESIGN OF GRAPHENE-BASED SENSORS FOR NUCLEIC ACIDS DETECTION AND ANALYSIS

    Get PDF
    DNA (Deoxyribonucleic Acid) is the blueprint of life as it encodes all genetic information. In genetic disorder such as gene fusion, Copy Number Variation (CNV), and single nucleotide polymorphism, Nucleic acids such as DNA bases detection and analysis is used as the gold standard for successful diagnosis. Researchers have been conducting rigorous studies to achieve genome sequences at low cost while maintaining high accuracy and high throughput. A quick, accurate, and low-cost DNA detection approach would revolutionize medicine. Genome sequence helps to enhance people’s perception of inheritance, disease, and individuality. This research aims to improve DNA bases detection accuracy, and efficiency, and reduce the production cost, thus novel based sensors were developed to detect and identify the DNA bases. This work aims at first to develop specialized field effect transistors which will acquire real-time detection for different concentrations of DNA. The sensor was developed with a channel of graphite oxide between gold electrodes on a substrate of a silicon wafer using Quantumwise Atomistix Toolkit (ATK) and its graphical user interfaces Virtual Nanolab (VNL). The channel was decorated with trimetallic nanoclusters that include gold, silver, and platinum which have high affinity to DNA. The developed sensor was investigated by both simulation and experiment. The second aim of this research was to analyze the tissue transcriptome through DNA bases detection, thus novel graphene-based sensors with a nanopore were designed and developed to detect the different DNA nucleobases (Adenine (A), Cytosine (C), Guanine (G), Thymine (T)). This research focuses on the simulation of charge transport properties for the developed sensors. This work includes experimental fabrication and software simulation studies of the electronic properties and structural characteristics of the developed sensors. Novel sensors were modeled using Quantumwise Atomistix Toolkit (ATK) and its graphical user Interface Virtual Nanolab (VNL) where several electronic properties were studied including transmission spectrum and electrical current of DNA bases inside the sensor’s nanopore. The simulation study resulted in a unique current for each of the DNA bases within the nanopore. This work suggests that the developed sensors could achieve DNA sequencing with high accuracy. The practical implementation of this work represents the ability to predict and cure diseases from the genetic makeup perspective

    Nanoscale Spectroscopy in Energy and Catalytic Applications

    Get PDF
    Emerging societal challenges such as the need for more sustainable energy and catalysis are requiring more sensitive and versatile measurements at the nanoscale. This is the case in the design and optimization of new materials for energy harvesting (solar cells) and energy storage devices (batteries and capacitors), or for the development of new catalysts for carbon sequestration or other reactions of interest. Hence, the ability to advance spectroscopy with nanoscale spatial resolution and high sensitivity holds great promises to meet the demands of deeper fundamental understanding to boost the development and deployment of nano-based devices for real applications. In this dissertation, the impact of nanoscale characterization on energy-related and catalytic materials is considered. Firstly an introduction of the current energy and environmental challenges and our motivations are presented. We discuss how revealing nanoscale properties of solar cell active layers and supercapacitor electrodes can greatly benefit the performance of devices, and ponder on the advantages over conventional characterization techniques. Next, we focus on two dimensional materials as promising alternative catalysts to replace conventional noble metals for carbon sequestration and its conversion to added-value products. Defect-laden hexagonal boron nitride (h-BN) has been identified as a good catalyst candidate for carbon sequestration. Theoretically, defects exhibit favorable properties as reaction sites. However, the detailed mechanism pathways cannot be readily probed experimentally, due to the lack of tools with sufficient sensitivity and time resolution. A comprehensive study of the design and material processes used to introduce defects in h-BN in view of improving the catalytic properties is presented. The processing-structure-property relationships are investigated using a combination of conventional characterization and advanced nanoscale techniques. In addition to identifying favorable conditions for defect creation, we also report on the first signs of local reactions at defect sites obtained with nanoscale spectroscopy. Next, we explore avenues to improve the sensitivity and time-resolution of nanoscale measurements using light-assisted AFM-based nanomechanical spectroscopy. For each configuration, we evaluate the new system by comparing its performance to the commercial capabilities. Lastly, we provide a perspective on the opportunities for state-of-the-art characterization to impact the fields of catalysis and sustainable energy, as well as the urge for highly sensitive functional capabilities and time-resolution for nanoscale studies

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin
    corecore