243 research outputs found

    FEM Analysis of Squirrel Cage Induction Motor Fed with Raised Sine Wave Supply

    Get PDF
    AC motors are used frequently for many industrial applications such as material handling, traction, electric vehicles etc. A novel non-sinusoidal modulation technique employing Raised Sine Wave (RSW) for the PWM inverter is proposed in this paper. Squared Sine Wave has a distinct advantage of reduced rate of change at zero crossing of each half cycle, and eliminates the need for dead band. An Finite Element Analysis (FEM) is carried out to study its suitability for AC Induction Motor. The results show that the operation has a constant startup torque for all load conditions, thus providing a smooth start from zero speed to full rated speed. This feature makes it most suitable for applications requiring frequent startup such as traction. The operation of the conventional Variable Frequency Drives using Conventional Sine Wave (CSW) is compared with the results obtained with RSW supply.DOI:http://dx.doi.org/10.11591/ijece.v3i2.170

    Condition Monitoring of Helical Gear Transmissions Based on Vibration Modelling and Signal Processing

    Get PDF
    Condition monitoring (CM) of gear transmission has attracted extensive research in recent years. In particular, the detection and diagnosis of its faults in their early stages to minimise cost by maximising time available for planned maintenance and giving greater opportunity for avoiding a system breakdown. However, the diagnostic results obtained from monitored signals are often unsatisfactory because mainstream technologies using vibration response do not sufficiently account for the effect of friction and lubrication. To develop a more advanced and accurate diagnosis, this research has focused on investigating the nonlinearities of vibration generation and transmission with the viscoelastic properties of lubrication, to provide an in-depth understanding of vibration generating mechanisms and hence develop more effective signal processing methods for early detection and accurate diagnosis of gear incipient faults. A comprehensive dynamic model has been developed to study the dynamic responses of a multistage helical gear transmission system. It includes not only time-varying stiffness but also tooth friction forces based on an elastohydrodynamic lubrication (EHL) model. In addition, the progression of a light wear process is modelled by reducing stiffness function profile, in which the 2nd and 3rd harmonics of the meshing frequency (and their sidebands) show significant alteration that support fault diagnostic at early stages. Numerical and experimental results show that the friction and progressive wear induced vibration excitations will change slightly the amplitudes of the spectral peaks at both the mesh frequency and its sideband components at different orders, which provides theoretical supports for extracting reliable diagnostic signatures. As such changes in vibrations are extremely small and submerged in noise, it is clear that effective techniques for enhancing the signal-to-noise ratio, such as time synchronous averaging (TSA) and modulation signal bispectrum (MSB) are required to reveal such changes. MSB is preferred as it allows small amplitude sidebands to be accurately characterised in a nonlinear way without information loss and does not impose any addition demands regarding angular displacement measurement as does TSA. With the successful diagnosis of slight wear in helical gears, the research progressed to validate the capability of MSB based methods to diagnose four common gear faults relating to gear tribological conditions; lubrication shortfall, changes in lubrication viscosity, water in oil, and increased bearing clearances. The results show that MSB signatures allows accurate differentiation between these small changes, confirming the model and signal processing proposed in this thesi

    Design, validation and application of wave-to-wire models for heaving point absorber wave energy converters

    Get PDF
    Ocean waves represent an untapped source of renewable energy which can significantly contribute to the energy transition towards a sustainable energy mix. Despite the significant potential of this energy source and the multiple solutions suggested for the extraction of energy from ocean waves, some of which have demonstrated to be technically viable, no commercial wave energy farm has yet been connected to the electricity grid. This means that none of the technologies suggested in the literature has achieved economic viability. In order to make wave energy converters economically viable, it is essential to accurately understand and evaluate the holistic behaviour and performance of wave energy converters, including all the different conversion stages from ocean waves to the electricity grid. This can be achieved through wave tank or open ocean testing campaigns, which are extremely expensive and, thus, can critically determine the financial sustainability of the developing organisation, due to the risk of such large investments. Therefore, precise mathematical models that consider all the important dynamics, losses and constraints of the different conversion stages (including wave-structure hydrodynamic interaction and power take-off system), known as wave-to-wire models, are crucial in the development of successful wave energy converters. Hence, a comprehensive literature review of the different mathematical approaches suggested for modelling the different conversion stages and existing wave-to-wire models is presented, defining the foundations of parsimonious wave-to-wire models and their potential applications. As opposed to other offshore applications, wave energy converters need to exaggerate their motion to maximise energy absorption from ocean waves, which breaks the assumption of small body motion upon which linear models are based. An extensive investigation on the suitability of linear models and the relevance of different nonlinear effects is carried out, where control conditions are shown to play an important role. Hence, a computationally efficient mathematical model that incorporates nonlinear Froude-Krylov forces and viscous effects is presented. In the case of the power take-off system, mathematical models for different hydraulic transmission system configurations and electric generator topologies are presented, where the main losses are included using specific loss models with parameters identified via manufacturers’ data. In order to gain confidence in the mathematical models, the models corresponding to the different conversion stages are validated separately against either high-fidelity well-established software or experimental results, showing very good agreement. The main objective of this thesis is the development of a comprehensive wave-to-wire model. This comprehensive wave-to-wire model is created by adequately combining the subsystems corresponding to the different components or conversion stages. However, time-step requirements vary significantly depending on the dynamics included in each subsystem. Hence, if the time-step required for capturing the fastest dynamics is used in all the subsystems, unnecessary computation is performed in the subsystems with slower dynamics. Therefore, a multi-rate time-integration scheme is implemented, meaning that each subsystem uses the sample period required to adequately capture the dynamics of the components included in that conversion stage, which significantly reduces the overall computational requirements. In addition, the relevance of using a high-fidelity comprehensive wave-to-wire model in accurately designing wave energy converters and assessing their capabilities is demonstrated. For example, energy maximising controllers based on excessively simplified mathematical models result in dramatic consequences, such as negative average generated power or situations where the device remains stuck at one of the end-stops of the power take-off system. Despite the reasonably high-fidelity of the results provided by this comprehensive wave-towire model, some applications require the highest possible fidelity level and have no limitation with respect to computational cost. Hence, the simulation platform HiFiWEC, which couples a numerical wave tank based on computational fluid dynamics to the high-fidelity power take-off model, is created. In contrast, low computational cost is the main requirement for other applications and, thus, a systematic complexity reduction approach is suggested in this thesis, significantly reducing the computational cost of the HiFiWEC platform, while retaining the adequate fidelity level for each application. Due to the relevance of the nonlinearity degree when evaluating the complexity of a mathematical model, two nonlinearity measures to quantify this nonlinearity degree are defined. Hence, wave-to-wire models specifically created for each application are generated via the systematic complexity reduction approach, which provide the adequate trade-off between computational cost and fidelity level required for each application

    Formula electric : powertrain

    Get PDF
    The Santa Clara Formula Electric team designed, and manufactured a powertrain for an electric racecar according to the rules prescribed by the SAE International Formula Electric competition. The powertrain is divided into subsystems: the battery pack, battery pack cooling system, motor controller, and the motor. The battery pack was constructed, but full electrical connection of all cells were not made. The pack was not integrated with the motor and motor controller. In addition, due to time constraints, extensive testing could not be completed

    Design and Construction of the MicroBooNE Detector

    Get PDF

    Design and control of a direct drive slotless permanent magnet alternating current generator for low speed Bristol cylinder wave device

    Get PDF
    Global demand for renewable energy is at an all-time high. Renewable energy can be extracted from naturally available resources such solar, wind, tides, geothermal heat, sea waves and the others. The percentage of renewable energy in the energy resources is increasing at an ever increasing rate. While much renewable energy is large scale, it is also suitable for rural and remote areas. The challenges facing today’s renewable energy supply industry are many, especially in the wave energy field which is still underdeveloped. The number of commercialised wave energy devices is very limited and the concepts implemented for harnessing wave energy are very different between the different devices and often struggle to be effective or survive ocean-going conditions. Thus, major research is required to find new and effective methods for harnessing wave energy which are able to supply power to the grid with high conversion rate and good reliability. The proposed Bristol cylinder device, in theory, should be able to harness sea wave energy and to convert it into useful electricity, and this device is studied in detail here. This device is still new in terms of practical application in ocean conditions. It needs power electronics and effective controllers for high-efficiency power extraction and to be successfully integrated into the power grid. When the device was first investigated in the 1970s, power electronics and variable-speed brushless permanent-magnet machinery was simply not developed to the level it is today, hence the revisiting of this device several decades later. A successful Bristol cylinder wave device which can extract renewable energy may well impact on the renewable energy sector. The wave characteristics were studied and simulated using Airy Linear Wave Theory and Stoke’s Second Order Theory. The dynamic characteristics of the Bristol cylinder are investigated when interacting with waves, together with the control necessary to make it a functioning device. A lab scale wave tank suitable to test the Bristol cylinder is designed. A surface magnet permanent magnet synchronous generator (PMSG) design is considered in this research project. This generator configuration shows its suitability in producing high conversion-rate power when working in a low speed environment. The sizing exercise is performed to determine the size of the lab scale PMSG. Analytical analysis and finite element analysis is performed to study the performance of the designed PMSG. A study of the effect of the armature length with the corresponding incident wave is done. Field oriented control (FOC) is applied to control the speed of the generator. FOC is shown to be suitable for stable control of the generator speed. Simulations using MATLAB are utilized and Simulink is used to construct the model and evaluate the potential performance of the control system design. In this thesis, theoretical analyses and simulations of the generator performances are carried out for several generator topologies and sizes. The grid side converter controller technique is also simulated in MATLAB/Simulink and the performance evaluated

    Design and construction of the MicroBooNE detector

    Get PDF
    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported

    Design Tool for Direct Drive Wind Turbine Generators:Proposed solutions for direct drive Darrieus generators 20MW

    Get PDF

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years
    • …
    corecore