27,398 research outputs found

    Design and additive manufacture for flow chemistry

    Get PDF
    This thesis aims to investigate the use of additive manufacturing (AM) as a novel manufacturing process for the production of milli-scale chemical reaction systems. Five well developed additive manufacturing techniques; stereolithography (SL), selective laser melting (SLM), fused deposition modelling (FDM), ultrasonic additive manufacture (UAM) and selective laser sintering (SLS) were used to manufacture a number of miniaturised flow devices which were tested using a range of organic and inorganic reactions. SL was used to manufacture a range of functioning milli-scale flow devices from Accura 60 photoresin, with both simple and complex internal channel networks. These devices were used to perform a range of organic and inorganic reactions, including aldehyde and ketone functional group interconversions. Conversion of products within these reactors, were shown to be comparable to commercially available milli-scale coil reactors. More complex designs, which allowed SL parts to be integrated to existing flow and analytical instrumentation, allowed us to develop an automated reaction analysis and optimisation platform. This platform allowed precise control over the reaction conditions, including flow rate, temperature and reagent composition. We also designed a simplex type reaction optimisation software package that could input data in the form of reaction conversions, peak intensities, and thermocouple data, and generate a new set of optimal reaction conditions. SL parts which incorporated embedded analytical components were also manufactured, which allowed us to perform inline reaction analysis as a feedback method for input into the optimisation platform. Stereolithography was shown to be a highly versatile manufacturing method for designing and producing these flow devices, however the process was shown to be still limited by the range of processable materials currently commercially available. SLM was also used to manufacture a number of functioning milli-scale flow devices from stainless steel and titanium, which had simplistic internal channel designs of diameters ranging from 1 to 3 mm. Again, SLM parts were manufactured which incorporated embedded analytical components, which could be integrated into an automated reaction platform. These devices, unlike parts produced via SL, could be attached to heating platforms to allow us to perform high temperature reactions. This control over the reaction temperature formed an essential part of the reaction optimisation platform. These parts were again used to perform a ketone functional group interconversion. Internal structures of these SLM parts were also visualised via micro computed tomography (µCT or microCT) scanning as well as optical microscopy. FDM was used throughout the project as an inexpensive method of prototyping parts which were to be manufactured via more expensive manufacturing processes. This prototyping allowed the optimisation of intricate design features, such as the manufacture of an inline spectroscopic flow cell for integration with a commercially available LC system. FDM was also proposed as a customisable approach to designing and manufacturing flow devices with embedded components, however the current limitations in build resolution and materials choices severely limited the use of FDM for this application. UAM was also proposed as a novel manufacturing process whereby the build process would allow discrete components to be embedded directly into a flow channel. This was demonstrated by embedding a type-k thermocouple across a 2 mm channel. The data from this thermocouple was monitored during a heated reaction, and used as a method of determining the exact reaction conditions the reaction medium was being exposed to. SLS was also proposed as a possible manufacturing method for milli-scale flow devices, however it proved difficult to remove un-sintered powder from parts with internal channel diameters as high as 5 mm. It was shown that this powder was forming a dense semi solid, due to the large degree of shrinkage upon cooling of the SLS parts, which was compressing the powder. More research into optimum processing conditions is required before SLS could be used for the production of intricate channel networks

    Continuous-flow crystallisation in 3D-printed compact devices

    Get PDF
    © 2019 The Royal Society of Chemistry. A flexible and cost-effective methodology to develop compact flow devices with heat exchange ability is presented here. Additive manufacturing techniques allow the rapid design and manufacture of modular jacketed flow devices, where heat exchange can be modelled and controlled to generate efficient devices for applications in continuous-flow cooling crystallisation. As a proof of concept, the crystallisation of paracetamol has been demonstrated. The manufactured devices are effective in crystallising form II paracetamol employing metacetamol as a co-crystallising agent

    Analysis of printing parameters for metal additive manufactured parts through Direct Ink Writing process

    Get PDF
    Direct Ink Writing is an Additive Manufacturing process in which a metal ink is continuously extruded to built-up a green metal part. Therefore, a debinding and sintering process is required to obtain the final metal part. This thermal process produces a shrinkage of the green printed part according to several material and printing parameters. In this paper, the influence of printing process planning on the width of printed rods for a copper ink is analyzed by means of a Design of Experiments procedure to optimize the printing and equipment parameters and characterize the shrinkage after the sintering processPeer ReviewedPostprint (published version

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process
    • …
    corecore