90 research outputs found

    Tap it again, Sam: Harmonizing personal environments towards lifelong learning

    Get PDF
    The increasing number of mobile vendors releas- ing NFC-enabled devices to the market and their prominent adoption has moved this technology from a niche product to a product with a large market-share. NFC facilitates natural interactions between digital world and physical learning environments. The scaffolding of learning ecologies is a key aspect for lifelong learners in their challenge to integrate learning activities into busy daily life. The contribution of this manuscript is twofold: first, a review of scientific litera- ture in which NFC has been used with a direct or indirect purpose to learn is presented, and potential uses for learners are classified according to their type of interaction; based on these findings the NFC MediaPlayer is presented as an instantiation of an ecology of resources (EoR) in a lifelong learning context. Finally, shortcomings and best practices are highlighted in the conclusions, and future work is discussed

    Multi-view Representation Learning for Unifying Languages, Knowledge and Vision

    Get PDF
    The growth of content on the web has raised various challenges, yet also provided numerous opportunities. Content exists in varied forms such as text appearing in different languages, entity-relationship graph represented as structured knowledge and as a visual embodiment like images/videos. They are often referred to as modalities. In many instances, the different amalgamation of modalities co-exists to complement each other or to provide consensus. Thus making the content either heterogeneous or homogeneous. Having an additional point of view for each instance in the content is beneficial for data-driven learning and intelligent content processing. However, despite having availability of such content. Most advancements made in data-driven learning (i.e., machine learning) is by solving tasks separately for the single modality. The similar endeavor was not shown for the challenges which required input either from all or subset of them. In this dissertation, we develop models and techniques that can leverage multiple views of heterogeneous or homogeneous content and build a shared representation for aiding several applications which require a combination of modalities mentioned above. In particular, we aim to address applications such as content-based search, categorization, and generation by providing several novel contributions. First, we develop models for heterogeneous content by jointly modeling diverse representations emerging from two views depicting text and image by learning their correlation. To be specific, modeling such correlation is helpful to retrieve cross-modal content. Second, we replace the heterogeneous content with homogeneous to learn a common space representation for content categorization across languages. Furthermore, we develop models that take input from both homogeneous and heterogeneous content to facilitate the construction of common space representation from more than two views. Specifically, representation is used to generate one view from another. Lastly, we describe a model that can handle missing views, and demonstrate that the model can generate missing views by utilizing external knowledge. We argue that techniques the models leverage internally provide many practical benefits and lot of immediate value applications. From the modeling perspective, our contributed model design in this thesis can be summarized under the phrase Multi-view Representation Learning( MVRL ). These models are variations and extensions of shallow statistical and deep neural networks approaches that can jointly optimize and exploit all views of the input content arising from different independent representations. We show that our models advance state of the art, but not limited to tasks such as cross-modal retrieval, cross-language text classification, image-caption generation in multiple languages and caption generation for images containing unseen visual object categories

    Towards a systematic security evaluation of the automotive Bluetooth interface

    Get PDF
    In-cabin connectivity and its enabling technologies have increased dramatically in recent years. Security was not considered an essential property, a mind-set that has shifted significantly due to the appearance of demonstrated vulnerabilities in these connected vehicles. Connectivity allows the possibility that an external attacker may compromise the security - and therefore the safety - of the vehicle. Many exploits have already been demonstrated in literature. One of the most pervasive connective technologies is Bluetooth, a short-range wireless communication technology. Security issues with this technology are well-documented, albeit in other domains. A threat intelligence study was carried out to substantiate this motivation and finds that while the general trend is towards increasing (relative) security in automotive Bluetooth implementations, there is still significant technological lag when compared to more traditional computing systems. The main contribution of this thesis is a framework for the systematic security evaluation of the automotive Bluetooth interface from a black-box perspective (as technical specifications were loose or absent). Tests were performed through both the vehicle’s native connection and through Bluetoothenabled aftermarket devices attached to the vehicle. This framework is supported through the use of attack trees and principles as outlined in the Penetration Testing Execution Standard. Furthermore, a proof-of-concept tool was developed to implement this framework in a semi-automated manner, to carry out testing on real-world vehicles. The tool also allows for severity classification of the results acquired, as outlined in the SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. Results of the severity classification are validated through domain expert review. Finally, how formal methods could be integrated into the framework and tool to improve confidence and rigour, and to demonstrate how future iterations of design could be improved is also explored. In conclusion, there is a need for systematic security testing, based on the findings of the threat intelligence study. The systematic evaluation and the developed tool successfully found weaknesses in both the automotive Bluetooth interface and in the vehicle itself through Bluetooth-enabled aftermarket devices. Furthermore, the results of applying this framework provide a focus for counter-measure development and could be used as evidence in a security assurance case. The systematic evaluation framework also allows for formal methods to be introduced for added rigour and confidence. Demonstrations of how this might be performed (with case studies) were presented. Future recommendations include using this framework with more test vehicles and expanding on the existing attack trees that form the heart of the evaluation. Further work on the tool chain would also be desirable. This would enable further accuracy of any testing or modelling required, and would also take automation of the entire process further

    Knowledge based approach to process engineering design

    Get PDF

    Teaching tools and techniques for efficient teaching and learning of computer programming for beginners using JAVA

    Get PDF
    Despite the educational research that has been carried out considering demographic, cognitive and social factors to improve teaching programming in the last decades, finding an effective teaching method is still a debatable issue among Java programming tutors. There are a number of basic concepts to be understood in learning a programming language. The teaching styles to be used to teach different concepts could vary due to the complexity and nature of the concept. This study was aimed at identifying such concepts and the preferred teaching style for teaching such concepts in the Java language. The results of a survey of the students who recently completed introductory level Java programming language revealed such concepts, and also the most preferred teaching style for each concept.This study also investigated the preferred learning styles for learners with artistic abilities and logical abilities. In addition, there have been many research projects based on Cognitive Load Theory (CLT) to investigate better ways of handing germane, intrinsic, and extraneous memory loads on the working memory of learners. The mental modeling technique has been found to be associated with most of the fundamental principles of the Cognitive Load Theory (CLT). This research also included the findings of classroom experiments using activities based on mental modeling, such as analogies, worked examples, and scaffolding, and adhering to the principles of CLT. The context for this research involved teaching Java programming concepts at the introductory level using low cost teaching tools. The study reports on the effects of such activities in teaching Java programming principles

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Multidimensional computation and visualisation for marine controlled source electromagnetic methods

    Get PDF
    The controlled source electromagnetic method is improving the search for oil and gas in marine settings and is becoming an integral component of many exploration toolkits. While the level of detail and benefit obtained from recorded electromagnetic data sets is limited to the tools available, interpretation is fundamentally restricted by non-unique and equivalent solutions. I create the tools necessary to rapidly compute and visualise multi-dimensional electromagnetic fields generated for a variety of controlled source electromagnetic surveys. This thesis is divided into two parts: the creation of an electromagnetic software framework and the electromagnetic research applications.The creation of a new electromagnetic software framework is covered in Part I. Steps to create and test a modern electromagnetic data structure, three-dimensional visualisation and interactive graphical user interface from the ground up are presented. Bringing together several computer science disciplines ranging from parallel computing, networking and computer human interaction to three-dimensional visualisation, a package specifically tailored to marine controlled source electromagnetic compuation is formed. The electromagnetic framework is comprised of approximately 100,000 lines of new Java code and several third party libraries, which provides low-level graphical, network and execution cross-platform functionality. The software provides a generic framework to integrate most computational engines and algorithms into the coherent global electromagnetic package enabling the interactive forward modelling, inversion and visualisation of electromagnetic data.Part II is comprised of several research applications utilising the developed electromagnetic software framework. Cloud computing and streamline visualisation are covered. These topics are covered to solve several problems in modern controlled source electromagnetic methods. Large 3D electromagnetic modelling and inversion may require days or even weeks to be performed on a single-threaded personal computers. A massively parallelised electromagnetic forward modelling and inversion methods can dramatically was created to improve computational time. The developed ’macro’ parallelisation method facilitated the reduction in computational time by several orders of magnitude with relatively little additional effort and without modification of the internal electromagnetic algorithm. The air wave is a significant component of marine controlled source electromagnetic surveys however there is controversy and confusion over its defintion. The airwave has been described as a reflected, refracted, direct or diffusing wave, which has lead to confusion over its physical reality
    • …
    corecore