
A Knowledge Based Approach
to

Process Engineering Design

by
Alistair Struthers

Thesis presented for the Degree of
Doctor of Philosophy

University of Edinburgh
June 1990

The work described in this thesis is the original work of the
author, except where specific reference is made to other
sources. It has not been submitted, in whole or in part, for
anydegree at any other university.

Alistair Struthers

Acknowledgements

The author wishes to thank the following people for their
assitance in the undertaking of this thesis and the prepara-
tion of the manuscript:

Jack Ponton for his supervisory role, the freedom I was giv-
en in chasing up some highly speculative ideas and for not
giving up on me along the way.

Douglas Hutton and Anthony Waters for helping to proof
read the manuscript, and special thanks to Dougy for all the
other wee jobs he helped me out with.

"Like the wind that takes the leaf from the tree

Remember the good days and forget the emptiness.

Preface

This thesis provides an extensive overview of the issues involved in adopting a

knowledge based approach to the development of an integrated process design

environment. The majority of the work described requires a good understanding of

topics from several research areas outwith mainstream process engineering. The

topics covered include logic, graph theory, knowledge representation, and theories of

comprehension in cognitive science. Introductory reviews of these subjects are

provided in order to make the thesis understandable to an engineering audience.

It is important to note that much of the research, covering the period 1984 to 1988,

considerably predates the submission date of this thesis. As a consequence many of

the ideas introduced in the first three chapters are now familiar. The content of the

remaining chapters, however, concerns new ideas in the area of knowledge

representation that have not been addressed elsewhere in the engineering literature.

The thesis consists of four main sections.

The first section consists of a critical review of previous attempts to develop

integrated design systems using database technology. The section introduces the

notions of data and knowledge integrity in an integrated process design environment

and highlights the problems associated with the use of current database systems and

traditional process engineering software. The problems are discussed both from a

representational point of view and from one concerning the need to maintain some

forms of data and knowledge integrity throughout a design project. Following this

discussion a justification of the need to extend the database approach to a knowledge

based approach is made. The latter approach is seen to require extra levels of

representation not currently handled by relational database systems. In order to

investigate this problem further a novel Ally (Appropriate and Incremental

Parallelism) systems engineering framework is proposed along with a long term

research framework to investigate the use of knowledge representation techniques to

implement this design methodology. The remainder of the work presented was done

with these long term research goals in mind.

The second section, chapter two, starts with a simple introduction to the types of

knowledge representation requires in process design, e.g. objects, relationships,

functional knowledge, self-awareness, etc. This is followed by a review of basic

representation techniques in the areas of graph theory and first order predicate

calculus from which most other A.I.(Artificial Intelligence) representation methods

are derived. This is important as it provides a common means of comparing different

representation techniques and the reasoning processes involved. Chapter two finishes

with a review of the techniques and problems associated with rule based production

systems and discusses such problems within a logical framework to clarify the issues

involved.

The third section of the thesis, chapter three, presents the initial research

investigations into alternative representation techniques. Three pieces of work are

described. The first involves the development of a generic rule based production

system which is applied to the problem of heat exchanger type selection. This is

followed by a more detailed discussion of search control problems and the use of

meta-level information in rule based production systems.

The second system described, called Designer's Assistant, introduces the use of a

blackboard type system architechture more suited to comples problems. A

blackboard module interpreter is described in terms of its use for recommending

physical property estimation techniques. Section 3.3.6 goes on to describe a

fundamental problem associated with both types of system that is termed here

"arbitrary tokenism". Realisation of the consequences of this problem motivated the

rest of the later research described in chapter 4 onwards.

The third item of work described in chapter 3 is the development of a highly flexible

frame based (or object oriented) system called CLAP (Combined Logic And

Procedures). CLAP provides many features of current commercial systems as well as

several unique features of its own. These include a generic relation handling

mechanism, extended message passing, methods or procedures using Prolog like

interpretations, and the use of "extended methods" to provide a means to implement

high level process design methodologies.

Chapter 3 finishes with a summary of the relevance of the basic A.I. representation

techniques to process engineering design and reviews other relevant research in this
area.

Chapters 4 through 7 represent the fourth section of the thesis and draw heavily on

the insight gained from the research presented in earlier chapters. The section begins

with a reassessment of the requirements for an integrated process design environment

and puts forward fundamental research goals that have yet to be achieved. With these

goals in mind a more in depth assessment of the problems associated with both rule

based production systems and frame based systems is presented. In particular the

pitfalls associated with the interpretation of frames within an inheritance hierarchy

are highlighted. The use of formal non-monotonic logics to tackle some of these

problems is introduced.

II

Section 4.3 provides an extended review on the problem of representing uncertain

information in knowledge based systems. Strong criticism is made of the

inappropriate use of numerical based approaches, e.g. Baye's method,

Dempster-Schafer theory, Fuzzy logic, etc. This is contrasted with research in the are

of extended use of truth maintenance systems and the use of modal logics to represent

such information.

Following these criticisms and the unlikelihood of current A.I. representation

techniques being suited to the long term development of process design

environments, the remainder of the thesis is concerned with a fundamental

investigation of the nature and representation of conceptual information or

knowledge. This work draws on advanced theories of comprehension in cognitive

science and psychology. In particular the study of conceptual categorisation, family

resemblances, and the use of mental models in presented in some detail. Chapter 6

goes on to describe the preliminary redevelopment of Designer's Assistant in a way

that investigates the feasibility of practically implementing such ideas in a working

knowledge based system.

The main conclusion of the work is that current knowledge representation techniques

are far from adequate in terms of being able to provide the tools needed to develop an

intelligent design environment. The work described in the latter half of the thesis

indicates that considerable research remains to be done.

111

Table of Contents

1 The Role of Computers in Process Engineering Design and
Analysis 1

1.1 The Integrated Process Design Problem 1
1.2 Sources and Flow of Information in Process Design 3

1.2.1 Example 1 12
1.2.2 Example 2 13

1.3 The Development and Characteristics of Process Design Software 15
1.3.1 Independent Programs 15
1.3.2 Flowsheet/Design Packages 16
1.3.3 Emergence of Database Management Systems (DBMS) 17

1.4 Review of the Development of DBMS in Process Engineering Design 17
1.4.1 DBMS Characteristics and Data Representation 19
1.4.2 The Network Data Model 20
1.4.3 Hierarchical Data Model 22
1.4.4 The Relational Data Model 23

1.4.4.1 The Binary Relational Model 27
1.4.5 Development of Database Management systems in Process Engineering 27

1.5 Impact of Database Management Systems 40
1.6 Fundamental Criticisms of the Database Approach to Integrated Process

Design 43
1.7 Extension of the Database Approach to the Knowledge Based Approach

46
1.8 A Process Systems Engineering Formulation of Design Methodology 48
1.9 A Research Framework For Integrated Process Design 58

Table of Contents

2 Knowledge Representation in Artificial Intelligence 	 61
2.1 Types of Knowledge Used in Process Design 61

2.1.1 Objects, Attributes and Relations in Process Models 62
2.1.2 Functional, Event and Situational Knowledge 63
2.1.3 Self Awareness 64
2.1.4 A.I. Knowledge Representation Techniques 65

2.2 Heuristic Graph Theory 67
1 State Space Representation 68
2 Problem Reduction Representation and AND/OR Graphs 71

2.2.1 Uninformed and Heuristic Graph Searching Techniques 73
2.2.2 Informed Heuristic Search 77
2.2.3 Heuristic Search in OR graphs 79
2.2.4 Heuristic Search in AND/OR Graphs 83
2.2.5 Summary of Heuristic Graph Search Techniques 86

2.3 Classical Logics and Theorem Proving 87
2.3.1 First Order Predicate Calculus 94
2.3.2 Reasoning Techniques In First Order Logic 97
2.3.3 Unification And Pattern Matching 98
2.3.4 Theorem Proving Techniques In First Order Logic 98

2.3.4.1 Constructing Solutions In Resolution Refutation Systems 103
2.3.4.2 Simplifying The Search Strategy 104
2.3.4.3 Paramodulation 107
2.3.4.4 Alternative Theorem Proving Methods 109

2.3.5 The Control Problem in Logic Theorem Proving 113
2.3.6 Logic Programming and Prolog 114

2.4 Generalised Production Systems 116
2.4.1 Production Systems in a Logic Based Framework 120

2.4.1.1 Direct Representations, Kowalski Form and Prolog 120
2.4.1.2 Forward Chaining Deduction Systems 124
2.4.1.3 Backward Chaining Deduction Systems 125

2.5 Implementation Aspects of Production Systems 128
2.5.1 The Mycin System 128

2.5.1.1 Representation of Facts and Rules in Mycin 129
2.5.1.2 Mycin's Control Strategy 130
2.5.1.3 Explanation in Mycin 132
2.5.1.4 Handling Imprecise Information in MYCIN 133

2.5.2 Mycin from a Logic Point of View 134
2.5.3 The Prospector-AL/X Systems 136
2.5.4 Prospector from a Logic Point of View 139
2.5.5 The OPS5 system 141

2.5.5.1 Problems in Pattern Matching and the RETE Algorithm 142
2.5.5.2 Partitioning Rule Sets and Context Layering 144

2.5.6 0P55 From a Logic Point of View 145

Table of Contents

3 Development of Representation Techniques For Process Design 147
3.1 Development of a Heat Exchanger Selection System 	 147

3.1.1 Background
3.1.2 Description of the Production System

3.1.2.1 Production Rule Format
3.1.3 Overall structure and Control Strategy

3.1.3.1 Simple Help and Explanation Facilities
3.1.3.2 Details Specific to the Heat Exchanger Selection Program

3.1.4 Discussion
3.2 Problems concerning the Use of Rule Based Production Systems

3.2.1 Implementing Control Strategies
3.2.2 Embedding Control Information in Rules
3.2.3 Using Meta-Level Information
3.2.4 Control and Meta Information in the Heat Exchanger Selection Systeir,
3.2.5 Meta-Level Inference in the MECHO System
3.2.6 Maintaining and Extending Rule Sets

3.3 Blackboard Systems
3.3.1 Observations on Blackboard Systems
3.3.2 Development of Designer's Assistant
3.3.3 Development of a Physical Properties Module
3.3.4 Module Language Definition and Knowledge Representation

3.3.4.1 The Rule Head
3.3.4.2 The Rule Entrance Guard
3.3.4.3 The Focus of Interest
3.3.4.4 The Situation/Action Body of the Rule
3.3.4.5 The Applicability Compromise

	
181

3.3.4.6 Making Data Compromises
	

182
3.3.4.7 Observations on Rule Format

	
182

3.3.4.8 Structuring of Physical Property Domain Data
	

183
3.3.4.9 Main Components of the Blackboard Data Structure

	
186

3.3.5 Overall Strategy of the Physical Properties Module Interpreter
	

187
3.3.5.1 Initialisation of a Module

	
188

3.3.5.2 Planning Requests
	

189
3.3.5.3 Evaluating Planned Requests

	
189

3.3.5.4 The Input/Output Form Filling System
	

192
3.3.5.5 Report Generation 	 193

3.3.6 The Problem of Arbitrary Tokenism and Module Language Definition 193

3.4 Development of Object Orientated Representation Techniques in CLAP
3.3.7 Intermediate Conclusions on Blackboard System Developments 	198

200
3.4.1 Preface 	 200
3.4.2 Background 	 200
3.4.3 Generic Objects and Instances in CLAP 	 201
3.4.4 Setting and Retrieving Slot Values 	 204
3.4.5 Classes and Inheritance 	 204
3.4.6 Describing Slots at a Meta-Level, Default Values 	 206
3.4.7 Meta-View Descriptions of Slots 	 207
3.4.8 Embedding Control Information and Procedural Attachment 	209
3.4.9 Other forms of User Specified Meta-Information, Arbitrary Tokenism

Revisited 211
3.4. 10 Multiple Contexts or Worlds in CLAP 212
3.4.11 Building Process Models from Relationships in CLAP 212
3.4.12 Symbolic Relationships, Demons and Meta-View Points 214
3.4.13 Establishing a Symbolic Relationship and its Inverse 215
3.4.14 Constraint Relationships 216

3.4. 14.1 Specialise Relations 217
3.4.14.2 Design Specifications 218
3.4. 14.3 Operator Relations, Evaluating Constraints 219

147
148
149
151
153
154
156

159
159
160
163
165
166
169

172
176
177
178
178
179
179
179
180

3.4.15 Summary of Development of Equation Based Process Models 223
3.4.16 Arbitrary Tokenism and Relations 225
3.4.17 Specifying Low Level Design Procedures 225
3.4.18 External Language Interface 227
3.4.19 Using Inference Techniques in CLAP Methods 230
3.4.20 Interpreting Methods in CLAP 232

3.4.20.1 Demonstration of CLAP Methods, A Simple Flowsheeting Tool 233
3.4.21 Message Passing in CLAP 240
3.4.22 Standard Message Passing and Method Inheritance 241

3.4.22.1 Other Forms of Message Passing in CLAP 242
3.4.22.2 When to Use Message Passing and When to Use Procedures 243

3.4.23 Display Options in CLAP 245
3.4.24 Specifying Design Methodologies in High Level Frameworks 246
3.4.25 Summary: Extended Methods 251
3.4.26 Discussion and Summary of the Overall Structure of CLAP 252

3.5 Relevance of Representation of Styles to Process Design 256
3.5.1 Rule Based Production Systems 256
3.5.2 Frame Based Systems and Object Orientated Programming 258
3.5.3 Logic Based Representations 260
3.5.4 Procedural Methods as Declarative Data Structures 260
3.5.5 Blackboard Systems 261

3.6 An Overview of Al applications in Chemical Engineering 262

U

Table of Contents

4 Towards an Intelligent Process Engineering Design Tool 	267
1 Reassessment of the Requirements for an Integrated Process Design

Environment 268
4.1 Fundamental Research Objectives 270

4.1.1 Intelligent/Expert Systems 271
4.2 Deficiencies of Rule and Frame Based Systems 274

4.2.1 Rule Based Systems 274
4.2.2 FRAME BASED SYSTEMS 276
4.2.3 The Basics of Frames 276
4.2.4 Frames - An Assertional Viewpoint 277

4.2.4.1 Semantics and Representation Languages 278
4.2.4.2 Interpretation of Frame Expressions 279
4.2.4.3 Instantiation, Criteriality and Matching 282
4.2.4.4 Making Comparisons and Caricatures 284
4.2.4.5 Default Reasoning 286
4.2.4.6 Reflexive Reasoning 287
4.2.4.7 Summary 288

4.2.5 Problems Concerning The Use of Frames 289
4.2.6 Improved Implementations of Frame Based Systems 293

4.2.6.1 CLAP - Conditional Definitions and Contingent Universals 294
4.2.6.2 KRYPTON 295

4.2.7 A Mathematical Analysis of Inheritance 297
4.2.7.1 The OPUS System 303
4.2.7.2 Summary 304

4.3 Problems of Dealing with Uncertainty 304
4.3.1 Bayesian-like Approaches and Other Numerical Measures of Uncertainty

307
4.3.1.1 Bayesian Inference 309
4.3.1.2 Dempster-Shafer Theory 312
4.3.1.3 Fuzzy Logic 313
4.3.1.4 Presenting Recommendations 314
4.3.1.5 Endorsement Based Reasoning and Truth Maintenance 316
4.3.1.6 Modal Forms of Logic to Express Uncertainty 324
4.3.1.7 Summary: Problems of Representing Uncertainty 329

4.4 SUMMARY 331

Table of Contents

5 A Study on the Nature of Concepts and Mental Modelling
5.1 Knowledge Representation - The Epistemological Level

5.2 Conceptual Categorisation
5. 1.1 The KLONE system

	 334

342
338

5.2.1 Basic Category Types 	 344
5.2.1.1 Identity Categories 	 344
5.2.1.2 Equivalence Categories 	 345
5.2.1.3 Affective Equivalence Categories 	 345
5.2.1.4 Functional Equivalence Categories 	 346
5.2.1.5 Formal Equivalence Categories 	 346

5.2.2 What is Achieved by Categorising?
	

347
5.2.3 Attributes, Attribute Combinations and Concept Types 	 351

5.2.3.1 Defining, Critenal and Non-Criteiial Attributes 	 352
5.2.3.2 Attribute Combinations and Basic Equivalence Category Types 354

5.2.4 The Process of Concept Attainment
	

356
5.2.4.1 Factors Affecting Concept Attainment

	
357

5.2.4.2 An Overall Framework for Concept Attainment
	

359
5.2.4.3 Validation and the Learning Process

	
359

5.2.5 Further Aspects of Atrributes : Typical and Generic Instances
	

361
5.3 Prototypes, Family Resemblances and Categorical Frameworks

	
363

5.3.1 Further Discussion and Criticisms 	 368
5.3.2 SUMMARY
	

374
5.4 MENTAL MODELS

	
376

5.4.1 Scope of Johnson-Laird's StUdy
	

376
5.4.1.1 The Doctrine of Functionalism 	 378
5.4.1.2 Mental Models and Effective Procedures 	 378

5.4.2 MENTAL LOGIC
	

380
5.4.2.1 Propositional Based Reasoning 	 381
5.4.2.2 Syllogistic Reasoning 	 383
5.4.2.3 Other Forms of Deductive Reasoning

	
386

5.4.2.4 Summary: The Status of Mental Logic and its Consequences for
Knowledge based Systems 	 387

5.4.3 Types of Mental Representations
	

388
5.4.3.1 Intension, Extension and Formal Models of Language 	390
5.4.3.2 Aspects of Word Meaning 	 392
5.4.3.3 Necessary and Sufficient Conditions 	 393
5.4.3.4 Concepts, Prototypes and Family Resemblances 	 394
5.4.3.5 The Nature of Intensions 	 395
5.4.3.6 Abstract Concepts, Formal Languages and Necessary Conditions 398
5.4.3.7 The Nature of Extensions and Vagueness 	 399
5.4.3.8 Summary: Word Meaning 	 400
5.4.3.9 Styles of Word Representation and the Effect of Context 	401

5.4.4 A Procedural Semantics for Mental Models 	 404
5.4.4.1 Principle Assumptions 	 406
5.4.4.2 Basic Procedures 	 407
5.4.4.3 Other Aspects of Mental Models 	 410
5.4.4.4 Summary 	 416

5.5 Overall Summary 	 417

333

Table of Contents

6 Development of Knowledge Representation Ideas 421
6.1 Outline of Representation Requirements 421
6.2 System Structure 423

6.2.1 Use of Blackboards 426
6.2.2 Module Operation 427

6.3 The Development of Concepts 429
6.3.1 System Level Concepts 431

6.3.1.1 Concept Layout 434
6.3.1.2 Concept Header 435
6.3.1.3 Concept Referent Bindings 435
6.3.1.4 Context Dependencies 436
6.3.1.5 Concept Nature 437
6.3.1.6 Functional Aspects of Concepts 437
6.3.1.7 Criterial and Non-Critcrial Attributes 438
6.3.1.8 Concept Structure 439
6.3.1.9 Subtypes, Special Cases and Use of Inherited Forms 440

6.3.2 Functional/Procedural Concepts 441
6.3.2.1 Examples in Set Theory 442
6.3.2.2 Using External Code to Solve Simple Equations 448

6.4 Initial Attempts to Implement a Maths Module 450
6.4.1 Simple Example Problems 450
6.4.2 Main Utility Areas 452

6.4.2.1 Expression Parser 452
6.4.2.2 Temporary Model Interpretations 453
6.4.2.3 Using Internal Concepts 453
6.4.2.4 Concept, Context, and Attribute Utilities 453
6.4.2.5 Topic Utilities 454

6.4.3 Object Entries in the Functional Model 455
6.4.4 Overview of Maths Module 455
6.4.5 Discussion of Designer's Assistant and Further Research 456

7 Final Conclusions 	 459

A Basic Graph Theory Terminology 	 463
A. 1 AND/OR Graphs 	 464

B Basic Terminology of Formal Logic 465
13.1 Propositional Calculus Terminology 465
B.2 Predicate Calculus Terminology 467
B.3 Substitution and Unification 469
B.4 Prenex, Normal, Skolem and Clausal Forms 471
13.5 Formal Deduction Systems, Rules of Inference, Theorems and Proofs

472
B.6 Lambda Calculus 474
13.7 Validity checking using the Tableau Proof Method 475
B.8 Identifying Paths in Matrix Connection 476

C Uncertainty Factors and Probabilities in Production Systems 479

C.! Confidence Factors in Mycin 479
C.2 Propagating Probabilities in Prospector 480

D Utility Files in Designer's Assistant 483

D. 1 Example of a Word Concept 484

REFERENCES

Chapter 1
The Role of Computers in Process Engineering Design and Analysis

The last two to three decades have seen an ever increasing and diverse use of

computers in the process industries. A wide range of activities now depend crucially

on the use of computing facilities such as process simulation and design, online

optimisation and control, hazard analysis, and, more recently, the collection and

management of plant data. One of the aspects of this thesis will be to assess how the

long term development and integration of such software should proceed. Rather than

discuss the development of computer software in all these diverse areas, however, an

outline of the role that computer software now plays in specific areas of process

engineering design will be given. This will provide the necessary background for a

discussion on the future development of "integrated process software" which is

generally seen as the means by which the various aspects of process engineering can

be more closely integrated and coordinated in industrial design. In particular, this

thesis will address itself to the basic issues involved in the specification and

formulation of an integrated process design environment in terms of the scope of data

representation and functionality required and its mode of interaction with the design

engineer. Before attempting this however it must be remembered that the terms

"process engineering" and "process engineering design and analysis" represent rather

iidefined but extremely complex activities. To provide a more theoretical framework

for this review simplified definition of the main activities involved in process

engineering design and analysis will be introduced. This is intended to make clear

what is meant here by the term "integrated process design". It is also necessary to

identify and characterise the various types and sources of data involved in process

engineering design, and to characterise the role which process engineering software

currently plays in the design process. This analysis is required to establish a

framework for formal identification of issues of software specification and is covered

in sections 1.1 to 1.5.

The remainder of the chapter introduces the basic functional and representational

requirements for a sophisticated integrated design environment, as well as a possible

design methodology to exploit such facilities. The development of these ideas will

form the content of the remainder of this thesis.

1.1 The Integrated Process Design Problem

Process design is a very complex activity. It is unlikely, therefore, that any one

description of what process design actually involves will adequately cover the variety

of process development techniques encountered. However, one of the main problems

in assessing computer software and the expected benefits to be gained from its use is

precisely because there is very little formal discussion of the design process and the

associated flow and management of "design information". The steps outlined in

Figure 1.la represent an idealised definition of the boundaries of the "classical"

approach to process design. This outline follows and expands on Sargent(1983).

Figure 1.1a: Process Design Activities

Feasability Studies

Process Synthesis
- choice of process route
- development of flowsheet

Process Design
- operating conditions
- functional design of units
- quantatative optimisation of flowsheet

Equipment Design

Plant Layout and Pipework Design

Control System Design and Instrumentation

Operability Studies
- start up, shut down
- upsets, hazard analysis

- normal operation, change regimes

Plant Construction
- fabrication
- on site construction
- materials ordering

Commissioning

PROJECT
DEVELOPMENT

2

Figure 1.lb : Process Investigation Activities

Plant / Process Investigation

Upgrades and 	 Retrofits 	On line 	 ...etc...
Debottlenecking 	 Optimisation

(Activities conceptually similar to activities 2 and 3 in Figure la above)

It reflects the standard development and flow of information from initial feasibility

studies to flowsheet development, followed by detailed equipment specification and

design should the project be sanctioned to proceed. Although the flow of information

seems to be sequential in nature, there are in fact many cross links and iterations

between the various stages. The additional topics in Figure 1.1 b have been added to

extend the discussion to include aspects of process development and investigation

considered relevant to this area of study. The information required for tackling such

problems directly follows on from what has been established during the design phase.

The activities in Figures 1.1a and 1.lb represent a minimum set of activities which

constitute in part what will be referred to as the "integrated process design problem".

The use of the word integration here, therefore, refers not only to the design phase

itself but also to the integration of design project information into "downstream"

activities such as plant investigation.

The actual formulation of the integrated design problem will be delayed until the

notions of "integrity of data" and "integrity of knowledge" have been defined in the

following section.

1.2 Sources and Flow of Information in Process Design

The variety of sources and large volume of information which must be handled in the

design process has been recognised for some time as one of the key problem areas in

process engineering software development, Zellnik(1967), Cherry et al(1982), Winter

and Angus(1983),Sargent(1983).

In 1977 ICI undertook a one year study of engineering information management, the

primary motivation being that it was hoped that improved communications and use of

computers would lead to better management of increasingly complex and demanding

design projects, while at the same time enabling more thorough analysis of safety

3

aspects of plant design. Although the work was mainly concerned with the flow of

information and the interaction between various departments involved in an overall

design process within ICI, the work is still useful in that it reveals the scope and range

of interactions between qualified people from different backgrounds. The results of

this work are shown in Figures 1.2 and 1.3 below.

Figure 1.2: Documents Relating to Design Activities in ICI

Comparing Figure 1.2 with Figures 1.la and 1.1b it may be seen that the activities

involved in the "integrated process design problem" extend beyond what is termed

"process engineering" by ICI. Nevertheless, it is clear in both cases that:

1. There are strong and complex interactions between various design departments

4

MONTHLYSCHEDULES
FORE VERYPROJECF
FOR EVERY GROUP (4 ft THICK)

I 	 I PROCESS 	 COST PECSG] 	
I MONITOR
I SCHEDULES

P & I DIAGS PLANT 	 COST

-I 	LAYOUTS 	 ESTIMATES

ENGINEERING DRAWINGS & SPECS

CIVIL 	CTR ELEICA1r-'INSTRUMENTS

PIPE WORKPR JECT 	I CONTROL
DESIGN

VESSELS MACHINERY CONSTRUCTION

EQUIPMENT I
SCHEDULES fl 	I 	 I

ORDERS

PROGRAMS

MULTIPLE ISSUES
MANUALUPDATE

I. I SCHEDULE

	

DESIGN 	 i i MONITOR I 	I 	I

	

MANUAL 	 I I PROGRESS

	

4, 4, 	MULTIPLE UPDATES AND
ISSUES AS PROJECT
PROGRESSES.
INFORMATION NO MORE
UPTODATE THAN WHEN PLANT 	ENTERED. INVENTORIES I

CONST PROGRESS

REPORTS

FIGURE 3 : Information Flow on Paper within Id.

5

involved in the same design project, and
2. Such interactions can lead to a heavy reliance on the use of paperwork. This

may cause considerable problems if any changes in design philosophy,
generally referred to as "change management", are ever undertaken.

It is seen from the breakdown of ICI's design activities, Figure 1.2, that certain

essential aspects of any thorough process design, such as control, cost and planning

engineering, have been identified as distinct "sections" outwith "process engineering"

The result of structuring design responsibilities in this way and the subsequent

handling of process documents between departments is shown in Figure 1.3. This

reveals a somewhat "flat", i.e. non hierarchical, but complex shuffling of data. The

question of how process design actually proceeds and the effect it has on the

complexity and effort required is an important one that will be discussed later.

However, it should be noted meanwhile that between ten and seventy percent of an

engineer's time is spent on various forms of information handling, Cherry et al(1982).

Similarly, Janies(1985), reports figures from a study by the Esso company which are

shown in Table 1.1. The handling of information is again seen to take up some 55-65

percent of the engineer's available time.

Table 1 : Engineering Time Utilisation,
by Esso Research and Engineering.

Data Retrieval
	

20 - 25

Analysis I Calculation 	 20 - 30

Data Manupulation / Issue 	 35 - 40

Planning / Administration 	 15 - 20

In terms of the influence design data can play in the overall costs of a project,

Craft(1985) reports some interesting figures based on industrial studies. Figure 1.4

shows a typical project "cost pyramid" in which the process engineering cost

represents less than five percent of the total project "spend", of which less than one

percent will cover process simulation.

6

Figure 1.4: Typical Project "Cost Pyramid"

Installation

Enginee

IV

A simplistic analysis would assume therefore, but quite wrongly, that changes in this

relatively small cost would have little effect on the overall project cost. This

overlooks the fact that a more thorough and optimised design at an early stage could

result in significant reductions in the size of the cost pyramid, as shown by the

difference in the shaded areas in Figure 1.4. On the contrary, if alternative design

options are not thoroughly investigated early on and too much "uncertainty" exists

(lien the "cost pyramid" can be broadened considerably. Bechtel Ltd., see

Craft(1985), suggest that some 80 percent or more of total project costs are fixed at

the process flow diagram (PFD) stage of the project, see Figure 1.5.

7

Figure 1.5: Project Cost Generating Decisions

Studies! front end work
80% of cost generating
decisions are made at
these early stages

V. cost generating
decisions

III

0 	 Project Duration 	 100%

Process design activities will, thus, be placed firmly at the front end of most critical

paths for such a project. As to how and where data is actually generated during a

project, Figure 1.6 reproduces Craft's assessment of the number of data items

generated by the events 1-6 listed on the figure.

Figure 1.6: Data Items Generated During a Project

Chronolgy of Events

I. Process flowaheet and equipment specification

Piping and Instrumentation diagram

Plant layout plots

Vessel fabrication drawings

Plant model

Piping isometrics and materials take-off.

I

Events

An important point to notice here is the intrinsic difference in functionality between

what are called "process" and "project" design activities. In process activities many

different alternatives, cases, eventualities, etc., will be considered before a fixed

flowsheet is chosen for further development. During the project phase, however, a

fixed flowsheet will be used as a basis from which new items of information will be

generated. Hence, the temporary dip in the number of "active" items shown in Figure

1.6.

The importance of "data", and more generally, "information" at all levels in the

8

design process cannot be overemphasised. Consider the quantity and kinds of

information required to carry out the initial design of a simple unit operation to a

reasonable level of detail. Figure 1.7 shows the typical, but not complete, categories

of information needed in any such design task.

Figure 1.7: Typical Design Information Categories

I Product I

Use

Quality

Raw
Materials

Form
	 I Reactions I

Physical
Properties

Critical Data

B.Pt, F.Pt, etc.

Solubilty Data

Density

Azeotropic Data

Particle Behavioui

Environmental
Impact

Reactants

Chemicals, Catal3

By - Products

Effluents -

Emissions

TLV data

Precuations,
Protection

Phase

Rate, Order

Equilibrium

- Energetics

Catalysts

By - products

Chemical
Properties

- Hazards

Reactivity

Corossivity

Toxicity

Flammability

Operations

Time,Temp.,

Yield, Prsure lectivity,
Converaion

- Degree of Separation,
Recycling involved

Product Treatment,
Scrubbing, etc.

Conceptual Grasp of
Princinles behind

As this level of detail is typical of much of process engineering, integrity of data

usage can be identified as one of the major problems to be faced by process software

designers and one that will be frequently discussed. In order to help formalise

subsequent criticisms of process software it is necessary to provide a more precise

definition of what is actually meant by the term "integrity of data". The following

10

definition shall establish a useful basis for assessing the use and management of

software in the design process.

The concept of data integrity can be considered at two levels. At a user's level the

integrity of data shall be taken here to mean:

- the consistent use of data in design activities in terms of the availability,
uniqueness of value, and explicit functional constraints imposed on the data. The
notions of uniqueness and availability are not fixed but wholly dependent on the
implementation of a data access control mechanism which then defines what these
terms mean. For example, in a multi-user system which employs a data release
strategy, in which each user operates on a private version of part of the project
data base until a new global data update is released, then uniqueness and
consistency of data can only be defined relative to a user's local viewpoint. In
such a system, therefore, global consistency can only be periodically enforced
when data updates are released which may or may not be a problem depending on
how interdependent users' activities are.

However it is implemented, the control of data should account explicitly for the
way in which that data is used in related process design activities in order to
provide useful definitions for the terms "uniqueness" and "availability".
Functional constraints are user specified and provide both structural (equality of
values) and semantic constraints on the use of data in the design process.
Checking for violation of such constraints provides a simple way to ensure a
minimum level of data integrity but has the drawback that all such constraints
must be explicitly stated. Few systems operating at this level of data
representation will be able to infer implicit constraints automatically.

The implications for a lower implementation level view of data integrity will be

expanded throughout the rest of this chapter. Having specified at a user level what is

meant by the integrity of data, it is possible to embody this within the higher level,

and more powerful notion of "integrity of knowledge" in the design process. By this

it is meant that

- there must be an explicit representation of the assumptions and principles upon
which the data is based as well as an explicit knowledge of how that data can be
used and manipulated in terms of data dependency, both of which must be
consistently maintained throughout the design process. This can be thought of as
being consistent about the actual reasons behind data constraints, which in turn
requires that one is aware of the background knowledge, theory, and decisions
responsible for the creation of the data in the first place.

This concept of "integerity of knowledge" is powerful and has far reaching

consequences for software design. It is fair to say that this concept would be an

integral part of any "ideal design process" but it is questionable whether or not it can

be achieved in practise. Nevertheless, having provided such a definition it is now

possible to formulate what will be meant by the term "integrated process design", as

introduced in the preceding section. This activity shall be taken to mean one which

proceeds according to

11

- the explicit statement of the principles of overall management of a design project
in terms of the design activities and associated methods. The design methodology
adopted is not fixed, but must incorporate the notion of knowledge integrity into
its formulation.

The reasons for this specific formulation of process design shall be discussed later in

this chapter. They have an important effect on how we should assess and develop

process software which is to be used in an integrated design environment.

Finally, two typical examples taken from the literature will be described to illustrate

two aspects of how the notion of integrity of knowledge might affect the use of

process design software. The first example shows the importance of explicitly

knowing how data is to be used, while the second shows the importance of access to

explicit knowledge of the theory underlying user written software.

1.2.1 Example 1
Mah(1977) outlines some of the pitfalls of using "black box" thermodynamic routines

in design packages, that is use of thermodynamic techniques without an appreciation

of assumptions made in the software, likely accuracy of results etc. In particular Mah

emphasises the "importance of relating thermophysical data estimation procedures to

the design application of the information so generated". To illustrate this he considers

two case studies in which vapour liquid equilibrium and solubility data are used in the

design of an extractive distillation column and a stripping unit.

The first is the separation of ethanol and isopropanol by extractive distillation using

water as the mass separating agent. In the absence of ternary data, the design could

proceed by using high quality binary data for the binary systems ethanol-water and

isopropanol-water and assuming the homologous pair ethanol-isopropanol to be

closely approximated by an ideal solution. Note, however, the binary pairs

ethanol-water and isopropanol-water are far from ideal and form minimum boiling

azeotropes. Mah then extrapolated this binary data to predict ternary behaviour by

fitting van Laar coefficients in a thermodynamic model, referred to as model I, which

could then be used in subsequent calculations. This model was then compared to one

in which van Laar coefficients were fitted to limited ternary data, model H. For

prediction of equilibrium data model II proved to be far more accurate, model I

deviating markedly from experimental data in both magnitude and shape of curve.

To investigate the downstream effect on process design, stage to stage calculations

were performed for an extractive distillation column and again model I departed

significantly from a thorough design based on experimental data. The point to note,

as regards the relevance of integrity of knowledge, is that both models provided

equally valid data from the point of view of the integrity of data. The integrity of

12

knowledge, however, was violated in that no explicit account of how the data was

generated, was to be used and its possible/likely effects was taken into consideration.

Mah's second case is the design of an ether stripper to separate ether and light ends

from alcohols and water. Here liquid phase activity coefficients are estimated from

solubility data which is possible when two of the components are sparingly miscible.

Further comparison with a design based on fitted experimental data reveals that both

models provide similar results despite the simplistic approach.

In summary, Mah recognises that one cannot answer the question "is a given

thermophysical property correlation satisfactory" without knowing how the data will

be used. The adequacy of any model depends on the application and the

thermophysical data estimation procedures must thus be related to this "ultimate

application". In the case of the ethanol-water/isopropanol-water system the quality of

the binary data is high but the design of the extractive distillation column requires

considerable but unjustified extrapolation of the data. On the other hand, the ether

stripper design permits the use of binary solubility data, the system being one in

which the components are sparingly soluble and little extrapolation is required. In

addition, Mah points out that is unwise to place too much significance on the

numerical values of individual coefficients fitted to empirical correlations. This is

likely to cause problems in systems which might attempt to enforce data integrity

without explicit knowledge of this heuristic. Different users might wish to use their

own sets of fitted coefficients which although differing significantly in numerical

value, produce quite similar results, as Mah's ether stripper example shows. A system

attempting to enforce integrity of knowledge would feel easier about this state of

affairs if it were able to check the effect of such data conflicts on downstream

activities.

1.2.2 Example 2

This is taken from Adler et al(1977), on the industrial use of equations of state. Their

case studies are interesting from the point of view of integrity of knowledge in that

they show how an appreciation of the theory associated with bubble point, dew point

and flash calculations is necessary to make sense of computer generated results.

The first case involves the quite common, but poorly documented phenomenon of

multiple bubble points. The design in question was of a hydrodesuiphurisation unit

where hydrogen and hydrocarbon mercaptans catalytically reacted to form hydrogen

sulphide. This is subsequently stripped out. A high pressure separator unit is

positioned between the reactor and the stripper to provide a hydrogen recycle to the

reactor. The design engineer had performed a computer calculation which modelled

13

heating a bubble point liquid from the base of the high pressure separator and feeding

it to the stripping column to be flashed. The computer calculations showed that

despite heating the bubble point liquid from 110 deg. F to 610 deg. F, the stream was

still in the liquid phase, which seems implausible. The computer, however, was in

fact correct for the following reasons. The liquid feed consisted of about eighty

percent heavy oils. The behaviour of such mixtures can, however, still be influenced

by light components and in particular hydrogen can have a large effect on the shape

of the phase envelope. This particular feed contained 3.2 in ole percent hydrogen. The

phase envelope for this mixture is shown in Figure 1.8 and shows a pronounced

minimum in the bubble point curve.

Figure 1.8: Example Phase Envelope

1000

900

Pressure,
psia 	

800

700

600

500

400

940 psia

- 	
Liquid

 Calculated Critical
0 Point

	

Liquid and Vapour 	 Grayson Strecd Predictions -

Chao-Seadcr Predictions - -

Projected Critical Region - - - -

- 	 -- 	

Behaviour

0 	200 400 600 800 1000 1200

Temperature. deg P

The engineer was performing the calculation in a single phase region and a

temperature of around 810 deg. F would be needed to reach the second bubble point.

This "retrograde" behaviour is interesting in that it is decidedly different from normal

isobaric retrograde vapourisation, namely two bubble points at a fixed pressure above

the critical pressure separated by a two phase region. in fact, Adler et al point out that

this phenomenon is quite likely whenever hydrogen is present in heavier mixtures at

about 7 mole percent or less, as in this case.

What is of interest here is that while several estimation techniques are capable of

predicting this behaviour, a) commercial flash routines are unlikely to generate these

multiple bubble points without user guidance and b) a data integrity system which

performed simple minded checks on generated computer data would probably reject

or handle such examples in an unsatisfactory way. Any system attempting to enforce

integrity of knowledge should not only accept such results but try to establish a more

14

detailed description of the mixture behaviour. This would be necessary in order to

satisfy itself of the validity of the results given an awareness of how such phenomena

arise. In current design systems thermodynamic routines are usually embedded within

a flowsheeting or other design package. It is then much more difficult to control or

even be aware of such behaviour.

A similar example Adler studied was that of performing dew point calculations for

natural gas mixtures which are very sensitive to heavy ends characterisation, even at

concentrations of less than one mole percent. In such systems the "retrograde bulge"

in the phase envelope can extend well beyond the true critical point of the mixture.

This can result in converging to seemingly strange solutions when performing dew

point calculations if the design pressure is chosen to be less than the critical pressure

of the mixture. Once again, such results can be simply explained given an

appreciation of the theory underlying dew point calculations.

A moments reflection on how the notion of integrity of knowledge would both

constrain and guide how an engineer would proceed in solving these problems, and

more importantly in the wider context of a complete process design, reveals the far

reaching effects of this principle. In terms of an overall design project what the

principle appears to require is a redefinition of what constitutes acceptable process

design within an integrated environment: a strong but necessary statement to make if

such a principle is adopted.

1.3 The Development and Characteristics of Process Design Software

Having defined the integrated process design problem and the associated types and

sources of information to be managed, there follows a short review on how the

development of process software has proceeded. There have been three distinct

approaches to software development which still exist to lesser or greater degrees

today, namely independent programs, interactive packages and database management

systems. These approaches to program development will be discussed with regard to

their eventual use in the design process.

1.3.1 Independent Programs
The earliest design software consisted of programs specially written to solve a

specific problem such as distillation column design, reactor modelling, etc. The

characteristic of this approach to software design is that it is "program orientated".

That is, the data needed for the program is made to conform to the program

requirements rather than vice versa. The end result is usually a collection or library of

15

independent "stand alone" programs that use and produce data in a non-standardised

manner. Although such programs are undoubtedly useful there are several

consequences of adopting such an approach:

- Much documentation is required if the programs are to be used by others
- Programs will tend to require data in specific, and often restrictive, sets of units.

Units will vary widely between programs.
- There can be a high failure rate or misuse of the programs by "non experts"

Winter(1986).
- Tens of years of man effort can go into developing a single program. Whether the

benefits gained and lessons learned can be usefully employed elsewhere depends
on the contact between users and programmmers within departments. This style
of programming on main frame computers within large companies was becoming
less prevalent by the mid seventies but there has been a resurgence of such
activity with the wide spread introduction of personal computers.

1.3.2 Flowsheet/Design Packages
From the mid sixties to mid seventies there was a rapid growth in the development of

both computing capabilities and in the complexity and robustness of numerical

techniques suitable for computer implementation. As a consequence, quite large

general purpose flowsheeting and modelling programs began to emerge, e.g.

Flowpack I (Id, 1970), Concept (CADCentre), Design 2000 (Chemshare) and

Process (Simulation Sciences). Many of these programs were written by specialist

software houses and were intended to be suitable for a wide range of modelling

needs, hence providing varying degrees of choice between model type, complexity,

and solution technique. In most cases interactive user interfaces were provided to

ease the problems for non-expert users. Important features of these are:

- As use by a variety of companies with varying needs was envisaged, extensive
user and system documentation was necessary.

- Although programs were often interactive, varying levels of restriction were
imposed on the user in terms of choice of units, input style etc.

- As the advantages of structured programming became apparent, programs became
more modular in nature. In particular, input and output routines were separated
from the main calculation routines enabling much easier maintenance and
modification.

- Program output, however, was often in the form of lengthy printouts and
considerable manual typing was necessary for transferring data to subsequent
design programs. Despite the improvements in programming style these systems
were typically costly to support, Winter and Rosen(1986), and the success rates
were still only moderate for occasional users. From a process design point of
view, however, these programs offered the possibility of much more productive
use of a design engineer's time especially during the initial stages of project
evaluation in a design project, see stages 2 and 3 in Figure 1.1a.

16

1.3.3 Emergence of Database Management Systems (DBMS)
The developments in sections 1.3.1 and 1.3.2 can be seen as part of a general trend

that still continues:

- A desire to integrate more and more programs throughout the design process
- Engineers encouraged to use packages rather than write their own programs
- A desire for better efficiency and better utilisation of engineers' time in the

"design phase"
- Continuing development of complex mathematical techniques and computer

software and hardware to tackle more complex problems.

However, as already noted, the proliferation of a wide range of design software

without satisfactory means of intercommunication did little to reduce significantly the

time design engineers spent on handling information. In addition, project managers

under ever increasing pressure to meet project deadlines were still faced with

coordinating a seemingly unnecessary complex mixture of software design activities

and resources. As a result many companies since the mid 1970's, as discussed below,

have looked to the possibility of developing database management systems to

integrate existing design software in a structured and coherent manner. Added

incentives to develop such systems arose from the success of this type of software in

a wide range of commercial applications. The development, implementation, and

maintenance of a large database system requires, however, considerable financial

investment as well as many changes in company management and design practices.

Such a commitment requires that significant improvement can be made. The idea

behind this approach to software development and the advantage that can be expected

from its use in an engineering design environment will now be reviewed.

1.4 Review of the Development of DBMS in Process Engineering
Design

The potential benefits of a data base approach to software design and intergration can

be considered at two levels. First, from a programming and maintenance point of

view and second, from the point of view of the non programming engineer using the

system in a design.

The most important feature of data base management systems from the first

viewpoint is that a data rather than program centred approach to software

development must be adopted. In particular, the principle goal of decoupling

programs from the data on which they operate must be achieved. This is in

accordance with the currently preferred "structured and data independent" approach

to program development. This involves the ability to formulate and develop

17

programs at a conceptually high level without regard for the detailed assignment and

manipulation of data within individual programs. One of the main problems of

current engineering software is the high cost of maintenance which, in many cases,

may be due to strong coupling between program and data structure. Small changes in

either the program or data structure can lead to a ripple of other necessary changes

throughout the program. Any large changes of data structure in application software

will generally constitute a major reprogramming effort. Hence the concept of data

independence has much to offer both in terms of program development and

maintenance.

The explicit management, access and dissemination of data independent of design

software also becomes a major consideration in the use of such systems, given the

important role the use of data plays in the design process, as previously discussed. As

Motard(1983) points out, decision making in the design process depends heavily on

the availability and reliability of information which is just "data" in one form or

another.

The potential advantages to be gained from using a DBMS from an engineering point

of view have been widely discussed, Winter and Rosen(1986), Winter and

Angus(1983), Cherry et al(1982), Zellnik(1967), Benayoune and Preece(1987). The

main points will be summarised briefly here but it should be remembered that most of

these benefits have yet to be achieved in practice, as will be discussed in section 1.5.

One of the main aims of the DBMS approach is to provide ultimately improvements

in the quality of design. Small improvements in reliability or efficiency, or reductions

in design capital costs can often result in considerable extra profits or savings. The

DBMS approach potentially enables such benefits to be gained by freeing the

engineer from the time consuming and error prone problems of collecting,

transferring and checking information and data, giving him more time to consider and

improve the actual design. Proctor(1983) cites cost effective process design as the

primary objective with benefits in engineering productivity and efficiency. In

particular he points out that for a 100 minion dollar capital project with engineering

cost of about 20%, of which process design costs around 20% also, then a 25%

increase in engineering productivity will only result in the same savings as a 1%

reduction in capital. Winter and Angus list some 18 individual benefits to be gained,

such as the elimination of artificial size constraints on problems, especially in regard

to simulation, and the improved ability to evaluate the status of the design through

case study failures, sensitivity analysis etc. They summarise the overall benefits as

follows:

18

Better design through the capability afforded to the engineer to "close the loop"
and achieve a more optimum solution
Reduced costs through the elimination of unnecessary clerical effort and
redundant design activities.

1.4.1 DBMS Characteristics and Data Representation

Much of the present work has been concerned with the development of data, or more

generally knowledge, representation techniques. It is thus important to consider what

representation techniques are available in current database systems.

Large scale database systems have been available for well over a decade and a

considerable amount of literature on them now exists in the computer science field.

Unfortunately the term "database" has been overused and often misapplied. Until the

development of relational databases along with strict functional requirements, there

was much confusion as to the actual definition of a "database" and specifically, how

this differs from some sophisticated file handling system. in a working integrated

environment for process design. A description of a typical but hypothetical database

system and a short summary of database terminology relevant to engineering

applications will now be given.

A database management system can be considered to be the means of accessing,

storing and manipulating data in a structured manner according to predefined

"schemas" which are independent of any program manipulating the database. A

schema will contain details of how the objects or entities which constitute the

contents of the database are to be defined. This will usually include constraints, at

various levels of detail, of what data types and values can be stored. The schema will

be defined by a data definition language (DDL) and the database will be accessed by

calls through a data manipulation language (DML). This may be a language in its

own right or just the language, e.g. Pascal or Fortran, in which the database system

has been written. There are, four basic features of any such system

The database contains not only data but also schema describing that data.
It has a "data structuring" capability in that it represents, or models the
information required for specific applications.
It permits data to be shared between various programs and to continue to exist
between multiple program runs.
It provides transparency of data storage and retrieval in that a programmer need
not be concerned with the programming details of how the actual data is to be
organised and stored.

Avoidance of redundancy, that is avoiding multiple storage of the same data, is also

an important feature of most systems. This helps to try and ensure consistency within

the database.

In some systems, the schema mostly contain information on the physical handling of

19

the data. In such cases, a "data dictionary" is often used to supplement details on the

nature of the data and consequent constraints. This, however, is really only an

artificial division of information in a schema. It some cases it can be regarded as a

collection of metadata and its use will result in a layering of the database in such a

way that the the abstract objects being modelled in the application become values or

instances of the meta objects in the data dictionary. An example of the sorts of

information contained in process engineering data dictionaries is given in

Buchmann(1980) in which three dictionary categories are identified:

Design requirements such as data object identifiers, transaction descriptions,
performance requirements, data volume and transaction rate information,
updating and security constraints.
Description of local and global views of the data which includes all the object
and relationship descriptions.
Definitions of equivalences and aliases which might be at an object-attribute
level or at a relationship level (Buchmann's work is further described in section
1.4.5).

In order to utilise the information expressed in a schema, databases are based, at a

conceptual level, on the idea of a "data model" which expresses the structure of the

information inherent in a collection of data. The three most commonly used models

adopted are the hierarchical models, network models and relational models. These

models are briefly briefly discussed below. Further details can be found in any

standard database text such as Ullman(1982).

1.4.2 The Network Data Model
One of the major influences in the development of database systems comes from the

Data Base Task Group (DBTG) of the Conference on Data Systems Languages

(CODASYL), see CODASYL(1971,1978). They proposed a formal notation for

network data models in terms of a data definition language (DDL), a subschema DDL

for defining different views of conceptual schema, and a data manipulation language

(DML) for writing the application programs that manipulate the conceptual schema.

Most network data models view data in terms of entities, or objects, which have

attributes and are involved in relationships. An entity normally represents some

object in the world being modelled and is often thought of as having an indivisible

nature, but this is by no means a strict requirement. Attributes represent the

properties of the object being represented, while relationships, or links, exist between

entities in order to model associations between the real world objects they represent,

see Figure 1.9.

Figure 1.9: Simple Network Model

7
„,_,)xchaner

Column 	 Pump

\ "11~
Stream

Mathematically, relationships will either be one to one, one to many, or many to

many. One to many is the most common type and many systems do not allow

explicitly for many to many definitions although this can be circumvented by a

further pseudo entity and two one to many relationships. Complex entity-relationship

structures can be constructed using this model.

An important aspect of all data models is the need to avoid data redundancy. Data

redundancy, i.e. multiple copies of the same data, can lead to inconsistencies when

changes made to one copy of the data are not properly applied to all other copies of

the same data. In the case of the network model the notion of "virtual fields”, i.e. a

virtual attribute which refers to the actual attribute on another entity, has been

introduced to help overcome this problem. Appealing though this data model may

seem at first sight, the approach can be fraught with difficulties if not very carefully

applied. Due to the vagaries of the English language much confusion can arise in

deciding whether something is an entity or a relationship, eg the design process itself

could be treated as top level object or a complicated relation. A similar problem is

that of deciding whether something is an attribute or a relationship, such as an entity

"heat exchanger" with attribute tubes or alternatively, two entities heat exchanger and

tube in relation to each other. It is difficult to predict in advance how such decisions

will affect the subsequent operation of the system. Winter and Angus(1983) cite the

common problem of deciding between a general entity type such as a Unit Operation

or a set of individual class types. A distillation column, say, could have a very

different set of attributes from a heat exchanger. Redundant attributes in object

instances could cause data integrity problems in an application if one opted to

describe plant items as instances of a single generic type Unit Operation. This

problem also extends to classifying objects at lower levels such as whether to create

entities such as plate heat exchanger, or to leave the exchanger type, "plate" in this

case, as an attribute. In addition, the classification of data into entities and attributes

21

can result in conflicting descriptions when trying to model different applications

which are to be "integrated". These problems are, in fact, part of much more

fundamental representation problems which have now received some discussion in

the Al literature and will be considered in chapter 4.

1.4.3 Hierarchical Data Model
As its name suggests, the hierarchical data model adopts a layered tree/branch

structure to organise data storage, see Figure 1.10.

Figure 1.10: Simple Hierarchical Model

U it

17~\-
Pmp olmn

Stream 	Stream

It is a special case of the network model and is simply a network whose links form a

"forest", i.e. a collection of trees, with each link representing a many to one

relationship from the child to the parent node in the tree. At first sight it may appear

that few networks are strict hierarchies and that, therefore, the hierarchical model is

less powerful than a network model. In fact, any entity-relationship structure in a

network model can always be represented in the hierarchical model if the notion of

virtual entity types are introduced, see Ullman(1982) for a simple algorithm for this

mapping. Virtual entities, or record types, are just pointers to other record types and

enable apparent duplication of records without introducing redundancy. Such a

technique is required to represent many to many relationships in the hierarchical

model. Figure 1.11 shows the case of a many to many relationship between logical

entities A and B in which virtual B is a child of A and virtual A is a child of B.

22

Figure 1.11: Many to Many Relationship

B
I 	-. 	 I
I 	 -.... 	I

Virtual B_'
/ 	 N1

 Virtual A

More sophisticated use of the hierarchical model has received little attention in the

engineering literature, indeed in the review of Winter and Angus(1983) they are

dismissed without comment. This is unfortunate since several engineering research

applications using Artificial Intelligence Frame based Systems are based on

techniques which are not too dissimilar to the more advanced use of hierarchical

databases, as discussed later in chapter 3.

In the context of a process engineering design environment there is a problem

common to both the hierarchical and network models. The drawback is that a careful

analysis of the entities, attributes and relationships involved must be performed in

advance of specifying the database. Given the size, scope and volatility of the types

of data items involved in a project design this is almost impossible. As

Buchmann(1980) points out, it is a common feature of both models that they are not

adaptable to significant changes in the way an object system is modelled. As a result,

if major changes are made, new relationships introduced etc., then semantic

information, as represented by previously defined relationships, can be lost or

misinterpreted when the global user view of the schema is modified.

1.4.4 The Relational Data Model
Codd(1970,1979), was a pioneer in taking a more formal and mathematical approach

to the representation of data and the allowable operations on it. As a result the

relational model gained wide early acceptance in academic circles but has only

recently become the preferred approach in commercial applications. The

mathematical background to this topic can be found in e.g. Gray(1984). The relational

model consists essentially of relations, n-tuples and domains. A relation can be

thought of as a flat, two dimensional m by n tuple. Each row is an n-tuple, that is a

collection of n attribute values, and each column is a domain. Each of the n

components of an n-tuple is mapped onto the domain of allowed values for that

column. The number of attributes in a tuple is usually referred to as time arity. Figure

23

1. 12 shows a simple example of a relation.

Figure 1.12: Simple Relational Tuples

UNIT

unit—id

unit—name

parameters

etc.

STREAM

stream—id

stream—name

flowrate

pressure

INPUT—STREAM

unit—id

stream—id

Mathematically, a relation is a set theoretic relation which is a subset of the Cartesian

product of a list of one or more domains. The Cartesian product of domains

D1,D2 ... Dn is just the set of all n-tuples (al,a2 ... an) such that al is in Dl, a2 is in D2

and so on. A relation is just a subset of all such tuples, including the empty set.

Individual columns can be identified by a role, or attribute, name as the same domain

may then appear in more than one relation or more than once in the same relation.

Notice that by attaching attribute names to columns of a relation then the order in

which the columns are stored becomes unimportant. Tuples are then viewed

mathematically as mappings from attributes' names to values in the domains of the

attributes. This means that some relations will be "equal" which not be the case from

a strict mathematical definition of a relation. In fact it is quite straightforward to

change from one viewpoint to the other, and in particular, most literature on relational

algebra adopts the more formal mathematical viewpoint.

The set of n-tuples in a relation is unordered but unique. Individual tuples in a

relation are identified by a "primary key" which is unique to each tuple. In data

processing a key refers to a unique value in a field of a record by which the record

can be identified, such as someone's name, national insurance number, process

stream number etc. In the relational model the key is formed from the concatenation

of one or more of the attribute values, all of them if necessary, such that each tuple

can be uniquely identified. Any remaining attributes are said to be functionally

dependent. It is possible to have more than one potential primary key, the choices

being called candidate keys.

A set of simple operations, which define the relational algebra, can then be used to

derive new relations from existing relations. Typical operations include

24

- select or restrict: take one relation and give a new relation by selecting tuples of
the first which satisfy some criteria.

- join: form a new relation by concatenating tuples from two existing relations
where specified matching conditions hold on the domains of the relations.

- project: again form a new relation but only using a selected subset of the domains
of each relation according to some criteria.

For modelling "real world" objects and relations, Chen(1976) proposed constraints on

the choice of relations in an entity-relationship model which recognised two different

classes of relation. Entity relations denote real world entities or objects, things which

are usually referred to by nouns such as stream, pump etc. An entity relation contains

data on all entities of the same type and, therefore, has one tuple per instance of the

entity, e.g. all the particular pumps one is modelling. The other sort of relation Chen

proposed is a relationship relation which links the keys of two or more entity

relations, that is the attributes in such a relation are keys of other entities. There may

also be further attributes which are functionally dependent on the key of this relation.

Figure 1.12 above shows two entity relations, UNIT and STREAM, and a relationship

relation INPUT—STREAM in which there are no functionally dependent attributes.

Chen's model is an intuitive one and is one that has been quite widely drawn upon in

the literature.

In relations where an attribute is the primary key of another entity it is called a

foreign key. Two of the basic integrity constraints imposed on a relational model to

ensure consistency are "key integrity", which requires that all primary keys have

neither non-null nor duplicated values, and "referential integrity", which requires that

all foreign keys have a matching primary key value stored in another tuple of a

specified type.

On first sight much of this might seem very obvious and a simple, elegant way of

storing data. Many problems do however arise in their implementation. As in the case

of the network and hierarchical models, it is not always clear what constitutes an

attribute, an entity relation or a relationship relation. Consider the apparently simple

example of modelling the type of a heat exchanger, an example modified from

Gray(1984). One possibility is to let it be an attribute of an entity relation such as

Exchanger(Id_no, Plant, Rating, Type), where Id_no is a unique identification

number. An alternative is to have an entity for each type, e.g. Type(Type_no,

Fluid_type, Lower—viscosity, Upper. viscosity, Name) which describes special

properties of the type in question. For instance, Type_no 23 might suit Fluid_type

hydrocarbon in a given viscosity range and have name plate_to_plate. A relationship

Type_of(Id_no, Type—no) could then describe the alternative types of exchanger.

This representation is more suitable when an attribute is not really functionally

dependent on the original entity relation, such as where alternative sizes, say, were

25

available for each model of vessel type available.

Another possibility would be to use a separate entity for each type of exchanger and

listing the exchangers of that type, e.g. Plate_he(Id_no), Shell_tube(Id_no) etc. This

might be useful if one is interested in requests of the type "print all plate heat

exchangers" but makes it more difficult to answer "what is the type of exchanger A ?"

since there is no attribute value to print out. Only yes/no questions can be easily

Handled. This is similar to the problem that arises in Predicate Calculus between

having Type(A,plate_he) and Plate_he(A), since one cannot quantify over predicate

names such as Plate—he but only over attribute names. This is explained later in

Chapter 2.

Another problem is knowing how many domains should be combined into one

relation. Considerable work has been done on how to decompose relations into a

normal or irreducible form. A relation is irreducible if it cannot be broken down by

projection into two or more relations of lesser arity in such a way that they can be

joined together to reproduce the original relation. Problems arise when the status of

an irreducible relation depends on the values of the instances involved. An example

might be Sells(Plant, Material, ToWho) which might have instances planti sells

steam to plant2, ethylene to plant3 etc. If each plant could sell all its materials to each

plant it sells to then there are really two relations, Sells(Plant, Material) and

Exports(Plant, ToWho) since the materials exported do not depend on the recipient.

However, if things change in the future and we only want to export certain materials

to certain plants then the original relation is better. This problem is known as

multivalued dependency, and such an example could arise, say, in a preliminary

economic analysis. In the course of a design project it is difficult to predict all the

value instances in advance and how they will affect interaction between relations. In

such cases, normalisation of a database will be hard to achieve. Other common

problems include partial dependency, in which an attribute depends only on part of a

key and thus the relation should be split up, and transitive dependency in which an

attribute depends on another attribute and hence only indirectly depends through the

latter on the relation key. Date(1981) has reviewed these problems in some detail.

An important notion in the relational model is that of data independence. Many

current implementations, following the guidelines set out in ANSI/X3/SPARC(1975),

treat data at three levels of description in an attempt to achieve this. The low level, or

internal, storage description is hidden from the programmer who works with a

conceptual level description. A conceptual schema is a global view of the data

structure and is independent of the various user views as well as the physical storage

structure. This in turn is hidden from the end user who works with a "logical", or

external, level of description representing the user's view of the data. The importance

of the conceptual level is that it isolates the user from the storage and access

mechanisms involved in database transactions. This has important implications from

the viewpoint of maintaining and updating widely used software.

Before leaving the relational model one should note, following Smith and

Smith(1977), that a collection of relations forming a database are not really

independent tables, but rather that an implicit hierarchy exists amongst them. Some

tables will not make sense without information from others and a hierarchy can be

formed showing the dependency between relations such as those between entity and

relationship relations. One type of hierarchy is termed "hierarchy by aggregation" in

which a higher level relation is constructed using foreign keys as components, the

foreign keys referring to lower level relations. Data in this case is being passed on, or

duplicated, upwards into the higher level relations. The other type of hierarchy is a

sub-type hierarchy, each sub-type forming a subset or specialisation of a higher type.

This hierarchy is closely related to the IS_A hierarchies used in Artificial Intelligence

to represent information such as "A pump is a unit".

1.4.4.1 The Binary Relational Model
One solution to the problem of deciding how to arrange attributes in relations, is to

decompose all relations into binary relations of two attributes. The relation

STREAM(Id_no, Flow,Temp) can be decomposed into the relations ST_Flow(Id_no,

Flow) and ST_Temp(Id_no, Temp). Notice that each second attribute is now

functionally dependent on the first and these relations are just ways of representing

the functions Flow(Id_no) and Temp(Id_no). An important constraint, however, is

that for any given key we expect a matching tuple to appear in each binary relation.

Decomposition becomes slightly more awkward when a relation involves more than

one attribute in its key, such as CONNECTS_AT(Unit, Stream, Position) in which

both Unit and Stream are required to form the key. To decompose this relation an

extra field called the tuple identifier (or surrogate key) is created to identify the tuples

and is usually some generated number, N say. The relation can now be decomposed

as CON_UNIT(N,Unit), CON_STREAM(N,Stream) and CON_AT(T#,Position).

A factor in favour of the binary model for development of a project database is that it

is fairly straightforward to extend and modify database schema. This is not usually

the case in the other data models.

1.4.5 Development of Database Management systems in Process
Engineering
Despite the elegant appeal of the database approach as a means of intergrating

software, there are many practical difficulties in the development and application of

27

such, systems in process engineering. Before discussing some of these in detail a

short summary of database developments within industrial and academic areas will be

given. Further references can also be found in the reviews by Benayoune and

Preece(1987) and Winter and Angus(1983). Unfortunately a good deal of the

literature of industrial origin is of a very general nature and lacking in any real

technical information.

Several 	early 	attempts 	at 	software 	intergration, 	(Winter 	and

Leesley(1975),Cherry(1975) and Niida et al(1977)), involved the use of what Leesley

et al(1978) term the integrated sequential file handling system. This involves a pre-

and post-processor for every two programs to be integrated so that the output file of

one program is in a suitable form for the input of the other. This can be satisfactory

for small numbers of packages but the number of pre- and post-processors rapidly

grows as more packages are added, as does the number of data files. This will

inevitably result in data items being duplicated in more than one file with a

consequent increase in likelihood of data inconsistency. This approach is, therefore,

no longer regarded as a satisfactory approach to process integration, see Lone and

Plouffe(1983).

The Chiyoda Chemical Engineering and Construction Company were one of the first

industrial concerns to express interest in the development of a process design DBMS.

An analysis of the requirements that the design process would place on a DBMS, as

discussed later, suggested that at the time no commercially available DBMS was

wholly adequate. As a result, an inhouse system known as CHEIS, Chiyoda

Engineering Information System, was developed (1973 - 1975) to link a small

number of existing applications programs. This work led on to the development of

the DPLS (Database Program base and Language base Support) and SDSP (System

Design/Development Standard Procedure) systems, see Tsubaki(1976). DPLS is

based on the relational model using a three level data model and has been used to

interface the CHESS process simulator, see Tsubaki and Motard(1979). One of the

main changes in emphasis in this work was the importance given to shared project

data and the adoption of a strong data oriented approach to program development.

The SDSP system was viewed as an environment in which data oriented application

programs could be written to run under DPLS.

However, there is no published work on the impact or use of these systems on the

process design activities within Chiyoda. It is interesting to note, as discussed in

Winter and Angus, that Chiyoda appear to have reverted to a more program oriented

approach using a common filing system, WKFILE, to store text and data in large

numbers of independent files. One may conclude that either the facilities in DPLS

02.3

were not sophisticated enough to cope with integrating design software throughout

the design process or that the effort required to achieve this aim was considerably
underestimated.

The next significant industrial contribution to consider is that of ICI, Imperial

Chemical Industries. A one year study was initiated in 1977 on engineering

information management with the view to managing more complex designs and

ensuring tighter control of hazards and environmental factors with the aid of

computing facilities. A good part of the work was concerned with information flow

and design interrelationships within the design process as a whole, as has already

been shown in Figure 1.3 and discussed earlier. The study accepted that computer

based solutions to many of the problems would involve some form of advanced

database management software. Cherry et al(1982) state that although a fully

integrated database covering the complete design process was seen as an ideal

solution, it was considered that database software at that time was not sufficiently

advanced, big enough or reliable enough to cope with such a complex task. Even if

such a system could be perceived to cope functionally it was thought that the system

would operate very slowly. The more practical and shorter term solution was to

design a system comprising a database for each major function in engineering design,

termed "functional databases", with flexible communications between these

functional databases. The aim of this work was to be able to store all the information

which appears on the major output documents in process design, namely equipment

specification sheets and process flowsheets.

An inhouse system called PEDB, Process Engineering Data Base, was developed

which by 1982 had reached its second prototype. At that time little work had been

done on communication between the functional databases but it was realised that

there were many potential problems in controlling data transfer procedures and

maintaining consistency between databases.

To accommodate both design data and performance variations, a structure based on a

Network model was adopted with items such as "plant", "unit operation", "stream"

etc., which are related by connectivity information. Each unit or stream has a set of

design attributes describing properties such as size, material etc., as well as a series of

"performances" which describe operating conditions under various circumstances. A

set of performances for a plant under the same set of circumstances is known as a

"case", such as 70% flowsheet rate, and is a special feature of PEDB. The main

elements of the system were:

A program, HOUSE, for input of user commands an an English like language.
Interfaces to a variety of application programs such as the PLOWPACK

29

flowsheeting program, a physical properties system, FRI sieve tray performance
program etc.
A specification sheet generator, SPEC, for user defined formatted reports
although a library of standard specification sheets is provided.
A two dimensional graphics program for production of flowslieet schematics.

Encouraged by the results of this work PEDB has been developed into a commercial

product called Design MASTER in conjunction with Chemshare and , as such, is one

of the few integrated process design systems available, albeit somewhat limited in its

capabilities. Jones and Liles(1983), Craft(1985), have reported impressive

productivity figures achieved by Des1gnMASTER, see Tables 1.2a and 1.2b below,

but these must be viewed in light of the effort required in setting up any particular

in-house system as well as the value of the benefits to be gained. Craft(1985)

estimates that some twenty one man years of effort has been spent in developing this

system.

TABLE 1.2a: Productivity Gains Using DesiguMaster

Activity How Productivity

Preparation for Calculation Menu Driven Input 2x

Calculation Execution Same as present
lx

Reviewing Calculations Computerised Compare
2x

Equipment Spec. Sheets Automated Production
lOx

Error - free

Process now Diagrams Screen prompted

Heat / Mass Drawings Screen Prompted
Error - free

Data Transfer Automated
Not quantified

Error - free

30

TABLE 1.2b: Reduction in Task Time Using DesigiiMaster

Activity Existing Design-aster %time with

Methodology
Time

Productivity
Boost

Deslgnmaster

Preparing for Calculations
10 2x 5

Execution of Calculations
20 Ix 20

Review/analyse Calculations
10 2* 5

Compiet Equipment Spec. Sheets
15 lOx 2

Produce Process Drawings
15 4x

Others
30 - 30

100 66

The period 1973-1983 saw the development of three major engineering systems,

based on database technology, namely PDMS (Plant Design Management System),

PEGS (Project Engineering Graphics System) and CUES (Chemical Engineering

System), all originating from CADCentre. PDMS and PEGS, however, were aimed at

particular aspects of process design.

PDMS(1974-1977) is a system for three dimensional plant and piping layout and was

developed in conjunctions with Isopipe Ltd. and Akzo Engineering. The system is

based on its own database management system, DABACON. It is a large system and

a description of its facilities can be found in Tricket and Chaney(1982). These include

the ability to create designs of large size and complexity, the production of all forms

of drawing from a single data source (e.g. plans, perspectives etc.), automatic

selection of standard fittings from component libraries etc.

PEGS(1977-1981), in close cooperation with John Brown Engineers and Constructors

Ltd., is mainly concerned with the development of piping and instrumentation

diagrams along with associated lists and specification sheets. As such, it covers the

area between basic process design and pipework engineering. PEGS also uses its own

database management system, BUCCON, which was developed from DABACON.

An interesting feature of this system was that it was one of the first to use multiple

databases. There are three sets of databases:

drawing libraries containing the master copies of all drawings.
project databases containing non-graphical data.
reference libraries of standard symbols for use on drawings, report
specifications etc.

The extent and scope of the information to be stored is user defined on a project by

31

project basis, a data dictionary being used to define the required attributes.

A major component of the system is the draughting module which handles the various

froms of schematics. This module is also meant to capture what they call the

"functional model" of the plant, by which they mean what the items are and how they

are related and connected.

The system is based on a hierarchical model which supports forms of consistency

checking and data security. Although it is claimed to provide total management

information control across a whole project it can only communicate with other

software using external files or specially written interfaces.

Finally, the CHES system (1981-1982), in cooperation with Davy McKee Ltd.,

tackles the problem of the integration of database technology with process design

application programs. As such it is really more of a "front end" in that alternative

database management systems can be interfaced provided they can perform the

necessary tasks. It is based on the idea of an interlinked database architecture

allowing each database to be optionally configured for its own storage and access

requirements. One of the important aspects of this was the construction of a process

flowsheeting system operating directly on the process design database. Many

advanced facilities were provided using the notion of a SCHEME which is a

collection of UNITS together with their associated input and output STREAMS.

These include the ability to simulate the same unit at various levels of complexity and

in different modes of operation, to construct more complex flowsheets from simpler

ones, handle different thermodynamic models in different parts of the plant etc. User

written routines can be interfaced at two levels. Stand alone programs can access the

database via a set of interface routines but may not write data directly back into the

database. if this is desired then the routines must be written in a form called a

MODEL. This contains details of the input and output parameters, the latter of which

can be made to have a PROPERTY. if so, any such parameters will be automatically

be handled by a DATASET facility which will perform the necessary database

storage operations. It is this facility which provides the means for automatic transfer

of data between design software applications.

It is worth noting that other systems do exist which offer similar capabilities to those

of PDMS and PEGS, namely the Intergraph System from Intergraph Corp., see

Matthew and Dietz(1983), and the PLANTMAN system from Quest Genesys, see

Whitney(1983), but little published information is available on these systems.

The final and most recent commercial system that will be considered is PRODOBAS

from Prosys Technology Ltd., see Winter and Angus(1985) and Winter and

32

Rosen(1986). It is important in that it is one of the first systems to be specifically

developed for Chemical Engineering purposes and is based on a relational data

model. It is a large system with a great many facilities which cannot be described

here. However, Figures 1.13 and 1.14 give an indication of the scope of software

integration that can be achieved.

In terms of system facilities, see Figure 1. 13, it is with noting the following:

- various system and utility functions exist for defining new projects, database
security, defining new schema and forms etc.

- user written procedures can be written in the system's own procedural language
for database access, performing calculations etc.

- utility subsystems exist for services such as form management and report writing
independent of particular applications. These utilities can be used directly by the
user or accessed by actual applications.

- application modules bring together user interfaces and utility subsystems into a
single engineering "package"

- multiple schema definitions can be used by different applications

One further point of interest is the three different approaches PRODABAS offers for

integrating application software. The first alternative, which is suitable for interfacing

existing design software with minimum alteration, is to create an interface module

which creates a, so called, input "deck" for the program. PRODABAS then runs the
program with the input deck in either synchronous or asynchronous mode. In a

networked workstation environment this may be done on different machines. The

application then generates an output file which may require alteration to the design

software to ensure that sensible and unambiguous output is obtained. A "write-back"

interface module then reads the output file and updates the database. This approach

has been used to interface ASPEN PLUS and the HTFS program TASC2. Although

this offers a short term, pragmatic solution there are many drawbacks to adopting

such an approach as shall be discussed later.

The second approach, which is particularly suited to new application developments, is

to remove all conventional input/output operations from a program and replace them

with direct read and write calls to the database using system provided utilities.

The third approach is to create the whole of the application within PRODABAS

itself. In order to do this a procedural language, called Bertie, is provided to perform

both calculations and database access. This may be appropriate where many checks

are to be performed on items in the database.

Given the wide range of facilities in PRODABAS, it may be considered to be "state

of the art" database technology.

Considering the lack of technical literature in this area it is unfortunate, and

33

MONITOR

utility system user utility 	applications

functions management written subsystems
and configuration procedures interfaces I facilities

SYSTEM SOFTWARE

SYSTEM SERVICES

Figurell3: Prodabas Software Structure

EDITOR I I FORMS I I REPORTS I 	I GRAPHICS
	

TABLES

System System I Manager Utilities

I 	 DATABASE

CATION

User Written 	I Flowsheeting I 	EquipmenLl
	

Project

Modules 	 I 	
Design 	Engineering

—iNTERFACES -

In-house
Program

Simulators
I I

HiTS / I 	Draughting
HTRI etc. 	Systems

Figurel.14: The Prodabas System

34

somewhat surprising, that very little academic work has been undertaken, especially

compared to other related areas such as flowsheeting and simulation.

One of the earliest works was that of Cherry(1975) who argued for the need for new

requirements in database management systems in order to handle engineering data.

Many of his ideas can be seen in the development of PEDB with which he was

connected. In particular he points out that there are two distinct classes of user,

namely the end user and the application programs, and that these will place different

requirements on a database system. For example, a program may access the database

in relatively few, closely defined ways whereas a human user may wish to make

ill-defined requests involving a wide range of data types. It is important, therefOre, to

take this into account in the design of a process engineering DBMS.

Buchmann(1980) has argued that given a good database design approach a general

purpose database management system should be adequate for process design

applications. His work compares different data models from which he argues that a

binary data model is most suitable on the grounds that it is more stable, easier to

construct and has explicit semantics which force the database designer to understand

how data will be associated. It is proposed that a layered database along with a data

dictionary based design approach will reduce the complexity of handling design data.

As a result , he has proposed a structure for an integrated design environment,

currently being developed at the University of Mexico, which includes a family of

design databases in much the same vein as the functional databases in PEDB. In

particular he suggests division into three types of databases one project wide data

base for approved data, a set of temporary databases for preliminary design data, and

a set of static catalogues for standardised, non-specific data. Buchmann's assessment

of the nature of the data handled in the three categories is shown below in Table 1.3.

35

Table 3: Volume and Nature of Data handled in Project Design

data category volume volatility update/
retrieval

simulataneous
access

approved project monotonic growth, low low high

data low -> high

temporary data low to medium high high low

catalogue data variable very low zero low

An interesting aspect of this work is the formulation of a homogeneous representation

of both graphical and non-graphical data. In order to represent graphical data, such as

that involved in plant layout, Buchinann has decomposed a relational type model into

a binary model that remains consistent with the overall database model. The work

makes use of recursive graph theory to describe the graphical information being

modelled. The representation involves the use of octuples of classes, such as the sets

of nodes and arcs involved, and various standard operations for manipulating the

graphs. Typical operations include JOIN, combine two graphs, ZIN, insert a graph in

another, etc. in much the same vein as a relational algebra. The standard

representation of graphical data is a problem that has received little attention in the

literature.

The final piece of academic work to be considered is that of J3enayoune and

Preece(1985). This work describes the specification of what is called an Engineering

Data Model, EDM. This represents the world as a collection of hierarchies of

OBJECTS linked together in a network type structure through ASSOCIATIONS.

OBJECTS can be "primitive objects", the smallest indivisible objects such as "tube",

or "sub-objects" or "composite objects". Sub-objects are components of a composite

object and can be primitive or composite in nature. Composite objects are made up of

two or more sub-objects. Objects can then be classified into OBJECT-TYPES

according to their properties, which can be further classified into

OBJECT-SUB-TYPES.

Properties can either be SIMPLE, such as temperature, or OBJECT-PROPERTIES,

36

such as upstream connection, and can be further described by characteristics such as

minimum and maximum values etc.

Associations between objects can be of three types:

Object-Object : Those in which one object is a sub-object of another. This
would appear to be semantically redundant, however, given the definition of a
composite object.
Object-Property : One in which one object is an OBJECT-PROPERTY of
another
Property-Property: Those in which at least one property of one object can be
derived from the properties of another. It is not clear how useful this is since
many properties will be in some way dependent on one another.

Objects can also be made "equivalent" to enable automatic update of one set of

properties if the other set changes. The implementation is based on the RAPPORT

relational database system, see Schmidt and Brodie(1983), but it is not clear what the

EDM has to offer over other data models adopted in previous systems. The work,

however, is still of interest due to the claim that a Knowledge Based Management

system can also be supported.

37

Figure 1.15: System Architecture of ElMS

	

User Al I 	I User A2 I 	I User Dl I 	I User B2

CAD/CAE 	Discipline A 	Discipline B CAD/CAE
Package A 	view of data 	view of data 	Package B

Knowledge Base Schema

Knowledge Base

Expert

	

Sysyem 	

KBMS 	DBMS

Standard rData y
 Bank

	

I Global I 	 I

Logical 	 I Schema] 	 I Logical
Schema A! 	 Schema B

4 	 I Global 	I

Database A 	
I Project I 	

iase B I Database I

Figure 1.15 would imply that expert systems, yet to be discussed, can also operate

within this environment. Unfortunately no details of any part of this work are given

so it is impossible to comment further. Of obvious interest would be how they

differentiate between "data" and "knowledge" and how the data and knowledge bases

interact. It is stated that the "knowledge" component is represented by means of the

database. If this is so, however, then there are serious drawbacks to this use of a

relational database, see chapter 3. It is interesting to note that much of what is called

the EDM is now provided, albeit in a more abstract form, by several current Artificial

Intelligence Knowledge Based Systems.

An interesting feature of many of the database projects reviewed here, is the preferred

use of a network of satellite process databases, which manipulate "live" data, linked

to a central, more static, project database acting as a store for "approved data". 'Ilie

alternative solution would be to design a single, very large process database.

Craft(1985) argues that the former approach provides a preferable solution in terms of

38

the difference in function of database systems on either side of the "Process Flow

Diagram Event", in that each database can be tuned to the particular needs of any

design activity, as in the case of DesignMASTER.

This seems somewhat of an artificial argument in that what is at issue is the need to

allow alternative control and search mechanisms at different stages of a project and

the ability to view data at different levels of detail as is appropriate. To achieve this

through the use of separate databases, which may be acceptable for short term

purposes, does introduce various problems with regard to transferral of data and

maintaining up to date information throughout the network. Some of the more basic

operational problems connected with the operation of database systems in

engineering design shall now be discussed.

39

1.5 Impact of Database Management Systems

Despite the considerable interest generated in the use of database management

systems and the development of commercial systems such as Prodabas, it is still true

to say that such systems have yet to make a significant impact on the process

industries in the same way that they did in business applications. It is important to

discuss why this is so, since the potential benefits from the use of such systems have

been widely accepted in terms of both, design improvements and financial gain. This

shall be done in two levels : firstly some basic problems will be highlighted which

have to be faced sooner or later in the development of a process engineering DBMS.

Secondly, some fundamental criticisms will be made of what can ever be reasonably

achieved by such systems. These criticisms, therefore, will form the main motivation

for the rest of this work.

One of the most obvious problems, as seen from the review of industrial development

projects, has been the non-trivial task of developing specific database management

systems, often from scratch, since most commercial systems have been perceived to

be inadequate for many aspects of the design process. As Sargent(1983) suggests,

companies must be prepared to take the time and effort to develop a system which

may mean many changes in working practises. The development of such systems

will, however, require considerable guidance from experienced design engineers and

many companies, especially those primarily involved in contracting work, will be

unwilling to devote sufficient resources to what is often seen as a long term

development. Thus, the resources and development time required to produce a

workable DBMS, whether done in-house or, more recently, with the use of

commercial systems, can be seen as one of the major stumbling blocks in their
application.

It is worth considering just why commercial database systems were often seen to be

inadequate for engineering purposes. One of the most basic differences between a

data processing environment and an engineering environment is the nature of the data

stored. As an example, business data will typically map easily into a relational data

model : there being many recorded instances (tuples) of a few record types

(relations). The schema for the relations are usually composed from simple data

types such as scalars and short strings. Schema for relations in an engineering

application are more complicated for two basic reasons:

1. Several additional data types have to be handled. This includes long
unformatted textual data, numeric data of various types (integer, floating points,
double precision, complex etc.), logical data, vectors, matrices and record data
types. It is worth noting that many systems place considerable restrictions on
the size of any individual data item.

D]

2. There is often a need to be able to express the "structure" of engineering data,
such as part-whole relationships, which will involve combining several tuples
from more than one relation to form a more complex entity. Several methods
have now been proposed for handling these structured data types, see
Lorie(1983).

Another fundamental difference between engineering and business applications is the

way in which the data is used. There are two aspects to be considered:

The engineering environment can be essentially characterised as a problem
solving one rather than one for primarily disseminating information. Very little
attention has been given to the problem of easily interfacing or developing
"independent" design programs within database systems. To achieve this
satisfactorily, it is likely that a variety of data models will need to be supported
within a single DBMS to provide the required flexibility, see Baiza, Bernhardt
and Dube(1983).
The length of a transaction with the database in a data processing environment
is usually short (a few seconds) and typically involves only a few "reads" or
"writes". Most databases will be designed to optimise this style of operation.
Engineering transactions will, however, be substantially longer, days, weeks or
months, and may involve a great many "read" and "write" operations.
Significantly different techniques for the management and control of such
transactions must be provided if problems of data inconsistency are to be
avoided.

The latter point raises one of the most vexed questions that the designer of a DBMS

has to face, and yet to be properly answered, and that is the problem of how to deal

with "versions" of data and "data sets", and how to provide the configuration control

mechanisms necessary to cope with such data. This requires some explanation: An

engineer will typically use data in order to solve a particular problem. The data will

represent say, a particular fluid or object, A, as opposed to any other fluid or object,

B, although the data has the same definition in both cases. Hence, the concept of a

data set which associates a group of data with an abstract unit of "work". As yet,

there is no problem. However, solving many engineering problems requires a

significant period of time, and often proceeds in an iterative fashion. When part of a

design is under revision it is usual to keep track of various alternatives or choices for

a variety of reasons. It would be extremely expensive to duplicate all the project data

every time an alternative is to be considered and so it is usual to create an "iteration

baseline" and only store the modifications to changed items. This gives rise to the

notion of "versions" of data. Major versions are complete copies of the database,

while minor versions contain only the necessary modifications. The data sets in these

versions now have to contain and represent a meta-level of data, i.e. data about data.

This will include information on when the data was created, by whom, its quality

(however defined), its source, it s validity (in relation to other versions etc.) and so

on. Such information is necessary to enable judgements about the "stability or relative

worth of the analysis performed on the data", Baiza et al(1983), to be made.

41

We then have the problem of how to provide control mechanisms to manage such

data if we are to avoid a chaotic situation where several people are working on the

same problem at the same time. The problem is exacerbated by the length of

transactions performed on the database so that standard lock, wait and deadlock

resolution techniques cannot be used. One proposed solution, Lorie(1983), is to have

controlled releases of data enabling individual engineers to work independently.

However, there are then problems of reconciling various sets of data into one

compatible, consistent updated database, some engineers having access to important

data while others do not etc. Problems such as these are especially relevant in

systems which adopt an approach using a network of smaller satellite databases. If a

control mechanism can be devised it will have to allow for the particular practises of

any one company, since no two companips will use the same set of classifications of

Data Sets nor enforce the same set of restrictions on their use.

A further stumbling block in the application of many early systems was the inability

to redefine schema easily, i.e. add new attributes etc. Due to the size and complexity

of many engineering projects, it is virtually impossible to pre-define all the necessary

data types, associated attributes and relationships prior to the start of a project. A

continual but limited revision of the definition of schema and the level of detail

required is therefore likely to be a feature of many large engineering projects. Such

changes are difficult to achieve in many hierarchical and network data model

implementations. However, many current relational database systems do provide the

facility to dynamically redefine schema but will still require, in many cases, some

re-organisation of the database. It is unlikely, and quite unacceptable, that any

unaffected programs accessing the database would have to be modified.

One final problem, which has been overcome in several modem systems, is the

important feature of allowing multiple logical views of data. This becomes important

as soon as an attempt is made to integrate programs which share different forms of

data. This facility, however, was not available in many early database systems.

Proctor(1983), has also discussed some of the problems that a process engineering

DBMS should cope with, but in broader engineering terms. These include the

problems of communication between groups in a design project (as indicated above),

handling of project schedules and transfer of data, making expertise available and

applying it appropriately, the treatment of "uncertainty" as a project develops and the

management of the various trade-offs that have to be made in any project. These in

turn will include a trade-off between

1. Design accuracy and reliability and the allowable time for design

42

Plant cost and process integration and the resulting flexibility in plant operation
Plant cost and ease of maintenance
Process flexibility and design complexity, tied to 2) above.
Design safety factors and desired reliability.

Many of these are classic problems in project management. Current database

systems, on the other hand do not provide the means by which these issues can be

conveniently represented in regard to restricting and controlling the design activities

carried out on the database. Proctor also highlights the problems that automatic

updating of the database can present. If, for instance, some new physical property

data is obtained how far should one go in checking "downstream" decisions

dependent on this data, such as sizing of separation columns, calculation of heating

utilities etc. If such updates are to happen "automatically" then how are we to

represent data dependence, and how much "history" of the use of data should be kept

? Indeed, who should be authorised to make such updates if they are to happen ? The

vast majority of all these issues have yet to be satisfactorily resolved. It is interesting

to note how many of these problems can be seen to be directly dependent upon the

control mechanisms available within the database management system.

1.6 Fundamental Criticisms of the Database Approach to Integrated
Process Design

Most of the "low level" problems that a DBMS has to cope with, as described in the

previous section, could be overcome in a carefully designed environment. In spite of

this, I shall argue here that there are several fundamental issues that any such system

could not easily address and as a consequence, suggest that future development of

DBMS in currently recognisable forms needs careful consideration given the notion

of integrated process as described earlier.

Despite the wide usage and reference to "integrated process engineering", as if that

were some well defined term, one of the striking features missing from the

engineering literature on this subject is a precise statement of the problem that the

people who adopt database software are actually trying to solve.

It is widely accepted that engineers spend a good part of their time in handling

information of one sort or another, loosely referred to as the "data problem" (see

Benayoune and Preece(1987)), and that there is a perceived need for some sort of

information handling system. In my opinion there is a perhaps subtle, but crucial

omission from this generally held view and that is one must ask "an information

handling system - yes - but to do what ?". I shall now try to explain why the need for

knowing and representing how an information system is to be used must be an

43

essential requirement for its development and operation. Most of the problems

described in the previous section will be seen to be direct consequences of avoiding
the solution of this problem.

Consider the following statements typical of those found on the development of

DBMS within process engineering. Cherry(1982), on the development of PEDB,

argues for the "provision of an effective information handling system", the long term

goal being an "integrated suite of data bases for handling all project data, from the

earlies stages of design, through detailed design to construction and operation". In a

similar vein, Benayoune and Preece(1987) state that "the obvious solution to the data

problem as outlined above would be an integrated system with automated

data-handling facilities." They go on to state that the real solution to the problem lies

"in a system which does more to the data than just transfer it from one package to

another". It is interesting to note the basic criteria they specify for such a system:

- data should be independent of any CAD package that uses it
- data should be provided quickly and accurately when required.
- different design teams should be able to share data without any undesired

redundancy
- data consistency and integrity should be maintained
- the system should be safe from any software or hardware failures
- data should be kept secure from unauthorised access
- data maintenance should be carried out by its owners without them requiring

special training.
- the system should be easy to use even by casual users.

It would appear from this, and similar work (Winter and Angus(1983), Winter and

Rosen(1986)), that the problem is basically seen as one of providing a convenient

means of data storage and retrieval. The requirements provided by Benayoune and

Preece, as quoted above, do little more than to add the words "effective and robust" to

their described solution of an "integrated system with automated data-handling

facilities". Indeed, other work on the requirements and characteristics of a DBMS

(James(1985), Proctor(1983)) has all been done in a rather vague and general fashion

in terms of ease and flexibility of use rather than with regard to what this would

actually entail in the technical development of a database system. Given this state of

affairs one can therefore assume that the main problem to be solved is seen as that of

providing a means to ensure some sort of "integrity and consistency of data". (see

also section 1.2 for a proposed definition of what this means.) If this is so then one

has to seriously consider in what terms consistency and integrity of data can actually

be achieved within a design context.

If an acceptable control mechanism can be devised for the access of data then one can

obviously achieve consistency in the narrow terms of the availability of the same data

at any one time. In addition, simple numerical or symbolic checks can be made to

44

achieve limited means of ensuring "sensible data values". The main point to be

realised is that neither of these facilities provide the means to check consistency or

integrity of data in terms of the principles upon which the data is based and the

semantic implications of how that data is combined and manipulated. A trivial

example would be a program supposed to be modelling a highly "non ideal"

equilibrium situation using either "ideal" data or "ideal modelling techniques." Thus,

we can have a "consistent" database in terms of data availability but a wholly

"inconsistent" database in terms of what the data represent, how it has been generated

and how it is to be manipulated. Further examples of this type of inconsistency were

described earlier in section 1.2, taken from the work of Mah(1977) and Adler et

al(1977). Notice that the consistent use of data manipulation techniques, which in the

design context will be in the form of consistent design and modelling assumptions,

are now just as important as the data itself. That is, we must now also know how a

system, or the data within it, is to be used and how the actual data manipulation

methods can be sensibly combined in much the same spirit as relational algebra

constrains how data can be combined. A probable reason why so many problems are

encountered when adapting database software for design, is that in business

applications the user's view of the data and the operations he expects to perform on it

are very much closer to the intentions of the designer of the database system and,

hence, the appropriateness of the user interface presented by the database system.

This is emphasised by the fact that in most commercial applications it is normal to

carry out a formal data analysis phase in order to totally specify the conceptual

schema with which will meet the requirements of all the programs in the application

system. It is, however, much more difficult to analyse in advance exactly how a

DBMS will be used throughout a design project and beyond.

The second basic criticism of the current database approach, following on

immediately from points concerning the previous one, is that in an integrated design

context it is not the "data integrity" problem that should be of primary concern.

Rather, it would seem that the solution of the "integrated process design problem" and

the ability to maintain "integrity of knowledge" see section 1.2 are of prime

importance in the coherent development and operation of any engineering design

system. It must be re-emphasised that design systems will primarily be used in a

"problem solving" fashion, where knowing what you are doing in terms of

assumptions and expected effects is all important. This is very different from data

processing systems in which data is typically used in simple value matching

operations. The next conclusion to be made, therefore, is that we must have a means

of representing the issues involved in these higher level problems and adopt a "top

down" approach, as it were, to system development rather than a "bottom up"

EV

approach in which we try to add constraints to a basic data handling system. Whether

or not one accepts the proposed definition of integrated process design, it is certainly

true that most of the problems encountered in the development of DBMS in process

design, especially in their controlled operation, stem from the inability to explicitly

represent design methodologies both at the highest levels and at the low level of

analysis of assumptions and functional data dependencies involved in a particular
solution technique.

An example of this at a higher level would be the ability to provide flexible control
mechanisms between different .. design groups involved with "long term data
transactions" given an explicit representation of the relative importance of that work

and the manner in which it interacts at any particular stage of the overall design

process. Representation at a lower level, such as that of an individual design program

(e.g. column sizing), is tantamount to the requirement that the system be explicitly

aware of what that program does in functional terms. This, of course, radically

differs from the current situation in which application programs are treated in a "black

box" manner, both by the system and the non-frequent user. In retrospect, it seems

rather obvious that trying to adopt software which was intended primarily for data

processing rather than problem solving environments, and in which there was no need

to consider these higher level issues in its development, would inevitably result in a

great many practical problems. From a more general point of view, it is unfortunate

that development in the integrated process design systems area, noticeably much of it

industrially led, has apparently proceeded unchecked on

a relatively ill defmed problem, whilst
adopting software representation techniques which seem far from adequate for
the problem at hand.

In particular, current process based database systems fall far short of providing the

functional capabilities required by a system which attempts to offer an integrated

environment given the, albeit simplified, definitions of integrated process design and

integrity of knowledge presented earlier.

1.7 Extension of the Database Approach to the Knowledge Based
Approach

Given the previous discussion, the remainder of this work shall assume that the main

problems to be considered are those of integrated process design and integrity of

knowledge, as defmed in section 1.2, in the expectation that many of the difficulties

associated with the integrity of data shall be sufficiently constrained as to allow

convenient solution. In order to attempt the solution of the problems two extra, but

46

essential, levels of explicit representation shall be proposed:

a means to both represent and interpret the basis and effect of operations which
manipulate data in terms of known assumptions and functional dependencies. In
terms of process design this will usually mean explicit knowledge of a process
model, the assumptions upon which it is based, validity of techniques etc.
A means to . represent, and hence reason about and control, an overall design
methodology, whether at a project management level or a problem solving
level. There is, of course, a third more basic level of representation required on
which levels 1) and 2) will ultimately depend, and that is -
A means to represent the principles upon which "data" is based. One can think
of this as an extension to functional dependency checking facilities in current
database systems.

Levels 1) to 3), if they can be represented, can be seen as forming the basis of what

shall be called a Knowledge Based System for process engineering. Figure 1.16

shows in a general way how these levels of representation interact with the design

process.

Figure 1.16: Knowledge Representation Levels

Methodology J --- Project Control

Functional Effects)f Design Processes

Principles Underlying Knowledge
)................................. I Design Information

It is important to notice how methodologies, that is problem solving strategies in a

general sense, can be conceptually represented at various levels of detail in regard to

the overall project design methodology.

The use of the word "operation" can be thought of as a specific formulation of a

"model" if one is prepared to use the word "model" in a very general sense, e.g. a

model of a unit operation, a model of a problem solving technique etc. The first two

levels then become somewhat recursive in nature if successively reapplied at various

47

degrees of detail.

The requirement that one should be able to represent and reason about both the basis

and effect of an "operation" raises yet another important feature of process design not

currently catered for in database management systems. That is the facility to represent

the reasoning behind decisions made in the design process. This type of information

is of immense value in "downstream" activities such as hazard analysis, and of

fundamental importance when considering plant retrofit or uprating projects.

Obviously, if one has gone to the trouble of creating a project database it would be

sensible to use this body of information to it s full extent in improving the day to day

operation of a plant. It is frequently the case that many engineers involved in the

design of a plant will not be involved in the long term operation of that plant and,

hence, important information could be "lost" if design decisions and data are not fully

explained in a plant's design manuals. One example, from personal experience, is that

this often seems to be the case in terms of explanation of badly written detailed

modelling programs used in the early stages of design.

1.8 A Process Systems Engineering Formulation of Design
Methodology

Having identified the need for the explicit representation of various aspects of design

methodology, i.e. how one can proceed at differing levels in a project design, it is

worthwhile considering a basic problem solving framework, namely process systems

engineering, in which these ideas can be developed, both in general engineering terms

and the low level technical representation techniques that will be required.

An unfortunate feature of the chemical engineering literature is the lack of discussion

on the nature and role of process systems engineering within the area of "integrated
process ckc1r'. It is unfortunate in the sense that a careful and well defined use of

such an approach could provide a convenient and flexible framework in which many

of the "control" issues in process design, as discussed earlier, could be resolved.

The term "process systems engineering" appears to have been first used in 1963 (title

of CEP symposium series No. 46, vol. 59) . For a considerable time the term seems to

have been synonymous with the notion of "computer applications in chemical

engineering" but as Takamatsu(1983) points out this is a misconception in that

process systems engineering, as a specialisation of systems engineering, is a topic in
its own right with considerable methodological content.

Takamatsu defines "systems engineering" as a "methodology for making engineering

decisions in a system which is composed of many sub-systems or parts and has to

48

satisfy and achieve any set of conditions and objectives". It is thus concerned with

general methodologies for decision making in planning, design, management, control

and operability issues etc. He goes on to specifically state that it should indicate

how to plan,
how to design,
how to operate, and
how to control

both the unit operations and the actual overall chemical process itself. We, therefore,

have a potential framework in which-it is possible to describe the wide set of

activities, as described in section 1.1, which constitute the broad notion of integrated

use of a knowledge based system in process engineering.

A brief review, mainly from the work of Blass(1986), of the concepts involved in the

application of systems engineering to process development is provided here in order

to introduce a novel approach to design methodology well suited to a sophisticated

design environment, termed "appropriate and incremental parallelism".

From a systems engineering point of view, any "system", such as any chemical

process or component thereof, can be analysed in term of it5 development, its

realisation and its use. As a problem solving methodology, therefore, systems

engineering embodies two basic ideas : a) the system concept and b) the systems

engineering procedural model. The system concept simply refers to an arbitrary

entity, called a system, which is separated from it's surroundings by a defined

boundary. A system is composed of system elements which are "related to one

another as well as to the surroundings via the system input and output". The

definition of what constitutes a system is somewhat arbitrary in that the definition can

be recursively applied to each sub-element until the required level of detail of

analysis is obtained. This is a familiar notion to chemical engineers and provides a

simple, generic way of describing a large range of widely differing "objects" such as

particular items of equipment, an abstract unit operation, the concept of a flowsheet,

process flow diagram, etc.

The systems engineering procedural model serves two functions. First, it labels the

chronological development of a system, from the initial abstract process formulation

right through to its concrete realisation, in terms of perceptible stages also known as

life stages. In terms of process development these life stages will refer to the main

process events such as "freezing of the process flowsheet diagram" etc. Secondly, the

procedural model introduces a problem solving strategy which can, in principle, be

successively reapplied to every life stage of the system. Figure 1.17 shows this in

simplified form where the outer ring represents the generality of the procedural model

49

which can move over the various system life stages.

Figure 1.17: Simplified Procedural Model

Abstract

lements of
robkm Solving
lethodology

/

Concrete

Figure 1.18 shows this in more detail, also showing an inner ring signifying the

storage of knowledge (data, methods, etc.) required for each life stage.

50

Figure 1.18: Detailed Procedural Model

Information Stor age
Procedural Principle

Task Definition

Search for Solution

Selection of Solution

Preliminary Study memory

Methods and Data

Problem Solutions

Function

Physics

1~:---T
Construction

Main Tst

Information Input

Requirement List 	List

Information Output 	

Boundary Conditions Concept Results

Flowsheets 	
Storage Contents

Calculations

Information Gaps

Note the presence of information "gaps " in the output, which will appear in the form

of requests as there will nearly always be the need for experimental data in the

development of a process. Blass(1983) considers in further detail the role of

experimentation and its interaction with the procedural model. It should be also

noted that the life stages are split into a preliminary study, a main study and detailed

studies. The preliminary study provides an initial system from which further

subsystems can be considered and defined. The main study must contain the concept

51

of investment decision and must also specify the necessary detailed studies that are to

be subsequently carried and their relative importance. The concepts of project

planning must therefore be also embedded in the systems engineering procedural

model, which will be of considerable importance in later discussion. Blass then

proposes three levels of data abstraction for use in these studies. These levels of

abstraction prove useful in defining the level of detail that is required in defining a

system, in analogy to the redefinition of schema as previously mentioned. The three
levels, are:

Functional Level - the initial task formulation must provide the global function
of the process. This is further divided into particular functions, such as
separation, reaction, mixing etc., which are combined to provide the functional
structure of the system. The resulting level of representation corresponds
closely to what one normally finds in a basic flowsheet or block flow diagram in
chemical engineering.
Physical Level - in the preliminary study the functional structure is translated
into physical and chemical effects which at the time of the main study can be
further refined to the necessary level of detail. This level of detail will result in
the formulation and specification of the process flowsheet, previously referred
to the as the process flow diagram event.
Constructional Level - this level of detail corresponds to the detailed
development of the piping and instrumentation diagram and beyond.

Obviously the specific classification of levels used in any one situation depends

entirely on the application program developers. Nevertheless, they identify three

abstract but convenient levels that can be developed in relation to the specification

and operation of the procedural model. The need for relating data and knowledge to

it's intelligent interpretation and use is a fundamental point which will be emphasised

and expanded upon many times in this work.

The point of this short review, since most of the ideas are quite straightforward albeit

in a new terminology, is to provide a theoretical framework within which it is

possible to formulate formal control and operational mechanisms for a knowledge

based system which adopts a structured approach to integrated process engineering.

At the same time it is based on levels of representation which correspond closely to

those described in the previous section. This is in stark contrast to the database

approach where such management issues are not explicitly represented. From a

process systems engineering viewpoint, this is a major argument against their

continued development in present form.

In terms of actually specifying the details of the procedural model Blass proposes a

very general iterative method which characterises the typical "sequential/recycle"

approach to design, as shown in Figure 1.19.

52

Figure 1.19: Procedural Approach of Blass

Problem]

Search
for Objective

- - - -1 Situation 	Analysis F - - -
I i
ri
I

I Formultion of Objectives
I

Search - -

for Solution
*Synthesis

I

j
Choice

I
I 	I 	Evaluation 	- - -I

I 	I

V ®

Result

As indicated earlier the resulting effort and amount of data handling will

heavily on the order in which design tasks are formulated and solved. This

that the definition of the procedural model must be very carefully considered if an

efficient design methodology is to be developed. Takamatsu(1983) proposes a more

detailed engineering formulation of this general method, see Figure 1.20, which is

then applied to overall process design, detailed unit operation design, design for

control and operability, and batch process systems.

53

Figure 1.20: System Analysis of Takamtsu

(I)
Analytical
information
related to
a process
system to be
synthesised

(2)
Selection of
related phenomena
or events

Assumption of
a structure of
corelationships
between phen-
oinena or events

Quantitative
expression of
relationships

Observation
and
Experiments

(7)
Estimation of
uncertainties in
qtiaktative
relationships

(6)
Engineering
Decision
(Optimal Design

Realisation
(10)
Back-up
measures for the
effect of
uncertainties

(8)
Analysis of the
effect of uncertainties
on the result synthesised

(9)
Conditions and
Objectives to
be satisfied

Both workers emphasise the importance of basing decisions within the wider context

of the "design at that time'. This is naturally catered for by taking account of any

outer system which embodies the subsystem which is currently being considered if a

convenient means of information between parent and child systems can be

devised. Blass stresses the point that providing an explicit design methodology does

not restrict the creativity of the design engineer. On the contrary, it provides a flexible

framework which can be easily applied to novel or complex situations and must be

"filled" in a creative way. In addition, the more novel or complex a process is, or the

more it varies from known knowledge, then it is all the more important to provide a

54

methodology in order that a start can be made on the problem. This seems particularly

relevant for the future development of novel processes, especially batch ones, and in

face of the established trend of more highly heat integrated process plant.

The final feature of this introductory chapter is to introduce a novel design

methodology called "appropriate and incremental parallelism", (AlP). This is based

firmly on a process systems engineering approach to process development and

represents a novel definition of a systems engineering procedural model for process

design. The motivation for a fresh approach stems from the following observations:

As already discussed, there is a large but coherent flow of information
throughout a design project, the processing of this taking a considerable amount
of an engineer's time. This is complicated due to the interdisciplinary and
collaborative nature of process design and the need to make design information
easily accessible to all those concerned. It has been argued that the
management of this information must be done in a way that not only ensures
consistency of data but also ensures integrity of knowledge in terms of
maintaining awareness and consistency of use of design intentions and
assumptions.
The scale and complexity of most design problems means that they must be
broken down into successively smaller sub-tasks. The overall size and
management of the problem in conjunction with the inevitable trade-offs
between design detail and available time for analysis means that important
details can be overlooked. This can be compounded by the fact that good
communication of skills and techniques can be difficult to achieve in a large
company environment.
The traditional "sequential/recycle" approach to design and the less than perfect
communication between design groups leads to a lack of awareness of what
others are doing at a detailed level. This in turn often results in the unwelcome
event of design modifications. Two typical activities which almost invariably
give rise to such modifications are control system design and line by line hazard
studies, Duxbury and Preston(1987).

It requires little thought to realise that the manner in which design activities are

coordinated will directly dictate the speed at which the design can proceed and the

effort involved. Traditionally, design methodology has been necessarily sequential in

nature with some recycling of effort as the design proceeds in an iterative fashion. In

addition, it should be well noted that this recycling of effort is often required

precisely because certain activities such as control and operability analysis, detailed

hazard analysis etc., are carried out in a sequential manner and are not fully

considered in the early stages of design. Although it would obviously be

inappropriate to consider these issues in too much detail at too early a stage in the

design, considerable insight on the direction and feasibility of process design can

often be made by a limited use of such activities. An alternative approach, therefore,

is to use "incremental" design procedures allowing various expert engineers from

different disciplines to contribute as much detail as is possible and "appropriate" to

any stage in the design process. The essence of this approach is that issues such as

control and operability, process flexibility, hazard analysis etc., are considered in

some detail throughout the whole of a process design. This is in contrast to the view

that they are "downstream, revision" activities, as seems the case in traditional

approaches to design. The difference between the two approaches is represented in

Figures 1.21a and 21b below.

What is new is not the particular design activities involved but rather their interaction

and the stage at which they become part of the overall design process. There are

several advantages of this new approach worth discussing.

First, a much more thorough, well thought out design should be obtained by having

expertise from various disciplines constantly monitoring the progress of the design.

Thus, there should be far fewer "downstream" design changes encountered.

Secondly, it provides an alternative means of tackling large scale combinational

problems such as line by line hazard and operability studies (Hazop). Instead, the

level of hazard identification can be continually refined as the design proceeds. At

present, a detailed line-by-line hazop study can use up considerable resources, in

terms of skilled engineers' time, in its completion. In addition, to the methods

employed it is inevitable that a thorough plant wide investigation of both causes and

consequences of hazards cannot be fully achieved. Plant scale problems such as these

(including heat integration and many other optimisation problems) will no longer be

viewed as large, difficult "one off' problems to be solved, but rather as an ongoing

"learning" process.

In terms of "control" of the design activities, the expertise being constantly provided

at the level appropriate to the stage of the design will prevent too much detail being

introduced at too early a stage in the design. With regard to the systems engineering

model a coherent parallel structure can be introduced into the design process which

can be successively refined as the design proceeds. A parallel, broader based

decision making process should also enable an easier means of ensuring both

integrity of knowledge and data to be devised in view of the fact that there will be a

much better awareness of what assumptions and decisions have been made in

previous stages of the design. This is difficult to achieve in database systems where

little attention is given to the overall structure and management of the design process.

The major difficulty with this approach is ensuring that the general design

methodology and the sources of expertise can be combined in an effective manner

whilst ensuring effective communication between the relevant design groups. The

use of the word "incremental" is important here as it emphasises the important

heuristic of adapting a stepwise progress through a design thereby enabling tight

56

Figure 1.21a: Sequential 'I Recycle Design Approach

Stage! I 	I Stage2 I 	 J StageN

	

Expert I I I Expert 2 1 	I Expert N

Figure 1.21b: A.I.P. Design Approach

Increasing Specialisation
on Parallel Fronts
(Design, Control,

Safety, etc.

Stage N

Stage 2

Stage I

I 	I 	/ Expert!

I 	f 	(Expert 2

' \ 	\ Engineers

57

control on the time spent on, relative importance of, and assimilation of knowledge

from a variety of detailed design activities. Allowing engineers to work

simultaneously on diverse problems and overwrite a common database in an

essentially uncontrolled manner is a problem that must be avoided if general chaos is
not to ensue.

The second problem with this approach is that it requires both the levels of semantic

representation that were outlined in section 1.7 However, it is my opinion that this

problem must be tackled anyway if we are to progress from the current situation and

the use of DBMS software whether or not one adopts an "appropriate and incremental
parallel design methodology" or not.

1.9 A Research Framework For Integrated Process Design

The main purpose of this introductory chapter was to make more formal the notions

of integrated process design and the integrity of data and knowledge in that process.

In particular, there is a need to get away from the simplistic idea that integrated

process engineering merely consists of using software which provides the means to

interface a collection or library of design programs. Rather, integrated process

engineering, embodying the principle of knowledge integrity, must basically be

viewed as a new approach to process design in terms of the handling, use and effect

of information. Knowledge or data is no longer passive but must play an active or

reactive role in the overall process. It has been suggested that a process systems

engineering approach be adopted in which to formulate and develop these ideas in the

prospect that a framework will emerge in which process engineering design activities

themselves, their inter-relation, and their interaction with knowledge/data can be

more formally defined. The use of database management systems as a means of

achieving these goals was considered. Despite the limited success of such systems,

many problems were highlighted which seem difficult to solve without substantially

changing the nature of database management systems in terms of design and

functional capabilities. In light of these criticisms several extensions to this approach

have been preposed in terms of knowledge representation and the role that a

knowledge based system should play in solving the problem of integrated process

design. The following points, therefore, provide a summary of a long term research

framework for integrated process design. The rest of this thesis has been based with

these goals firmly in mind.

1. Develop representation techniques which are more closely suited to their use in
process design problems. This must be investigated at three levels.

58

Description at at object, attribute and relationship level
Description of problem solving techniques in regard to consistency of
knowledge at the object, attribute and relationship level.
Explicit representation of an overall design methodology and its
application to particular decision making events.

Investigate what requirements an explicit design methodology places on the
control and operation of a knowledge based system which attempts to maintain
integrity of knowledge.
Investigate various formulations of design methodology which both reduce the
design effort and most easily facilitate the integrity of knowledge within the
design process to be maintained, e.g. an AlP approach.
Investigate the means to provide a simple, usable interface to such a system by a
wide class of end user.

These goals are obviously long term indeed and as a consequence this thesis will only
address itself to particular aspects of them.

It must be emphasised, and is fully appreciated by the author, that the breadth, scale

and complexity of these issues precludes any short term solutions in terms of a usable

demonstration system. In anticipation of following chapters, the complexity of the

representation issues involved will mean bringing together many ideas from the fields

of Artificial Intelligence and Cognitive Science. At times the theoretical issues

involved may seem far removed indeed from process engineering. However, this is

by no means an apology since it is my opinion that it is only when there is sufficient

synergistic technical research in these diverse areas and the recognition of the specific

needs of process engineering, will any real progress be made in the future

development of knowledge based systems. It is hoped that the reader bear this point

in mind given some of the more abstract or remote issues presented in subsequent

chapters, albeit appearing "abstract" only to those unfamiliar with such ideas. The

justification for this thesis, therefore, is that a useful start can be made on many of the

basic problems, the solution of which will ultimately lie at the heart of future

knowledge based systems for use in process engineering.

Chapter 2
Knowledge Representation in Artificial Intelligence

The previous chapter introduced a definition of the problem of integrated process

design and the requirements it ultimately places on any software environment used to

facilitate this problem solving activity. In particular, the notion of integrity of

knowledge was defined and it was discussed how this concept should be adhered to if

improvements are to be made in the use and operation of data and knowledge base

systems during process design. A number of data base management systems have

been produced to tackle various aspects of the integrated process design problem

based on binary, hierarchical, network Or relational data models as a means of data

representation. It was concluded that such systems cannot easily be used to represent

and manipulate the different types of knowledge that are required in any process

design if integrity of knowledge is to be maintained. The purpose of this chapter is to

introduce a variety of knowledge representation techniques taken from the area of

Artificial Intelligence (Al) which seem, at least on first sight, directly relevant to the

problem of extending the functionality of a database system to that of a knowledge

base system. The review that follows is, for reasons of space, far from complete in

that it covers a very wide research area and requires considerable background reading

to appreciate the technical issues involved. As a result, complete subject areas such as

logic or heuristic search techniques cannot be given the technical discussion they

deserve. Instead, only the main aspects of each knowledge representation technique

will be discussed with references provided for more technical reviews and papers on

each topic. The later chapters will, however, assume some appreciation of the more

technical issues involved.

2.1 Types of Knowledge Used in Process Design

Before presenting a review of knowledge representation techniques it is worthwhile

discussing what types of knowledge will have to be represented in a process design

environment. It was suggested in the first chapter that three levels of representation

were required above and beyond simple data representation, namely

The ability to represent the principles or laws to which generated or
experimental data must be ultimately related.
A means to represent the basis and intended effects of "operations" which
manipulate data. This in turn requires an explicit representation of the process
model and the assumptions upon which it is made.
Representation of the "operations" themselves. This applies to high level
concepts such as the overall design methodology as well as specific low level
solution techniques.

61

Although these levels do appear to capture whats involved in maintaining integrity of

knowledge they are still too vague to be of use at a program specification level. In

anticipation of arguments presented in chapters three to five, the following three
sections discuss the minimum representation levels required in any advanced design

environment. These ideas are based on a consideration of the activities involved and

the documents and data produced in any process design (see chapter 1, section 1.2) as
well as the basic mechanisms underlying items 1) to 3) above.

2.1.1 Objects, Attributes and Relations in Process Models

One of the most basic requirements of any system will be the ability to represent

conveniently the process model throughout the lifetime of a process design. At it's

most simple level, this will involve representation of the constituent parts of the

process irrespective of whether they are undefined abstractions in the early stages of

design or specified unit operations in a block flow diagram or, ultimately, detailed

equipment and piping specifications. The abstract notion of an "object" shall be

introduced to cover this spectrum of process description and can be thought of as a

generalisation of the entity types normally encountered in typical process database

systems. Since the notion of an object is merely an abstraction it can also be

conveniently applied to the wide range of documents produced in a design project

irrespective of graphical or textual form. Thus a flowsheet representation such as an

ELD could be an object in its own right as opposed to a system in which it is merely

an ad hoc graphical output resulting from arbitrary operation on a database.

A seemingly natural way of describing any such object is in terms of its attributes,

that is ascertainable properties of the object which can be used to identify it. Thus, a

chemical species can be treated as having an attribute molecular weight, a distillation

column having a reflux rate, a process having a design capacity, etc. This idea is

familiar enough from standard database specifications. However, it has already been

noted (see section 1.4, chapter 1) that in specifying a database it is by no means clear

what can be taken as an entity, an attribute or a relation. Similarly here, the problem

of what can be considered to be an object or an attribute turns out to be a serious

problem in knowledge representation and one which raises deep fundamental issues

from a cognitive science point of view. The discussion of these issues is delayed,

however, until the review of current AT techniques has been presented. The third

fundamental requirement of any design system is the need to represent the

relationships involved between the various constituent parts of the process model. At

a simple level there will be object to object relationships to represent, for instance, the

overall structure of the process. However, the notion of an abstract "relation" goes

much further than is normally found in database applications. Abstract relations have

rem

to account for the interrelation between attributes within an object, object to object
relations as well as higher order relations which restrict or control the use of these

simpler relations. For example, if the flowrates into and out of a column are

represented as attributes then there must be an explicit relation describing their

relational or "functional" dependence on one another, namely an overall mass

balance. Further, this relation must link in some way to the more general relationship

on which it is based, i.e. the principle of conservation of mass. It is the specification

of this relation, or yet more general relationships, which determines how applicable

the lower level relation is to the object in question. Thus, although simplifying

relationships, such as the ideal gas law, can be used in the description of an object's

attributes, e.g. a water-ethanol flash vessel, there will be an explicit representation of

the applicability of the use of this relation. The specification of attributes and

object-object dependencies is, therefore, no longer an ad hoc decision for the

programmer. Rather, these decisions must be accounted for in an explicit relational
manner.

The earlier requirement that one needs to be able to represent both the basis and

intended effects of "operations", such as the calculation of process model data, as

well as represent the overall design methodology merely results in an extension of the

notion of an abstract relation, albeit to a very general level indeed. Low level

operations, modelling reactor conversion for example, can be represented at an

abstract level as a, perhaps complex, combination of relations to be satisfied. Suitable

selection of such activities can be repeatedly combined into yet more general

"relations" until the required description of any particular design methodology is

achieved. At this level of abstraction it is perhaps more useful to describe a "relation"

as a "relational concept". This is defined more fully later but for the moment it is only

necessary to appeal to the familiar notions of the concept of individual column tray

design, overall column design, downstream separation section design, etc. These

activities, at different levels of design debuits, can be considered to be relational

concepts in their own right, the interaction between more detailed activities being

accounted for in the more general relations or relational concepts. It is worth noting

that the notion of an abstract relation given here is wholly consistent with what is

required for a systems engineering description of process design activity given in
chapter 1.

2.1.2 Functional, Event and Situational Knowledge

The concept of an abstract relation is powerful indeed, but perhaps slightly too

general to be considered at this early stage. Following Barr and Feigenbaum(1981), it

is worthwhile identifying three, not necessarily distinct, types of relational

63

knowledge.

Functional knowledge -representation of any process design activity must
involve knowledge of how to perform the activity and achieve it intended
function over and above the representation of the specific objects involved. This
type of information will be referred to here as functional knowledge,
alternatively termed performance or procedural knowledge elsewhere. (The
term functional is chosen given the set theoretic definition of a function in terms
of a relation and the emphasis this puts on the fact that there is an operation or
transformation from one set of object descriptions to another).
Event Knowledge -given that one can represent what constitutes an activity, it is
then desirable to represent the notion of an event. An event in this simplified
context will be used to represent the fact that an activity has occurred, is
occurring or will occur at some point in the future. Using this definition -a wide
variety of process design information can be represented in a standard way. For
example, the event may be a hypothesised one such as a valve closing in a
dynamic simulation, or, at a higher level, the recognition of the completion of
preliminary design of a unit operation within the overall design activity. High
level descriptions of activities and events can also be used to form the basis of
cause and effect descriptions of some relations. Cause and effect descriptions
are an important part of understanding complex physical phenomena. A relevant
example might be the recognition of the possibility of thermal runaway in
reactor design and taking appropriate measures to minimise this problem based
on a cause and effect description of this phenomenon. It should be noted that
this type of information has introduced the need for a time ordering relation in
the representation. In more general terms, an event occurs whenever a relation is
involved which results in either a change in the representation of the objects of
interest or a change in the state of relationships between objects.
Situational Knowledge It is useful to combine both functional and event
knowledge into higher level relations which shall be labelled "situations". One
aspect of intelligent behaviour is the ability to recognise certain situations or
scenaries and to be able to predict which actions and events should be taken or
avoided in order that an individual benefit from that situation. Similarly, it is
highly desirable to view design activities in the overall context of the stage a
design has reached. Design decisions can then be taken given a global view of
the situation rather than based solely on a narrow, local viewpoint. The
representation of well known situations would also seem to be a necessary
precursor to be able to respond in an intelligent way to sudden or unexpected
changes to design procedure. This sort of knowledge is termed here situational
knowledge and will involve an extension or generalisation of functional
knowledge described in 1).

2.1.3 Self Awareness

Meta-knowledge is a term frequently used in a simplistic way in the literature on

knowledge based systems, loosely referring to knowledge about what's already

known, ie knowledge about knowledge. This circular definition, however, is of

questionable use in characterising knowledge since it is then hard to avoid the

introduction of what would be layer upon layer of meta-meta-knowledge. What is of

importance is to recognise that engineers are aware, for example, of the scope and

origin of their expertise in a particular area, the reliability of technical data, the

relative importance of types of design information pertaining to the solution of a

design problem, etc. An explicit awareness of such "higher level" knowledge is an

important part of the process of responding in an intelligent manner to design

problems and can often be instrumental in determining how an individual will

proceed when faced with difficult tasks. This type of knowledge is termed

self-awareness here, as it more properly emphasises the role of the individual within a

problem solving activity and how this affects the manner in which lower level

knowledge shall be used in arriving at this solution.

Another important part of any design methodology will be the description of what

type of person is competent to take particular kinds of design decision and how

design engineers from various backgrounds will be expected to participate in complex

activities, eg. the role of process engineers in control system design. The concept of

self awareness can also be used to describe the relationships between the design

activity of any particular engineer and fellow engineers involved in the same project.

It is precisely this type of information that is required to tackle the problem of

integrity of knowledge in a multi-user environment as discussed in chapter 1.

2.1.4 A.I. Knowledge Representation Techniques

The previous section described in an abstract form the types of information that

should be represented in a process design environment. The question of how to

represent these ideas in a form that can be manipulated in a useful way by computers

is' a research problem central to many areas of Artificial Intelligence, namely that of

knowledge representation. The question of what actually constitutes knowledge or a

representation of it raises deep philosophical issues. Some of these issues will be

explored later but for the moment the following simple points should be considered.

Any representation of knowledge in a computer must involve the use of low level

data structures to store information. Complex data structures can be described in yet

simpler structures, and the process repeated until a level of description is reached

involving only the most basic symbols that the computer manipulates. Viewed

independently of the mechanisms that manipulate the data, it is clear that the data

structures in themselves do not constitute "knowledge". In the same way, Barr and

Feigenbaum make the point that a book is a potential source of knowledge but

without a reader to understand it s contents, the book is no more than ink on paper.

Of fundamental importance, therefore, in knowledge representation research is the

construction and manipulation of relations between symbolic data structures which

result in program behaviour that appears analogous to certain aspects of human

behaviour. In this context, Barr and Feigenbaum suggest that "a representation of

knowledge is a combination of data structures and interpretive procedures that, if

used in the right way in a program will lead to knowledge behaviour".

Al

Winston(1984) defines a representation more specifically as "a set of syntactic and

semantic conventions" which can be used when interpreting symbolic structures. The

rules of synbax might describe how structures can be constructed from simpler

structures or primitive symbols, while the semantic conventions would indicate how

to assign meaning to a symbolic structure as some function of its constituent parts, the

birth of a proposition for example. The importance of the co-existance of interpretive

mechanisms and data structures cannot be over emphasised as it is the resulting

interaction which determines the reasoning capabilities and, hence, ultimate use of
any knowledge based system.

The review that follows in the reset of this chapter briefly discusses the types of

representation and reasoning techniques found in the A.I. literature deemed relevant

to the design of a knowledge based process engineering environment. More detailed

introductions can be found in Barr and Feigenbaum(1981) Jackson(1986,1987),

Chamiak(1985), Winston(1984), Frost(1986), and Nilsson(1982). Much of the early

A.I. research was based on two areas:

graph theory, state-space representation, and heuristic search techniques.
predicate calculus, i.e. first order logic, and the development of automated
theorem proving techniques.

Most of the current, state of the art representation techniques developed from a

thorough understanding of these more mathematically formal topics. In order to

compare different representation techniques, the main aspects of these two areas shall

be discussed first. Subsequent discussion will employ state-space and logical

descriptions where possible in order to highlight the similarities and differences
between the representation schemes.

2.2 Heuristic Graph Theory

A formal definition of graph theory nomenclature can be found in standard
mathematical texts, e.g. Gibbons(1985) or Boffey(1982), and is not discussed in

detail here. A brief summary of the relevant terminology and basic definitions in
Appendix A for those unfamiliar with the subject.

An informal definition of a graph is that it is a set of points in a space interconneted

by a set of lines which indicate some relation between relevant points. Mathematical

descriptions refer to the set of points in the graph as vertices and the lines as edges.

In the A.I. literature it is more usual to describe a graph being constructed from

abstract entities called "nodes" and "arcs", the arcs representing the connections

between the nodes. In addition, it is frequently the case that "labels" are attached to

both nodes and arcs. There is no inherent restriction on the form or definition of a

label and it may well be a complex structured entity in its own right. Given the

definition of a graph in Appendix A, it is worth noting that if L is a set of labels

associated with a NxN graph, then any subset of NXNXL is often referred to as a
labelled graph or a network.

In many applications the nodes and arcs are used to represent different kinds of

information. This is useful in that a variety of representation and reasoning, or

inference, techniques can then be described and compared in a more formal,
mathematical notation, as is shown in the remainder of this chapter.

Much of the early work in A.I. and Operations Research during the 1960's and 1970's

was concerned with applications of heuristic search techniques in game playing and

optimisation. A typical example is that of chess playing programs. One of the

problems in writing such a program is how to represent the game as it progresses and

how to represent the players' moves. The general technique adopted was to express

this information in the form of a graph or a tree. In the case of a chess program each

node could represent the state of the pieces on the board and the links between nodes

would indicate each players move. The resulting graphs or trees to be searched,

however, are usually very large. The term "combinatorial explosion" is used to

describe the rapid growth in the size of the search space as more moves are

considered. Choice of a suitable heuristic search technique is extremely important,

therefore, if reasonable performance is to be achieved by a game playing or
optimisation program.

Many other problem solving processes can be represented in tree or graph form in

one of two general forms, namely state space representation and problem reduction
representation.

67

1 State Space Representation

A state space description of a problem involves a set of initial states of a "world", a

set of goal states of a world, and a number of operators which can be used to

transform one state to another. The initial states represent the starting point or initial

conditions of the problem and the goal states represent the desired solution, usually

described as the satisfaction of a set of constraints. The problem solving process is

thus seen as one of choosing appropriate operators to transform the initial state to the

goal state via a sequence of intermediate states. Each state in this process can be

thought of as a node in a graph or network, the arcs representing the applicable

operators used to transform on state to another.

In general, there will be a number of pre-conditions attached to the use of each

operator which will determine its applicability depending upon the current state of the

world. There must also be a set of post-conditions for each operator describing how

it modifies the state of a world should it be selected. State space representations can

be used in a wide range of constraint satisfaction problems and sequence seeking

problems. Problems are viewed as finding paths between selected nodes in a state

space graph.

A simple process engineering example conveniently described in these terms is the

problem of representing and reasoning about the start-up procedure of a chemical

plant. The initial state represents the units comprising the plant, the goal state

representing the plant running under design conditions, see Figure 2.1.

68

Intermediate
Stntp.

.W(D

Undesirable
Dangerous State

Plant:
Initial Sta

Operator:
e.g. Start Compressor.

Plant:
Goal State

Figure 2.1: State Space Representation of Plant Start Up

The arcs in the graph represent operations, i.e. start-up decisions, like open a valve,

start a pump etc, which gradually move the plant towards design operating

conditions. The goal state is reached when these operating conditions, or constraints,

are satisfied. The pre-conditions attached to operators will normally include both

safety and economic considerations, eg "is it safe to open a valve?", "delay costly side

effects as long as possible", etc. More detailed evaluation of these constraints would

require consideration or simulation of the dynamic response of the plant.

As a result, a realistic implementation of this problem solving process would require

extremely sophisticated search techniques and extensive background process

engineering expertise in order to minimise the resulting search space. Nevertheless, it

is easy to see how this type of process design activity can be be described using a

state-space representation. Fusillo and Powers(1988) have attempted to formulate

this problem using a state-space representation as described here.

It is important to notice that there will usually be many ways of transforming the

initial state to the goal state, i.e. paths between the initial node(s) and final node(s).

This is certainly true in the case of most synthesis problems in process design

whether it be synthesis of start-up procedures or selection of distillation sequences to

separate mixtures (e.g. Hendry and Hughes(1972)), etc. If one solution path is

somehow better than another and one wishes to find the "optimal" solution path then

the degree of complexity of solution becomes very high indeed. Many problems

posed in this way belong to a class of problems termed "NP-hard", see

Gibbons(1985).

All known algorithms for such problems require exponential time in their solution so

unless very good bounding functions or heuristics can be found, non- optimal

solutions have to be accepted.

The description of the state space representation above is somewhat informal.

Following Pearl(1984), a more precise description is possible. Consider the graph in

Figure 2.2 in which the partial solution evaluated so far involves one path through

nodes A,B,C.

Figure 2.2: Partial Solutions in State Space Representations

E

Programs which use a state-space representation require a data structure to represent

the partial solutions, or alternatively, the subsets of potential solutions called

"candidate subsets", e.g. (A,B,C) in this example. Included in this data structure is

additional information which "explicitly defines the remaining subproblem" to be

solved resulting from this candidate subset. It is the code specifying this additional

information that is called a "state".

Further "the set of all subproblems obtainable by executing some sequence of

refinement operators from a given position is called a state space". The state- space

graph refers to the elements of this space which are connected by arcs labelled by the

appropriate refinement operators.

In Figure 2.2, the path A->B->C is a candidate subset, and the connections to the

70

right of C represent the state space graph. The nodes represent the set of all

subproblems that may result from the path leading to that node and are merely

labelled A,B,C etc for convenient reference.

As Pearl points out, it is worth noting that the candidate subset is both necessary and

sufficient to completely specify the remaining problem whereas a state is both

redundant and incomplete. A solution of the subproblem does not identify the

solution of the overall problem. One of the main reasons for maintaining an explicit

representation of a state is that it can dramatically reduce the computational cost of

making heuristic estimates of the amount of work still to be done in achieving a

solution. As such, a good state representation can provide a reliable and effective

means of controlling and directing search over large state spaces. In addition, if

different candidate subsets result in identical state subproblems, i.e. different paths

leading to the same intermediate node then the candidate subsets can be compared

and the inferior one can be ignored in any future searches. This reduction in search

effort is called "pruning by dominance", see Ibaraki(1977) for more detailed

discussion.

2 Problem Reduction Representation and AND/OR Graphs
The principal feature of the problem reduction representation is that the overall

problem can be expressed as a goal or a logical combination of goals to be reached.

The more general goals are expressed as a combination of more specific goals, these

in turn being composed of yet simpler, more specific goals. The basic approach,

therefore, is to decompose goals in a recursive fashion until a set of primitive goals

are obtained, the solution of which can be stated in known facts, actions or

operations. It is worth noting that this corresponds closely to basic problem solving

notions adopted in systems engineering, as described earlier in section 1.8. The main

point to note is that during the decomposition process each residual subproblem or

goal created by some subset of candidate solutions can be viewed as "a conjunction of

several subproblems that may be solved independently of each other, may require

specialised treatments, and should, therefore, be represented as separate entities",

Pearl(1984). As a consequence, individual nodes in the search-space graph of a

problem reduction representation indicate subproblems or subgoals to be solved as

part of an overall solution. There are two types of links connecting the nodes in such
a graph:

Links that represent alternative approaches to the solution of the problem node
from which they emerge. These are termed OR links and are identical to those
found in state-space graphs.
Links which connect a parent problem node to the conjunction of individual
subproblem nodes of which it is composed. These are called AND links and
have no equivalent in state-space graphs.

71

Figure 2.3 shows an example of an AND/OR graph.

Figure 2.3: A Simple AND/OR Graph

en

The curved lines indicate which sets of subproblems must be solved in conjunction.

When a node issues either OR links or AND links, but not both, then it is usual to

refer to the nodes as OR nodes and AND nodes respectively. Mixed nodes, e.g. node

n in Figure 2.3, can always be reformulated as pure AND and OR nodes by

introducing dummy nodes if necessary (replace AND links by a dummy AND node

which is then OR linked to the original mixed parent node. The parent node becomes

an OR node and the dummy AND nodes maintain the original AND links). Unlike a

state-space formulation, the solution to the problem is no longer a leaf or tip node in

the graph. The problem solution is represented by an AND/OR subgraph, referred to

as the solution graph. A more formal definition of solution graphs, AND/OR graphs,

which are actually hypergraphs, and common terminology such as k- connectors,

terminal nodes etc, is given in Appendix A.

Many problem solving tasks can be represented using the problem-reduction

representation. One important example in A.I. is that of logical reasoning and

automated theorem proving, as discussed later in section 2.3. In a process

engineering context, many standard design techniques can be superficially

represented in this form. The design of a distillation column, for example, or even an

entire plant for that matter, can notionally be described as the solution of its

constituent parts in conjunction with the satisfaction of overall constraints such as

heat and mass balances. It is somewhat unlikely however that large problems can be

solved directly in this manner, see section 2.2.5. The point to note is that problems

72

that can be identified and decomposed into independent subproblems are easily

handled in this general framework. As in the case of state-space search, extremely

well guided search strategies are needed to minimise the effort needed in producing a

solution. In addition, it is usually the case that the search space is too large to be

explicitly represented in computer memory. Procedures are needed which allow a

program to generate a graph incrementally in any required direction. In a process

design problem, this may simply be in the form of database lookup of standard design

procedures or alternatives, e.g. "when designing a separation column consider both
packed bed and hydraulic tray designs".

2.2.1 Uninformed and Heuristic Graph Searching Techniques

It was emphasised earlier, section 2.1, that a representation technique must be

considered in light of the inference or reasoning mechanisms which operate upon it.

Any inference mechanism must have access to appropriate background general

knowledge and specific heuristic guidelines if it is to be successful in finding

solutions to problems. In the worst case, inference techniques, for representations

based on state space or problem reduction formulations, having no or little access to

such knowledge will degenerate into standard graph searching algorithms.

It is worthwhile briefly discussing the characteristics of the more well known
techniques for several reasons:

Their complexity and computational efficiency can be formally defined, hence,
providing base cases for comparison with new or more complicated search
techniques.
The very general description of state space and problem reduction
representations means that standard searching algorithms arise in a variety of
guises. It is important to identify and discriminate between basic graph
searching algorithms and more advanced techniques.
The limitations of all known algorithms when dealing with problems that are
NP- hard are well documented, see Garey and Johnson(1979). It is therefore,
important to identify such problems when they arise.

A search strategy is a procedure for determining the order in which nodes in a graph

are to be generated. If an arbitrary scheme is used to specify the order in which nodes

are expanded then the search procedure is called uninformed or blind search. This

happens when there is no information available at nodes in the graph other than the

goal node, to affect the ordering decision. The progress of the search, therefore,

depends neither on the nature of the solution nor on the nature of the unexplored
region of the graph.

The converse to blind search is informed or heuristic search. This type of search will

attempt to use partial information about the problem domain and the nature of the

73

goal to help guide the search toward the solution. Following Nilsson(1982), it is

possible to describe a general procedure which covers both these situations and is
shown in Figure 2.4.

Figure 2.4: Nilsson's General GRAPHSEARCH Procedure

1 Create a search graph G consisting solely of the start node a.
Put s on a list called OPEN.

2 Create a list called CLOSED that is initially empty.

3 LOOP if OPEN is empty then exit with failure.

4 Select the first node on OPEN, remove it from OPEN
and put it on CLOSED. Label this node n.

5 If n is a goal node then exit successfully with the solution
obtained by tracing a path along the pointers from n to s
in G. (The pointers are set up in step 7).

6 Expand node n generating its set of successors M that
are not already in n's ancestor set. Install these members
of M as successors of n in G.

7 Establish a pointer to n from those members of M that were not
already in G (i.e. neither in OPEN or CLOSED). Add these members
to OPEN. For each member of M that was already in G decide whether
to redirect its pointer to n.
For each member of M already on CLOSED decide for each of its
descendants in G whether to redirect its pointer.

8 Reorder OPEN either according to some arbitrarry or heuristic
evaluation scheme.

9 Go To LOOP.

The terminology used is covered in Appendix A. In particular, nodes that have been

expanded, i.e. those whose successor nodes are known, are called CLOSED. Nodes

which have been generated but yet to be expanded are called OPEN.

An important point about all such strategies is that they maintain an explicit record of

the generated search graph G. A subset T of G, called the search tree, is defined by

the pointers or links set up in step 7 of the procedure. A node in G, other than the

start node, has a pointer directed to just one of its parents in G, and this is its unique

parent in T. All possible paths to a node that are generated are preserved in 0 whereas

T only preserves the final chosen path to any node as defined by the pointers.

The most important step to consider here is step 8 in which the nodes on OPEN are

reordered according to some arbitrary scheme or using a measure of heuristic merit.

There are two classical approaches adopted in uninformed search, namely a depth

first approach and a breadth first approach. In a depth first approach the strategy

adopted in Step 8 is to expand the deepest nodes in the search tree first, i.e. the most

recently generated nodes are put at the front of the OPEN list, the first of which is

74

then itself selected for expansion. This recursive procedure is blindly adhered to until

the goal node or a dead end, which usually means failure, occurs. Upon failure the

next most recent node on the OPEN list is selected for expansion and the whole

process repeated. The path of the closed nodes maintained by the search program is

called the traversal path, an example of which is shown in Figure 2.5. The node

numbering indicates the usual depth first, left to right search amongst nodes.

Figure 2.5: Depth First Traversal of a Tree

The depth first approach is simply a last-in-first-out policy which guarantees that no

node at depth D will be expanded whenever nodes of depth greater than D still remain

on OPEN. Nodes at the same depth can, in general, be ordered arbitrarily. In order to

prevent the strategy from expanding any particular path too deeply, it is usual to

provide a depth bound which limits the depth to which one parent node can be

expanded. Since no information is available, however, it is impossible to estimate

how far the last node visited in the stopped path lay from the goal node. The node

may be just one step from the goal or many.

The second basic uninformed strategy is breadth first search. In this case nodes are

ordered in OPEN in increasing order of depth in the search tree. Nodes of lowest and

equal depth are moved to the front of the OPEN list. On expansion their successor

nodes will get placed at the end of the list due to their greater depth in the search tree.

A typical traversal path is shown in Figure 2.6.

75

Figure 2.6: Breadth First Traversal of a Tree

1

8

The breadth first search is, thus, a first-in-first-out policy, priority being given to

nodes at the shallower levels in the search graph and recursively expanding sections

of the graph in layers of equal depth. Unlike depth-first search, a breadth-first

approach will guarantee to find the shortest length path to a goal in a locally finite

graph, if such a path exists. If no path exists, both methods will fail on finite graphs

or never terminate for infinite graphs (unless depth bounding is used). Ross(1985)

reports that if the depth of the goal node is less than the local depth of the tree, then as

far as the number of nodes searched is concerned, the depth first approach is likely to

be better on average. It is impossible to guarantee this, however, in any particular

case.

A widely used variation of the breadth first search is the "uniform cost" strategy. In

this case the search graph is expanded in layers of equal cost rather than equal depth,

where the cost is the cost of the path from any given node back to the start node. The

node with the highest cost in OPEN determines how far other nodes will be

expanded. A path expansion of any node is halted when we reach or exceed this

value.

An important and widely used variation of the depth first search is "backtracking". In

this version, when a node is selected for expansion only one of its successors is

generated. This newly generated node is in turn expanded to one of its successors,

and the process repeated until termination or failure. Upon failure the closest

ancestor node, which is not yet fully expanded, is again selected for expansion and a

new successor generated. The last-in-first-out policy now applies to node generation

rather than node expansion.

The backtracking method is not strictly a graph search strategy since there is not an

entire record of the search space. Only one (partial) path to a goal node is ever

76

maintained. The correspondence between the two schemes would be exact if the

depth first process only ever generated one successor at a time. An important

application of the depth-first/backbreaking approach is in the searching mechanisms

embodied in the programming language PROLOG, introduced shortly in section

2.3.6.

Both the breadth-first and depth-first strategies can be adopted to search AND/OR

trees in problem reduction formulations. The main difference arises in determining

the termination conditions, as it is now necessary to know whether a given set of

solved nodes represents a solution or not. Backtracking strategies cannot take full

advantage of the information expressed in an AND/OR graph, as they only maintain a

single traversal path at any one time. As a result identical subproblems encountered

on different paths will be repeatedly solved unless modifications are made to the

technique. Figure 2.7 shows a simple example of this phenomenon.

Figure 2.7: Repeated Problem Solving during Backtracking

S

The problem of recognising identical sub-problems also arises if cycles in the graph

are to be detected and broken.

2.2.2 Informed Heuristic Search

The uninformed search techniques do, in principle, provide a solution technique to

any path finding problem provided the problem can be represented in a convenient

form. In practice, the techniques are likely to be infeasible for any non-trivial

problems as the potential search spaces that can be generated are often very large. In

order to control the way in which the search method expands nodes in the search

space, and reduce the search effort, is necessary to make use of "heuristic" or

77

task-independent information. Formal statements of domain specific information are

usually referred to as "heuristics" or rules of thumb. Pearl(1984) gives the following

definition: "Heuristics are criteria, methods, or principle, for deciding which among

several alternative courses of action promises to be the most effective in order to

achieve some goal. They represent compromises between two requirements: the need

to make such criteria simple and, at the same time, the desire to see them discriminate
correctly between good and bad choices".

This definition raises two interesting points:

Heuristics cannot, in general, guarantee decisions made but can only hope to be
effective most of the time.
The evaluation criteria should be relatively simple to compute in comparison to
the total amount of effort expended in the search process.

The question of whether a useful set of heuristics can actually be found for many

aspects of process design is an interesting one. The nature of the heuristics will vary

from problem to problem. In design problems, such as distillation column design,

one possibility may be to estimate the difficulty of solving sub-problems represented

by a node. Flow sheet development techniques, such as the top-down hierarchical

approach of Douglas(1988) could estimate the quality of the set of candidate

solutions represented by a node according to some criteria such as avoid large gas

recycles if possible, avoid large inventory hold-ups of material, especially if toxic,

etc. In preliminary design or hazard studies it may be useful to estimate the amount

of information that will be gained by expanding a node and the relative worth of this

information in terms of guiding the overall search strategy. In many cases it will be
difficult to formulate general, consistent sets of heuristics.

Irrespective of the type of heuristic, the potential worth of a node, n, can be estimated

by a "heuristic evaluation function", f(n). The most important point about any such

function is that it should depend not only on the description of an arbitrary node n, the

goal node description, and the information gathered by the search so far, but also on

background knowledge relevant to the problem domain. It is this background

knowledge which will be required to discriminate intelligently between conflicting

advice arising from the simplified heuristics, or to know when to suspend or discard a
particular line of reasoning.

Heuristic or informed search techniques are those which use such a function to

re-order the nodes in OPEN in step 8 of the GRAPHSEARCH technique. The study

of the formal properties of these techniques has received much attention in the areas

of Operations Research and All. The following two sections very briefly outline the

classical algorithms in this area, which is conveniently split into the search of OR

78

graphs (the A* algorithm) and AND/OR graphs (the AO* algorithm). These are
worth discussing as many well know techniques, such as branch-and- bound search,

dynamic programming etc. used in process synthesis studies, and aspects of "expert

systems" (to be introduced in section 2.4) are just specialisations of these algorithms.

2.2.3 Heuristic Search in OR graphs

One of the most general heuristic techniques for searching state-space graphs is the

Best First (BF) technique. In its most general form, the evaluation function f(n) is an

arbitrary real valued function which, by convention, orders the nodes in OPEN in

increasing order of their f values Thus, the next node to be expanded will be the one

with the lowest f value and if two paths lead to the same node then the one with the

higher f value is discarded. The important point to note is that the selection of node

to be expanded takes account of all the nodes encountered so far, and is not
dependent on node location in any partial developed tree.

As it stands, the description of BF is merely an outline as no details have been given

on how to compute f, what information is required, and how values are propagated

through the graph. These are important points as they represent a significant

proportion of the search effort and have been the focus of considerable research

activity. By restricting the nature of the evaluation function four important variations

of the BF algorithm can be identified, namely BF*, Z, Z and A*. The restrictions
involve -

- defining a recursive weight function WG for a given solution graph G to represent
either merit(Q) or cost(C).

- The concept of an optimal solution graph G* of merit Q*() maximised over all
solution graphs rooted at s.

- The use of a "backed-up evaluation function", e(n), which provides an estimate of
Q*(n) for all nodes of the explored graph.

(These items are expanded in Appendix A, details can be found in standard texts such
as Pearl(1984), Nilsson(1982)).

In the case of BF search on an OR graph, each node in OPEN is associated with only

one solution base given by the path P(n) from the root node s to n. To decide which
node to expand the function value e ()(s) is computed bottom-up along the path s to n
and assigned to each node on OPEN. The evaluation function f(n) is simply

f(n) = -ep()(s)

since f represents costs and is to be minimised whereas e represents quality and is to

be maximised. The use of a recursive weight function enables e to be calculated

locally using information stored at the parent node. Figure 2.8 shows the
relationships between the algorithms.

79

Figure 2.8: Relationships between OR Graph Algorithms

(d.t. : delayed termination,

r.w.c. recursive weight computation)

on :f(n')=g(n')+h(n')

g(n') = g(n) + c(n,n')

The most general BF search corresponds to GRAPHSEARCH with an arbitrary

heuristic evaluation routine f. If f is computed by the "rollback" procedure just

described, the search is called the Z algorithm. The BF* algorithm which always

finds an optimal solution if one exists, introduces the notion of "delayed-termination"

of evaluation of the goal node. This requires a slight modification of the

GRAPHSEARCH strategy. Rather than terminate immediately on reaching a goal

node, step 5, the algorithm has to loop again to see if any other nodes on OPEN

indicate a more promising solution base. Combining both techniques results in the Z

algorithm. In order to guarantee optimality all the cost estimates must be optimistic,

i.e. under-estimating costs and over-estimating merit. (For proofs of the formal

properties of these methods see Dechter and Pearl(1983), Nilsson(1980)).

The most well known algorithm, however, is the A algorithm, Hart, Nilsson and

Raphael(1968). The evaluation function f(n) at any node n is simply an estimate of

the sum of the cost of the minimal cost path from the start node s to node n plus the

cost of a minimal cost path from node n to a goal node, i.e. it is an estimate of the cost

of the minimal cost path passing through node n. If k(n,t) is the actual cost of a

minimal cost path between node n and a goal node t, then let h*(n) be the minimum

of all the k(n,t 1) over the set of goal nodes. h t (n) therefore is the cost of the minimal

cost path from n to a goal node. The complementary function,
g*(), gives the cost of

the minimal cost path from start node s to node n, i.e.

g*(n) = k(s,n), for all n accessible from s.

80

The actual cost of an optimal path constrained to pass through node n is given by
f*() such that

f*() =g*(n)+h*(n)

and

r(s)=h(s)

is the actual cost of an unconstrained optimal path from s to a goal node. The

heuristic evaluation function, f(n), is just an estimate of r(n) given by

f(n) = -e ()(s) = g(n) + h(n),

where g and h are estimates of g* and h* respectively. In particular, it can be shown
that if h provides a lower bound on h* (i.e. h(n) :5 h*(n) for all nodes n) the A*
algorithm terminates in an optimal path if such a path exists, i.e. A* is said to be
"admissible" (eg see Nilsson(1982)). Further restrictions on the nature of h can be
used to improve the efficiency of A*. One such restriction is the monotone restriction
which requires that h(ni) !~ h(n) + c(n,n) where node n is a successor of n 1 and
c(n1,n) is the arc cost between the nodes. Both Pearl(1984) and Nilsson(1982) prove

a variety of useful theorems stemming from this restriction.

It is worth noting that the simpler uninformed searches are directly related to these

more general search strategies. Breadth first search is a special case of A* with h=O
and g=d, the depth of a node in the search tree. Setting h to zero is certainly a lower
bound on h* but provides no information as regards controlling the search. Depth

first searches can be obtained from Z by using f(s) = 0 and f(n) = f(n)-1 since f
denotes cost which is to be minimised. The concept of dynamic programming

(Bellman and Dreyfus(1962)) is just a reformulation of breadth-first search utilising a

recursive graph weighting function which can be computed locally from parent node

information. The study of branch-and-bound search techniques in operations

research, Lawler and Wood(1966), exploits heuristic information in the form of real
valued bounding functions to control the search.

Most of the algorithms which utilise restricted heuristic evaluation functions and

delayed search termination conditions are concerned with guaranteeing the optimality

of a solution. In a design environment encompassing complete project design and

development, as discussed in chapter 1, there will be a wide range of problem

content, varying from very high level "searches" such as flowsheet development

down to very specific searches such as optimal tray design in a distillation column.

Higher level design decisions will normally take account of a variety of factors which

cannot be readily expressed in a quantitative measure, and indeed would be unnatural

81

or meaningless to do so. Typical examples of more qualitative aspects of design

might include consideration of ease of plant maintenance and overall safety in plant

layout problems, company policy on waste minimisation issues regarding the

generation, treatment and disposal of effluent, investment decisions regarding the

scale and flexibility of plant design etc.

In many design situations, therefore, decisions will be viewed as satisfying problems

rather than strict optimisation problems. The use of sub-optimal but otherwise

acceptable solutions cannot be avoided in many early stages of design when faced

with imprecise or unavailable information. Pearl(1984) reviews the more well known

empirical techniques used in situations in which the optimality requirement can be

relaxed. A general form suggested by Pohl(1970) is to use a weighted evaluation

function of the form

f(n) = (l-w) g(n) + w.h(n)

or

(n) = g(n) + w.h(n)

In the latter form, it is obvious that a large positive value for w will over-emphasise

the heuristic component of the evaluation function while very small values of w tend

towards breadth-first search strategies.

In the first form, values for w of 0, 0.5 and 1 correspond to uniform cost, A* and BF*

search strategies respectively. Pohl(1973) showed that search efficiency is often

enhanced by dynamically changing the value of w so as to lessen the contribution of h

the deeper the search. The evaluation function used was

f(n) = g(n) + hn + P_[1 - d(n)]h(n)

where d(n)
N

is the depth of node n and N
is the anticipated depth of the desired goal node. For small values of

d, d<<N
in the initial search steps, the search will be guided by the heuristic

information. At deeper levels, however, the evaluation function contributions
take on a more equal weighting. The search then resembles more closely

A*
and helps protect against termination with local optimum solutions. The

solution found will not be more than the optimal one by a factor of
1 +e

Another bounded version of
A*

which is useful in problems if flat optim al solution regions is the FOCAL or
A*

algorithm of Pearl(1982). FOCAL is a sublist of OPEN given by
FOCAL = (n f(n) :!~ (1 +P-) min f(n')

82

n' £ OPEN that is those nodes not greater than the minimum f node by a factor of

l+e. The reason for this formulation is that experience shows that A* often spends a

disproportionate amount of time choosing between fairly equal solution candidates

which prevents early termination of the search with a sub-optimal but acceptable

solution. In the FOCAL algorithm, however, effort is spent in estimating the

computational effort required to complete a search between nodes on FOCAL which

have roughly equal solution quality. Thus, the node selection heuristic, which is

concerned with remaining computational effort, is of an entirely different nature than

the heuristic used to form FOCAL which deals with evaluation of solution "quality".

This type of two-tier algorithm seems appropriate to many high level satisfying

design problems that can be gradually decomposed into evaluation studies of well

defined problems for which good estimates of the computational effort required in

their solution can be provided.

2.2.4 Heuristic Search in AND/OR Graphs

The previous section described heuristic search techniques for state-space, OR graph

formulations. A basic best first strategy was outlined and it was seen that many

searching techniques were simply specialisations of this more general algorithm.

This simple approach also applies to the development of search strategies for

problem-reduction formulations, or AND/OR graphs. Figure 2.9 shows the

relationship between four variations of the best first search method, the most well

known of which is AO*.

83

Figure 2.9: Relationships between AND/OR Graph Algorithms

(d.t. : delayed termination, r.w.c. : recursive weight computation)

The description of these algorithms is more involved and requires careful definition

of what is meant by "best" and "candidate solutions". Full details can be found in

standard texts, e.g. Pearl(1984). The important point to note is that simpler aspects

of many process design techniques can be loosely described in terms of an AND/OR

framework. This applies both in detailed situations, e.g. column internals design, and

in higher level strategies such as the top down, hierarchical design approach of

Douglas (1988). In those cases, heuristic variants of AO* will prove to be a useful

starting point for the comparison and development of process design search

techniques.

A class of algorithms that received much attention in early Al literature are the game

playing procedures, the most well known being the MINIMAX and ALPHA-BETA

methods. The basic idea is to represent alternative moves for two "players" in a

"game" at alternating levels in a game graph or tree. The players are called MAX and

MIN by convention, with nodes at an even depth representing MAX's positions, i.e.

MAX to move next, those at an odd depth representing MIN'S positions. The arcs in

the graph represent alternative moves in the same way as arcs represent actions or

transformations in an AND/OR graph. The search strategy attempts to achieve a win,

84

or at least a draw, for player MAX. From MAX's point of view the successors of a

MIN node are like AND nodes in that a win must be obtainable from all these

positions. Successors of a MAX node, however, are like OR nodes in that a win is to

be obtained from any of these positions.

In complex games such as chess the growth of the game tree suffers from

combinatorial explosion which precludes use of exhaustive search techniques

(Nilsson 1980) estimates that simpler game of checkers has approximately 10 120

nodes in the game tree which would take about 1021 centuries to search even if each
node's successor in the tree could be generated in one third of a nanosecond). This is

exactly analogous to the situation that would arise if a naive representation and search

technique were used to tackle an overall process design or synthesis problem. The

search goal reduces, therefore, to simply find good next moves from a given position.

Any of the previously described search techniques can be used where suitable to

provide limited local search. The termination conditions will vary from problem to

problem and may include Constraints on time elapsed, storage space consumed etc.

Once the local search terminates an estimate of the "best" move is made by use of a

static evaluation function,v , to measure the quality of a leaf node n, Q(n).

The node values are then used in a rollback or backed-up evaluation function which

propagates this information back to the start node, just as in AND/OR searches. A

decision can then be made regarding MAX's next most likely move.

In the case of the IvHNIMAX method the quality of a node is simply

v(n) if n is terminal

Q(n) = max [Q(n)] if n 1 represent nodes with MIN to move next

mm [Q(n)] if n represent nodes with MAX to move next

(Convention scores MAX positively, MIN negatively, so MAX wants to maximise

the backed up values of the successor MIN nodes, while MIN wants to minimise the
backed up values of successor MAX nodes).

This technique relies on the assumption that the backed up value of a node is more

reliable than that simply obtained by applying the static evaluation function to the

node. The idea of basing decisions on information gained by limited "look-ahead" is

one common to most game playing algorithms.

The ALPHA-BETA algorithm is a simple variation of MINIMAX which can

significantly reduce the amount of search required by keeping lower and upper

bounds, termed alpha and beta, for the maximising and minimising stages

respectively. Full details can be found in Knuth and Moore(1975), Pearl(1984).

85

Further improvements in the performance of ALPHA-BETA can be obtained by

carefully selecting the order in which nodes are expanded in partially developed trees.

Well known examples are SSS (Stockman(1979)) and SCOUT (Pearl(1980)).

Roizen and Pearl(1983) present a detailed comparison of the ALPHA-BETA and

SSS methods.

2.2.5 Summary of Heuristic Graph Search Techniques
It is apparent that there are many similarities in the heuristic graph search techniques

summarised above. Kumar and Kanal(1983) have formulated a generalised branch

and bound algorithm for heuristic search of AND/OR graphs which clearly sets out

the differences between algorithms such as AO*, 555* ALPHA-BETA etc. Martelli

and Montanari(1975, 1978) also discuss more fully how dynamic programming

problems can be recast in terms of an AND/OR search. The same strategies can also

be applied in theorem proving techniques in the area of first order logic, as introduced

in section 2.3. The generality of the state-space and problem reduction

representations also means that most of the problem solving techniques developed

recently in the Al field, as discussed below and in chapter three, can be described in a

common framework. Much of the following discussion, therefore, assumes a good

understanding of the basic search techniques introduced here.

The key to the successful use of these methods, lies in the power of the heuristic

evaluation functions and their ability to effectively utilise background subject

knowledge when making decisions. Struthers(1984) is an extensive review of

heuristic graph search techniques for various process synthesis design problems. It is

quite clear that most of this research, including more recent work by Grossmann and

co-workers on the use of mixed integer non-linear programming techniques (e.g.

Kocis and Grossmann(1988)), could be more easily formalised and described in

graph theoretic terms as introduced here. In addition, such formulations would then

be more easily compared to the use of heuristic evaluation methods from the field of

A.I. As now described, many well known A.I. techniques can be described in the

same general terms.

86

2.3 Classical Logics and Theorem Proving

The previous section outlined the basic algorithms used in heuristic graph search

theory which have since been used as the basis for development of many Al search
techniques. Similarly this section introduces the fundamental concepts of logic. A

thorough understanding of these concepts is required to appreciate much of the
subsequent discussion for the following reasons:

Logic based representations were the first to be used in Al and the majority of
subsequent developments draw strongly on the theoretical aspects this early
work.
A variety of representation schemes can be described in logical terms. This is
useful for comparison purposes.
A precise definition of the meaning and use of terms such as "semantics" is
possible. Chapter 3 discusses more complex theoretical issues central to any
representation system to be used in a process design environment.

The mathematical study of logic has developed rapidly since the work of
philosophers such as Frege, Wittgenstein and Russell in the late 1800's, and Quine,

Tarski and Hilbert in the first half of this century. Of particular importance is the

study of propositional and predicate calculus as basic representation mechanisms.

Several introductory texts are available describing these formal languages in detail,

eg Thayse(1988), Pospesel(1976), etc. Appendix B provides a brief summary of

some of the terminology and concepts used in propositional and predicate calculus

which are necessary for this introductory discussion. Later chapters assume some
familiarity with the basic literature in this area.

Propositional, or sentential, calculus one of the simplest formal languages. It deals

with propositional sentences that are either true or false. For example, "item hiOl is

an heat exchanger", "the composition of the reactor is within the explosive limits",

"three plus four equals seven", and "if the mixture is not electrolytic then UNIFAC is

a good estimation technique" are all propositional sentences. Truth values can be

assigned to them unlike the terms "the reactor's temperature", "five times four" etc.

which are not propositions. Appendix B outlines the syntax of well-formed formulas

("wffs") of propositional logic, and the use of the logical connectives "and", "or",

"not". The notions of material implication and equivalence are also defined. Material

implication is of importance as atomic propositions can be combined in an "if then
manner. The general formula

(H ! A H2 A ... A FIR) D (C 1 A C2 ... A C)

represents an arbitrary conjunction of hypotheses, or antecedents H, and conclusions

or consequents C. This "rule based" format can obviously be used to represent design

information of a heuristic nature and is discussed in more detail below. Also defined

87

in Appendix B is the notion of semantics with regard to a formal language, namely
truth assignment. The use of the terms valid, contingent, satisfiable and consistent
formulas is outlined along with the concept of logical consequence and use of
tautologies.

It is not the purpose to discuss propositional logic to any depth here. The primary

objective is to highlight the basic features of the language as a representation

mechanism, and especially those features which have been used to develop more

sophisticated representation schemes. Two considerations for any knowledge
representation are:

"what can be said or expressed", ie the types of information that can be
represented, and
the deductive, or inference, mechanisms that allow inferences to be made.

Well-formed formulas in propositional logic can represent arbitrary propositions and
their combination using the five basic logical connectives A, V, -, , and
Universally valid formulas in a formal deduction system, see Appendix B, are usually
referred to as axioms. A typical example of an axiom might be

LI!)]

which can be used to guide inference mechanisms.

This means that any "english-like" sentence which can be represented as a

proposition, such as the examples earlier, can be treated in propositional logic A wide

variety of both general and process design specific information could be expressed in

this simple formalism if desired. Some of the basic reasons why propositional logic

is not directly used in Al systems are now discussed. The issues involved are

important as many of them have resulted in the development of more adequate
representations, including more complex logics, as discussed later in this chapter.

Consider the sentence "riOl is a reactor" and the design temperature of riOl is 100

degrees celsius". This could be expressed as the wff p A q, where p and q are the
propositions "riOl is a reactor" and "the design temperature of riOl is 100 degrees

celsius" respectively. The essential restriction imposed by propositional logic is that

the propositions p and q are "atomic" in nature, i.e. they must be treated as a unit

whole and no reference can be made in isolation to the constituent parts of the

propositions, namely the reactor, riOl, or its design temperature. It is clear from the

requirements and types of knowledge representation required for process design, as

discussed earlier in section 2.1, that it will often be necessary to refer to specific

objects, events or situations, hypothesis and deduce relationships between them, and

generalise these relationships and basic physical principles over classes of abstract

88

objects. Simple concepts such as the "stream's flowrate" cannot be expressed as a

true or false proposition and cannot, therefore, be directly represented in propositional
logic.

Despite the inadequacy of propositional logic as a direct representation language, the

theorem proving mechanisms developed to show the consistency of a set of

propositions, or that one proposition logically follows from a known set of
propositions, have considerably influenced most inference techniques used in A.I. In

addition, the concepts of maintaining consistency of data and knowledge, defined

earlier, are likely to involve similar or related mechanisms in a process design

environment. The principal techniques are now described briefly to provide

comparison later with reasoning mechanisms in alternative knowledge representation

schemes.

Theorem proving involving a formal language, such as propositional logic, is

performed within the framework of a formal deductive, or axiomatic, system (see

Appendix B). This is defined to consist of a formal language, a set of logical axioms

and a set of inference rules by which new formulas can be derived from existing wffs.
Important inference rules include:

conjunction - from P and Q, infer P A Q

simplification - from P A Q, infer P

modus ponens - from P - Q and P. infer Q

hypothetical syllogism - from P - Q and Q -* R, infer P - R

Modus ponens is one of the most important inference rules as it allows conclusions to

be drawn directly from a given set of wffs representing a particular situation. As such

it is central to theorem proving in logic and in most other A.I. representation schemes,

either implicitly or explicitly. It should be well noted, however, that the choice of

axioms and inference rules in any particular deduction system is completely arbitrary.

Appendix B briefly outlines two well known but alternative axiomatisations of

propositional logic due to Lukasiewicz(1929) and Hubert and Ackermann(1928),

both detailed in Frost(1986). The wffs derived from inference rules are called

theorems, a proof of a theorem simply being the sequence of inference rules used in

the derivation. Theorem proving, viewed as the selection of inference rules to

transform a given set of wffs into a final desired wif, can be compared to the selection

89

of operators to transform intermediate states into a desired goal state in state-space

heuristic graph search as discussed earlier (section 2.2).

Three basic approaches can be identified in theorem proving: purely syntactic

theorem proving, purely semantic, and refutation procedures.

A purely syntactic approach to deriving a proof for a theorem is possible in

proposional logic since it is concerned solely with the form, or syntax, of formulas

and the assignment of truth by syntactic manipulation of formulas. Given a theory T,

a syntactic proof of whether a formula Fl is a theorem of T can be found by

repeatedly applying the inference rules of the system until the desired wif is obtained.

Similarly, the consistency of a theory T, such as facts in a database, could possibly be

determined by generalising all the theorems of T to check whether any wff Fl and its

negation -Fl are derived. If they are both derived then T is inconsistent. This,

however, is only possible in "complete axiomatic" systems (see Appendix B). The

problem of deciding which inference rules to apply, in what order, along with

example techniques is discussed later, (section 2.3.5), following the introduction of

first order logic.

A semantic approach to theorem proving can sometimes be used in sound and

complete deduction systems. This involves building a truth table involving all

satisfying truth assignments of a theory T, i.e. those assignments in which all the

proper axioms of T are satisfied, and checking whether the formula Fl is true in each

case. If so, then Fl is a theorem of T. Consistency of a theory T can also be shown

by generating all truth assignments of T until an interpretation which satisfies T is

found. If no such interpretation can be found then T is inconsistent. The word

"semantic" is used as proof checking relies on establishing the truth values of wffs

under given interpretations. This is in contrast to syntactic approaches which can

proceed without evaluation of the truth values of intermediate derived wffs. It will be

seen shortly that a "semantic" approach is not always possible in other logics.

The third common style of theorem proving involves the use of refutation procedures.

Given a theory T and a potential theorem Fl, the basic idea is to negate Fl to -Fl,

add -1Fl to the proper axioms of T, to give T2 say, and test whether T2 is

inconsistent. The basic algorithm is given in steps 1-4 below. The refutation method

is seen to combine the use of syntactic procedures followed by semantic checks in

determining a proof.

1 	Add -iF to the set, S, of proper axioms of
theory T to obtain the set
Si of wffs : Si=Su -F

90

2 	Apply an inference rule to derive a new wff
which is added to Si.

3 	Test Si for unsatisfiability.

4 	If Si is unsatisfiable,
i.e. it contains a wff and its negation, then
stop, else repeat from step 2.

It the set Si is unsatisfiable then so is the set S u -1F and thus, F must be a theorem

of T. The formulation of the problem was given in more general terms in Appendix B

where it is described as the "deduction principle". This is expressed as

{H1 ,... H} 	C [H I ,H,-1C) I=F

where H1 are hypotheses, C is a conclusion and F represents the truth value false.

This expression states that to prove a conclusion C logically follows from a set of

hypotheses is equivalent to proving that adding the negation of C to the hypotheses

results in an inconsistent set of wffs.

The most widely used style of the refutation based approach is resolution refutation,

developed by Robinson(1965). Theorem proving methods are usually classified as

"uniform" or "non-uniform" in nature. Uniform proof methods require that the proper

axioms of a theory be recast in a standard, uniform syntax. Non-uniform methods

work with wffs in arbitrary form. Resolution refutation is a uniform proof method

which requires wffs to be expressed in a regular form called "clausal form" (see
Appendix B).

Any wif in prepositional logic can be expressed in conjunctive normal form and,

hence, in clausal form (Details of the process can be found in standard texts, eg

Frost(1986), Nilsson(1982) Appendix B outlines the process in the case of first order

logic). Resolution is an inference rule that can be applied to wffs that are clauses and

can be written as

{-,XA,--1XB} =AvB or,

{AvX,Bv-,X) =AvB}

where X is a single proposition and A and B are clauses. The rule simply states that

if a literal and its negation occur in a clause set then the literal can be eliminated

without affecting the validity of the derived wff. More formally, if s 1 , and s2 are
member clauses of the normal form 5, and 1 is a literal such that 1 F, s and -il & s21
then the clause

r = (s\(l}) U (s2\(-11)), \denoting set difference,

is a logical consequence of S. The derived clause r is called the resolvent of the two

91

parent clauses s, and 2•

It can be shown, eg Chang and Lee(1973), that if resolution is repeatedly applied to a

finite set of inconsistent clauses, S, then the empty clause, NIL, is necessarily

contained in S. This is expressed in the resolution algorithm in Figure 2.10 which can

be used to check the inconsistency of a wff. This can be used, therefore, to prove a

conclusion given a set of hypotheses as stated above in the deduction principle.

Figure 2.10: Resolution Refutation on a set S of clauses

Assign CLAUSE—SET = S

While NIL is not a member of CLAUSE —SET
begin loop

select two distinct clauses s, s in CLAUSE SET such that literal 1 e si and -' 1
ELSE exit loop

compute the resolvent rjj of si and sj

Assign CLAUSE—SET = CLAUSE—SET U
end loop

If NIL is a member of CLAUSE—SET then S is inconsistent.

The choice of parent clauses Si and sj , step 3), dominates the efficiency of the
resolution procedure. Consider the following axioms:

1.pvq 2.pvr

3.-qv--ir 4.-,p

Figure 2.11 traces two possible paths that could be chosen by a resolution approach.

The numbers in brackets refer to the parent clauses s and
s used in each resolution

step.

Figure 2.11: Possible Resolution Paths

5.q 	(1,4) 5.pv-r (1,3)
6.r 	(2,4) 6.q (1,4)

-iq 	(3,6) 7. pv-q (2,3)
NIL 	(5,7) 8.r (2,4)

p (2,5)

-r (3,6)

11.-q (3,8)

12.-,r (4,5)

13.-q (4,7)

92

14. NIL 	(4,9)

The left hand column uses as few resolvents as possible. The right-hand proof uses a

blind, recursive "left to right" strategy to select parent clauses. The latter strategy is

obviously non-optimal, some resolvents being computed needlessly or more than

once. Some basis techniques for improving the control strategy of refutation methods
are briefly discussed in section 2.3.5.

Two further important styles of theorem proving are worth mentioning, namely

natural deduction proofs and top-down proofs. These styles are merely outlined in
the context of propositional logic in order to simplify the discussion.

Appendix B introduces the notions of "Hilbert-like" proofs and "Gentzen-like"

proofs. Hilbert-like proofs involve the use of a set of axioms and a single inference

rule such as modus ponens or resolution. Gentzen-like proofs are used in natural

deduction systems. In such a system the set of axioms is empty and the inference

rules used are classified as either "introduction" or "elmination" rules. The terms

introduction and elimination refer to the use of the logical connectives, depending on

whether they are introduced or eliminated in an inference rule. Natural deduction

proofs are interesting as they are intended to mimic the way in which mathematicians

often construct proofs. This involves constructing sub-proofs in a recursive manner

and requires the use of suppositions which act as temporary local axioms assumed

within a particular subproof. The control strategy and choice of inference rule relies

heavily on the expertise of the person, or heuristics used, involved in constructing the

proof. The technique can, however, be automated to a certain extent and does not

require proper axioms to be expressed in a specific form. The latter point is

important in that people often express axioms or rules in a way that indicates a certain

"directionality" or structure which could otherwise be lost,

e.g. the pair of axioms -1P - [QvR], M - P

seems intuitively different from the equivalent forms PvQvR, —MvP.

Spoken implications often indicate a left to right flow of information which can be

used to guide the construction of a proof. This hidden information can be lost when

axioms are re-expressed in an alternative form.

The syntactic theorem proving techniques described so far all proceed in a

"bottom-up" fashion, ie given a set of logical axioms or proper axioms or

suppositions, inference rules are repeatedly applied until a proof is obtained. This

method of proof is alternatively described as data-driven or forward- chaining or

93

deductive in nature.

An alternative approach is to use a "top-down", "backward-chaining", goal-driven or

reductive proof method. As the name implies, the method involves starting with the
required formula to be proved, along with the proper axioms of theory, and repeatedly

apply inference rules in a "recursive sub-proof" style in order to determine whether or

not the formula is a theorem. One such technique is the tableau-proof method which

is briefly described in Appendix B. This method can be easily and efficiently

implemented and is widely used as a top-down proof approach. It has also been

extended for use in more complicated logics, see Section 2.3. Zeman(1973) gives a

detailed description of the use of tableaux proof techniques in theorem proving and
validity checking.

Forward and backward chaining techniques are described in more detail in section 2.4

2.3.1 First Order Predicate Calculus

It was argued at the beginning of this chapter what the ability to model a wide class of

"objects" and their inter-relation in a suitable, high level representation language

would be required in a process design environment. Objects will range in nature from

representations of plant items to abstruct concepts describing the design activity

itself. Relationships will be required to express design constraints as well as higher

order information such as functional expertise, event and situation descriptions.

The previous section outlined the use of propositional logic. It was seen that

propositional logic as a representation scheme is far from adequate in that it can only

express true or false propositions. It is useful, however, in that any formal axiomatic

system can be described in similar terms. In particular the notions of normal and

clausal form for expressing logical formulas were introduced along with the three

variations on theorem proving; namely purely syntactic theorem proving, purely

semantic (truth tables) and refutation based procedures. The difference between

data-driven, forward-chaining techniques and top-down, goal driven proofs was

described. It was seen that there is an arbitrary choice as to the choice of universally

valid axioms and inference rules, resulting in either Hilbert or Gentzen like proofs.

Many of these topics will be discussed again in various guises throughout the rest of
this chapter.

The purpose of this section is to introduce first order predicate calculus. Predicate

calculus can be used to describe objects, state relationships between objects and

generalise those relations which hold over similar classes of objects. The concepts

94

involved in the extension of propositional calculus to predicate calculus are described

in Appendix B. In particular, the use of variables, predicate constants, functional

constants and the existential and universal quantifiers is introduced. First order logic

is a simple yet extremely expressive representation mechanism. It is widely used in

A I research as an analysis tool to understand and compare different knowledge

representation techniques, e.g. see Levesque and Brachman(1985). It is used for

comparison purposes throughout the rest of this work and familiarity with this subject

is assumed. Excellent introductions can be found in Kowalski(1979), Thayse(1988)

or Frost(1986). Much of the terminology used is given in Appendix B.

As a brief introduction, examples of some of the aspects of knowledge representation

needed in a design environment, as described in section 2. 1, are now given.

One-place predicates, i.e. predicates with one argument, can be used to classify

individuals into sets, sorts or types. For example, the predicates pump(x), reactor(x)

etc. specify certain types. Any individual constraint, eg. P101, satisfying such a

predicate could be considered to be of that type, eg pump(Pl01) has truth value

TRUE. Some sorts can include other sorts such as pump(x) and centrifugal_pump(x),

while others form disjoint sets.

Predicates can be used to express a variety of statements about individuals, either

about themselves or their relations to other individuals. For example,

"temperature(r101, 298)" states the attribute value for reactor riOl to be 298.

"upstream-of(r101, p102)" could express the relation that p102 is upstream of riOl.

Relations and attribute values can be referred to specific situations, eg. design case

studies, by use of an extra argument to name the situation.

The predicate "temperature(r101, 298, design_study 1)" refers to the temperature of

riOl in situation "design_studyl". Similarly, extra arguments can be used to refer to

specific times or events.

Complex descriptions called, well formed formulas (wff's), can be constructed using

the logical connectives (and, or, not) or {A,v,-,}, e.g. pump(X) A

operating_pressure(X,P) A greater_than(P, 10).

The existential and universal quantifiers permit general statements about classes of

individuals to be made. These are typically used in conjunction with the material

implication connective (-p) to express inference rules. For example,

VX,S. (alkane(X) A cubic_equation_of_state(S)) -* model(X,S)

might be a simple inference rule in a physical property modelling system. Many

95

other inference rules could be formulated and applied, as required, by theorem

proving techniques similar to those described earlier for propositional logic.

Functional constants are introduced for notational convenience in first order logic.

Functions, unlike predicates, return values other than true or false when applied to
their arguments,

eg. upstream of (riOl), could return the unit upstream or reactor riOl. Functions can

be composed, as in upstream_of(upsiream._of(r101)), and can be used as arguments in
predicates,

connected_to(x, upstream._of(x)).

Functions do not extend the range of what can be expressed, merely how it is

represented.

Finally, a logic is said to be first order if it permits quantification over individual

constants but not over predicate or functional constants. This means reasoning cannot

be performed on the predicate constants themselves. This is unlikely to be a major

restriction in many simple. process engineering applications.

It is worth considering how information described by sets of well formed formulas is

related to the representation of data in traditional process design databases. If wffs

are viewed as relational structures then the structures can be expressed as quadruples,
U, where

(U = (E, N, R, Fn) , and)

- E is a set of entities (e 1 ,e2,..} representing the domain of U

- N is a set of distinct individuals (n 1 ,n2,..) and is a subset of E
- R is a set of relations (r 1 ,r2,..) defined on E
- Fr is a set of functions {f 1 ,f2,..) defmed on E

eg. U given by -

E = set of plant items in benzene hydrogenation plant

N = (he101, p201, 001, streami, stream2, ...)

R = {upstream of, controls, has_design_pressure,...)

Fn = {constraint_functionl,...}

where,

upstream _of = {(p101, he101), (p102, r301)., ...) etc. The relations

and functions can be of any arity, the "constraint-functions" being any design
constraints, algebraic expressions etc.

There is an obvious mapping, therefore, between any of the database types, ie.

Ve

hierarchical, network or relational, and a logic based representation. Since relational

tuples can be expressed directly as sets of wif's, there would be little difficulty

representing the data in conventional process design databases, such as PRODABAS
(see section 1.4.5), in a logical framework. This is an important point. The use of the

logical quantifiers and connectives in sets of wif's means, in fact, that the variety and

types of statements that can be made in a first order logic system is much more
extensive than is conveniently possible in conventional database systems. Complex

relationships are more easily defined and domain dependant design heuristics, or

inference rules, can be handled in the same representation system as the design

"data". It is also straight forward to represent aspects of the design process itself. For

example, individual constants can refer to design team members just as well as plant

items, situations and events in the design can be handled directly by naming

individual scenarios, e.g. identify each case study, name data release updates etc.

Check on the use of update and self-consistent data can be enforced by defining

explicit constraints, or relationships, describing the use of data in different scenarios.

For example,

can_use_data(X,S 1) A derivedjn(X,SO) A precedes(SO,S 1)
authorised_release(SO)

might express the constraint that data X can be used in the current situation Si if X

was derived and authorised in an earlier situation SO. X could be replaced by a

specific functional constant, say temperature(r101), and the constraint checked in an
application program or by the engineer.

2.3.2 Reasoning Techniques In First Order Logic
It is clear that first order logic can be used to represent a wide variety of process

engineering design situations. Specific problem facts can be represented by a set of

wffs. General heuristic information and guidance can be expressed using quantifiers

and inference rules. The choice of actual predicates and functions used to represent

the problem is at the discretion of the program designer. In order to derive or deduce

new facts from those given, or answer specific design queries, then some reasoning

mechanism must be provided.

This section introduces important two techniques used in theorem proving, namely

the use of unification (used in pattern matching or variable substitutions) and the use

of heuristics to control and guide the theorem proving process. The theorem proving

techniques used in first order logic are direct extensions of those described earlier for
propositional logic.

97

2.3.3 Unification And Pattern Matching

An extremely important method used in symbolic computation languages is that of

"matching" one symbolic data structure with another. In the case of first order logic

this is equivalent to finding substitutions of terms for variables that makes well

formed formulas identical. This substitution process is called unifacation. For

example, the query "temperature(r101, x)" can be matched with the fact

"temperature(Y, 298)" by the substitution, s, where s = (r101/Y, 298/x).

The concepts of substitution, composition of substitutions and most general unifiers

(mgu's) are described in some detail in Appendix B. A recursive algorithm, called

UNIFY, is also presented which can be used to find the most general unifier of a set

of unifiable expressions (E 1 , E2 ,.. Es), see Nilsson(1982). The algorithm is of linear

complexity in the size of the terms to be unified. The algorithm includes an

"occurs-check" which is used to trap the case in which a variable, x say, tries to match

against a term which contains that same variable, x, but which does not reduce to x.

This check is often omitted for efficiency reasons in actual implementations.

The algorithm can be used, or modified, to perform most pattern matching tasks. It

assumes, however, that the formula be expressed in list notation of the form

(Predicate Argi Arg2 ... ArgN), e.g. pressure(p101, x) becomes (pressure p101 x).

Similarly, an "ifthen"type heuristic can be expressed as a Horn Clause, see

Appendix B, if there is a single consequent C, i.e a single positive literal, and any

number of antecedents Al ... AN.

e.g. if A1AA2A..AAN then C, becomes the set

{ -lA1,-1A21..., ---1AN1C}. Any part of the rule can then be matched as

required. For example, a typical heuristic used in separation sequence synthesis is

"don't separate close boiling components first". This might be written as

if fluid(A) A fluid(B) A boilingpoint(A,Ta)

A boilingpoint(B,Tb) A less_than(10,abs(difference(Ta,Tb)))

then separate(A,B,priority(low)).

The antecedents or consequent can be matched depending on whether or forward or

backward chaining theorem prover is being used.

2.3.4 Theorem Proving Techniques In First Order Logic

This section outlines the principle theorem proving, or inference, techniques currently

used in first order logic systems. The remainder of this thesis assumes a good

appreciation of the methods involved, and their limitations, since they are the only

means of deriving new facts or checking the consistency of sets of facts in a logic

98

based representation system. As such, they would form an integral party of any

knowledge based process design system which attempted to support the concepts of

integrity of data and knowledge, see chapter 1. In addition, it will be shown later that

most of the representation styles used in knowledge based systems can be

re-expressed in a logical framework. This is important as the advantages or

limitations of any one style can then be compared against any other. Of particular

importance to the design of a process engineering knowledge based system is the

types of deduction that can be performed and their efficient implementation.

Historically, resolution refutation based theorem proving has been the most widely

used inference technique. It's implementation and problems are described below.

More recently, development has concentrated on the use of non-clausal and natural

deduction systems. This style of proof technique is not yet fully developed but is

well worth mentioning.

The subject of automated theorem proving in first order predicate logic is a large one.

Detailed discussions cannot be given here, for reasons of space, but references to

important papers are provided.

Section 2.3 introduced the main styles of theorem proving used in formal deduction

systems in the context of propositional logic. In particular, the resolution inference

rule was defined and an algorithm presented to perform the resolution refutation

technique, (see Figure 2.10). This technique is a simple application of the "deduction

principle". This was expressed by the statement,

{H 1 ,...,H} 	C{H1 ,...,H,-1C} 	F,

which states what proving a conclusion C logically follows from a set of hypotheses

is equivalent to showing that addition of the negation of C to the original set of

hypotheses results in an inconsistent set of wif's.

The purpose of this section is to indicate in more detail the practical problems of

applying the resolution refutation technique to realistic problems. The problems

encountered are also symptomatic of many other styles of theorem proving, as

summarised at the end of this section.

Resolution refutation is a uniform proof method which requires that the proper set of

axioms be translated to a standard form, namely clausal form. This transformation is

described in Appendix B. It simply involves the elimination of universal and

existential quantifiers, the latter involving the replacement of existentially quantified

variables by Skolem functions whose arguments are universally quantified variables.

The variables chosen as arguments are those whose scope includes the scope of the

existential quantifier being eliminated. The Skolem function represents the function

that would return the individual that "existed". Once in prenex form the formula can

then be expressed in clausal form. ie . a finite set of wffs each of which is a

disjunction of literals. The transformation process is used to simplify the

implementation of theorem provers and is a simple mechanical process involving

repeated use of a set of rewrite rules. Nilsson(1982) provides an extended worked

example.

Once a set of axioms have been transformed to clausal form they can be used as the

clause, S, in a refutation system, Figure 2.10. For present purposes, it is useful to

describe the refutation method in terms of a resolution refutation tree. This structure

is simply derived from the "derivation graph". The nodes in a derivation graph are

labelled by clauses, with nodes existing initially for every clause in the base set of

wff's. New nodes are created when a resolvent r is produced from two parent

clauses c and c. Links are created between the new node and both its parents nodes.

The resolution refutation tree is simply that part of the graph involved in the

resolution process. Figure 2.12 shows a simple refutation tree with the root node

labelled by NIL, the empty clause.

Figure 2.12: A Simple Refutation Tree

	

—1(z) v R(z) I 	I 1(A)

	

R(A) I 	I_R() v L(x)

L(A) I 	I —D(y) v —L(y)

—D(A) I 	I D(A)

NIL

Refutation trees are useful in that they allow the inference technique to be described

in standard graph theoretic terms. Implementation of a good control strategy is

essential to limit the rate growth of the refutation tree and avoid unnecessary

FlU]

resolvents being generated. A refutation control strategy is said to be complete if it

will produce a contradiction whenever one exists (the use of "complete" here is not

the same as meant by logical completeness, see Appendix B).

The choice of control strategy, as in general heuristic graph search procedures or

specialised branch and bound optimisation methods, is critical to the efficiency and

practical use of any inference technique. Some well known domain independent

heuristics used in refutation system and associated control strategies are now

presented.

The simplest control strategy to adopt is breadth first resolution. All first level

resolvents are computed first, then second level and so on. An i-th level resolvent can

have parent clauses at any previous depth but one parent clause must be at level i. As

in heuristic graph search, the breadth first approach will guarantee to find the optimal

"solution path length" if a solution exists at all. It is a complete strategy but too

inefficient for practical use due to the combinational explosion, even in small

problems. Part of a typical derivation graph is shown in Figure 2.13

Figure 2.13: Breadth First Derivation Graph

Original Clauses

1(A)
	—1(z) v R(z) I I—R(x) v L(x)

	
I —D(y) v —L(y) I
	

D(A)]

1st
Level

R(A)
	 1-1(z) v L(z) I

	 —R(x) V —D(y)

2nd
Level

L(A) 	—D(A) I I L(A)
	—1(z) v —D(z)
	—1(z) v —D(z)

3rd
Level

NIL

Two simple, domain independent restrictions can be used to limit the rate of growth

of the derivation graph. The first requires that in each resolution step at least one

101

parent clause is chosen either from the clause set resulting from the negation of the

goal wff or from their previously , derived descendants. The derived descendants are

called the set of support, as is the overall strategy. Set of support refutation can be

made to be complete by guaranteeing that it search for all possible set of support

refutation in a breadth-first manner. Figure 2.14 show part of a derivation graph.

Figure 2.14: A Derivation Graph Using A Set of Support Strategy

Original Clauses

The second restriction involves modifying the set of support strategy to try to always

select a parent clause involving a single-literal clause, or "unit". The strategy is called

unit preference resolution and helps the search to reduce the number of literals

available at each resolution step.

Book the unit-preference and set-of-support strategies will normally increase the

depth at which the empty clause is found but will significantly reduce the rate of

clause set growth. Set of support is an interesting strategy in that it follows a

backword-chaining, goal driven solution path, i.e. by using a clause originating from

the goal wff or its descendants, but permits forward reasoning steps in the same

system. The forward steps correspond to resolutions which involve a parent clause

which does not descend from the negation of the goal wff.

One of the simplest refutation control strategies is called linear-input resolution. In

102

this case any literal can be used for unification provided that the most recently

derived resolvent is one of the parent clauses and the other is chosen from the input

clause set. The term linear is used because as the most recent resolvent is always on

of the parents of the next resolution, the refutation steps can be described by a linear

path. Linear-input resolution however, is only complete for Horn Clauses.

A widely used variation of the linear-input strategy is LUSH resolution, Hill(1974).

(The acronym LUSH comes from "Linear Resolution with Unrestricted Selection

function for Horn Clauses"). The added restriction here is that the literal to be

selected for resolution be chosen from the most recently derived resolvent in a

pre-defined order. The order is arbitrary, but the left most literal which has a

complement in the input clause set is usually adopted. The technique is only

complete for Horn clauses but is of added interest as it forms part of the theoretical
basis of the programming language Prolog, see section 2.3.6.

In order to provide a complete strategy for non-Horn clauses, the input restriction

must be relaxed but the linear constraint can be kept. The resulting strategy is called

SL resolution, selected literal resolution, see Kowalski and Kuehner(1971). The

literal selected must still come from the most recently derived resolvent, the linear

constraint, but ancestor resolution is allowed. Ancestor resolution is simply where

one clause is resolved with one of its ancestor resolvents in the derivation graph, the

ancestor resolvent not being present in the original set of input clauses.

2.3.4.1 Constructing Solutions In Resolution Refutation Systems
Many problems in process design can be viewed as a process of satisfying or

minimising constraints, eg. design of a reactor which achieves some intended aim. In

terms of theorem proving this is a variation on the theme of proving a wff such as

(x)W(x) where W(x) is some complex wff describing, perhaps, the properties of x.

It is not sufficient to merely prove that x exists, as would be derived by the strategies

described earlier. Rather, a constructive proof is required which will produce the
satisfying instance of x.

Fortunately this is straightforward to achieve following the method of Luckham and
Nilsson(197 1).

Construct a resolution refutation tree as usual. Label or mark the unification
sub-sets of the clauses used in each resolution.
Replace any Skolem functions occurring in the clauses that result from the
negation of the goal wff by new variables (see explanation below).
Convert the clauses that resulted from the negation of the goal wff into
tautologies by appending to them their own negations.
A modified proof tree results which models the structure of the original
refutation tree. The unification sets used are determined directly from those in

103

the refutation tree and will be the same unless Skolem functions have been
renamed (step 2).

5. The clause at the root of the tree will now be the answer or solution to the goal
wff.

Figure 2.15 shows a trivial example of a refutation tree and its conversion to a

modified proof tree. The justification for the method is simple. By converting every

clause resulting from the negation of the goal wff into a tautology, then the modified

proof tree is, in fact, a resolution proof that the clause at the root of the tree logically

follows from the axioms used plus the tautologies. Since tautologies are universally

valid, the clause must also logically follow from the axiom set alone. Thus, the

unifaction sets used in the proof tree, and the parent clauses used in each resolution,

"justify" or "explain" the construction of the solution statement. The proof tree

essentially describes "how" or "why" a particular solution was arrived at.

Step 2 in the answer extraction process requires some explanation, i.e. replacing

Skolem functions by new variables. If a goal wff contains a universally quantified

variable, eg. (x)(Vy)(z) then it will become existentially quantified in the

negation process and replaced by a Skolem function constant, P(x,g(x),z).

Luckham and Nilsson(1971) showed that these Skolem functions can be renamed as

new variable without invalidating the proof. Any new variables merely trickle down

to appear in the answer statement. In fact, the substitution sets will normally be more

general as a result than those used in the original refutation tree.

Finally, it is obvious that the form of the answer statement depends on the refutation

tree constructed. If there are several solution paths then some answers may be

identical whilst others may be more general expressions in terms of variable

occurrence. There is no way of knowing, without complete search enumeration, if

the most general answer had been obtained. This is similar to the problem of

ensuring a global optimum solution in heuristic graph searches except the problem is

worsened by the undecidability'of predicate calculus. It is not always possible to

know whether all the possible proofs for a goal wff have been found. In practical

applications, therefore, search will terminate when a satisfactory solution is found.

2.3.4.2 Simplifying The Search Strategy
The choice of control strategy is not the only means of reducing the amount of search.

Problem descriptions, facts and heuristics expressed as sets of wff's can often be

simplified by the elimination of certain literals or formulas. There are four simple

mechanisms that can be used.

1. Elimination of universally valid formulas. Tautologies can be removed since an

104

Figure 2.15: Converting a Refutation Tree to a Modified Proof Tree

Given the Axioms :Vx V ([P(x,y) A P(y,z)] => G(x,z))
Vy lx P(x,y)

Prove the goal: lx I y G(x,z)

Refutation Tree:

Modlied Proof Tree: Resolvents Underlined

-G(u,v) V G(u,v) 	 —P(x,y) V —P(y,z) V G(x,z)

I —P(u,y) V -P(y,v) V G(u,v) I
	P(f(w),w)

—P(u,f(v)) v G(u,v) 	 P(f(w),w)

unsatisfiable clause set will remain unsatisfiable after these formulas are
removed.
A clause C can be deleted from an unsatisfiable set of clauses S if it contains
some literal L that could not be resolved on by another clause in S. This is
called the purity principle, see Robinson(1965).
A clause C can be deleted without affecting the unsatisfiability of a set of
clauses S, if C is subsumed by another clause in S. A clause C is said to be
subsumed by clause D if there is a substitution 0 such that C -* DO v E
e.g. y = x is subsumed by Y = x as anything that can be derived from the
variable free term can also be derived from the more general term
(y=x <-p (Y=x) (y/Y) v

The fourth mechanism available is called procedural attachment. This technique is of

great importance to the practical application of most knowledge based representation

systems, including those based on logic, and is a topic that will be often be discussed

in the rest of this chapter. In logic based systems, procedural attachment usually

refers to the use of evaluable predicates to establish the truth value or literals rather

than include the literal and their negations in the base clause set. The most obvious

example is the use of the predicate constant "equals", eg. equals(4,3). It is much

simpler to evaluate the truth value of equals(4,3) than litter the clause set with a large

number of ground instances, i.e. variable free instances, of the form "equals(x,y)" and
"—iequals(x,y)".

The precise nature of procedural attachment is worth considering in more detail here.

Well formed formulas in predicate calculus are simply linguistic constructs that

denote truth values, individuals, functions or relations in a given domain. These

formulas are useful in that they can be interpreted with reference to a model. This

model associates the linguistic entities with the appropriate domain entities which are

being modelled, and associates the truth values true or false with sentences

constructed in the predicate calculus language. In practical applications, models and

their interpretation process are not, however, finite. Infinite models, for example,

include those which represent natural or real numbers. As a result, partial models

must be used instead, procedural attachment being one feature of such a model.

Consider a computer program, i.e. evaluable procedure called Eval_equals, say,

which tests for the equality of two numbers within the finite domain that can be

represented in the machine. The code Eval_equals is said to be attached to the

predicate symbol equals. Similarly, in the wff equals(4,3), the linguistic entities 4

and 3 (ie. the numerals) are attached to the numbers, or data items, 4 and 3, and

Eval_equals(4,3) is attached to the expression equals(4,3). A literal is said to be

evaluated when it is interpreted in the partial model by running the attached

procedure. The attached procedure will return a value which indicates whether a truth

value of true or false is to be associated with the literal.

106

Procedures can also be attached to function symbols in exactly the same way as

described for predicate symbols. Simple arithmetic functions such as plus(x,y),

times(x,y) etc., could be evaluated in this way. Where necessary, or desirable, higher

level functions such as boiling-point(x,pressure) could have attached procedures.

It is certainly not the desire, to attach procedures to every predicate or function

symbol. The technique is used purely to help reduce the size of the proof search

space. If a literal in a clause evaluates to true then the entire clause set can be

eliminated without affecting the unsatisfiability of the remaining set. If it evaluates to

false, however, then only the occurrence of that literal can be eliminated from the

clause.

In summary, the essence of procedural attachment is that it is an implementation

specific aspect of the more general interpretation process of a partial model. As such,

it is just one of many forms of extended semantic checking that can be used in

theorem proving to reduce the required search effort (see Bundy(1983, chapter 10) for

an extended discussion on the use of semantic information to guide a proof search).

2.3.4.3 Paramodulation
The introduction of the "equals" predict above provides a convenient opportunty to

discuss some of the problems arising from the use of such general predicates.

Another typical example is the use of and connotations associated with, the "is-a"

predicate, e.g. is-a(x,y). The problem lies not in logic but mainly in the direct, and

varied usage of these terms or concepts in the English language. When two objects

are said to be equal, or one object is another, the precise semantics intended often

depends strongly on the context in which the statement was made, i.e. taking a

statement to be true or false depends on the context and purpose of why the statement

was made. For example, in process design problems it is usual to simplify a model of

a unit operation, say, for specific reasons, data constraints etc. Sentences of the type

"riOl is a plug flow reactor" can be used to represent this situation, but are known not

be true in a wider context.

Even within a self-consistent context notions of equality etc. can prove troublesome.

For example, in mathematics equality is represented by the = symbol. Five axioms

are used in its definition.

Reflexivity : X=X, i.e. an object equals itself
Symmetry: X=Y - Y=X, i.e parameter order is unimportant
Transitivity: X=YAY=Z -p X=Z, i.e. equality is inherited.
Substitution: substitution of an n-ary function f
X1=Y 1A .. 	-* f(X1 ... ,X)=f(Y1,..,Y)
Substitution: substitution of an n-ary predicate p

107

X 1 =Y1A .. AX=Y -* p(X 1 ,..,X)=p(Y 1 ,..,Y)

If these axioms are directly used, however, in a proof then the branching rate of the

proof search tree will dramatically increase. The problem is simplified by

introduction of a new inference rule of logic called paramodulation. It is defined as

c(X)AX=Y—>c(Y)

where c(x) is a clause containing a term X and Y is some other term. If it happens

that c contains more than one occurrence of X then only the first distinguished

occurrence of X is replaced, multiple occurrences being replaced by repeated

application of the rule.

This is indicated by square brackets c[X]. It is also usual to allow the substitution
literal to be on either side of the equality, i.e.

C[X] A ((X=Y v Z) v (Y=X v Z)) -* c[Y] v Z,

where Z can be the empty clause.

Finally, the occurrences of X are made unfiable rather than identical,

c[X'] A ((X=Y v Z) v (Y=X v Z)) -> (C[Y] v Z)O,

where 0 is the most general unifier of X' and X.

The paramodulation rule can simplify a proof. Its use is important in any sort of

proof involving equations or constraints involving variables since these cannot be

evaluated by an attached procedure. All the theorem prover can do is maintain

consistent unification sets. The problem is further compounded by the

semi-decidabiity of unification involving associative operators indicated earlier,

eg. x + (y+z) = (x+y) + Z or X + z = z + Y.

The main point to note is that attached procedures cannot always be used to evaluate

certain predicates or functions. In those cases the paramodulation inference rule, or

similar, can be used to help simplify the proof rather than revert to use of low level

axioms resulting in rapid combinatorial growth. Bundy(1983) describes the practical

problems of constructing proofs involving mathematical models, sets of equations,

inequalities etc. These issues are of direct relevance to a process design environment

which attempts to maintain consistency throughout a project design, plant models

changing from simple to complex in nature as the design progresses.

108

2.3.4.4 Alternative Theorem Proving Methods

Before leaving this general introduction to theorem proving in first order logic it is

useful to review more recent research since many of the techniques described so far

date from the late 1960's.

A topic of much interest in the 1970's was the development of non-clausal resolution

theorem provers, eg Wilkins(1974). These systems do not convert formulas to

clausal form as this can destroy useful information implicit in the structure, or layout,

of the original formula, e.g. there is often an intended "direction" or flow of

information in formulas of the form "if A and B then C, as opposed to —i(AAB)vC.

Murray(1982) is a good example of this approach using the non-clausal inference

rule. To understand this inference rule consider again binary resolution, section 2.3.4.,

{ (XvY), (Zv `Y2)) t= (XvZ)O, where 0 is the most general unifier of Y 1 and Y2.
This is the same as replacing the matched positive and negative literals by "false" and

"true" and forming the disjunction of the resultant clauses. The true or false literals

can then be removed on truth grounds, i.e. they both evaluate to false in a disjunction.
If the formulas A and B contain atomic formulas L 1 , ..., L such that there is a most
general unifying substitution 0, L0 = L 20 = ... L0 = L, then if L is positive in A and

negative in B the non-clausal resolvent of A and B is simply

AO(L/false) v B0(L/true).

Murray lists six simple rules to establish the positive/negative polarity of a wff and

eight further "reduction" rules to simplify the resolvent clauses, eg. Let A, B and C

be wffs, and C be a sub-formula of B. One polarity rule states that if C is

positive/negative in A then C is positive/negative in the forms A v B, A A B, and

B -4 A.

NC resolution still suffers from the problem of deciding upon a good control strategy

but information may be available from the original structure of the formula set. In

addition, NC resolution is generally more complex to implement efficiently although

it should be less redundant than clausal resolution.

Another technique developed for simplifying proof procedures was the development

of connection graphs. They are worth describing in one detail as variation of this

method arise in many other knowledge representation formalisms.

The simplest idea is that of "classification trees" Kowalski and Kuehner(1971). The

tree is used to index clauses in the base set according to the literals which they could

resolve on. The literals are named on the tree links and the clauses with which they

could be resolved label the nodes. Figure 2.16 shows a simple example. The reason

109

(--- iL(r101)1

6 	 4

behind this "pre-analysis" is to reduce the runtime effort of identifying potential

resolvents. This can amount to significant cputime in large clause sets.

Figure 2,16: A Simple Connection Tree

Given Clause Set:

(K(x), L(x))

f M(y), —iK(f(y)))

(—iM(r102))
t—,M(u))
(—,L(f(p101)))

Boyer and Moor(1972) extended this idea to the notion of a connection graph. Each

clause in the input set is used to label a node. More precisely, the idea is that every

literal occurrence in the original set S of a theory be identified with a node. The arcs

in the graph then indicate the possible resolutions and are labelled by the most

general unifying substitution between the two nodes. Figure 2.17 shows the example

of Figure 2.16 as a connection graph.

110

Figure 2.17: Connection Graph Representation

(K(x), L(x))

MY), —iK(f(y)))

y= r1 Y = U

(—iM(r102)) 	(-1 M(u)) (--- iL(f(p101)))

x = f(p101)

#101))

There is a unique resolvent associated with each arc which can be generated by

resolving the clauses at either end of the arc. In the process, a new node will be

created representing the resolvent. It in turn will have arcs between itself and the

other nodes that were connected to the two parent clauses as long as the substitutions

are compatible. Figure 2.18 shows the graph of Figure 2.17 after two of the nodes

have been resolved. Detailed descriptions of a connection graph proof procedure can

be found in Kowalski(1975, 1979).

Figure 2.18: Effect of Adding a Resolvent to a Connection Graph

(—iM(r102)) 	(—,M(u)) (—iL(f(p101)))

y=u\
Y p 101 y=r102......•\ 	=

(M(y), L(f(y)))

There are several advantages in using such an approach. First, much of the

computation effort can be reduced by careful pre-processing of the input set.

Secondly alternative control strategies can be easily implemented or simulated.

Finally the effort involved in deriving subsequent proofs or refinements of earlier

proofs is much reduced in that new problems can continue from where previous

111

problems finished, assuming of course that the connection graph data structure is not

descarded.

Stickel(1983) is a recent example of the development of a non-clausal connection

graph theorem prover. In this case arcs connects nodes which have potentially

unifiable literals of opposite polarity.

The last alternative technique considered here is the matrix connection method, see

Bibel(1976,1983) Andrews(1981). The method is straight forward and can be applied

to clausal or non-clausal forms. The basic idea is best described by a simple

clausal-form example in propositional logic. To prove that Q is a theorem of the

formulas P—Q and P,

Convert to a set of clauses S, (—iP, Q), (P)
Negate the goal formula to clausal form and add to S,
Identify all "paths" through S such that each path passes through one literal in
each clause, see Figure 2.19.
S is unsatisfiable if each path contains one or more complementary literals. In
Figure 2.19 —1P and P occurs in path 1 and -iQ and Q in path 2. This S is
unsatisfiable and Q is a theorem of the original clause set.

Figure 2.19: Paths in the Matrix Connection Method

	

I 	I

	

path 	•.path2

The method essentially consists of generating all truth assignments for the clause set.

If no satisfying truth assignment can be found, ie. compinientary literals exist in all

possible assignments, then the clause set is unsatisfiable. A complimentary pair of

literals in a path is called a connection. The spanning set of connections is one for

which each path iii the set of clauses has a connection named in the spanning set.

At first sight the method seems practically infeasible as it amounts to exhaustive

numeration. In fact, it can be implemented quite efficiently by realising that a path P,

and all other paths containing P as a sub-path, can be ignored as soon as a

112

complementary pair of literals is found in P. A brief outline of the approach is given

in Appendix B. Full details can be found in Bibel(1982, 1983). The method is more

complicated in predicate calculus since the procedure must also attempt to find a

compatible set of substitutions for variables in each path. Bibel provides more

detailed discussion on the advantages of the matrix connection method compared to

both resolution and natural deduction techniques.

2.3.5 The Control Problem in Logic Theorem Proving

This chapter has shown how first order predicate calculus can be used to represent a

wide variety of problems. In order to make useful deductions from these problem

descriptions a variety of theorem proving techniques have been discussed. The

uniform proof techniques require that logical formulas all be transformed to a single

format while non-uniform methods work with facts and inference rules in their

original forms. The problem with all theorem provers when faced with a realistic,

non-trivial problem, is the choice of control strategy required to curb the

combinational explosion in the size of the proof search space. Simple

implementations will blindly apply inference rules, eg. resolution or paramodulation,

to clauses in an arbitrary order. Given the inherent size of the search space, this is

unlikely to result in useable systems for use on large or complex problems.

Bundy(1983) is a good example of the practical problems that can arise. This is

exactly the same situation as described earlier in the use of uninformed heuristic

graph search methods. Indeed, by representing resolution based proofs as refutation

trees, and the more general use of derivation graphs, it is clear there is a direct

correspondence between theorem proving and heuristic state-space searches.

State-space transformation operators simply correspond to the application of

inference rules. Algorithms such as A* , AO*, show that heuristic estimates of the

effect involved, cost of solution path etc., are required to improve the efficiency of

depth first, breadth first or backtracking procedures.

The control problem in resolution based theorem proving stems from the choice of

clause used to resolve a literal away. The order in which literals are resolved is not

really a problem since they must all be eventually resolved. The choice of parent

clause is, however, a "real" choice in that one path may lead quickly to the empty

clause while others introduce new, redundant variables and increase the search space.

The basic problem comes down to knowing, or guessing well, which rules, (or

operators) to apply, when, and to what facts (or nodes), and embodying these

heuristic estimates in the control strategy.

Strategies such a linear-input LUSH or SL resolution provide simple domain

113

114

independent heuristics over clause choice. Extended forms of semantic checking,

including procedural attachment, can further reduce the number of choice options for

each application of an inference rule within a given strategy. It is the general

consensus, however, that domain dependent heuristics must also be used to provide

much strictor search control. Bundy(1983) discusses in some depth the use of

heuristics in theorem proving in the context of equation solving and mathematical

modelling in general. A listing of a concise heuristic theorem prover, written in

Prolog (see section 2.3.6 below) is also provided.

A more detailed discussion of the use of domain dependent heuristics and

meta-information, i.e. information on how to use other pieces of information, such as

when to apply an inference rule, is given in section 3.2.

2.3.6 Logic Programming and Prolog

Logic programming is a style of programming based on the ideas introduced in this

chapter. Ideas such as automatic inference, pattern matching, inference rule and fact

representation are taken to be programming primitives out of which more complex

systems can be built. One of the main proponents of this style is Kowalski(1975).

The use of deduction systems to perform computations is appealing as the control

strategy and its implementation can be cledarly separated from the representation of
information.

Other than specialised logic programs, the most widely used, practical programming

language is PROLOG, originally developed by Colmerauer et al in the early seventies

and most notably by Warren(1977). Prolog is basically a Lush Resolution theorem

prover employing a depth first, backbracking control strategy. As such, a prolog

program is a set of Horn clauses defining a set of predicates. As with other symbolic

languages, most notably Lisp, there is no distinction between program and data. All

"programs" are data structures and are evaluated by an external interpreter, in

Prolog's case the particular theorem prover in use. In order to make Prolog a

practical programming language several built in predicates are supplied which are not

satisfied by resolution but are evaluated and then deleted from the clause. A simple

example is the "write" predicate which displays Ascii strings on a terminal. Higher

order logics can be simulated as predicates are provided to analyses predicate

structure, i.e. the name and arguments of the predicate, to construct new predicates,

collect the set of instances of any given predicate schemata etc. A "cut" symbol (! is

used) is provided to irrevocably prune of parts of the search tree, thus augmenting the

basic control strategy.

114

As Prolog handles Horn clauses it can represent the following types of clause.

Facts and Assertions: General facts, data statements etc. are represented by
n-ary predicates, e.g.
temperature(r101, 298). is a prolog "fact".
Variables are expressed by upper case letters and predicate or functional
constants by lower case letters. The underscore symbol"" is the special "don't
care" variable, e.g.
temperature (r101,_), riOl has some temperature.
Implications Clauses: A 1 AA2A ... AA - C, which express a consequent, C,
given a number of antecedents A 1 ...A11. This can be used to represent heuristic
"if then ." rules, or in a procedural context, express how a goal C is proved,
or computed, in terms of subgoals. In Prolog this is written as
goal-name (Argi....., ArgN):-
sub-goal 1 (.....),
sub-goal 2 (.....),

sub-goal N (.....).
The "if" operator, :-, can be replaced by any sequence of allowed letters and
symbols. For example, to express heuristic rules it can be written using the pair
of strings "if' and "then",
if antecedent 1 (Argi),
antecedent 2 (ArgA.....

• 	antecedent N (ArgN.....)
then consequent (ArgC.....).
The logical "and" connective in Prolog is the comma, "," symbol but this can
also be redefined if necessary.

To compute a Prolog program, or prove some goal clause, a goal statement is taken

by the interpreter and "proved" by Lush resolution plus evaluation of any special
predicates.

Since Lush resolution based on depth first search is a weak theorem proving

technique, most Prolog applications use the built-in facilities to construct more

powerful systems on top. This is the approach taken throughout this thesis.

Prolog is widely used as a programming language in Al. Detailed introductions can

be found in Clocksin and Mellish(1984), Sterling and Shapiro(1986). The use of

Prolog in constructing database systems can be found in Gardarin and Gelenbe(1984).

For a comparison of Prolog and Lisp as general symbolic evaluation systems see

Warren and Pereira(1977). The choice between the use of Prolog or Lisp is

somewhat irrelevant within the context of this thesis. The important point is a

commitment to a clean separation between data representation and its manipulation

and interpretation rather than commitment to any particular implementation.

115

2.4 Generalised Production Systems

One of the major research areas in Artificial Intelligence over the last fifteen years

has been the development of domain independent production systems. Many of these

early systems were referred to as "expert systems". The term is not used here as it is
considered to be both somewhat inappropriate and imprecise. An assessment of what

may or may not constitute an "expert system" is given at the end of this section.

The purpose of this section is to describe the underlying structure representation and

interpretative mechanisms available in this class of system. In order to understand

the nature of these systems in a more precise way, their relationship to techniques

developed in heuristic graph search and logic based theorem proving is made clear

whenever possible. The potential contribution of the use of production systems in the

development of a process engineering design environment, in terms of how suitable

they are for representing certain types of information, is then discussed.

Problem solving activities in the area of heuristic graph search, whether optimising or

satisfying searches, consist of three basic characteristics.

A symbolic structure or code which represents each candidate object or
sub-problem in the search space.
Computational "operators" or "functions" that transform the encoding of one
object to that of another.
A control strategy, or scheduling algorithm, to perform the object
transformations via the application of operators. It is generally desirable to
reach the desired goal or object state with near minimum search effort.

These solution technique characteristics are mirrored exactly in logic based theorem
proving systems.

A set of logical axioms.
A set of inference rules for deriving new wffs from previous wffs.
A theorem proving or control strategy used to order the application of the
inference rules to arrive at or prove the desired goal statement with minimum
effort.

Research in both areas has indicated that good, domain or problem dependent

heuristic estimates are required to satisfactorily guide the search. State- space
heuristic search based on the A* or AO* class of algorithm, including the special case
of branch and bound optimisations, require assessment of the expected activity of

operator application. The order or schedule of operators to be used must be

continually revised as the solution progresses. The same is true in problem reduction

formulations in which the order of sub-problem to tackle next must be constantly

reviewed using some appropriate heuristics. Domain independent heuristics, such as

limiting depth search to a certain level then reverting to a uniform cost or breadth like

116

strategy, do generally help but are insufficient in large or complex problem spaces.

Experience in the area of heuristic process synthesis algorithms shows that this

approach is unlikely to succeed, when applied in isolation to many process design

problems. Much of the problem appears to be due to an inadequately low level of

representation and the consequent inability to reason about the search control strategy
at a high enough level of abstraction.

Logic based deduction systems offer a much richer form of problem representation

than do many early heuristic systems. Experience shows however, e.g. Bundy

(1983), that their practical application to complex problems is unlikely to succeed in

the absence of good heuristics to guide the selection and scheduling of inference rules
and their application.

These problems gave rise to the formulation and development of more generalised

"production systems" which incorporate many characteristics of both heuristic search

and theorem proving techniques. One of the early systems developed was in the area

of psychological modelling, Newell and Simon(1972). Information expressed in the

form of "if... then..." statements were referred to as productions. The layout and

operation of a typical production system, as described below, generalises the work of

Newell and Simon and applies to the majority of systems developed to date. The

approach taken have, following that of Nilsson, is to make clear the relationship

between production systems and the equivalent logical formalism. The problems

involved is using such representation systems in a process design environment can

then be more clearly appreciated.

Corresponding to the three basic components of heuristic search and theorem proving

systems, the components in a production system are:

A global data base.
A set of production rules, and
A central system.

The term "global database" is used to refer to the central data structure(s) used in any

particular implementation to store both problem specific and invariant

data/information. The word database does not indicate actual use of a database

system, although it does not exclude it, but any data storage mechanism appropriate

to the situation. The data structure is not fixed in size but grows in size as problem

data is supplied, new deductions are made, etc. As such, it effectively provides one

working memory for a production system. In logic terms, the global database is

simply a set of wff's, clauses, facts etc. The set of clauses is constantly modified as

theorems are proved, contradictions are found and so on. The advantage of a logic

117

based data representation is that a precise semantics can then be defined for its

subsequent interpretation and manipulation.

The set of production rules in use define the operations that can be performed or

applied to the global database. Following Newell and Simon(1972), production rules

are invariably expressed as "if. then constructions, typically

if Premisel and Premise2 ... and PremiseN
then Conclusioni and Conclusion2 ... and ConclusionN

This, of course, is exactly the same as any inference rule in logic representations.

P1AP2A ... APN-4C1AC2A ... ACN
or,

-"(P1 A P2 A ... A PN) v(C1 A C2 A ... A CN).

A number of terms are used to describe these rules. The left hand side of a rule refers

to the antecedent or set of conditions or hypotheses of the rule, while the right hand

side of the rule refers to the consequent or conclusions of the rule. If the right hand

side of the rule represents an action to take, as is the case in problem reduction

formulations, then the rules are referred to as "condition-action" or "situation-action"

rules,

e.g. 	 "If appropriate point in design has been reached
then solve separation sequencing problem"

Many systems express the rule conditions as "object-attribute-value" triples, e.g.

(riOl temperature 350), which indicates that the attribute temperature of object riOl
has value 350. This is exactly how information is represented in logic via the use of

predicates. When writing generic rules or heuristics the actual values and object

constants will be replaced by variables. If variables are represented by capitalised

words, a simple generic rule could be,

if (R temperature Tactual) and
(R safe-operating-temperature Isafe) and
Tactual > Tsafe
then (R condition dangerous).

At any given instant the antecedent of a rule may or may not be "satisfied" or

"matched" by facts, given or derived, in the global database. It is normally the case

that any one of a number of rules could satisfy their antecedents. It is then the

responsibility of the control strategy to decide which rule to apply to the global

database. This is very similar to the process of deciding which inference rule to apply

in resolution based theorem proving and is discussed in more detail shortly. The

overall aim of the production is to arrive at or deduce some goal state or answer

118

statement which it does by repeated rule application governed by the control strategy.

The goal state is recognised by providing suitable termination conditions, either

explicitly or system defined, describing parts of the global database, eg existence of a

certain set of facts with acceptable object-attribute values. Figure 2.20 shows an
outline algorithm for any production system.

Figure 2.20: General Algorithm For a Production System

Assign Data Set to the .nitial data,
eg problem details and general facts.

While termination conditions are not satisfied by Data Set

START

Select a rule R that can be applied to Data Set.

Update Data Set having applied R to Data Set.

FINISH

The algorithm is too general to be of real use but indicates the essential operations,

more detailed implementations being described below. It is worth comparing,

however, with the graph search algorithm, Figure 2.4, and the resolution refutation

algorithm, Figure 2.10. The control strategy in use determines the rules to be selected

in Step 3. As in heuristic search, the strategies employed can be classified into one of

two broad categories, namely irrevocable and tentative. When a rule is applied in an

irrevocable regime its application and effects cannot be reconsidered.

In a tentative strategy, however, a mechanism is provided to reconsider the use of a

rule or any other possible alternatives at a later point in the search. This can either be

effected by means of backtracking or via general graph-search approach as discussed

earlier in section 2.2.

The mode of operation of a production system, as distinct from the style of control

strategy, is normally classified as either forward or backward chaining in nature. The

concepts of forward, data driven bottom-up strategies and backward, goal drive,

top-down strategies were briefly introduced earlier in the context of theorem proving.

In a rule based system forward chaining simply refers to process of chaining forward

from known conditions in the global database which match against rule conditions

towards allowable conclusions. An intermediate conclusion can be used to match

part of another rule condition, hence the use of "forward":

Given fact y deduce z

if y then x.

if x then z

119

In contrast, backward chaining refers to the reverse process of hypothesising some

goal conclusion expressed as a rule consequent, and trying to find terms to match

against the rule conditions. A single rule condition within an overall conjunction can

become an intermediate or sub-goal which can be used to match against the
consequents of other rules:

Hypothesise goal z, verify fact y
if y then x.

if x then z

Before describing specific systems in more detail and their application to chemical

engineering design problems, the operation of a production system shall be

re-expressed in a logic based framework. Informal descriptions of production

systems can be found in several introductory texts, eg Hayes-Roth,Waterman, and

Lenat(1983), Barr and Feigenbaum(1981), Jackson(1986).

2.4.1 Production Systems in a Logic Based Framework
This section briefly outlines the relationship between certain aspects of production

system operation and logic based theorem proving. This is important for two reasons

It permits comparison of a number of ad-hoc, implementation specific details
found in a variety of systems in a common representation.
The precise nature of the operation of production systems can be understood
more clearly.

If production systems are to be used in decision making procedures in process design

it is essential that the decision procedure and validity of any subsequent conclusions

or decisions made be clearly understood. Logic offers a precise semantics for this
analysis task.

2.4.1.1 Direct Representations, Kowalski Form and Prolog
Most production systems do not convert rules and facts to normal clausal form but

use them in a form equivalent to the original statement. These systems are termed

direct representation systems. The idea is to preserve order information implicit in

the sequencing of rule promises or consequents which can help guide the search.

This is the same approach taken by non-clausal and natural deduction theorem
provers.

Rather than transform an if-other rule of the form

"if P, and P2 . . .Pn then C"

to the clausal form,

—1P 1 v ... v -1pvC,

120

the equivalent Kowalski form can be used

P 1 AP2A ...P—)C.

The arrow is often drawn the other way round, giving

C(-P1AP2A ...

which can be directly represented as a Horn clause in Prolog,

e.g. c :- pi, p 2 , pn.

The use of symbols such as ":-" and "," is a syntactic convention and can be changed

back to "if', and "then" if desired.

General facts can be directly represented by predicates in first order logic. Section

2.3.4 illustrated representing such facts in Prolog. These facts are stored in an

internal database in the prolog interpreter environment. In the context of production

systems, Prolog's internal database is the global database structure discussed earlier.

Nilsson(1982) generalises "facts" to be "fact expressions" of an arbitrary AND/OR

form that can be represented by AND/OR graphs, see section 2.2. Conjunctive sub

expressions E 1 , ..., E of an expression, i.e. E 1 A E2 ... A E, are represented by

individual descendant nodes connected to their parent node by a 1 connector, see

Figure 2.21.

Figure 2.21: Representing Fact Expressions

ii 	IS]

(PvQ)I 	Iii 	LJ

(PvQ)ARI

[(P v OJ A R] V [S A (1V U)]

Disjunctive sub expressions, E 1 v E2... v E, are represented by descendant nodes

connected by a k-connector to their parent. The leaf nodes of a graph represent the

literals in the expression, the root node being the entire expression. The reason for

reversing the role of k-connectors and 1-connectors, normally associated with AND

121

nodes and OR nodes respectively but reversed here to OR nodes and AND nodes, is

to more easily describe possible solution proof graphs as now explained.

The usefulness of an AND/OR graph to represent a fact expression is to understan4.

clearly the process of applying rules in a production system to a global database. In

this case, the entire AND/OR graph represents the state of the global database, e.g. a

set of facts represented as a complex expression. The following example is given in

Nilsson(1982).

Suppose a simplified rule of the form "literal - wif", e.g. S - ((X A Y) v Z), is
applied to the fact expression in Figure 2.21. Given a fact expression F(L) and a rule

L -* W, the fact expression F(W) can be derived by substituting all occurrences of L

in F by W. This is shown in Figure 2.22. The result is that the original graph is

transformed to a new graph which also represents F(W). Alternatively, the set of

solution graphs terminating in leaf nodes correspond to the set of clauses in the clause

form of (F(W). To see this more clearly consider the resolution process steps. The

clause form of the rule S - ((X A Y) v Z) is —IS v X v Z and —,S v Y v Z, and the

clauses resulting from the clause form of [(P v Q) A R] v [S A (T v U)] that would

resolve 	on 	S 	with 	the 	rule 	clauses 	are
P v Q v S and R v S. The complete set of resolvents that could result are

{XvZvPvQ, YvZvPvQ, RvYvZ, RvXvZ}

Figure 2.22 shows that all these clauses are represented in the solution graphs of the

transformed graph, i.e. it includes the entire set of resolvents produced by performing

all the possible resolutions on L between the clause forms of fact F(L) and rule

MMMIAIJ

The essential point to note is that in this formulation the process of rule application

achieves the same results as the resolution process but in an efficient manner.

Applying a rule to an AND/OR graph results in a transformed graph which represents

both the original fact expression and new inferred facts. Rule application is

represented by a "match" arc or link. The original node, to which the rule was

applied, is no longer a leaf node but can still have other rules applied to it if

necessary. The order of rule application and the nodes selected, ie those nodes which

match the left hand side or right hand side parts of the rule, depends on the control

strategy in use.

The process of "matching" parts of rules, either the antecedent or consequent in

forward or backward chaining respectively can now be more precisely defined. The

use of variables in direct representation systems, however, must be introduced.

122

Generic rules will usually be written in terms of variables that have implicit universal

quantification, e.g Vx reactor(x) - vessel(x). In order to handle both universal and

existential variables in direct representation systems a dual version of the

Skolemisation process is used. Universally quantified variables are now replaced by

Skolem functions in goals within the scope of existential variables. The existential

quantifiers are then dropped. The variables that remain in goal expressions or wffs

are assumed to be existentially quantified. This is to be expected in a direct system

since the application of rules will result in matches derived from specific facts in the

global database referring to named individual constants.

Consider a typical object-attribute-value triple represented by a fact, e.g.

temperature(r101, 1000). A generic rule may refer to the temperature in the form,

A •.. A temperature(x,tval) A greater_than(tval,900)
-4 condition(x,overheated) V ... V C,,.

Figure 2.23 shows in general terms how a rule like this would be matched agains a

fact expression using a graph representation. The thick arrow represents matching the

fact with a rule.

Figure 2.23: Matching Facts with Rules Involving Variables

Associated with each link is a set of variable substitutions. A consistent solution path

in a graph now involves finding the most general unification, or unifying

composition, of the set of substitutions labelling each of the terminal leaf nodes in the

graph. Application of rules which result in inconsistent variable substitutions will not

lie on solution paths within the graph. The unification procedure required is exactly

the same as that described earlier in theorem proving, section 2.3.

123

Thus, pattern matching parts of rules against facts in the global database is equivalent

to the process of finding consistant unifying compositions if the pattern matching is

viewed in the global context of finding a solution path in an AND/OR graph

representing the application of rules to fact expressions.

2.4.1.2 Forward Chaining Deduction Systems
The process of repeatedly applying rules to nodes in a fact expression AND/OR

graph, as described so far, is usually called forward chaining. More precisely, the

search is driven by pattern matching between the rule antecedents and the assertions

and axioms represented in the global database. The termination condition for a

forward deduction system is to prove some goal wff that can be derived from the facts

and rules available.

Consider a goal wff whose general form is a disjunction of literals, i.e.

A v B v ... v C. Each literal in the goal wff can be simply represented in the

AND/OR graph by a match arc between the goal literal and a suitable matching node.

The forward search will end when the AND/OR graph is transformed to one

containing a solution graph terminating in goal nodes. Figure 2.24 illustrates a simple

example from Nilsson(1982).

Figure 2.24: Representing Forward Chaining

7N\
DC E1III 	Rules

A => C AD
BEAG

19 DE G

4

A B

r(A SV i 	Fact

The reason for using k-connectors with OR nodes is now clear. If a complete record

of the final solution graph is desired and it is unknown whether A or B are true,

124

Figure 2.24, but only that the disjunction A v B is true then the solution graph must

include all the descendant nodes of a disjunctive node n. This represents the

"reasoning by cases" approach: first assume A is true then assume B is true, and so
on.

It is clear that the operation of forward chaining production systems can be re-

expressed in standard theorem proving notation. The use of direct representation

systems and AND/OR graphs to represent fact expressions makes clear the processes
involved.

Nilsson provides more detailed discussion on how various other extensions to direct

representation systems are handled, e.g. resolutions between nodes in a graph,

conditional resolution, repeated use of a fact in a proff involving renaming of

variables etc.

2.4.13 Backward Chaining Deduction Systems
The process of rule selection and application in backward chaining systems can be

described in a similar way to forward chaining systems. The essence of backward

chaining or top-down deduction is that the search starts from the conclusion of the

theorem, i.e. the goal wff, and works backwards towards the hypotheses and axioms

of the theorem.

In this case, it is simpler, and more natural, to express the desired goal wff in the form

of an AND/OR graph. The goal wff is processed as in the forward chaining case, i.e.
implication symbols are rewritten, universal variables are Skolemised and the

remaining variables are assumed to be existentially quantified. A simple example is
shown in Figure 2.25. The goal expression establishes whether there is a cat that is
not afraid of a dog.

125

Figure 2.25: Representing Goal Expressions and Backward Chaining

CAT(x) A

CAT(x)]

(x/x5) j

CAT(x5)

MEOWS(x)

Jr (MYRTLE/x)

MEOWS(MYRTLE) I

DOG(y) 	A —AFRAID(x,y)

DOG(y)
	 —AFRAID(x,y)

(FIDO/y)
	 (x/x2,y/x2)

—AFRAID (y2,x2)
DOG(FIDO)

--BARKS(y) I I FRIENDLY(y)

Notice that k-connectors are used to connect descendants of conjunctions, not

disjunctions as in forward chaining. The reason, as before, is to use the AND/OR

graph to represent the solution graph. Descendant nodes in backward chaining

systems are usually referred to as subgoal nodes. Finally, the clause form of the goal

wff is simply the disjunction of the clauses represented by the leaf nodes of the graph.

The process of selecting and applying rules is the dual of that for forward chaining.

Consider a rule of the form W -p L, where L is a literal and W is an arbitrary wff.

The rule can be applied if the rule consequent L unifies with a node L'in the AND/OR

graph. If so, a new node is generated which represents the most general unifier of L

and L', the match arc between these nodes being labelled by the unifying substitution.

Descendants of this node represent the new subgoals given by W, see Figure 2.25.

From a theorem proving point of view all that has happened is that the rule W -p L

has been negated and disjunctively added to the goal wff. The negated form is

(W A —1L) and the transformed graph includes a representation of the set of resolvents

that can be derived by performing all resolutions on L between the goal wff and

(W A —1L). These clauses will be represented on consistent solution graphs of the

final transformed AND/OR graph.

The backward search terminates when the leaf nodes descending from k-connectors

126

can be matched with correspond facts literals. A consistant solution graph is one

terminating in fact nodes and where tbsubstitutions labelling the match arcs have a

unifying composition.

The accounts of forward and backward draining have been somewhat simplified here.

Various extensions are required to enable certain types of "intra-graph" resolutions to

be performed. For example, it may sometimes be necessary to perform a resolution

between nodes representing complementary but unifiable literals, P(x,A) and -P(B,y)

say, to find a solution graph. This process is called restricted goal resolution, RGR,

the match arc between the nodes being labelled by the required substitution as usual,

(B/x, A/y). Joining partial solution graphs in this way can result in a candidate

solution graph if all the other nodes are goal nodes, or nodes participating in RGR

matches, and the unifying substitutions are consistent.

In direct representation systems mechanisms are required to handle resolutions that

would otherwise be carried out if the formulas were multiplied out into clausal form.

An example of this is the use of conditional substitutions. Consider a goal wff of the

form [P1 (x,y) v P2(x,y)] A P3(x,y) and suppose that P 3(x,y) can match with either
P3(A,B) or P3(B,B) in the global database. Applying inference rules to the node

P1 (x,y) may result in the node Q(x,B) whilst the path leading from P 2(x,y) may lead

to -iQ(A,y) Now the alternative paths lead to two complementary literals, Q(x,B) and

-iQ(A,y) which have the most general unifier (A/x, B/y). Applying this substitution

to Q(x,B) yields Q(A,B), -iQ(A,y) yielding Q(A,B). Only one of these can be true so

further search can be terminated and can be represented by a conditional substitution

labelling the match arcs with nodes representing True. That is an "if ' condition is

used to label a match arc which points from some given node to a node that is

Nilsson(1982) describes some of these mechanisms in

more detail. Loveland(1978) is a useful discussion on the relationship between

AND/OR graph representations and resolution. The subject of conditional

substitutions is treated in Manna and Waldinger(1979) in the context of automated

synthesis of computer programs.

127

2.5 Implementation Aspects of Production Systems

The previous section described in theorem proving terms the operation of forward

and backward chaining production systems. Given this understanding it is now

possible to briefly discuss the implementation of three well known production

systems, namely MYCIN, ALIX (based on Prospector) and OPS5. The purpose is to

highlight the representation and control mechanisms available in these and similar

systems and how they can be applied to various aspects of process design.

Consider the algorithm describing the application of rules in production systems,

Figure 2.20 earlier. This is often described as a three phase recognise/act cycle:

The Match Phase - identify the rules whose conditions hold in the context of the
current global database. This may involve backtracking to a previous choice
point in some control strategies.
The Conflict Resolution Phase - Select one of the rules identified in the Match
phase. If no rules are applicable then the search will terminate.
The Act Phase - Perform any actions indicated by the rule. If the goal is
achieved then the search can end, otherwise the recognise/act cycle is repeated.

The recognise/act cycle has a clear relationship with the application of inference rules

in theorem proving systems. This correspondence is now used to compare the

production system exemplars.

2.5.1 The Mycin System
The Mycin production system was developed for the medical diagnosis of bacterial

infections. It is one of the most well known systems and gave rise to a large number

of similar development in many unrelated research areas, including engineering

design. The system dates from 1972, a comprehensive discussion being given in

Shortliffe(1976). Mycin is worth discussing as it is typical of a large class of

consultation type programs which perform diagnoses and offer advice.

The basic purpose of Mycin is to produce a set of possible hypotheses concerning the

likely identity of the bacteria causing the infection and subsequently recommend drug

therapies based on these hypotheses. The three main areas of interest are

The form of production rules and static data structures used to represent the
specialist domain information.
The control strategy
The dynamic data structures used in arriving at conclusions.

These are now briefly discussed in turn and then assessed from a logic based point of

view.

128

2.5.1.1 Representation of Facts and Rules in Mycin
Representation of simple definitional facts in Mycin make use of the facilities of the

list processing language, InterLisp, in which it is written. Three important data

structures can be identified:

Simple lists denoting the basic data types known to the system, eg. all the
known ORGANISMS and STERILESITES (upper case words are MYCIN
terms).
Tables of records of values of clinical parameters under various circumstances.
A classification structure that denotes which parameters are relevant to Mycin
"contexts". Mycin contexts can be thought of sub-problem contexts which are
labelled patient, culture, organism etc., and are explained below. So this
information states whether a parameter is an attribute of a patient, organism etc.

Much of Mycin's information is expressed in the Lisp property lists describing the

parameters associated with each context type (A property list in Lisp is essentially a

vector which can be accessed by symbolic indices, eg. "age", "name", rather then by

numerical indices). For example, the context type PERSON has a set of parameters

including NAME, AGE, SEX, ALLERGIES, SEVERITY, BURN etc. Each

parameter in turn is classified as one of:

- A Yes/No parameter. Context types either have this attribute or not and questions
seeking a value of this parameter expect a yes or a no as an answer, eg. the patient
attribute FEBRILE, ie. has fever.

- A single valued parameter. Values of these parameters exclude all other possible
values, eg. the identity attribute, DENT, of organisms is treated this way.

- A multi-valued parameter, eg. a patient could have more than one infection, the
INFECT parameter.

A number of other properties are used to further describe each parameter and help
guide their use during search:

- The EXPECT property which indicates the range of possible values for the
parameter.

- The LABDATA property. This indicates whether the parameter represents a data
value which the user may know. This is further classified as ASKABLE or NON -
ASKABLE. Mycin will ask for a value, if ASKABLE, before trying to deduce a
value.

- The PROMPT and TRANS properties. The former is a question to be used when
asking for the value and the latter is a phrase describing the parameter in English.
The TRANS property is used for displaying rules in an English like format.

- The LOOKAHEAD property lists all the production rules that mention the
parameter in their premises.

- The UPDATED-BY property is the dual of LOOKA}TEAD and lists all rules that
refer to the parameter in their action or conclusion part.

As a simple example here is what the BURN parameter associated with the PERSON
context might look like:

(BURN 	(MEMBEROF: 	PROP-PT)
(VALUETYPE: BINARY
(EXPECT: 	(YN)
(PROMPT: 	(IS * A BURN PATIENT?))

129

(LABDATA: 	T)
(LOOKAHEAD: 	(RULE 047 RULE 048)
(TRANS: 	(* has been seriously burned)))

The 	in the PROMPT/TRANS get replaced by suitable words when used, eg. the
patient's name.

The production rules in MYCIN refer to these parameters and their values to express

the domain specific knowledge and heuristics that the system has access to. The rule

format used is straightforward. A rule consists of a PREMISE and an ACTION. The

premise can be any number of condition forms in a conjunction, $AND being used as
the connective and conditions being of the form:

(predicate context parameter value)

or

(predicate context parameter)

Predicates refer to system functions such as SAME, CONCLUDE etc. Any number

of conditions can be connected by the $OR connective within a single disjunctive
condition. An example rule might be

(RULE-048 (PREMISE ($AND (SANE CNTXT SITE BLOOD)
 (NOTDEFINITE CNTXT IDENT)

(SANE CNTXT STAIN GRAMNEG)
(SANE CNTXT MORPH ROD)
(SAME CNTXT BURN T)

ACTION (CONCLUDE CNTXT IDNT PSEUDOMONAS TALLY 0.4)))

There are two points to note about Mycin rules. First, rules are always categorised

according to the context in which they are most appropriately used. This will be the

lowest context type in the classification hierachy. In the example above the BURN

parameter is associated with the PERSON context, SITE with the CURCUL context,

and the others with the CURORG context, i.e. the current organism. As CURORG is

the lowest type in the context hierarchy for this rule, the rule is associated with this
context type.

The second point to note is that the rule makes a conclusion regarding the identity,

DENT, of the current organism, CURORG, with a certain degree of confidence, the

TALLY value. Handling imprecise information or making guesses in this way raises

complex issues which are discussed later, chapter 4.

2.5.1.2 Mycin's Control Strategy
Mycin uses a simple backward chaining search which only varies slightly from

ordinary depth first search. There is a single top level rule associated with the
PATIENT context:

IF 	there is an organism which requires therapy,
and consideration has been given to the

130

Possible existence of additional
organisms requiring therapy

THEN 	compile a list of possible therapies,
and determine the best therapy in the list,

i.e. the rule states that the best drug therapy is to be found which will treat the

identified organism and take account of the existence of other possible organisms not

yet identified in laboratory samples.

The rule is applied to the PATIENT context. In order to find a therapy the conditions

in the rule premise must be evaluated. This involves finding an organism which

requires therapy. This can be determined by directly asking the user or by involving

rules relating to the organism and culture contexts, CURORG and CURCUL

respectively. These rules will gradually work back towards user provided facts and

the tables of values stored for chemical parameters in different contexts. The choice

and application of rules is guided by the LOOKAHEAD and UPDATED-BY

properties of parameters described earlier.

The search, or proof, is represented by a "context tree" which is dynamically

extended during the search. The top node in the tree is the PATIENT context. New

contexts are added to the tree when they are referenced by parameters in the

antecedents of rules associated with another context. Figure 2.26 shows an example

of a context tree, leaf nodes indicating alternative DRUG contexts. The use of

CONTXT in the rule above is a variable referring to the currently active context node.

Figure 2.26: Fragment of a Mycin Context Tree

PATIENT-i
(PERSON)

CULTURE-1 	 CULTURE-2 	 CULTURE-3
(CURCUL) 	 (CURCUL) 	 (PRIORCUL)

ORGANISM-2
(CURORG)

DRUG-1 	 DRUG-2
(CURDRG) 	 (CURDRG)

The selection and application of rules is implemented by two procedures called

MONITOR and FINDOUT. MONITOR is used to evaluate the truth of the rule

antecedent by evaluating each condition in turn. If a condition is false or

indeterminate, due to lack of positive or negative evidence, then the rule application

131

fails and the next rule on the list of possible rules is tried. If the rule premise

evaluates to true, or possibly true, then the rule conclusion is added to another

dynamic data structure called the "consultation record". Mycin then returns to

previous choice points in the context tree and expands them in the usual depth first

fashion. The FINDOUT procedure is used to find information that will count for or

against a particular value in a rule premise. if the parameter is classed as

LABDATA/ASKABLE then the user is asked and control returns to MONITOR to

evaluate the next condition in the rule antecedent. Otherwise the rules that reference

the parameter in their conclusion, given by the UPDATED-BY property, are listed

and returned for use in MONITOR's rule list.

There are two differences from simple depth first search:

If a condition in a rule premise refers to a particular parameter value, eg. the
identity of the organism is Salmonella, then the subgoal that is actually set up is
the generalised form of the proposition, eg. what is the identity of the organism,
rather than prove the organism is Salmonella. This effectively "broadens" the
depth first approach.
Every rule relevant to a goal is applied unless a rule is concluded with absolute
certainty. Certainty is represented by a certainty factor ranging from +1.0,
"definitely", to -1.0, "definitely not". If the evidence available about a
parameter value results on a confidence factor between -0.2 and +0.2 the
evidence is taken to be inconclusive and the parameter value treated as
unknown.

Once the search for alternative diagnoses has terminated the second action in the top

level goal can be performed, ie. select the best therapy from the alternatives. This is,

in fact, performed by a set of Lisp functions which use static information about

preferred drugs stored in therapy rules. The rule given earlier proposed the identify

of the organism to be Pseudomonas. The therapy rule below shows the recommended

drugs for this organism:

If 	the identity of the organism is Pseudomonas
then recommend therapy from the following drugs:

1 - COLISTON 	(0.98)
2 - POLYMYXIN 	(0.96)
3 - GENTAMICIN 	(0.96)
........ etc.

The numbers given with each drug are probabilities that the organism will be

sensitive to the drug. The actual drugs selected are chosen to maximise sensitivity

and minimise the number of drugs to be taken.

2.5.1.3 Explanation in Mycin
Mycin was one of the earliest systems to offer simple explanation facilities. The

"consultation record" structure is continuously updated after rule applications

recording the sequence of rules applied, the conclusions made, questions that were

asked and how values of clinical parameters were obtained.

132

After a diagnosis has been made and a drug selected Mycin can, therefore, be queried

as to HOW it arrived at its final conclusion, or any intermediate conclusion for that

matter in terms of rule applications. During a consultation the user can also ask

WHY a question is being asked. Mycin will respond by stating that it is trying to

evaluate a condition in a rule to establish a certain conclusion. The user can

recursively search back up the context tree in order to find out why the system is

trying to establish a specific goal if so desired.

Much has been made of Mycin like explanation facilities in other rule based systems.

These claims are not accepted here, in the context of knowledge integrity in a process

design environment, and are discussed later in chapter 4.

2.5.1.4 Handling Imprecise Information in MYCIN
Mycin was one of the first production systems that attempted to handle imprecise

information. Users of Mycin can reply to questions with definite answers or indicate

uncertainty by qualifying the reply with a number between 0 and 1. The number is

supposed to represent the user's "degree of belief' in the answer. Mycin rescales the

[0,1] range to a [-1,1] range indicating negative or positive evidence for parameter

values. A value in the range [-0.2,0.2] is taken to mean that the evidence for a

parameter value is inconclusive.

Consider a rule applicable to organism contexts with the premise.

($AND 	(SAME CNTXT 	MORPH ROD)
(SAME CNTXT 	AIR AEROBIC))

Suppose the following information is known about the current organism,

ORGANISM-1,

MORPH 	= (ROD 0.8) (COCCUS 0.2)
AIR 	= (AEROBIC 0.6) (FACtJL 0.4),

i.e The morphology of ORGANISM-1 is rod like with a certainty of 0.8 and coccus

with a certainty of 0.2, and the aerobicity is aerobic with a certainty of 0.6 and

facultative with a certainty of 0.4.

The overall certainty factor for the rule antecedent is taken to be the minimum of each

of the certainty factors in the conjunction, ie. 0.6 in this case. If the rule antecedent

were a disjunction then the maximum certainty factor would have been chosen as the

overall value.

Once the confidence factor for the rule premise is known the confidence factor for the

conclusion is calculated as

CF(conclusion) = CF(premise)* CF (rule)

133

• The certainty factor for a rule is given by the TALLY figure in the rule definition,

see earlier example, representing the strength of the heuristic rule. If the TALLY had

a value of 0.8, the certainty factor for the conclusion would be 0.6*0.8=0.48.

Once the certainty factor for a given conclusion is known it can be updated by

combining it with other CF's as follows:

CF = CF1 + CF2 - CF1*CF2 if both CF1,CF2>0
= CF1 + CF2 + CF1*CF2 if both CF1,CF2<0

(CF]. + CF2)/(1-min(CF1,CF2)) otherwise.

Mycin's certainty factors are not probabilities but are derived from Bayesian

probabilities. Several authors have pointed out various flaws and problems in their

use. Discussion is delayed, however, until chapter 4 when comparison with other

possible approaches is made. For the moment it is useful to consider them as "scores"

which can help Mycin rank alternative hypotheses.

2.5.2 Mycin from a Logic Point of View
Although later developments of Mycin became more complex, the initial Mycin

system was essentially that described above. As such, Mycin is a straightforward

implementation of a production system that can be easily characterised in logical

terms.

Mycin's static data structures can be directly expressed as simple facts and predicates.

The lists of known organisms, drugs etc. are simple 1-place predicates denoting types,

e.g. drug(colistin), organism(e.coli), etc. Similary, the property lists describing

clinical parameter values can be expressed as a set of binary predicates or a single

predicate containing all the record information.

The growth of Mycin's context tree is exactly analogous to the process of applying

inference rules to produce modified AND/OR graphs in direct representation systems.

This was described earlier and the relationship to resolution based theorem proving

was made clear. The control strategy of early versions of Mycin was simple and

differed little from simple backward chaining theorem provers developed earlier. The

use of the LOOKAHEAD and UPDATED-BY properties of parameters to reference

possibly useful rules is, of course, just a variation on the use of connection graph

techniques in logic based systems. The only real difference between Mycin and a

direct representation system is its ability to handle uncertain information. This can

also be accommodated, however, in a logical system. Associating a confidence factor

with a predicate is similar to associating an extra argument to identify the situation or

time etc. A practical implementation would have to represent this argument as a

functional constant which had a suitable procedure attached to it to evaluate how the

134

certainty factors were to be updated on rule application, see the discussion on

procedural attachment section 2.3 earlier.

The consultation record used in Mycin does not provide any additional functionality.

Links between nodes in an AND/OR graph are normally only labelled by

substitutions but the labelling information could easily be extended to identify the

rule used, use of any attached procedures etc. This information would be used to

provide the HOW/WHY facilities of Mycin.

Subsequent developments of Mycin resulted in a more sophisticated control strategy

and are described briefly later. The exhaustive rule application approach was only

feasible due to the guidance provided by the rule indexing mechanism and the

relatively shallow level that rules could be expanded to (in the domain of interest

covered by Mycin). In a wider problem domain in which problem parameters are

highly inter-dependent, the typical situation in many design problems, such a simple

approach is likely to suffer from performance problems similar to those experienced

with general purpose theorem proving systems.

A version of Mycin was produced that was stripped of any medical information and

was called Emycin (Essential or Empty Mycin), see van Melle et al.(1981). Emycin

has its own rule language syntax which is more like Algol than lisp. As a result the

rules are concise, using symbols like '=','>','and','or','if','then', and are easy to

read. In addition, some debugging tools are provided to help the developers of

systems. General production systems like Emycin are often referred to as rule-based

"shells".

135

2.5.3 The Prospector-AL/X Systems
Prospector, like Mycin before it, was an interesting rule based base application which

gave rise to many imitations and more complex developments. An account of the

system can be found in Duda, Gasching and Hart(1979). AL/X is a general purpose

system modelled closely on Prospector, see Jones(1984) for an analysis.

Prospector was written to assist geologists involved in hard rock mineral exploration

to assess the likelihood of finding exploitable ore deposits in a given region. It is

interesting from two points of view:

The data structures used to represent the general geological data and domain
specific rules.
The mechanism used to handle imprecise or uncertain data.

The first data structure of interest is the graph, or "associative net", used to represent

taxonomies of geological knowledge. Figure 2.27 shows a typical fragment of the

graph.

Figure 2.27: An Associative Net in Prospector

domite 	 pyrite

(distinct el.) 	(distinct ci.)

iron sulfide 	 oxide
(subset) 	 (subset)

p $ __ __
suiLlde 	(subset) 	 minerals

The nodes in the graph denote the geological entities that can be referred to in rules

similar to the lists of organisms, cultures etc., in Mycin. The links, however, are used

to state taxonamic information relating these entities. This type of information is not

used directly in Mycin but it is in Prospector. The links are labelled by terms such as

subset, element, disjoint subset, distinct element, etc. These links are used to

partition classes of rock, eg. sulphides, into subsets, eg iron sulphides, and particular

elements, eg. dornite, in a hierarchical manner. This information is used by

Prospector to drive the search. For example, if the user provides information

regarding the presence of a particular sulphide, eg. dornite or pyrites, Prospector will

not only forward chain on this fact but will forward chain on the assumptions that

iron sulphides and sulphides are also present.

The hierachy links are also used to check the consistency of user supplied data in that

136

the user's confidence in the existence of a particular mineral, eg. pyrites, can be no

higher than the confidence associated with its parent class, eg. sulphides.

Prospector's associative net is a simple example of what is more generally called a

"semantic net". Semantic nets and object class hierarchies are discussed in detail in

chapter 4.

The second interesting data structure used in Prospector is the "inference net" used to

represent the inference rules. An inference net is similar to an associative net except

that nodes represent individual assertions or logical connectives and the links

represent implications. For example, the simple rules "if E then H" and "if El and E2

then H" represented as shown in Figure 2.28. The degree of belief in the implication

is represented by two numbers, LS and LN, which label the implication links. These

will be explained shortly.

Figure 2.28: Inference Nets in Prospector

(D-- LS, LN-1

El

>H

LS, LN_..('

Prospector maintained an inference net for each class of ore deposit, each net being

called a "model'. In AL/X a model is called a "space". This is an important point as

it means the rule set is now partitioned into a number of smaller subsets. In AL/X,

each space can in turn be treated as a complex node which can be linked to other

complex nodes. New problem spaces, or models, can then be built up in a modular

fashion.

The other interesting aspect of Prospector, apart from the way it represents

information, is how it handles uncertain data. Unlike Mycin, Prospector works

directly with probabilities and odds, under certain simplifying assumptions, which are

converted to certainty factors for user interactions. A certainty factor is a number in

the range [-5,5]. This number gets rescaled internally to a probability. The way in

which Prospector propagates probabilities through the inference nets is most easily

137

described by following the overall operation of the system.

The user is asked to volunteer observations. These can be qualified by a
certainty factor in the range -5 to 5. For each piece of evidence Prospector has
available to it a prior probability, P(E), estimating the likelihood of this fact.
These prior probabilities are usually subjective estimates provided by an
experienced geologist. What is required is an estimate of the probability of E
given the user information, ie. p(EIE). Rather than ask the user for this value
directly a simple linear interpolation formula is used. A value of -5 corresponds
to p(EIE)=O and a value 5 corresponds to P(EIE)=1. Values in between are
rescaled to P(EIEj using

certainty value = 5* P(EIE')-P(E) 	, negative evidence
P (E)

	

= 5* P(EIE')-P(E) 	, positive evidence
l-P(E) 	(E) -

The system uses these formulae to convert probabilities back to certainty factors
when informing the user of any conclusions.
For each piece of evidence, and any subsequent assumptions derived from the
associative net, probability adjustments are propagated through the inference
nets by forward chaining from these facts towards the topmost goal in each net.
These nodes will represent the possible presence of a financially worthwhile ore
deposit. After propagation, one of the system models or spaces will seem most
likely and is chosen as the current candidate.
The system then backward chains from the most likely node to try and increase
its associated probability. The backward chaining path through the model is
dynamically selected by a heuristic function which tries to select links that will
contribute most to the probability of a node being confirmed or rejected. In the
case of AND and OR nodes, the child nodes having the smallest and largest
probabilities respectively are chosen. Backward chaining continues to a leaf
node when the user is asked for information.
The user's reply is then forward chained.
The system then assesses the most promising model. If it is the same one then
the system continues backward chaining towards another leaf node. If a new
model is preferred then backward chaining is applied to the new model.
The search of a model terminates when all the relevant facts, ie. node assertions,
have been processed.
The system eventually terminates when it has investigated all the relevant
models. At any point in the search the user can interrupt to provide extra
information or force attention to be switched from one model to another.

Probabilities are propagated in the intermediate forward chaining passes by using the

two numbers, LS and LN, which label each inference link. LS, the level of

sufficiency, is used to adjust probabilities when the evidence is positive and LN, the

level of necessity, is used when the evidence is negative. These numbers are standard

statistical likelihood ratios and indicate the effect of a piece of evidence, E, on a given

hypothesis, H. Their definition and use in combining information is given in

Appendix C. Given their definition it is seen that a large positive value for LS

indicates that evidence B strongly suggests hypothesis H. LN indicates how odds are

changed by observing a lack of the evidence and a value close to zero suggests that

138

evidence E is highly necessary for hypothesis H, since if E is not observed then the

odds for H fall to zero. The possible combinations of LN and LS must be one of

LS>l and LN<1, the odds on H increase if E is observed
LS<l and LN>l, the odds on H decrease if E is observed
LS=LN=1, odds on H are independant of E.

The values for LS and LN must be supplied by geological experts when new rules are

added to models in Prospector. They are subjective estimates which may require

adjustment in the creation of inference nets.

In order to simplify the probability calculations the designers of Prospector used a

piecewise linear function to infer the effect of the modified probability of evidence E,

i.e P(EIE'), on the probability of hypothesis H, i.e. P(HIE'), see Appendix C.

This means the individual items of evidence must be assumed to be conditionally

independent to allow the incremental update of the probability of hypothesis H. The

implications of this independence assumption are discussed later.

Finally, Figure 2.29 shows a simple example of a space in AL/X. The 'prior' entry is

the prior weight assigned to the space. The 'logical definition' entry indicates that the

degree of belief in space A is a function of spaces B,C and D. The rule antecedents

indicate the weightings on inference links to other spaces that provide evidence for

this space. A rule consequent entry provides links to other spaces for which this

space is evidence.

Figure 2.29: A node in a AL/X inference Net.

space A
text description /* some comment *1
inference
prior 0
logical definition

and (BCD)
rules antecedents (I pw 10 nw-5)
rules consequents (J pw 20 nw-2)

2.5.4 Prospector from a Logic Point of View

Prospector has two main data structures, namely an associative net describing

taxonomies and an inference net to represent production rules. The associative net

can be directly represented in first order logic by simple predicates and facts, e.g.

class_element(iron-sulphide, domite), class-member(sulphides, iron—sulphide).

Alternatively, forms of the Modus Ponens inference rule can be used rather than

enumerate all the class members, eg

sulphide (x) :-iron-sulphide(x) OR.....

139

along with facts such as iron-sulphide(pyrites).

The inference net representing the production rules is simply a convenient form of an

AND/OR graph and, when combined with the fact expressions above, comprises the

global database structure. The operation of Prospector is essentially a backward

chaining strategy. The propagation of probabilities in forward chaining mode simply

serves to provide guidance for the top level control strategy as to which models

should be continued to be searched. This is exactly the same style of control

provided in the general GRAPHSEARCH algorithm described earlier, section 2.2.

There is nothing fundamental, therefore, that would not allow Prospector to be

implemented in a theorem proving system, where the inference process is clear, with

the proviso that use of inference link weights be used in rule application and

selection. Additional labelling of nodes with probabilities and match arcs with rule
weights are simple housekeeping operations.

In the introduction to logic based production systems only backward and forward

chaining strategies were mentioned. Nilsson(1982) shows that it is perfectly

straightforward to describe mixed or combined forward and backward chaining

systems in a theorem proving framework. The essential operation is finding unifying

compositions between the leaf nodes in goal expression graphs (backward chaining)

and the leaf nodes in fact expression graphs (forward chaining). The implementation

of any particular control strategy, and the choice of rule application and selection, is

an important but arbitrary choice. The essence of the effect of imprecise data in both

Mycin and Prospector is to influence or preclude the selection of certain rules. This

simply means that the selection of literals, in a resolution based system, must take

account of any arguments in well formed formulae representing uncertainty measures.

Literal selection algorithms, e.g. SL or LUSH, would have to be modified
accordingly.

The introduction of uncertainty measures to the control of search for proofs is

identical to the introduction of probability measures in heuristic graph searching.

Although this was not discussed in the introduction to graph searching algorithms it is

clear that ranges of uncertainty can be associated with heuristic evaluation functions

rather than single point values. Calay (1985) is a good discussion on how the B*

algorithm is extended to use probability measures and make use of the upper and

lower bounds on heuristic estimates. Similarly, Pearl(1984) describes the use of

probabilities in versions of the alpha-beta game playing search methods. The

measures of upper and lower bounds of the utility or worth of nodes are essentially

used to further prune paths from the search space.

140

2.5.5 The OPSS system
OPS5 is an interpreted language specifically written to allow production rules to be

easily expressed and efficiently interpreted. The system is implemented in Lisp. Full

details can be found in Brownston et al.(1985), but see Forgy (1981) and Forgy and

McDermott(1977) for earlier developments. A brief description of the system is now

given and then discussed in the context of logic theorem proving systems.

The general form of an OPS5 production rule is

(p <identifier>
<condition>*

-->
<action>*)

where "identifier" is just a word to identify each rule and the asterisks indicate one or

more conditions or actions. Each condition is basically an object-attribute-value

triple or vector of attribute-value pairs associated with the object. For example, the

temperature and pressure of heat exchanger he101 could be expressed as

(p rulel
(heat exchanger "name he101

"temperature 298 "pressure <Pvalue>)

The first entry identifies the object type, each attribute being preceded by "A" and

followed by its value. Variables can be used to retrieve attribute values by using

angled brackets as with Pvalue above. The variable can then be used in other

conditions of the rule. Constraints can be placed on the values of attributes by

placing them in curly brackets. For example, suppose a heat exchanger is to be

identified with a pressure greater than the value of <Pvalue> above. This would be

expressed as

(heat-exchanger "pressure {> <Pvalue>})

Finally if a condition is preceded by a minus sign then the truth value of the condition

is negated, i.e. -C is only true if nothing can be found to match C.

Rule consequents in OPS5 are primarily intended to be actions with rules expressing

situation-action pairs. There are three main types of rule action:

(make <identifier> <"attribute value>*)

(remove n)

(modify n <"attribute value>*)

The make instruction adds a new vector of attribute-value pairs to the working

memory. The 'n' in modify and remove actions refers to the nth conditions that were

matched in the rule antecedent. For example, (remove 1) will remove the vector

described in the first rule condition from working memory. The modify action is

141

similarly used to modify attribute-value pairs in working memory.

OPS5 is an efficient implementation of a forward chaining production rule system.

The overall control algorithm follows the classic three phase recognise/act cycle

described earlier, i.e. a match phase, followed by conflict resolution, followed by an

act phase. The widespread use and success of OPS5 has benefited directly from the

efficiency of the algorithm developed for use in conflict resolution. This algorithm,

the RETE algorithm, represents the control strategy of OPS5 and is worth discussing

in more detail. Many other production systems have subsequently copied or built

upon the ideas expressed in the RETE algorithm.

2.5.5.1 Problems in Pattern Matching and the RETE Algorithm
The left hand sides of OPS5 rules are simply pattern templates to be matched against

the elements of working memory. In many production systems pattern matching

takes place between two collections of lists, namely the production rule antecedents

and the contents of working memory. Experience in the development of production

rule systems, eg Forgy(1981), shows that simplistic pattern matching algorithms can

lead to prohibitively lengthy computation times in deciding which set of production

rules can be matched against working memory at any one time. This type of problem

is usually referred to as many- pattern/many-object matching. The computational

cost can be due to a variety of reasons:

A naive implementation may try to match all the rules against each element of
working memory on every recognise/act cycle. Even if only selected parts of
working memory are matched against each rule, there will still be N iterations
per cycle for a system of N rules. For large rule sets and/or a large working
memory this will become a very time consuming activity.
It is often the case that the same elements of working memory and rule pattern
templates will be repeatedly matched on every recognise/act cycle. This is
referred to as "between-cycle iteration".
Production rule antecedents often share many of their individual conditions, i.e.
the same condition appears in more than one rule. A simple implementation
would result in a shared condition being matched N times against working
memory given N occurrences of it in a rule set. This is referred to as
"within-cycle iteration".

The RETE matching algorithm was designed to address both within-cycle and

between-cycle iterations. Within-cycle iteration is reduced by compiling production

rule antecedents into a sorted network which takes account of both intra-element

features and inter-element features. Intra-element features, i.e. values of attributes in

a single rule condition, result in a linear sequence of nodes to test for each required

attribute. Once intra-element features have been tested, inter-element features are

then considered.

142

Inter-element features are those parts of rule conditions which have shared attribute

values due to the use of the same variable in different conditions, e.g. AP1.essure 4>
being used in more than one rule condition. Inter-element nodes have two inputs.

The first input tests whether shared variables have compatible values while the

second tests for the rest of the attributes in the rule condition. A "terminal" node is

used to represent the production rule as a whole and a rule will be added to the

current conflict set, i.e. the set of rules that could be matched against working

memory, if the network can be traversed without failure to a rule's terminal node.
Recognising inter-element features extends to the use of similar conditions in

different rules. In this case, shared network nodes will have links to terminal nodes
for each rule involved.

The output of the RETE algorithm is the current rule conflict set. This is represented
by a set of ordered pairs of the form

<production, matched left handside elements>

for each successful instantiation of the rule variables with working memory. What

makes OPS5 reasonably efficient is that the input to the algorithm is not the working

memory and compiled network but rather a set of tokens describing changes to

working memory and the compiled network. Once a set of production rules have

been tested against a set of attribute values represented in working memory there is

no need to re-test all of them on each recognise/act cycle. The only ones that need to

be tested are those that refer to attributes of objects or class types, the attribute values

of which have been modified as a result of executing the actions in the right-hand side

of a rule in the previous recognise/act cycle. All that needs to be checked, therefore,

is which instantiations in the conflict set are no longer valid and which new rule

matches have become valid as a result of any changes.

As a consequence, between-cycle iterations are greatly reduced. Within-cycle

iteration can only be reduced to the extent that sharing of variables within a rule, or

parts of conditions across more than one rule, occurs in any particular rule set.

Once the conflict set has been generated there still remains, of course, the problem of

deciding which rule to fire. There are two control, or conflict resolution, strategies

that can be used in OPS5. The default strategy is called LEX and is a variation on the

means-end analysis approach, MEA. There are five basic steps in MEA:

Eliminate from the conflict set any instantion that fires, i.e. the same
instantiation can't fire twice. This prevents one kind of unwanted looping and
is referred to as refractoriness. Put simply, it means that a particular rule can't
fire twice if the variable bindings are the same.
Preferentially select those rules, the first conditions of which match up with the
most recently created working memory elements.

143

Order the other rule conditions on the basis of the recency of the matching
working memory elements. This is referred to as "recency". The idea is to
follow a single line of reasoning for as long as possible and delay the evaluation
of alternatives, similar to bottom-up, forward chaining search strategies.
If no rule is preferred order the competing rules according to how specific the
rule antecedents are, i.e select the most specific rule. The rule will either fail or,
if successful, prune the search space by the greatest amount since they take
more data into account.
If a rule has still not been selected then make an arbitrary selection from the
remaining contenders.

• (The LEX strategy does not use step 2, step 3 applying to all matching elements of

working memory. A more complete discussion of each strategy can be found in
Brownston et al(1985)).

2.5.5.2 Partitioning Rule Sets and Context Layering
The means end analysis strategy in OPS5 is directed by giving preference to those

rules whose first condition in the antecendent match some part of the working

memory. This is an important feature as it is the only mechanism available in OPS5

to allow partitioning of a large set of rules into smaller, related subsets of rules.

Consider, for example, describing the task of designing a heat exchanger in the wider

context of a process plant design. It is obviously pointless matching up rules which

pertained to the design of other equipment items, such as pumps, columns etc. Rules

directly relating to heat exchanger design can be selected by having a common first
condition such as

(rule 1 (designing_heat exchanger

Similarly, rules for the design of heat exchangers can be further partitioned according

to the level of design detail that is desired, e.g. rough sizing, type selection, tube

sizing, baffle placement etc.

This technique, often referred to as context layering, was put to very good use in the

development of the RI production system, see McDermou(1980, 1984).

Ri is one of the most successful commercially developed production systems. It is

used to configure VAX computer systems by first checking that an order is complete

and then determines the spatial layout of the computer components. The system

contains over three thousand rules describing some five thousand components and has

reportedly processed more than eighty thousand orders.

Of interest here is the way in which Ri makes use of contexts to impose a structure

on the way it sequences the various problems to be solved. The approach used is

exactly analogous to how rules for heat exchanger design can be layered according to

144

the level of detail that is required. High level rules fire, the actions of which create

elements in working memory which match the first condition of a lower level set of

rules. Similarly, the action parts of these rules create elements which fire yet lower

level sets of rules, and so on. The overall effect is to allow top down, decomposition

problem solving strategies to be conveniently expressed in production rule format.

The design task that Ri solves is in many ways analogous to specific parts of process

plant design.

2.5.6 OPS5 From a Logic Point of View

The OPS5 system is not very interesting from a representational point of view since

its syntax is a very restricted form of what can be expressed in first order logic. What

is important is the control strategy used in the RETE algorithm.

It is clear from preceding sections that the application of rules in OPS5 could be

described in a straightforward way in terms of resolution refutation based procedures.

Testing for valid instantiations corresponds directly to the task of finding compatible

unifications in a proof tree. The essential difference between OPS5 and standard

resolution proof techniques is the mechanism used to decide on which rule to apply.

The idea of compiling the production rules into a network is essentially the same as

that behind the use of connection graphs in theorem proving but efficiently

implemented. Where it differs is how new potential resolvents are identified as a

result of addition or deletion of clauses to the global database. There is no reason,

however, why a refutation control strategy could not be implemented which more

closely followed the RETE algorithm.

Chapter 3
Development of Representation Techniques For Process Design

This chapter describes three prototype systems developed to investigate the use of

different representation techniques for use in a process design environment. The areas

covered are rule based production systems, blackboard architectures and frame based

systems. Each of these are covered in separate sections below.

3.1 Development of a Heat Exchanger Selection System

This section describes the development of a general production system applied to the

problem of heat exchanger selection in process design. The purpose of this work was

to understand more fully the problems associated with this form of knowledge

representation. In particular, the suitability of this style of knowledge representation

for use in different aspects of a process design environment, outlined earlier in

chapter 1, was considered.

This work represents the first of a sequence of developments in different styles of

knowledge representation discussed in the remainder of this thesis.

3.1.1 Background
It is clear from the success of the Ri production system in configuring computer

systems, see previous section, that production systems can be used to represent

knowledge about certain aspects of design. The initial aim of this work was to

develop a rule based production system that could be applied to selected process

design problems. The problem chosen for study was the initial selection, sizing and

costing of heat exchangers. This problem is typical as regards the initial design of

other items of process equipment, e.g. pumps, columns etc. The resulting system,

therefore, could in principle be applied to these other design tasks if so desired. The

use of context layering, described earlier, also means that the description of

individual design tasks can be embedded in rules describing higher level aspects of

the design process if appropriate control strategies are provided.

It was decided to develop the production system using the Prolog language, see
section 2.3 earlier, for the following reasons:

It is simple to develop alternative control strategies on top of the Prolog
interpreter. Since much of this thesis is concerned with developing suitable
representation mechanisms for use in a process design environment, flexibility
is an important issue.
The relationship between the search techniques used and logic theorem proving
techniques remains clear.

147

3. OPS5 and other Lisp based systems were not available or supported on the
hardware available at the time.

Details of the version of Edinburgh Prolog used are given in Prolog(1986).

The problem domain chosen was the initial selection of type of heat exchanger

suitable for a given duty. The initial aim was to represent a basic design procedure in

a production system comprising of a set of production rules, a working "database"

and associated interpreter. The design steps followed in the selection of heat

exchanger type roughly follow those in the I.Chem.E User Guide, see Linnhoff et

al(1982). The first step in this procedure involves ruling Out types of heat exchanger

which are definitely unsuitable and identifying those which seem most promising.

This is done on a purely heuristic basis taking into account the following
considerations:

Maximum pressure - high pressure process conditions immediately rule out the
use of certain types of heat exchanger.
Temperature Range - as with pressure, many classes of exchanger only operate
within a limited temperature range.
Fluid Limitations - important limitations in the use of a heat exchanger are the
range of fluid viscosity that can be handled and corrosion problems with the
particular process fluids and materials of construction used.
Normal Size Range - size limitation is a soft constraint in that multiple units can
always be installed but this is often undesirable due to additional piping costs,
flow distribution problems, etc.

In order to further discriminate between exchanger types it is necessary to perform

some rough sizing and costing calculations. Linnhoff et al(1982) provide a number

of tables relating heat duty, estimated overall heat transfer coefficients and cost

factors (;C/(W/K)) to different types of cold and hot side fluids for a number of heat

exchanger types. The tables are typical of costing information found in database

systems. Given the process conditions and fluids involved, the feasible exchanger

types can be ranked according to cost and size.

If a shell and tube type heat exchanger is selected then Linnhoff et al give a further

set of heuristics to determine the TEMA type configuration. In practice, this would

have to be confirmed by running commercially available heat exchanger design

programs to check for the locally optimum configuration.

3.1.2 Description of the Production System

This section describes the structure of a simple, but flexible production system. In

particular, it describes how it was applied to the problem of initial selection of a

suitable heat exchanger type given the process conditions and working fluids. It is

148

important to note, however, that the purpose of the exercise was not to develop a

detailed heat exchanger design system. The main aim, instead, was to investigate the

problems that could arise if such a rule based knowledge representation system was

applied to similar design tasks in an integrated process design environment.

3.1.2.1 Production Rule Format
In the introduction to Prolog, section 2.3 earlier, it was indicated that the programmer

can specify the syntax of clauses to be read, or "consulted", into the Prolog

interpreter. Consider a clause representing a production rule, the rule consisting of an

antecedent and a consequent. This could be written in a variety of forms, e.g. in the

default Prolog syntax,

Consequent 	Antecedent.

or in triple form,

rule(Label, Antecedent, Consequent).

or in some infix, easy to read format,

RuleLabel: if Antecedent
then Consequent.

The style chosen here is similar to the infix style of the last example and is modelled

on a version of the KS-300 rule based system from Teknowledge Inc., see Ross

(1985).

The general format of a production rule is

RuleLabel: if Antecedent
then Consequent because Explanation.

RuleLabel is simply a word, rule 15 say, used to identify the rule and is referred to for

explanation or debugging purposes, see below.

Antecedent can either be a single clause or a conjunctive clause or a disjunctive

clause, e.g.

if Cl then ..., or
if Cl and C2 ... then ..., or
if Cl or C2 ... then

Disjunctions and conjunctions can be nested within one another. The individual

clauses, Cl, C2 etc, are written in infix format and a number of special forms have

been provided. The basic form used to refer to the value of some attribute is

if THING = VALUE, as in
if problem type = heat—exchanger—selection

Two other useful ways of referring to "values" is to use the "is" and "has" forms i.e.

if THING is VALUE, or, if THING has VALUE

149

Negations can be expressed by using the corresponding "is not" and "hasnt" forms as
follows,

if THING is—not VALUE, or
if THING hasnt VALUE

Negation is taken to mean "failure or proof' as is usual in Prolog applications, i.e. not

(X) is true if X can't be proved given the current set of clauses in the Prolog database.

One of the useful features of OPS5 is the ability to name variables in a rule condition

and refer to them in other rule conditions, typically to ensure some constraint is

satisfied. This effect is easy to achieve in a Prolog system. Consider the following
fragment of a possible rule:

if type_of_pump is Ptype
and Ptype is one_of(centrifugal, reciprocating)

As soon as Ptype is established in the first condition, the unification mechanism in

Prolog ensures that all other occurrences of variable Ptype elsewhere in the rule are

immediately "instantiated" to the same value. (Instantiation refers to the process of

unifying two prolog structures).

Virtually every aspect of process plant design involves calculating numerical

information at some point in the process, checking allowable ranges of values etc.

Most of the early rule based production systems were not written with numerical

applications in mind. Indeed, subsequent discussion will indicate that expressing

essentially procedural information in a production rule format is both unnecessary

and undesirable. Nevertheless, there is no reason why simple calculations should not

be expressed within rule conditions if desired. The rule syntax used here allows both

simple numerical tests and arbitrary calculations to be performed in a rule antecedent.
The format is:

if THING < VALUE or
THING =< VALUE or
THING VALUE or >
THING 	VALUE or >=
THING is predicate(VALUE,Arg1,Arg2,...)

Of particular interest is the last form which allows an arbitrary Prolog predicate to be

evaluated in a rule condition. In a procedural context, this could be used to perform

some relatively complex calculation as Prolog supports both floating point arithmetic

and a simple interface to the C programming language. The unification mechanism

in Prolog means that if any of the predicate arguments get unified to some value in

the evaluation of the predicate, then these values can be referred to in subsequent rule

conditions just as for other variables in the rule antecedent.

150

3.1.3 Overall structure and Control Strategy

The overall structure and control strategy used in the production system is interesting

in that it combines the rule interpreter's own strategy along with the default depth

first backtracking search strategy used by the core Prolog interpreter.

The top level structure is, in fact, a set of Prolog clauses, the definitions of which are

dynamically loaded depending on the problem context, e.g. heat exchanger selection,

pump selection etc. Figure 3.1 shows an abbreviated form of the top two clauses,

programming details having been omitted for clarity.
Figure 3.1: Top Level Clauses of a Rule Based Production System

select THING:-
load _definition(THING)
choose THING

choose THING:-
ask _for details,
(detail_s_available --> get_problem_data;

get-vague-details),

(details-available --> to-associated-calculations;
true),

search THING,
rank alternatives THING
report-answer THING

The call to the rule interpreter is the line "search THING" in the definition of "choose

THING". The clauses either side of this call are loaded dynamically depending on

what is being "selected" at the top level clause, e.g. select heat_exchanger_type etc.

The search strategy for these other clauses therefore relies on the default Prolog

interpreter. The same general framework could be applied to a number of different

problem domains. Domain specific solution styles can be catered for by loading

alternative definitions of the top level calls without affecting the search strategy of the

rule interpreter itself. Brief details of the definitions used in the case of selection of

types of heat exchanger are given later, section 3.1.3.2.

The rule interpreter itself is basically a backward chaining system whose rule syntax

was described earlier. Figure 3.2 outlines the search strategy used:

151

Figure 3.2: Search Strategy for Heat Exchanger Selection Rules

	

1) 	If already searched for THING then return.

	

2) 	If the domain knowledge base indicates that
the user can be questioned regarding
the value of THING then ask user

If user replies with "why, help, describe"
or issues another Prolog query
then do as requested and repeat from 1)

Otherwise, record user's answer and return.

	

3) 	Find a suitable rule referring to THING
in the rule consequent.

For each condition in the rule antecedent
referring to ThingN repeat from 1).

Repeat from 3) for THING

	

4) 	If all rules referring to THING have been considered
then return.

There are several points to note about this search strategy:

Step 2b) is similar to the approach of Mycin, i.e. if the user can offer an answer
then accept this rather than perform further search. If subsequent search results
in failure then the algorithm can backtrack to this point, delete the user's answer
and search for itself if so desired.
The rule conditions in step 3a) are evaluated in left to right order. It is simple,
therefore, to layer rules, i.e. make them context dependent, by referring to
problem context details in the leftmost rule conditions. if these conditions
evaluate to false then the rule will fail and cause another rule to be selected.
The rule syntax allows arbitrary prolog predicates to be evaluated. This facility
can simply be used for procedural calculations or can be used to implement
various forms of procedural attachment, semantic checking etc., see sections 2.3
and 2.4. In particular, complete proofs can be embedded within the rule
interpreter's search strategy as control is returned to the Prolog interpreter
during these embedded calls.

The overall structure of the production system is a general set of clauses used to

establish some top level goal. Search at this level is driven by the Prolog system, i.e.

a variant of LUSH resolution. The control strategy is switched to that shown in

Figure 3.2 when domain specific rules are used to guide the search. Interpretation of

these rules, however, allows Prolog type proofs to be performed when evaluating the

truth conditions of individual rule premises. Alternatively, procedural calculations

can be evaluated as part of a rule premise and this information can also be used to

help guide the search. Context layering within the rule set is achieved by using the

first, or leftmost, rule conditions to refer to the context in which the rule is applicable.

Contexts are created by simply adding the appropriate clause to working memory in

the last condition of the last rule in the higher level set of rules. This ensures that all

rules at a higher level context get fired before rules at a lower level are considered.

152

The system as developed uses the internal database of Prolog to store the clauses

which represent the working memory. No attempt was made to develop a specialised

structure such as the context tree of Mycin, or the inference nets of Prospector.

3.1.3.1 Simple Help and Explanation Facilities
In advertising literature much has been made of the ability of production systems, or

"expert system shells", to explain their reasoning in terms of answers to "why?", or

"how?", questions from the user. These claims, in fact, are greatly overstated. As

shown in step 2a of Figure 3.2, the user can ask why a question is being asked at any

point in the session. The heat exchanger selection system simply responds, as do

most other systems, that it is to help establish the truth value of the antecedent of the

current rule, as identified here by the RuleLabel. The user can ask the system to

"describe" the rule, in which case the rule is printed out, or he/she can ask why this

rule is being investigated. The system will reply that it is being used to establish the

truth value of some premise in a "parent" rule.

This parent rule, and any of its ancestors, can be displayed in turn. What is being

displayed, therefore, is simply the stack of rules invoked by the interpreter. While

this may be helpful to a user interested in tracing or debugging the system, it can

scarcely be considered an explanation of what the real expert originally had in mind

when constructing the rule set. This is evidently so when programming tricks such as

context layering of rules, procedural attachment etc., are used to implement a more

efficient search. The system has no idea of the relative status of individual premises

in a rule antecedent and why they have been ordered in a certain way. It is precisely

this implicit information, however, that would be given by a human expert in

explaining his solution to a problem.

Upon selection of a type of heat exchanger the user can ask "how" a certain

conclusion was arrived at. Once again, all the system can do is retrace the search

path in terms of the rules invoked in arriving at any given conclusion.

If the user asks for help in response to a question the system will display any help text

relevant to that question that has been provided by the programmer. Alternatively, if

the user is a competent Prolog user he may trace any Prolog command to establish

some item of information before replying to the question. This facility could be used

to retract a previous answer and cause the interpreter to fail and backtrack to a

previous question or choice point.

153

3.1.3.2 Details Specific to the Heat Exchanger Selection Program
This section outlines the specific definitions used in the heat exchanger selection

system to define the top level clauses of the production system shown in Figure 3.1

above. These clause definitions are dynamically loaded replacing any previous
definitions in use. This means that the same system can be specialised to behave in

different ways for different problem contexts without changing the overall structure
or rule syntax of the system.

The first clause in the definition of "choose THING" is called "ask _for_details". In

this case the system asks the user whether a point in design has been reached where

full details of the hot and cold streams of the exchanger are known, i.e. heat loads,

physical properties etc., or whether only vague problem details are known, e.g. the

types of fluid involved, maximum operating temperatures and pressures that are to be

expected. If full details of the hot and cold streams are available then the system will

subsequently be able to perform approximate sizing and costing calculations and use

this information when recommending a type of heat exchanger. If this data is not

available then only a rough guide to the types of heat exchanger to consider will be
possible.

In either case, the user must at least classify the type of fluid in use in both the hot

and cold streams. On the cold side the categories used are low pressure gas, high

pressure gas, treated cooling water, low viscosity hydrocarbon, high viscosity

hydrocarbon, boiling hydrocarbon and boiling water.

The hot side fluid is classified as one of low pressure gas, high pressure gas, process

water, low viscosity organic liquid, high viscosity liquid, condensing steam,

condensing hydrocarbon and condensing hydrocarbon with inerts. The categories

used are by no means exhaustive but are ones for which cost data is available,
Linnhoffet al (1982).

If details of each stream are available then the basic heat balance calculations are

performed.

Once the initial problem context has been established the rule interpreter is invoked to

identify the most likely type of heat exchanger to use. This involves an exhaustive

backward chaining search over the set of production rules, see Figure 3.2 above. The

types of heat exchanger referred to in the production rules are shell and tube, double
pipe, gasketed plate, spiral, lamella and air cooled. Figure 3.3 shows some typical
rules.

154

Figure 3.3: Example Production Rules for Heat Exchanger Selection

rulel if max_pressure < 307 and max temp < 575 and min_temp > -200
t then heat _exchanger = 'shell&ube' cf 900 because

[' a popular choice, well tried and tested,
and if Pressure and Temperature are
acceptable then you''re only really limited
by materials of construction '].

rule2 : if rulel hasnt worked and
max_pressure < 307 and max _temp > 575 and mm_temp > -200
then heat exchanger 	'shell&tube' cf 800 because
[' althou—gh Pressure is acceptable,

you''re above the safe operating
temperature for ordinary steels so you''ll
need special costly materials '].

rule5 : if max temp < 600 and min_temp > -100
h then eat _exchanger 'double_pipe_bare' cf 800

and heat_exchanger = 'double_pipe_finned' cf 750 because
[' usually more expensive than other types

but come in standard modular design,
and can be very attractive at low Reynolds number '].

rule12 if use = heat_rejection_system
and allowable type = 'shell&tube'
and hot _fluid = pw
then heat_exchanger = 'ctst' cf 800 because
[' often a fairly cheap acceptable alternative

in a heat rejection system ,
as opposed to site-cooled cooling water '].

There are several points to note about the form of the rules not yet explained:

In rule 1 the rule consequent is of the form
Conclusion cf Score because text

The confidence factor, or score, is a subjective value, in the range 0-1000,
placed on the relative degree of confidence in selecting a particular type of heat
exchanger. Text can be used to further describe the rule and is used for
explanation purposes only.
Rule 5 shows the use of a more complex conclusion.
The condition "use = heat rejection system" in rule 12 is an example of context
layering, i.e. partitioning the rules into identifiable sub-problems.

The use of a confidence factor in a rule consequent is simply a heuristic means of

representing some degree of uncertainty in the conclusions of the rule. Confidence

factors are combined in a straightforward way. The assumption made, as in Mycin, is

that each item of evidence can be treated independently as follows:

If a rule consequent consists of a proposition which itself has a confidence
factor, then the overall confidence factor is obtained by multiplying the values
together and dividing by 1000.
Given an existing proposition P of confidence factor Cl and a new assertion
that P has confidence factor C2, the resulting confidence in P is

C3 = Cl + C2 (C1*C2/1000)

This is obviously a very simple weighting function and is subject to the same

155

criticisms made regarding the treatment of uncertainty in MYCIN and

PROSPECTOR earlier. In particular, it does not account for "negative" evidence as

the expression in 2) means that C3 >=C1. A more sophisticated technique would

probably be required if the heat exchanger problem was analysed in greater detail as

many interactions between rules might arise. The function used, however, is

adequate for demonstrating how uncertainty can be represented in rules and the

problems that arise. The discussion of how uncertainty might be handled in a design
environment is delayed until section 4.3.

The final aspect of the heat exchanger selection system to be considered is how the

alternatives are ranked once an initial selection has been made. There are two
possible cases:

If details of each stream are available then rough costing calculations are
performed. Both costs and confidence factors are then presented to the user.
Otherwise, the alternative types are ranked purely on the values of the
confidence factors.

The cost data is taken from Linnhoff et al(1982). For each type of heat exchanger

and combination of hot and cold side fluids, values of the cost factor C are given for

specified intervals of Q/T i.e. heat transfer per temperature difference (W/K), and
the value of U (W/m 2K) used. The units of C are (k/(W/K)).

The table of cost data for each exchanger type is represented as a set of clauses in

Prolog's database. Figure 3.4 shows some typical entries for spiral heat exchangers.

Figure 3.4: Sample Clauses used to Represent Cost Data

costdata(shelland tube, 1000,lpg,condh+inert,86,3.14,single shell)
cost_data(shell_ and tube, l000,hpg,lpg, 93,3.76,single shell).
cost_data(shell and tube, 1000,hpg,hpg, 300,l.70,single shell).

Estimating the cost involves searching this database to locate the appropriate fluid

categories (lpg - low pressure gas, hpg - high pressure gas, etc.) and the values of

OJLT (e.g. 1000 in Fig. 3.4) which form the closest interval around the value of Q/iT

calculated previously. Once a suitable interval has been found, logarithmic

interpolation is used to calculate a value for the cost factor. When multiplied by the

actual Q/LT, an estimate for the cost of the exchanger is obtained, see Linnhoff et al
for details of worked examples.

3.1.4 Discussion

A general production system was written and applied to a typical design task, namely

the initial selection of a type of heat exchanger. The production rule interpreter is

embedded within a general framework which can be specialised in different ways in

156

different problem domains. The framework allows procedural aspects of design to be

introduced in a convenient manner, both prior and subsequent to any search

performed by the rule interpreter. This is a common feature of many design
procedures in which

Initial calculations can be performed to provide guidance or bounds for the
subsequent selection/search phase.
Further calculations are often performed to verify a particular decision but
which are too costly to perform for every option available.

The rule syntax used is both flexible and easy to understand. Two features of the

Prolog interpreter are exploited which greatly enhance the degree of complexity of
"data" that can be represented in the rules:

Prolog variables can be used in rules and instantiated to arbitrary complex
Prolog structures stored in the internal database or working memory.
Calls to Prolog predicates can be made within rule conditions. This means that
either Prolog like proofs or procedural calls can be nested within the rule
interpreter's control strategy.

These features can be used to reduce the amount of search that would otherwise occur

using the default, backward chaining control strategy. Reducing the amount of search

is also one of the reasons for allowing initial "calculations" or search to be done

before calling the rule interpreter. This approach attempts to overcome the drawback

of backward chaining systems in that they do not make full use of any problem

information at an early point in the search, unlike forward chaining systems which are

data driven. The approach works if assertions are made which are referred to in the

first or leftmost conditions of a rule antecedent since these are interpreted first in this
system.

The demonstration application also showed the ease in which database facilities can

be accessed. In this case heat exchanger cost data was stored in predicate form in the

internal database available in Prolog. Previous discussion, section 2.3.6, indicated

that access to external mass storage databases can be achieved in much the same way.

The development of the rule based production system was the first of four related

investigations into the suitability of different knowledge representation formalisms

for use in a process design environment. A discussion, therefore, of the relevance of

rule based representations to process design activities is delayed until these other

representation styles have been described, section 3.5.

The rule based approach was initially studied since it appeared to be the most

successfully used and well understood of the Al programming styles available at that

157

time. Given the insight gained in the development of the heat exchanger selection

system, in addition to increased awareness of other relevant research in the area of

Al, it was realised that there were many problems associated with the direct

application of rule based systems in process design. Two general classes of problem
were identified:

Practical Problems - the problem of constructing and maintaining large,
consistent rule sets in a complex, highly inter-related domain such as process
design would be extremely difficult.
Theoretical Problems - how could rule based systems be used to tackle the
problem of maintaining integrity of knowledge that was identified earlier,
chapter 1, as being fundamental to any advanced design environment with
capabilities beyond those found in current database systems?

The potential problems identified in using a simple production system, such as the

heat exchanger selection system described above, are introduced in the next section.

The underlying question in point 2) above is one that fundamentally challenges any

representation system that is claimed to be "expert" or show "expertise" in any

problem domain, namely to what degree can any system be said to "understand" its

problem domain in a meaningful and useful way?

This question is not discussed, however, until other research done on "Blackboard"

and "Frame Based" representation systems has been presented and, at which point,

useful comparisons between styles can be made.

158

3.2 Problems concerning the Use of Rule Based Production Systems

This section describes some of the basic problems associated with the use of rule

based systems, assuming that suitable design applications can be found. The question

of the relevance of production systems in a design environment and to which aspects

of the design process they can be most usefully applied is answered in section 3.5.

3.2.1 Implementing Control Strategies
Considerable explanation was given earlier in this chapter regarding the workings of

logic based theorem proving systems and their correspondence to both forward and

backward chaining production systems. It has already been stated that the major

problem facing general theorem provers is development of good control strategies

which can select and apply inference rules for efficient solution of problems.

Experience indicates that information specific to both the problem domain and the

particular problem context must be used if this goal is to be achieved. Generalised

approaches, such as the resolution control strategies described in section 2.3, only

partially reduce the amount of search required and are ineffective on complex

problems.

Given the close correspondence between theorem proving systems and production

systems, as described so far, the obvious question to be asked is whether production

systems can be used to implement more efficient search control strategies.

Consider again the OPS5 search strategy, see section 2.5. The first stage in this

strategy is to compile the set of rules in use into a network of nodes, representing

individual rule conditions, that can be efficiently searched when deciding which rules

can be selected on each cycle of the recognise act loop. This provides no information,

however, on which rule out of the set of applicable rules to invoke. This is exactly

the same situation that arises in the use of either the connection graph approach or the

matrix connection method in resolution based refutation systems. Indeed, the

compilation methods of the latter two techniques are more complex in that alternative

solution paths are also (implicitly) identified at this stage.

The selection of a particular rule from the set of all possible rules in OPS5 is then

determined by the domain independent RETE algorithm. The rule selected depends

on recency of bindings, rule complexity etc. The selection decision is slightly more

complex than, but identical in principle to control strategies found in resolution

systems. The only way for the programmer to help guide the search and make good

use of problem specific information is to use the programming trick of asserting

propositions referred to in the first condition of other rules. These rules will then be

159

preferentially selected provided the programmer uses the means-end analysis, MEA,

version of RETE. This "trick" could easily be implemented in a resolution system if

additional management and recording of changes to the global database were made.

Two approaches that have been widely used to improve the use of domain dependent

control knowledge during search are now described. The first approach involves

embedding control information in the rules themselves and can be thought of as an

extension of simple procedural attachment,see section 2.3.4 The second approach

involves the use of meta-level information, i.e. information about information such as

rules describing the use of other rules. The ideas presented below are taken from a

number of sources, rather than any one prototype system or language, and are
described in common logic-like terms.

3.2.2 Embedding Control Information in Rules
The discussion of theorem proving and production systems has centred, so far, on two

types of domain knowledge: declarative knowledge and procedural knowledge.

Declarative knowledge is a term loosely used to refer to declarative type statements

such as facts and inference rules that are used to describe a problem area. Procedural

knowledge is usually taken to mean knowledge of "how" things are achieved, e.g.

how to perform certain calculations, etc, and is often identified with the procedures

that perform these calculations. Both types of information can usually be handled in

up-to-date systems. The heat exchanger selection system combines both declarative

and procedural knowledge in a particularly flexible way.

It has been recognised for some time, however, that the domain specific control

information on how to combine the use of declarative and procedural knowledge in

solving problems must be represented and manipulated in some way in order to

improve the performance of theorem provers or production systems.

Winograd (1972) is an important example of criticisms made concerning the types of

problems not addressed by classical theorem proving systems available at that time.

A number of systems were reported in the period 1970-1980 which attempted to

allow control information to be specified in much the same way as declarative

knowledge. In particular, the PLANNER system, Hewitt (1972), and the AMORD

system, de Kleer et al (1977) were important developments. Other important

contributions, such as CONNIVER [McDermott and Sussmann (1972)] and QLISP

[Rebok et al 1976] are reviewed in Barr and Feigenbaum (1980). Moore (1975),
however, is a good discussion of the logical inadequacies of many of these systems.

I -all

The essential idea used in each system was to allow control information to be

specified in either forward or backward chaining rules. In order to retain the forward

or backward chaining character of the production system the control information is

typically specific, or local, to each fact or rule. In this case, the global control

strategy of a production system operates as before. When a rule is invoked, global

control is temporarily suspended and localised search takes place according to the

additional control information supplied. Once this has been completed the global
search strategy regains control, if the local control checks fail for some reason, the

system can backtrack to a higher level choice point depending on the overall search
strategy in use.

The most common style of checking is simply associating statements of the form.

if <condition> Fail

with a rule, where <condition> is an arbitrary clause or procedure that evaluates to

true or false.

More complicated side effects can be achieved when a rule is fired by asserting new

facts into the global database or requesting that additional sub-goals be established

first. Each "assert" or "sub-goal" command can list a number of rules that should be

tried first during any subsequent search, i.e. locally overriding any global rule

selection criteria. The sub-goal requests may simply involve searching for current

instances of predicate forms in the global database. In the PLANNER system

potentially useful theorems can be individually named or general "classes" of

theorems can be recommended.

A more sophisticated feature of some systems, e.g. PLANNER, is the ability to

recommend whether an inference rule should be used in a forward or backward
chaining mode. For example, consider the rules:

Heat—exchanger (x) => unit_operation (x)

Stripping—column(x) => unit—operation (x)

If there were lots of rules of this type it would be more efficient to use them in a

forward chaining style in attempting to prove that a particular item was a

unit_operation rather than try and establish that it was a heat _exchanger,

stripping—column, etc, in turn. By using rules in a direction that minimises the

number of alternatives the amount of search will usually be reduced.

Another feature is to recommend the form of the rule to use. For example, to prove

that x is not a stripping—column then it is more efficient to establish first that x is not

a unit operation. In a backward chaining system the contrapositive form of the rule.

-' unit—operation(x) = -' stripping—column (x)

161

should be used.

Finally, most systems also allow the order in which sub-goals in a conjunction or

disjunction are to be tackled to be stated, e.g. in the rule.

P1A P2 A... A PN => C,

the order in which P1 to PN are to be proved could be left to right.

The AMORD system introduced two important features not found in earlier systems:

The rule definition language allows the dependence of a conclusion on other
beliefs to be made explicit using a "SHOW' facility, see de Kleer et al (1977)
for details. The important point is that this controls the particular forms that can
be generated by application of an inference rule. For example, given facts A
and B the consequent introduction rule introduces A A B.
This does not prevent redundant conjuncts such as A A A being introduced.
Such problems are easily avoided in AMORD.
New facts are asserted into working memory using the form

(ASSERT <Statement> <Justification>)
where <justification> is a specification of the reason for belief in the fact
represented by <statement>.

The justification in point 2) consists of the name of the rule used and the "factnames"

that index the assertions on which the belief depends, as made explicit in point 1).

The use of explicit justifications for each assertion in working memory allows a more

sophisticated form of search to be performed, namely dependency-directed

backtracking. Dependency-directed backtracking, as introduced by Stallman and

Sussman (1976), makes use of lists of justifications to avoid unnecessary

backtracking. For instance, if an assumed fact is contradicted during a proof and

removed by backtracking, then the negation of the fact can be assumed and supported

by the justification underlying the contradiction. The development of this technique

and its use in "truth maintenance systems" is described in section 4.3. Pereira and

Porto (1980) describe a general, selective backtracking strategy for use in any Horn

clause program written in Prolog. The latter technique maintains contexts of bindings

used in unification rather than justification lists. In both methods, the set of possible

goals selected as backtrack goals, i.e. choice points, are re- evaluated whenever a

sub-goal fails, taking into account the reasons for the failure of the sub-goal.

In summary, a number of techniques have been proposed that allow control

information to be embedded or associated with both declarative and procedural

knowledge in production systems. Most of the methods have been successfully

applied in simple example problems but there is, as yet, no general consensus on their

suitability for use in large scale applications. Theoretical Al research has

concentrated on redescribing these techniques in a formal logic framework, see Hayes

(1973), Moore (1975), McDermott (1978), Levesque and Brachman (1985).

162

3.2.3 Using Meta-Level Information
As an alternative to embedding control information directly in rules, the control

strategy problem can itself be considered to be a problem to be solved by another

system. In this case an "object-level" system would retain the original declarative and

procedural knowledge describing the problem domain while a "meta-level" system

would reason with declarative and procedural knowledge relevant to the control of

the object-level system. The term "meta" is used here in a very general sense, i.e.

information about information.

Two forms of meta-level information have already been described in the previous

section regarding the PLANNER and AMORD systems, namely recommending sets

of rules to try in specific situations and explicitly defining the dependency of

conclusions on other beliefs.

The use of meta-level information is best exemplified by development of the MYCIN

system into EMYCIN and NEOMYCIN, see Clancey and Letsinger(1981) and

Clancey(1983). The features developed have been copied in many other systems.

In order to improve the performance of the search strategy in the original MYCIN

system a "focussing" mechanism was added to the program. This used domain

specific information to prune the set of possible rules applicable at any point down to

a smaller set of, hopefully more relevant, rules to focus on. The information was

described in the form of meta-rules i.e. rules on how to use other rules. Full details

and examples of such rules are given in Buchanan and Shortliffe (1984). The

meta-rules were somewhat ad hoc in nature and described different types of control

information. For example, a number of meta-rules stated which types of rules should

be subsequently used or ruled out given some intermediate conclusion. A rule type is

often identified by those referring to specific attributes in the antecedent or

consequent.

Other meta-rules were used to modify the order in which certain classes of rule

should be applied. Finally, some very general, domain independent rules were used,
e.g.

If there are rules, Ri, which do not mention
the current goal in their premise,

and

there are rules, R2, which do mention
the current goal in their premise

THEN investigate Rl before R2.

These facilities are similar in nature to those described in PLANNER above and were

made accessible in the EMYCIN system. (EMYCIN, as described earlier, is a

163

domain independent system based on MYCIN).

Careful consideration of the problems experienced in the use and development of
MYCIN led Clancey and Letsinger (198 1) to reimplement MYCIN in a more general

framework called NEOMYCIN. The motivation for this work is well described in
Clancey (1983).

NEOMYCIN attempts to make explicit the links between factual knowledge and

reasoning or control knowledge in a relatively domain independent way. The static

information expressed in MYCIN's property lists was re-expressed as a disease

taxonomy in NEOMYCIN. This was implemented as a "frame based" hierarchy of
diseases (frame based systems are discussed in section 3.4). Nodes in the hierarchy

stored information concerning the extent of disease, symptoms etc. Information at

each node representing a disease is stored in so called "slots", each disease being

described by a number of such slots.

The control strategy in NEOMYCIN is governed by the "reasoning" rules. These

rules are themselves grouped into a hierarchy of nodes:

make—diagnosis

identify_problem

establish_hypothesis_space

est abli sh_hypothe si sspace
.etc...

-> identify-problem,
establish_hypothesis_space
process—hard—data

-> get_initial_data,
find _chief_complaint

-> review_ hypotheses _list,
group_and_differentiate

->

explore—and—refine

An example of a reasoning rule associated with the "group—and—differentiate" node is

If there are two hypotheses that differ in some feature
then ask a question that differentiates between them.

There are two sorts of "factual" rules in the system, namely trigger rules and

data-hypotheses rules. Trigger rules are used to set up new hypotheses if certain

conditions are found to be true, e.g. "if stiff neck and ... suggest meningitis".

Rules of this type were described in the previous section on embedded control

information in rules. Data hypothesis rules simply assert associations between data

and hypotheses but cannot create new hypotheses.

The system works by processing the reasoning rule hierarchy. This results in

different sets of factual rules being invoked, trigger rules being responsible for
activating intermediate, domain specific hypotheses.

Apart from making the reasoning strategy much more apparent to both the program

developer and user, the structure of NEOMYCIN also enabled better explanation

facilities to be written. For example, a "How" question could be answered by stating

the completed meta-rules used in arriving at a particular conclusion. What is reported

is a summarised explanation of the overall strategy rather than a recursive trace of

every rule that was invoked in the search.

3.2.4 Control and Meta Information in the Heat Exchanger Selection
System

Despite its apparent simplicity, a number of features regarding control knowledge

outlined in the previous two sections can be handled in the heat exchanger selection
system:

The order in which conditions in the rule antecedent are evaluated is specified
by the layout of any individual rule.
"If <conditioning> Fail" and "Match <pattern>" instructions can be directly
embedded into rules. These are special cases of procedural attachment. The
heat exchanger system allows any sort of attached procedure to be evaluated,
including those involving nested proofs within Prolog.
Facts can be asserted into or retracted from the working memory whenever
necessary.

These features would allow considerable control information to be embedded into any

working set of rules. The system does not provide, however, an explicit way to

recommend sets of rules to use via the use of meta-rules. This would be

straightforward to implement, meta-rules being written in the same syntax as before,

but the simplicity of the application did not warrant this addition. Individual rules can

be referred to by name, to avoid duplicating effort or writing overly complex rules,

e.g.

if rule 1 hasn't worked and ...then

This feature assumes that rule 1, say, has already been tested. This is guaranteed if the

rules, Ri say, that refer to other rules, R2, are loaded into the Prolog interpreter after

the R2 rules. In addition, both Ri and R2 rules must refer to the same entity in the

rule consequent. This works because depth first, exhaustive backtracking is used to

select each rule referring to the current goal in turn.

The overall structure of NEOMYCIN is simple but attractive. Working with a

generic reasoning framework is mimicked in a simpler way in the heat exchanger

system. The approach used was to provide a single framework for use, see Figure 3.1

earlier, but allow the specific definitions used to be dynamically loaded in

"procedural" form rather than declarative meta-rules. Different "procedures" can be

loaded in different problem domains thus achieving different behaviours or reasoning

strategies. The procedures can, of course, be Prolog clauses, i.e. Horn clauses, that

can be used to express the meta information used in NEOMYCIN like reasoning

rules.

Unfortunately, this "trick" relies on the ability of the programmer and his knowledge

165

of Prolog.

At present, a rule is simply selected by analysing the content of a rule consequent and

checking whether it refers in some way to the current goal. The only selection

criteria used is that non-recursive rules fire before recursive rules. This checking

makes excessive use of Prolog's unification algorithm and would be prohibitively

slow with large rule sets. Ross(1987) is an example of a Prolog rule interpreter that

compiles rule sets into an internal form that can be searched much more efficiently.

Such an addition would be necessary in a more complicated application of the

system.

3.2.5 Meta-Level Inference in the MECHO System
MECHO is a sophisticated Prolog program used for the formation and solution of

mathematical models from informal specifications in the area of Newtonian

mechanics. The system is detailed in Bundy et al (1979a, 1979b). The system is

briefly described here for the following reasons:

Meta-level inference is implemented in a well defined, logical framework
unlike many other Al systems.
The formation of mathematical models and their solution is very important in
process design problems.
The overall structure, approach and complexity of problem tackled by MECHO
influenced other developments in this thesis.

The overall problem solving strategy of MECHO is shown in Figure 3.5 below.

Figure 3.5: Problem Solving Strategy used in MECHO

English Statement

Common-sense
Knowledge

Answer

Translation from a statement of a problem in English into an intermediate

representation is not of immediate concern here. CHAT-80, see Pereira(1983) is an

example of one such system written in Prolog and used to interface to a geographical

database system.

166

The intermediate representation is a set of predicates. The predicates represent the

objects involved and the relevant relationships. Consider a pulley system consisting

of four objects: two particles, a string and a pulley. Object types are defined with an
"isa" predicate, e.g.

isa(pl, particle)
isa(p2, particle)
isa(sl, string)
isa(p3, pulley)

The relationship defining the configuration of the pulley system might be defined as
pulley- sys (p3, s l,pl 'p2).

Various other predicates, such as end-point, contact, incline, concavity etc, are used

to further define the pulley system. A number of predicates are also used to further

define each object. For example, an object has a unique mass but this may be

measured in various units. The same is true for other physical quantities associated

with each object. These are represented as follows:

mass(pl, massi) 	 accel(p2, acc, 90)
measure(ml, kg, massi) 	 measure(a, ft/sec '2, acc)

Thus, a problem statement is converted to an appropriate intermediate form. The

system uses a "given" predicate to state which quantities are initially known e.g.

given(massl), and a "sought" predicate to record the quantities to be solved for, e.g.

sought(acc). A number of inference rules are used to infer additional information

from the problem information, e.g.

accel(PartB, Acc, DirB) A
pulley sys(Pull, String, PartA, partB) A
extensibility(String, 0) A
end (String, EndA, left) A incline(String, EndA, DirA)
-3 accel (Part A. Acc, Dir A)

This rule states that the acceleration, Acc, of one particle, PartA, in a pulley system is

the same magnitude as that of PartB provided the string is inextensible. It can be

used in a forward mode if information about PartB is available.

MECHO also uses special axioms to provide default information. The axiom
pulley_sys(Pull, String, P1, P2) -3 extensibility(String, 0)

states that strings are inextensible by default. These axioms are specially handled

since they must not be used if a contradictory conclusion is already known. (The

PLANNER system also uses axioms of this type).

The main problem for MECHO is to form mathematical models, i.e. sets of equations,

from this intermediate representation. It does this by use of the meta-predicate

"is—formula". This predicate relates variables in a formula to allowable propositions
in the intermediate form.

167

Consider the formula F = MA, i.e. Newton's resolution of forces formula. This is
represented as.

isformula(resolutionof forces, situation(Object, Dirctn),
F = M*A,
mass (Object,M) A accel_compt (Object,A,Dirctn)
A sum_forces(Object, F, Dirctn)).

The first parameter is just an identifying name, the second describes the problem

situation, the third is the formula itself, and the fourth relates the second to the third

by a number of propositions to be satisfied. In satisfying these propositions MECHO

may have to use inference rules like the earlier example or

accel(Object,Acc,Dir].) A A = Acc*cos(Dir_Dirl)
-> accel_compt (Object, A, Dir)

to evaluate the component of acceleration in direction Dir.

MECHO still has the problem of knowing which equations to generate for any

particular problem. The algorithm used is quite simple and a variant of means end

analysis. The basis principle is to try and choose equations which solve for the

"sought" quantities in terms of the "given" ones while minimising the number of

unknowns introduced. The algorithm steps are

Determine what sort of quantity is being solved for and the problem situation.
On the basis of 1), select a formula and situation.
Fill in any unknowns using inference if necessary.
In 3), if any inferences would introduce a new unknown then mark this node as
a continuation point and reselect in step 2).
if an unknown must be introduced then resurrect a continuation node in 4) and
note these unknowns as being sought quantities.
Check the equation is independent from earlier ones.
Repeat the whole process for any remaining sought quantities.
Use any measure propositions to translate variables into numbers in compatible
units.

The output of this algorithm is a list of equations. These equations are then passed to

the symbolic equation solving package PRESS for solution. PRESS itself is a logic

based inference system also written in Prolog, see Bundy and Sterling (1981).

The algorithm as it stands is not very powerful as the large number of choices in steps

2) and 3) would result in large amounts of search. Further meta-predicates are

introduced to control the search. The predicate "kind", for example, relates a

particular physical quantity to its type and defining proposition:

kind(acc, acceleration, accel(p2, acc, 90))

The meta-predicate "relates" lists physical formulae involving a type of quantity in

much the same way as meta-rules identify other rules to use in production systems,

e.g.

168

relates(acceleration, <resolution_ofjorces, const_accel 1,...>)

indicates acceleration is used in the list of formulae in brackets.

A powerful meta-technique, not found in other system, is exploiting the fact that

some parameters in a predicate are functionally dependent on others. Bundy (1983)

gives the simple example of mass(partl, ml). Since every particle has exactly one

mass, the parameter ml is functionally dependent on parameter part 1 and, hence, has

the properties of uniqueness and existence in the logical sense. This can be exploited

in three ways:

If mass(part 1, ml), say, is already known then there is no point in every trying
to prove mass(part 1, m2), m2 * ml. Any goal requesting this can be marked as
unsatisfiable. This is called the uniqueness test.
Once a goal mass(partl, m) is satisfied by {ml/m}, say, then all other choice
points can be discarded. This is termed "back-up prevention".
If the goal mass(partl, m) should ever fail, MECHO can create a skolem
constant, m say, if necessary. This depends on the state of the problem solving
process, e.g. if some unknown must be introduced for solution to proceed, and
is termed "controlled creation".

Finally, there are high level meta-predicates which select the most suitable inference

method, the "method" predicate, and specify the conditions needed to solve for some

quantity, the "solves—for" predicate. These predicates are effectively high level

strategies that can be applied at any point in the computation. This is in direct

contrast to the "chunking" approach in other systems in which candidate rule sets are

identified in advance. The meta-rules in MECHO are highly flexible and complete

control can be placed on storage and retrieval of knowledge. The disadvantage is the

cost of the extra theorem proving that must be performed.

The importance of the MECHO system to this thesis is that it successfully tackled a

class of problem, similar in nature but simpler in content to certain aspects of process

design. There is much to be gained, therefore, from an appreciation of the techniques

it uses. MECHO is also interesting in that it is one of the few Al systems to be

implemented in a fairly rigorous logical framework.

3.2.6 Maintaining and Extending Rule Sets

A potential problem arising from the use of production systems, with important

consequences in an industrial context, is how to ensure that rule sets can be extended

or modified whilst maintaining a degree of consistency with previous behaviour of

the system.

New rules or knowledge will inevitably be added for a variety of reasons, eg:

1. Rules introduced to treat a wider class of "data" or situations.

169

2. Rules introducing new subtasks to make the analysis of the main task more
precise. In complex problem areas it will be impossible to define all the
relevant rules in advance.

It is also worth noting that the task of extending rule sets is unlikely to be ever

completed in a system that claims to have a high degree of "expertise". Real experts

are constantly faced with new research work and information which must be

assimilated and understood in the context of previous information if the expert is to
remain an expert in that field.

Unfortunately, there are no techniques currently available that can be used to

guarantee that previous, correct behaviours will be guaranteed when new rules are

introduced into the system or previous rules modified. There are a number of aspects
to this problem that are worth outlining.

• 	McDermott(1984) is a good account of the experience gained in developing the Ri
System, see section 2.5 earlier. Ri is a large system consisting, at that time, of some

three thousand rules. It was found that program development, especially by those not

involved in the original development, often resulted in redundant rules and ad hoc

solutions. This problem seems inevitable when dealing with large rules sets. The

situation is exacerbated by a number of other contributing factors:

Embedding control information into rules often makes it much more difficult to
understand the original intention of the programmer. Many systems have a
complex rule syntax that requires considerable understanding if the intended
effect of the control information is not to be misinterpreted.
The use of procedural attachment for control purposes can lead to problems if a
specific order of evaluation of conditions in the rule antecedent was intended
and subsequently modified.
The trick of expressing essentially procedural information by relying on the rule
firing order is also highly problematical.

Problems such as 1) to 3) make maintenance of rule sets a non-trivial problem in

large or complex problem areas. The whole idea of expressing calculations and

procedural information in a rule based format is, indeed, a questionable one due to the

implicit ordering information used to structure the rule base.

A problem specific to systems, such as Prospector, using subjective weightings on

links in inference nets is how to modify these weightings to take account of new

nodes in the net. The literature suggests that considerable tuning of these weightings

is required to achieve the desired effects. This is true, however, to a certain extent in

any system making use of some uncertainty measure in rule consequents.

The basic cause of these problems is that although productions systems were

originally intended to make knowledge or expertise in a problem domain available in

170

an explicit form, the fact is that the actual reasoning strategy is still implicit, in most

systems, in the form of the rules themselves. This has only been addressed to a

limited extent by meta-level systems such as MECHO and NEOMYCIN. This is a

fundamental point that is central to the problem of designing a system that can ensure

integrity of knowledge throughout a process design and is returned to in greater depth

in Chapter 4.

171

3.3 Blackboard Systems

A sophisticated process design environment, as envisaged in chapter 1, will be a large

and complex system. The concept of a design methodology based on A.I.P.,

Appropriate and Incremental Parallelism, requires by its very nature communication

and cooperation between a number of engineers, or systems, knowledgeable in

different areas of expertise. Agreed design decisions and information must be

managed and made available to the relevant parties throughout the design process.

Given the problems experienced in applying production systems to very specific,

small to medium scale problems it seems unlikely that these systems on their own can

be successfully applied to the much larger and more complex problem of process

design.

In the period mid 1970's to early 1980's, a number of systems were reported that

specifically studied problems requiring relatively incompatible types and sources of

expertise for their solution. They are generally referred to as "blackboard" systems

since they are modelled on the idea of a number of experts cooperating to solve a

problem, the solution being gradually developed on a blackboard. The blackboard is

a common data structure and each expert is expected to make a contribution when the

state of the solution suggests that he/she can perform a useful task. In many ways the

overall structure is similar to developments in integrated database systems, see

chapter 1.

At first sight, therefore, the general structure of a blackboard system seems well

suited to a design environment based on an A.I.P. design methodology. Rather than

describe any one system in detail, only the typical components of a system shall be

given here. Three important systems discussed extensively in the literature are

HEARSAY-][[, Erman et al (1980), HASP, Nil and Freigenbaum (1982), and OPM,

Hayes-Roth (1983).

(HEARSAY-IT is a speech input/understanding system used to access a database

developed during the 1970's. HASP is a system used to process signals from an array

of hydrophones to detect the movement of ships and submarines. OPM is a flexible

planning system used to sequence tasks to solve problems in a specified domain).

There are three principal components in a blackboard system: the blackboard, a

number of experts, usually called knowledge sources (KS's) and a system scheduler.

Each of these is now considered in turn.

The blackboard is a globally accessible, multi-dimensional data structure consisting

172

of a series of entries. An entry usually refers to some fact, hypothesis or piece of

control information. One of the dimensions is usually "representation level" running

from low level data up to high level abstractions. Another dimension is usually used

to represent the number of alternative hypothesis available to use in some sub-task.

Other control information is often recorded on the blackboard as well. The important

point is that each dimension is usually partitioned or segmented into a number of

levels, ranging from low level information to high level information. In order to

record the dependencies of generated assumptions or hypotheses there are usually a

lot of dependency links between statements at each level.

From a logical point of view, it is worth noting that most entries on a blackboard

could be represented in a straightforward way as a set of predicates. The idea of

proportioning the blackboard entries into layers along several dimensions can be

achieved by suitable use of extra parameters indicating both layer level and

dimension type. Nevertheless, the idea of a communal blackboard is a useful one but

should be considered independently of any implementation details.

The individual knowledge sources, agents or modules cooperating in the system are

often mini-production systems stripped of any explanation facilities. They could, of

course, be any self contained program or procedure with a suitable interface to the

blackboard. Normally, however, each KS consists of a precondition part and an

action part. The precondition part typically specifies the conditions needed to make it

worth activating the KS. This is usually in terms of specific entries or types of entry

at a given level on the blackboard. In addition, a subjective estimate of the likely

benefit, required resources, likely hypotheses etc, resulting from the use of the KS is

usually reported to the system the first time the precondition is analysed.

The action part of the KS is the code that is evaluated when the precondition is

satisfied and the KS has been selected to perform some tasks. In some systems the

action parts of KS's are partitioned sets of rules interpreted by some common

production system using the blackboard as its working memory.

The third and final part of a blackboard system is the scheduler which controls the

operation of the system. Many schedulers are based on the following simple strategy:

Note any changes, e.g. new entries, on the blackboard.
Determine which KS's would act on these changes. Rather than poll each KS
on every cycle control instructions are often generated by the scheduler the first
time it inspects the precondition of the KS. Alternatively control instructions
are directly programmed into the scheduler for each application.
Create an agenda of "knowledge source activation records", KSAR's. These are
simply records of instances of variable bindings of the preconditions of each KS
that might be invoked.

173

Decide which KS to invoke by ordering the agenda according to some
algorithm.
Invoke the KS using as arguments the bindings recorded in the KSAR on the
agenda.
Record any additions or changes to the blackboard requested by the KS and
repeat from step 1.

The performance and control of the system depends crucially on step 4). KS's could

well be applied in the wrong order, get into recursive loops etc. Excessive amounts of

unnecessary search could be performed or, worse, failure of the system. The problem

of deciding which KS to activate is just the same as deciding which rule or set of

rules to activate in a production system. Indeed, if the action part of a KS is a set of

rules then it is exactly the same problem.

The approach taken in the OPM system is to allow the process of sorting the agenda

and activating the KS's to itself be determined by a further set of KS's which are

solely concerned with reasoning about the control strategy. This is equivalent to

taking the meta-level techniques of MECHO and MEOMYCIN, say, and expressing

them in a slightly more general framework. It is worth briefly describing the various

levels that OPM uses.

The levels used in the domain or problem description part of the blackboard are as

follows:-

OUTCOME 	- This is the highest level and describes the problem
information.
DESIGN 	 - This records decisions about moving from one
"cluster" of activities to another. Sub-problems to be solved are grounded
together into "clusters". This level is concerned, then, with decisions regarding
problem solving strategy.
PROCEDURE 	- Record decisions about moving "within a cluster".
OPERATION 	- This is the lowest level and is concerned with "single
step" activities that comprise PROCEDURES.

The levels in the control part of the blackboard permit movement between the domain

levels above. They are:-

PROBLEM 	- This is the highest level describing in general terms
the problem to be solved, eg "a multiple task planning problem, starting time =
ti, finishing time = ... etc".
STRATEGY 	- This level records guidelines on how to solve the
problem, eg: TOP DOWN
- Top Down, and is similar to choice of inference method in MECHO. The basic
idea is to FOCUS on successive levels of refinement, top down style.
FOCUS 	 - Records where to focus or restrict the system's
attention, eg at the DESIGN level or PROCEDURE level or OPERATION
level.
POLICY 	 - General decision criteria to be used after a number of
cycles, eg fast or detailed KS's, highest expected value, reliable, etc.

174

AGENDA 	 - Records entries on the agenda on each cycle, ie the
KSAR instances.
KSAR 	 - The entry on this level is the KSAR from AGENDA
to be fired on that cycle.

For each of the control levels, PROBLEM, STRATEGY, etc, there are a number of

control KS's, see Hayes-Roth (1983) for full details.

The scheduler consists of three knowledge sources, an update KS, a scheduler KS and

an interpreter KS. These KS's are defined, in abbreviated form, as:

KS : AGENDA-UPDATER
Precondition:

There is a change to the most recent scheduled KSAR, KSAR-n,
indicating it has executed.

Action
Create a new agenda = prior agenda minus KSAR-n.
If KSAR-n produced changes on the blackboard
then remove any KSAR's from the agenda

whose preconditions have been invalidated by the changes
and add a KSAR for any KS whose precondition is now satisfied.

KS : SCHEDULER
Precondition
There is a new agenda, Agenda-n.

Action
Choose a KSAR by applying an evaluation function
to operative Foci and Policies for all KSAR's.
Create a new scheduled KSAR and the factors
influencing the decision to schedule it.

KS : INTERPRETER
Precondition
There is a new scheduled KSAR, KSAR-n.

Action
Interpret and execute KSAR-n.
Change KSAR-n to record pointer to all the
resulting changes on the blackboard.
Change KSAR-n to indicate that it has executed.

Careful study of the SCHEDULER KS shows that responsibility for activating a

specific KSAR has moved to an "evaluation function" of sorts. The selection

criterion for this function are specified by a control KS at the STRATEGY level

which might recommend "importance", say, as the criterion to use. The scheduler

would then look for expected values of "importance" in the precondition parts of the

DESIGN or PROCEDURE KS's depending on the current FOCUS. These values are

subjective estimates provided by the programmer developing the domain specific

KS's, e.g. a KS for an overall mass balance would have higher importance than that

for a detailed reactor model in the domain of process synthesis.

175

3.3.1 Observations on Blackboard Systems

On first inspection the general principles used in blackboard systems seem to

overcome some of the problems experienced with using production systems on

multi-faceted problems. Rule sets can be partitioned into KS's on specific topics.

The resulting KS's should be much smaller and easier to maintain than the original,

large, unstructured rule set. Procedural code and declarative knowledge can easily be

accommodated in the same environment by careful placement into appropriate KS's.

On closer inspection, however, it is clear that the whole emphasis on the use of

meta-level information to directly guide the reasoning strategy has moved to a

situation where this information is secondary to the planning and activation of KS's.

In early descriptions of the OPM system, the meta-level information becomes quite

localised, i.e. KS specific, and heuristic in nature, numbers used to estimate relative

importance, reliability etc. The quality of meta level information being used on each

cycle of the scheduler then, is less than it should or could be, ie: the heuristic

estimates are static and do not take account of possible global interactions with other

KS's in a particular problem.

A blackboard system, such as OPM, also requires a specific scheduler or planner to

coordinate the activation of the KS's. This, in principle, should allow very flexible

forms of reasoning to be carried out on the control and operation of the system. In

practice, however, planning of tasks turns out to be a very complicated problem in its

own right. A great deal of literature has been published on the development ot

planning systems in A.I. Nilsson (1982) is a good introduction to the well known

linear, hierarchical planning systems STRIPS (Fikes and Nilsson (1971)), ABSTRIPS

(Sacerdoti (1974)) and WARPLAN (Warren (1974)) in the context of logic based

theorem proving. Well known non-linear planners have since been developed, e.g.

NOAH, Sacedorti (1977) and NONLIN, Tate (1977). (The difference between

non-linear planners and linear planners is that the former plan tasks in parallel and do

not impose task order until necessary, i.e. they work with partially ordered plans.

Linear systems are fully ordered). Tate (1985) is a general introduction to planning

with many relevant references.

Instead of trying to form a complete problem plan, OPM sidesteps the problem by

adopting an opportunist "try it and see" approach. The KS activated on any particular

cycle depends on the current entries on the blackboard resulting from activation of

other KS's. Care must be taken with this approach, however, to ensure that the

system progress towards a global solution and not get stuck in a depth first search.

176

Despite the potential control problems, work was started on developing a type of

blackboard system for use in process design. This research is described in the
following section.

3.3.2 Development of Designer's Assistant

The purpose of this section is to describe the initial development of a system, called

Designer's Assistant, loosely based on a blackboard style architecture. It is clear from

previous attempts to provide integrated database design environments and the

requirements needed in a more sophisticated environment, see chapter 1, that

The resulting system will be large, complex and required to cover many
different areas of design expertise, and
Complex/flexible interaction will be needed between these different areas of
expertise.

The consensus in the literature, and from the experience gained in the development of

the heat exchanger selection system, is that rule based production systems or theorem

provers do not provide a suitable framework to tackle such a large problem. The

general notion of an environment consisting of a number of cooperating agents or

modules that communicate with one another, however, appears a more attractive

proposition, and one that is amenable to practical solution. There are a number of
basic advantages to this approach.

Complex design tasks can be broken down into identifiable sub-problems.
Contributions to their solution can be made by a number of different modules
competent in different areas of expertise, thus supporting the concept of an
A.I.P. design methodology.
Practical consideration of usage of computer resources require that the system
be partitioned in some way. Providing a set of distinct, independent modules
greatly simplifies the problem of allocation and control of computer resource.
A number of different types of inference techniques will inevitably be needed to
solve problems of a different nature. Some problems will be of a planning
nature, others involving selection decisions or simply evaluation and analysis of
procedural code. It is likely that specialised interpreters will be required for
different purposes. Those can be conveniently embedded within any module in
the system rather than have one all embracing interpreter.

The idea of having alternative inference techniques, and perhaps alternative

representation techniques suitable to the particular problem being solved, seemed

attractive at the time. It would mean that full advantage could be made of specialised

interpreters already developed, such as the heat exchanger demonstration system.

The work described in the following sections was started on this basis. Subsequent

insights to the problems that this created radically altered this view and are discussed
at length in the remaining chapters of this thesis.

177

Implementing a generic blackboard system is a significantly larger programming task

than development of a one-off production system. Rather than spend a lot of time

developing the overall framework, which is relatively uninteresting from a

representation point of view, it was decided to initially concentrate on the

development of a single module and its interaction with the blackboard. This work is

described below. Development of the overall structure of an enhanced version of the
system is described later, chapter 5.

3.33 Development of a Physical Properties Module

The selection of methods for physical property estimation is a fundamental part of

modelling in process design. As such, it is typical of a module in a blackboard

system that will be needed or called upon by many other problem solving modules.

For example, the heat exchanger selection system requires estimates of specific heats,

boiling points, etc. The user is currently prompted for these values but it would be

desirable if a request could be posted on a "blackboard" and answered by another

module in the system.

The choice of physical property method selection is interesting in that it brings into

focus the important question of how process models are to be constructed in a design

environment and how process models are to be constructed in a design environment

and how information in the model is to be used by different modules. The

development work is described in four parts: module language definition, model

selection and interpreter strategy, model representation on the blackboard and
interaction with the module.

3.3.4 Module Language Definition and Knowledge Representation

The selection of methods for physical property estimation is normally an important

part of some other process design task. The physical properties module must address,

therefore, not only the problem of representing and using expertise in this domain but

also that of constructing or enhancing some process model to be used in the wider

problem context. A partial model may already exist and be represented on the

blackboard, in which case the physical properties module should take account of any

relevant details or constraints. If there are no such constraints the module will be free

to question the user when necessary in constructing details of a new model.

The problem of selection of appropriate method for physical property estimation is

similar in nature to that of heat exchanger level but a lower level in the context of

process design. It was decided, therefore, to use a rule based inference technique as

the means of method selection. The question of model construction, however,

178

required that an enhanced rule definition language and interpreter be developed. The

rule syntax is now described.

3.3.4.1 The Rule Head
The rule head is a term of the form.

ruleN(<PROPERTY>)

Where <property> is replaced by an actual property, e.g. viscosity, density etc. This

term is used as an index by the interpreter to classify the rules into specific sets of

rules relevant to each property known to the module. In fact, the rules can be further

classified by replacing an atomic value for <property>, eg: "viscosity", by a structural

term such as "viscosity(low(pressure))". The system would not consider such a rule if

the pressure was known to be high in a particular problem. Each rule is uniquely

identified by the value used for N in ruleN.

3.3.4.2 The Rule Entrance Guard
Each rule has an "entrance guard" associated with it. An entrance guard is an

arbitrary logical formula that must be satisfied, i.e. evaluate to true, before a rule can

be even considered for application. The truth conditions are strictly evaluated and

cannot be "compromised" in any way. Each condition in the guard has the same

syntax as statements in the rule antecedent, see below. A simple condition might be

stream(phase) = gas

indicating that the physical property model that follows only applies to a gas phase

stream. The interpreter uses the condition guard of rules to further restrict the set of

applicable rules.

33.4.3 The Focus of Interest

Each rule has a term of the form.

focus_of_interest <ObjectType>,

where <ObjectType> is replaced by the specific type of object that the rule is mainly

concerned with. For instance,

focus_of_interest stream

Indicates that the rule can be used to infer something about the <property> of the

stream of interest. The means by which the interpreter establishes the

focus-of-interest is described later. This is used both as a reference point for

expressions referred to in the rule body and as another mechanism for focussing the

system's attention on the relevant set of rules.

179

3.3.4.4 The Situation/Action Body of the Rule
The rule body is of the usual form

if <antecedent> then <consequent>

<antecedent> is some logical formula such as

If stream (class) is pure
and pressure = < "5 bar"
then

Each premise in the antecedent can be one of the following forms

Xis Y,
• has Y,
• does Y,
X are Y,
X = Y (or <,

Xisnot 	Y,
• has not Y,
• does not Y,
Xare not Y

An additional form that can be used is

Property of X is Y

This is used to refer to the property of an object in a rule when the object is not the

current focus of interest. What is meant by an "object" is described later in section

3.4 and concerns entries representing objects on the blackboard data structure.

Functional or procedural terms can be evaluated by the forms.

result—of(<goal-expression>

or

evaluate(<procedure-call>

<goal expression> can be some arbitrary arithmetic expression or one of the special

forms

largest(<thing>, in (<object>)),
smallest(<thing>, in (<object>))

These forms are used to find maximum or minimum values of individual properties

of, say, a stream mixture, e.g. the largest pure component molecular weight.

The largest/smallest forms can be used in arithmetic expressions and a "result_of(...)"

term can appear in a relation form,

e.g. "result_of(...) > X". Figure 3.6 shows a number of example rules.

180

Figure 3.6: Example Rules in the Physical Properties Module

rule2(viscosity(Iow(pressure))):
strict—guard(one—of([stream(phase) is gas,

stream(phase) is vapour]),

one_of([stream(class) is pure,
stream(class) is essentially_pure])),

focus _of_interest stream
if 	stream(class) is pure

and pressure =< 5.0e5
and component is _not polar

then model(viscosity(low(pressure)))
by "Enskog_Lennard_ Jones _equation" cf 0.95
references [pooled(pp(ref(l)))]

rule7(viscosity(low(pressure))) :

strict—guard(stream(class) - mixture,
one_of ((stream(phase) is gas,

stream(phase) is vapour])),

focus _of_interest stream
if pressure =< 5.0e5

and result—of(largest (component (mw) , in(stream)) I
smallest (component (mw) ,in (stream))) =< 6

and result—of(largest(component(viscosity),in(stream))/
smallest (component (viscosity), in (stream))) =< 6

then model (viscosity (low (pressure)))
by "Chapman _Enskog_Wilke_equation" cf 0.95
references [pooled(pp(ref(l)))]

The consequents of the rules are all of the special form

model(<property>) by <technique> of <confidence>
references <information-sources>)

This form causes special entries to be entered in the active blackboard. Finally,

Prolog variables can be used within rules, as in the heat exchanger selection system,

to provide a unification mechanism.

3.3.4.5 The Applicability Compromise
The "applicability compromise" of a rule is the fifth constituent part of a rule. An

interesting, and very useful, feature of the interpreter in the physical properties

module is that even if any part of the rule antecedent fails then the interpreter will still

try and use the model suggested in the consequent provided the bounds of

applicability are not stretched too far. This is what the applicability compromise

specifies, suggesting how the confidence in the model should be modified

appropriately. The only restriction on making compromises is that the entrance guard

must strictly evaluate as true without any compromises being made.

The following is a typical example of a rule compromise

applicability—compromise(rule2 (viscosity(low (pressure)))

if stream(class) is essentially_pure change of to cf-0.05),
if pressure is within _range(5.0e5,20.0e5)

change cf to cf - cf*((pressure_5.0e5)/(pressure+5.0e5))),

181

if component is slightly_polar change cf to cf-0.05),
if anything_else_fails change cf to 0.05

I.

A compromise is simply a list of compromises that may be made for quantities

referred to in the rule antecedent. The expressions are of the form

if <Test> change <Thing> to <New-Value>

<Thing> can refer to anything but it is usually the confidence factor used to score the

merit of a model. The example entry also shows the use of two other forms. The first

is the function "within-range" and is self-explanatory. The second is the use of the
form.

if anything-else-fails change

This is a catch-all that can be used to compromise any rule premise not specifically

mentioned.

N.B. The use of an applicability compromise is optional and need not be specified.

3.3.4.6 Making Data Compromises
The applicability compromise is used to make allowance for conditions on the use of

a property estimation technique not being met on the assumption that the data being

used is correct. It tends to be the exception rather than the rule, however, that good

data is readily available for modelling purposes in process design. The

"data-compromise" part of a rule caters for this common situation by indicating how

use of estimates of data, rather than reliable values, affect the confidence of the use of

a particular technique. Some typical entries are

data compromise(rule2 (viscosity(low (pressure)))

if hard—sphere—diameter is estimated by Anything
change cf to cf-0.1),

if dimensionless _temperature is estimated _by "Neufeld_LJ_equation"
and dimensionless temperature is outside_range(0 .3, 100)

change cf to cf*0.5 _

The quantities referred to are called the "parameters" of the method referred to in the

"model" statement of the rule consequent. Details of how this data is accessed or

estimated are given below.

3.3.4.7 Observations on Rule Format
It is hopefully clear from the example entries that recommending techniques for

specific modelling purposes can be achieved by writing rules in an easy to read,

natural format. The facilities provided, via the syntax of rules, in the physical

properties module represent a considerable extension to those found in the heat

exchanger selection system. Of particular importance is the use of applicability and

data compromises. Many heuristics in process design are of a very approximate

182

nature and need some insight as to how they should be applied. The use of

applicability compromises is a first attempt at providing a simple way of specifying

how the context of a problem can be taken into account when applying some overly

simplistic heuristic.

The ability to make compromises regarding the availability and reliability of data is

another essential facility. If no data is available when a request for some value of a

physical property is made, the system need not fail, as usually happens, but

recommend instead some estimation techniques for the missing data with an

appropriately lowered confidence in the use of any values generated for the physical

property. A typical example would be estimating the acentric factor from critical

properties for subsequent use in evaluating Z, the compressibility factor, from an

equation of state.

An additional facility, not yet mentioned, is that any number in an expression can be

expressed in quotes with appropriate units, eg: "5 bar". Expressions themselves are

symbolic in nature, referring to various aspects of the focus of interest. All such

expressions are symbolically evaluated and make use of a general units conversion

technique written in Prolog. All units are converted internally to an S.I. system for

consistency. Any numbers not appearing in quotes are assumed to be in the

modules's units.

Finally, it is worth noting that the rule format is by no means restricted to description

of physical property estimation techniques. The heat exchanger selection rules, for

example, could easily be written in this layout. In different problem areas the type of

object used as the focus of interest will determine the nature of the "data" that could

be low level information, as in the physical properties module, or high level pieces of

information. A "flowsheet" object as focus of interest, for example, might refer to

unit models and their connectivity as the "data parameters".

There is a fundamental aspect of the rule syntax that has not been described, however,

and that is the definition of a module language of terms that can be used in statements

such as "if X is Y". This is described later once the other components of the module

have been explained.

3.3.4.8 Structuring of Physical Property Domain Data
A feature common to many systems, e.g. NEOMYCIN, is the use of taxonomic

hierarchies. These hierarchies are used to classify "types" that are of interest in the

domain, e.g. types of medical disease. The use of hierarchies makes it easier to

access and maintain "static" domain information/data in a structural way. Nodes in

183

the hierarchy are often used to store information appropriate to that level in the

hierarchy. This aspect was used in the physical properties module to classify

chemical components as now described.

(N.B. The methods used here were an early attempt to represent immediately useful

aspects of object hierarchies in the physical properties module. Section 3.4 outlines

the subsequent development of much more sophisticated techniques involving object

hierarchies).

All chemical compounds known to the physical properties module are placed in one

of two basic classes, namely organic or inorganic.

Organic chemicals are further classified under the three main groupings

hydrocarbons, polymers and biochemicals. Only hydrocarbons are considered

further. There are a number of ways in which hydrocarbons can be classified. The

approach taken in the physical properties module was to classify them according to

the dominant sub-groups which characterise the chemistry of the compounds. This

results in any homologous series being kept as a class. The main class hierarchy,

represented as a set of Prolog clauses, is shown in Figure 3.7

FIGURE 3.7: Compound Class Hierarchy

full _class (organic,organic)
full_class (inorganic, inorganic)

full _class (alkane, organic (alkane))
full class (alkene, organic (alkene))
full__class (diene, organic (diene)).
full_class (allene, organic (allene))
full class (alkyne, organic (alkyne))
full_class (alcohol, organic (alcohol))
full__class (alkanal, organic (alkanal))
full _class (alkanone, organic (alkanone))
full _class (ester, organic (ester))
full _class (alkanoic_acid, organic (alkanoic_acid))
full _class (epoxide, organic (epoxide))
full _class(alkyl(X) ,organic(alkyl(X))) :-

member(X, [halide, sulfide]).
full _class (phenol, organic (phenol))
full_class (aryl (X) ,organic (aryl (X)))

member (X, [halide]).
full_class (arene, organic (arene)).

full _class (element, inorganic (element))
full _class (allotrope, inorganic (element (allotrope)))
full_class (halogen, inorganic (element (allotrope (halogen)))).

Classes of inorganic compounds were not developed other than identifying common

elements such as the halogens.

Each sub-class in the hierarchy is considered to be a node further described by default

information common to all members of a sub-class. The following entry, for

example, describes default characteristics of members of the alkane sub- class.

184

class_character (alkane,
[aliphatic, unsubstituted, non-polar]).

Instances, or members, of each class at the next level in the hierarchy are specified by

another set of predicates. Typical entries are as follows.

component_class (alkane, 1,1, 19,ppdata,
compounds (methane("CH4") ,ethane("C2H6")))

component_class (alkene,2,20, 39,ppdata,
compounds (ethene ("C2H4"))).

component_class (alkyne,5, 80, 99,ppdata,
compounds (ethyne ("C2H2"))).

component_class (alkanal, 7,120, 139,ppdata,
compounds (methanal))

The last argument of each predicate lists the members of the sub-class named

according to I.U.P.A.C. conventions. Synonyms and formulae can be provided in

following brackets. The name of the relevant sub-class is the first argument. The

second, third and fourth arguments are used for indexing classes and compounds

numerically. The fifth arguments indicates where information describing the class

members can be found, in this case a set of prolog predicates in a file "ppdata".

Each node in the hierarchy at the compound level is described by another predicate

with information specific to each compound. The form of the predicate used is

component data (macro_list (LIST),
name_of_ (component),
standard formula,
class _of (component),
molecule _type,
'component phase at 1 atm,298 K',
molecular—weight,
freezing point (K), 	 [status,accuracy,references]
boiling point (K), 	 if 	 It 	 if

critical temperature (K),
critical pressure (atm), 	 "
critical volume (cm"31g_mol), 	H 	 ii

critical Z value,
acentric factor,
dipole moment (debyes), 	 "
(mean) radius of gyration (Angstrom)" 	"
stockmayerpolar_parameter 	 it 	 H 	 H

association constant 	 if
	 "

where status 	= {estimated_by(model),experimental}
accuracy = +1- X , X being a percentage
references = a list of reference papers etc.

Anything that is unknown is replaced by a question mark 7

In the terminology of object hierarchies the nodes in the hierarchy represent

compounds and are called object instances. They are defined by a set of slots, or

attributes, as listed above. The values of these slots are provided by instances of this

generic predicate. The following entries are taken from the physical properties

module:

component data(
macro_list([X=[experimental,?1, [ref (physprops, 1)])]),

185

methane, "CH4", alkane,monatomic,gas, 16.043,
90.7,x,111.7,x,190.6,x,45.4,x,99.0,x,0.288,x,0.008,x,o.o,x,
1 . 123 ,(experimental,71,[ref(physprops,2)11,0.O,x,O.O,X).

component data
macro—fist([X=[experimental,?1, [ref (physprops(1))]],

Y=[experimental,?1, [ref(physprops(2))]]]),
methanol, "CH3OH", alcohol,monatomic, liquid, 32.042,
175.5,X,337.8,X,512.6,X,80.959E5,X,118.OE-3,X,0.224,X,0.559,X,
1 . 71 ,Y,1.536,Y,0.5,[calculated,?1,[ref(physprops(1)))],1.63,y)

The purpose of providing all this classifying information is to allow statements in the

rule body to be expressed in a concise way. Consider, for example, a pure component

stream, methane say, and the rule condition.

if component is not polar

The node information for methane makes no explicit mention of polarity but the node

information for alkanes does. In the absence of other information the system will use

this default information to evaluate the premise above to be true. The use of node

information in a hierarchy in this way is a simple example of "inheritance", i.e.

default information can be inherited from a parent node to a child node in a hierarchy
if no other contradictory information is available.

There are a number of simple utility clauses provided to allow statements of the type,

if stream(class) is organic

to be evaluated. If the stream in question is pure component ethane, say, the

interpreter will establish that alkane, the immediate parent class of ethane, is a

compatible subclass of organic but not, say, of inorganic.

Certain aspects of background domain information can be represented, therefore, in a

concise way using object hierarchies and default information. Caution must be

exercised, however, in the use of default information in any theorem proving process

as noted earlier in the description of the MECHO system.

3.3.4.9 Main Components of the Blackboard Data Structure
The blackboard data structure in Designer's Assistant consists, at the lowest level, of

a collection of prolog structures recorded in the internal database of Prolog. A

number of such structures taken together represent the "entities" or "objects" that the

system can reason about. The two principle entries on the blackboard are referred to

as the "system" and its "surroundings". These two entities are used to represent the

overall context of any process modelling problem in terms of high level descriptions

of any objects of interest. The description of the problem to be solved is stored

elsewhere.

The notions of a system and surroundings to describe many types of process design

problems is a common one and has the advantage that it can be applied recursively at

186

increasing levels of detail. Details of a system, or its corresponding surroundings, are

recorded under the following five areas or slots:

description - a collection of predicates stating details of a problem situation not
covered by points 2) to 5) below.
Component-data - component information if the model involves physical
property information.
Stream-unit-network - a system is taken to consist of "units" interconnected by
"streams". Details of their names and connectivity are given here.
Observations - a collection of module generated statements.
Surroundings - the name of the surroundings entity.

The five areas are simply used to partition predicates and control information into

useful subsets. Details of streams and units specified in a system are recorded under

another set of entries on the blackboard. In the case of streams representing process

plant streams the slots used are "observations, components, composition, temperature,

pressure, enthalpy and process models". The first and last slots allow arbitrary kinds

of information to be stored regarding a particular instance of a stream.

Similarly, information on a process unit is recorded on the blackboard under the

general headings "observations, process-model, real-model, control-scheme,

mechanical-description, free-variable-analysis and cost-analysis". The difference

between a process model and a real model is that the former refers, ultimately, to

some set of equations describing an idealised behaviour whereas the real model is a

set of predicates characterising the "real" behaviour of the unit.

The original intention was to create a blackboard structure that could be used in a

variety of front-end process design problems. The generic concepts of a system, its

surroundings, process streams and units should allow this to be achieved. For

example, the heat exchanger selection system would make use of both process

streams and units. The type of exchange selected could be recorded under

"mechanical-description. Any factors deduced or assumed in the selection process

would be stored under observations. The use of a "system" or "surroundings" would

only be for initialisation purposes if advice was requested on a "one-off' basis. If a

system description already existed, however, the selection of a heat exchanger type

could make use of any relevant process information available.

3.3.5 Overall Strategy of the Physical Properties Module Interpreter

Having described two aspects of the representation style used in the physical

properties module, namely the rule syntax and object hierarchy, the control strategy

of the interpreter shall now be discussed. There is a third, and very important, part of

the overall representation technique concerned with the definition of terms in a

module that has not yet been discussed. This will be introduced in section 3.3.7 later

187

as it is first necessary to appreciate how the module interpreter interacts with the use

of the blackboard system.

The description of the interpreter that follows assumes that the module has just been

activated, i.e. the system scheduler has made a request to the physical properties

module to perform some action. It is important to note that what is being referred to

is a completely generic framework that could be used in a number of other modules if

desired.

The top level call in the module interpreter consists of four simple goals.

Initialise the module
Plan any requests
Attempt to evaluate the sequence of planned requests
Prepare a report then FINISH

The various features of interest are most easily introduced by briefly summarising

each of these goals in turn.

3.3.5.1 Initialisation of a Module
The software model used in Designer's Assistant is that the core system

communicates with each module via a number of communication streams.

Information is sent to and from a module via these streams. This means that modules

can operate in a concurrent system if the streams are implemented, say, as

communication sockets on a local area ethernet system.

The first part of initialisation is to connect the input and output streams of the module

to those specified by the core or central system. Any subsequent input requests or

generated output are then redirected as required without any special action on the part

of the module. There are two output streams : one to ask questions on and the other

to send a report to.

The second phase of initialisation is to check that the module has the minimum

amount of information necessary to work with. This call, "check-set-up", is

obviously domain dependent. A module can be activated in one of two ways in

Designer's Assistant. If a user makes a specific request to a module, eg: for some

advice on physical properties, then the physical properties module has full control

over editing entries on the blackboard and is called the "active-host". If, however, a

module is called on by another module, rather like a subroutine call, then it only has

"read" access to the blackboard. In this case "check- set-up" may have to create

entries on a "local" blackboard for its own use. The calling module is responsible for

finally updating the "global" blackboard when the called module returns with its

188

answers.

This software model allows much stricter control over entries being made on the

blackboard than a system like OPM.

The third part of initialisation is accessing any relevant domain dependent

information. In the case of the physical properties module the compound class

hierarchy and physical property data are loaded into the system. In a real application

this data would probably be kept on an external data storage system.

Finally, the module records what the top level focus of interest is. This is specified in
the calling argument list when the module is activated.

3.3.5.2 Planning Requests
The top level requests are given to a module when it is activated. Once the module

has been initialised the interpreter then tries to formulate a local plan to perform these

requests in an efficient manner. It should be noted that this plan is strictly local to the

module and no attempt is made to formulate some global plan of execution. The

literature suggests that current planning techniques can be used effectively on small

to medium scale problems. The approach taken here, then, is to formulate a rough
plan of action that is

local to the module and
can be used to guide the rule interpreter.

The "planner" in the physical properties modules is a simpler linear, depth first search

in the style of the STRIPS system, Fikes and Nilsson (1971). It is known that this

technique will fail in complex, interacting problems. This is not a general problem as

different planners can be used in different modules and are wholly self contained.
The top level clause is of the form.

plan-requests (ModuleName, ActiveorRemote, InputData,
Requests, PlannedRequests, Focusof Interest) :-

The use of a planner local to a module seems a reasonable compromise between an

opportunistic style, which is hard to control, and a global planner, currently infeasible

in terms of computing resource. Indeed the synthetic or creative nature of process

design requires that a certain degree of "opportunism" always be retained. A

completely prescriptive approach to design is doomed to failure, at least in economic

terms, and contradicts the basic principles of systems engineering outlined in Chapter

1.

3.3.5.3 Evaluating Planned Requests
Evaluating a list of planned requests simply consists of calling the rule interpreter for

each goal in turn. Each planned request has an associated focus of interest that is

189

determined by the planner. The focus of interest is noted each time the rule

interpreter is called. The only variation possible is that among the requests there may

be strict "directives" to perform some action, if so, these are evaluated before any

requests are interpreted. This mechanism is primarily intended to allow default

information stored in the module to be overridden by problem specific information.

The interpreter is called with the next request and focus of interest as arguments. In

the case of the physical properties module each request is classified as either

"advise-only" or "advise and evaluate" depending on whether any calculations are

needed.

In either case interpreter_pass 1" is called. The purpose of the first pass is to generate

a set of partial models regarding the principle property or quantity referred to in the

request. Any properties mentioned, e.g. vapour pressure, take the current focus of

interest as the point of reference, stream 12 say. The system first checks that it has not

got stuck in a recursive loop by checking internally maintained stacks of control

information.

A model is selected from the rule base by using the index part of the rule heads and

the type of object referred to in the focus of interest part of the rule. The use of this

model is noted and then investigated regarding suitability of use.

The source code calls are

get_a_model (IDEA, Property, Strictguard,
FoiType, Antecedent, Consequent),

observe_use (IDEA),
investigate_model (IDEA, Property, Strictguard,

FoiName, Antecedent, Consequent)

The process of investigating a model follows directly from the rule syntax described

previously. The main steps involved are:

Test the rule entrance guard. If this fails then the model is inapplicable.
Evaluate each of the conditions in the rule antecedent. Note any condition that
fails.
If each condition in the antecedent is true then evaluate the rule consequent and
RETURN.
If any condition failed then check whether a compromise can be made. If so re-
evaluate the model.

A large set of utilities were developed to perform the work involved in step 2. For

example, statements of the form-

X is Y, where X is the focus of interest
P of X is Y, where X is not the focus of interest, P is a property.

require utilities to access the blackboard data structure. Other utilities include

190

symbolic expression evaluation, units conversion, etc.

If the answer to a conditional statement is not known then one of two things happen:

The definition of the module language is interrogated to see if it can be found
by solving some other sub-goal(s). (This has not yet been described but see
section 3.3.7). If it can, try and solve these sub-goals.
A request is sent to the central system on the output communication stream to
see if some other module can evaluate the request. This may, in turn, result in
another request being placed with the original module. Hence the checks earlier
for recursive loops. The module waits, meantime, for some response on the
input communication stream.

The module can therefore search sub-goals in the usual backward chaining style or

can ask for assistance from other modules in the environment.

The whole process continues until a model has been investigated. At this point the

"process model" entries on the blackboard are updated. The items of information

recorded are

- a fact expressing the suitability of the model,
- a value for its relative merit,
- the property being modelled,
- the name of the model,
- the source of the rule expertise,
- any conditions that failed, and
- any compromises that were made.

Noting the use of compromises is useful in case the user can supply extra information

to re-evaluate the model.

When a model has been investigated the system selects another model and the whole

process is repeated. This continues until all the relevant models have been

investigated or a model has been found with an estimated accuracy level greater than

the required accuracy. The latter value can be set as a percentage figure by the user.

At this point the first pass of the interpreter is complete.

The second pass of the interpreter is called if the mode of request was "advise-

and-evaluate" as opposed to "advise-only". All that happens in the second pass is that

the models are ranked according to relative merit and the best one evaluated. An

estimation method can be evaluated either in symbolic form, if a definition is

available, or by some arbitrary procedure call. If the symbolic form is used the

expression evaluator in the rule interpreter is used. This means that further internal

requests and sub-goals can be generated if necessary in a recursive fashion.

191

3.3.5.4 The Input/Output Form Filling System
An important utility used in both passes of the module interpreter is a general form
filling system written for terminal based interaction with Designer's Assistant.
(N.B. This utility was written before the widespread use of graphics workstations.

The general principle, however, is still relevant).

Whenever a statement is evaluated and it is found that some piece of information is

missing, the first option that is considered is to ask the user to avoid any unnecessary

search. All such input/output requests are made via the input/output manager

provided for any module. Messages are written and received on the communication

streams set up during the initialisation of the module.

The form filling facility also uses the same utilities and can be called when several

items of information are needed at once. This is the most useful when a module is

used as the "active host", i.e. the one directly communicating with the user. If the

host is active the default action is to prompt the user with a number of forms to fill in

that specify some standard problems. This is typical in industrial process design

software. Forms can also be used at any other point in search process. Each form is

defined in two parts. The first part is just a sequence of instructions to draw the form

on the terminal. A number of generic routines are provided such as -

move(X, Y, Screen)
draw-f rame(LX, LY, RX, RY, Screen)
write(Mode, Message, Screen), etc.,

where screen is the name of the terminal device to write to. The idea is to draw a

boxed menu on the screen. There is a small library of alternative definitions for

alternative screen types.

The second part of the form definition describes three things:

The coordinates of an item of information.
A specification of what the item of information represents.
An arbitrary procedure to run and test the validity of the typed input, e.g. a
numerical range of values, an allowed choice of words, etc.

A "form manager" displays each form and maintains a stack of the forms displayed.

At any choice point the user can move back to a previous choice point or a previous

form and change the input values on that form. The user can jump from form to form

by using a command preceded by a "#" symbol and followed by "p", for previous

form, or "-np" for nth previous form, or "+np", for n forms forward.

A module can, therefore, display more than one menu on a terminal screen at a time

by judicious use of coordinates.

192

3.3.5.5 Report Generation
The final top level clause in the module interpreter, "gather-report-terms", is

concerned with collecting together a set of statements that represent the top level

conclusions or answers generated in response to the initial requests. The terms

collected are a subset of those generated during the investigation of each model and

are stored on a separate part of the "local" blackboard. The last action of a module is

to write these terms to the report output stream set up in initialisation.

The intention is that each module can generate a final report if requested as well as

return its conclusions to the central system or other calling module. The report can be

generated using the form definition facilities described for input requests. One such

domain dependent report was set up for the physical properties module to describe

responses to specific user queries, e.g. advice on selection of an estimation method

for a transport property.

3.3.6 The Problem of Arbitrary Tokenism and Module Language
Definition

The concept of having a number of modules communicating with each other in a

blackboard system, e.g. Designer's Assistant, brings to the fore a fundamental

problem in knowledge representation that shall be referred to as "arbitrary tokenism"

in this thesis. It is remarkable that widespread discussion of this problem cannot be

found in the literature. It is introduced here, therefore, by a trivial example.

Consider a system that has two sets of rules that cover, say, two different aspects of

vessel design. The first set may be used for initial sizing of the vessel, e.g.

representing flash calculations for a flash vessel, while the second set may refer to

detailed mechanical design of the vessel. The two rule sets could be represented in

two different modules in the system, or both together in one module in a structured or

partitioned rule base, or perhaps all mixed up together in an unstructured rule base.

Now consider the concept of 'PRESSURE". Mention of the word "PRESSURE"

appeals in different initiative ways to different types of engineers, or for that matter

readers of this text, and will bring in to mind different ideas depending on the context

of the use of the word. Suppose that one of the flash vessel rules concludes that

"pressure is high". The reason for this might be that the working pressure is relatively

high compared to the critical pressure of the fluid being flashed and it is useful to

know this when selecting physical property estimation techniques in other rules, eg:

"if pressure is high and ... then ...". Assume that this fact has been entered on the

blackboard and details of a mechanical design have been requested. Now when the

set of rules concerning vessel design were written it is likely that the use of the fact

193

"pressure is high" would indicate something very different, e.g. in absolute terms

where "high" might mean greater than 50 bar, or in terms relative to the vessel

strength, hoop stress etc. The set of mechanical design rules might involve terms,

therefore, written in the same way but representing very different intentions.

Any generic production system or interpreter will be hopelessly confused by this

situation and will generate either contradictory information, or even worse, verbally

incorrect conclusions.

Consider the following attempted solutions of this problem. Suppose that "high" in

both rules is taken to mean an absolute measure. The problem has not been solved

but merely shifted to finding a common definition for "high", e.g. >10 bar, >20 bar

etc. If 20 bar is taken as the value how should a rule be applied if the system pressure

is 19.5 bar? If an absolute scale of measurement is used then a number of words must

be invented to write rules in different modules that work with different ranges of

pressure, eg low (<z3bar), "very low" (<1 bar), "very very low" etc. This is very

unsatisfactory as "very low" to an engineer might be "very high" to an experimental

chemist. Exactly the same problem results if alternative words are used for pressure,

e.g. "relative pressure", "allowable pressure". If a fact involving such terms is

asserted by one module how is it to be used in another module if no rules in the

module refer to that term. Unrecognised statements could implicitly represent

essential information for use in another module. The literature available is filled with

examples of rules using "made up" words or arbitrary tokens to represent some aspect

of a more general concept. The delusion of using tokens in rules that merely look like

English words in the vain hope that they represent something more significant,

appears to be a common one.

The process of representing aspects a complex concept, e.g. PRESSURE, and all that

it entails by an arbitrary word, without further definition, is what I refer to as

arbitrary tokenism. Its effects are evident not only between modules and different

rule sets but also within a single rule set where information implicitly implied by one

fact cannot affect implicitly dependent conclusions. This results whenever the set of

tokens, axioms and inference rules are inadequate to explicitly derive these

inter-dependencies.

The first attempted solution to this problem is now given. It was based on the

requirement that every token referred to in a rule, fact or expression in a module be

further defined in terms of a definition language for that module. The principle

motivation was to enable statements to be interpreted in a consistent way in different

194

modules by making a module's language definition available to other modules if

required. Each entry on the blackboard is recorded along with the name of the

module that placed it there. If a module, A say, uses a hypothesis from another

module, B say, that involves a token defined in different ways in both modules A and

B then the definition from Module B, and any other tokens required, can be

reinterpreted in module A. If the definition of a token is the same in each module then

no further interpretation is required.

Every token used in a module is classified as one of four basic types. The types used

are referred to as "reference", "descriptive", "evaluable" or "adjective" terms. A

reference term is a word used to denote a type of identifiable object or entity on the

blackboard. Some simple examples of reference terms might be "stream",

"component", "unit", "system", etc. Note that this is different from the name of a

specific instance of a reference term, e.g. stream 1, since names of reference terms are

never explicitly referred to by value in generic definitions. Reference terms can be

used as the focus of interest in a rule, or referred to on the left hand side of descriptive

statements in rules. A descriptive statement is one of the forms.

Xis 	Y, Xisnot 	Y
X has Y, X has not Y
X does Y. X does not Y

A reference term can also be used in place of X in the form

Property of X is Y

or one of the other equivalent descriptive forms. Each reference term can be

described by a number of descriptive terms or evaluable terms. For example, "phase"

is a descriptive term for the reference term "stream". Similarly, "class" describes a

component or compound class in the class hierarchy structure, "name" describes or

names a stream, etc. Descriptive terms are referred to as the attributes or slot names in

object hierarchy terminology. They can be used in the left hand sides of descriptive

statements in the "subject" position, as for reference terms, e.g.

Class is Y 	 <refers to focus of interest>
Component (class) is Y <shorthand forxn>
Class of component is Y <preferred forTn>

Evaluable terms are essentially the same as descriptive terms but are used to define

physical quantities which can be measured and estimated numerically. They are

defined with an associated set of units. For example, pressure as used in the "pressure

of a stream" is defined as an evaluable term, units of N/m 2, whereas type as used in

the "type of a stream" is defined as a descriptive term. Evaluable terms are normally

used in relational statements, such as X <Y, but they can also be used in descriptive

statements, eg: pressure is high, if the term to the right hand side of the "is" is

195

appropriately defined.

The fourth type of tokens are "adjective terms". The word "adjective" is used in a

loose sense and is simply taken to mean anything that is used as the "value" of a

descriptive/evaluable term. Adjective type tokens can only appear on the right hand

side of descriptive statements. For example, "pure, essentially-pure, polar, slightly

-polar" are all adjective terms that can be used in the right hand side of "is" in "X is

Y".

All the words used in a module are defined in the same way. The general structure is

<word> vocabulary
stored-as
requirements
units
test
side-effect
computed-by
user-question

[<type>, <module-name>]
[<access-instructions>]
[<statements-to-evaluate>]
[<units>]
[<evaluation-test>]
[<side-effects>]
[<procedure-calls>]
[<input-request>]

A set of these prolog predicates therefore defines a module's language. In the

structure above <word> is replaced by the appropriate token, eg: "pressure", "high",

etc. <type> is the type of term, ie. reference, descriptive, evaluable or adjective, and

<module-name> is the defining module. The <access- instructions> in "stored-as"

are used for accessing entries recorded in the blackboard.

The "requirements" term is a list of descriptive terms needed only in the definition of

an adjective. For example, the adjective "pure" applied to a stream requires the

"number of components" of the stream to be known if used in "checking" mode.

When the rule interpreter encounters a statement such as "if stream (class) is pure"

then the list of requirements of "pure" are set up as sub-goals to be searched. This

does not evaluate the truth conditions of the statement. It simply satisfies goals that

must be known before the truth conditions can be evaluated. A requirement may, in

fact, just be the name of an arbitrary procedure to be called.

The units entry is only used for evaluable terms and is simply a string defining the

system units for the quantity.

The test entry is used to evaluate the truth conditions of an adjective term. Once the

requirements have been satisfied, the values of the required descriptive/evaluable

terms are substituted into the test expression. This expression is an AND/OR logical

expression that must evaluate to true for the adjective to apply, eg: in the case of

"pure" the test is "number of components = 1".

196

The side-effect entry is a control mechanism that can be used for a number of

purposes. If the truth conditions for an adjective's test expression evaluate to true

then a number of hypotheses that are directly implied could be entered into the

blackboard. This technique can be also used for "context- layering" of rules.

Alternatively, a number of procedure calls can be made at this point to perform some

required calculation.

The completed-by entry is only used for evaluable terms. It is the sequence of

procedure calls needed to evaluate the quantity. These calls are performed after the

requirements are established and any substitution of values has taken place, as for a

"test" entry.

Finally, the user-question entry is a number of input requests that can be asked to

determine a value before any attempt is made to work it out. This may be a single

question or a call to the form fitting manager described earlier.

Figure 3.8 below shows extracts from a number of source code entries for tokens used

in the definition of the physical properties module language. The only extra feature

used, and not described, is the use of common or pooled definitions and questions.

This is simply a space saving feature. The use of the underscore symbol "_" in prolog

means undefined value.

Figure 3.8: Sample Extracts of Word Definitions

pure vocabulary 	[adjective,physprops]
requirements [number of components]
units ["dimensionless"]
test ((],number of components=11
side—effect H.

essentially_pure vocabulary 	[adjective, physprops]
requirements [composition]
units ["dimensionless"]
test [[],member(T,composition),T=[NamelMfs],

member (Y,Mfs),Y =.. 	[Phase,Mf],Mf>0.951
side—effect

[current foi (stream, S),
store_in_model (S, new_observation,
(component(essentially_pure) of S is Name),
"dimensionless")]

Slightly_polar vocabulary 	[adj ective, physprops]
requirements [polar_parameter (stockmayer)]
units ["dimensionless"]
test [[X=polar_parameter (stockrnayer)],

X >=0.05,x =< 0.1]
side—effect [].

pooled definition(component(class),C)
vocabulary [adjective,physprops

requirements [component (class)]
units ["dimensionless"]

197

test 	 [[],no_conflict_term(component (class) ,C)]
side—effect []

alkane 	vocabulary (pooled as (component (class) ,organic(alkane))]
alkene 	vocabulary (pooledas (component (class) ,organic(alkene))]
alkanol vocabulary [pooled___as (component (class) ,orgainc(alkanol))]

Although the partial solution presented here does go some way to solving some

simple aspects of the problem, later work, see chapter 5, will in fact conclude that

providing an adequate set of tokens described by a set of axioms and inference rules

for a non-trivial process design language is a misguided research goal. The

motivation for the analysis in chapter 5 resulted from an appreciation of the problems

that arose when the technique described above is applied to anything other than

nontrivial problem domains.

3.3.7 Intermediate Conclusions on Blackboard System Developments
The development of the interpreter for the physical properties module in Designer's

Assistant constitutes, in representation terms, a considerable improvement on the use

of simple production systems.

The concept of a number of communicating modules operating upon a common

blackboard structure allows a large, complex problem like process engineering design

to be potentially decomposed in a structured way.

The general control strategy proposed here is that a degree of "opportunism" be

retained in the planner or scheduler at the top most level of the system. Large scale

planning on a detailed level is not yet feasible and probably too restrictive in nature

for a process design environment. Within a module planning is performed to a

limited extent before control is passed to an enhanced rule interpreter. This limits the

initial amount of search to be done. The rules themselves are classified at two levels,

the property being modelled and the type of object acting as the focus of interest, in

order to further minimise the amount of search. A facility to act upon

meta-information on every rule condition interpreted is provided by the use of a

"side-effect" mechanism. Another useful feature of the interpreter is the ability to

make compromises if faced with absence of data when recommending a hypotheses.

In order to allow meaningful interpretation of hypotheses by different modules the

concept of a module language definition was introduced. Every token or word

referred to in a module must be defined explicitly in terms of the type of token,

indicating its syntactic use, and its dependencies on the use of other tokens in the

module. The use of explicit dependencies allows the interpreter to further control or

focus any search effort.

198

In order to better structure problem information a number of basic objects, streams,

units, etc, are used to partition the blackboard structure. Within the physical

properties module itself a domain dependent compound class hierarchy is used to

represent data in a structured way. Simple inheritance of properties in the hierarchy

is allowed. This allows default information to be easily expressed and referred to in

rules.

The use of a blackboard system allows the emphasis to be shifted from a purely

search problem to one of combined search and model building in a natural way. As

search proceeds, the model represented by the objects on the blackboard is gradually

filled with detail as new hypotheses are deduced.

It appears, therefore, that a blackboard system architecture is a good candidate for

further development of representation techniques needed in a process design

environment. Areas of expertise can be represented in different modules rather than

one enormous rule set. This has important consequences as regards practical

development and maintenance of a system. Cross-communication between modules

only appears to be meaningful if suitably sophisticated token definition and

interpretation facilities are provided. The language definition mechanisms described

here also allows procedural information and descriptive information to be handled

together in an easy way. These facilities, when taken together, constitute the very

minimum in representation techniques that will be required in a process design

environment.

The problem of "arbitrary tokenism" was introduced in simple terms. This, in fact,

turns out to be a fundamental issue and is one that the remaining chapters of this

thesis explore in much greater detail.

Finally, the overall framework and intended operation of Designers's Assistant has

only been briefly mentioned. It is more fully described in chapter 6 in the context of

other developments.

199

3.4 Development of Object Orientated Representation Techniques in
CLAP

3.4.1 Preface
This section introduces research done on the development and use of object

orientated representation and programming techniques in a process engineering

context. This work, the earlier development of the production rule system and the

physical properties module of Designer's Assistant, covers the period 1984- 198617

and just preceded, therefore, the widespread availability and use of commercial object

orientated software packages. Many of the features described below are now taken
for granted as standard programming techniques.

The work is still relevant, however, as the system developed here offers a number of

unique features and combination of programming styles not currently available in

commercial packages.

3.4.2 Background
The limited use of a simple object hierarchy in the physical properties module of

Designer's Assistant indicated that the use of more sophisticated object orientated

techniques could be very useful in representing certain aspects of knowledge in a

problem domain in a highly structural way. It was decided, therefore, to investigate
these techniques more fully.

At the time, a number of programming languages had been developed, each based on

the common idea of an "object" but offering different techniques for their

manipulation, eg ACTORS(Lieberman, 1981), FLAVORS(Weinren and Moon 1981),
LOOPS(Bobrow and Stefik, 1983), and SMALLTALK(Goldberg and Robson, 1983).

The development of this type of language can be seen as continued development of

the trend from the use of record types in block structured languages to abstract data

types in languages such as Modula-2 and Ada. Lisp based systems drew heavily from

the existing use of property-lists in that language. The basic concepts of object

orientated programming are now well documented in the literature, eg Stefik,Bobrow

et al(1983), Horn(1988), and are not discussed in detail here. It should be noted,

however, that the terminology used in the literature varies considerably from system
to system.

The following sections highlight the principal features of a Combined Logic And

Procedures interpreter, CLAP. Further details of any features of CLAP can be found
in Struthers (1987).

3.4.3 Generic Objects and Instances in CLAP
A generic object in CLAP is a definition of a general type or class of object. It is

defined in terms of a number of attributes or slots. Typical generic objects might

include a "plate heat exchanger", "centrifugal pump", etc. A specific exemplar of a

generic object is called an instance of the object class, eg pump p101 might be an

instance of a generic centrifugal pump object.

The following example indicates how a generic object representing a tank might be

defined.

object (tank)
self - Name,
variables - 	 [Dp,Sp,Rp,V, Ii, 12,Coords, Scale],
slots - [design_pressure - Dp,

source_pressure - Sp,
relief_pressure - Rp,
volume - V

relations - 	 [connected—to - 	(items - 	[11,12]),
modelled—by - FuncName

display
11

- [draw_tank(Name,Coords,Scale)]

• All generic objects are defined using this general format. The order of the component

parts, "slots", "relations" etc is immaterial. The intended use of each component part

of the overall structure is:

- "self-Name". Name is the variable or place holder for the name of a specific
instance of a generic object. It is the token used to identify an instance, e.g.
tank-101.

- "variables - List". List is simply a list of the Prolog variables used in the rest of
the generic definition. It is only used when creating or referring to specific
instances.

- "slots - ListOfSlotPairs". This is a list of the names of slots or attributes used to
define a generic object. Each slot name has a variable or value place holder
associated with it. In the simplest case the variable is a Prolog variable, as in the
example definition for a tank, that appears in the variables list. More complex
forms can be used however, see below. Each term in the list of slot pairs is of the
form

<slot_name> - <value_place_holders>
- "relations - ListOfRelations". List Of Relations is a list of the frequent or

common relationships in which instances of this generic type will be involved.
Each relation will be used to describe a relationship between two different
objects. Each term in the List Of Relations is of the form

<relation-name> - <value_place_holder>
The value place holder can be a simple Prolog variable or something more
complex, see connected—to entry in the definition of tank above.

- "display - ListOfinstructions". This term is used to define the sequence of calls
needed to display any instance of a generic type on a display surface, eg terminal,
graphics workstation etc.

Once a generic object or class has been defined any number of specific instances can

be created. Instances can be created dynamically, i.e. on request, or can be

201

predefined in a data file. The latter technique is more useful for saving instances of

objects for later re-use.

The CLAP interpreter has a command language to manipulate objects. Suppose, for

example, that an instance of a tank is required in a process model and is to be called

"t101". The following command is all that is required to create this instance -

$create_object tank-t101

Similarly, to delete this instance the command

$delete_object t101

is used. In this case there is no need to provide the generic type of tiOl since object

names must be unique identifiers.

An important point to note is that generic objects, or types or classes, need not be

restricted to objects representing physical objects. More abstract objects such as a

"graph", "flowsheet", "simulations-history", "reaction- pathway", etc, can be

symbolically defined in exactly the same way.

Creating generic objects and instances is common to any object orientated (0.0.)

system. CLAP offers two useful features, however, not found in other systems -

Use of Cross-Instantiation constraints
Use of generic data structures in object definitions

CLAP objects are defined as Prolog structures. This means that any Prolog variable

occurring more than once in an object definition is subject to the automatic

instantiation/unification algorithm of Prolog. This can be used to impose inter-slot or

relation constraints very easily by simply referring to a variable in more than one slot

or relation value place holder. As soon as the value changes in one slot the variable's

value is automatically updated throughout the rest of the object definition. Consider

the following part definition

slots - (inlet _temperature - (temperature - Ti $of Inlet),
.....],

relations - [inlet—stream - Inlet]

The constraint being expressed is that the inlet temperature slot value depends on the

current temperature of the inlet—stream object, Inlet, attached to this object. As soon

as Inlet is instantiated, presumably, but not necessarily through the relations of the

object, then Inlet is constrained to the same value elsewhere in the instance. On the

other hand, if Ti is set to some value, 200 say, then the constraint is that the

"temperature" slot of Inlet should also have a value of 200, or whatever the current

value of Ti is. This is just one of several ways of specifying constraints in CLAP, but

it is a particularly concise way embodied in the definition of the generic object itself.

202

The second useful feature of CLAP, namely the use of prespecified forms of data

structure in slot or relation definitions, was illustrated in the previous example. The

slot inlet—temperature used a predicate form in infix notation, in its definition rather

than just a simple variable, X say, as its value place holder. In fact, any arbitrarily

complex structure can be used in a slot or relation definition. Typical examples might

include a binary tree structure, an acyclic graph structure, etc. In the previous

example it was a term that can be used both as part of a CLAP command and as a

prolog predicate.

A competent Prolog programmer can use this feature to great advantage. Consider a

trivial example of a binary tree structure consisting of a top node, a piece of

information describing the node, a left subtree and a right subtree where the subtrees

are recursively defined in the same way. A slot definition might be

slots - [...
binary_decision_tree - tree (Node, Info, Ltree,Rtree)

An instance of this object initially has an uninstantiated version of such a tree.

Suppose at some point partial information has been gathered regarding the structure

of this tree, namely the left subtree is of at least depth two and the second level

leftmost node is labelled "configuration 1" with an item of information "cost = 500".

(This structure might be used in a synthesis problem such as distillation column

sequencing, see Struthers 1984). This partial information can be stored directly as

follows

Level 2 = tree (configuration 1, cost = 500, Llower, Riower),
Level 1 = tree 	_, Level 2,
Top 	= tree 	, Level 1,

where,
underscore "
	

indicates undefined,
"=" indicates .inification

and then unifying Top with the generic data structure in the slot's value place holder,

see setting slot values below. Working with partial information in this way is

extremely useful in any problem involving a degree of search or planning in which

information is gradually built up during the solution process. By defining the generic

form of the data structure in advance, the system developer can impose one form of

control over the allowed slot values, i.e. the syntactic form of any slot value.

The feature is not so much a feature of CLAP but of the Prolog interpreter itself, the

latter being a very convenient tool for manipulating symbolic data structures and

performing unification.

203

3.4.4 Setting and Retrieving Slot Values

At a superficial level, setting the value of a slot in a particular instance of an object is
very simple. The appropriate CLAP command is

$set slot - Object Name - Slot Name - Slot Value

e.g. $set slot - tiOl - design—pressure - 10.

Similarly, to check or retrieve the value of a slot the corresponding "$check" form is
used

$check slot - Object Name - Slot Name - Slot Value

As indicated above, the value of a slot can be set to some partially instantiated data
structure or other complex form if desired.

A useful structure that CLAP provides is a "dotted sequence". It is a sequence of

values, perhaps uninstantiated variables, written as XI..XN. A generic stream object,

for example, might have a components slot defined as

components - CI. .CN

and defined in a particular instance as

$set slot - stream 1 - components - methane..ethane..nitrogen

Rather than explicitly provide a sequence of length three when retrieving the value of

this slot elsewhere in a program, the pattern matching features of CLAP/Prolog can

be used to perform arbitrary forms of unification. For example, to simply retrieve the
components use

$check slot - stream 1 - components - Value
or perhaps

$check slot - stream 1 - components - CI..CN

If the order of elements in a sequence has significance then a particular form of

sequence can be tested for, eg

$check slot - stream 1 - components - methane. .Others

Pattern matching facilities are taken for granted, therefore, in CLAP commands rather

than being a special add-on feature. In practice, setting slot and relation values

usually involves use of several other sophistications, as explained below.

3.4.5 Classes and Inheritance

A simple use of a class hierarchy and inheritance of properties by a sub-class from its

parent, and all the parent's ancestors, was presented in the development of the

compound class hierarchy in the physical properties module of Designer's Assistant.

Class or object hierarchies are fundamental to an 0.0. representation. Each class in a

hierarchy, at one level, is seen as a specialisation of its parent class, at the level

above. Each class inherits all the slots or attributes that define its parent class and do

KMI

not have to be redefined throughout the hierarchy. Each sub-class has attributes,

however, that its parent class does not have and this is what distinguishes a sub-class

from its parent.

An hierarchy of object types is simply defined in CLAP by including a slot of the
form

is_a - Parent Type

in the sub-class or generic child object definition. Consider, for example, the classes

organic, ailcanes, alkene and an instance of an alkane, methane. The relevant links
might be

object (organic) : -
slots - (is_a - compound—class]

object (alkane) :-
slots - (is_a - organic]...

object (alkene) :-
slots - [is_a - organic].

$create_object alkane - methane,

Inheritance in CLAP is strictly intended to provide only class - sub-class relationships

in an object or class hierarchy. In particular multiple inheritance, i.e. one too many

sub-class parent links, is not provided due to reasons described later.

It is possible, however, to view a "leaf' class in a hierarchy tree as belonging to

different parent classes at different times in CLAP. This can be useful in a complex

reasoning problem when the class type of an instance is not yet known but only that

the instance has certain desired attributes, i.e. an intensional specification. In that

case, an object type called "null—type", say, can be defined with a variable value for

its is_a slot, eg

object (null _type) :-
self - Name
slots - [is_a - Whatever I Desired Attributes]

(NB: The term [Head I Tail] represents a list of terms in Prolog). The is_a type,

Whatever, can be set dynamically in the same way as any other slot value. A simple

example of the use of this technique is in separation synthesis problems in which

types of separator must be chosen to perform a specified separation, i.e. the type or

class of separator is initially unknown but one of its eventual attribute values is,

namely the components to be separated. Care must be taken, however, to ensure that

any globally dependent hypothesis must be deleted or modified when the parent class
changes.

205

3.4.6 Describing Slots at a Meta-Level, Default Values
If slots were simply data structures contained within an outer data structure, the

"object", then there would be little to commend the use of objects over the use of

record types in a language such as Pascal. The difference between a good

0.0. system and a poor one is the description of slots at a meta-level and the way in

which that information can be used. CLAP provides a number of such meta-features.

The two simplest examples involve specifying the allowed "type" of the slot value

and the range of allowable values. For example, a slot "design-pressure" might be

restricted to be a positive number, i.e. of type "number", and allowed values > =
0. This meta-information is written in CLAP as

slot (design_pressure - tank, InstanceName - P) :-
valrange - (P> = 0),
valtype - number.

This states that there is a slot, design—pressure, defined in the generic class "tank"

which can be referred to by value as P in any object instance of a tank. The "valtype"

indicates that any value for the slot must be a number. In fact any predicate name

indicating the class or data type can be used, eg binary_tree, alkane, heat _exchanger

etc. This is useful when the names of object instances are used as slot values and it is

necessary to check the class of the object instance.

The "vairange" is any evaluable expression. It might be a simple numerical

expression or a choice of words or a complex logical formula to be proved in Prolog.

In the latter case the formula may simply involve predicates to be checked against

those in working memory or it may involve clauses that require considerable search

to conclude the proof. The form of checking slot values can, therefore, be very

sophisticated in CLAP if necessary.

The next form of slot meta-information in CLAP is specification of default slot

values. The notion of a default value is, as indicated earlier in the context of

MECHO, a superficially simple idea: if a request is made for a value of an, as yet,

undefined slot then use the default slot value provided. A simple example might be

to assume ideal gas behaviour for thermodynamic models of alkanes in the absence of

detailed problem conditions. The significant problem that arises is ensuring that the

status of the resulting fact, i.e. that it is an assumption, and any other dependent

hypotheses generated from it are properly maintained by any theorem prover, eg if it

is subsequently found that the slot value contradicts the default slot value. A good

introduction to reasoning with default logic and the problems that arise is Reiter
(1978).

In CLAP, default information can be specified in one of two ways. The simplest way

is to provide a specific value, number, word, data structure etc. This is specified as

slot(<slot> - <class>, <instance> - <value>:-
vairange
valtype
default—value - <default_value_to_use>

It is sometimes the case that there is not a single default value but rather a default

function that returns a default value depending on the arguments used and the

problem context. In CLAP a default "function" can be a simple or complex clause, eg

a simple database look up, a procedural calculation, or a call to a theorem prover or a

production system. In each case the default entry is written as

default—value - predicate_name(Argl, Arg2,..., ArgN),

the value being returned in the last argument ArgN. It is worth noting that just as

slots are inherited by sub-classes then so too is the valtype, vairange and

default—value meta-information.

There are three more sophisticated forms of meta-information that can be specified in

CLAP. These are:

The use of meta-view points.
Control Information
User specified information

and are now treated briefly in turn.

3.4.7 Meta-View Descriptions of Slots

A meta-view in CLAP is used to enable alternative view points of a slot value to be

handled at the same time without creating multiple instances of an object to represent

each view point. A trivial use of a view point is accessing a slot value representing a

physical property in different units. Each set of units is considered as an alternative

"view" on the slot value. A more complex use might be modifying a plant item cost

estimate given an "optimistic" or "pessimistic" view point on the inflation forecast.

There is no restriction on what constitutes a "point of view" but the feature should be

applied carefully as it introduces similar problems to those resulting from using

default values, ie maintaining the view point held in subsequent, dependent

hypotheses.

The definition of a meta-view in CLAP is straightforward and is of the general form

meta_view(<view_point> - <slot_name> - <object_class>,
<instance name> - <slot_value>) :-

meta _value 	- CurrentViewPoint,
modifying_to 	- NewViewPoint,
default 	- DefaultViewPoint,
modifiers 	- [Viewpointsl - CommonCall]. I OtherModifiers]

207

For example, a view point of "units" for the slot "cost" in object class "plant item"

might have the definition

meta_view(units - cost - plant_item, Item - Cost) :-
meta_value 	- Current,
modify_to 	- Required,
default 	 - pounds_sterling,
modifiers 	- [[dollars, pound—Sterling, dm, yen]

- convert currency,
[Current, value _of_the_year(Current)]
- inflated_cost]

There are a number of points to note here

The view point applies to <slot_name> in any instance that is a sub-class of
<object_class> in the definition. If <object_class> is left undefined then the
view point can be used in any object class. If the <slot_name> is left undefined
then the view point applies to any slot defined in the <object_class>.
Meta-view descriptions are inherited along with their slots.
A default view point can be specified either as a specific value or as a function
to call.
The modifiers entry is a list of pairs, Views - ClauseName, in which
ClauseName is a clause/procedure that can be called to convert the value of the
slot from the Current view point to the Required view point. Both Current and
Required must appear in the sub-list Views.

Working with meta-view points is a simple extension of the standard commands to

set or check slot values. To set the value of a slot, temperature say, according to

some view points, eg units of "Deg.C", the form

[$set slot - stream 1 - temperature - 200 @ units - "Deg.C"]

is used. Meta-view points are specified after the @ symbol. Similarly, a meta-view

point can be specified when retrieving a slot value.

$check slot - stream 1 - temperature - T @ units - "Kelvin"

This view point may be different from the one used in setting the slot value.

Alternatively, if the current meta-view point is not known it can be determined by

using a variable instead of a specific value, eg

$check slot - stream 1 - temperature - T @ units - UnitsUsed

In this case the variable UnitsUsed gets unified with the units currently in use,

perhaps the default value for the units.

Finally, a slot value can have multiple view points associated with it at once, ie the

overall meta-view point is a conjunction of individual view points. Individual values

for a view point, eg the allowed types of units, are assumed to be disjunctive while

view points themselves are assumed to be orthogonal in nature and non-contradictory.

A simple example of multiple view points might be a slot representing the estimated

cost of a plant item. One view point could be the monetary units used while another

would be the rate of inflate assumed when estimating this value. This could be

specified by

208

$set slot - column5 - estimated cost - 2000
@ units-dollars @ inflation-percent(10)

View points are also useful for eliminating "arbitrary" slots such as "estimated—cost",

"real—cost", etc. A single slot "cost" can be used with a view point "status", say,

which takes on the values "estimated", "real" etc.

Once a multiple view point has been specified it can be retrieved either in its entirety

or from each constituent view point. In the previous example, for instance, both the

units and rate of inflation can be obtained from

$check slot - column5 - estimated—cost - C @ MetasUsed

or the units, say, could be retrieved individually by

$check slot - column5 - estimated—cost - C @ units-U.

The principle use of meta-view points is to allow dependency information to be set

and accessed in an easy way. The dependency information may itself be quite

complicated, such as a list of assumed hypotheses upon which the fact, represented by

the slot value, is dependent. The definition of these meta- dependencies is completely

decoupled, however, from the definition of an object or simple restriction on slot

values and type. Object definitions can therefore be gradually built up, extra

sophistication being added when necessary.

3.4.8 Embedding Control Information and Procedural Attachment

An important part of the representation formalisms presented so far has been the

means by which control information can be expressed and attached procedures can be

evaluated to simplify and reduce the search effort required in any problem solution.

A standard way of expressing such information in 0.0. programming is by the use of

"demons" attached to a slot in an object definition. Demons are fired, or run,

whenever the value in a slot changes. In CLAP there are two types of demon. A

"before_demon" is used to perform some action just before the value in a slot gets

changed. The action will typically involve checking the current values of other slots

in some other object for consistency or informing other objects of the imminent

change in slot value, eg message passing below. Conversely, an "after—demon" is

used to perform some action immediately after the value of a slot has been changed.

Once before or after demons have been declared there is no need to call them

explicitly. They will automatically be called by the CLAP interpreter when required.

Demons are declared in CLAP by adding entries of the form

before demon - ProcedureNameB,
after_demon - ProcedureNameA,

to the slot definition. The arguments of the procedures include object information,

209

the previous slot value, the new slot value and any meta-view points being used.

Also, before and after demons are inherited in the same way as other meta-slot

information.

It is very simple, therefore, to attach procedures to slots of objects using this

mechanism. If changing a slot's value is to influence the control strategy of some

search method causing the change then the demon must have access to the temporary

data structures of that method in order to make any useful recommendations, eg other

sub-goals to investigate etc. Since demon procedure definitions will be defined

independently on any search algorithm that intends to make implicit use of them

some global structure, eg a stock of current search methods, must be maintained to

allow the demons to take appropriate action. This can be achieved in a particularly

convenient way in CLAP. Multiple definitions of a demon can be provided if

implemented as Prolog clauses, each definition being applicable to different

situations. When the demon is fired CLAP will back-track through these definitions

until the appropriate one is found and evaluated. Figure 3.9 shows an extract of

source code used to implement a before—demon named "check—on—vessel—material".

The demon is used to check the compatibility of a vessel's material of construction

when the value of the vessel's fluids composition slot is changed, e.g. a trace

component may be introduced which is highly corrosive and it is necessary to alert

the design engineer to this problem.

Figure 3.9: Example of a High Level Demon in CLAP

Typical Call to Deductive Database Type Search
and Production System

check_on_vessel material (Vessel_type, Vessel—name,
OldFluid, NewFluid) :-

$check slot-Vessel name-(material - CurrentMaterial),
database_lookup (compatible_material, NewFluid,

CurrentMaterial ,Reply),

$if Reply = okay $then return
$else check_material selection (NewFluid,

CurrentMaterial, Vessel name)

Simple Implementation of a "Rule" in a Deductive Database

database_lookup (compatible_material, Fluid, Material, okay)
not(incompatible_material (Fluid,Material)

Typical Database Entry in Materials Database

incompatible _material (H2SO4 (aqueous), carbon _steel)
incompatible material (HNO 3 (aqueous), carbon—steel)

Simple Interface to Production Rule System

check _ material _selection (Fluid,Material,Vessel name)
set_up_prodtn_system (Fluid, corrosion),
run_prodtn_system(material,Fluid, Options ...),

210

check_with user (Fluid, Material, Options, vessel name)

The top level code in Fig 3.9.a first checks the current material of construction. It

then performs a deductive proof in Prolog to confirm that the material is compatible

with the new fluid composition. The search is performed over a materials database

consisting of both facts and inference rules. This is called a "deductive database" in

the literature. If this search fails or proves inconclusive then the top level code calls a

rule based production system to suggest a new material of construction to use, see

Figure 3.9.d. The production system may reside elsewhere, eg in another module in
Designer's Assistant.

Sophisticated forms of procedural attachment, therefore, can be easily performed
within CLAP using the demon mechanism.

3.4.9 Other forms of User Specified Meta-Information, Arbitrary
Tokenism Revisited

The problem of arbitrary tokenism resulting from the use of if-then rule sets between

communicating modules in Designer's Assistant was introduced in section 3.3.6. The

same problem re-emerges in object orientated systems except the arbitrary tokens

here are the names and values of slots in objects, eg one object in module A uses a

slot "pressure" with value "high" which should affect the value of a slot called

"working-pressure" in module B, or even in another object in module A, since

hypotheses or facts are now implicitly defined in the object data structure. An object

0 with a slot S and value V might be re- expressed as

S of 0 is V

in another rule based module that has been called upon to make some

recommendation regarding the value of V, e.g. the material of construction of a vessel
in the previous example.

The solution described earlier was to require that each token be suitably defined in

terms of other dependencies to help circumvent this interpretation problem. The idea

of token definitions can be extended to slots in objects by simply extending the slot

definition clauses, e.g. the "requirements - Dependencies" term can be added to the

slot definition in exactly the same way as for valtype, vairange etc.

In order to make use of this information, however, the system developer must provide

an extended definition of the built-in interpreter clause used to set or access slot

values. This is most easily achieved by setting the appropriate user option in CLAP

to indicate the name of the new clause to call. This alternative definition can simply

embed the original call within the extra clauses needed to ensure self consistent use of
tokens.

211

It is a simple matter then to experiment with different interpreters used to maintain

and manipulate dependency information. The program developer is free to specify

whatever additional information is necessary for a particular interpreter in the slot

definition clause. There are no restrictions on the contents of this clause in CLAP. If

the default interpreter is used this extra information will be ignored.

3.4.10 Multiple Contexts or Worlds in CLAP
An extremely useful programming technique in any sort of search or synthesis

problem is the ability to create possible contexts or worlds in which alternative

situations or hypotheses can be explored. CLAP provides such a facility by allowing

multiple contexts to be created. An instance of an object class can have different slot

values and relations in each context representing a different design alternative.

There are a number of simple commands to use contexts in CLAP:

$create_empty_context ContextName , creates a new context to work with.
$use ContextName , to jump into a Context performing any subsequent
commands locally within that Context.
$reset ContextName , to clear out a context.
$create_copy_context NewContext , saves a copy of the state of the current
context into a new context.
$copy_object Class - Instance $from Contexti $to Context2 , to copy an object
instance from one context to another.

In addition, any other CLAP command can be run or evaluated in a particular context

by using the general form

<clap command> $in Context

It is very simple to consider design alternatives by first creating a number of

independent contexts and then evaluating each alternative in a different context. A top

level clause can then compare instances of objects in each context and make some

appropriate recommendation.

The difference between contexts and meta-view points is that the former is used to

represent distinct alternatives at a coarse-grain level while the latter represents

fine-grain variations on the slot/relation values of a single object instance.

3.4.11 Building Process Models from Relationships in CLAP
In the introduction to objects in CLAP it was indicated that an object can be involved

in a number of relationships. Relationships in CLAP can be created at one of two

possible levels:

simple symbolic relationships between related objects
mathematical constraints used to model objects

212

The first type of relation is only for use in simple situations. To use a relation of this

type simply define a relation name and associated data structure in the generic object

definition. The data structure is used to store information concerning a specific

instance of a relation. A vessel object might have predefined relationships

"inlet-streams" and "outlet-streams" amongst others:

object (vessel): -
self 	-s
slots 	-
relations - [inlet—streams - InSi .. InSN,

outlet—stream - OutSi .. OutSN, ...]

The principal difference between this kind of a relation and a slot is that relations

refer directly to other object instances by name. In this case the inlet and outlet

streams would be the names of distinct objects, as opposed to data structures to hold

slot values.

In a class hierarchy "static" relations of this type are inherited by sub- classes. The

"values" of these relations are set and accessed in a similar way to slot values, ie

$set relation - vessell - inlet—streams - si .. s2 .. s3

$check relation - vessell - outlet —streams - Outlets

The term "static relations" is used since the relations are automatically defined for

each instance of an object irrespective of whether any relation "values" are known.

This is useful for defining very common relationships that an object will usually be

involved in, eg the connectivity relationships between a plant item and its

neighbouring plant item. The relationships are said to be "symbolic" in nature in that

they define some arbitrary relationship which does not directly generate mathematical

constraints to help model an object. They may of course be used to generate

constraints indirectly by other relationships that depend on their value. For example

once the inlet and outlet streams are known there is no need to directly generate an

overall mass balance (constraint) for the vessel unless there is a need for it. The mass

balance relationship, however, cannot be formulated until the inlet and outlet streams

are known.

The second type of relationship in CLAP is concerned directly with the specification

of models of process items in terms of sets of different types of equation : algebraic,

differential, etc.

Relationships of this type are defined in a relation class hierarchy just as object types

are defined in an object class hierarchy. There is a root relation at the top of this

hierarchy which has four basic sub-classes, namely symbolic, constraint, specialise

and operator, see Figure 3.10

213

Figure 3.10 The Relation Hierarchy In CLAP

root relation
/ 	\ -.-----------.---

symbolic constraint specialise operator

Each sub-class is an "is _a" class of the root—relation. It is possible to create other

sub-classes of the root—relation if the default sub-classes are not sufficient. The

default sub-classes are now described in turn.

3.4.12 Symbolic Relationships, Demons and Meta-View Points
A symbolic relationship in the relation hierarchy is simply a more rigorous definition

of the simple static relationships described above. Relationships are defined

independently of any object, ie they need not appear in the static relations list in an

object definition but can be used at a later point to relate two appropriate objects.

The general form of a relation definition is:

relation (RelationName, DomainName - RangeName) :-
variable - 	 [...],
domain - DomainClass,
range - RangeClass,
default - DefaultEntry
before demon - Bdemon,
after d_emon - Ademon,
active code - Code,
slots - 	 [is_a - symbolic, 	...].

A binary relationship, i.e. one-to-one, is defined between an instance of a

DomainClass object, DomainName, and an instance of a RangeClass object,

RangeName. The class types are checked whenever a relationship is asserted

between two object instances.

The default entry is only used when it is appropriate to generate some default object

instance to use as the range of the relation. Default entries are either specific values

or functions to call, as in slot definitions. This entry is optional and can be omitted.

The before and after demons work in exactly the same way as when setting slot

values. The before demon is run immediately before a relation is asserted and the

after demon immediately after it is asserted.

The active code entry is where any embedded control information and attached

procedures should be defined. The code can be any sequence of CLAP commands or

calls. This entry is primarily used by relations in the "operator" sub-class.

The slots entry defines any further information concerning the relation. This is where

any user meta-information would be stored such as inter-relation dependencies etc.

214

The programmer is free to interpret relations using specialised inference techniques

rather than the default method. This would be the case if the tokens used for

relationships were further specified by a vocabulary definition such as in the physical

properties module of Designer's Assistant.

Meta-view points of generic relationships can be defined in exactly the same way as

meta-view points for slots. This is a more subtle concept in that the information

being represented is particular view points of a relationship. Consider the

relationship "distillation—column-5 was designed—by Fred". Useful meta-view points

could be the status of the column design from a materials point of view, or a safety

point of view, or a senior engineer's point of view, etc.

The general form of a meta-view point of a relation is defined as:

meta _view(MetaName-RelClass-DomainClass, DomainName-RangeName)
meta value - CurrentViewpoint,
modify_to - RequiredViewPoint,
default - DefaultViewPoint or Function,
modifiers - List0fPredicates.

The individual entries were explained in section 3.4.7 earlier. Meta-view points are

inherited by relations in the same way as for objects, i.e. if relation R is a subclass of

ReiClass and object D is a subclass of DomainClass then the meta- view definitions

for ReiClass still apply when an instance of D is involved in a relationship R.

Finally, an important aspect of any relation is the definition of its transitivity in terms

of other relations. For instance, the grandfather_of(G,C) relation is true if

"parent_of(G,P) and parent_of(P,C)". The definition and use of transitivity and other

properties of relations is left to the programmer. The slots entry in a relation

definition can be used to define this information.

3.4.13 Establishing a Symbolic Relationship and its Inverse
The default method of establishing a relationship is simply to use the "$set" CLAP

command, as in

$set relation - vessell - upstream _of - pumpO

The domain object is vessell, the range object is pumpO and the relationship is

upstream_of. When this call is made a note of the relationship is stored in the

relations list of object vessell. The interpreter automatically handles any demons,

active code, meta-view points etc. It then looks to see if there is a term of the form

[inverse - InverseRelation]

in the definition of the relation. In the example above the inverse relation might be

"downstream—of'. If this entry exists then the relationship -

215

$set relation - pumpO - downstream—of - vessell,

is set. This in turn evaluates any demons etc for the downstream—of relation and

makes a note of the relation in the relations list of object pumpO. The process then

stops as an infinite loop would otherwise occur. If an inverse entry cannot be found

then a default inverse link is created. In this example the inverse relation would be

called "upstream_of_inverse" and this would be noted in the relations list of pumpO.

It is important to always maintain an inverse or two-way link between objects

irrespective of whether the inverse relationship is defined or not. These two- way

links are required to ensure that relationships can be consistently maintained when

changes occur to either of the range or domain objects. For instance, if an object is

deleted then all the instances of relationships which use this object as either the range

or domain object must also be deleted, in one-to-one relationships, or modified, in

many-to-one relationships. If the deleted object is the "one" in a many-to-one

relationship then all of the many- to-one links must be deleted.

3.4.14 Constraint Relationships
From a model building point of view, constraint relationships are more important than

symbolic relationships since it is the classes of constraint definitions that will define

the equations used in a model of an object.

A constraint relationship is used to represent mathematical constraints of any type. It

is recommended, but not obligatory, that the constraint class be sub- divided into

equalities and inequalities and the equalities class be further divided into the types of

equation, eg algebraic, differential, difference, etc.

The definition of an algebraic constraint is best introduced by a simple example.

Consider the definition of an overall mass balance for a process unit. The unit will

have a number of inlet streams, I, and outlet streams, 0, defined perhaps as simple

static relationships or symbolic relationships. There are two essential parts of a

generic constraint definition:

The "return—form" - ie the generic form of the equation
The "bindings" - the specific variable bindings in an instance of the relationship
used to create a specific form of the generic constraint

Here is the definition of an "overall—mass—balance" relationship -

relation (overall_mass_balance,Unit-Val)
domain 	- _,
variables 	- [Unit,Forxn,Bindings],
bindings 	- I I = inlets $of Unit,

0 = outlets $of Unit],

216

active code - [],
return form - (sum of (mass flowrate $of I, $over I)

= sum _of (mass_flowrate $of 0, $over 0)),
return _type - equation,
slots 	- [is_a - constraint].

For this definition to work, the inlets and outlets must be defined as a dotted sequence

or list of stream names, e.g. sl..s2..s3 . The return—form is simply the equality

between the sum of the mass flowrates of the inlets and those of the outlets. In order

to use the mass balance constraint the "specialise" class of relations must be
described.

3.4.14.1 Specialise Relations
A "specialise" relation is required to generate a specific instance of a generic

constraint such as the "overall _ mass _balance" constraint. Consider a unit, ul, which

has two inlet streams and one outlet stream. The following command creates an

instance of the overall mass balance relations:

$set relation - ul - has _overall_mass_balance - InstanceName

What happens is that a specific instance of the constraint is generated and given an

InstanceName, say over_mass_balance2. This instance is considered to be the range

of the "has—overall—mass—balance" relationship with unit ul as the domain object.

The return—form generated is -

Fl +F2=F3

and the bindings generated are

Fl = mass flowrate $of si -> Valuel,
F2 = mass_f lowrate $of s2 -> Value2,
F3 = mass_flowrate $of s3 -> Value3,

This information is stored in the instance of the constraint. The constraint instance is

an object, just like any other object in CLAP. There are several points to note:

The constraint is not evaluated in any sense. The constraint instance only
contains the specific form of the constraint given the current set of bindings.
A name for the constraint instance can be provided rather than using a CLAP
generated name.
The relation "has_<Constraint>" is the default way of generating instances of
constraints. This saves having to define different specialised relations for every
generic constraint

In relation to point 3 it is perfectly allowable for a programmer to define their own

specialised relations. Here is the outline definition for "has—overall—mass—balance" if

explicitly defined:

relation (has_overall_mass_balance, Unit-Val)
domain 	- _,
range 	- overall _ mass _balance,
variables 	- [Unit,_,],
slots 	- [is_a - specialise],
meta slots - [form bindings -_,],
active_code - [... do_your_own_thing(Unit,Val) ...].

217

The range of this relation indicates the class of constraint that is to be specialised.

The active code entry would perform any special actions required. By the time this

code gets called, CLAP will have created the default version of the constraint

instance. This can then be modified at will by the active code. In most cases,

however, the default behaviour is adequate.

In summary, when a specialised relation is asserted, using $set in the example

command above, three things happen:

A specialised instance of a constraint is generated with appropriate form and
bindings.
The specialised relation, eg has—overall—mass—balance, is noted in the relations
list of the domain object, eg unit ul.
The inverse of the specialise relation is noted in the relations list of the range
object, ie the constraint instance generated in 1).

It is most important to note that the implications of the constraint are not evaluated in

any way, if trying to solve the mass balance and updating slot values in objects. This

allows the existence and form of a relationship to be reasoned about without

"believing" or "evaluating" any of the consequences of that relationship. This is a

very useful feature of CLAP, termed here as "delayed evaluation of consequences".

A typical use would be to allow the degrees of freedom of a set of constraints to be

checked before any attempt was made to evaluate or solve the constraints to ensure

that a model was not under or over specified.

3.4.14.2 Design Specifications
In any design problem certain specifications will be imposed by the engineer.

Imposing values for "design variables" sets implicit equality constraints between the

supplied value for a quantity and the defining expression(s) for that quantity.

Consider the generic constraint "heat—content" which is defined as follows for a

"stream" domain object

relation (heat content, Stream-Val)
domain 	- stream,
variables 	- [Stream,Form,Bindings],
bindings 	- (1 1
return form - ((temperature $of Stream)*

(mass_f lowrate $of Stream) *
(specific—heat $of Stream)

return—type - expression,
slots 	- [is _a - constraint],
active code - [].

Suppose that in a design problem the heat—content of a particular stream, stream 1, is

specified to be 1000, in whatever units (the units could be given by a meta-view

point). This is done by calling the following clause:

set—user—spec (heat—content $of stream 1, 1000, Error g)

218

All this does is specialise the constraint as before, but the "form and bindings" in the

constraint instance are set to -

Form 	= Spec
Bindings = [Spec = heat—content $ of streami -> 10001

This effectively overrides the definition of the generic expression for heat _content.

There is still an implicit equality constraint, however, between the value 1000 and the

specific form of the constraint, ie

Form 	= T*M*Cp
Bindings = [T = temperature $f streaml -> Tvalue,

M = mass flowrate $of streaml -> Mvalue,
Cp = specific_heat $of streaml -> Cpvalue]

These implicit constraints are recorded by CLAP when the user supplies design

specifications. They can be retrieved at a later point if necessary, as explained below,

in the evaluation of constraints. This is useful when checking the consistency of user

supplied design specifications.

3.4.14.3 Operator Relations, Evaluating Constraints
The final class of default relation types are referred to as "operator" relations. An

operator relation is in fact a function that takes a specialised constraint instance and

creates an evaluated form of that instance as the range of the relation. The specialised

constraint and the evaluated constraint are two distinct objects. This is an important

aspect of "delayed evaluation" in CLAP. A generic specialised form of a constraint

for a given object need only be formulated once. Thereafter, different instances of

the evaluated constraint can be created under different conditions and compared, if
desired, by some inference technique.

This means that it is very easy to record different solutions for each step of an

iteration loop, or single time steps in a dynamic simulation.

An operator relation can be defined in exactly the same way as a constraint or

specialised relation. There is a default operator relation, however, to handle all

specialised constraints just as there is a default way to specialise any generic

constraint. It is invoked by the call

$set relation-Object-perform_<ConstraintName> - NewName $in World,

e.g.

$set relation-vessel 1 -perform_overall_ mass _balance-Name 1

where overall—mass—balance is a generic constraint that has been specialised for

vessel I. A value will be generated for the Name of the evaluated instance.

All the default operator does is to establish the current bindings of a constraint

instance, ie access the various slots or relations referred to in the Bindings part of an

instance, and then call the predicate "manipulate—constraint—form" -

219

manipulate—constraint—form (Dom ainName,ConstraintType,Fonn,Bindings)

When the binding values are retrieved they are unified with the corresponding

variable in the Form part of the instance, ie the expression or equation part expressing

the constraint. It is this constraint Form that is passed as the third argument to

manipulate_constraint_form.

The clause manipulate—constraint—form can be multiply defined, by the programmer,

to handle the different classes of ConstraintType to be evaluated. This clause will

typically interface to an equation solving package or problem specific solution

methods. It is this clause that performs any evaluation of values.

The only complication to this process is how binding values are established when

they refer to other constraint relations instead of slot values. Consider the following

definitions of a heat—content expression and an overall heat balance relation.

relation (overall_heat_balance, Unit-_)
domain 	--,
variables 	- [Unit,Form,Bindings],
bindings 	- [I = inlets $of Unit,

0 = outlets $of Unit],
active code - [],
return form - (sum_of (heat_content $of I, $over I)

= sum _of (heat—content $of 0, $over 0)
),

return—type - equation,
slots 	- [is_a - constraint]

The heat balance relation refers to the sum of the heat contents of the input and output

streams. Consider a unit with two inlet streams and one outlet stream. The top level

Form and Bindings are:

Form 	Hl+H2=H3
Bindings 	Hi = heat—content $of streami -> HiValue

H2 = heat—content $of stream2 -> H2Vaiue
H3 = heat—content $of stream3 -> H3vaiue

When "perform _ overall _heat_balance" is called with this constraint instance it checks

to see if the Bindings are slot values or further constraints. If a binding expression is

a reference to a slot then the current slot value is looked up and unified with the

appropriate variable in Form.

If a binding expression is a reference to a constraint, eg Hi, that has been set as a

"user-spec" then the value of the design specification is unified with the appropriate

variable in Form. For example, if the user had set the heat—content of stream 1 to

1000 then Hi becomes 1000 in Form.

If a binding expression is a reference to a constraint that is not a "user—spec" then the

expression for that constraint is retrieved and added to the Bindings list. For

example, the expression for H2 is expanded to

220

H2 	= heat content $of strearnl -> H2Value
H2Value = T2*M2*Cp2 -> ExpValue
T2 	= temperature $of streami -> T2Value,
M2 	= mass flowrate $of streami -> M2Value,
Cp2 	= specific—heat 4of stream 1 -> Cp2Value

If any of the expansions referred to further constraints then these too would be

expanded in a recursive fashion.

When the default "perform_" relation is used all constraints are expanded or unwound

recursively and a complete set of bindings is generated. Unwinding stops when a slot

value or "user—spec" is encountered.

When a "user _spec" value for a constraint is provided there still remain implicit

expansions that must eventually equate to the user provided value. CLAP does in fact

generate these implicit expansions but stores the bindings in a local work area. These

implicit expansions can be picked up later, eg by an equation solver, as shown later.

When an expression is expanded, eg heat _content, CLAP creates an object

representing the specialised form of the constraint and notes this relation in the

domain unit's relation list, eg the "has—heat—content' relation will be recorded along

with the name of the constraint instance.

In complex situations the default "perform_" operator relation can be replaced by a

user defined operator type relation. These relations are defined in the same way as

specialise or symbolic relations except that the "active—code" entry must specify how

to evaluate a constraint instance. The general format is

relation (RelationName, DomainName - EvaluatedlnstanceName) :-
domain 	 - DomainType,
range 	 - ConstraintType,
variables 	- [Domain,Form,Bindings,...],
constraint form - ConstraintToUse,
active _code 	- SequenceOfClapCalls,
reset _bindings - Updates,
slots 	 - Slots.

If the active code was simply a call to "manipulate _constraint_form" then the effect

would be the same as using the default perform relation.

The entry "constraint—form" specifies the call to make to pick up the specialised

relation that is to be evaluated. For instance, if the constraint type was

"overall—mass—balance", the default constraint form to use is

has—overall—mass—balance @ (form—bindings - $all)

The meta-view point form—bindings is predefined for any specialised or operator

relation and specifies the depth to which any embedded constraints should be

221

expanded, as described above. The value "$all" indicates that all constraints be

unwound down to slot values of objects. If a value of "level(N)" is used, where N is

some integer, then the process of unwinding constraints is only attempted N times. If

an expression is fully unwound, i.e. down to slot level, before N levels occur then the

system continues without error.

To evaluate a specialised relation then, the following steps occur

The specialised relation in the constraint_form entry is checked for in the
Domain's relation list. The name of the specialised constraint instance is found
and its Form and Bindings are retrieved. These values are unified with the
Form and Bindings variables in the variables list of the operator relation once
the Bindings have been expanded to the appropriate depth.
The sequence of calls in the active—code entry is then evaluated. The calls can
be any CLAP command and will presumably involve Form and Bindings as
arguments to these calls.
Any Bindings that have had their values changed as a result of running the
active code should be updated, i.e. reset any slot values, relations etc.

A built in mechanism is provided to pick up any changes in variable bindings so that

the Bindings in step 3) can be reset automatically. All that is done is to use the

following general form for any active code:

active—code 	- (save—new—bindings (Bindings, CheckLater),
.other calls ...,

save—new—bindings (CheckLater, Updates),
reset—bindings - Updates

The first call to save—new—bindings detects which Bindings could be reset. The last

call checks which of these were changed in the active code. The binding expressions

to be changed are left in the list Updates. When the active code has run, CLAP looks

for a "reset—bindings" entry in the relation definition. If it has been defined as shown

here then the Updates list will be unified with the list of bindings to be updated.

CLAP then resets these entries automatically.

If no reset—bindings entry exists then no updating of bindings will take place unless

they are performed in the active code itself.

If the reset—bindings entry is used in conjunction with save—new—bindings then no

action is required by the programmer to complete step 3) above. All binding values

will be automatically reset by CLAP when necessary.

Finally, it was stated earlier that any implicit binding expansions resulting from the

use of "user—Specs" are also generated by CLAP. To retrieve these bindings in the

active—code first use the call meta—expand—Stack(Key) Key is an index into an area of

Prolog's internal database. The set of implicit bindings are recorded under this key in

predicates of the form:

222

hidden_reference (Context, DomainName, ConstraintName,
ConstraintType, Level, IForm, I Bindings)

Worm and IBindings are the forms that would have been generated if ConstraintType

had been expanded to a depth Level for the object DomainName. The user _spec

versions of Form and Bindings are stored in the instance of the specialised relation

just as for any other specialised form of a relation. Implicit expansions are only

performed once for a particular object and constraint. Thereafter, CLAP checks the

meta_expand_stack entries for any subsequent references to the same constraint.

When evaluating sets of equations it is always advisable to check the

meta_expand_stack before any other calls in the active—code of an operator relation.

It is then the responsibility of the active code to handle or check these implicit

bindings. In simple applications they can be entirely ignored.

3.4.15 Summary of Development of Equation Based Process Models
Relations in CLAP provide a simple but powerful way of expressing a "model" of a

process unit. Relational information primarily expresses constraints between

different objects. In a design problem these objects will typically represent process

units or streams. The relation class hierarchy can be basically split into those types of

relations that do not have equations associated with them, called symbolic relations,

and those that do. Equation type constraints can be one of three predefined classes:

Constraint - defines the generic form of a constraint, expression, equation, etc.,
for any valid domain object. For example, the generic definition of a mass
balance for any process unit.
Specialise - These relations create a specific form of a generic constraint for a
particular unit. All the variable bindings are left uninstantiated so that the same
specialised form can be re-evaluated under different conditions, binding values
etc. The specialised form or constraint instance is an object in its own right. Its
name can be user specified or generated by CLAP. There is a default
mechanism to specialise any constraint. This can be overridden by a user
supplied definition. Design specifications cause a constraint instance to refer to
user specified values rather than the defining symbolic equation.
Operator - Operator relations take a specialised form of a constraint and
manipulate or evaluate that form in some user specified way. The constraint
form is typically an equation or set of equations in symbolic form. A suitable
interface to an equation solving package is needed to solve these equations.

A process "model" of a unit can be thought of as a combination of the unit's slot

values, its slot descriptors and meta_ view points, the symbolic relations its involved

in and any equations that describe it that are stored as specialised constraints.

Process models can be gradually built up by simply asserting new relations whenever

necessary. High level relations are easily defined since they can simply involve

combinations of lower level relations. The "combination" might just be a set, as in a

223

set of equations, or it might be equation or inequality or an expression. The following

definitions show how to define a "heat_and_mass_balance" relation as a set of two

equations. These equations are further defined by other relations, ie the heat balance

and the mass balance, which in the case of the heat balance is further defined in terms

of a heat content relation.

relation (heat and mass balance, Unit-Val)
domain 	- _,
variables 	- [Unit,Forrn,Bindings],
bindings 	-
active code -
return—form - [overall—heat—balance $of Unit,

overall mass_balance $of Unit],
return _type - (list $of_ equations),
slots 	- [is_a - constraint].

It is very simple to build up useful high level relations that are defined in terms of

other lower level relations.

CLAP has a built in facility to automatically generate all the constituent relationship

bindings when evaluating or checking the consistency of a set of process model

equations. In the case of "standard" sets of equations to describe a unit, a single high

level relation could be asserted that implicitly generates all the specialised forms of

the constituent equations. For example, the heat_and_mass_balance relation could be

part of a higher level relation "standard—flash—model". The single assertion

$set relation - flash_vessellO - has—standard—flash—model -

implicitly sets up all the "standard" equations to describe flash_vessellO. There is

nothing to stop the engineer asserting additional relations that augment this set of

equations. Alternatively, the engineer may incrementally build the flash model up

one equation at a time. Model building, therefore, can be done in a very flexible way

in CLAP.

A set of equations defined by some relation can be locally evaluated by simply

calling the default "perform_<constraints>" mechanism, providing a suitable interface

to an equation solver is available. Hutton(1990) describes one such interface to

CLAP. Such a facility makes it straightforward to evaluate "partial" process models

in isolation as a design proceeds.

When a constraint instance is evaluated, a separate object is created to represent the

evaluated form of the constraint. This makes it simple to compare case studies in

different worlds or contexts.

Finally, operator relations are not intended to be the principal means of solving

problems. Very high level relations could be defined but this was not the original

224

intention. Section 3.4.20 introduces a more procedural/algorithmic framework in

which individual relations can be asserted and analysed within general design

procedures for well know problems, e.g. solving flash calculations, sizing heat

exchangers etc.

3.4.16 Arbitrary Tokenism and Relations

The problem of arbitrary tokenism and the use of relations is analogous to the

situation involving the names of slots of objects. In that case, meta_ and dependency

information can be defined in the slot descriptor terms. User supplied inference

techniques can be used to ensure this information is interpreted whenever a call to

or "$check" is made.

The same technique is required for relations. Since relations are defined like objects,

the meta—information can be stored in the slots term of a relation definition. This

may describe the transitivity of a relation, the dependency of a symbolic relation on

other relations etc. User supplied inference techniques can then be used to override

or augment the default interpretation of relations.

In the case of constraints, inter—relation/slot dependencies are given by the bindings

and return—form entries. There are two problem areas however:

The use of arbitrary tokens for slot names in expressions, eg vapour_pressure
$of Component.
Different relations expressing the same constraint but in different algebraic
forms

The first problem is inevitable. The second problem could be avoided by reducing all

equations to a standard normal form, eg polynomial expressions. Any new relation

definitions could then be checked against existing definitions and any redundancies

either eliminated or noted. In numerical analysis algorithms it is often necessary to

use a particular form of an equation for convergence to occur. These special forms

could still be defined as separate relations but their equivalence to a base relation

should be noted in the definition.

3.4.17 Specifying Low Level Design Procedures
The use of operator relations are primarily intended for the manipulation of algebraic

constraints in an equation based environment. There are a number of well established

design tasks or procedures that are more naturally expressed as a sequence of

predefined steps or goals. Each step or goal, however, may well refer to the use of an

operator relation to evaluate some set of constraints. The procedures may describe

actual algorithms, e.g. the use of Aitken's method in the solution of a sequential

225

modular flowsheet. At a still higher level a procedure may describe the steps

involved in detailed sizing of a heat exchanger. Process design in an industrial

context involves the use of a great many such procedures.

CLAP uses special kinds of objects called "methods" to express procedural

information. In their simplest form, methods merely take a number of objects as

arguments and then evaluate a sequence of procedure calls relating to those

arguments. The generic form of a method is

method (<method name>, <argument list>
variable - <local> - <argument slot variable lists>
type 	- <program type>
program - <sequence of calls>

The "variables" term just names any local variables and the variable lists that specify

the slot values of each object argument. The type of a method can be one of program,

external or prolog. The latter two types are explained later. If the type of a method is

program, then the program term is the body of the method, ie the sequence of calls to

be evaluated. Each step in the sequence of calls can be one of

A CLAP command, eg manipulating objects, using worlds, etc
A Prolog clause to perform some proof
A call to an "external" procedure or subroutine written in some other language,
eg C, Fortran, etc.

The different types of statement can be freely mixed in the definition of a CLAP

method. Once a method has been defined it is called in one of the following forms:

$call Method 	 -
$call Method - Object Arguments
$call Method - Object Arguments $in Context
$call Method - $all InstancesOfClassType $in Context

To make the body of a method resemble languages such as C there are two useful

constructs:

$if Test $then Action 1 $else Action2, to express the usual if-then-else
statements. There is also a $else_if form.
for(Variable = Range), ..., end for,
to express iterative loops.

As a simple illustration, the following code indicates how a method to solve a

flowsheet might be written. The method takes a "flowsheet" object as an argument.

The slots of this object would hold the necessary model details.

method (solve_f lowsheet, flowsheet-F) : -
variable -
type 	- program
program - ($create_context Woridi,

$if not($check slot - F - properly—specified - true)
$then verify_specification (F),
$call converge_f lowsheet - F

226

The method simply creates a world, checks that the flowsheet is not over or under

specified then calls another method to converge the flowsheet. All the steps happen

to be CLAP commands except "verify—specification" which might be a Prolog clause

used to prove that flowsheet F is correctly specified.

At first sight a method definition looks like a routine in a standard language, albeit in

a high level language that has access to objects and Prolog clauses. Even at this stage,

however, the expressive capabilities of a method should not be under-estimated.

There is full access to all the CLAP commands. This includes all the features

associated with objects, eg demons, default values, meta _view points etc, as well as

full access to the Prolog interpreter to perform proofs nested within a method.

There are three further features of methods that greatly enhance their usefulness:

An interface to external routines written in other languages.
A built-in mechanism to call different inference techniques when choosing
process models or making decisions.
The technique used to interpret the code in the body of a method

These features shall now be discussed briefly in turn. An extended example of how

they could be used in a method for solution of sequential modular flowsheets shall

then be given to clarify their use.

3.4.18 External Language Interface

Symbolic languages such as Prolog and Lisp are not that well suited to performing

large amounts of numerical computation. In a practical design environment it will be

necessary to have the well defined aspects of problem solution calculated as

efficiently as possible. A typical example would be the use of Gaussian elimination

to solve a set of linear equations represented as arrays of coefficients.

CLAP provides a two-way interface between itself and the procedural language C to

allow numerical data to be created and modified at either level. This means that data

structures, eg arrays, vectors, single variables etc, can be created by a CLAP

command and then accessed or modified within a C function or vice versa.

There are a number of CLAP commands provided to manipulate arrays. These

include:

$create_int_array, $create_double_array - create integer or floating point arrays
as requested, eg $create_int_array(a(1O)), a vector "a" of ten elements,
$create_double_array(b(lO,20)), a ten by twenty array.
$initialise_array (Name, Value)
$add_arrays (Al, A2, A3), solves Al + A2 = A3
$multiply_arrays (Al, A2, A3)

227

$transpose_array (Array 1, Transpose)
$gaussian_elimination (A, B, Error) - solves A.x = b leaving the result for x in
B.

The Gaussian elimination command raises an important point concerning the use of

"black box" algorithms and the problems they cause, see Chapter 1. All the Gaussian

elimination command does is perform the elimination process in C to speed up

calculation. This process is seen as an acceptably low level operation that can be

performed without further reasoning. This would not be the case, for example, with

Newton's method for the solution of a set of non- linear equations. This method

involves performing Gaussian elimination within an iterative loop until values for the

vector of unknowns converge. There are two important problems concerning the use
of Newton's method:

Initial guesses for the unknowns - if poor guesses are provided then the method
may not converge.
Infeasible values or estimates are generated for the unknowns during the
solution process, usually resulting in failure to converge.

A lot of domain specific information could be used to eliminate these problems. For

instance, if Newton's method is part of an equation based flowsheet program then

good guesses for many unknowns will be available from the current context or state

of the process design. This is particularly true if a top-down, hierarchical approach to

flowsheet formulation has been used, e.g. Douglas(1988)

By writing Newton's method as an external "black box" a number of unnecessary

problems are introduced since relevant information or knowledge is not being used in

the problem solution. The following two sub-sections indicate how domain specific

information can be used to guide a general algorithm such as Newton's method.

There are several other features of the external interface worth mentioning. The first

is that there is a library of C functions, corresponding to the CLAP commands for

arrays, that allow data structures to be created dynamically in a C function and then

accessed later within the CLAP interpreter. These data structures can then be

associated with high level CLAP objects or methods.

A special object type called a "table" is provided in CLAP. A table is a normal CLAP

object, with slots, demons etc, except that it always has an array associated with it.

The size of the array is specified by the slots "row-size" and "col-size". Individual

elements of the array can be accessed or set, or the whole table array can be

manipulated by using a set of commands identical to those used for manipulating
arrays, e.g.

$create object table(double) - newton infol sin woridi,

228

$set slot - newton_infol - row size - 10 sin woridi,
$set slot - newton infol - col—size - 10 $in woridi,
$set slot - newton infol - store var - coefficients $in woridi,
$set el(3,4) - newton_infol - 1275 $in woridi,

$check el(1,2 - newton_infol - Value $in woridi

(The value of slot "store_var" is the name of the array in Q. The programmer can

provide his own set of slot definitions when declaring objects of type "table" in order

to represent problem specific information regarding the contents of the table array.

Finally, there are two ways of calling user provided C functions to perform arbitrary

calculations. The first, and preferred, method is to define a method that has an

external type:

method (user_calix,
variables
type
passargs
argtypes

ObjectArgurnents)

- external

Suppose there was a single object argument of type column, ie

method(userl, column-C)

The "passargs" term is a list of the slots that are used as arguments when the external

function is called, eg

passargs - [no _of_plates $of C, reflux_ratio $of C]

The "argtypes" is a list corresponding to passargs that indicates the "type" of each

argument, ie integer, real or string and whether it is an input or output argument. All

input arguments must have their slot values set. When the function is called and

returns, the slot values corresponding to the output arguments will be automatically

updated. This may result, for example, in demons being activated. It is extremely

simple, therefore, to interface external functions to CLAP. They are called in the

same way normal methods are called

$call userl - column 1

The second way of declaring external functions and data to CLAP is through the use

of "procspec" and dataspec predicates. A function modelling a reactor, say, with 5

arguments is declared as

procspec(external, reactor, 5,[+double, +int, +int, -double, 'char*'])

The last argument is a list of argument types. A '+' indicates an input argument, a

indicates an output argument. The 'char' argument indicates a string in C.

Similarly to declare an external 100 by 100 array of real numbers to CLAP, the

predicate

dataspec(external, 'double *', s, [100, 100]).

is used. The second last argument is the name of the array and the last argument is a

229

list of the dimension sizes. In this case, both external functions and external data can

be treated like prolog predicates in the definitions of other methods:

method (toplevel, Arguments): -

$call methodA - objectl,
reactor(s(1,100), 5, 3, s(2, 100) ErrorMessage),

The call to reactor looks like a call to any other Prolog clause. A feature of CLAP,

however, is that it monitors the use of external data names. The array s, for instance,

is an external array. When the call to reactor is made the first argument is replaced

by the current value of s(l, 100). When the call returns the value of the output

argument s(2, 100) is updated.

There are two differences between external CLAP methods and external functions

declared using "procspec".

CLAP methods, whether external or normal, can use the message passing
facilities and are themselves high level objects which can be reasoned about by
other methods.
There is no control over the use of "procspec" external functions. CLAP has no
access to the definition of the function or its intended purpose unless the
programmer provides a set of describing predicates or rules and a specialised
interpreter.

3.4.19 Using Inference Techniques in CLAP Methods
At the start of this section it was stated that methods in CLAP were primarily

intended to represent "low level" design procedures as a sequence of steps to follow.

The discussion so far has shown that the definition of a method can consist of calls to

other CLAP methods, or calls to external functions using externally defined data

structures, or calls to Prolog to prove some goal. Simple "$if - then" constructs can be

used for known choices or alternatives while the "for(I = Range)" construct allows

iteration to be performed. Any step in a method can also be a CLAP command. It is

a trivial matter then, to dynamically create new instances of objects, create multiple

contexts or worlds, set slot values, use meta—view points, invoke slot demons etc, at

any point in a method.

The final feature of CLAP methods to be discussed here is the mechanism provided

to call on other inference techniques, production rule systems etc. It is seldom the

case that even for well defined, "low level" design procedures, the decisions to be

taken can be expressed in a simple, problem independent way. The use of if-then

rules describing the choice of heat exchangers, for example, is highly dependent on

the problem context, eg is safety the prime consideration, or layout restrictions etc.

04111

This problem dependent information greatly colours or influences the way in which

if-then type statements should be interpreted.

Rather than try and express this information as complex "if then" statements in a

method definition, as would typically happen in a simple C or Fortran subroutine, the

following CLAP commands can be used to invoke more comprehensive inference

techniques:

$model ObjectType - InstanceName $infer_with IriferenceMethod
$model ObjectType - InstanceName
$decide_on ThingToChoose - ResuitChoice $infer_with InferenceMethod
$decide_on ThingToChoose - ResuitChoice

The first version of "$model" is used to invoke an InferenceMethod to select an

appropriate model for an object instance, eg

$model column - c101 $infer_with column—modeller

The inference technique "column _modeller" might be a production rule system or

another module in Designer's Assistant or a Prolog search method, etc. When a

model has been selected a further method can be run to evaluate the model if this is

appropriate. This latter information is specified in the predicates used to define the

interface to the InferenceMethod. The form of the call is very flexible in that

Alternative inference methods can be used depending on the problem context,
eg memory and time constraints, amount of detail available on the object being
modelled, etc. The choice of inference method itself can therefore be the result
of some meta _level decision procedure, as was the case in the MECHO system,
section 3.2.5
The model chosen can reflect the level of detail at which the object is described
and take into account other context dependent, problem specific information.
Subsequent calls to "$model" could generate, therefore, different models to use,
depending on the overall status of the problem solution.

If the second version of $model is used, ie no inference technique is specified, CLAP

searches for the definition of a default method to use and runs that instead. It is up to

the programmer to provide a default technique.

It is also possible to specify that an object be modelled by a particular method instead

of always calling an inference technique. For instance, the call

$model column -c101 $by mcabe_thiele $in world

specifies the use of a particular model. This is useful when a direct comparison of

models in different contexts is to be made.

The calls to "$decide_on" are very similar but are concerned with making any sort of

decision choice rather than selecting a unit model and running it. A simple example

might be

231

$decide_on column—packing - Type $infer_with rule—system 1.

The interface to rule—system 1 might indicate that it exists in a separate module of

Designer's Assistant. If so, the "$decide_on" command is a very simple way of

establishing communication between modules in a blackboard system.

It is worth noting that the $model inference techniques can, of course, make full use

of the relations facility in order to help decide which alternatives to choose.

3.4.20 Interpreting Methods in CLAP
The ability to make calls to CLAP commands, run methods, call Prolog clauses, use

inference techniques, etc., makes the definition of well specified design procedures a

straightforward task in CLAP. The inherent flexibility of a CLAP method is further

enhanced by the strategy used to interpret its definition.

Evaluation of a CLAP method does not just involve calling each step in a sequential

manner from start to finish. The body of a method, ie the sequence of steps, is

viewed instead as a conjunctive formula to be proved in much the same way as a

theorem prover evaluates a conjunction,

Cl A C2 A ... A CN. CLAP uses a left to right, backtracking search

strategy to evaluate a method. This means that each step must implicitly evaluate to

"true" before its successor can be interpreted. If a step fails for any reason the CLAP

interpreter backtracks to the last choice point on the last step interpreted. If there are

no further choice points then the interpreter backtracks to the second previous step

and re-evaluates that if choice points exist. This backtracking/re-evaluation process

continues in a depth first, recursive fashion until either the method is successfully

interpreted or all choice points are exhausted and the method itself fails. This in turn

can cause backtracking into a parent method that has called a child method if the

child method fails.

In order to eliminate choice points, ie a method that can only be run once, the Prolog

"cut" symbol, which is "!", can be used as a step in a method. Backtracking cannot

take place anywhere between the first step of a method and the appearance of the cut

symbol. If the cut symbol is the last step in a method then no backtracking will

occur. If steps in a method appear after a cut symbol then partial backtracking can

occur between the cut symbol and the last step in a method.

If a step in a CLAP method is a Prolog predicate then backtracking to this predicate

will invoke the backtracking facility of Prolog to re-evaluate the predicate. This is

extremely useful when defining "generate and test" procedures. The basic principle is

232

to generate a hypothesis and then test it. If the test fails then backtrack and generate

another hypothesis. The whole process is repeated until a successful hypothesis is

generated. If any subsequent hypotheses fail then backtracking can cause yet more

hypotheses to be generated. The general format is:

method (select—thing, Class_Instance)

generate_choice (Class, Instance, Choice),
test choice (Choice, AN5),
ABs = true,
dependent_goall (Choice, ...),

dependent_goalN (Choice, ...),

3.4.20.1 Demonstration of CLAP Methods, A Simple Flowsheeting Tool
As a demonstration of some of the features, described above, in very simple

flowsheeting framework will be described. The system is based on ESSPROS,

Ponton(1985), a simple linear mass balancing system that is converged in a sequential

modular fashion. By sequential modular it is meant that each process unit is

represented as a function which given an input produces an output. A flowsheet is

represented as a number of such functions that are called c 	a4in a specified

order. The calling sequence is repeatedly evaluated until convergence of all unknows

is achieved.

The following example defines two generic object types, a process "stream" and a
"mixer unit".

object(stream) :-
self - S,
variables - [N,P,T,Cl. .CN,CF1. .CFN,F],
slots - [name-N, pressure-P, temperature-T,

component(names) - Cl. .CN,
component (flowrates)- CF1. .CFN,
total flowrate - F

I.

object(mixer) :-
self - S,
variables - [Sl,S2,S3],
slots - [stream - Si, stream - S2, stream - S3].

Given these generic types, instances of streams and mixer units can be created either

using "$create_object" or using the following predicates.

dataspec(external,'double *',, [100,100]).
dataspec (external, 'double ' ,p, [100])
dataspec (external, 'double * 	[100])

stream-si :-
variables - [1,0.0,0.0,

ch4. .c2h6. .c3h8. .n2. .h2. .so2,
s(1,1)..s(i,6),
F

I.

233

stream-s21
variables - [21,0.0,0.0,

ch4. .c2h6. .c3h8. .n2. .h2. .so2,
s(21,1) . .s(21,6),
F

mixer-m101 :-
variables - [sl,s21,s121].

This creates two stream instances, si and s21, with undefined flowrates. The mixer

miOl has two inlet streams, si and s21, and one outlet stream s121. The dataspec

entries declare three external arrays that are used within ESSPROS. Notice that the

component flowrates of streams si and s21 use parts of the external "s" array for

storage, elements s(1,l) through to s(1,6) and elements s(21,1) through to s(21,6)

respectively.

The following entry shows the two ways in which external functions can be

interfaced in CLAP. The first part defines an external method "mix" which takes an

instance of a mixer unit object as an argument. The arguments passed to the external

function are defined as the values of the "name" slots of the stream objects ml, 1n2

and Out. Given the previous definition of mixer miOl, and if miOl was the

argument then In 1 = si, 1n2 = s21 and Out = s121.

method (mix, mixer-M)
variables - $null - [Inl,1n2,Out],
type - external,
argtypes - [+int,+int,+int],
passargs - [name $of Inl,name $of 1n2,name $of Out].

procspec (external, reactor, 5, [+int,+int,+int,+int,+double])

The "procspec" entry indicates that there is an external function called "reactor"

which has 5 arguments. The arguments are all input arguments as ESPROSS stores

stream outputs in the external arrays s, p, and t. In ESSPROSS a stream is identified

by a unique integer and ESSPROSS functions take these stream identifiers as

arguments. The stream integer identifier is stored as the "name" slot in the definition

of the stream object above, eg the "name" of s21 is 21, the name of si is 1, etc.

Suppose a "flowsheet" object is defined that has the calling sequence of functions

defined as one of its slots as in

object (flowsheet):
self - S,
variables 	- [Calls, Solver, Tests, Initial, Updates ...]

slots 	 - [calling_sequence - Calls,
convergence _technique 	- Solver,
convergence—criteria 	- Tests,
initialisation_calls 	- Initial
update—calls 	 - Updates

234

A number of other useful slots can be defined such as how to initialise the flowsheet.

Given a flowsheet object it is extremely simple to write a generic method to evaluate

the calls. The following template for one such method takes a flowsheet object as its

argument. The variable lists are expanded in this example to avoid making calls to

$check to find out slot values (the use of variable lists is explained in Struthers(1987)

but should be obvious from the example).

method (sequential_modular(Package), flowsheet - F):-
variables 	- [] - [Calls,Solver,Tests,Initial,Updates,...],
type 	 - program,
program 	 - (initialise_package (Package),

set solution method (Package, Solver),
initialise flowsheet (Initial),

current _context (C),
$display F $in C,

for(l, 1, IterationLimit),
$display all_cvars,
Calls,
$if Tests $then $exit

$else Updates
endfor,

save _output (Package)

Before explaining the method it is worth listing the slot values of an instance of a

flowsheet object, demo_flowsheet. The following structure is the value of the

"initialisation calls" slot.

reset,
startiteration,
setmethod(1 AITKEN5 1),
setnc (6),
setstream(1, 0.0,0.0,'iOO,O, 0,0,0,0')
setstream(15, 0.0,0.0,'O,O,O,O, 0,0'),
setstream(16, 0.0,0.0,'O,O,O, 80, 0,0'),
setstream(21, 0.0,0.0,' 0,0,0,0,0,0'),
setstream(101,0.0,0.0,'0,150,0,0,0,0 1),
setstream(102,0.0,0.0,'-1,-1,1,0,1,0 1),
setstream(103, 0.0,0.0,'l,O,O,i,i,l'),
setstream(104, 0.0,0.0,' 0,-i, 1,0,-i, 1'),
setstream(105,0.0,0.0, 1 1,0,0,0,1,i'),
setstream(106,0.0,0.0, 1 1,0,0,0,0.999,0.001 1),
setstream(107,0.0,0.0, 1 0,0.8,0.003,0,0,0 1),
setstream(108,0.0,0.0,'0.001,0,0,0,0.999,0.01 1),
setstream(111, 0.0,0.0,' 0,0,0,0,0,0')

The slot value is a sequence of calls used to initialise a number of streams in

ESSPROS. The setstream function is an external function declared by a "procspec".

The value of the "calling—sequence" slot is the structure.

for(1,1,30)
$display all_cvars,
controlledmixer(15, 101,7,6,0,150.0),
split (7, 2, 8, 0. 7)
$model mixer-miOl $by mix, 	/* 	-> mix(1,21,121), *1

235

mix (121, 2, 3)
reactor(3, 4,102,1,0.7),
separatorl (4,5,13,103),
mix(5,8,9)
mix (9, 111,110),
reactor (110, 112, 104, 5,0 . 2) ,
split (112, 111, 10, 0 .0)
separatorl (10,11,12,105),
separatorl (11,18,19,106),
separatorl(18, 20, 21, 108)
mix (12, 13,14),
separator(14,16, 15,17,107),
teststream(15),
endfor

This shall be explained shortly. The slot value for the "convergence—criteria' is

unconverged(N) $and N=<0,

while the value of the "update—calls" slot is

$decide_on solution technique - Choice,
set method (Choice)

The method is called by

$call sequential_modular('ES SPROS') - demo _flowsheet

The first two steps in the method, initialise—package and set—solution—method, simply

initialise the data structures of any particular package. They are written here as

Prolog clauses, allowing multiple definitions for each flowsheet package that can be

used with this generic method. In the case of ESSPROS this initialisation is very

simple:

initialise—Package ('ESSPROS') :-
reset,. 	 1* an external function */
startiteration 	/ an external function*/

set_solutionmethod ('ESSPROS', Method):-
setmethod_ (Method)

The solution methods used in ESSPROS are AITKEN3, AITKEN5, and NEWTON.

AITKEN3 uses Aitken's acceleration method on every third iteration, AITKEN5 is

the same but every fifth iteration, and NEWTON is Newton's method.

The first important call is initialise _flowsheet. This takes the sequence of stream

initialisation calls, stored as the value of the slot "initialisation _calls", and evaluates

each of these calls. This is written as a simple recursive Prolog clause using the cut

symbol, "!", to eliminate any backtracking:

initialise _f lowsheet ((Call, OtherCalls)) :-
interpretcall (Call, true),
initialise flowsheet (OtherCalls)

initialise flowsheet (LastCall) : -
interpretcall (LastCall).

The clause "interpretcall" allows any CLAP command to be interpreted in Prolog.

236

Once the flowsheet has been initialised it is displayed in the current world or context.

Figure 3.11 below shows the display associated with this flowsheet object. (The

"$display ObjectName" is a CLAP command to display any object). The main part of

the method is a simple iteration loop. The first call

$display all_cvars

is a CLAP command to display any external variables that are to be traced during

execution. In this case the component flowrates of recycle stream 15 are displayed on

the screen, see Figure 3.11. The command simply looks for predicates such as

display_var(s(15,1),Current Value, [Displaylnstructions]).

This would display the array element s(15,l) somewhere on the screen.

The second call of the "for loop" takes the sequence of calls stored in the

"calling—sequence" slot and interprets them with the CLAP interpreter. There is no

need for any "$call" commands since the value of the slot is a sequence of CLAP

calls. The definition of the generic method "sequential—modular" is specialised to a

specific form every time it is run by simply unifying the variable Calls in the second

line of the loop with the same variable in "variables" list describing the argument

object's slot values. In this example, the first ESSPROS function called is controlled

mixer, then split, and so on.

The third step in Calls uses the "$modeF' command to select a particular type of

mixer model. If the "$infer_with" variation had been used then this model could

change on subsequent iteration loops. In the case of a reactor model for instance, it

might be useful to use a rough model in the first few iterations and then use a more

sophisticated model as the flowsheet nears convergence.

The backtracking strategy of CLAP also provides a simple means of recovery from

infeasible estimates. If a subsequent call fails, perhaps due to use of too crude a

model elsewhere, then the system can backtrack and re-evaluate another model using

the "failure" information as part of the decision process.

Once the calling—sequence has been evaluated, the convergence _criteria are

interpreted in the same way. In ESSPROS this simply means counting the number of

unconverged streams. If no unconverged streams are found the flowsheet has

converged. If the convergence _criteria evaluate to "true" then the system exits the

iteration loop and saves any ESSPROS output. If the flowsheet has not converged

then the "update—calls" are interpreted. In this example there is a call to "$decide_on"

the solution technique. This is changed from AIITKEN5 to AITKEN3 whenever the

number of unconverged streams drops to less than four. In a more complex package,

allstair% scrdmp
pssun: Command not
lpr: standard input:
alistairS alais
alais: CIT 	not f
alistair% alias
scrdmp screendump I
alistair% screendum

ri

1.

—

0

ci)

.-

06

all

csh
	

NO Fl

42.84 44.89 0.11 0.00 180.04 	8.82
111
3.00 0.80 0.80 0.00 0.00 	0.00
112
42.84 24.88 28.12 8.80 80.03 	20.83
121
142.80 0.00 0.00 0.00 0.08 	0.82
33 STREAMS DEFINED

es

U

problem specific information could be used to guide sensitive numerical solution

techniques, take care of memory management, etc.

The output of ESSPROSS is simply a listing of the "s" array. The values of this array

are accessible, of course, through the "component(flowrates)" slot of the stream

objects.

Despite the simplicity of the ESSPROS demonstration, it illustrates a number of

important points.

It is straightforward to write well defined, generic solution procedures using
methods in CLAP. Methods combine aspects of object orientated, procedural,
and logic programming in a flexible way that is easy to use. Full use of CLAP
relations and multiple inference techniques is also possible within methods.
This variety of representation style is necessary if large, complex problems are
to be easily represented in a single system or module of Designer's Assistant.
The use of appropriate high level objects, eg the flowsheet object, means that
the "control and implicit reasoning" information used in black box programs can
also be represented and reasoned about at a higher level. It is much simpler,
therefore, to take account of problem specific information to guide the control
of low level algorithms, especially optimisation and numerical analysis type
algorithms, yet still retain the ability to write generic methods or frameworks to
describe an algorithm.
It is straightforward to write generic algorithms that can be specialised to a
specific form depending on the problem content. The code used to specialise
the generic algorithm can be represented as data structures in slots of an
appropriate high level object. In this demonstration, the initialisation calls,
convergence tests and main calling sequence for a sequential modular mass
balance method were all represented as slots in a flowsheet object. This means
the formulation of the code, ie deciding which functions to call and in which
order, can itself be the subject of an explicit high level reasoning strategy. This
has important implications in an industrial context. The correct formulation of
complex flowsheets for a particular package is by no means a trivial problem.
It is easy to decouple various aspects of a method or algorithm using CLAP
methods, eg the display of graphics, initialisation requirement, control of
convergence problems, etc.

The idea of treating code as data is an inherent part of languages such as Prolog or

Lisp in which there is no distinction between programs or data. All programs,

functions etc, are treated as data structures. This idea can be put to extremely good

use as seen in the very concise but completely generic definition of the sequential

modular solution method.

It is worth emphasising this idea by a typical problem that arises with Newton's

method in flowsheet problems. Consider a design problem in which one unknown is

the flowrate through a centrifugal pump. The equation used to model the pump is the

"characteristic curve", relating output pressure to flowrate. The curve is of a

"quadratic" shape but with physical limits on the upper and lower bounds of the

flowrate, corresponding to zero pressure increase and the pump's shut-off head

239

respectively. Now a wrong initial guess for the fiowrate will result in derivative

information for this curve being used to estimate a new value for the fiowrate.

Depending on the shape of the curve this new estimate may be outside the physical

upper and lower bounds. If so some interval bounding technique is needed to

re-generate another estimate for the fiowrate that takes into account any problem

specific constraints so that Newton's method can proceed with sensible estimates for

any unknowns. It would be extremely easy to make use of this problem specific

information in a CLAP method using Newton's technique. Suppose each unknown,

Xi, is represented as an object and that each Xi has a slot "newton_update_correction"

that holds calls to modify an estimate of Xi to one within an allowable region or

regions. Part of the loop used in the Newton method to update each unknown might

be

for (x=X1 .. XN),
generate _estimate (X, Xnew),
$check slot-X-newton_update_correction

- (Checkcode-Xnew-Xmodified)
Checkcode,

endfor

When Checkcode is evaluated a new value for Xnew, called Xmodified is returned.

Alternatively, Checkcode could change some slot values in ObjectX, fail, then let

CLAP backtrack to generate—estimate to regenerate a new estimate for X taking into

account the changed slot values. (The use of Xnew and Xmodified in the $check call

is simply to establish variable bindings between these variables and the Checkcode).

The content of Checkcode can be changed within a single calculation as well. On the

subsequent iteration the new code will be evaluated without any need for

recompilation or linking of programs etc. This is true whether Checkcodes consist of

calls to external functions or CLAP commands. This is made possible by

representing code as data structures within high level objects. The result is that code

can be reasoned about and modified dynamically to take into account the problem

context. This allows much more rigorous, problem specific versions of generic

techniques, eg Newton's method, to be used with no extra computing effort.

3.4.21 Message Passing in CLAP
A principal feature of object orientated programming that has not been mentioned so

far is the concept of message passing between objects. The notion of an object in

many 0.0. systems is an entity that combines both the properties of procedure and

data since they can perform computations as well as save local data states. Some

0.0. systems insist on a uniform use of objects to perform all actions and change of

state. In such systems all actions result from a process of message sending between

240

objects.

Message sending is a form of indirect procedure call. In order to achieve some

intended action a message is sent to an object. Upon receipt of a message an object

will respond by invoking an appropriate "method" or "behaviour". The method

selected will depend on the form and content of the message. This is in direct

contrast to naming or calling a procedure to perform some operation on an object.

The behaviour methods of an object are defined locally, each object thought of as an

autonomous agent with a number of predefined behaviours. A set of related

messages that can be handled by an object is defined by the generic class or type of

the object, and is called a "message protocol". A given object class may support

several message protocols. Several different classes may also support shared

protocols but use different behaviours or methods for their implementation, ie the

same type of message can be sent between different kinds of object which respond in

different ways.

CLAP supports an extended for of message passing between objects that can be freely

used within the other representation styles. Several features of message passing in

CLAP are not supported in other 0.0. systems and are worth discussing briefly.

3.4.22 Standard Message Passing and Method Inheritance

CLAP supports the common forms of message passing found in systems such as

FLAVORS(Weinreb and Moon 1981) and LOOPS(Bobrow and Stefik 1981).

To send a message to an object simply use a command of the form

$tell Object - MessageName

A message can also take arguments and be sent to a particular world or context:

$tell Object - Mess ageName - Arglist $in Context

When a message is received an appropriate method or behaviour is invoked. These

behaviours are defined for each object class. An instance of an object class inherits

the set of behaviours from its defining class. Consider a message "draw—yourself'

which is to be defined for the object type vessel. This is simply defined as:

object method (column, InstanceName, draw_yourself, Arglist) :-
code - <sequence of CLAP calls>

The defining code can be any CLAP command or call, Prolog clause, can to an

inference technique etc. This code could be invoked by the call:

$tell columniOl - draw—yourself - [screenA] $in worldA Other

behaviours for different messages are defined in the same way.

241

CLAP also allows instances of a class to inherit behaviours, not only from its parent

class but from all of its ancestors. Behaviours can be successively specialised at

lower levels in a class hierarchy.

Consider the draw—yourself behaviour for a column. Suppose a column is a subclass

of plant—item and that the draw—yourself behaviour is also defined for the plant _item

class. The behaviour at the column level can either inherit this code and then

specialise it or it can overwrite the behaviour locally. In the latter case the

draw—yourself definition would be exactly as before.

In order to inherit the plant—item code and specialise it the definition must be

modified. CLAP uses the concept of "wrapper code" to implement "method

inheritance". As its name suggests, wrapper code is additional code that wraps

around, ie specialises, the code inherited from a parent class, if there are multiple

levels in a hierarchy then the behaviour at any level consists of the top most definition

successfully wrapped up in each layer of wrapper code down to the level at which an

object is defined. There is no need to specialise a behaviour at every level. One

common behaviour can be defined for all sub-classes in a hierarchy if desired.

The following example shows the general form of behaviour definition for the

plant—item and column classes:

object method (plant_item, Name, draw_yourself, Arglist) :-
code - <Sequence of core calls>.

object—method (column, Name, draw_yourself, Arglist) :-
inrxer_args 	- $all,
before 	 - <Sequence of before calls>
code 	 - $inherit
after 	 - <Sequence of after calls>.

The inner_args term indicates which arguments should be passed to the higher level

inherited behaviour. The "before" term is the before code and the "after" term is the

after code. Both terms are optional and can be a sequence of any CLAP calls. The

"$inherit" entry in "code" indicates that the code is to be inherited from the parent

class.

3.4.22.1 Other Forms of Message Passing in CLAP
CLAP allows arbitrary messages to be sent of objects other than those defined in a

message protocol. The command is of the form:

$tell Object - AnyOldMessage $in Context.

Where AnyOldMessge can be any Prolog predicate, expression, data structure etc.

These messages can be checked later using the form

$check told - Object - Message sin Context

242

• It is usual that Message will be a partially instantiated term that can be pattern

matched against known messages for a given Object.

Messages of this form are stored internally along with an object's slot values. The

default behaviour is to do nothing when a message is received and use pattern

matching to retrieve or delete messages at a later point. The programmer can provide

his/her own clauses to interpret these types of message if necessary. This would be

necessary if the problem of arbitrary tokenism is to be avoided when passing

messages between different types of object.

Another useful form of message passing in CLAP is the notion of sending messages

to CLAP methods. CLAP methods were described in section 3.4.20 and are not the

same as the methods or behaviours used to handle messages. Sending messages to a

method is useful for a number of reasons:

System control information, eg available memory, allowable run time, etc, can
be sent to a method prior to evaluation.
If a "library" method can take any one of a number of unrelated object types as
an argument then it will not be possible to specify a specific object type in the
method definition. The method can receive the name of the object to operate on
through a message rather than through an argument list. The same applies to
any input/output data that is not associated with an object.

In order to send a message to a method the "$attach" command is used instead of

"$tell". The command is of the form:

$attach <what> - Value $to Methodname,

eg 	$attach cpulimit - 10.0 $to solver.

There is a special MethodName called "self'. This is used for a method to attach

messages to itself during execution. This is useful for output or debugging purposes.

The "$attached" command is used to query what has been attached to a method. This

means one method can query what has been attached to another method, or a method

can query itself, eg

$if $attached input_data-D $to solver $theri $exit.

$if not ($attached input data-D $to self) $then $stop.

Since a CLAP method is in fact an object then instances of methods are created every

time a method is run. Messages attached to a method are therefore stored locally in

each method and can be recovered at some later point after evaluation of the method.

3.4.22.2 When to Use Message Passing and When to Use Procedures
It may seem at first sight that it is not necessary to have both procedures and message

passing in the same system. Indeed many 0.0. systems insist that all actions be

243

performed by message passing.

It is the author's opinion that both techniques are equally useful and necessary when

tackling complex problems. A CLAP method is extremely useful in that it is an

explicit type of object that expresses the control strategy of problem solution that

would otherwise be implicit in the implementation of message protocols. In many

process design problems it is very important to be able to closely monitor and reason

about the solution control strategy. This is done much more satisfactorily by the use

of appropriate high level objects rather than relying on "run-time" interactions in a

message passing system. In addition, the information implicit in the formulation of a

procedure is often important "knowledge" that should be explicitly represented in a

declarative form. For example, the order of steps used in the sizing of a heat

exchanger, and their relative importance, is an important part of expertise in heat

exchanger design. This strategy should be explicitly available to be reasoned about

and improved.

On the other hand, it is undoubtedly the case that method inheritance is an extremely

concise way of defining certain types of operation local to an object. A good

example is the definition of graphics code used to display an object on a workstation

screen. An object can be redisplayed at any instant by simply sending an appropriate

message. Another good example is sending a message to an object to make it

re-initialise its slot values.

Another obvious application is in the area of discrete event simulation. Any changes

of state in an object can be transmitted to its nearest neighbours by sending an

appropriate message. These neighbouring objects can then propagate the effect by

sending messages on to their nearest neighbours, and so on.

Even in simulations, however, knowledge of the global control strategy is better

expressed in a method framework, eg how to account for objects that are modelled by

sets of "stiff' equations compared to other objects which have much larger time

constraints. This is important numerical information that must be properly used if

accurate simulations are to be performed.

Since message sending is implemented as CLAP commands it is possible to use this

technique within the definition of a CLAP method like any other feature, eg use of

inference techniques, relations etc.

244

3.4.23 Display Options in CLAP

An important feature of CLAP is the ability to directly display objects and monitor

any changes in the state of an object, ie any changes in slot values or use of

relationships. Any such changes can then be displayed in some user defined way as
described below.

Object displays can either be simple ASCII-terminal like displays, ie text and

numerical information, or graphics based displays, or a mixture of both. CLAP has a

complete interface to the core graphics interface package (COT) for use on Sun

workstations. This means that object displays can make use of multiple windows,

mouse driven input, menus etc.

An explicit request to display an object or one of its slots or relations can be made by

calls of the form:

$display ObjectName {$in World}
$display SlotOrRelation $of ObjectName {$in World)

This requires that an entry of the form

display - SequenceOfCalls

be present in an object, slot or relation definition. The calls can involve any CLAP

command but will typically just be a sequence of graphics calls or text instructions.

In order to monitor an object's slots or relations CLAP provides a display switch

mechanism. Display switches can be set for individual slots or relations, or

collections of them or for all slots and relations. The following commands allow

display switches to be set on or off:

$set display_switch(slot-ObjectName-SlotName-on) {sin World)
$set display_switch(slot-ObjectName-SlotName-off) {$in World)

$set display switch (relation-ObjectName-SlotName-OnOrOff)

$set display_switch(all - ObjectName - OnOrOff)

Once a display switch has been set no further action is required. CLAP automatically

redisplays any slot or relation that is modified if its display switch is set to on. The

last version of "$set display—switch" above switches on all slots and relations for

which there are display definitions.

Switching a display switch between on and off is extremely useful when observing a

certain part of an object during a calculation. A graphics workstation display is easily

customised to focus the user's attention on the slots and relations of objects relevant

to the problem being solved.

245

It is also possible to monitor the values of externally declared variable, such as arrays

etc. in C. All that is required is a predicate of the form

display_var (Variable, Value, Formatlnstructions).

Variable is the name of the variable to be displayed, Value is an undefined variable

that gets assigned to Variables current value, and Formatinstructions is a list of CLAP

calls to display the value. For instance, in the ESSPROS example earlier a monitor

was placed on the component flowrates of a recycle stream. These values were stored

in an external array "s" in s(15,1) to s(15,6). An example predicate is

display_var(s(15,1),Value, [$text([X,Y] ,a),$ftextf([X +

15,Y],Value,'%4.2f')]).

The display output in Figure 3.11 shows that the component flowrate, written as "a"

followed by its Value, is correctly displayed at point (X,Y). This technique was used

to monitor the convergence of the component flowrates in the recycle stream.

Such a facility would be useful in any CLAP method that involved interfaces to

external software.

3.4.24 Specifying Design Methodologies in High Level Frameworks

Methods in CLAP are intended to be used for specifying well defined design

procedures or solution algorithms. Each method is seen as a predefined statement of

the individual steps to be followed for solution of "standard problems". The methods,

of course, can still be very flexible in that calls to inference techniques, use of CLAP

relations, message passing etc, can all be used within a single method. Higher level

methods can be built up in a structured way by making calls to lower level methods in

much the same way as any procedural language.

The statement or expression of an overall design methodology, however, requires a

less rigid framework. The whole concept of design based on an AlP approach, see

chapter 1, requires that the design strategy be constantly modified to take account of

the responses of different engineers at each stage in the design. A mechanism must

be provided to enable a number of parallel activities to be active at any one time and

then have the relevant parties agree to some common commitment in order for the

design to proceed in an incremental, stage by stage fashion. A variety of design

options should be maintained until enough information is available to make reasoned

decisions about which options should be pursued further.

The final representation style available in CLAP that is discussed here is precisely

intended to allow high level design strategies to be expressed in a flexible way. The

246

representation style, called "extended methods", was written with AlP design

approaches in mind and has a "parallel" call facility to enable multiple processes or

modules to be run.

An extended method is a generic object that is predefined in CLAP. High level

design strategies are expressed as instances of this generic definition.

The generic definition is simply:

object (extended_method) -
self -Name,
variables - [Stepl. .StepN,Gl. .GN,Glist,Al. .An,Rl. .Rn,Object,

Predicate, Status, Surface,Rubbish,D],
slots - (call sequence - Stepl. .StepN,

guar—ds - Gl. .GN,
guard—macros - Gust,
generate—assertions - Al. .An,
repeat_point s-Rl. . Rn,
status_update - Predicate,
status - Status,
dustbin - Rubbish],

relations - (object _argument-Object,
top_level_surface - Surface],

display - [D].

The individual entries are used to express the following information:

Calling Sequence - The calling sequence is a list of "areas" or activities, as
opposed to specific methods, that should be investigated. A number of
activities can be investigated simultaneously by using a "pcall" construct, pcall
stands for parallel call.
Call Guards - A "guard" can be placed on each activity in the calling sequence.
Guards are simply the requirements that must be satisfied before an activity is
worth investigating. They will typically be expressed as high level
relationships.
Guard Macros - If a guard is a very complex expression then it can be
simplified by using dummy macro guards that make the original expression
easier to read. The full expression parts can be stored in this entry instead. This
is simply a programming aid and has no further significance.
Call Assertions - when an activity has been investigated it is useful to assert
relations that describe the status of the design and any special assumptions that
were made. Each entry allows general relations of this sort to be associated
with each activity.
Loopback Points - If any activity is "stuck for information" that should have
been determined earlier in the design, the engineer can be directed back to the
appropriate point earlier in the design. The Loopback points entry simply
indicates which extended method should be reactivated if an activity "fails" for
any reason.
Object Argument - The object of interest is a high level object that represents
the focus of attention of an extended method. It will typically be the object
representing the process being designed or an object representing the design
process itself. By "design process" it is meant the design activities, their state of
completion, the engineers involved etc.
Other Slots - any other slots needed to store information locally within an
extended method. Extended methods can set their own slots just as low level
methods can attach data to themselves.

247

The following entry shows a simplified example of an instance of an extended

method called collect _ input _information. This activity, ie method, is called right at

the start of any design to establish some basic information, eg the name of the process

site, etc. Each of the terms in the dotted sequences correspond to each other, so the

first term in the calling sequence corresponds to the first term in the guards entry, etc.

extended _method - collect_input—information
variables -

1* CALLING SEQUENCE *1

pcall (input_information,
technology _details..
synthetic_path_spec..
input_site_details)..

$null,

1* CALL GUARDS *1

(known_object (technology-T)..
($guard know—about—reaction)..
((known—object (site--))

$or (create_default_site (Tech))))
$null,

1* GUARD MACROS *1

(know—about—reaction - (known—object (process—chemistry-Path)
$or (create_default_reaction (Tech))) J,

1* CALL ASSERTIONS *1

($null. .$null. .$null) . .$null,

1* LOOPBACK POINTS *1

(top_call. .top_call. .top_call) . .top_call,

1* OBJECT OF INTEREST *1

Tech,

/* OTHER METHOD SLOTS */

$null, Status, Surface,Rubbish,Display].

In this example the calling sequence only consists of one call. This call is a tpcall"

which means the activities in brackets can be investigated simultaneously. The

current version of CLAP will automatically create a number of windows on a

workstation display to allow interaction with each activity. This behaviour could be

specialised, for example, to cause another module on another workstation to be

activated instead.

The guards for this example are simple and merely check that the basic process and

plant site details are known, if the process site is undefined then a new "site" object

is created. Both green field and brown field site designs are therefore catered for.

248

There are no assertions associated with the method and all the Loopback points refer

back to the very top level of the design strategy.

The focus of interest is an instance of a "technology" object. A "technology" is an

industrial term for a class of similar processes, eg ammonia technology. An instance

of a technology is therefore a specific plant, and in this example the plant being

designed.

The other method slots are not used in this extended method.

There are three important aspects of the calling sequence of an extended method that

should be noted:

Each entry is either another extended method or a pcall to allow a number of
activities to be run simultaneously. Parallel activities must all be resolved to a
certain extent before the next activity can be investigated. This is the basic
mechanism by which AlP design strategies can be expressed and executed.
CLAP relations are a powerful means of expressing complex constraints in a
process design. Extended methods can make full use of them by checking them
in guards or asserting them in the "assertions". The specialise class of relations
can be used to automatically generate constraints specific to the plant being
designed. The relations can still be used when only incomplete information or
partial data can be provided since their use is based on the notion of "delayed
evaluation". This is extremely important in "real-life" design problems where
adequate information is seldom available. Indeed, an essential part of the design
strategy should be to identify the "data" that is needed for an adequate design.
This is indicated in the systems engineering framework in Figure 1.18.
The most important point about the calling sequence is that, despite its name, it
is not to be thought as a strict procedure or sequence of steps to be followed.
Rather, what they represent are "nodes" in the general framework, in a systems
engineering context, of the design methodology that is being expressed.

The last point requires further clarification. The discussion of a systems engineering

approach to process design introduced two basic ideas:

the system concept, i.e. the entity being modelled as a system,
the systems engineering procedural model. The procedural model consists of a
problem solving strategy that can be successively reapplied to every "life stage"
of the system. Figure 1.17 depicts this in graphical form.

This is exactly what can be expressed by an extended method. The system concept is

represented by the object of interest or any subpart of it when analysis is recursively

made at increasing levels of detail.

The "nodes" in the calling sequence, ie the activities or areas of interest, represent a

particular problem solving methodology. The CLAP interpreter can move up and

down between these nodes in a similar way to the vertical movement indicated in

Figures 1.17 and 1.18. The "path" followed is not predetermined but depends on a

particular problem context. The combined effect of the guards, assertions and

249

loopback points will determine any particular path that is taken.

It is worth considering the more detailed procedural model in Figure 1.18 and how it

relates to extended methods in CLAP.

The procedural principle involves task definition, selection of search techniques,

selection of solutions,etc, applied over each life stage from the Abstract to the

Concrete. It was indicated that three levels of abstraction could be used in this

process:

The Functional Level - to characterise the functional structure of the system.
This must be reasoned about in the task formulation phase.
The Physical Level - translation of the functional level into physical and
chemical effects, typically represented in the models of potential unit
operations.
The Construction Level - development of the details needed to design actual
pieces of equipment

In order to perform analyses at these levels an information storage capacity is

required which represents, amongst other things, methods, data and alternative

solutions. At each stage of analysis information input can be identified, eg required

information, scope of the problem etc, and information output generated, eg data

requirements, intermediate results, etc. Most aspects of this general model can be

directly represented by extended methods that make use of the other representation

styles in CLAP.

The procedural principle is embodied in the extended method itself. Each extended

method represents a framework of activities, any of which can be activated

simultaneously. This framework is maintained implicitly by CLAP and allows

constrained movement between each activity. In complex situations, such as process

design, it is preferable to explicitly represent the design process itself, ie the status of

activity completion, etc, as a high level object. It is then easy to relate the overall

design activity to the identifiable life stages in terms of suitable CLAP relations.

Each of the representation levels, functional, physical and constructional, can be

represented by either relations or slots for the object of interest. Reasoning about the

functionality of a system can be achieved by identifying the intended purpose of

generic units by a suitable "descriptive relation", eg to exchange heat between

streams, or to separate components. This "descriptive relation" can be applied to any

unit or system that satisfies the domain and active code requirements of a CLAP

relation. To check whether the functionality can be achieved, e.g. can two particular

components be separated, requires the definition of another relation stating the

constraints to be satisfied. Checking these constraints may involve calling low level

250

methods, using message passing etc.

The representation and storage of methods, data, alternative problem solutions etc,

can all be directly expressed in CLAP using the various representation mechanisms,

eg objects, slots, metaview points, contexts, methods, specialise and operator

relations, etc. These are not directly referred to in the activity framework of an

extended method but directly or indirectly in the guards or assertions of the extended

method. Checking or asserting either relations or slot values can activate code to run

methods or check other relations. The specialise class of relations and use of Prolog

instantiation in CLAP methods means that problem specific constraint, forms and

"procedural type" code can be automatically generated.

The information input and output requirements at any stage can be directly expressed

in the guards and assertions associated with any activity in an extended method. The

problem specific output requirements generated by one activity can be picked up and

used as input requirements to be satisfied by subsequent activities.

The concept of an AlP approach is not explicitly represented on Fig 1.18 but see Fig

1.21. The "pcall" construct in an extended method provides the basic mechanism to

implement such a strategy. In a blackboard system such as Designer's Assistant each

parallel activity could be handled by independent modules covering different aspects

of the design.

3.4.25 Summary: Extended Methods

Extended methods in CLAP, when combined with the other representation

mechanisms, provide the basic functionality required to express complex, high level

design methodologies. A methodology expressed as an extended method is not a

strict set of procedural steps to follow but a framework of activities that can be

applied to any particular system of interest. The linear ordering of activities simply

represents the implicit hierarchy of constraint requirements to be satisfied by each

activity.

The interpretation need not be "linear", i.e. sequential, at all. CLAP provides the

ability to move up and down between activities depending on unforeseen problems

that may arise. This movement is guided by loopback points which indicate a likely

activity, or group of activities in the case of reference to a "pcall" entry, to be

resurrected.

The basic purpose of extended methods is to allow -

a design methodology to be expressed in a suitable framework
the status of a design to be explicitly maintained along with any assumptions,

251

design decisions taken and at what point, etc

The sequence of steps taken in each activity is determined in a dynamic, problem

specific manner. For example. a top level activity might be to establish a block flow

diagram for the process. This in turn may require an initial mass and energy balance

as an internal requirement. The generation and solution of the mass and energy

balances can vary in every problem both in terms of the model detail and the solution

techniques. The most suitable techniques and models can be selected for a particular

problem by using the "$decide_on" and "$model" commands. Problem specific code

can then be evaluated by generic procedures, as shown in the ESSPROS example in a

straightforward way. This is exactly what was alluded to in section 1.8 where it was

stated that a systems engineering approach should provide a flexible framework that

can be used in an appropriate and creative manner.

Since an extended method is represented as an object and the calling sequence of

activities is represented as a slot value naming other extended methods, there is

nothing to prevent inference techniques being written to reason about the activities

that should be involved. It is questionable, however, whether reasoning about task

formulation at such a high level of abstraction would be of much use in process

design. In industrial designs, the identifiable life stages or intermediate design goals

are very clearly defined and the number of distinct activities that must be completed

to achieve these goals are usually the same, eg, development of process fiowsheets,

design specification sheets, piping and instrumentation diagrams, technical drawings,

etc.

Reasoning about steps within a single design procedure, as described by a low level

method for example, does not require the use of an extended method.

3.4.26 Discussion and Summary of the Overall Structure of CLAP
• As indicated in the preface to this section the development of CLAP either predated

or coincided with the widespread availability of comparable commercial software on

non-specialist hardware, eg KEE(1985), Knowledge Craft(1988) and ART(1986).

These systems are usually called hybrid systems in that they provide a number of

programming techniques, many of which they share in common. For example, they

all support description of objects in some form and make use of multiple worlds or

contexts.

KEE is basically an object orientated programming tool written in Lisp. KEE does

not use explicit meta-slots but equivalent information can be expressed in so called

"slot facets" which further describe a slot (they can best be thought of as slots of a

252

slot). KEE supports a "strict" form of message passing which relies on the use of slot

demons. Other than objects, KEE has a production rule interpreter, a truth

maintenance system and a limited pattern matching facility.

The rule interpreter is a simple agenda based, rule activation system. The

programmer can modify the control strategy for processing the agenda by settling

various global variables. The truth maintenance system can be used in conjunction

with the rule interpreter. Dependencies are expressed by so called "deduction rules"

of the form

while <conditions>
believe <statements>

These rules are maintained by the rule interpreter and are commonly used to "poison"

or rule out possible worlds representing different states of objects.

KEE has a TELL—AND—ASK language which allows simple forms of predicates or

logical expressions to be asserted or queried.

KEE also has extensive graphics facilities and in particular uses "active images" to

activate demon like functions associated with an object. This allows extremely

interactive and visual user interfaces to be developed.

Knowledge Craft is very much a set of library utilities, written in Lisp, that can be

used to build a specialised application. The most notable feature of Knowledge Craft

is its use of relations between objects. In the context of CLAP the relations are of the

simple symbolic type. Knowledge Craft also has an extended version of OPS5 that

takes account of Knowledge Craft's objects and allows sets of production rules to be

constructed in the usual way.

ART is interesting in that everything is written as rules. Great care has been taken,

however, in providing an interface that does not require the programmer to write

object descriptions, say, in an unnatural rule based format.

In terms of representation style there is little to choose between any of these systems

but KEE is generally regarded to be the most comprehensive system.

Despite a number of resemblances to these systems at a superficial level, CLAP has

several distinct features that makes it a useful development tool.

1. Perhaps the most important point is that CLAP was purpose built to allow
procedural and declarative knowledge to be represented in the same system in a
natural way, hence the name CLAP - Combined Logic and Procedures. Low
level procedures, ie CLAP methods, are evaluated or interpreted as proofs
within a backtracking control strategy. The ability to treat "programs" or code

253

as data structures when combined with Prolog's unification mechanism, allows
extremely clear and precise generic methods to be defined.
External software can be easily interfaced or incorporated into methods. This
includes using or referring to external data structures as values in objects.
Relations in CLAP provide a way to automatically generate sets of equations
that can be used in building process models. Operator relations can be used to
create distinct solutions of specialised constraint forms under different sets of
bindings.
Meta_view points provide a powerful way of viewing slots or relations from a
particular point of view.
The use of multiple inference techniques is supported by explicit CLAP
commands, eg $model, $infer_with, rather than relying on the programmer to
provide LISP code to modify the behaviour of the system.
It is easy to replace or augment CLAP's default interpreter techniques when
more sophisticated methods are required, eg the use of a meta-vocabulary for
consistent interpretation of slots. This is done by setting a number of allowed
user-options.

In comparison to other systems CLAP has a rich variety of representation styles that

are completely compatible with one another. The emphasis in CLAP is to use the

most appropriate representation technique for different aspects of the same problem.

Certain information is best expressed as rules, while other knowledge is better

represented as a class hierarchy or as an explicit procedure or as sets of relations and

constraints. Local consistency checks are naturally expressed as demon functions

while global information can be conveniently transmitted by message passing

facilities.

It seems unnatural, and totally unnecessary, to try and force information to be

represented in a particular style. This is especially true in a complex problem domain

such as process engineering design in which a variety of problem types must be

catered for.

All of these considerations are, of course, completely general and can be made

regarding any knowledge representation system. The fundamental difference

between CLAP and other commercial systems is that it provides three specific

techniques that are essential in the development and use of a process engineering

design environment:

A hierarchy of explicity defined relationships or constraints that can be
automatically specialised in a particular problem context. This can be used to
generate sets of equations at a low, model building level or describe inter-
object constraints at a much higher level in common engineering terminology.
An ability to express well defined design procedures or solution algorithms in a
generic way that can be specialised later to take account of specific details of a
problem. Low level CLAP methods provide such a facility.
An ability to express a design methodology in a high level framework that
allows adequate flexibility in the way it is applied to any one particular
problem. Extended methods can be used for this purpose. In addition, they
provide a basic mechanism to allow a number of parallel activities to be
coordinated within the framework. This allows for the development of ATP

254

based design strategies.

A short summary of the overall relevance of different representation techniques to

aspects of process design is given directly below.

255

3.5 Relevance of Representation of Styles to Process Design

This section provides a brief summary of the different types of representation

techniques investigated and developed in the initial research work of this thesis. In

particular their potential for immediate application in the development of a process
design environment is considered.

The comments given below are made with considerable hindsight and represent a

pragmatic view of the use of current representation techniques as high level

programming languages or styles. The discussion is solely concerned with the

practical adequacy of these formalisms for immediate software developments that

will improve upon the current software situation as described in Chapter 1. The

remaining chapters will argue, however, that the formalisms are in fact totally

inadequate, from a theoretical point of view, to address the basic problem of integrity

of knowledge in a process design environment.

The comments are still useful, if only for comparison with related research by other

workers in this field, Section 3.6.

3.5.1 Rule Based Production Systems

The literature suggests that rule based production systems have been successfully

used in tackling certain types of problem in a wide variety of areas. In particular,

problems that are of a relatively narrow scope and can be characterised in

situation-response terms are amenable to solution.

In the context of process design, rule based systems can be applied, often in a trivial

way, to standard design procedures based on decision trees. Typical examples

include the selection of most items of process equipment, eg valves, heat exchangers,

pumps, types of distillation column internals, etc. Since decision trees can be

processed without the use of a rule based system a reasonable question to ask is why
use rule based systems at all for this purpose?

A trivial answer would be simple programming convenience. It is much easier to

write decision trees in a natural symbolic form rather than invent some contrived

numerical coding for its implementation. The symbolic form should be easier to

maintain, since the programmer's intention is easier to follow, and hence, extend in

the future. If programming convenience is the only reason and a rule based system

does not provide a clear, easy to understand syntax then there seems no reason for its

use whatsoever.

In the context of the main theme of this thesis, the answer, of course, lies in the basic

256

commitment to the explicit representation and maintenance of knowledge in a process

design environment. The selection of an item of equipment is not an isolated problem

but made in the wider context of the process design. Any intermediate design

decisions, assumptions, etc should be available to influence the equipment selection

procedure. Similarly, any intermediate assumptions, hypotheses, etc used in the

decision procedure should be made explicit to ensure that they are not subsequently

contradicted at a later point in the design. Any terms or words referred to in a node of

a decision tree, eg the vapour pressure, that are represented by a single numeric value

lose their wider significance, eg the status of the value - was it guessed, estimated,

calculated, the relation of the-word to other words, etc.

Most importantly, it should be realised that equipment design decision trees are

usually gross simplifications and must be used in conjunction with other decision

aids, eg design calculations, safety considerations etc. It is important to be able to

reason explicitly about the nature and importance of the heuristics expressed in a

decision tree and compare this with other sources of information when making a

selection choice. For instance if one technique suggests the use of a graphite block

heat exchanger it is important to know if this was even considered in an alternative

equipment selection decision tree. It is this knowledge of what is considered in a

decision tree and how it relates to other problem information known at the time that is

so important. The use of rule based systems is just a first step in this direction but

nevertheless a useful one.

Another immediate application of rule based production systems or theorem provers

is in heuristic graph searching algorithms. The first section of this chapter explained

at some length heuristic search algorithms in terms of searching graphs with the use

of heuristic evaluation functions to estimate the cost of further search. Classic

optimisation strategies, eg branch and bound, dynamic programming etc, can all be

expressed in these terms. It was then shown that logic theorem provers operate on

exactly the same kind of graph structures, and that many production systems can in

turn be re-expressed as theorem proving systems.

The problem with many previous attempts at writing heuristic synthesis of flowsheet

structures, was that high level design information was being inadequately expressed

in low level representations. It was impossible, therefore, to make full use of the

implications of high level statements or general background knowledge to guide the

search.

Higher level design information could be reasoned about in a production

system/theorem prover to help guide the lower level search strategy. In particular, it is

not necessary to try and bring all the information down to the level of the

257

search/optimisation algorithm, ie in the form of numerical/ mathematical constraints.

There is little point, and considerable difficulty, in trying to express and make use of

general, static information in the form of some highly contrived cost function. Even

if this could be done it would be most unlikely that the information expressed could

be used in other parts of the design process.

A more sensible approach is to use appropriate representations for different levels of

the search/optimisation problem. At the lowest level it is perfectly acceptable to

perform rapid enumeration of, say, distillation column sequences with simple cost

functions. Enumeration of sequence configurations is, however, only a small part of

the design of a separation section of a process. Guiding the search process and

controlling the depth to which it is evaluated within this wider context is much more

easily done by means of a high level evaluation process. It also means that the

intermediate reasoning performed in the search can be explicitly represented and used

again later. Since both production systems and heuristic search techniques can be

described in very similar ways it is easy to embed the control of the latter within the

operation of the former.

There is little point, however, in taking a standard optimisation algorithm and merely

re-expressing it in a rule-based form in the hope that a "symbolic" search will

somehow be more effective than an equivalent "numerical" optimisation. Niida et

al(1985) is a typical example involving separation synthesis heuristics. In the context

of a process design environment a symbolic "black box" algorithm is just as

troublesome as a numerical "black box" algorithm.

One of the main reasons for using a high level representation system at all is to allow

more adequate formulations of problems to be made by placing them in a wider

problem description and making better use of different sources of information in their

solution.

3.5.2 Frame Based Systems and Object Orientated Programming

It is difficult to make any generalisations about frame based systems, and object

orientated programming styles, as there are so many variations between systems.

Nevertheless, a few main points can be identified regarding their practical use.

The first and most obvious point is that it straightforward to construct class or object

hierarchies to store general descriptions in a relatively structured way. Useful

examples include the classification of equipment types, classes of chemical

compounds, etc. Flexible systems, such as CLAP, allow other types of entity to be

cast into hierarchies. CLAP uses a hierarchy of relation types to classify different

258

types of constraints, equations, etc.

From a programming point of view it is undoubtedly the structured storage aspect of

objects that is most useful. A complex problem can be characterised by first

identifying the different types of entity necessary to describe the problem. This is just

an example of good programming practice involving the use of abstract data types.

Languages that support abstract data types, eg Modula-2, Ada, recommend that all

manipulation of data types, eg setting or checking values, be done through a defined

set of messages, ie a protocol. The implementation of a data type and its protocols is

then completely insulated from the rest of a program. This results in significant

benefits when writing and developing large, complex programs.

High level objects retain all these benefits with the addition that individual slots or

attributes of objects can usually be further described by meta- information. This

information might simply describe the allowed value types for a slot or it may express

complex dependency information between a slot and other slots, possibly in different

objects. The use of this type of meta-information is a first step towards the ability to

maintain the integrity of data across sets of objects.

The use of slot demon functions for control or side-effect purposes should be kept to

a minimum since the "knowledge" being used is implicit or "hidden" from any global

reasoning strategies. If demons, either of the before or after kind, are restricted to

checking explicit relationships, inter-dependencies, etc then they too can help

maintain simple forms of data integrity within an environment.

An emphasis on the use of objects rather than procedures to characterise a problem

also allows external procedures or programs to be interfaced to an environment in a

much more logical way. Specific functions can be "attached" to individual slots or

objects as a whole and organised around the object data hierarchy rather than

vice-versa. Functions or programs perform local operations of well defined data

structures. There is no need to maintain complex links or execution paths between

each function. This style of code organisation is becoming widely appreciated

especially in the context of large programming developments, eg see Weiner and

Pinson(1988).

It should be noted that all of the benefits concerning the use of schema to describe

abstract entities and structure data within a process model, as outlined in chapter 1

regarding database management systems, can be equally applied to many 0.0.

systems. The programming styles and techniques available are, of course, very

different between current 0.0. systems and languages used in earlier DBMS's.

259

3.5.3 Logic Based Representations
The most widely available logic programming tool is the Prolog interpreter. The

interpreter is not a sophisticated theorem prover itself, being based on Lush resolution

on Horn clauses, but can be used as the core language in which to implement other

more sophisticated systems. The development of CLAP is a typical example that

makes full use of Prolog's built in unification and backtracking search facilities.

The most obvious use of first order logic representation systems in process design is

in expressing and reasoning about complex relationships between entities. Few, if

any, of the rule-based or frame based systems have the capability to express full first

order logic formulae or expressions. In particular, existential and universal qualifiers

are poorly handled, as is the treatment of negation.

It is generally assumed in the literature that some form of logic representation is

necessary, either implicitly or explicitly, in sophisticated knowledge representation

systems. Further discussion is delayed, however, until chapter 5. Since no

comprehensive, logic based systems are available commercially the best short-term

solution appears to be the use of Prolog in conjunction with other representation

styles in a hybrid system, eg CLAP.

3.5.4 Procedural Methods as Declarative Data Structures
There is nothing new about the use of procedures and algorithms in process

engineering software. What is new in the development of methods in CLAP is the

emphasis placed on treating "procedural information" in a declarative way that

combines the features of both logic and procedural programming.

A CLAP method is treated as an explicit object or item of data, the contents of which

can be reasoned about by other methods or inference techniques. This makes it easy

to specialise the "code" or "body" of a method in a problem dependent way. Most

importantly, it also means that the solution technique, assumptions made, etc, can be

made readily accessible to other decision making methods.

The evaluation or interpretation of a procedural-like method is seen more as an

exercise in theorem proving or satisfaction of constraints rather than a blind execution

of sequential steps. This approach is greatly enhanced by the use of CLAP relations

and Prolog unification within a method definition.

It is undoubtedly true that valuable aspects of design expertise are most naturally

expressed in a procedural manner. It seems essential therefore that a flexible high

level language be used to express these ideas in a way that can be explicitly reasoned

WE

about by other inference mechanisms.

The continued use of large, self-contained algorithmic programs is of little long-term

value. The development of more sophisticated systems requires that external code be

gradually reduced to small, very well defined operations that are free from global side

effects, eg multiplication of arrays, etc. Even at this level the implicit functionality

should be represented elsewhere in an explicit form, e.g. the definition of the

Gaussian elimination procedure, or any variation thereof, Newton's method, etc.

Many problems can be formulated in an apparently correct low level form only to

find that convergence does not occur because of numerical approximation errors or

instabilities. A lengthy tracing or debugging session by hand is usually necessary to

locate and resolve the problem. This situation could be handled much more

satisfactorily in a system like CLAP by reasoning about non-convergence in an

explicit way as part of another method.

Extended methods are unique to CLAP and are directly concerned with expressing

high level design strategies in a systems engineering framework. Their relevance to

immediate use in a process design environment is therefore obvious.

3.5.5 Blackboard Systems

The immediate benefits to be gained from use of blackboard systems are not due to

any representation style, since any representation technique can in theory be used in

each knowledge source (KS), but due to the structuring of knowledge, procedures and

data into related "chunks" or modules. In many ways this is exactly the same

argument as was made for structuring information within objects.

The basic difference between KS's in a blackboard system and objects in an 0.0.

system is that messages are not made on a direct one-to-one correspondence. All

messages are sent to the blackboard and the activation of any particular KS to process

the message further is at the discretion of the agenda scheduler. The scheduler is

typically opportunistic in nature but there is no reason why an alternative planning

strategy, eg the use of non-linear planners, could not be used to control the activation

of KS's. -

The opinion taken here is that a blackboard architecture is well suited to partitioning

large, complex, ill-defined problems at a rough grain size but are less appropriate for

smaller, more well defined tasks. The latter type of problem is more appropriately

represented within a single KS where tighter control can be kept on any search or

problem solving strategies.

261

3.6 An Overview of Al applications in Chemical Engineering

The time of writing this review on other related Al research in process engineering

considerably post-dates both the work described so far and the remainder of the

research work in this thesis. It is with considerable hindsight therefore that the

following comments are made.

The main aim of this thesis is to investigate the use and suitability of knowledge

representation techniques for use within process engineering design. Since the period

1984-1986, which covers the research of the previous chapters, a large number of

papers have been published pertaining to the use of "expert systems" in process

engineering. As it turns out many of these papers are of a preliminary, investigative

nature and have little to contribute to the study of knowledge representation.

Nevertheless, many of the papers are still interesting if only to demonstrate the

potential range of applicability of these ideas. Examples of such papers include

Bingzhen et al (1988) - an expert system for heat exchanger network synthesis, Earl

and Williamson (1988) - control system synthesis, Niida et al (1988) - process fault

diagnosis, Wetherhill and Cameron (1988) - preliminary hazop studies. These and

other papers are not reviewed here for the reason stated above. References, however,

to other reviews which do go into more detail are given later.

What is of more benefit to this thesis is a general overview of the representation

techniques that have been investigated by other workers to date. References are

given for papers indicative of each approach.

The basic areas of research that can be identified in the literature are:

Rule Based Production systems
Blackboard systems
Frame/Object Oriented systems

It is fair to say that work in each area has concentrated on the use of a representation

style for a particular, isolated problem. It is not until very recently that the wider

implications of representation methods have been considered, see Henning et al

(1989) and Piela (1989) below. It is, of course, this wider context that is of prime

concern in the development of an integrated process design environment.

The development of production rule systems and blackboard systems are well

illustrated by a group of related papers. Banares-Alcantara and Westerberg (1985)

describe a rule based system to aid the the selection of appropriate vapour liquid

equilibrium methods. The rules are represented in an inference network in the

262

CONPHYDE system, which is a close derivative of PROSPECTOR (see section

2.5.3). This work is very similar in nature to that described earlier in section 3.1 on

heat exchanger selection.

A more sophisticated development is DECADE, see Banares-Alcantara (1986) This

system is based on a blackboard architecture and is concerned with the selection of

catalysts for a specified single step reaction. The overall model is based on

opportunistic planning and solution of goals that are posted on the blackboard. Some

of the knowledge sources involved include thermodynamic feasibility testing,

reaction specification (user interactive) and reaction classification. The

implementation is interesting in that it uses a hybrid approach. The OPS5 system is

used for rule based pattern matching while the knowledge sources themselves are

organised around frames in an inheritance hierarchy using the SRL language, see

Wright and Fox (1983). The overall system is driven within a LISP environment.

The representation techniques within DECADE are, however, somewhat limited. A

more general discussion of the use of both goal driven and data driven architectures

within an opportunistic blackboard system is given in Weke, Lien and Westerberg

(1987). This describes an outline of the use the AKORN-G and AKORN-D systems

in the context of design of separation systems. A somewhat different rule based

system is that of Kirkwood, Locke and Douglas (1987). The PIP system is concerned

with the heuristic synthesis and evaluation of process flowsheet alternatives. The

system structure is one of a hierarchical decision tree, searched in a depth first

manner, that is closely coupled to a library of utility calculation procedures based on

short cut modelling techniques. As an example of an extended heuristic graph

searching program it is of some interest but is of little value from an explicit

knowledge representation point of view.

In the use of object oriented environments the work of Stephanopoulos et al (1987) is

typical of many subsequent papers. That paper describes the ideas involved in

DESIGN-KIT, an application implemented using the commercially available KEE

toolkit, see KEE (1986). It is shown how objects and slots in KEE can be used to

represent typical plant items and sets of modelling equations and how KEE methods

can be attached to slots to perform various types of calculations. Most of this

functionality is directly available in CLAP, see section 3.4.

An extended discussion and criticism of frame based systems is given in chapter 4 so

further comment is not provided here. Another notable application is that of

Vancoille and Bogaerts (1989), also Vancoille, Bogaerts and Perdieus (1989). The

system is called PRIME and is implemented on top of KEE. It deals with a large

range of material selection and corrosion problems classified under different areas of

263

process technology, eg oil refining, agrochemicals, etc. It is interesting since it is one

of the few process engineering systems that has been implemented on a large scale

and is operational.

Finally, there are two recent works that are of direct relevance to this thesis in that

they propose the use of general modelling or representation languages. The first

work is that of Piela (1989) and the ASCEND system. In this work Piela describes a

modelling language based on objects within an inheritance hierarchy and a set of

tools for manipulating the resultant structures.

The modelling language is in fact very simple compared to other AT toolkits. This is

because it was written directly for the purpose of generating process models in an

equation oriented fashion and their subsequent solution. The basic construct is

labelled a MODEL and can be thought of as a simple kind of object. The main

features of the language are:-

REFINES - one model refines another more generic one. This provides model
inheritance.
IS A - a term within a MODEL can have a type associated with it to provide
access to parts of other model constructions.
ARE ALIKE, ARE SAME - mechanisms used to provide partial and total
merging of variables in models that refer to other model structures.
IS REFINED TO - this provides a deferred, or late/run time binding mechanism
for instantiating terms in a model.
UNIVERSAL - provides a mechanism to declare global variable values.

The following code fragment shows a model of a tank draining problem that is to be

solved by the Runge-Kutta method.

MODEL tank-draining-problem
ma 	 IS A 	equal multistep;
1* ie an integration method*/
ms.h 	 := 0.2 (mins)
ms.n steps 	:= 	8;

ms.init state IS-REFINED TO tank model;
ms.steps [1] 	IS REFINED To Runge Kutta 4:

ms.init state.y(1] := 10 (ft"3)
ms.init state.y[l] .fixed := trlAe;

END tank draining problem;

MODEL TANK model REFINES FUNCTION evaluation

• y[1], vol 	ARE THE SAME;
y prime[1], dvol dt ARE THE SAME;

dvol dt + = F out:
F out = params. k* 1.0 (gpm) * (ht/(1.0 (ft))) A (1/2);
ht = vol/params.a;

END tank model;

The code is sufficient to show how models can be constructed in a hierarchical way

and instantiated at run time. Piela discusses the way in which equation solvers are

264

interfaced to ASCEND to solve such problems. In many ways ASCEND is better

considered as a 4GL modelling language. In comparison with the work here it is

clear that the relations facility in CLAP, both for specialising generic forms of

relation, ie equations, and evaluating specific relationships, can be used to directly

emulate the modelling capabilities of ASCEND. The work of Hutton (1990) has

demonstrated this in practice. The advantage of CLAP is that it retains a number of

other representation and programming mechanisms that can be used for different sorts

of problems.

The second, and final work to be described is Henning, Leone and Stephanopoulos

(1989 a, b) and represents a development of DESIGN-KIT. The work involves the

development of a modelling language called MODEL.LA . The language is concerned

with modelling two areas:

Modelling objects and their describing relationships in design states.
Modelling procedural design tasks.

In each case a restricted set of terms are provided to let more complex objects or

procedures be constructed in a systematic way. Those for the object descriptions are

listed below:

is a: e.g. PLANT is a Generic Unit
is a member of: e.g. RiOl is a member of CSTR
is composed of: e.g. Heat Exchanger is composed of (TUBES, BUNDLE,
SHELL)
is part of: inverse of composed above.
is attached to : e.g. Feed F 1 (port) is attached to S 10 (stream)
is connected by: inverse of attached above
is described by: e.g. F 1 (unit) is described by (LUMPED MASS BALANCE,

LUMPED ENERGY BALANCE)
is describing - inverse of described by above.
is disaggregated in : e.g. TO STRUCTURE is disaggregated in (REACTION
SECTION,

SEPARATION-SECTION)
is abstracting: opposite of above

Similarly there are ten task items used to formulate procedures, eg SELECT (some

alternative), IDENTIFY (information required), EXECUTE (some procedure) etc.

The language represents an improvement implementation details of over the

DESIGN-KIT in that each term has an explicitly defmed semantics. This should help

prevent ad hoc interpretations of objects and their slots in an inheritance hierarchy

(see chapter 4). The implementation of object and procedural tasks in MODEL.LA is

very close in spirit to the approach taken in CLAP. The main difference between the

two, apart from CLAP's special equation generating facilities, is that CLAP does not

insist on the use of a predefined set of operators to describe objects and procedures.

Using the operators available in MODEL.LA it remains to be seen how much of a

265

procedure can be represented in explicit terms and how much will remain hidden as

side effects within LISP code. The main contribution of the work is that it attempts to

bring some order and formal analysis to the otherwise ad hoc and haphazard use of

object oriented systems.

Finally there are a number of other reviews and collections of papers describing

applications in chemical engineering and other engineering disciplines. Two early

reviews are Sriram (1984 a, b). A later review is Hutton, Ponton and Waters (1990)

and a useful collection of related papers is Reklaivis and Rippon (1988). Some useful

discussion on the general applicability of Al techniques to process engineering can be

found in Lien, Suzuki and Westerberg (1986), Stephanopoulos (1989), and Sargent

(1989). Venkatasubramanian and Dhurjati (1987) is useful for its criticism of rule

based representations. In a different vein both Huang and Far (1988) and Motard

(1988) provide useful comparisons between relational database systems and object

oriented databases.

Chapter 4
Towards an Intelligent Process Engineering Design Tool

The initial research described earlier in this thesis focussed on the use and

development of state of the art symbolic programming techniques and their potential

application in a process engineering design environment. Three main developments

were presented:

The use of a rule based production system in a typical design selection problem,
i.e. the initial choice of the type of heat exchanger to select for a given duty. A
generic framework more suited to engineering design problems was outlined.
The use of the rule interpreter is embedded within "context setting" clauses
which can be used to perform "before" and "after" calculation. This avoids any
unnecessary forward and backward chaining/search. Much of this information
is more readily expressed in procedural form and does not need to be
represented in a cumbersome rule format using the given framework.
The use of a model based rule interpreter within the wider context of a module
operating in a blackboard system called Designer's Assistant. The rule
interpreter, concerned with the selection of physical property estimation
techniques, was significantly more sophisticated than the earlier version used
for heat exchanger selection. In particular, compromises on the application of
rules to select estimation techniques and the availability of data can be easily
expressed.
The interpreter makes use of a taxonomic classification of chemical compounds
that allows generic properties to be defined at any level and supports simple
inheritance of these properties by sub-classes. This allows generic domain
dependent data to be defined in a structured and concise way. A "process
model" is built up during problem analysis and represented in partitioned areas
of a common blackboard corresponding to a system, its streams, units, etc. The
interpreter incorporates a simple localised planner, to sequence the order in
which requested goals should be searched, and a two pass advice and evaluation
search strategy. At any point in a search the interpreter can make a request
either to other modules in the system or the end-user using a standard module
interface. This means that large complex problems can be broken down and
solved by a number of smaller, better defined modules that can interact with
each other. This potentially allows alternative, specialised representation and
inference techniques to be used in different modules where appropriate.
A first attempt was made to solve the fundamental problem of arbitrary
tokenism that occurs both in intra-module and inter-module interpretation of
information, e.g. rule conditions, process model assumptions etc. This involved
the definition of a module language that describes every token referred to in
terms of simple dependencies on other tokens, attached procedures for
evaluation, its representation in a process model, etc. This information is used
to help guide the interpreter throughout a search process and could be used by
other module interpreters in an attempt to maintain consistency in the use of
tokens in different modules.
A very flexible hybrid programming environment called CLAP (Combined
Logic and Procedures) was developed. The system combines many features of
object orientated, procedural and logic programming styles in a high level way.
The use of message passing, multiple worlds, procedural methods, interfaces to
"external" code, theorem proving techniques etc, can be freely intra-mixed
depending on the most appropriate way to solve a particular problem.
CLAP has a unique relational facility that allows generic process constraints,
equations, etc, to be easily defined and then automatically specialised and set up

for solution for a specific problem. CLAP can maintain multiple solutions of
these constraints for later use if necessary. This makes the process of
constructing alternative unit operation models a very simple one.
Another interesting feature of CLAP is the use of meta-view points to allow
multiple points of view on the "value" of a slot or relation of an object to be
represented. A formal mechanism to define both meta-slot and meta-relation
information is provided. This meta-information can be used to reason about
complex dependencies in a similar way to the use of the module language token
definitions in the blackboard interpreter. It is left to the system programmer to
augment CLAP's default interpretation techniques where necessary.
Although CLAP is a generic programming tool it has two additional features
specifically intended for use in process design applications. The first of these is
the use of procedural like methods to express low level, well defined design
procedures or algorithms. They are interpreted, however, in a theorem proving
like way using backtracking search, unification etc. This allows methods to be
expressed in a very concise but generic form that can be later specialised in the
solution of a particular problem. The second feature is the use of extended
methods to represent high level design methodologies. These provide the
necessary framework to allow different design strategies to be formulated and
described from a systems engineering point of view. This includes the use of
AlP based design strategies as introduced in chapter 1.

It is clear that given these initial developments any number of more detailed

demonstrations concerned with different aspects of process design could have been

developed to further illustrate the programming techniques involved. This is the

approach that has been taken by other researchers in this area, see section 3.6.

Alternatively, the concept of an AlP design methodology could be developed much

further using the features of CLAP embedded within a module of the blackboard

framework of Designer's Assistant. The blackboard entries could be easily modified

to a set of CLAP objects that could be used to pass information from module to

module. Each module could use CLAP as its base interpreter since other inference

techniques, e.g. rule based interpreters, are easily embedded within CLAP. Existing

software could also be directly interfaced with CLAP objects using external type

methods if necessary.

Neither of these options were in fact pursued further. The purpose of the rest of this

chapter is to highlight some of the deeper issues involved and provide an initial

explanation of why further research on representation techniques was deemed

necessary.

1 Reassessment of the Requirements for an Integrated Process Design
Environment

The concepts of integrity of data, knowledge and integrated process design were

defined in chapter 1. These definitions are repeated here in abbreviated form for

convenience:

- Data Integrity - the consistent use of data in design activities in terms of the

268

availability, uniqueness of value and explicit functional constraints imposed on
the data the control of data should explicitly take into account the way in
which that data is used in related process design activities.

- Knowledge Integrity - An explicit representation of the assumptions and
principles upon which the data is based as well as an explicit knowledge of how
that data can be used and manipulated in terms of other data dependencies, both
of which must be consistently maintained throughout the design process. This
can be thought of as being consistent about the reasons behind data constraints
which in turn requires awareness of the background knowledge, theory and
decisions responsible for the creation of the data.

- Integrated Process Design - An explicit representation of the principles of overall
management of a design project in terms of the design activities and associated
methodology. This methodology must incorporate the notion of knowledge
integrity into its formulation.

Current database management systems were considered and it was concluded that

they were far from adequate in terms of providing a programming environment to

ever achieve these goals. Three basic levels of representation were identified, see

section 1.7, that are needed in an integrated process design environment:

A means to both represent and interpret the basis and intended effect of
operations which manipulate data. This involves maintaining known
assumptions and functional dependencies.
A means to represent, reason about and control an overall design methodology
whether at a project management level or a low level problem solving level.
A means to represent the fundamental principles upon which "data" is based.

The -types of data and knowledge representation needed for each of these levels were

discussed throughout chapters 2 and 3. This included:

Descriptions at an object, attribute, relationship level.
Description of problem solving techniques in regard to the use and consistency
of the information expressed in 1).
Explicit representation of an overall design methodology and its relation to
particular decision making events.

This effort was in direct response to the research goals stated in section 1.9.

The initial developments of a rule based production system, Designer's Assistant - a

blackboard based system, and CLAP - a hybrid object orientated, procedural and

logic programming tool, were attempts to investigate the use of state of the art

programming techniques in Alto express this sort of information, design expertise,

etc. In order to appreciate more fully the processes involved, several of the

programming methods were redescribed in standard logic based, theorem proving

formulations. This allows the different styles to be understood in terms of common,

clear and precise semantics.

After careful consideration, the main conclusion to be drawn from this early work is

that the basic structure or framework of Designer's Assistant is a potentially

269

appropriate one for use in a process design environment if it is embellished with

additional features such as CLAP relations, low level methods and extended methods.

What is clear, however, is that the individual interpretation techniques developed so

far are totally inadequate to satisfy the basic requirements of an integrated design

environment as stated above. In order to explain why this is so, a number of general

observations concerning the work so far, and that of other researchers in Al, must be

given. This will start with a statement of the key remaining problems still to be

solved, section 4.1 below. Sections 4.2 through 4.4 briefly highlight the main flaws

associated with the direct use of a system like CLAP or the physical properties rule

based interpreter in an integrated process design environment.

4.1 Fundamental Research Objectives

It is easy to see how simple systems like Designer's Assistant and the CLAP

interpreter could form the basis of a structural, modular process design environment.

It is the author's belief, however, that the problems of producing a truly intelligent

computer aid or environment for solution of a complex task involving a large and

diverse domain of knowledge with complex but systematic interrelations, as found in

process design, go far beyond the scope of any current "expert" or "knowledge based"

system.

It appears that two fundamental objectives have still to be achieved:

A unified and systematic representation of fundamental, heuristic and
procedural knowledge and a consistent framework for its interpretation must be
devised to cope with the domain of process engineering. The breadth of this
domain and complexity of interactions within it precludes the use of the
simplistic representations of current database management systems as a
practical option. The depth and complexity of decision making involved would
appear to make the interpretation methods of simple rule, frame and hybrid
based systems seem wholly inappropriate and inadequate. A unified
representation and interpretation is clearly essential if the problem of arbitrary
tokenism is to be avoided as knowledge is shared between many diverse tasks
and engineers in a design.
Intelligent engineers dealing with complex phenomena, such as chemical plants,
appear to derive their understanding from a localised world picture or "mental
model". (This is suggested by recent research in cognitive science and
psychology as explained later). This model or understanding of the situation
will be updated and refined by knowledge from various sources as a design
proceeds. The mechanisms for constructing, updating and reasoning about this
"fundamental model" are crucial to the development of any truly intelligent
designer's aid. (The term functional model is defined later as part of an
approximate representation of a mental model).

It is not believed that current representation techniques offer a satisfactory long-term

solution to these problems. Section 4.1.1 below illustrates this by indicating some of

270

the basic features or capabilities required by any intelligent, problem solving agent.

4.1.1 Intelligent/Expert Systems

The use of the term "expert system" has been consciously avoided in the discussions

so far. It was originally used to describe systems such as MYCIN and

PROSPECTOR but now appears to be used to cover almost any sort of program

involving symbolic programming techniques or search algorithms, both in academic

literature and popular press. There is no single definition of the term but the

following quote is typical: "An expert system is one that -

handles real-world, complex problems requiring an expert's interpretation, and

solves these problems using a computer model of expert human reasoning,

reaching the same conclusions that the human expert would reach if faced with a

comparable problem", Weiss and Kulikowski(1983).

This definition is particularly unhelpful on a number of counts:

- "real world, complex problems" and "an expert's interpretation" could be taken to
mean just about anything. It gives no indication of the type of problems that can
be solved, what aspects of expertise are required, etc.

- Vague references to "computer models of human reasoning" are purely wishful
thinking. The techniques currently used are simple symbolic search and theorem
proving techniques as described in chapter 2.

- To say a program reaches the "same conclusions" that an expert would is
particularly naive. A program may conclude some statement represented in a
symbolic form that can be treated or interpreted at a superficial level to be
equivalent to some conclusion given by a human. It is certainly not the "same"
conclusion since this would require taking into consideration the whole context in
which the expert's conclusion was made, e.g. any supporting arguments,
assumptions made etc. This contextual information is rarely, if ever, enunciated
in a detailed form. Design manuals, for instance, do not indicate the many forms
of reasoning or arguments that were used to make a particular decision.

What can be said about current "expert systems" is that they are programs which can

perform useful tasks based on certain problem solving heuristics, usually expressed in

symbolic form. The knowledge, heuristics, data, or whatever, that is used is only a

small part of an engineer's expertise. Without appropriate forms of reasoning to

interpret this knowledge in a variety of ways, then any claims regarding the

intelligence or expert ability of a system are totally misleading.

Consider for the moment an intelligent agent, whether it be an undergraduate, junior

process engineer, consultant, etc, that is to assist in a process plant design. The

following features will be fundamental for its successful use:

1. Understanding - a system must have some understanding of its chosen domain,
ie at least an appreciation of the basic principles of a subject, how they can be
applied to a particular problem both in terms of problem formulation and

271

solution, how they relate to other domains of interest, etc. This is particularly
true in front-end engineering design where the ability to apply appropriate
principles to a problem is an essential part of the problem solving process.
Learning - any expert or intelligent agent must have the ability to learn about
and expand its knowledge on the particular domain of interest. Engineers
constantly learn of, and take advantage of new research ideas, unit operation
types, reactor catalysts etc. Their depth of understanding is continuously
modified with the experience gained in solving different types of problems.
Given the breadth and complexity of a domain such as process engineering it
seems inconceivable that any computer system could ever be programmed in a
"final form". Indeed, the more "expert" a system becomes the more frequent the
need to learn about new information and how it relates to previous ideas and
results. What is of particular importance is that this learning is done in a
self-consistent and incremental manner.
Explanation - Any intelligent agent must be capable of explaining its reasoning
regarding conclusions it has made if it is to be of any practical use. The form of
explanation required goes far beyond that available in most current systems. For
example, a simple traceback of rules that fired in some search process is of very
limited use. A novice engineer who does not understand the ideas on which
these rules are based will gain little, if anything, from such an "explanation".
Attempts by others, e.g. Clancey(1983), to use meta-information to provide
more coherent explanations represents a move in the right direction but is still
far from adequate.
Cooperation - the sheer size of most engineering design problems and the
number of considerations that have to be taken into account inevitably means
that engineers must cooperate and exchange information, ideas, etc, in the
solution of a problem. This is an interactive process in which design goals,
requirements, etc, must be clearly stated and agreed upon by the parties
involved. Any truly useful intelligent design aid must be capable of
participating in this type of activity.

Features 1-4 represent formidable research goals if they are ever to be implemented in

a design environment. Even if they are not implemented they are still essential

considerations in achieving the simpler objectives stated on page 269. The

implication is that constructing an intelligent process engineering design and will be

very difficult. Consider, for instance, the variety of tasks involved, the range of

knowledge required, and the conceptual skills required even to formulate artificial

undergraduate tutorial problems, let alone to construct their solutions (see also Figure

1.7).

What appears to be required then is a system possessing basic conceptual skills that

can help the design engineer cope with variety and complexity of problems that are

encountered in design projects. These skills will be required to meet the two research

objectives stated earlier: namely the ability to construct, reason about and update a

functional process model within a consistent framework for its interpretation.

It is worth noting that the problem of arbitrary tokenism, defined in section 3.3.6,

represents in many ways the tip of the iceberg as far as the problems that items 1-4

272

cover. The problems of in-depth understanding of a subject, an ability to learn, clear

expression and explanation of reasoning, and the ability to cooperate interactively are

all inextricably linked. Their solution will require a common, sophisticated internal

representation of language "tokens" that facilitate in some way the operation of a

number of very different but internally consistent interpretation mechanisms.

273

4.2 Deficiencies of Rule and Frame Based Systems

Frame and rule based systems have been extensively discussed, both in chapter 2 and

elsewhere [e.g. Jackson(1986), Johnson and Keravnon(1985), Barr and

Feigenbaum (1981)}. The following discussion only summarises the features of both

types of system that are directly relevant to their unsuitability of use in the

development of more sophisticated process engineering design and analysis tools.

4.2.1 Rule Based Systems

A good deal of both industrial and academic research is still based on the use of

"if-then" rule based production systems. It is quite clear from the research here and

that of others, however, that the variety of types of engineering knowledge precludes

representation in any single form. In particular, production rules are much too limited

or inappropriate to cope with much of this knowledge. Algorithms or design

procedures, for example, are not well represented in rule format. Despite this fact

much of the published research has involved such a knowledge formalism in one

form or another and has consequently been of a highly constrained and simplified

nature, e.g. early attempts 'at heuristic synthesis, Lu and Motard(1985), synthesis of

operating procedures, Fusillo and Powers(1988).

There are two fundamental flaws with this type of system. The first is that without a

token language definition/dependency facility much of the domain knowledge

remains implicitly rather than explicitly encoded in the rules. This is typically seen in

ordering rule sets in specific ways, ordering rule antecedents, use of Lisp/Prolog code

in rules and other implicit forms of procedural attachment. Many of these "tricks"

rely on knowing in advance how the rule interpreter will work in detail. The system

is never aware of this implicit reasoning, which is vital for the successful

use/combination of the rules, nor of the principles or concepts that are represented by

the symbols in the rules. As a consequence it is very difficult to ascertain functional

dependencies between symbols or tokens and how they should affect the systems

inference mechanisms. Relying on a particular interpreter's search strategy and use

of arbitrary tokenism has serious consequences for any design tool trying to tackle the

problem of consistent usage of data and the assumptions inherent in that data.

Consider the following questions:

What happens if a new search strategy, or even worse, a new rule interpreter is
required ? It is very unlikely that there will be detailed information available
regarding the reasoning behind why a rule set was written and ordered in the
way it was. Manual updating of rule sets becomes very difficult and automated
learning virtually impossible.
How are new rules added to previously "ordered" rule sets if the reasoning

274

behind the original ordering is not explicit?
3. How can the consistency of a set of rules be tested? Are exhaustive theorem

proving techniques required, and if so, how practical is this for large rule sets?

These problems are serious indeed. The second flaw results in a problem in many

ways even more important, and has to do with the inference capabilities, and hence

problem solving capabilities of production systems. Following the second objective

stated on page 270, it is believed that the solution of many non-trivial design

problems generally proceed according to the following mechanism:

A problem must first be recognised and formulated from the wider context in
which it is (implicitly) stated. This is a fundamental analytic/conceptual skill
that an engineer must acquire. Problems are rarely stated in simple terms.
Rather the engineer works with general design goals in mind and must
formulate for himself problems to be solved that will help in satisfying these
goals.
Partial models must then be set up and solution techniques to solve particular
problems selected. Partial models are continuously expanded and updated as
intermediate conclusions are made.
The model must be continuously verified to check for consistency. This
includes an analysis of any initial or intermediate assumptions that are made in
the solution of a problem and how they affect other assertions represented in the
model.
As a result of solutions to intermediate goals, improvements or suggestions
must be acted upon to help achieve the long term goals in the most satisfactory
way. This means that any intended plan of action must be periodically
re-evaluated.

A number of complex conceptual skills are required to carry out these steps. Many

rely on some insight into the principles of the subject, an understanding of the

problem at hand and an ability to apply the former to the latter. The notion that this

approach to process design or analysis can be replaced by a "shallow", surface level

rule based representation combined with simplistic pattern matching and

search/inference techniques is untenable in all but the most trivial examples of

decision making in process engineering.

Simple chaining inference techniques, with or without the use of conflict resolution

strategies such as those found in OPS5[Brownston et al(1985)] or context layering

techniques, are both inadequate and inappropriate in their current form.

These observations, in conjunction with the experience gained in the development of

CLAP and Designer's Assistant, lead to the conclusion that rule based production

systems cannot be considered as the primary form of interpreter in an advanced

design environment.

275

4.2.2 FRAME BASED SYSTEMS
In an attempt to express more subtle forms of knowledge such as prototypical or

default information, or exploit the natural hierarchical structuring of knowledge in

many problem domains, several systems emerged that either combined or replaced

rule based representations with frame based or other object orientated styles, e.g.

CLAP (chapter 2), KEE(1985), LOOPS (Bobrow and Steflk 1983). The common

theme in these systems is that both data and procedures can be organised into

structures related by some form of inheritance mechanism. Stephanopoulous(1987),

for example, has suggested that these types of system be used as the basis for

"knowledge based" engineering software tools.

It is the author's opinion, however, that frame based systems are flawed in much the

same way as production systems as regards achieving the basic research objectives

set out earlier. Indeed, most of the previous criticisms are directly applicable to

hybrid environments such as CLAP, KEE, etc. There are a number of other

deficiencies, however, that derive directly from the use of inheritance techniques.

- The following discussion is a brief summary of some of the theoretical problems

presented in the Al literature. This draws heavily on the seminal papers by

Hayes(1979(a)) and Brachman(1983, 1985) but also on the insight gained from the

development of CLAP (it is worth noting that CLAP supports most of the features

described below in modified forms plus several of its own which, to the author's

knowledge, do not directly exist in other systems, e.g. CLAP's form of relations,

extended methods, unification with object/procedure definitions, extended message

passing, etc).

4.2.3 The Basics of Frames
The term "frame" was introduced by Minsky(1975) to bring together a loose

collection of ideas on knowledge representation. However, it was not clear then what

theoretical status frames had and has since become even less clear due to the diversity

of treatment in particular systems. Nevertheless, following Brachman(1983a) the

basics of most frame languages appear to be:

- Objects are represented by frames which are taken to be non-atomic descriptions
of some complexity.

- frames are defined as specialisations of more general frames
- individuals are represented by instantiations of generic frames, and
- the resulting connections between frames form taxonomies, i.e. class—subclass

hierarchies. The link between a parent and child class is usually labelled an
"IS—A" link.

The commonly recurring theme of the use of a taxonomy of structural descriptions in

276

a representation language is an intuitively appealing one. As Brachman (1983a)

points out, the resulting data structures must have an interpretation imposed on them,

i.e. they must "mean" something, if they are to be of any practical use. In practice,

many simple systems bypass this problem by leaving the definition of the semantics

to the programmer, or user. This is a totally unacceptable situation and has resulted

in much confusion in the literature. Brachman(1983b) is a good introduction to the

large number of possible ways in which the IS_A links between nodes in a hierarchy

could be interpreted (or misinterpreted).

The discussion below concentrates on the two main approaches to interpreting frames

and the more serious problems that arise. The first approach, the "assertion point of

view", interprets frame descriptions as being assertions or statements about the items

in the world being represented, e.g. the link p101 IS_A pump appears to be an

assertion regarding item p101. Conversely, the second approach treats frames purely

as descriptions with no direct assertional import, i.e. no assertions can be assumed

merely due to the presence of links between nodes. Both approaches will be briefly

considered in turn.

It is important to emphasise that terms such as "frame", "inheritance", etc, are being

used in a representative way and are based on descriptions of typical, well known

systems, e.g. FRL (Roberts and Goldstein, 1977), KRL (Bobrow and Winograd,

1977), NETL (Fahiman, 1979), KEE(1985). A basic understanding of the concepts

involved is assumed below.

4.2.4 Frames - An Assertional Viewpoint

An important contribution to the study and use of frames was Hayes(1979). In this

work Hayes attempts to describe frame based systems in terms of first order logic

assertions in order to establish a clear understanding of the semantics of such

systems. This analysis is briefly summarised below. Given this insight, and that of

Brachman(1983) later, a number of serious problems will be identified that severely

compromise the usefulness of frame based systems.

Hayes used the KRL system (Bobrow and Winograd, 1977) as the basis for study.

KRL was one of the most ambitious early frame based systems and is notable for two

reasons:

It was one of the first systems to state precisely how and why to use procedural
attachment and meta—descriptions.
It was inspired by research in cognitive science on the use of prototypical
concepts, i.e. prototypes, in human reasoning.

277

The use of prototypical information was based mainly on research by Rosch and

Mervis(1975) and introduces important ideas that are discussed in much more detail

in the following chapter. Details of KRL are therefore provided where necessary but

see Bobrow and Winograd(1977) for full details.

4.2.4.1 Semantics and Representation Languages
There is much confusion in the literature as to the point or purpose of "representation

languages" and the definition, or lack of definition, of the associated semantics.

Indeed the word "semantic" is greatly overused, often mis-used.

Hayes characterises a representation language as "one which has (or can be given) a

semantic theory". This in turn means "an account... of how expressions of the

language relate to the individuals or relationships or actions or configurations, etc,

compromising the world, or worlds about which the language claims to express

knowledge". In order to give such an account or semantic theory a number of

metaphysical assumptions, i.e. assumptions concerning the basic types of entities,

must be made. For example, the ontological commitment needed to understand

predicate calculus requires the assumption that the world consists of individual

entities and relationships that hold between them.

A semantic theory "defines the meanings of expressions of the language", ie

"expressions in the language carry meaning". Bundy(1983) emphasises the

importance of a well defined semantics for without it becomes difficult or impossible

to decide how to represent knowledge in a formalism, or decide whether described

procedures are reasonable, or interpret what a given process does.

In chapter 2, see also Appendix B, the "semantics" of first order logic is defined to be

the set of interpretation laws for formulae and are denotational in nature. The

purpose of a semantics is therefore to assign meaning, truth values here, to well

formed sentences. The important point to make is that any semantics should provide

clear, unambiguous interpretations.

Given this understanding, Hayes identified three ways in which to consider frames:

As a means to design a formal representation language
From a metaphysical viewpoint - that is, to make an assumption that certain
"kinds" of knowledge are to be represented by frames. An example of this is
the use of frame-like structures, called scripts, to represent stereotypical events
or situations such as ordering a meal in a restaurant, see Schank(1975),
Charniak (1977). The emphasis here is on what kinds of things a system should
reason about rather than how they can or should be represented.
From an implementation viewpoint - that is, that frames are simply a
programming technique for storing representations and organising the retrieval
and inference processes that manipulate those representations.

The metaphysical viewpoint, although interesting, was not treated further by Hayes

278

since it is not concerned with the actual representation of ideas. The sequence of

events in a script, for instance, could be expressed in any reasonable formal language,

e.g. predicate calculus.

"Similarly, implementation issues are not central to the discussion. Any

representation language can be implemented in a number of ways. For example,

assertions in predicate calculus might be implemented as a linked list structure (as in

Lisp or Prolog), or as a string, or as a tree or graph structure, or as part of an array,

etc. As Hayes points out, if representation is confused with implementation then Lisp

or Prolog could be taken as universal representation languages ending all further

discussion.

4.2.4.2 Interpretation of Frame Expressions
Frames are typically data structures, or forms of expressions, that represent

stereotypical objects or situations. They contain named slots that can be filled with

other expressions, "fillers", which may themselves be frames or identifiers associated

with other frames. Particular objects are represented by "instances" of the generic

frame and require that the slots be filled with appropriate filler values, e.g. identifying

the value for the 'number_of_tubes' slot in a 'heat _exchanger' frame. Slot values can

be left unspecified to represent the expression of doubt or can be associated with a

number of further constraints or refinements, e.g. to represent justifications of the

value.

It appears, therefore, that in many systems frame instances simply denote

"individuals" and that each slot denotes a relationship that may be defined between an

individual and some other. This can be simply expressed by an assertion in predicate

calculus. For example, a slot "upstream" in a frame instance of a pump, called P1

say, with slot—filler value of Ri, Ri being an instance of a reactor, can be represented

by the assertion:

upstream_of(P1,R1)

If this is the case then Hayes points out that frames are essentially grouped collections

of properties that can be re-expressed in terms of first order logic. This allows the

meaning of frame expressions to be clearly defined. The definitions below are used

by Hayes to characterise the KRL system, Bobrow and Winograd(1977).

Frames in KRL are called "units" and have one or more named slots. Each contains a

number of "descriptions" which in turn consists of a list of "descriptors". Each

descriptor has an associated set of "features". The values of each feature will vary

from instance to instance. The set of descriptions in any instance of a slot is taken to

279

be the slot-filler "value". There are a limited number of descriptor types that attempt

to provide a fairly natural way of specifying information. They are not a minimal set

in that there is some overlap between the mechanisms. The definitions of these

descriptor types are now given along with Hayes' definitions in predicate logic.

In the following, KRL units are enclosed in square brackets, each slot is enclosed in

angled brackets, <...>, individual descriptors are enclosed in parenthesis, (...), and

braces are used to combine multiple descriptors into a single description. The general

format is:

[unit name UNIT unit category
<slot_namel { (descriptorl ...)

(descriptorN ...) } >

<slot nameN { } >

Direct Pointer Descriptors - these are simply unit names, numbers, strings or
pieces of Lisp data used to provide unique identifiers or point directly to data,
e.g. "pump101".
Perspective Descriptors - the simplest use of perspective descriptors is to assign
units to membership in a category (a sort of IS_A link). Perspectives were, in
fact, based on a much subtler idea of viewing unit in terms of comparison with
some prototype, many such comparisons being allowed for any instance. This
is discussed later. The format of a perspective descriptor is:

(A prototype with featurel = fillerl ... featureN = fillerN)

For example,

(A pump with shutoff—head = 100 flowrate = 5)

Perspective descriptors are used to describe the special SELF slot. This is used
to describe the unit itself, eg

[p101 UNIT Individual
<SELF ((A pump with flowrate = 5)

(A safety_hazard with ...) I>

This sort of information can be expressed by a lambda expression in predicate
logic, eg

Xx.pump(x) A flowrate(x) = 5

Specification Descriptors - these are used to state the role of a unit in a complex
object or event. The format is:

(The slot From prototype perspective—to—use).

For example

(The flowrate From pump (A process—unit with .

or the special form

280

(The flowrate From pump ThisOne)

when referring to slots in the same unit. This can be expressed by a
1-expression as follows

lx. flowrate (P101) = x A PUMP(P101)

where the lx quantifier is similar to 3 but indicates the x that exists.
Predication Descriptors - these are used to describe relationships in terms of a
relation name, arguments and attached procedures. The format is:

(Which predicateName. predicateArguxnents)

The arguments can be defined in terms of specifications, eg

(Which is—upstream—of (A process—unit))

Predication descriptors correspond directly to lambda expressions and relations,
eg

Ax,y. is_upstream_of(x,y) A process—unit(y)

Logical Boolean Descriptors - used to express a complex logical formula using
the connectives OR, XOR, and NOT. The AND connective is implicitly used to
combine descriptors. The format is:

(OR formula) (XOR formula) (NOT formula)]

This, of course, can be directly translated into a non-atomic logical formula in
predicate calculus.
Restriction Descriptors - A restriction descriptor provides a description that is
sufficient to refer to a unique object in a given context. The format is:

(TheOrie description)

For example,

(TheOne { (An exchanger)
(Which functions—as (A feed_pre-heater))})

As for specification, this can be expressed by a simple 1-expression -

lx.exchanger(x) A y.feedpreheater(y) A functions_as(x,y)

Selection Descriptors - These are the equivalent of simple CASE or SELECT
statements in procedural languages. The format is -

(Using Descriptor
SelectFrom predicatel - selection].

predicateN - selectionN
Otherwise default—selection

As for restrictions, this is simply a 1-expression with each case statement being
expressed as an OR expression

lx. (expl v exp2 v ... v expN)

Contingency Descriptors - these combine descriptors into time or situation
dependent descriptions. The format is -

(During specification Then contingent—description)

For example,

281

(During case_studyl The capital cost From (A plant with...))

This is expressed as 1-expression just as for restriction descriptors except the
body must mention a bound state variable to identify the situation, eg

lx.2y plant(y,case_studyl) A capital_cost(x,y) A ...]

The analysis above has shown that most of the frame "structures" or "expressions" in

KRL can be represented, in a superficial form at least, in standard predicate logic

terms. The syntax of KRL is, in fact, more expressive than most frame based

systems. This indicates that a similar analysis could be made on a number of other

systems with more or less the same results. This is an important point as the purpose

of Hayes' work was to provide a clearer understanding of the semantics commonly

found in frame based systems.

Having studied the content of frame expressions it is now possible to consider the

types of inferences that are allowed in frame based systems. This involves

considering how frames are to be used. In the case of KRL, the intended use of

frames is much more complex than normally found. The designers of KRL were

concerned with developing an experimental system that could be used to model

complex cognitive processes in a natural language understanding system. As a

consequence, few of the mechanisms described below can be found in current

commercial systems, e.g. KEE(1985). They are worth discussing however since the

ideas involved are of direct relevance to developments later in this thesis.

4.2.4.3 Instantiation, Criteriality and Matching
The most basic type of inference common to frame based systems is that of

instantiation. An instance of a generic frame is simply generated by filling in slots

with appropriate values. Slot values can be left unspecified and the use of default

values may be permitted. In many systems this is the only form of inference

available other than the sub-process of inheriting slot values from parent classes in

the instantiation process. In terms of predicate calculus this type of inference is

simply a unification process involving a collection of properties describing an

individual.

A more subtle form of inference is that of "criteriality inference". The concept of

criteriality involves the idea that possession of certain attributes is a sufficient and

necessary condition for an entity to be regarded as an instance of a given concept.

For example, if filler values for all the appropriate slots of a frame can be found then

an instance of a concept can be inferred to exist. This sort of inference is useful when

trying to classify some abstract entity with given properties, as might arise in

282

appropriate formulations of process synthesis problems. Rather than enumerate a set

of known types, a synthesis search could first establish the desired properties of, say,

a separator unit and then identify the resulting type. If no type exists then the

properties could be used to investigate whether a new type or class of separator could

be invented.

This type of inference can be mapped directly into first order logic. Consider a frame

representing concept C with slot relationships R 1 to R. The clause:

Vx.C(x) 	R1 (x,f 1 (x))
A 	Vx.C(x) D R2 (x,f2 (x))

A(Vx71 R1 (x,y)AR2 (x,y2)A ... (x,y)) 	C(x)

captures this type of inference. The criteriality assumption is given by the last part of

the formula. Such formulas make it clear whether criteriality is being assumed or not

and whether it has been used in generating further assertions. This is usually not true

of frame based systems where such assumptions are implicit and "embedded" in the

implementation of the frame interpreter. Implicit assumptions of this sort will cause

severe problems for a system trying to maintain consistency of information.

A third form of inference is "matching". The inference involves more than just

syntactic unification and relies on the assumptions about the domain which the

frames are representing. The example that Hayes gives is of a Man frame with a

"pet" slot that is to be matched against a DogOwner frame. A sufficient condition for

this match might be that the pet slot is filled with an instance that is known to be

canine. KRL provides a mechanism to perform the transfer of the slot _fillers from

one frame to another. This simple type of match can be expressed by a sequence of

implications. For example, the condition for having a dog might be:

is_dog(x)A pet_of(x,y) D dog_of (x,y)

Given the assertions:

name(manl, "Alistair") A pet(manl,ben) A is—dog(ben)

and assuming the criteriality of DogOwner only involves a name slot and a dog slot,

it follows directly that

dog_of (mani, ben) and DogOwner(manl)

Many examples of matching involve simple forms of theorem proving of this type.

The match algorithm in KRL allows for different proof strategies, see Bobrow and

Winograd(1977). The match can be restricted to explicitly defined properties or can

use deduced properties as indicated above. There is a strong heuristic aspect of the

search strategy involving the use of attached procedures, evaluation of partial

matches, best "fits", resource limitations, etc.

283

Hayes points out that some of these features may not be directly expressible in pure

first order logic, creating new relations for instance by abstraction during a match

process. Most examples of matching inferences discussed in the literature can,

however, be expressed in a standard theorem proving framework.

4.2.4.4 Making Comparisons and Caricatures
The use of multiple perspective descriptors in KRL to describe the SELF slot of a

Unit is an example of the ability to view one unit as though it were another that is

found in some frame based systems. In KRL a Unit can be specified by a number of

comparisons with known prototypes, i.e. by perspective descriptors.

Hayes suggests that there are three basic ways in which these comparisons can be

interpreted. The first and simplest view or interpretation is that each comparison is

simply asserting more and more restrictive properties of an entity. For example, to

say an instance of a heat exchanger is a process unit allows certain properties to be

inferred while stating it is also a "plate—heat—exchanger" allows more restrictive

properties to be inferred. In logical terms this simply consists of extending a

conjunctive expression describing the properties of an entity. This in fact

corresponds in many ways to the common notion of multiple inheritance, i.e.

inheriting properties from more than one parent class. Multiple inheritance is not

provided in CLAP since similar effects can be achieved more rigorously through the

use of explicitly defined relations.

The second interpretation of comparison with a frame is that the frame being used for

comparison is a "correct way of looking at an entity" with the proviso that neither

frame is a further specification of the other. For example a heat exchanger can also

be a safety hazard. Each frame has slots not referred to by the other and each can

have their own independent criteriality. There is no problem so far as this can simply

be expressed as a conjunction of predicates. A problem does arise, however, when an

entity seen from a different point of view has apparently contradictory properties.

For example an exchanger might be seen as "hazardous" from a mechanical point of

view, e.g. pressure considerations, but "non-hazardous" from a chemical point of

view, e.g. possible reactions if leakage occurs. The contradiction arises when the

property is referred to by the same name and number of arguments in each viewpoint.

Hayes suggests three reasons for the contradictions arising:

Different properties are really being asserted in each frame, e.g. "mechanical"
hazards and "chemical" hazards are just different notions and the difference
should be made clear.
An extra argument, or arguments, is being implicitly encoded that should be
made explicit. A common example is an implicit reference to time or place, e.g.
a contradiction from a person being described as unfriendly or friendly if he

284

• 	 really is unfriendly at work, say, but friendly at home.
3. The frames really do contradict one another. In this case a translation into

assertions must also explicitly represent the contradiction. Some other
inference mechanism must be used to resolve this situation.

The first two points are simple illustrations of the problem of arbitrary tokenism in

frames. Properties in different frames can be implicitly taken to imply different

relationships, e.g. the use of the token "hazardous" or "pressure" as the name of a

property, in just the same way as different uses of tokens in production rules. In the

KRL system it is intended that a token representing a property name can be defined in

alternative ways in different Units. Unless a translation mechanism was provided

between these definitions then any consistency or "matching" inferences would not be

reliable, contradictions of the sort described above being inevitable.

The third way to interpret comparisons is to treat them as forms of analogy.

Analogical reasoning is important in a number of areas including solving novel

problems, by making analogies with solution techniques used in vaguely similar

problems, and language understanding, e.g. making sense of phrases like "John is a

pig" or "a pig of a problem". In this case describing an object by comparison with a

known prototype requires that the similarities and points of difference be noted in a

restricted form of matching. The usual intention of a caricature or analogy is that

some but not all of the properties be "transferred" to the caricaturee, e.g. the

non-linear characteristics of a function or the eating habits of someone compared to a

pig. The essential point is that criteriality is not assumed when making an analogy.

Only the relevant properties needed to make the analogy need be transferred. The

analogy holds, or is at least plausible, when the transferred properties do describe the

caricature. Very few, if any, frame based systems could cope with both analogies or

caricatures and factual assertions since the assumption of criteriality is not handled in

an explicit form. What is required to make a caricature is a non-criterial frame and an

ability to map qualities, i.e. relational symbols, between one entity and another. A

simplified form of mapping can be expressed quite simply in logical terms. If a

defining concept for, say, pig—likeness as opposed to pighood, can be given by:

Xx.41(x), where Pig—like(x)

(where Nf will generally be some complicated assertion) and 4 is some syntactic

mapping of the analogy, e.g. sty -> house, then Pigjike(John) is true just when 4(4f)
holds for John. This is the basis used by Kling(1971) to express analogies as part of a

matching inference mechanism for use in algebra problems.

Another well known system that attempted to use analogies was MERLIN, Moore

and Newell(1973). MERLIN is flawed, however, in the same respect as KRL as

285

regards the implicit assumption of criteriality and the inability to distinguish between

assertions associated with caricatures and those that are strictly provable.

4.2.4.5 Default Reasoning
• Most frame based or object oriented systems allow default values to be defined for

slots. The default value for a slot, which may also be inherited, will be used when

there is no explicit evidence to the contrary, ie when there is no explicit value

provided for the slot. A simple example to consider is the value of a "status" slot in a

frame representing a pump, say, in a plant model. The possible values of the slot

might be (okay, needs_attention, broken) with a default value of "okay", ie unless it

is known otherwise assume that the status of the pump is okay. If it is subsequently

observed or concluded that the pump is not okay then the assumption made given the

earlier state of knowledge must be recognised as no longer valid in the light of the

current state of knowledge. This is not the same as a contradiction since the state of

knowledge or belief has altered: new beliefs have been added while previous ones

must be removed.

This form of default reasoning can be directly expressed in logic if it is recognised

that the default assumptions involve an implicit reference to the whole state of

knowledge of a system, eg the global database of a production system, at the time the

assumption was made. Any event or exception that arises that changes the truth

conditions of default assumptions must be acted upon. This means that the

propogation of inferences from assumptions must be explicitly controlled. This

requires that some form of reference to the knowledge state which produced the

assumption be available, as well as an ability to check the possible inferences that can

be deduced from the addition of new assumptions to assertions that already exist in a

knowledge state. The latter functionality can be simply provided by use of the

connection graph method, see Section 2.3 - Kowalski(1975), ie to check whether the

addition of proposition p can affect proposition q.

Since the analysis of Hayes a number of developments have occurred. A number of

logics have been developed which are directly concerned with revisable forms of

reasoning, of which default reasoning is an important example. The default logic of

Reiter(1980) is most commonly cited. A number of techniques have also been

developed to control the use of assumptions in making inferences and are usually

referred to as Truth Maintenance Systems. The most important examples are Doyle

(1979) and de Kleer(1986). Brief details of these techniques are given later.

Despite these developments the basic conclusion of Hayes is still valid. Default

expressions require the use of a concept of "observations", ie the addition of new

286

assertions into a knowledge based on observations. Deriving the consequences of

assumptions, ie making inferences, requires that observations be noted and the state

of the system's knowledge be made explicit. As Hayes points Out, "this requires not a

new logic, but an unusual ontology and some new primitive relations". This will

involve the system making assumptions about itself, when making inferences. This is

exactly the case in default logic where a modal operator M is used to define default

assumptions and is understood to mean "it is consistent to believe". The general form

of a default rule is:

a : M

This reads as - if a is believed and if it is consistent to believe 0 then 'y can also be

believed. The previous example of the status of a pump would be expressed as

Purnp(x) :I4 status (x, okay)
status (x, okay)

4.2.4.6 Reflexive Reasoning
The use of default values and making caricatures or comparisons are examples of

more sophisticated inference techniques that are important in systems that attempt to

investigate or model human reasoning, eg language understanding in KRL. As Hayes

suggests, a good deal of common sense reasoning involves the ability to reason about

oneself and one's own abilities as well as about the world or domain being described.

This is necessary for handling both defaults and caricatures/comparisons, eg referring

to states of knowledge of the system. The awareness of, or ability to reason about,

one's own internal deduction processes is very important when solving even trivial

problems. A familiar example in process engineering is knowing how and when to

model processes in a simplified way, eg the use of ideal properties. This model may

have been the only option at the time, eg due to lack of data, but could be changed as

soon as more data becomes available. The use of an idealised model is a form of

caricature/comparison and the availability of data shows the interaction needed

between observations and inference processes. Some form of reflexive/revisable

reasoning is needed to handle this common situation adequately.

Apart from the use of default logics and truth maintenance systems mentioned above,

a number of other developments in the area of logics to express revisable forms of

reasoning are worth noting:

1. The use of modal predicate logics to express "uncertainty" or "possibility". For
instance, alethic logic introduces the operators "it is possible that" and "it is
necessary that", epistemic logic uses the operators "knows" and "believes", etc.
Thayse(1988) is a good introduction, Smets et al(1988) is a more sophisticated
discussion.

287

McDermott(1980, 1982) describes a non-monotonic logic that allows revisable
reasoning by evaluating maximal sets of consistent assertions that can be
inferred from a set of premises. A non-monotonic logic is simply one in which
the usual monotonic consequence relation, A ,= p, does not hold, ie that any
model of A is also a model of p (see Appendix B). For example, to infer p from
a set of premises A and then to withdraw p when some new assertion q is added
means that there is a model of A u {q}, and hence a model of A, that does not
verify p. Put more simply this just says that if you believe p at some point in
model A to be true then you can't rely on it being true when new information q
is added. This means that any intermediate reasoning based on p being true is
probably now invalid.
Moore(1984, 1985, 1988) describes an autoepistemic logic concerned with
reasoning about one's own beliefs and knowledge. The logic allows states of
belief to be altered. The work is in fact a reconstruction of McDermott's
non-monotonic logic.

There is not space to describe these logics in any sort of detail here. The logics are all

relatively straightforward extensions of the classical axiomatic systems discussed in

Chapter 2. An appreciation of their definition will be useful in fully understanding

Chapter 5. The reader is referred to the original references for full details, but see

Tumer(1984) for a general overview. Where absolutely necessary basic details have

been provided, ie Section 4.3.1.6 on modal logics.

The important point to make is that certain forms of reflexive reasoning can be

expressed in predicate logic terms for which a precise semantics can be defined. This

type of reasoning, when attempted has usually been implemented in an ad-hoc or in
defined way in many frame based systems.

4.2.4.7 Summary
The value of Hayes' analysis was to show how many aspects of frames and slots

could be translated into sets of unary and binary predicates in standard first order

logic. The meaning of frame expressions can, therefore, be stated in more precise

terms. Hayes suggests that the real value of frames has little to do with representation

issues but rather with implementation issues, eg assertions can be stored in "nameable

bundles", ie frames, in non-clausal form. Frame based systems have also been useful

in that they have stimulated research on more sophisticated forms of logic to handle

defaults, beliefs, etc.

The author's only objections to Hayes' account is that it fails to take into account the

"spirit" in which many of the early frame based systems were developed. KRL, for

example, was based on ideas taken from cognitive science research and was seen by

Bobrow and Winograd as a toolkit or means of investigating/modelling human

reasoning processes. There is no report of KRL ever being applied in this way but if it

had it is the author's opinion that the reflexive forms of reasoning needed would be

difficult to express in the logics currently available. Another point is that Bobrow and

288

Winograd make it clear that the intended use of comparisons was precisely to avoid

the concept of fixed or static definitions of units. The fact that their implementation

turned out to be very much like fixed definitions is another matter. (It shall be argued

later, Chapter 4, that natural kind terms (tree, apple, etc.) cannot in fact be defined in

analytic terms). What the designers of KRL failed to do was provide an explicit

means of stating whether, or when, .criteriality assumptions could be used..

Hayes' analysis is certainly true, however, of many simpler frame based or object

oriented systems. With this analysis in mind it is now possible to highlight some

critical problems that arise with many implementations of frame based systems.

These problems will be seen to directly undermine the primary research objective of

providing a unified representation with a consistent means of interpretation, as stated

in Section 4.1.

4.2.5 Problems Concerning The Use of Frames
The problems considered here are those that arise from default-style frame

representations in conjunction with inheritance hierarchies that allow slot values to be

arbitrarily overridden. This sort of representation is the rule rather than the exception

in frame based systems. The main problem will be seen to arise from the temptation

to try and use default based frame notations for all aspects of knowledge

representation, eg using frames to represent both arbitrary concepts and their

interrelationships. There is strong evidence that this is the case in publications on

related research in process design, eg the Design-Kit System (Stephanopoulos et al,

1987), Kramer(1987), Venkatasubramanian and Rich(1988), with little or no

indication of an appreciation of the representation problems that exist with frames.

The problems are therefore well worth discussing here. Many of the following points

stem from Brachman(1985).

It is clear that in many frame based/object oriented systems the use of an IS-A

inheritance link corresponds to the implicit, rather than explicit, use of universally

quantified "if-then" statements: "if' a child frame has an IS-A link to a parent frame

"then" it inherits the parent properties - hence the implicit universal quantification. It

is also clear that in most systems frames are intended to have constant definitions , ie

a predefined number of slots with names that are interpreted as necessary conditions.

This has been noted by a number of authors, Charniak(1981), Hayes(1979), Fikes and

Kehler(1985). In the previous discussion, for example, Hayes represents a concept C

with slot relationships R 1 ,R2, ..., R as

Vx C(x) D R 1 (x,f(x 1)) A ... iR(x,f(x))

430

Once it is known that an entity E is a subclass S of some parent class P then all the

P-like properties of E can be found by inheritance. Now most frame systems allow an

instance to override or cancel the properties that it would normally inherit. For

example, a generic reactor frame might have a default value for a "flow-regime" slot

as "well-mixed". A particular instance of a reactor might override this value and set it

to "plug-flow".

If a frame system allows properties to be cancelled in this way, as is usual, then the

suggestion that there is an implicit universal quantification is not quite right. The

correct reading must be that the sense of "every" in Vx be replaced by "typically" and

take this to mean that the properties of P are only default properties of S. Indeed this

is exactly how prototypes are intended to be used in KRL, ie they are used to

represent stereotypical situations. The common interpretation of "typical" is

equivalent to "in the absence of any information to the contrary, assume ...".

Reiter(1978), ie only use the default property from P if no local value is provided for

S.

The important point is that any system that allows exceptions to be defined by

overriding properties that would normally be inherited is using frames in the "typical"

rather than "every" sense. If this is the case then a number of, somewhat drastic,

consequences follow that cannot be ignored in the design of an environment that

attempts to maintain any sort of data/knowledge consistency. These are now

described, the discussion assuming that the system allows inheritance of both

properties and their values to be cancelled - again this is commonplace.

The first thing to consider is what it is that is being cancelled. Consider a cellular

design unit which "typically" has a feed pump, expressed as a property, with a default

type of pump to use, eg centrifugal. If a particular instance of a design unit simply

changes the type of pump then what is being cancelled is the value. If, however, an

exception arises in that it has all the design unit properties except it does not have a

feed pump then what is being cancelled is the attribute or property itself. If there is no

mechanism to state explicitly which properties are necessary, ie essential, for the

IS-A link to be made then the somewhat absurd situation can arise in which most or

all of the properties are cancelled, eg a pump is a heat exchanger except that it has no

baffles, no tube plate, no tubes, etc. This might be done just to inherit a heat loss

equation if this was defined as part of the heat exchanger frame. The heat exchanger

frame no longer really represents a heat exchanger and inheritance is being used

merely for programming convenience. Checking the consistency of new assertions

becomes extremely problematical in such a system where the interpretation of IS-A

290

links becomes unclear.

The situation is further confused where the cancellation of a link is intended to mean

something, eg the feed pump is removed for repair.

A more important consequence of interpreting frames in this way is that the

default-exception approach cannot be used, without significant alteration, to make

unequivocal universally quantified statements since any other frame linked by an

IS-A link could be an exception that cancelled the relationship. This is extremely

important as it applies to both contingent universal truths, ie those that are satisfiable

but not always valid (see Appendix B) and necessary truths, ie exceptionless

universal statements, such as those found in algebra systems.

To illustrate the point Brachman considers the simple example of observing that all

the vehicles in a car park are in fact cars, ie no bikes, lorries, etc (replace car park

with cellular design unit and car type vehicles with plate heat exchangers for a more

relevant example). It would be convenient to represent this contingent universal fact

with a single statement. Predicate calculus allows a non-committal assertion, ie

regarding the number, make, etc of the cars, to be made very simply, eg

Vx car_park(p) A vehicle(x,p) A car(x)

Since nothing is guaranteed in the frame system the only possible way to check

statements of this form are true, eg in reply to the question "are all the vehicles in the

car park cars?", is to examine all the instances of a frame to see if the description

holds. Even then, the information in the system will need to be complete and operate

under the "closed world assumption". This assumption assumes perfect knowledge

about the domain being modelled in that if it is not known consider it false, see

Reiter(1978). This could be very expensive to perform and the process would have to

be repeated every time the assertion was queried or used in an inference.

In the case of necessary truths, ie definitional conditions that should always be true,

this situation introduces another problem. There are many situations in which

properties do indeed hold for all instances, eg all triangles have three sides, all

batchelors are not married, all heat exchangers have at least one hot stream and one

cold stream. These are necessary conditions. It should now be clear the they cannot

be directly represented by frame slots if cancelling is allowed. Without this

definitional capability Brachman illustrates at some length, that even the simplest

composite descriptions cannot be formed in a reliable manner, eg the definition of a

"one pass heat exchanger". Both necessity and sufficiency are explicitly required to

make composite descriptions of this sort. If exceptions are always allowed then an

291

instance of a "one pass heat exchanger" might turn out to have more than one pass.

Any usable inference mechanism must be able to deduce without fail that any "one

pass heat exchanger" has only a one pass fluid flow arrangement.

An ability to express and reason with necessary conditions and facts will be

undoubtedly necessary in a representation system concerned with knowledge

integrity.

(An interesting phenomenon that occurs is that in the desire to try and endow frames

with some compositional meaning, complex hyphenated names are used to label the

frames in a form of wishful thinking, eg one-pass-heat-exchanger - see

McDermott(1981) in "Artificial Intelligence meets Natural Stupidity" for further

discussion).

There are a number of other problems concerning the use of frames. Many could be

avoided by careful reimplementation but few systems properly address the following

problems:

There is often an ill-thought out approach towards the interpretation of frames
in different ways at different times. The principal ambiguity results from a lack
of differentiation between definitional, eg generic, and factual, ie observation
based, interpretations and the way these are used in inference procedures. That
is, how does one discriminate or combine these two types of information and
how is this distinction maintained for use in later inferences? For example, a
property P may be deduced in one frame based on a typical definition in a frame
F and some observed facts 0. If any of the observed facts 0 are modified or the
default properties in F are overridden, how is the status of P to be handled?
This is another example of the need to be able to explicitly reason about states
of knowledge and unravel the consequences of assertions based on assumptions
in a rigorous or complete way.
The "meaning" of most frame representation languages is specified only in
terms of the data structures, typically inheritance networks, used to implement
it. There are many ways in which the links between the structures could be
interpreted, see Woods(1975) and Brachman et al(1983). If the system
designers do not provide strict guidelines on how to interpret frames, which is
always the case, then the user is free to interpret frame structures in whichever
way he/she wishes, as in point 1. These interpretations may well be inconsistent.
This is particularly important when frames are taken to be assertions about the
way things are in the world. If an explicit mechanism is not provided to clearly
distinguish between the use of essential or criterial properties and accidental or
non-criterial properties, as discussed earlier, then wholly unwarranted
inferences can be made.
The ability to override inherited properties in an unrestrained fashion means that
composite concepts cannot be constructed out of simpler conceptual units in a
reliable way. This follows directly from the discussion above on the inability to
state definitional conditions in an unequivocal way. This is an important point
as it is the basis on which process units are defined in the DESIGN-KIT
environment, Stephanopoulos et al(1987), through multiple inheritance.
Stephanopoulos describes a "desired-reactor" object which illustrates the
confusion indicated in point 2 above. The reactor has an IS-A link to "reactors"

292

which in turn is IS-A linked to "generic-process-unit". This seems reasonable
enough except for the use of the plural form to name a typical reactor. However,
IS-A links are then interpreted in a different way to pull in necessary
characteristics needed to describe the "desired-reactor", eg IS-A links to
"adiabatic", "perfect-mixing", "single-step" frames. Two things are clear:
frames such as "adiabatic", which is IS-A linked to "thermal-characteristics",
certainly do not represent typical entities. Rather, they define single or sets of
necessary relations. Secondly, multiple inheritance is being used to try and form
a composite object by an implicit or intended use of an IS-A link to mean
conjunction. The programmers have, therefore, implicitly interpreted the IS-A
link in different ways, ie class membership and some sort of conjunction, which
is not supported by the underlying system, KEE(1985). For example, if the
"adiabatic" properties are cancelled or overridden then what is the status of the
IS-A link to the "adiabatic" frame supposed to be? Are inferences concerning
the "adiabaticness" of the reactor still valid because the IS-A link still remains
even though the property value might indicate the reactor is non-adiabatic.
Most of the other drawbacks identified above with frames can be applied to the
representation style adopted in this description of DESIGN-KIT. It is important
to note that this is just not logical nit-picking. They are fundamental problems
that undermine the theoretical status, whatever that may be, and practical
usefulness of such systems.

4. Simple expressions of doubt or incomplete knowledge are often difficult or
impossible to express during the instantiation process, ie slot filling, since
statements in predicate logic typically cannot be handled directly in assertional
frame based systems. For example one cannot say that the faulty pump is either
p101 or p102. Typically this would have to be represented as a Lisp list of
alternative values and some inference technique provided by the programmer
would be needed to handle this disjunction. The underlying system usually has
no way of knowing that the slot value represents a disjunction and, hence, can
make no explicit use of this information. It is extremely unlikely that user
supplied inference techniques will establish or maintain the consistency of the
entire knowledge base. The more likely situation is that small pieces of code
will be written to only check for local consistency for the frame in question.

A number of other criticisms can be found in Jackson(1986, 1987).

The problem of arbitrary tokenism in the context of frames, as regards the use of

arbitrary slot and class names, has already been mentioned. In the light of the

criticisms above concerning the inconsistent interpretation of frame structures, this

problem could become even more acute in frame based systems. This is especially

true in hybrid toolkits where the onus is on the programmer to build or construct his

own inference algorithms from the basic tools provided.

4.2.6 Improved Implementations of Frame Based Systems

One of the basic causes of the numerous problems that arise from using frames is the

lack of a clear definition or understanding of what frames in a particular system are

supposed to represent and how they are to be interpreted. This is mainly due to the

different sources of ideas that originally inspired their use, eg experimental studies in

cognitive science (Rosch 1975), use of "semantic networks" in language

understanding (Quillian 1966) etc. As it turns out, the notion of a "concept" in human

293

reasoning raises extremely deep philosophical and linguistic issues. It is no surprise

that the use of frames became "confused" as they appealed in different intuitive ways

to different programmers. The whole issue of what a "concept" might be is presented

in Chapter 5.

Before leaving the topic of frame based systems a number of specific systems and

studies will be mentioned that directly address some of the problems described above.

Full details are not given here, the reader being referred to the original papers, since

development of frame based systems in a currently recognisable form is not pursued

further in the remainder of the thesis. The reasons why are explained in Chapter 5.

4.2.6.1 CLAP - Conditional Definitions and Contingent Universals
A partial solution to the provision of both conditional definitions and contingent

universal facts can be very easily implemented in CLAP. First consider the problem

of defining property values that should not be cancelled in classes linked by IS-A

links. Since the instantiation of objects in CLAP is achieved with Prolog's unification

algorithm, the trivial solution to providing a property value that cannot be overridden

is simply to define a ground term, ie variable free, as the slot value in the definition of

the generic object. For example, to state that a triangle has three sides simply use -

object (triangle): -
slots - [number of sides - 3,

...],

in the generic definition. This is referred to as a static slot in CLAP. There is no

means of overwriting static slot values in CLAP.

In order to define more complicated necessary relations it is better to use "static

relations". For example, the generic relation hierarchy can be used to define the

general form of the relationship, either symbolic or a mathematical constraint. An

instance of the generic relation can be referred to by "name" in the generic object

definition using a static relation, eg

Object (whatever): -
slots -
relations - [has constraint_x - x_OOl,

...],

where x is the constraint and x_OOl is the name of the specific form being used. As

with static slots, there is no means to overwrite an inherited static relation.

As regards contingent universal facts there is no problem. CLAP has its own way of

asserting facts, in predicate logic form, or the user can make use of the underlying

Prolog interpreter. Once a generic type has been declared with static slots then

assertions involving the V quantifier can safely make use of the name of the generic

294

type. There is no need to gather up all the current instances and check out particular

slot values as would have to happen in many frame based systems. try and use

multiple inheritance to express sets of relational constraints, as was the case in the

reactor example earlier. Inheritance in CLAP is only intended to support

specialisation of classes through refinement of properties via implicit conjunctions

down the hierarchy.

4.2.6.2 KRYPTON
KRYPTON, Brachman, Fikes and Levesque(1983), was an important attempt that

tried to overcome the problems resulting from users having free access to the internal

implementation data structures of frame based systems and then using them in ad hoc

ways to compensate for the assertional limitations of the system. Krypton is a rare

example of a system that attempts to allow the definition of complex terms as well as

provide a powerful assertional capability. It is also interesting in that the service

provided by the knowledge representation system is defined functionally in terms of

what it can be asked or told about the domain.

Krypton uses two internal representation languages: a strict frame based language to

form descriptive terms, the TBox language, and a first order logic based language to

make assertions, the ABox language. These shall now be treated briefly in turn.

The TBox language allows taxonomies of structural terms to be established and

questions about analytical relationships, ie necessary constraints, between these terms

to be answered. Expressions in the TBox language are strictly used as structured

descriptions and have no direct assertional import. That is, unlike the systems

discussed so far no deductions can be directly drawn from the presence or absence of

a Concept/Frame/Link etc in an inheritance network. Instead, some other mechanism

is needed to use a structured description to state facts. This corresponds to the

"descriptional" view of frames, as opposed to the assertional view, referred to in

Section 4.2.4. The TBox language is in fact based closely on the KL-ONE system,

Brachman(1979) which interprets frames in a strictly structural way. (KL-ONE is

discussed elsewhere, section 4.2.6, but not in the context of the current discussion).

In particular TBox supports Concept expressions, which roughly correspond to

frames, and Role expressions, which correspond to slots (they correspond to KL-ONE

Concepts and Roles). Structural descriptions are formed by combining or restricting

other Concepts and Roles using a number of predefined operators. There are nine

such operators, five for Concept expressions and four for Role expressions, which are

carefully defined in a compositional framework.

For example the "ConjGeneric" operator in a concept expression simply forms a

295

concept corresponding to the conjunction of the other concepts used as arguments, C 1

to C

(ConjGeneric C 1 ... Cs).

The VRGenenc concept expression operator, i.e. Value-Restricted Generic, written as

(VRGeneric C 1 r C2),

yields a concept meaning "a C 1 any r of which is a C2" where C 1 and C2 are concepts

and r is a Role. This corresponds to restricting the type of a Role filler, i.e. the "data

type" of a slot value in simple terms. A more interesting concept operator expression

is the PrimGeneric operator. In many domains it is useful to be able to define

necessary but not sufficient conditions for a concept. The PrimGeneric operator

provides this functionality and forms primitive specialisations of a concept. A

primitive Concept is one that is subsumed by its parent Concept but where no

sufficient conditions exist to determine if something is described by it. (NB a type A

subsumes a type B if the meaning postulates for A and B logically imply

Vx[B(x) A(x)]

A typical example of a Role expression operator is the VRDiffRole, Value Restricted

Differentiation, that takes a Role r, a Concept c and derives a derivative role meaning

"an r that is a c", eg. (VRDiffRole brother person). For more details and examples on

these operators see Brachman, Fikes and Levesque(1983).

The ABox language, used to make assertions, also uses sentence forming operators to

construct sentences in a compositional way. In this case the operators are the usual

sentential connectives and quantifiers from first order logic, eg not, or, there-exists,

etc. These are necessary as the TBox is "purged of any assertional ability". In a

standard first order logic language the non-logical symbols, ie the predicate and

function symbols, are taken to be "independent, primitive, domain-dependent terms".

In KRYPTON, the TBox provides a way of specifying domain dependent terms. The

main difference between ABox language and a standard first order language one is

that the non-logical symbols are taken to be terms of the TBox language. The

resulting predicates can therefore be definitionally related to each other, ie the

reasoner in the ABox has full access to the definitions in the TBox. ABox predicates

are not simply unconnected primitives as they are in predicate calculus. This division

of representation into a terminological one and an assertional one is, of course, a

more rigorous version of the idea of a module definition language in Designer's

Assistant or the use of meta-slot descriptions in CLAP. Neither of the latter attempts

used a well defined set of sentence operators but relied on a mixture of logical

296

constraints and evaluable procedures. It is likely that in a sophisticated system a

mixture of the two approaches would be needed. This is because the designer's of

KRYPTON say little about how the inference techniques in the ABox are to be

implemented. The original work investigated the use of a well known non-clausal

theorem prover due to Stickel(1982). This could not be directly used in a large scale

for efficiency reasons, see Section 2.3.

Finally, KRYPTON does not allow the user to have access to either the definitional

network in the TBox or the collection of sentences in the ABox. What is accessible is

a fixed set of functionally defined operations over the TBox and ABox languages.

The service provided by KRYPTON as a knowledge representation system is

completely specified by these operations. This is in keeping with good programming

practice of defining interaction with an abstract data type solely by a set of well

defined operations, or message protocol in 0.0. terminology, without any reference

to internal implementation details. What the system does is therefore specified

independently from how it is achieved.

The functional definition approach is important as it isolates the programmer/ user

from implementation details. Incidental properties of an implementation structure

cannot be used for ad hoc interpretations or for alternative methods of knowledge

representation.

The importance of KRYPTON was to show that a well constructed system can, in

theory if not in practice, get round many of the problems associated with frame based

systems. The question of whether the reasoner or theorem prover in the ABox can

efficiently perform the necessary inferences is an entirely separate issue. There is no

indication in the literature that this can be currently achieved. A severe limitation of

KRYPTON is that it makes no attempt to reason with default or revisable forms of

reasoning although these features could be implemented on top of the TBox!ABox

framework.

4.2.7 A Mathematical Analysis of Inheritance
In order to understand more fully the properties of inheritance graphs that do handle

defaults and exceptions in an implicit way, Touretzky(1986) provides an invaluable

analysis of the problem. His thesis presents a formal mathematical theory of

inheritance with exceptions and shows how it can be applied to the NETL system,

Fahlman(1979). (Fahlman's NETL machine was an outline design for a massively

parallel computer architecture that represented and reasoned about hierarchical frame

like networks). His analysis is important as it outlines the relationship between the

297

mathematical theory developed and non-monotonic and default logics. It also

highlights the semantic problems that result from the use of multiple inheritance. The

thesis raises some important points that are worth summarising here.

Much of what frame systems try to represent is of the form of normative statements,

ie statements that are usually true or that can be assumed to be true in the absence of

contrary information. Inheritance reasoning, however, is not necessarily normative

reasoning. Wholly non-normative statements can be made, eg most cars have five

wheels, as long as exceptions are allowed where necessary (a somewhat abstruse

reversal of Brachman's(1985) objections that were discussed earlier). At best,

inheritance reasoning can only crudely approximate reasoning. Touretzky gives the

following example:

Mammals have four legs
The typical mammal has four legs
Normal mammals have four legs
Nearly all mammals have four legs
Mammals may safely be assumed to have four legs
The default number of legs for a mammal is four

These statement all have subtle differences in their meaning and use. A mammal may

be "normal" but not very "typical". These words are very difficult to define but seem

to allow more assumptions to be made than the more restricted statement concerning

the default number of legs. All such subtleties are lost in a typical inheritance system

that simply has the value four in the legs slot of a mammal frame.

The analysis of Hayes, Section 4.2.4, showed that mapping frames and slots into

predicate logic is relatively straightforward. What is not handled easily is the

representation of default information and reasoning with exceptions. This is precisely

why non-monotonic logic, McDermott and Doyle(1980), and default, Reiter(1980)

were developed.

McDermott and Doyle use a modal operator M to mean "is logically consistent" in

their non-monotonic logic (NML). Consider the standard example of reasoning about

birds which can usually fly. A non-monotonic inference rule might be:

(Vx) Bird(x) + M[Can Fly(x)] - Can Fly(x)

Now consider an exception to this rule, eg ostriches which cannot fly. This might be

written as:

(Vx) Ostrich(x) - Bird(x) A —iCanFly(x)

Suppose, however, there is an unusual ostrich, 01, that can fly - which any human

reasoner would be willing to accept. Since the original exception was only expressed

298

as an ordinary implication, rather than a non-monotonic one, ostrich 01 cannot be

accounted for by Ostrich(01) A CanFly(01) as this is inconsistent. A different set of

axioms might be:

(Vx) Bird (X) A M[CanFly(x)] -4 CanFly(x)
(Vx) Ostrich(x) -3 Bird(x)
(Vx) Ostrich(x) + M(-CanFly(x)] - -iCanFly(x)

These axioms are okay for the ostrich 01 that is known to fly but they do not work

for an ostrich for which it is unknown as to whether it can fly or not. To see why this

is so, consider an ostrich 02 that cannot fly. The first two axioms generate an

expansion in which 02 can fly because he is a bird whereas the last inference rule

generates an expansion in which 02 cannot fly because it is an ostrich. Both

expansions are consistent in NML. There is nothing to state that the more specific

expansion should be preferred over the other one. The original point, however, was

precisely to be able to assume that an ostrich could not fly unless there was evidence

to the contrary.

In order for NML to handle default rules properly each exception must be explicity

accounted for in• the inference rules they affect. Touretzky provides the following

axioms which work for both 01 and 02:

(Vx) Bird (x) + M[-Ostrich(x) A CanFly(x)] -3 CanFly(x)
(Vx) Ostrich(x) -* Bird(x)
(Vx) Ostrich(x) + M[-rCanFly(x)] -* -,CanFly(x)

(NB If the relevance of the example is not apparent simply substitute Reactor for

Bird, Well Mixed for Can Fly and PFR for Ostrich, ie plug flow reactor).

The first rule rules out the expansion for 02 being able to fly based on 02 being a

bird. Stating that 01 can fly can now be asserted as was first attempted. The problem

is that if another type of non-flying bird were added, eg penguins, the first rule would

have to be amended and rules two and three duplicated for penguins, eg:

(Vx)Birds(x) A M[-iPenguin(x) A

-Ostrich(x) A CanFly(x)J -* CanFly(x)

Rather than modify the rule on every occasion and list all the exceptions individually,

Doyle suggested a mechanism for uniform defeasibility of rules. This simply

involves naming the rule, eg BCF for birds can fly, and only applying it to an

individual x if it has not already been defeated, ie been rendered void, for x. For

example,

BCF: (Vx) Bird (X) A M[-iDefeatedBCF(x) A CanFly(x)) - CanFly(x)
(Vx) Ostrich(x) -3 Bird(x) A DefeatedBCF (x)
(Vx) Ostrich(x) A M(- Can Fly (x)] -4 -CanFly(x)

Even using defeasibility of named rules each exception must still be explicity handled

by referring to the names of the rules to defeat. This is one of the key differences

299

between NML and inheritance systems. In his thesis Touretzky defends the

usefulness of inheritance systems precisely because they assume a hierarchical

structure which allows exceptions at different levels to implicitly override one

another. There are a number of restrictions with both approaches as discussed

presently.

Default logic is another formalism developed to handle default or normative

statements and was introduced briefly in Section 4.2.4.5 earlier, but see Reiter (1978,

1980), Etherington and Reiter(1983). Default logic is in many ways similar to NML,

see Reiter(1980) for some comparisons. Defaults are written as inference rules in the

general form:

(X (X) : 	(x)
7

A useful special case of this form is where y(x) is the same as f3(x), e.g.

Bird(x) : CanFly(x)
Can Fly (x)

This sort of rule is known as a "normal" default. It says that if the "prerequisite" ax)

is known and the "justification" 13(x) is consistent with the current state of knowledge

then the "consequent" y(x) may be assumed (x simply denotes a vector of universally

quantified free variables). The earlier example of flying ostriches, ie exceptions to

defaults, illustrated that default rules can interact generating undesirable extensions.

In order to try and solve this problem Reiter and Criscuolo(1981) defined a

semi-normal default rule of general form:

CC (X) : 	 A 'y(x)
13(x)

e.g Bird(x) : CanFly(x) A -iOstrich(x) A --,Penguin(x)
CanFly(x)

The seminormal form is necessary to prevent unwarranted inferences based on

transitivity, eg using the transitivity of Ostrich(x) - Bird(x) to generate unwanted

extensions.

Etherington and Reiter(1983) show that inheritance with exceptions can be expressed

in default logic using seminormal defaults. As with NIML, therefore, the exceptions to

each rule must be listed explicitly. The implicit ordering of inheritance networks must

also be made explicit although Etherington's(1983) ordering is a dependency

ordering rather than a subclass ordering. Touretzky again argues that the hierarchical

ordering of inheritance systems can implicitly control inferences and exceptions so

rules need never be listed explicitly.

300

The details of Touretzky's formalism and theorems proved are not presented here, see

Touretzky(1986) for full details. Two important results arise from his work that are

worth noting.

The first is that "inferential distance ordering" is required to handle exceptions

properly. Touretzky defines this ordering as follows: "the inferential distance rule

says that A may view B as a subclass of C if and only if A has an inference path via B

to C and not vice versa". Consider deciding whether A has a property P. If A inherits

P from B but -1P from C then what conclusion can be made? Inferential distance

ordering requires that if A has an inference path via B to C and not vice versa then

conclude A inherits P: if the path is via C to B and not vice versa then A inherits -,P;

otherwise there is an ambiguity.

The second result is that multiple inheritance algorithms are unreliable if redundant

IS-A links are used in conjunction with a path length ordering, the default type of

ordering, instead of an inferential distance ordering. Inheritance based on shortest

path length measures will also fail to detect ambiguous assertions. The only other

way to avoid these problems is to use a restricted form of network such as an

orthogonal class/property system, ie slots with unique names partitioned into disjoint

sets. This would cause many problems for the "desired-reactor" example earlier,

Section 4.2.5, which uses multiple inheritance to refer to constraints all of which

might refer to similarly named slots, eg "temperature", possibly with their own

default values. This confused situation could not arise in CLAP, however, and this is

precisely why multiple inheritance is not provided.

The other important outcome of Touretzky's work is of course the mathematical

formalism which can in theory be applied to any sort of frame based system to help

characterize it. It is important to note that no attempt is made to provide a theory of

normative reasoning. The formal analysis simply defines the properties in inheritance

systems in a precise way.

The final part of this discussion summarises Touretzky's comparison of inheritance

systems, non-monotonic logic and default logic.

One of the most important points to note is that the expressiveness of an inheritance

language is highly restricted. Assertions contain no explicit conjunctions or

disjunctions and in most systems negation cannot be expressed. It is this limited

language of discourse that makes a hierarchical ordering of knowledge feasible.

Inference in such a restricted language is a trivial operation and consists of little more

than graph traversal.

301

On the other hand, first order logic, default logic and non-monotonic logic permit

expressions of arbitrary complexity and incompleteness. Inference is not a trivial

problem in first order logic as shown in the discussion on resolution based theorem

provers in Chapter 2. Inference in non-monotonic logics is much more difficult and

costly.

Consider non-monotonic logic for the moment. The problem of selecting appropriate

inference rules to apply is even more pressing than in first order logic since the

system must now also reason with multiple expansions. There is no generic way of

deciding what constitutes a good reasoning heuristic. NML makes no assumptions

regarding the way knowledge is structured and indeed, there is no intuitive way to

order expressions in a similar way to ordering classes in a hierarchy. On the other

hand, because NML does not make any assumptions about ordering it can handle

types of non-monotonic reasoning that cannot be handled by the style of

non-monotonic reasoning in inheritance systems. The full generality of

non-monotonic logics means that they are undecidable. This is not to say that some

restricted forms of non-monotonic logic cannot have efficient inference algorithms.

(Decidability is a technical term in recursion theory used to describe what can be

decided, ie solved or computed, by a computer. In simple terms, a "problem" consists

of a countably infinite set of instances and a multiple choice question about these

instances, eg the question "is this formula valid, contingent or inconsistent?" given a

set of propositions in an axiomatic system. An "algorithm" always answers a question

with the right answer within a finite delay. A theory is decidable if it admits a

decision algorithm. A semi- algorithm, also called a procedure, will provide the right

answer within a finite delay when the answer is positive but may fail to produce an

answer at all when the right answer is negative. A theory is semi-decidable or

partially decidable if it admits a decision procedure. Undecidabiity can only be

proved by showing that no program is a decision procedure for the theory in question.

Propositional calculus is a decidable theory. First order predicate calculus is only

semi-decidable because it involves quantification. See Manna(1974) for more details)

Default logic is somewhat more tractable. Etherington(1987) showed how some

aspects of exception handling in inheritance systems can be expressed in default

logic. The issue of hierarchical structuring is avoided, as in NML, by requiring the

exceptions to be made explicit rather than implicit, as argued by Touretzky.

Touretzky shows that the inferential distance ordering is needed to filter out incorrect

orderings of default inheritance in an implicit inheritance network.

Reiter(1980) showed that normal default theories have at least one extension and also

302

exhibit a semi-monotonicity property. If the set of defaults of a normal theory is

increased then the new normal theory has at least an extension which contains the

extension of the original theory. An important practical consequence of this is that

such theories admit a proof procedure. Unfortunately, semi-normal default theories

are not guaranteed to have extensions and do not have a semi-monotonicity property.

Finally, Touretzky suggests two practical uses of his inferential distance ordering

rule:

The ordering can be incorporated into a well defined system, such as the
KRYPTON system described earlier, as just one component of the inference
mechanism. This would allow a default or non-monotonic logic system to
handle exceptions implicitly.
Use it as part of a preprocessor to transform sets of normal default rules into
semi-normal ones in accordance with inferential distance ordering.

The author is not aware of a system in which this has been done.

4.2.7.1 The OPUS System
A system that is directly relevant to the work of Touretzky(1986) and

Etherington(1987) and the rest of this discussion is OPUS , Nado and Fikes (1987).

OPUS provides a restricted but properly defined semantics for handling default

values and exceptions to default values in a frame based inheritance system. Their

language allows inheritance of default values and exceptions that is not covered by

Etherington's formulation and allows quantified statements regarding exceptions to

be made, eg:

Vv,oc[SubclassOf(C, oc) + ProExcS(C,v,oc)]

This says that default values v for slot S from any parent class oc are not to be

inherited since class C provides an exception value for this slot.

Nado and Fikes shown how the default and exception statements can be used by a

truth maintenance system to maintain justifications for inherited default values or

local exceptions. For example, if the value in a slot was an inherited default value and

the default value was subsequently removed or deleted in the originating class then

the inherited default value would also be deleted. The reader is referred to the

original paper for full details.

It is interesting to note that the implementation of default values in CLAP

corresponds closely to the effects produced in the OPUS system, eg how defaults are

inherited, overridden, etc. Of course, there is no truth maintenance system in CLAP to
provide justifications of changes in slot values but as stated earlier, it was not felt that

this facility would not have significantly altered the nature of CLAP.

303

4.2.7.2 Summary
The whole of this section has been concerned with the representational adequacy of

frames and the problems that arise from:

confused ideas of what a frame actually represents
unclear semantics regarding the interpretation of frames
naive or simplistic implementations that allow unwarranted inferences to be
made, either regarding the internal structure of frames or the links in an
inheritance network
use of multiple inheritance in ambiguous ways
ad hoc treatment of normative statements involving default values and
exceptions
inability to express universally quantified statements or construct composite
concepts in a reliable way

The latter half of the discussion was concerned mainly with more recent systems that

are based on some sort of logical analysis of the problems involved. In general, this

has resulted in much more coherent descriptions of frame based systems.

It is by no means the case, however, that current systems can be considered a solution

concerning the basic representation requirements stated in Section 4.1. Simple

inheritance languages are extremely restricted in their expressive adequacy and could

not be directly applied to these complex problems. For example, there is nothing in

the frame based approach that can be used to directly tackle the problem of arbitrary

tokenism in an explicit way. Systems such as KRYPTON that do have access to

definitional terms give no real indication of how to use these definitions in practical

inference procedures.

The more sophisticated logics needed to handle reliable forms of reasoning have been

introduced in an extremely oversimplified way. In reality there are many problems

yet to be resolved before they can be of direct use in the design of knowledge based

systems, whether in a frame based environment or a more classical theorem proving

based system.

A final summing up on the use of frames is given in Section 4.4.

4.3 Problems of Dealing with Uncertainty

The emphasis of the previous section was on the inadequacies of both rule and frame

based systems from a definitional point of view, ie their expressive adequacy for

defining ideas. A crucial part of any knowledge representation system involved in

problem solving activities, of which process engineering design is an extremely

complex example, is the representation of uncertainty. Any reliable system,

especially one concerned with integrity of knowledge, must be capable of reasoning

304

with uncertain statements in a coherent manner.

There are many forms of uncertainty that must be handled in process design. For

example, it is common to treat data from different sources in different ways. This

may depend on the degree of belief or disbelief in the reported accuracy of the data.

Certainty also depends on the way in which the importance of the problem situation is

viewed as regards the use of evidence, eg using guesses for overall heat transfer

coefficients in preliminary heat exchanger calculations. It is also usual to judge the

"ability" of knowing some piece of information and deciding whether it is worth the

likely effort needed to obtain it or to proceed with uncertain information, eg in

collecting data from pilot plant studies for use in front end process design.

In many ways the more important problem is the effect uncertainty has on the

reasoning or inference mechanisms as opposed to its symbolic representation. For

instance, the effect of uncertainty can play a major role in the order in which goals are

selected to be solved in a problem solving process and the efficiency with which a

solution can be obtained. Consider an idealised problem involving some top level

disjunctive goal. Since only one disjunct need be solved it is obviously worth

attempting the one for which the best prior information or evidence is available.

Conversely, if the goal is conjunctive in nature then it is sensible to attempt the

subgoal which is most likely to fail first since no further effort will be wasted on the

remaining goals.

It is also important to recognise the difference in uncertainty arising from provable or

unprovable statements, eg certainty in the statements "propane can be condensed with

cooling water at atmospheric pressure" and "the price of crude oil will remain fixed

over the next year". The important point from a problem solving point of view is

expressed neither by a strength of belief or disbelief in either statement nor whether

evidence is immediately available to assess each statement. Rather, what is important

is the belief that either statement could be proved if need be. In situations regarded as

important or critical the use of unprovable statements will generally be avoided as

they reduce the credibility of any arguments they support.

It is hopefully obvious, therefore, from this informal introduction that various forms

of uncertainty need to be represented in a representation language and that they will

play an important part in many reasoning processes. This is especially true in process

design where the engineer is constantly faced with making decisions based on

uncertain or inadequate information.

Consider again the type of normative statement that lies at the heart of many

305

problems in knowledge representation, eg "elephants are typically grey". If "all" or

"some" had been used instead of "typically" there would be little problem since there

are well established truth criteria for these words which can be easily checked. There

does not appear, however, to be any equivalent truth criteria for normative statements.

Yet it is precisely this sort of statement that seems to constitute much of our

background knowledge, common sense, or even specialist knowledge in a particular

domain, eg reactor design. Consider, for example, two candidate interpretations of

"typically" suggested by Touretzky(1986):

at least x percent of elephants are grey
a randomly chosen elephant will appear grey with probability at least p

Both definitions have serious drawbacks. Neither can directly explain, for example,

the inference "elephants are typically drab" from the statements "elephants are

typically grey" and "grey things are typically drab". This is because the conclusion is

not strictly deductive, ie does not necessarily follow the premises, but it nevertheless

might be a useful inference to make in the absence of contrary information. Neither

do probability based interpretations allow reasonable assumptions to be made about

individuals, eg if 99.9 percent of elephants are grey, or that a randomly chosen

elephant is grey with probability 0.999, then inferring "x is grey" from "x is an

elephant" is still not justified. Non-monotonic and default logics, of course, permit

such inferences without any sort of probability based justification.

People often accept the truth of normative statements without hesitation for problem

solving purposes. This might imply that all that is being suggested is that the

statement is a good assumption to make unless you have some evidence to the

contrary. It is seldom the case that people make such statements based on valid or

explicit statistics.

In Chapter 3 a number of systems were mentioned that made use of numerical

measures of uncertainty, in particular MYCIN, PROSPECTOR and the heuristic

graph searching algorithms. In the light of the understanding gained in this research it

is my opinion that numerical measures of uncertainty are of limited value for many

aspects of reasoning in representation systems. The discussion below briefly

discusses the reasons why.

NB This is not to say that probability measures do not have a role to play. Used in

appropriate ways in specific situations, eg identifying failure rates of plant equipment

items, they can provide important information for future design decisions.

An excellent introduction to the problems of reasoning with uncertainty is Cohen

(1985). Cohen uses the term normative to mean theories of reasoning that are

306

consistent with the axioms of probability. The term "prescriptive" shall be used here

instead as it indicates more clearly what "should" be done on probabilistic grounds. It

is clear then that much of human behaviour and reasoning is non-prescriptive in

nature, as witnessed, if nothing else, by the amount of literature on the subject in

cognitive psychology. If this is the case, which I am certainly willing to believe since

I can remember no instance in my life where I have made a decision solely based on a

known probability or statistic, and the intended aim of the so-called expert systems is

to emulate expert reasoning then it is surprising that virtually every heuristic system

uses approximate prescriptive-like measures of uncertainty. As it turns out this is

mainly due to the paucity of usable alternatives in the environments provided by

frame and rule based systems rather than any well motivated reasons for their use.

Three types of prescriptive approach are briefly outlined below, namely Bayesian-like

methods, Dempster-Shafer theory and fuzzy logics. These methods are still widely

used despite well known inadequacies. Section 4.3.1.5 introduces an alternative

endorsement based approach and its relation to truth maintenance systems. Finally,

Section 4.3.1.6 indicates the forms of logic that can be used to express uncertain or

incomplete knowledge.

4.3.1 Bayesian-like Approaches and Other Numerical Measures of
Uncertainty

The treatment of uncertainty factors in the MYCIN, Shortliffe(1976), and

PROSPECTOR systems, Duda, Gaschnig and Hart(1979), was discussed in Chapter

3, see also Appendix C. It was seen that both systems rely on alternative

approximations to Bayes' probability theory to reason about uncertainty. This is a

typical approach in many systems. There are serious problems, however, with these

approaches that are worth pointing out.

As Cohen(1985) points out, most Al systems adopt a parallel certainty inference

approach that is commonly thought, but incorrectly, of being synonymous with

reasoning under uncertainty. In general, this approach involves splitting reasoning in

uncertain domains into two more or less dependent processes. In the first the

conclusions are derived as if under certainty while in the second the problem is to

decide how much the conclusions are to be believed. This decomposition works well

if the two processes are largely independent of one another.

The overall goal then of parallel certainty inference systems, taking both processes

into account, is to determine which states of the world are most likely to hold,

numerical inferences typically being used for the first process. This is the situation in

both MYCIN and PROSPECTOR, as well as the rule based systems described in

Chapter 2 for heat exchanger selection and physical property method selection.

307

The use of numbers in inference rules are covered by a number of terms, "confidence

factors", "levels of sufficiency and necessity", etc. The neutral term "degrees of

belief' suggested by Shafer(1976) is used for discussion purposes here.

A simple analysis of inference rules involving degrees of belief is as follows: the

premise or antecedent of a rule can be thought of as evidence, for or against, the

conclusion of the rule. The overall degree of belief associated with a rule may be

thought of as the conditional probability of the conclusion given the evidence. The

analysis, of course, is not restricted to rule based systems. Inferences involving slots

of frames can be described in the same way. This could even by applied to

inheritance based inferences if necessary.

Two simple kinds of numerical degrees of belief can be identified:

Those specified a priori to qualify the conclusions, ie initial degrees of belief.
Those derived from the initial values as reasoning by a system proceeds.

There are considerable theoretical objections to both types of degree of belief. In the

case of initial degrees of belief it is perfectly valid to question what the number

means. For example, suppose in the heat exchanger selection system there is a rule

that suggests a shell and tube exchanger with an associated degree of belief of 0.75

given some process conditions in the rule premise. Is it that 75% of shell and tube

exchangers in some distribution exhibit or satisfy the process conditions? A more

likely explanation is that it is a subjective estimate of the degree of belief that a shell

and tube exchanger is a good option relative to other known types of exchanger. More

generally, such initial estimates will represent a summary of the reasons for believing

and disbelieving the inference. Once these reasons have been rolled up into a single

number an inference mechanism no longer has access to the reasons for justification

of an inference. This may be important information that is lost to the system. Personal

experience shows that the situation is, in fact, often even worse. Degrees of belief in

rules are often "tuned" on test cases until a set of rules as a whole produce the desired

rankings of options for the test cases studied. What the degrees of belief in rule

consequents then represent is open to question.

The second form of numerical degrees of belief are those generated or derived by the

system when making intermediate inferences. There are two aspects to consider:

updating the degree of belief in a hypothesis to account for a new piece of
evidence - this is called "pooling" evidence.
updating the degree of belief in a conclusion to account for uncertainty in the
premise of an inference, ie uncertainty in the evidence itself - this is called
"propagating" degrees of belief.

308

Problems with pooling evidence in a Bayesian framework are well documented and

outlined below. It is essential to note, as regards propagating degrees of belief, that

Bayes theory does not even allow for uncertainty in the evidence itself. All it allows

is a degree of belief to be calculated for a hypothesis given some evidence. For

example, it is not possible to say "calculate the belief in hypothesis H given that there

may be evidence for H". Yet it is certainly the case that evidence used in an inference

rule may often be far from certain, eg estimates of physical property data, process

conditions, etc.

If this situation is to be handled then some ad hoc procedure must be devised to

account for the uncertainty in the premise of the rule. This procedure is usually

referred to as a combining function. Outlines of the combining functions for MYC1N

and PROSPECTOR are given in Appendix C.

The parallel certainty inference approach means that this problem is not quite as bad

as it seems, ie first reason assuming certainty then revise the belief in the conclusions

• in. some heuristic, way.. The. implementation details of most systems, however, leave

much to be desired.

As regards pooling evidence, ie updating a degree of belief in a conclusion given one

or more pieces of (certain) evidence, the situation is better defined. In this case a

combining function pools evidence for a single hypothesis. Bayesian inference is one

such combining function that allows the conditional probability of a hypothesis to be

calculated given a body of evidence.

Two other approaches, Dempster-Shafer theory and fuzzy set theory, are described

later.

4.3.1.1 Bayesian Inference
The basic form of Bayes' theorem is:

P(hle) = P(elh) P(h)
P (e)

That is, if the prior probability of an event or situation h is known, P(h) as well as the

probability of a piece of evidence P(e) and the likelihood of evidence e arising given

situation h, P(elh), then the posterior or conditional probability of h occurring given e,

P(hle) can be calculated, eg the probability of a rise in stock share price given the

announcement of a merger, the probability of a plant shutdown given a compressor

problem, etc.

The first problem comes from finding probabilities for events and pieces of evidence,

309

P(h) and P(e). In many process design situations these may be very difficult to

establish. Detailed plant operating records may be a source of information for certain

types of event, eg pump failure. Even if this data can be found there remains the

problem of establishing the probability of e given h, ie P(elh). This will only be

possible in situations where sufficient records are kept. For example, if e stands for

"temperature > 500" and h stands for "exchanger type = shell and tube" how are

accurate probabilities to be established?

In the case of multiple items of evidence the problem is somewhat exacerbated. The

form of Bayes' theorem for n competing hypotheses given n items of evidence is:

P (hi I e 1 &. . . 	= 	. . . & e,j j) P (h1)

j' P(h3)P(eIe 1 &. . . .& e,Ih)

The denominator of the equation implies that the conditional probabilities of all

possible combinations of evidence for all possible hypotheses need to be known.

This requirement is completely impractical in many situations, especially in process

design where inferences are required on previously untried or tested situations. To

avoid this problem the assumption of conditional independence is usually made:

P(e1&eIh) = P(e 1Ih) P(elh)

That is, if h is true then the observation of e is independent of e 3 . This reduces the

form of Bayes' theorem above to

P (h1 I e 1 &. . . 	= P 	 h.) (P (e2 I h) . . .P (e I h) P (hi)
P(hiP(eIe1& &e,,Ih)

It should be noted that this equation also assumes that the competing hypotheses h 1

are mutually exclusive and exhaustive. This solution, however, is a major problem in

itself. In many situations the assumption of conditional independence will not hold

especially where there are strong functional relationships between variables

representing items of evidence, eg pressure and temperature. This was recognised in

MYCIN where an effort was made to keep dependent pieces of evidence grouped into

single rather than multiple rules, see Shortliffe and Buchanan(1975). In order to

translate MYCIN'S confidence factors for rules into a parameter for Bayes' theorem

requires even stronger assumptions of independence of evidence, see Appendix

C. Adams(1976) gives a detailed discussion of the shortcomings of this approach.

The problem of conditional independence is an important restriction in practical

applications of Bayes' theorem. There are, however, a number of equally important,

if not more so, problems associated with the approach and the effect they have on

different aspects of reasoning. Some of these problems are:

310

The Bayesian approach does not distinguish uncertainty from ignorance, ie
whether a degree of belief was calculated directly from evidence or indirectly
inferred from lack of evidence. For instance, three possible states might be
chosen but a prior probability, 0.6 say, is only known for one state. The
Bayesian approach requires that prior probabilities be given for all choices.
This forces some assignment of probability between the other states, eg 0.2 for
each of the other two states. These values are based on ignorance not
uncertainty. This information is lost to a reasoning system. Any subsequent
explanation of decisions without this information will be at best misleading.
A single point measure gives no indication of the relative accuracy or precision
compared in other competing hypotheses.
Single point measures fail to capture the distinction between reasons for
believing and reasons for disbelieving. The experience of MYCIN, in which
these measures are maintained separately - see Appendix C, indicates that this is
very useful information, eg for explaining decisions with justifications for
placing relative weightings on different types of evidence, etc with a single
point measure this information is lost.
Bayes' approach usually requires subjective estimates of many prior
probabilities for the problem domain. Humans are notoriously poor at providing
good estimates for probabilities, see Bruner(1956), and it is likely that estimates
from different sources will be inconsistent or inaccurate.
It is bad enough if reasons for believing and disbelieving are rolled up into a
single point measure. It is even worse if the numerical measure does not pertain
exclusively to belief or certainty at all. A good example, recognised by several
authors, is confounding probability and utility in a single degree of belief
associated with a rule. Utility, as used in classic decision-analytic techniques
refers to the expected value or worth of evidence. In MYCIN, for example,
confidence factors for rules can be made artificially high in order to get the
system to notice the rule early on, ie there is an implicit high utility associated
with the rule which is not encoded in an explicit way. This is a good example of
influencing a search control strategy in an unreliable way. It also means that any
explanation system without knowledge of this implicit information will fail to
distinguish important or relevant hypotheses and those that happen to be likely
as well.
Confounding different ideas into a single numerical value can have serious
consequences when the way in which this value will be used or interpreted is
considered. If the measure associated with competing hypotheses are to be
directly compared then it is difficult to envisage how consistency in decision
making could be achieved. Any system generated explanations will certainly be
impaired.

It is perhaps unfair to associate all these problems with Bayesian-like techniques

since many apply to other numerical combining functions used in pooling evidence,

eg trying to represent different kinds of information by a single number. It is certainly

true to say, however, that Bayes' theorem, or approximations to it, fail to adequately

represent many of the forms of uncertainty introduce in this discussion.

(NB Point 4 mentioned the use of utility of evidence in decision-analysis theory. A

good introduction to the ideas involved is Hillier and Lieberman (1980).

Lindley(1985) is a more detailed discussion. The theory is concerned with evaluating

the worth of evidence, the utility of obtaining more evidence and formulating

problems as optimisations of the expected utility. The usefulness of the approach is

311

limited since the utilities for uncertain states of the world are assumed to be known.

When utilities correspond to direct monetary cost estimates the approach seems

plausible. It is difficult to see how it directly applies to more abstract situations, eg

"the utility of an assertion?").

White(1985) presents a more detailed discussion of some of these deficiencies in the

context of rule based production systems. In particular, the inadequacy of

PROSPECTOR's propogation function is highlighted.

4.3.1.2 Dempster-Shafer Theory
Dempster-Shafer theory, like Bayesian theory, is concerned with pooling evidence

regarding competing hypotheses. As in Bayesian theory a numerical value for degree

of belief is used to represent uncertainty. It also assumes that the hypotheses being

considered are mutually exclusive and exhaustive. The difference between the two

methods, and it is a very significant one, is that in Dempster-Shafer theory a

probability distribution can be constructed over all subsets of hypotheses rather than

just individual singleton hypotheses as is the case in Bayesian theory. The reason why

this is important is made clear below after some basic terms have been defined.

The frame of discernment, 0, is the largest set from which subsets are constructed, eg

the set of all singletons, and reflects the level of ignorance about which singleton is

true. If there is no evidence available for any subset of 0 then the degree of belief

assigned to 0 is 1.0. A "basic probability assignment" function, denoted by m, is used

to assign probability to subsets of G. For example, if 0 = (hi, h2, h3), it might be

known that m ((hi, h2)) = 0.6. Two points immediately follow:

There is no need to allocate the 0.6 between hi and h2 as is necessary in Bayes'
theory. The measure 0.6 corresponds to the subset not the individual singletons.
There is no need to allocate 0.4 to H. In fact, what is assigned is m(0) = 0.4.
Remaining assignments are to the set that reflects the ignorance about which
singleton will dominate.

The degree of belief in a particular subset is simply the sum of the basic probability

assignments of its subsets. The mechanism used to incrementally update the values of

the belief functions as evidence becomes available is called Dempster's Rule of

Combination. The method is straightforward and based on computation of

intersections of subsets. A simple worked example can be found in Buchanan and

Shortliffe(1984, Chapter 13).

The main advantage of this method is that it does not confuse ignorance with

uncertainty by allowing subsets of hypotheses to be reasoned about. For example, in

an early stage of design it might be known that heat is to be removed from a process

stream. It is not necessary nor desirable to introduce different types of heat exchanger

312

into the reasoning process if all that is necessary is that a probability be assigned to

the set of available types that could be used, ie all that can be really said is that it is

likely a heat exchanger will be used for the duty - the type is irrelevant at this stage.

Of course, Dempster-Shafer theory is subject to most of the criticisms levelled at

Bayesian theory in that it uses single point numerical measures of degrees of belief to

represent uncertainty. It also relies on probability assignments which will still be

difficult to establish. The use of subsets of hypotheses should help simplify this

process. Any use of subjective estimates is problematical, as in Bayesian inference.

Nevertheless, Dempster-Shafer theory offers a relatively simple alternative to Bayes'

theory when incrementally updating degrees of belief in competing hypotheses using

multiple pieces of evidence.

Full details can be found in Shafer(1976). A directly relevant example of its

application is given in Garvey, Lowrance and Fischler(1981). The problem described

is that of combining evidence of measurements from a number of process sensors in

order to support inferences in a wider process model.

4.3.1.3 Fuzzy Logic
Fuzzy logic can be viewed either in terms of an alternative logic or simply as another

from of combining function for pooling evidence. The latter viewpoint shall be

discussed first.

The term "fuzzy" was introduced by Zadeh(1965), but see Zadeh(1978) for a full

account. The central idea is that fuzzy sets are those that do not have precise

membership criteria. An entity is described by its "degree of membership" of a set

rather than either being described as a set member or not. Uncertainty is represented

by what Zadeh calls a possibility: possibility statements being represented by a real

number generated by a membership function, p. in the range 0 to 1. For example, the

degree of membership of methane in the class of ideal gases might be 0.85, ie

g(methane) = 0.85.

Zadeh has shown how possibility theory can be axiomatised to provide analogues for

most of the operations in probability theory. As a means of representing uncertainty,

fuzzy sets have made little impact on Al research. This is perhaps not surprising since

the approach is beset with many of the problems that were identified earlier for both

Bayesian and Dempster-Shafer theory. For example, instead of simply assessing prior

probabilities, real valued membership functions must be devised instead. This seems

an even more implausible task than generating subjective estimates of prior

probabilities. Further, if the membership functions are devised on different grounds

313

then-

how are degrees of belief to be meaningfully compared?
what interpretation can be attributed to a degree of belief that is constructed
from contributions from different types of evidence?

The discussion of precise semantics for the interpretation of frames showed that these

sort of problems must be answered consistently in a useful representation system.

The fuzzy set approach suffers, of course, from all the usual drawbacks associated

with methods that represent uncertainty as a single point numerical value, eg

combining reasons of belief with disbelief.

The major criticisms of fuzzy logic arise, however, when viewed as a form of

reasoning. Consider for example some object x, a fuzzy set S, and let the membership

function be denoted by Sx. Suppose the definitions of set union, intersection and

complement are given by

(A union B)x = max (Ax, Bx)
(A intersection B)x = mm (Ax, Bx)
(complement of A)x = 1 - Ax

Now if F is the set of all false propositions, and T is the set of all true propositions

then the "truth of proposition p" is taken to be t(p) = (1 - Fp + Tp)/2. Thus,

if b is (-na) then t(b) = 1 - t(a)
if c is (a A b) then t(c) = min(t(a), t(b))
if c is (if a then b) then t(c) = max(1-t(a),t(b)).

There are several problems with these definitions which seem completely

unreasonable. For example, if the inference "if a then b" is thought to be certain then

t((if a then b)) = 1

This would imply, however, that either t(a) = 0 or t(b) = 1, neither of which

necessarily follow. More seriously, it allows some degree of truth to the proposition

(if a then +a). This means that inconsistences will not be properly handled in a fuzzy

logic. Other proposed definitions of the truth of "if' do not avoid this problem either,

eg

t(if a then b) = min(1, 1-t(a)+t(b)), or
if t(a)<t(b) then 1 else t(b), or
min (1, t(b)/t(a))

For an example of a system that does make use of fuzzy logic see Baldwin(1983).

4.3.1.4 Presenting Recommendations
Before leaving the topic of numerical presentation of uncertainty a final potential

problem in their practical use will be highlighted. The problem is that of listing

314

conclusions or recommendations along with the calculated degrees of belief and how

these values will be interpreted by a process engineer (or even another module in a

blackboard system).

Consider, for example, the simple statement "calculate the fugacity using the cubic

chain of rotators equation of state, confidence = 0.72". If the value of 0.72 is accepted

at face value without ensuring that the engineer is aware of the justification for the

value then the recommended actions could well be misinterpreted. For example, the

following situations could all arise:

The method should be accurate but guesses had to be made to estimate
necessary parameters for the particular fluid in question, thus lowering the
overall degree of belief.
It is not yet known if the method will accurately estimate the fluid in question,
eg if strongly polar.
It is known that method is only a rough approximation and is inaccurate for
most fluids.

If the justifications are not properly explained then the (novice) engineer could easily

gain a false impression of the relative worth of estimation methods, especially if a

normally very approximate technique is recommended simply because of lack of

data. The calculations should certainly be updated when relevant data for more

precise calculations does become available. This can only be done in a consistent way

if both the engineer and the representation system itself are explicitly aware of the

justifications for decisions in terms of how uncertainty has been represented.

There is also the subtle problem of the values that are used and the effect on an

engineer. Although I have no experimental evidence it is my belief that engineers will

intuitively react in a different way to a degree of belief of 0.99 then one of 0.57 say.

In the former case the certainty of the conclusion will be accepted without argument

or further consideration much more readily than the latter. The different values,

however, may simply have resulted from different sources of subjective estimates of

prior probabilities having been used when there is, in fact, the same justification for

each option. The relative values of degrees of belief in options also has an effect. The

set of values (0.99, 0.98, 0.96), say, will intuitively be interpreted differently from

(0.69, 0.68, 0.66) or (0.8, 0.7, 0.51. Even if the probabilities are self consistent and

statistically valid it is important that the factors that were taken into account when

generating these probabilities be communicated to the enginner. Otherwise the

absolute values, if displayed directly, may cause the conclusions to be interpreted in

unwarranted ways. This is extremely important in an interactive environment, as a

process design environment surely will be, if there is any dependence or reliance on

the engineer to provide feedback or update information. The engineer will be much

315

more likely to worry about reported degrees of belief at the 0.5, or less, level then

he/she will at the 0.99 level. If numerical representation of uncertainty is to be used

at all then there should at least be a mechanism to indicate how the values were

calculated and what sorts of implicit justifications were used in any subjective

.............estimates, of prior probabilities.-The ideal solution,, at least from the point of view of

integrity of knowledge, is that these justifications should be represented and reasoned

about explicity by the system. Initial steps in this direction are introduced below.

4.3.1.5 Endorsement Based Reasoning and Truth Maintenance
The significant problems that are associated with numerical measures of degree of

belief have led several Al researchers to question the whole approach, not least on the

grounds of investigating improved or more plausible models of human reasoning

about uncertainty. Typical of the doubts concerning numerical representations of

uncertainty are those of Hayes(1974): "Introspection does not suggest to me that

intuitive reasonings are essentially imprecise; still less that they are precise in terms

of a real valued truth-value in the unit interval (which is what fuzzy logic would have

us accept). Even ignoring introspection, fuzzy logic does not seem very useful, for

where do all these numbers come from ?".

The last point concerning the origin of "numbers" is especially relevant in many

simple process design problems. Much of the knowledge involved in the problem

solving process is in the form of "control information", eg applying principles in

order to model situations under known assumptions, rather than use of observations

with associated probabilities. It is my opinion that it would be very difficult to

generate meaningful numerical measures of uncertainty that would consistently apply

to diverse or complex situations.

Consider again the basic concept of parallel certainty inferences. If an inference is

uncertain it can be augmented by another whose purpose is to calculate the certainty

of the first. The Bayesian, Dempster-Shafer, and fuzzy set theories are all examples

of this approach. There is no reason, however, why parallel certainty inferences

should be solely numerical inferences, if at all. The purpose of the inferences is to

indicate how much to believe or disbelieve the conclusions to which they refer. Since

the overall goal of the approach is simply to determine which states of the world out

of several, or many, options are most likely to hold it is possible that symbolic

reasoning techniques could be used instead, or in addition to numerical measures of

uncertainty.

Hayes(1974) makes the point that words like "large, small" are often used, or

intended, in a precise way, eg "the boy is small'. What is not precise is the vague

316

measuring scale associated with the word. The scales used are usually relative

measures and context dependent, eg "a small boy" and "a small hill". Hayes suggests,

and I agree, that the sense of vagueness be kept localised "within the word used" and

should not affect or interact with other unrelated vague measures or inferences. This

approach allows different probabilistic or fuzzy measuring scales to coexist within a
more precisely defined semantic framework.

Endorsement based reasoning, Cohen(1986), is an example of a symbolic approach to

reasoning about uncertainty that does not involve numerical representations of

uncertainty or degrees of belief. In order to understand the use of endorsements in

reasoning about uncertainty it is necessary to appreciate the basic ideas involved in

truth maintenance systems. These are very briefly listed below.

Truth maintenance systems have been referred to in passing in chapters 2 and 3 as

means of recording justifications associated with inferences. They are, in fact, much

more involved than this. The basic system outlined here is that of de Kleer(1986 a, b,

c). This system is an assumption based truth maintenance system, ATMS, and is a

development of the TMS of Doyle(1979). Both systems consist of two components:

a problem solver and a TMS, see Figure 4.1. The problem solver contains the domain

knowledge and any inference mechanisms. Each inference made is reported to the

TMS in the form of justifications. The goal of the TMS is to establish what data are
believed or disbelieved given the justifications so far.

Figure 4.1: Relation of a TMS to a Problem Solver

Justifications
Problem 	I
Solver 	I 	Beliefs 	 TMS

Every problem-solving hypothesis is treated as an "assumption" in the ATMS. A set

of assumptions is called an "environment" and the set of all data derivable from the

317

assumptions is called the "context" of the environment. If "false" can be derived from

the assumptions then the environment is inconsistent and does not have a context.

Associated with every problem solver datum is the minimal set of environments from

which it can be derived. This set is called the "label" of a datum and is used to

establish whether a datum is present in a context or not: "a datum is in a context when

the assumptions of the context are a subset of any of the environments of the datum's

label".

A justification is written as

where a 1 , ...,P are problem solver data, assumptions or falsity.

A justification describes how a node, ie a problem solver datum, is derivable from

other nodes. A justification has three parts:

The node being justified, 0, called the consequent
A list of nodes, cx 1 , ... a, called the antecedents
The problem solver's description of the justification

The justifications can be interpreted as material implications,

As such, they are simply propositional Horn clauses, see Appendix B. The nonlogical

notation "=>" is used because an ATMS does not allow negated literals and treats

implication in an unconventional way.

Finally, data in an ATMS are represented by nodes. A node is a data structure of the

form:

<datum, label, justifications>

There are four types of nodes: premises, assumptions, assumed nodes and derived

nodes. A premise, p, holds universally and has no antecedents. The node

<p,{ { I

represents premise p in an empty environment, ie no assumptions.

The label of an assumption node is a single environment mentioning itself. For

example, assumption A (upper case letters represent default assumptions

corresponding to defaults in Reiter's logic) is represented by the node.

<A, {{A}}, {(A)}>.

An assumed node is neither a premise nor an assumption. For example, the assumed

318

datum b which holds under assumption A is represented as

<b, ((A)),[(A))>

An example of a derived node is

<'pressure is high', I (A,B),(C)), ((e), (c,d)}.>

This says the proposition 'pressure is high' is derived from either the node e or the

nodes c and d, and it holds in the environments { A,B } and (C).

A node that does not hold in any environment is said to be an "out" node, other nodes

being "in". Out nodes may have justifications and must not be removed as they may

become "in" nodes in some future environment.

The main characteristics of de Kleer's ATMS are:

It is based on manipulating assumption sets rather than just justification sets, eg
Doyle(1979).
It handles the notion of default assumptions. Contexts are the equivalent of
extensions in default logic.
It can express disjunctions of assumptions allowing any propositional
expression to be represented in terms of justifications and disjunctions of data.
It can handle non-monotonic justifications explicitly rather than search or
backtrack through multiple contexts.

Full details of the system can be found in de Kleer(1986a, b, c)

In overall terms it is the task of the problem solver to make inferences about the

domain and the task of the ATMS to determine what is and is not believed. In order

to properly understand the role of an A1'MS in a system that reasons about

uncertainty it is important that the following restrictions or problems associated with

its use be fully appreciated:

For the ATMS to perform as expected, i.e. manifest itself as justifications that
achieve what the designer intended, the problem solver must supply the
"correct" justifications. The notion of what "correct" implies is far from certain.
Two common problems are underspecifying and overspecifying justifications.
If a problem solver underspecifles a justification by failing to list all of the
antecedents then the label of the justification will be too general. For example,
if "a => I" is recorded instead of "a A b => I", where J.. represents false, then
any context containing "a" will be inconsistent, which is incorrect. Parts of the
solution space become unreachable violating the exhaustivity requirements of
the ATMS.
If a problem solver overspecifies a justification by listing too many antecedents
then the label of the consequent will be too specific. For example if "a A b => c"
is recorded instead of "a => c" then c will not hold in all the contexts that it
should if b is later shown to be false, i.e. c should hold in contexts containing
"a" but not necessarily "a and V.
The problem solver must be carefully written to ensure that exhaustivity is
assured. A common problem is that of querying the ATMS whether a datum x

319

holds in a context, eg (in? x) might return True if node x has a non-empty label
and False otherwise. If a problem solver is poorly written and has code of the
form.

(if(in? x)... else ),

then exhaustivity will be potentially destroyed. If the test fails and this fact is
not recorded then if x is later discovered to be in some context the relevant
piece of code before the else statement will not be run. The same is true in the
converse situation where the test initially works but it is later concluded that x
has an empty label.
There are many control problems of this type in the interface between the
problem solver and the ATMS. To be used properly an inference system should
react to the non-monotonic nature of the ATMS (see point 8).
A fundamentally important point to realise is that the ATMS works at a
propositional level. Any expression which has internal structure at the problem
solver level, eg the inference

(Vx) P(x) - Q(x),

when recorded as a justification is treated as a propositional atom, ie an
uninterpreted symbol (see Chapter 2 on the distinction between propositional
and predicate logic). The ATMS simply establishes what symbols follow from
given propositional ie other given symbols.
The previous point means that there are two inference procedures in the overall
system, one in the problem solver and the other in the ATMS, which operate on
the same expressions but treat them in different ways. This must be very
carefully controlled, see point 4.
Problem solving is viewed as "a process of accumulating justifications and
changing beliefs until some goal is satisfied". The process involves deciding
what inference to make next based on currently held beliefs, recording the
inferences as justifications and re-evaluating the current set of beliefs. The
ATMS establishes belief solely on the justifications recorded thus far, not with
respect to any logic in the problem solver. It is the task of the problem solver to
ensure the overall process "converges".
A correct use of an ATMS requires the problem solving procedure to be
implemented as a set of "consumers" attached to nodes. The consumers perform
arbitrary computations but cannot make control decisions, based on an internal
state, of which the ATMS is unaware. This model must be strictly adhered to if
the ATMS is to guarantee its results (full details of the consumer problem
solving architecture are given in de Kleer(1986c)).

Given the context of the discussion on the KRYPTON system, earlier it is apparent

that a TMS, or ATMS, is simply one part of a much wider inference mechanism. The

value of a TMS is the efficiency with which sets of beliefs can be determined. These

beliefs can be used to help select the next inference rule to apply in some search or

theorem proving application.

Given this understanding of truth maintenance systems it is now possible to assess

Cohen's(1986) model of endorsement based reasoning about uncertainty.

Endorsements are structures, like nodes in a TMS, that are intended to provide a

representation and calculus for reasoning with symbolic information about

320

uncertainty. Whenever a domain rule is used or inference performed, its conclusion

accrues one or more endorsements. Thus, endorsements, like TMS justifications, are

simply records that a particular kind of inference has occurred. Endorsements are

recorded by endorsers that also perform any other associated computations, similar to

consumers in a TMS problem solver. The requirements of an endorser refer to the

• certainty, of propositions... The endorsement of a particularly stringent endorser is

therefore equivalent to a high degree of confidence or belief in a proposition,

typically the consequent of a rule. Cohen suggests that individual conditions of a rule

be required to have a certain level of endorsement before an endorsement can be

made for the conclusion of the rule, eg only endorse a rule consequent if the

parameters of the rule's conditions do not introduce any new uncertainty. Most

conclusions will accrue several endorsements arising from parallel inferences. The

certainty of a hypothesis is taken as its strongest endorsement rather than as the result

of some summing up procedure of con evidence subtracted from pro evidence. This is

because, Cohen argues, that different pieces and types of evidence are not equally

believable.

From the description so far it would appear that there is little to distinguish

endorsements from justifications in a TMS. This is not the case. Justifications in a

TMS are used to decide if a conclusion can be believed, ie has some "set of support",

but the "kind" of support is irrelevant. Cohen, however, suggests the use of many

kinds of endorsements to represent different kinds of uncertainty, eg different kinds

of evidence for and against a proposition. The overall confidence in a conclusion will

depend on the types of its endorsements, eg direct, experimental evidence compared

to indirect, estimated data. Some types of evidence will be more preferred than

others. Unlike justifications, endorsements record aspects of inferences that are

relevant to subsequent reasoning about their uncertainty.

Cohen describes endorsement based reasoning in the context of a program called

SOLOMON. SOLOMON is a backward chaining, rule based, agenda driven planner

or scheduler similar to those found in blackboard systems. The types of endorsements

he introduces are, therefore, directly related to this type of problem. They are general

enough, however, to be worth listing here:

1. Rule endorsements. Rule endorsements are intended to be the equivalent of
numerical degrees of belief. They comment on properties of the rule's
conditions, on the effect of the consequent, the "kind" of inference a rule
represents, etc. Cohen identifies two groups of rule type endorsements: rule
condition endorsements and inference type endorsements. There are ten types of
rule condition endorsements. These include -

321

Maybe-too-general and maybe-too-specific - indicates that a condition
may be overgeneralised or too specific to merit the conclusion, eg
"temperature is high" might be too specific if the conclusion holds for
many cases of "temperature is low" as well, as is the case in heat
exchanger selection rules.
Supportive - a supportive clause is one that increases the certainty if true
but does not necessarily lower the certainty in the conclusion if false.
Necessary - unlike supportive clauses, necessary clauses must be believed
for the conclusion of the rule to be believed.
Flexible - a flexible clause is believable if an "approximately equal" clause
can be found in the knowledge base that is adequately endorsed. This is
similar to the use of compromises in the physical properties interpreter in
Designer's Assistant.

There are a number of ways of endorsing negated conditions of a rule, ie not
(condition). These include a version based on the closed world assumption and
a "hard-not" version. The latter endorsement requires that either not(x) must
appear explicity in the database and be adequately endorsed, or a mutually
exclusive proposition to x be in the database and be explicity endorsed.

2. Inference Type Rule Endorsements: Cohen suggests that three types of
inference endorsements are generally applicable namely model-based, causal
and correlational. Model-based endorsements are principled explanations of
why the state of the condition leads to a belief in the conclusion. A simple
example would be the endorsement of some description of P-V-T behaviour by
Charles Law, the ideal gas law etc. Causal endorsements simply relate directly
causal expressions for which no "model" exists, eg "old age" and "loss of teeth".
Finally correlational endorsements are used when the state in a condition is
associated with the state in a conclusion in some, as yet undefined way. Both
Cohen and Szolovits and Pauker(1978) suggest that many rules in production
systems are categorical in nature and used without reference to the theory that
underlies them. If this is the case then correlational and causal endorsements
will be useful until more principled models can be established.

3. Task Endorsements: tasks are generated and put on an agenda when
SOLOMON attempts to prove the conclusions of a rule. The endorsements of
tasks refer to the "potential" conclusions of the tasks. The word potential is used
since a task's conclusions are not believable unless its conditions are believable.
There are four types of task endorsements:

p-corroborate - task conclusion corroborates the conclusion of another task
already on the agenda.
p-conflict - conflict with another task on the agenda.
p-potential-conflict - may conflict with another task on the agenda
p-redundant - task conclusion derived by another task using the same rule
and rule endorsement.

4. Conclusion Endorsements: SOLOMON does not endorse the conclusion of a
rule itself, since this is fairly pointless other than to say it is appropriate (or not)
given the conditions, but it does handle endorsements of conclusions of tasks as
they are recorded in the knowledge base. Endorsement types include "unlikely"
and "unwarranted", the latter being useful when a conclusion might be used but
is not warranted.

5. Data Endorsements: Cohen suggests using "source", "type-of-data" and
"accuracy" as general endorsement types. Little indication is given, however, of
how these would be defined

Full details of the endorsement types are given by Cohen(1986). In addition, two case

322

studies are presented which compare the approach with a standard Bayesian

approach.

Apart from agreeing with many of Cohen's arguments regarding the need to represent

different types of uncertainty in a sophisticated problem solver, I find endorsement

based reasoning interesting for a number of reasons.

First, it can be seen as providing a framework for a set of meta-predicates that can be

used to represent difference types of uncertainty in a problem solving environment.

The endorsement types proposed are very general in nature and can be applied to a

wide variety of problems. In fact the notion of "typed" endorsements can be modelled

on many-sorted logics.

Many-sorted logics have not been discussed in this thesis. In simple terms, function

and relation symbols are sorted in the sense that arguments are restricted to terms of

the appropriate sort, eg father-of might take terms of sort male in the first argument

and human in the second argument. The types are referred to as many-sortal types and

are usually disjoint and/or partially ordered sets, often represented as a tree or a

lattice. In a sense many sorted logic is really an efficient extension of first order logic.

The sort hierarchies bear a close resemblance to frame based inheritance hierarchies.

A good introduction to many-sorted logic is Cohn(1987). The types in this instance

would be meta-types such as data, premises, goals etc.

The major problem of endorsement based reasoning is providing a clear semantics to

use when propagating endorsements over inferences, ie combining endorsements

from individual conditions. In standard logic a problem does not arise since the

semantics are denotational in nature, ie the truth value of a rule's conclusion can be

composed from the truth values assigned to the rule's conditions. In Bayesian,

Dempster-Shafer, or fuzzy set theory combining functions are defined to compute the

degree of belief in the conclusion.

Endorsement based reasoning is more complicated since what is to be "combined" are

reasons for believing or disbelieving. The simplest approach would appear to be

maintaining ever larger sets of support for each derived hypothesis. This could only

be done efficiently if implemented in a similar way to a TMS, ie the endorsements

represented as special types of justifications. The problem is much more subtle,

however, than might appear at first. For instance, consider the rule fragment:

if estimated-cost is low
and

then

Suppose that the clause "estimated-cost is low" has been recorded or derived by three

323

different rules. Further suppose that each rule found some reason, ie endorsement, for

not believing the conclusion, ie there is not much certainty in this fact. In endorsing

the conclusion of the rule there are therefore three "negative" endorsements

associated with the first condition not one. The problem is deciding what

endorsements to associate with the conclusion, eg one possibility is to include all

three endorsements in a similar way to a TMS. An alternative interpretation is that

three weak independent endorsements of the same fact constitutes, in a way, a

stronger belief in the fact. If this is the case then some modified endorsement should

be associated with the conclusion, eg the cost-estimate is likely to be low but what is

now uncertain is the value of the cost-estimate.

The definition of a clear semantics for endorsement based reasoning is still an active

research activity. It is my opinion that the problem is best handled by a TMS like
approach, sets of endorsements being handled by the TMS component as part of the

wider inference system defined in the problem solving component. This will clearly

require some set of meta-inference rules to guide the use of different types of

certainty when interpreting facts in domain level rules.

This type of approach to reasoning about uncertainty goes some way towards

Hayes'(1974) suggestion that measures of vagueness be kept local and not used

directly in interactions with unrelated inferences. It is also in keeping with the usual

parallel certainty inference approach in that domain specific statements can be

expressed as normal, certain propositions. The secondary process of deciding how

much conclusions are to be believed can be separated out as a problem of maintaining

consistent sets of endorsements.

In summary, endorsement based reasoning and the underlying techniques of truth

maintenance systems provide a possible alternative to reasoning about different forms

of uncertainty that does not need to refer to numerical statements of degrees of belief.

Numerical measures of belief could still be used if desired. This is an important point

since probability techniques still have an important role to play in well defined areas,

eg hazard analysis studies.

43.1.6 Modal Forms of Logic to Express Uncertainty
The final topic that shall be discussed under the topic of reasoning about uncertainty

is the use of modal forms of logic. It is only recently that serious attempts have been

made to implement such logics in computationally tractable forms. This has been

helped by the development of truth maintenance systems which have shown that

reasoning within multiple contexts can be efficiently achieved.

324

The relevance of modal logics to the development of a process design environment is

that they provide a formal means to represent and reason about imprecise or uncertain

knowledge without recourse to numerical degrees of belief. Given the problems

identified earlier with numerical representations of uncertainty it is well worth

identifying some specific examples of modal logics.

It is extremely desirable to be able to reason about possibilities, hypothetical events,

desired goals, uncertain information, etc, in a process design context. In the English

language modes of possibility, necessity and permission are expressed by auxiliary

modal verbs such as "can", "must" and "may". Similarly, tenses are expressed by

auxiliary verbs such a "will" and "have". The modal logics mentioned here are simply

attempts to formalise these concepts with an axiomatic framework.

There is no attempt made here to provide or discuss details of these logics. The

standard text on modal propositional logic is Chellas(1980). This gives a thorough

introduction to the main types and results of modal logic. Smets et al(1988) is an

edited collection of papers on the implementation and application of modal and other

non-standard logics. Turner(1984) gives a simple overview of many of these logics

more suited to novice readers.

The simplest way to introduce these logics is by example. Alethic logic introduces a

pair of sentence operators that are interpreted as "it is necessary that" and "it is

possible that", represented by the symbols L and M respectively. Only one of these

operators is basic in that the other is its dual defined by the equivalence.

Lp

for some proposition p. This is similar to the definition of the existential and universal

quantifiers, 3 and V, in predicate calculus, ie

Vx.s —x(—is),

for some formula s. A simple statement might be "it is possible to operate a column

under vacuum". This might be translated as:

M(3x.column(x) A operating-pressure(x,vacuum))

Deontic logic is concerned with permission and obligation to support models of the

verbs "may" and "ought". Said(1985) is a good discussion of deontic logic in the

context of interpreting legal definitions. This sort of logic would be useful in user

models in a design environment, ie keeping track of what an engineer may or should

do in a given context. It is also useful for expressing uncertainty about what may or

325

ought to be done during the execution of problem solving procedures. Said uses the

operators 0 and P in his formulation of the logic.

Temporal logic introduces operators for the modes "sometimes" and "always", both in

the future and the past together with their negations "never" and "not always".

The G operator expresses "always" in the future, ie Gp is true if p will be true in all

future times, while the H operator expresses "always" in the past, ie Hp is true if p has

always been true in the past. For example, H(compressor(expensive)), might be a

typical statement.

Similarly, the operators F and P express "sometimes" in the future and past

respectively. For example, stating that a particular plant will require periodic

shutdowns at some point in the future might be expressed as

plant(x) A F(—operate(x) A ...).

The duality between the operators is given by

Fp —G--p and Pp —H--p

A well known alternative approach to temporal reasoning is discussed in Allen(1983).

This is based on maintaining beliefs between specified time intervals and embodies

the notion of the duration of an event, ie recognising that events take time and that

there is not an instantaneous change from one problem state to another. An interesting

discussion on the use of temporal logics to describe computations is given in

Moskowski(1986).

Finally epistemic logic introduces operators to indicate "believes" and "knows". The

operator for belief is usually indicated by one of L, B or Believes. A simple statement

might be "it is believed that the mixture is "azeotropic" which could be represented as

mixture(A) A component(A,water) A component(A,propanol) A B(azeotropic(A))

There are many similarities between these formal systems. The important point for

the purposes of this discussion is that they allow possible or hypothetical statements,

ie forms of uncertainty or imprecise knowledge, to be expressed in a framework with

well defined semantics. For example:

All formation rules of ordinary predicate logic are also formation rules of modal
predicate logic.
If F is a formula and M is a modal operator then MF is also a formula

This, of course, was how Reiter's default logic and McDermott's non-monotonic

logic were introduced earlier in Section 4.2.7. These logics are two more examples of

326

"modal" logics, in the general sense of that word. The common feature of these logics

is that they allow, in a general sense, possible worlds to be reasoned about in which

different beliefs hold. For example, the ATMS in Section 4.3.1.5 dealt with multiple

contexts to handle non-monotonic and default inferences. It was suggested that

endorsement based reasoning be formalised along similar lines.

The concept of the use of possible worlds as a uniform semantics for different kinds

of modal systems was introduced by Kripke(1971). The idea is straight forward in the

case of propositional logics: a (modal) formula is evaluated within a set of possible

worlds which are provided with an "accessibility relation". The truth value of a modal

formula depends on the possible world being considered. In simple terms, given a

pair of modal operators L and M, Lp is true in a world if and only if p is true in all

accessible possible worlds. The dual, Mp, is true if p is true in at least one accessible

possible world. For example, in epistemic logic the beliefs of an agent are modelled

as a set of possible worlds, as is the case with the contexts of an ATMS. In temporal

logic the various possible worlds represent different states of the world at different

time instants.

The notion of an accessibility relation is meant to capture the intuitive notion that

certain worlds are accessible to each other while others are not. For example the

accessibility relation in temporal logic will define the sequential order of the various

time instants, only neighbouring states being accessible to each other.

Appendix D gives a very brief description of the formal nomenclature used to

describe any such system. It can be seen that this closely resembles the description of

the ATMS given earlier.

Each modal logic can, therefore, be characterised by identifying the modal axioms

that are used in its formulation. These axioms all have standard labels. For example:

The T or knowledge axiom scheme: Lp p . L stands for "is known", so T
asserts "what is known in true". This is the usual interpretation of knowledge as
true information.
The K or distribution axiom scheme: L(p D q) Lp D Lq.
The S4 or positive introspection axiom scheme: Lp D LLp. This form of
introspection says that if an agent believes a proposition then he believes he
believes it.
The S5 or negative introspection: Mp LMp. This is equivalent to —1Lp L
—1Lp. This says that if an agent does not believe a proposition then he believes
that he does not believe it.
The Bercan scheme: (Vx Lp) L(Vxp)

The weakest system is called T and only contains the knowledge and distribution

axiom schemes. Adding the Barcan scheme and positive introspection yields the S4

system. Adding negative introspection yields S5. If the non-monotonic inference rule

327

'one cannot infer —ip' - Mp,

ie If (not p) cannot be inferred then p is "believable" or "possible" or "consistent", is

added then the non-monotic versions of S4 and S5 are obtained. McDermott's

non-monotonic logic is simply non-monotonic S4, although this is now known to be

incorrect and should be non-monotonic S5 without Lp p, see Moore(1988).

Another important logic is Moore's(1984, 1985, 1988) autoepistemic logic. This logic

involves complete S5 structures, see Appendix D, that is those structures in which

every world is accessible from every world. The logic attempts to model ideally

rational agents who reflect upon their own beliefs. An earlier discussion, Section

4.2.4.6, indicated that this type of reflexive reasoning is an important part of problem

solving. The importance of this topic is outlined later in chapter 5.

For the moment, it is clear that formal modal logics, especially non-monotonic ones,

provide a means of reasoning about certain aspects of uncertainty that will be

important in a process design environment. Belief or certainty in a conclusion, as

represented by sets of reasons for believing or disbelieving the conclusion, can be

entertained by use of a possible worlds semantics. What is currently missing from the

endorsement based model of uncertainty is a working set of restricted inference rules

to use in such a framework.

All such logics, in predicate form, are undecidable. Any practical implementation will

require good heuristics concerning the selection and application of inference rules

when proving goals. The difficulty of providing such heuristics should not be

underestimated given the experience of the development and performance of

resolution based theorem provers. Development of truth maintenance systems,

however, have shown how aspects of the overall task can be tackled efficiently.

A directly relevant example to process engineering is the recent interest in qualitative

simulation, ie qualitative models of process operations, eg Stephanopoulos(1989),

Waters(1989). The models are usually expressed in terms of confluence equations, as

proposed by de Kleer and Brown(1984) in their formulation of a qualitative physics

but see Kuipers(1986) for an alternative formulation. The changes in variables in a

model are usually represented as one of three states: increasing(+), decreasing(-), or

indeterminate. It is obvious that combining such variables together in a simulation

through the use of confluence equations will result in huge numbers of possible

combinations of state variables if implemented in a simple or naive manner. This has

been borne out by Waters(1989). De Kleer(1986c) shows how various types of

constraints can be handled in a consumer based problem solver that communicates

with an ATMS. For example, the operating states of a transistor are "on, off,

328

saturated and reverse-active". A fragment of a qualitative model might be:

e {ON, OFF, . . . }

= ON -> aVb C =
=OFF ->al c = o

The first confluence states that the voltage varies proportionally with the current

when the state of the node Q 1 is ON. The values for voltage and current cannot be

substituted into the second confluence equation because the states of the node are

mutually exclusive and would contradict each other. De Kleer shows how a variety of

other forms of constraint can be represented in a suitable form for use by an ATMS.

Given such a representation it is possible to see how a qualitative simulation might be

realistically implemented. For instance, consider a question of the form "will or can

high pressure occur in a pipe or vessel?", as is typical of part of an Hazard and

Operating study. Instead of selecting values for input variables, running a simulation

and then checking all the possible outcome states, whether explicitly or implicitly via

backtracking search, an alternative is simply to reason backward from the goal state

and establish from which possible contexts this fact could be derived. This is the sort

of problem in which good use can be made of an ATMS. The ATMS is only

concerned with maintaining justifications recorded so far, the control or search

strategy of the problem solver being irrelevant as far as the truth maintenance system

is concerned. Any goal directed search, as suggested here, can therefore make good

use of any domain dependent heuristics to guide the search or "simulation".

Although the form of uncertainty is somewhat odd in this example, the state or value

of a discrete variable, it shows how reasoning can be performed in a possible world

semantics.

4.3.1.7 Summary: Problems of Representing Uncertainty
The previous sections of this chapter were concerned with discussing the problems

associated with the use of rule based production systems and frame based inheritance.

The inherent structure of these systems says nothing about how uncertain or

imprecise knowledge should be represented or reasoned about. In addition, it is

frequently the case that no indication is given as to how to handle uncertain facts or

conclusions correctly and the effects this has on the underlying inference mechanism.

This section has highlighted the common approaches to representing uncertainty as

degrees of belief, as found in both production-rule and frame based systems. The

vast majority of systems still rely on some variant or approximation of Bayesian

theory. As a general means of reasoning about uncertainty this was shown to be far

from adequate. Alternative methods of computing degrees of belief were also

introduced, eg Dempster- Shafter theory and Fuzzy logic. Of these, the

329

Dempster-Shafer theory seems a good alternative but suffers from many of the same

problems as Bayesian theory as it is still based on single point numerical measures of

degree of belief.

In a complex problem solving environment, such as process design, it is necessary to

be able to reason about different types of certainty in order to reason consistently

when making inferences, applying production rules, inheriting attributes, using

default. information,.. etc. It .is. my opinion that . the numerical approaches to

representing uncertainty considered here are not adequate. Particularly difficult

problems arise when uncertainties of a different nature are to be compared, or worse

combined, in a meaningful way. Representing belief in a conclusion as a single

number also increases the difficulty of providing meaningful explanations as to how

conclusions were derived and the reasons why some conclusions are preferred to

others. Finally, the provision of consistent sets of subjective estimates of prior

probabilities, degrees of belief, etc is prone to error. Updating these probabilities,

adjusting them to take account of new evidence, rules, etc is not a trivial task in

medium or large scale systems.

Two more radical but related approaches were discussed as alternatives to

representing uncertainty as degrees of belief. The first of these was endorsement

based reasoning, itself closely modelled on truth maintenance systems. In this

approach uncertainty is represented as sets of endorsements, ie reasons for believing

or disbelieving, associated with each piece of evidence or derived conclusion. The

major problem preventing the direct application of this technique is the development

of a set of inference rules to propagate endorsements over inferences in a well defined

way.

The second approach considered was the direct use of various types of modal and

non-monotonic logics. One form of this type of logic, default logic, has recently

found widespread adoption and use in frame-based or frame-like systems. The

motivation for the development of truth maintenance systems also arose from the

need to handle default information in a reliable way. There is no general way,

however, of efficiently implementing theorem provers for such logics. Their practical

use in problem solving environments will require the use of good probably domain

dependent, heuristics to guide the selection and application of inference rules. The

attraction in their use is that the predicate forms have the full expressive power of

first order predicate logic in addition to the representation of modal formulas. In

addition the concept of possible world semantics is clear and easy to understand in

the context of maintaining different reasons, or sets of reasons, for believing the

330

certainty of derived conclusions. Justifications of conclusions are, therefore,

explicitly available for both inference and explanation purposes. The development

and attempted implementation of these logics is, however, still an active area for

research in AT.

4.4 SUMMARY

The introductory sections of this chapter restated the representation requirements of

an integrated process design environment in light of the research, presented in chapter

2, on state of the art symbolic programming techniques available at the time, ie

rule-based, frame-based and hybrid blackboard systems.

It was concluded that although the overall framework of Designer's Assistant seemed

a plausible one for a design environment, given the availability of flexible, hybrid

interpreters such as CLAP, the details of both the control and interpretation

mechanisms available were far from adequate. Indeed, the basic characteristics of an

"intelligent" design system, far less an "expert" one - as indicated in section 4.1,

suggest that current approaches to knowledge representation are not even close to

satisfying the stated requirements. In order to emphasise the importance of this

conclusion a detailed discussion of some of the more important problems associated

with representation styles in rule and frame based systems was presented in this

chapter. Many of the problems were seen to stem from the lack of a well defined

semantics resulting in inconsistent interpretations of expressions in the particular

representation formalisms. This was seen to be particularly true in the treatment of

uncertainty based on numerical values of degrees of belief, a problem common to

both rule and frame based systems.

Although some of the pitfalls could be avoided using advanced A.I. toolkits, there are

few guidelines on how to tackle these complex issues and hence few, if any,

safeguards against the creation of inconsistent or incoherent data structures or

expressions in a system.

In an industrial context, one imagines that pragmatic engineering approaches to

software development will tend to overlook such issues anyway. This will inevitably

lead to significant problems in the development, use and maintenance of software. A

particularly worrying example is the use of demons and the question of procedural

attachment in general. Such techniques are problematical in that they will often

introduce frame modifications or modify the inference mechanism in ways that can

never be made explicit to the system. How such systems recover from unwarranted

inferences and are able to remove the corresponding misinformation from working

331

memory is not a trivial problem and one that could have major ramifications in any

design or diagnostic software.

It is clear from the literature that related research by other workers in the area of

process engineering has not been concerned with addressing these important issues,

see section 3.6. Rather much of the literature is concerned with formulating simple,

idealised problems in isolation in a symbolic programming environment. It is not

until such problems are viewed in a wider context that the considerable representation

problems discussed have become much more apparent. The work presented in this

thesis so far, however, has been directly concerned with the expressive adequacy of

representation techniques rather than their detailed application in isolated problems.

This was necessary in order to introduce and highlight the problems that will be

involved in the development of an integrated design environment. The initial

development of both CLAP and Designer's Assistant were first attempts that tried to

address some of the problems involved by providing a variety of programming

mechanisms that could be used in the development of a more sophisticated system.

Despite these developments it was concluded that the representation and

interpretation techniques being, used were inadequate to cope with the range and

complexity of tasks and skills required in an intelligent design environment. In

particular, it was far from clear how integrity of knowledge could ever be maintained

in such a system using the techniques available. The various logic based descriptions

of the information being represented and reasoning techniques required helped to

confirm this conclusion. Simply reverting to full predicate forms of non-monotonic or

default or epistemic logics, as opposed to propositional forms, is not a practical

solution either due to the computational intractability involved.

Given the problems involved it seemed clear that both frame and rule based systems

in their current forms did not appear to offer long term solutions to the problem of

providing a suitable representation for the development of an integrated process

design environment. It was decided, therefore, not to continue with the development

and application of CLAP and Designer's Assistant but to investigate the fundamental

issued involved in knowledge representation and the basis techniques that will be

needed in a sophisticated system. This work is described in the remaining chapters

below.

Chapter 5
A Study on the Nature of Concepts and Mental Modelling

The purpose of this chapter is to introduce three research topics from the fields of

cognitive science, psychology and linguistics which, when taken together, provide the

theoretical background for the representation developments presented in the next

chapter. The topics considered are:

Conceptual Categorisation
Prototypical theories
Mental Models

Definitions of the important aspects of these fields of study are presented below in

turn. The study of knowledge representation issues from a "cognitive viewpoint" is

deemed both necessary and desirable given the following observations on the

research presented thus far:

the use of either formal logic systems or frame-based systems, the latter based
on intuitive but vague ideas regarding the use of "prototypes", do not appear to
offer long term solutions to the problem of satisfying the requirements of an
integrated process design environment.
The development of intelligent or even expert process design aids and tools
requires a set of basic conceptual skills, eg reasoning from first principles,
learning in a consistent way, flexible forms of communication, etc, that would
be extremely difficult to implement in the current representation formalisms.
The development of a unified representation scheme to handle a variety of types
of knowledge or information that can be interpreted consistently for various
diverse purposes needs to directly address the previous two points.

It was felt, therefore, that in order to gain any insight into the theoretical and

psychological issues that will directly affect the basic capabilities of any such system,

research of this sort must be undertaken.

Subsequent chapters demonstrate how an understanding of these issues can be used in

the development of a representation system more directly suited to the highly

complex problem area of process design. It should be clearly recognised that at the

time of development it was thought that the problem of trying to provide a

representation which was expressive but concise enough to cope with the very large

amounts of information needed to solve even trivial problems was a very difficult

one, perhaps computationally intractable. This is very well discussed in Hayes

(1979b), (1985). Nevertheless, it was felt that the primary research aim of this thesis

was to investigate and develop an adequate representation system capable of handling

fundamental (eg basic laws, axioms, etc), heuristic and procedural methodologies in a

problem solving environment. This is in contrast to the alternative option of

demonstrating limited application of, what I believe to be, inadequate representation

techniques on simplified, isolated problems. It is in this context that the following

discussions should be understood. Finally, it should also be realised that the research

of other workers presented below does not represent a single line of investigation or

research area. Instead, I have drawn together a number of essentially independent

works, but with obvious common themes, into an elective set of ideas for my own

particular purposes.

5.1 Knowledge Representation - The Epistemological Level

As an introduction to the representation issues of interest here, the analysis of

Brachman (1979) (but see also Woods (1975)) concerning the confusion of

interpretation of frame-like structures and links in a network is briefly summarised. In

this work Brachman identified the importance of what he called the "epistemological

level" of knowledge representation.

(Epistemology is a branch of metaphysics which deals with the nature and validity of

knowledge. Metaphysics is a branch of philosophy concerned with the "ultimate

nature of being and knowing" Penguin English Dictionary (1979), or more usefully,

the study of ultimate abstract principles).

The wort epistemology is used here to mean a study or theory of the nature of

knowledge. It is this knowledge structuring level that will be seen to be of

considerable importance in much of what is to follow.

It is clear from the discussion in chapter 3 that much confusion has arisen regarding

the interpretation of frame-like structures. Intuitive interpetations of the semantics of

frames can be traced back to the work of Minsky (1975) who suggested the use of

frames to represent concepts. In fact, much of the content of frames is seen in the

earlier development of "semantic", or "associative" networks. It is not surprising to

find then, that there existed considerable confusion in the status and interpretation of

semantic networks. This confusion is well discussed in Brachman (1979) and Woods

(1975) and only the main points are highlighted here. The notion of a semantic

network is generally attributed to Quillian (1967) who proposed an associated

network model of "semantic memory". The original intent was to try and capture the

objective part of the meanings of English words in a formal network representation.

Quillian's representation consisted of nodes, considered to be "word concepts",

interconnected by various types of associative links. Links from one node could point

to other nodes, also representing word concepts, a combination of links and nodes

together making up a definition. The overall structures of the representation was,

therefore, an intricate, interwoven network of nodes and links. Quillian considered

each word concept to be the "head of a plane", the plane holding the definition.

334

Within a plane pointers were used to represent the structure of the definition. A small

set of pointer types were proposed including:

Subclass - a word concept that is a subclass of another.
modification - some modified use of another word concept.
disjunction/conjunction - the usual logical connectives.
subject/object - to indicate subject/object relationships between nodes

Pointers were allowed to point outside the defining plane, ie definitions could refer to

words that had their own definition, introducing the usual type/broken definition.

Finally, Quillian introduced the notion of a propagating or "spreading activation"

search along the links between nodes as a general inference mechanism. This idea has

been used since in many systems, most notably NETL (Fahiman 1979). Touretzky

(1986) discusses in detail the flaws in this approach, see also section 4.2.7. An

important part of the inference mechanism was the use of "subclass" and "modifies"

pointers. It was taken that properties true of a class were assumed to be true of all its

subclasses except for any modifications, the latter simply being a combination of an

attribute, a node within a plane, and a particular value for the attribute. Quillian's

networks did not distinguish between generic definitions and instances, ie allow for

the process of instantiation. This was addressed, however, in Carbonell's (1970)

development of Quillian's networks.

The important point is that intuitive understandings of Quillian's basic ideas were

widely applied to very different situations, many applications adopting their own, ad

hoc semantics when interpreting the networks. In many cases the semantic network is

simply viewed as a useful data structure. It is at this point the use of the term

"semantic" begins to lose meaning as the concept of a representation language is lost:

the term associative network is therefore preferred.

Consider a heat exchanger, he101, represented by the two nodes:

he101O --is_a--> heat-exchanger

The two nodes are linked by the infamous is_a node corresponding to Quillian's

subclass pointer. Inheritance of properties can be represented in a deceptively simple

way, eg

he101 --is_a--> heat—exchanger --has_part--> hot—stream

This is adequate for binary relations but presents difficulties for higher arity

predicates. A common idea developed was to use "case structures" that allowed a

node to have a set of outgoing arcs grouped together. Early examples of this approach

in the area of natural language understanding, and in particular the analysis of verbs,

are Fillmore (1968) and Simmons et a! (1973). The case first referred to agents, time,

location etc, but little attention was paid to hierarchically classifying information. A

335

similar line of research is given in Rumeihart and Norman (1973), Norman et a!

(1975). Nodes were used to represent concepts, events and episodes, ie sequences of

events. The interpretation of links between nodes, however, was not at all clear. In

particular, the is_a link was used to denote both subset relationships and type- token

relationships.

Ross (1985) gives the following example:

beryl --is—a-> bald—eagle --is—a-> bird --has_part-> wings

is a

endangered—species --studied_by-> naturalists

I
I

I--------------- study -------' is_a

nigel

A spreading activation search might erroneously conclude that Nigel studies Beryl,

the problem being that is_a has been used to represent both membership of a class

and properties of the class itself. In addition, this network fails to recognise that some

class properties are not inherited by. the class members, eg Beryl herself is not an

endangered species, merely a member of one. In many of the semantic network

publications the significance of the relations denoted by links is not properly

explained or defined. This leads to the confusion indicated above, and discussed at

length in chapter 3 on the problems of interpreting frame-like structures. (In many

respects, frames are simply an extension or reorganisation of the ideas involved in

case-structures in associative networks). The contribution of Woods (1975) is very

important as it challenges the logical adequacy of semantic network notations. In his

later review, Brachman (1979) summarises the research that attempts to deal with

these problems, eg the attempt of Hendrix (1976) to handle quantification by using

formal groupings of nodes called partitions.

A first attempt to clarify some of the representation issues involved was Shapiro

(1971). Shapiro introduced the distinction between the item, or conceptual, level of

the network and the system level. The system level is to do with the structural

connections between assertions of facts to items participating in those facts. The

semantics of these system relations were defined by the set of routines operating on

them. Item relations, on the other hand, are concepts that happen to be relational in

nature and are represented by nodes like other non-relational concepts. The work is

significant in that it was one of the first to separate out primitive system relations

from higher level conceptual relations. This helped make explicit two different kinds

of levels and types of representation.

The review of Brachman discusses this latter theme in some detail. Brachman

336

identifies four levels at which semantic networks appear to be interpreted. Each of

these levels consist of different types of primitive elements which are used for

interpretation purposes. They are as follows:

The implementational level - the primitives involved are atoms, pointers,
numbers etc, and are concerned with the data structure level.
The logical level - the primitives involved are logical entities such as
propositions, predicates, logical operators, etc.
The conceptual level - the primitives involved are word-senses, case relations,
etc
The linguistic level - the primitives involved are arbitrary concepts, words,
expressions, etc.

These levels require some clarification. The implementational level makes no claims

about the structure or content of the knowledge being represented. It is simply a data

structure out of which more complex forms can be built. As such it can simply be

viewed as a useful data organisation method.

The logical level takes nodes to be predicates or propositions with the links between

them representing logical relationships, eg and, there_exists, etc. Viewed at this level

a network has little to offer in representation terms over first order predicate calculus.

It does, however, indicate how normally non- indexed statements can be

meaningfully factored using the network as an organising guide.

The conceptual level is what Brachman refers to as the "real net". A network at this

level is characterised by language independent conceptual elements, ie primitive

object and action types, and conceptually primitive relationships out of which all

other concepts can be constructed. The essential aspect to grasp is the notion of

language independence and conceptual primitives.

Finally, the linguistic level takes this one stage further by considering the primitive

elements to be language specific. In addition it is expected that the primitive elements

will change in meaning as the network grows. For example, this might correspond to

learning new uses or definitions of words. The links in these networks represent

arbitrary relationships that exist in the world being modelled.

The problem with most semantic network representations is that they freely mixed

primitives from the different levels of representation. This makes it very difficult to

provide a clear definition of the meaning of expressions in networks in terms of the

actual primitives being used. It is also the case that each system designer would adopt

his own set of primitives to work with making comparisons between systems very

difficult. Brachman (1979) and Woods(1975) give detailed discussions of these

issues.

From his observations Brachman suggests characterising knowledge representations,

337

not just semantic networks, at a fifth level, an epistemological level lying between the

logical and conceptual levels. Brachman informally suggests that this level is

necessary by noticing how most systems require the creation of groupings, partitions,

case structures, frames, etc. This in turn suggests the organisation of conceptual

knowledge into compound units and their interpretation by some more formal means

(this is in fact what is implicit in the use of frame based inheritance hierarchies).

More formally Brachman observes that concepts, frame-like objects, etc, are thought

of as intensional descriptions of objects in the world. (In simple terms an intensional

description is one whose structure can be used to recognise a conceptual entity and

compare it with others. The notions of intension, extension, sense and reference, etc,

however rcu se deep philosophical issues that. are touched upon later). If they are

intensional descriptions, as claimed for example by Bobrow and Winograd (1977)

regarding Units in KRL (see section 4.2.4) then there will be relationships describing

how parts of an intension relate to the intension as a whole and how one intension

relates to another. This sort of relationship must account for commonly held notions

such as inheritance between concepts. Brachman's epistemological level is therefore

concerned with "the formal structure of conceptual units and their inter-relationships

as conceptual units (independent of any knowledge expressed therein)". In particular,

it introduces knowledge structuring primitives rather than the specific knowledge

primitives found at the higher conceptual level.

5.1.1 The KLONE system
Brachman developed the KLONE system to demonstrate the issues involved in

explicity representing epistemological level relationships such as concept structuring

and attribute-value inheritance. The details of the system are not of direct concern to

the remainder of this study but the terms he introduces are worth repeating here. Full

details of KLONE can be found in Brachman(1978).

The basic element of KLONE is called a Concept. Concepts are regarded as

intensional entities and are used to represent the objects, attributes and relationships

of the domain being modelled. No Concept is used to directly represent extensional,

i.e. world , objects. To understand the difference between generic Concepts and

Individuals, Brachman gives an example involving the Arc de Triomphe in Paris.

Consider a generic Concept ARCH. Brachman uses the word "instantiation" to

denote the relationship between the real world object and the generic Concept, i.e. the

Arc de Triomphe in Paris is an instance of the Concept ARCH - see Figure 5.1.

338

Figure 5.1: Instantiation, Individuation and Denotation

- 	Generic Concept

	

Q!CJH 	 Instantiation

Individuatiion
 43

(Denotation 	 Individual

	

mIO
	 Object

Individual Concept

The word individuation is used to represent the relationship between an Individual

and a generic Concept, in this case between the Individual ARCH-DE-TRIOMPHE

and the Concept ARCH. The Individual is said to denote the real world object. It is

important to appreciate the intuitive difference in meaning between these

relationships.

KLONE attempts to accoUnt for the internal structure of objects by use of Structural

descriptions (SDs) to relate the various Role/Filler Descriptions (or more simply

Roles). A Role represents the various attributes, parts, etc, that objects in the world

are considered to possess. A Role contains two important types of information:

A description of entities that can be used for the value of and attribute in an
instance of the Concept, how many values are expected, whether it is important
to always have a value in an instance, etc. This is all information to do with the
Role Fillers.
The functional role of Role Fillers within the entire conceptual complex
represented by a Concept.

A Role is therefore a special epistemological entity that brings together both Role

Filler information and their functional roles within the overall Concept. Its use arises

from the key assumption that objects, in general, have a complex internal relational

structure and cannot, therefore, be treated as atomic entities or simple lists of

properties. This assumption is an extremely important one and shall be returned to

later. In the meantime it should be noted that most frame-based systems do treat all

attributes in a simple, uniform way using simple list structures.

Each structural description, SD, is a set of relationships between two or more Roles.

In any Individual Concept the SDs must be satisfied in much the same ways as the

Role Filler constraints are satisfied. The examples of SD relationships that Brachman

discusses are simply first order logic statements which refer to the Roles by their Role

Name, as defined by the system designer. For example, given the Roles UPRIGHT

and LINTEL in the ARCH concept, an SD might state that all the UPRIGHTS in any

339

particular INDIVIDUAL will support the LINTEL,

Vx. upright(x) A support(x,lintel).

The only complication arises when the definition of one Concept is parameterised by

another Concept, usually needed to handed existentials. The simple example

Brachman (1979) discusses is the DISTANCE Concept with Roles FROM and TO.

Suppose the VERTICAL-CLEARANCE is a Role of ARCH that is defined to be the

distance between the arch's lintel and the ground. A DISTANCE individual, Dl say,

could therefore have its TO Role satisfied by a GROUND individual. The filler of

the FROM Role, however, is fixed and must be satisfied by the ARCH's particular

LINTEL. Dl is therefore parameterised by ARCH, or some other Concept, in

particular situations.

Brachman uses the term "paraindividuation" to describe this situation, Dl being

described as a Paralndividual.

An important epistemological relation that Brachman considers is inheritance.

Individuation is a relationship between two Concepts such that the subdescriptions of

the generic Concept are satisfied in some way by the Individual. There will, therefore,

be a set of relationships between the generalised Role descriptions and the particular

values found in the Individual. Inheritance is generally more complicated than this in

that sub-classes or concepts often restrict or overwrite some of the parts of the

description inherited from the parent concept. Despite the obvious differences in

usage many systems use a single is_a link to construct the network or hierarchy.

Brachman suggests, and I agree that this is an "oversimplification of a multifaceted

relationship" when viewed from an epistemological point of view. What is required

instead is a structured epistemological relationship between Concepts that transmits

both the Role and SD descriptions as a whole. In an epistemological framework these

entities cannot exist independently. More importantly, any modifications to the

descriptions must be explicitly represented. In KLONE these modifications are

represented as inter-Role or inter-SD links which state the relationship between the

original Role or SD and the modified one. Modified Roles are then treated like other

additional Role descriptions. KLONE only supports limited types of modification, eg

Role restrictions.

In summary, Brachman proposes that the following five relationships must be

accounted for in a knowledge representation language based on structured conceptual

objects:

the relationship between a Concept and one of its Roles,
the relationship between a Concept and one of its SDs,
the internal structure of a Role, ie the relationship between a Role and one of its

340

facets
the internal structure of a SD
relationships between parts of SDs and Roles

The fundamental, and as yet unanswered, question from a research point of view is to

establish the types of primitive necessary at the epistemological level. There are two

important aspects to this problem, namely the "adequacy" of the representation and

the definition of its semantics. The adequacy of an epistemological representation is

concerned with how well it

can support the construction of higher level conceptual descriptions, the definition of

appropriate semantics is much more problematical. In informal terms, this concerns

the legal operations on primitives and establishing some consistent means for their

interpretation. The term "semantics" is used here in its popular sense in which

"meanings" of primitives are provided by the procedures that operate on them.

Establishing the adequacy and semantics of epistemological, conceptual or linguistic

levels of representation raises extremely complex issues. Such problems have long

been considered in the areas of philosophy and psychology, and more recently

cognitive science. These problems cannot, however, be simply ignored or delayed if

any progress is to be made. It is precisely because epistemological issues were not

well understood that such confusion arose over the interpretation of frame-based

systems and semantic networks. Subsequent attempts to redescribe these systems in

terms of formal logics does little to help the initial construction or expansion of a

knowledge base in a complex problem domain involving a variety of types of

knowledge, eg heuristic, procedural, factual, axiomatic, etc.

Addressing one of the basic research objectives stated in section 4.1, namely to

provide a unified and systematic representation system and a consistent framework

for its interpretation, would also appear to require tackling these issues. Given this

background information is now possible to return to the main topics of interest

identified at the start of this chapter, page 333. The main theme of the remaining

discussion will be to show how all of conceptual categorisation, prototypical theories

and mental models can be used to help clarify the essential nature of mental concepts

and how these ideas can be used to develop more sophisticated representation

mechanisms suitable for use in process engineering design.

341

5.2 Conceptual Categorisation

The purpose of this section is to attempt to briefly summarise the work of Bruner,

Goodrow and Austin, "A Study of Thinking" (1956). This work was seen as an

important investigation of the basic processes involved in human categorising or

conceptualising. The psychological treatment was also unique in that it brought

together in a common framework mental phenomena such as conceptualising,

identification, inference and decision making which had previously been treated as

separate but related issues.

Before discussing the main ideas of Bruner et al's work it is worth emphasising why

the work is of immediate interest to this thesis:

The study will help to clarify the essential nature of concepts and how they are
used in problem solving or learning situations.
The ideas presented give rise to plausible models or frameworks for human
problem solving behaviour. These models involve significant cognitive tasks, eg
object recognition or identification, learning new concepts, etc. At the same
time they are simple enough to understand to provide a starting point for the
implementation of an A.I. system intended to deal with real problems in an
"intelligent" sort of way.

Due to limitations of space it will not be possible to discuss many aspects of Bruner

et al's work. In addition the discussion will refer to mental phenomena such as

"concepts", "attributes of concepts", "learning", etc. In order to avoid any confusion

with notions of objects or frames, slots, attributes, etc, as referred to in computer

programs in earlier chapters, all such mental phenomena will be written as capitalised

words. For example, when referring to a Concept and an Attribute no assumptions

can be made about what these words refer to or what their internal representation

might be. In particular, the notion of an A.I. type object with a static list of attributes

must be temporarily forgotten. (It will become clear, however, that A.I. type objects

are over simplified attempts to capture the ideas expressed by Bruner and other

cognitive science researchers. Indeed, the original motivation for Minsky's Frames

(1975) was taken directly from such research.

The basic idea of categorising is most easily introduced by a simple example. The

range of experiences of most people consists of a huge variety of discriminably

different objects, events etc. Bruner et al cite the simple example of colour

recognition. There is estimated to be more than seven minion discriminable colours.

In a relatively short period, two or three weeks, people came into contact with a

sizeable proportion of these. It is clear that if any system, human or otherwise, was to

fully register these colour differences in objects and treat each event as unique it

would soon be overwhelmed by this and other tasks it had to perform. Indeed, even

342

the linguistic tasks of acquiring a vocabulary to cover such a world of colour

differences in a precise way is something that no human ever attempts. It is probable,

therefore, that any system that did attempt different forms of reasoning by fully

registering differences between attributes of interest would have to perform massive

amounts of processing when tackling real life problem situations. This naive

approach is seen in the way many frame based systems simply use the list of

attributes that define frames in a checklist manner, ie simply checking off each

attribute in turn for each frame in turn. It is apparent that people do not normally

process information or think in this way. Bruner et al claim that this is due to our

ability to categorise. Categorising involves the ability "to render discriminably

different things equivalent, to group the objects and events and people around us into

classes, and to respond to them in terms of their class membership rather than their

uniqueness" (page 1, Bruner et a! 1956).

Treating different objects in an equivalent way is fundamental to the understanding of

categorisation and how it might be modelled in an A.I. system. The process of

categorising involves an act of invention. For example, the notion of a "pump" might

be created or used to describe a certain collection of objects, "prime numbers" to

describe an assortment of numbers, etc. The essential point about these categories is

that once they've been mastered they can be used without further learning, ie new

exemplars of the class can be readily identified and the category itself can become a

tool or basic entity for further use.
Bruner et al claim that the learning and utilisation of categories represents one of the

most elementary and general forms of cognition by which man adjusts to his

continually changing environment. As such, attempting to understand the mental

processes involved will be of key importance in the development of A.I. systems

needed to help solve real engineering problems. New information, example problems,

expertise, etc, will have to be continuously incorporated into a process design system.

This will not simply involve creating new categories, eg to cope with new

developments such as printed circuit heat exchangers, but requires knowing how to

use new information to utilise existing categories more effectively in the future.

The remainder of this section will introduce the main types and aspects of categories

of direct relevance to this work. Section 5.3.2 identifies the important differences

between conceptual categories, as described below, and the intuitive ideas embodied

in frames, objects, etc. The following discussion is necessary simplified since an

in-depth description would require considerable background knowledge in the area of

cognitive science. References are provided throughout this chapter for those

interested in gaining a broader appreciation of the issues involved.

343

5.2.1 Basic Category Types

The existence of categories can only be inferred by observing common responses by

people to arrays of objects or events. There are two broad types of categorising

responses, namely identity responses and equivalence responses each of which

involve different kinds of categories.

5.2.1.1 Identity Categories
Much of the work of Bruner et al is concerned with aspects of human thought which

are either pre-verbal, and hence difficult to verbalise, or perceptual in nature. Such

issues will not be directly addressed in this work. It is important to appreciate

however the basic ideas involved since:

It avoids confusion when deciding what sorts of reasoning processes can be
reasonably modelled.
Aspects of perceptual categorising will be of prime importance to A.I. systems
concerned with direct visual, audio inputs etc, eg in the field of robotics.

Identity categories are a feature of categorisation that shall not be studied in any

detail here. This type of categorising may be defined as identifying or classifying a

variety of objects or stimuli as "forms of the same thing". Bruner gives two common

examples to illustrate the idea:

The moon in its various phases, crescent moon, quarter, half and full moon,
evokes the same nominative response of "the moon" despite its considerable
change in appearance and change of position in the sky.
Flicking through a collection of photographs of the same person taken over
many years gives a strong impression of the same individual in a process of
growth despite considerable changes in external characteristics.

Identity categories are therefore associated with identity responses, that is identifying

a variety of stimuli as having the same identity, ie being forms of the same thing. A

study of this type of categorising would be very important in the development of any

real-time system that attempted to perform sensor based identification of objects,

events or trends and make any sort of inferences based on its responses.

This work is only initially concerned with process design in an abstract or idealised

environment and will not involve any perceptual-like identification, eg using video or

camera scans to read graphs or figures, monitoring process controllers etc. As such

the notion of identity categories will not be considered further. It is important to note,

however, that identity categories can arise in many "abstract" situations such as

reasoning about an entity with changing characteristics in a simulation. In the absence

of identity categories a system will have no choice but to assume single identities for

the entities it reasons about.
It is essential that such limitations be clearly identified whenever they arise so that

they can be more adequately handled in future developments.

344

Further details on identity categories can be found in Bruner et al (1956) as well as in

several works on childhood learning (eg Piaget, 1951). Identity categories are

difficult to characterise, identity responses being clearly affected by the early stages
of learning. Piaget's work on child learning raises many issues that will have direct

parallels in the development of more sophisticated A.I. systems that attempt to learn.

5.2.1.2 Equivalence Categories
The remainder o. this discussion focusses on the, concept of an equivalence category.

Equivalence categories arise when individuals respond to "a set of discriminably

different things as the same kind of thing or as amounting to the same thing". For

example a set of different looking objects may all evoke a common response and be

referred to as "pumps" or "heat exchangers" etc. A more abstract example is

recognising that various different problem descriptions amount to the same thing, eg a

non-ideal flash calculation described in a variety of ways. Similarly complex

problems can often be broken down into sets of smaller problems that can be

recognised as being equivalent to previous problems for which solution techniques

are known.
Another common engineering design heuristics to treat an object or system as being

equivalent to another, usually simplified in many ways, that can be more readily

analysed.
These are all forms of equivalence categorising and are typical of the way in which

engineers tackle different aspects of design problems.

There are three broad types of equivalence category, affective, functional and formal

respectively. These are now briefly described in turn.

5.2.1.3 Affective Equivalence Categories
As with identity categories, this subtype of equivalence category is not dealt with in

the work that follows. Affective responses that result in sets of things being grouped

together as "alike" or the "same kind of thing" are difficult to verbalise. This is

because there appears to be a lack of correspondence between affective and linguistic

categories. For example, engineers and mathematicians often refer to "elegant

solutions of problems". While there may be certain properties associated with such

solutions, eg transformations of equations which result in simple analytic solutions,

design of compact, energy efficient process unit modules, it would be very difficult to

formalise what constitutes an "elegant solution" to a problem. Yet it seems clear that

when an "elegant solution to a problem is presented it evokes a common affective

response that allows the solution to be labelled "elegant". These exemplars

undoubtedly influence the way in which engineers try to solve new problems or

formulate general problem solution methods. As such they must ultimately play an

345

important role in the development of general problem solving techniques that involve

making choices between partially formulated solutions to the same problem.

5.2.1.4 Functional Equivalence Categories
In the cases of functional and formal equivalence categories the problem of

identifying the properties or characteristics of objects, events, etc used in categorising

becomes, at least in principle, much simpler. This is because an equivalent response

is now based on an "external function" rather relying on some internal human state to

render a group of objects equivalent.

In the case of functional categories the objects in question must fulfil a "concrete and

specific task requirement", eg things to pump fluids, things to store liquids in, etc.

The "object" might be a conceptual abstraction such as n algorithm or procedure to

- perform a specific task, eg a procedure to solve a set of linear equations. The use of

functional categories leads directly to the interesting possibility of formulating both

interpolative techniques, ie performing tasks covered already by existing categories

but in a non-explicit way, and extrapolative techniques, ie making guesses as to how

perform new tasks. The development of this type of equivalence category for use in a

design environment is covered in chapter 6.

5.2.1.5 Formal Equivalence Categories
Formal equivalence categories can be characterised by specifying the intrinsic

attribute properties required by members of a class. They have the important

characteristic that the diacritica of a class of objects can be stated short of describing

their use. This sort of information is tied up in functional equivalence categories, see

above. A great deal of information can therefore be described in terms of formal

equivalence categories. This will include general object descriptions, eg pumps,

vessels, etc, abstract object descriptions, eg problem solving methods, decision

strategies, etc, as well as situation or event descriptions.

At first sight this definition may seem a slight variation on the definition of class

members in an inheritance hierarchy to those unfamiliar with the work of Bruner et

al. Whilst it is certainly true that when describing equivalence categories and their use

Bruner et al constantly refer to required attributes or defining properties, it shall be

explained shortly that the working definition of what is meant by a Concept is very

different in nature from objects, frames etc, as described in chapter 3. In particular

there are no direct parallels of functional equivalence categories in frame based

systems.

It is worth noting that the careful specification of defining properties in science or

engineering often requires the construction of artificial languages for description

purposes. This is particularly noticeable in abstract areas of thought such as

346

mathematics or logic and to a lesser extent in engineering with its proliferation of

"buzzwords". The emphasis in formal categorising is placed more on the Attribute

properties of class members and less on what Bruner et al refer to as utilitanda

properties. The degree to which categories are formalised depends on a gradual

learning process. Bruner et al give the example of gradually moving from "things to

hit this tent peg with", to "hammer", and from there to "mechanical force". At each

step the definitions become freer of any reference to specific use. Formal categories

are useful precisely because classes can be devised whose "defining properties are not

determined by the suitability of objects to a specific task" (page 6, ib). Much of

science and engineering is based on developments which take these abstract formal

categories as the starting point for further investigation. It seems clear that any A.I.

system which has to "intelligently" gather new information will have to operate in a

similar sort of way and hence the interest in studying this work further.

Rather than move directly onto specific developments derived from the work of

Bruner et al, as described in chapter 6, it is necessary to first describe the role of

equivalence categories in the wider inference processes in which they are involved.

One of the key differences between frame based systems and what follows is the

recognition that the development of an on-going system that takes into account the

evolving nature of categories is an essential part of "intelligent" behaviour.

5.22 What is Achieved by Categorising?
It is important at this point to try and give an overview of the potential benefits to be

gained from developing an A.I. system based on the concepts embodied in

categorisation theory. (Before reading the following comments it is worthwhile

reviewing the basic requirements of a process design environment stated earlier in

section 4.1.

Bruner et al cite the main benefits that are achieved by conceptional categorising.

These benefits were not written with the development of A.I. systems in mind but are

clearly relevant to the problem of designing sophisticated reasoning techniques:

Reduction of the Complexity of the Environment - the most important effect of
categorising is to reduce the complexity of the environment with which a
system has to deal. This is achieved by treating discriminably different events in
an equivalent way. This in turn greatly reduced the cognitive load or amount of
processing that must be performed when solving problems. This is true for a
variety of different types of tasks, eg object recognition, problem formulation,
etc. Furthermore it seems relatively clear how this aspect of categorisation can
be achieved in terms of abstraction and use of defining properties to label useful
categories. This is discussed in more detail later.
It provides the means by which objects and events in the world can be identified
- this statement is somewhat obvious but highlights the assumption that some

347

mechanism exists that allows discriminable objects to be placed in equivalence
categories. Being able to categorise entities is an extremely important aspect of
an intelligent problem solving system. Much of the skill of a design engineer
lies in the ability to recognise what is actually involved in a problem and then
explicitly formulate the problem in such a way as to allow convenient solution.
This inevitably involves identifying, ie recognising and categorising, the
important aspects of arbitrary problem descriptions according to some criteria.
The somewhat subtle importance of making the problem to be solved explicitly
known to a reasoning system is one that has been largely overlooked in the A.I.
literature. This is similar to the discussion of self-awareness earlier.
It reduces the necessity of constant learning. This means that once a category
has been established it can be used for future acts of categorising without the
need for any further learning. For example a system that has available to it a
"car" category does not need to be told whether every object encountered is or is
not a car. It 1tjf a car if it satisfies the appropriate defining criteria in some
acceptable but as yet undefined way. The extrapolative value of categories is an
important but obvious difference between categorising and the process of
simply learning by rote that a group of miscellaneous objects are labelled by
some class name X.
It provides direction for instrumental cognitive activity. Categorising objects
using discriminable defining features makes it possible to know in advance
what actions are appropriate or inappropriate to take in certain situations.
Guiding reasoning or search processes is, of course, a fundamental problem in
heuristic A.I. programs and little success has been reported in the general use of
"meta-level" information in sensible ways as it is often "fired" regardless of the
problem being solved.
This direction of activity is also important when faced with new objects or
events that cannot be categorised with any certainty. If the object has any
discriminable properties that have been previously found to be important in
defining other categories then an attempt can be made to "bracket" the new
object. A process of continuous regrouping can then occur until an appropriate
grouping can be found or a new category emerges. This form of instrumental
activity has already been demonstrated in intuitive ways in several
A.I. "learning" programs, eg Winston (1975), which operate in this bracketing
fashion.
Categorising permits classes of events and objects to be ordered and related. It
appears to be clear that people operate with category systems in which classes
of objects and events are related to each other in various kinds of superordinate
systems. The wide appeal of both inheritance hierarchies and semantic networks
are evidence of this intuitive organisation of information. It is important to note
that what is related - in order to give meaning to the world, as Bruner et al
claim, are classes of events rather than individual events. Once an object or
event has been categorised it is possible to "go beyond" the category by virtue
of the placement of the category in the superordinate system and the causal
relationships in which it is involved. This latter claim requires careful
consideration of the sorts of problems that were encountered in the subsequent
use of semantic networks are to be avoided - see section 5.1.

A final general observation made by Bruner, Goodrow and Austin regards the

anticipatory and explanatory nature of categorising. Anticipatory categorising

involves identifying the most definite defining attributes as early as possible in order

to give identity to events and objects. This anticipatory strategy is an essential part of

human behaviour and will be equally important in A.I. systems used in an advisory

role, eg observing that a tank will overflow and taking appropriate action beforehand.

348

The anticipatory nature of categorising therefore provides necessary lead times to

allow responses to objects or events to be adjusted.
This ability is particularly striking in the case of empty or fictive categories, ie

formulating the existence of categories that have not yet been encountered. Two well

known examples of postulated empty categories were the existence of the neutrino

particle and the planet Neptune. In the latter case Neptune was not observed until 23

years after Bessel proposed its existence. This type of anticipatory thought is closely

related to the claim, point 4 earlier, that categorising provides the necessary direction

for instrumental activity.
It is this ability to "go beyond" what is currently known that makes the model of

categorising such an attractive one for the development of a process engineering

design environment. A large percentage of industrial design problems exhibit some

novel or previously unencountered features that can usually only be solved by

applying basic principles, axioms etc to the problem in a constructive, "insightful"

way. Insight in this context is precisely the direction for cognitive activity alluded to

above.

The five benefits gained from categorising are, of course, based on observations and

experiments in human subjects. The psychological nature of Bruner, Goodrow and

Austin's investigation meant that they were not concerned with proposing a detailed

model of the categorisation process. It would be naive therefore to think that their

arguments could be translated directly into some formal representation system for

immediate use in a knowledge based system. The potential benefits to be gained,

however, in terms of intelligent forms of reasoning in a knowledge based system

based on the ideas of Bruner et al are such that it was decided to develop this work

further. The challenge then is to identify what aspects of categorisation theory are

amenable to direct representation and implement them in a suitable form. This work

is described in chapter 6. The sections below briefly discuss the more important

aspects of categorisation processes that Bruner et al identified and that are directly

relevant to the representation development that follows. The discussion covers two

main areas:

The nature of Attributes used to define categories.
The overall framework needed to support categorisation techniques

The first area is essentially concerned with what distinguishes equivalence categories

from frames or A.I. type objects. The second area provides pointers on how to

developa general framework for a reasoning system based on categorisation ideas.

Two final introductory points must be made that are fundamental to all that follows.

349

The first point regards the difference between categorisation at perceptual and

conceptual levels.
Much of categorising in everyday, real-life situations occurs at a perceptual level.

Perceptual categorising consists, as does conceptual categorising, of placing stimulus

inputs by virtue of their defining Attributes into certain classes. In both cases the

identification involves a form of fit between the properties of the stimulus input and

the category specifications. The principal difference between the two levels is the

nature of the entities being categorised in terms of the "immediacy to experience of

the attributes by which their fitness to a category is determined", (page 9, Bruner et al

1956). Many, so called, common sense understandings of Concepts such as force,

pressure, motion, distance, etc, involve perceptual level categories. As noted earlier,

as a Concept like pressure becomes more formalised there is a gradual formation of a

more abstract, conceptual level category that is very different in nature form the

perceptual level notion.
It is important to realise that the same linguistic words, eg force, pressure, heat etc,

are often used to label a number of concepts at different points along the perceptual -

conceptual spectrum. These.distinctions must be kept in mind when deciding what

can and cannot be reasonably represented in a representation scheme. Since the work

here involves no equivalent of perceptual identification, eg in terms of sensor input,

some means of working around perceptual level concepts must be provided in order

to allow higher level conceptual categories to be constructed. A partial solution to this

problem is presented in the following chapter.

The second essential point to appreciate is the invented or constructed nature of

equivalence categories. In an engineer's world of experience, in the context of

process engineering design, there exists a near infinitude of ways of grouping events

and using defining criteria to form equivalence classes. Any single engineer will only

ever make use of or become familiar with a small number of such groupings and

criteria. The important question from an A.I. point of view is why certain groupings

and categories are used in preference to others? As an initial reply Bruner et al

suggest that "science and common sense inquiry alike do not discover the ways in

which events are grouped in the world; they invent ways of grouping. The test of the

invention is the predictive benefits that result from the use of invented categories. Do

such categories as lions, atoms,. ..exist? In so far as they have been invented and

found applicable ... they do".

Recognising the invented status of equivalence categories greatly changes the

emphasis on how conceptual categorisation should be viewed and studied. The

development of equivalence categories can be assumed to involve a continuous

350

reformulation process that attempts to take account of past events and current

requirements in order to meet some internal needs. This is an important point and one

- . that underlies much of the structure of the. proposed knowledge representation system

described in chapter 6

5.2.3 Attributes, Attribute Combinations and Concept Types

This section introduces the basic observations of Bruner et al on the nature of

Attributes that are used to help define equivalence categories. The discussion that

follows is greatly oversimplified and the reader is referred to the original work for

full details. Due to the oversimplification it may appear at first sight that Attributes,

taken at a surface level, are very similar to the slots of frames or objects. It is not until

the discussion in the following sections on the problem solving and learning aspects

of categories is presented do the differences begin to appear. A comparison of these

ideas with the use of frame based inheritance hierarchies is given in section 5.3.2.

In general terms an Attribute is simply a descriptive term relating to some object or

event which can vary either discretely or continuously in value. The nature of the

descriptive terms used can vary from affective to formal in that "elegance and beauty"

can be Attributes in the same way that "volume, mass, defining geometry" could be.

In much the same way that the "invention", use and labelling of categories is seen

from a nominalist point of view, so too is the selection of particular Attributes to suit

particular needs. That is in many situations there are no ultimate rules regarding the

selection of Attributes. In the case of technical terms or ideas in scientific or

engineering fields, ie areas involving the use of formal equivalence classes in general,

there is however considerable social consensus as to the relevancy or need of certain

attributes, eg the necessary Attributes needed to classify a certain shape as a triangle,

or what constitutes a heat pump cycle, etc.

Attributes may be required to take on certain values or may be allowed to vary over a

range of discrete or continuous values. The range of allowable values has important

consequences in the selective use of Attributes and is closely tied to the particular

learning process used in the initial formation of concepts in which the attribute is

used. In general, the range of positive or acceptable values for an Attribute will vary

as a function of the stage of category learning and typically narrows as a Concept

becomes more fully understood. This can often correspond to a reduction in the

number of Attributes used, as irrelevant Attributes are ignored as learning proceeds.

In summary, Bruner et al describe an Attribute as "any discriminable feature of an

event that is susceptible of some discriminable variation from event to event". What

is important to note is that the nature of the Attributes can be very different and

351

contribute in different ways to the different types of equivalence categories, ie formal,

functional and affective. The choice of Attributes and allowable attribute values is not

a fixed decision and will vary with the degree to which a Concept has been learnt.

5.2.3.1 Defining, Criterial and Non-Criterial Attributes
There are two levels on which Attributes can be characterised:

Their nature - affective, formal, etc, as indicated above.
Their functional role - whether they are defining, criterial or non-criterial.

A criterial Attribute is some discriminable feature of an environment that is used to

infer the identity or category placement of some entity. That is, a criteria! Attribute

functions as a signal that can be used as a basis for "going beyond by inference". In

this sense any type of Attribute can be a criteria! Attribute regardless of the nature of

the Attribute.

Criteria! Attributes are distinct from defining Attributes, Defining Attributes arise in

formal equivalence categories and are external or official statements of the defining

properties of a class as given, for example by legal definitions or

scientific/engineering conventions. Whether or not the criteria! Attributes actually

used for category placement agree with the defining Attributes will depend on a

particular person and situation.

Bruner et al give the simple example for "safe driving" with a defining Attribute of

speed. Suppose, for example, the legal definition of safe driving is that speeds up to

50 mph are safe and allowable. There are two cases worth noting:

The criterial and defining Attributes are the same but vary in allowable values.
A person may consider himself to be driving safely while driving at 65 mph.
The criterial Attributes used may only be part-related or even entirely different
from the defining Attributes. A person may consider safe driving to be directly
related to a perceptual notion of the car "feeling under control" regardless of
speed.

As indicated in the previous section the choice of concepts and criteria! Attributes is

not universally defined but related to satisfying some internal requirements or needs.

In most cases involving some sort of social interactions the advantages and potential

benefits resulting from the use of one set of Attributes in a criterial way must be

weighed against other possible Attributes, eg the defining Attributes if they are

known. In the case of safe driving, a 60 mph driver must consider the risk of a

speeding fine. In many engineering contexts defining Attributes are not so clearly or

simply stated.

For example, deciding whether to categorise a separation problem as ideal or

non-ideal and model it appropriately may depend on the perceived benefits to be

gained from a more rigorous model, the "resources" available to solve the model,

352

availability of experimental physical property data characterising the system etc. In

such cases the use of criterial Attributes is of considerable significance to the problem

solving process.

The distinction between criterial and defining Attributes is also fundamental to any

learning process, ie the process of Concept attainment. Any competent engineer or

A.I. system that has to act or perform in some social environment must be aware of or

be capable of learning which Attributes are to be taken as defining if sensible

communication of information between systems is to occur. This is true in both

learning and explanation type situations. However, it should be emphasised that the

process of concept attainment does not necessarily mean that a persons or system's

resulting set of criterial attributes correspond directly to some widely held set of

defining Attributes. In particular situations an engineer may actively choose to model

a system at a level of detail that he knows to be inaccurate for whatever reasons, eg

time/resource constraints, as a precursor to more detailed modelling, etc

Experts in a particular field may well employ criterial Attributes that go beyond or

knowingly contradict currently accepted definitions. What is required for intelligent

problem solving behaviour is that the engineer or expert be explicitly aware of the

relevant defining Attributes.

Non-criteria! Attributes are those which do not produce a change in the likelihood of

an object being categorised in a certain way when their values change, eg the colour

of a person's eyes, the placement of baffles in a heat exchanger, etc. In most cases

sorting Attributes into criterial and non-criterial ones is not a clear cut decision but

one that results over an extended period of time dependent on the use of the parent

Concept and the learning or training set of exemplars encountered. (For example,

observing the colour of someone's eyes to be luminous green may well call into

question the validity of categorising them as human! Bruner et al therefore refer to

Attributes, both criterial and defining, as having a degree of criteriality or
definingness. An Attribute of maximum criteriality will result in an object being

categorised as "X" when that attribute is observed as being present, or having a

permissible value.

The use of criterial Attributes is interesting in that it raises the question of the

inferential value or validity of both Attributes and category placements. Much of the

content of rules in production rule systems, see chapter 3, is concerned with, what

Bruner et al refer to as, the causal relationship between criterial or defining Attributes

and equivalence category membership, eg, if the stream components are a liquid

phase then separation by distillation may be possible".

353

Unlike most production rule representation systems, however, it is not necessary to

attempt to associate some certainty factor with such a statement. All that is initially

required is to recognise that there is some causal relationship between an Attribute

and some parent Concept, or equivalence category, and whether the Attribute is being

used in a criterial or defining way. Handling uncertainty is then concerned with

explicitly knowing one's belief in the inferential validity of an Attribute, eg whether

it is only usually partially valid, and how this will affect category placement.

The important point here from a representation point of view is that there is a need for

an explicit representation of the causal relationship between Attributes and their

parent Concepts and the way in which Attributes are used in category placement, eg

in a criterial or non-criterial way, the validity of the cues etc.

It is worth noting here certain cues, ie Attributes, do not obtain a criterial status based

purely on their "goodness" or validity for prediction. Bruner et al observe that in

many instances the status or criteriality attached to certain Attributes is higher or goes

well beyond that which would be permitted by their defining value or "ecological"

validity. There are two areas in which this has important implications:

Experienced engineers or technical experts may unwittingly overstate the
importance attached to certain Attributes when attempting to verbalise problem
solving heuristics. When new information is learned engineer's will often
change their point of view with little trouble. Any radical changes in certainty
factors, on the other hand, would cause major problems when updating, say, a
rule based system.
In problem solving situations the most important criteria for deciding how much
reliance will be placed on a certain Attribute will depend on the internal
objectives of the person's categorising decision and the perceived benefits that
will result thereof. In a rule based system working with uncertainty factors this
would effectively mean that confidence factors were variable and problem
dependent. In such a system it would be very difficult to carry information
consistently through a sequence of problems since important contextual
information has been lost by reducing uncertainties to single valued, point
measures.

In both cases an explicit representation of the relationship between Attributes and

Concepts, as mentioned above, is needed to provide an adequate model of the

cognitive processes involved.

5.2.3.2 Attribute Combinations and Basic Equivalence Category Types
It is rarely the case that the question of equivalence category membership can be

decided on the basis of a single Attribute. More typically, category membership will

depend on a person's response to the values of a number of Attributes taken together.

The inter-relationships between these Attributes and the way they are combined

together to form working definitions of category membership are of considerable

importance. Bruner et al studied three basic category types, namely conjunctive,

354

disjunctive and relational types, each involving different ways of combining

Attributes. The basic features of each Concept type are simply defined as follows:

Conjunctive Category - "are defined by the joint presence of the appropriate
values of several attributes". Due to the difference between criterial, non-
criterial and defining attributes this is a weaker definition than one requiring
logically necessary attributes related by the AND operator.
Disjunctive Category - As with conjunctive categories, this is a weak form of
logical necessity of certain suitably valued Attributes grouped by an OR
operator.
Relational Category - "are defined by a specifiable relationship between
defining attributes". Relational Concepts are usually higher order constructs that
relate constituent Concepts and Attributes in some defined way. The rules of
inference associated with such concepts require that values of different
Attributes bear a specified relation to each other. A simple example is the notion
of an equation and the relation between its left and right hand sides. Simple
engineering examples are Maxwell type definitions of various thermodynamic
Concepts.

The essential difference to note here between the use of the terms conjunctive,

disjunctive, and relational Concepts and logic based representations of equivalent

objects or frames is the way in which both the nature and relationship of Attributes to

their parent Concept alter the evaluation of the equivalent "truth" conditions. For

example, all Attributes in a conjunctive category do not have the same status as

regards allowing category membership. This is not the case in a simple frame or rule

based system using a logical AND, or OR, operator to combine and test slot values.

As discussed previously, chapter 4, most frame based systems implicitly assume that

the set of describing slots are taken to be conjuncts in the overall frame definition.

This is too simplistic a model to capture many of the subtleties of conceptual

categorisation as observed by Brunner et al.

As with much of conceptual categorisation, there does not appear to be any unique or

"correct" way of combining Attributes in working definitions of equivalence category

membership in that effectively equivalent but different combinations of Attributes

can exist. Bruner et al observed, however, that the particular combination pattern used

can radically alter the way in which learnt Concepts are applied to new problems or

used to take account of new information.

This is an extremely important point as regards the development of knowledge based

engineering systems. It is my belief that much of an engineer's ability lies in his

ability to abstract problems in a way that will allow basic, well learned principles to

be applied in the analysis and productive solution of those problems. The application

of principles in the current context precisely refers to the use of learned concepts. It

seems clear then, given the work of Bruner et al, that the internal formulation of a

Concept will significantly impact on the competent use, or otherwise, of that Concept,

355

ie whether the Concept has been well "grasped" or not. This observation confirms the

inituitive conclusion of chapter 3 that not only are some aspects of simple

representation schemes inadequate, eg using production rules to express algorithms

while implicitly relying on a particular rule firing order, but that in the context of my

interpretation of the ideas involved in conceptual categorisation they are also in some

sense "wrong". This is because many system representations of some Concept do not

allow it to be conveniently used in new or novel situations, nor do they allow Concept

definitions to be easily refined in the light of new, possibly contradictory, information

or data.
It is not surprising then that rule sets, for example, are notoriously difficult to expand

and update in a consistent way as there is no simple way of grasping the "intent" of

each rule without bringing into question the operation of the overall system.

5.2.4 The Process of Concept Attainment
Having described the basic aspects of conceptual categorisation there remains the

essential questions, from a representational point of view, of how equivalence

categories are established or learned and how they are subsequently used in problem

solving situations. The work of Bruner et al and subsequent related research in

cognitive science indicates that there are no simple answers to these questions. A

particularly complicated question that raises deep philosophical arguments, and is one

that is still far from being resolved, is just exactly what the basic nature of certain

category types involves and how both category types and Attributes are related to

linguistic labels, ie a theory of word meaning in cognitive terms. It is now generally

accepted that important parts of human thought are highly perceptual, often

pre-verbal in nature, and not readily open to introspection or verbalisation. If this is

indeed the case then accurate models of categorisation processes will remain long

term research goals for some time to come.

What is important in immediate research terms is my belief that many aspects of

handling functional and formal equivalence categories can, in fact, be modelled

provided the scope of study is restricted to abstract forms of conceptual entities, eg

the abstract description of distillation separations as often found in text books. It must

be emphasised however that much of the "appeal" of such descriptions relies on more

primitive or perceptual notions of linguistic labels such as force, pressure, liquid,

vessel etc. This level of "understanding" will be outside the capabilities of any

reasoning techniques proposed here in much the same way as there is no attempt to

reason about identity and affective equivalence categories. (It is worth observing that

when Concepts are introduced that do not immediately relate to such common sense,

356

real life interpretations then considerable difficulty in their use and comprehension

can be observed. A clear example of this sort of phenomenon in process engineering

is the introduction of concepts like vapour pressure and entropy. Entropy is a

particularly elusive concept that, I suspect, many practising engineers will have little

feel for).

The work of Brunner et al is still important, therefore, in that although no detailed

models of the process of Concept attainment and use are given, a discussion of the

most important factors and conditions affecting Concept attainment behaviour is

provided. These ideas are briefly described below.

5.2.4.1 Factors Affecting Concept Attainment
There are two broad aspects to the process of Concept attainment, ie learning or

grasping Concepts, that involve different strategies or styles of behaviour. The first is

that of initial concept formation. This specifically refers to the "process of :Finding

predictive defining attributes that distinguish exemplars from non-exemplars of the

class one seeks to discriminate". This can be thought of as the first phase of attaining

a concept that establishes, for example, what is it about a pump that "makes it" a

pump. This stage of learning typically involves a good deal of social interaction,

taught instruction etc. Once a Concept has been formed the process of Concept

attainment involves gradually refining the use of Attributes in more effective ways in

"problem" solving situations. The essential point that Bruner et al make is that

Concept attainment involves an extended sequence of decisions. The working

definition of a Concept at any instant is wholly dependent on the previous history or

pattern of decisions involved in the acquisition, retention and use of information that

served to meet problem specific objectives in forming the Concept at the time. That

is, a Concept is not a one-off definition. It has a dynamic nature that depends on

many factors including previous exemplars encountered, previous use of earlier

"definitions", currently perceived needs and objectives etc. Bruner et al group the

factors affecting concept attainment into the following five areas:

Definition of the Task - In problem solving scenarios an explicit awareness of
the task definition and one's objectives is central to the process of either
Concept attainment or use. Typical questions that might be asked include "what
is the purpose of the task?", "What does a person think he/she is supposed to be
achieving?", etc. Making a problem task, associated constraints and strategy
formulation all explicit is an important part of the "intelligent" use of abstract
Concepts.
The Nature of Instances Encountered - The nature, number, and order in which
instances, ie exemplars of a Concept, are encountered can significantly affect
the formation or refinement of a Concept. Some specific questions to consider
are "How many properties have to be considered and how many of them are
defining Attributes?", "Are the learning instances encountered at random or is
there any control over the instances selected?", and "Will a set of training

357

instances fully define a Concept?".
The expected nature of a Concept, eg conjunctive or relational, strongly
influences the choice of adopting one strategy over another in Concept
formation or refinement. The use of analogies is a powerful strategy, both in
Concept formation and use, ie in problem solving, and allows a person to
behave in this anticipatory way.
The Nature of Validation - ie the ability to check, confirm or discard
hypotheses, plays an essential part in the mechanisms of Concept attainment.
This feature is seen as particulary important in the context of knowledge based
systems responding or acting in "intelligent" ways and is expanded in below.
The Consequences of Specific Categorisations - what is the cost of categorising
a specific instance wrongly or the gain to be made from a correct
categorisation? This sort of consideration is very important in forming the
actual strategy to be used in a particular situation. This is just as important in the
context of a knowledge based system that is to assist in the real-life solution of
engineering problems as it is to the engineer himself. For example, what merits
a good solution under a particular set of circumstances, merely a better than
chance guess or a "correct, elegant solution"?
The process of making recommendations or providing solutions is closely tied
to how much one wants to "understand" a solution or solution technique. An
engineer, for instance, may quite happily use Gear's technique for solving sets
of stiff differential equations in the solution of some problem without knowing
the details of the solution technique. This may be acceptable behaviour as long
as the technique appears to work, possibly confirmed by an alternative solution
method. The benefits to be gained from this assumed categorisation are
considerable but significant problems will arise if the solution technique breaks
down and the engineer has no real understanding of the Concept of stiff
differential equations.
The general question of the "cost" of making recommendations is important in
the design and practical use of a knowledge based system. The "cost" to a
system that suggests, for example, problem formulations that would require
enormous resources to solve is likely to be that the system will be abandoned.
Taking into account the potential consequences of recommendations in
particular situations is a problem that has been given little attention in
knowledge based system research. In their original work Bruner et al tentatively
suggest the use of Payoff matrices using quantatative estimates of expected
value to make choices between alternative decisions. This idea is based on a
classical decision theory approach. The whole question of the use of numerical
estimates of likliehood was discussed and criticised in chapter 4. Brunner et al
suggest themselves that this is unlikely to be a general mechanism and is
therefore not discussed further here.
The Nature of Imposed Restrictions - the precise nature of local, situation
dependent restrictions strongly affects the way in which a Concept is attained or
used. For example, is it possible to keep a complete record of instances
encountered? Is there a price, eg computing time, attached to the testing of
instances? Is there a time constraint requiring speed decisions? Such constraints
have a strong effect on engineer's problem solving strategies and the way they
attempt to learn new ideas.

The combined effect of these five areas is the formation of what is called a strategy.

A strategy refers to the pattern of decisions involved in the acquisition, retention and

use of information that serves to meet certain objectives. By noting regularities in

these patterns of decision Bruner et al identified various idealised strategies for

dealing with Concept formation for conjunctive, disjunctive and relational categories.

358

It should be noted that, due to the factors listed above, the strategies employed by

people are not "fixed things". One of the most creative aspects of Concept attainment

behaviour is the fact that the pattern of decisions does indeed reflect the demands of

the situation, eg the nature of the Concept being sought, the imposed restrictions,

possible consequences that may occur, etc.

5.2.4.2 An Overall Framework for Concept Attainment
On first sight the variety of factors that influence the process of Concept attainment

would seem to indicate that modelling such a process would be very difficult. In an

ultimate sense this is undoubtedly true. On the other hand, just as the scope of

categorisation has been restricted here to formal equivalence categories and limited

forms of functional categories, so too can the scope of the complexity of Concept

attainment be restricted to allow a useful start to be made on the problem.

The overall framework used here is very simple and shown in Figure 5.2 below.

Figure 5.2: A Framework for Concept Use and Attainment

Concept 	 Concept Use
Formation Validation,

Socal Interaction

Concept' Attainment,
Refinement

There are two key issues:

the use of Concepts and their attainment is part of an ongoing process. Concepts
are not isolated, static definitions.
the framework makes explicit the use of the factors, conditions etc, that
influence the interpretation and use of Concepts. These factors have hitherto
been either ignored or treated in ad hoc ways in other knowledge based systems.

It is not until such a framework is developed, which takes into account the relevant

problem/situation complexities, can one expect to see knowledge based systems

behave in "intelligent ways" that satisfy the requirements for a process engineering

design environment.

Details of an attempt to formalise such a model are given later in chapter 6.

5.2.4.3 Validation and the Learning Process
An important part of the learning process is the nature and frequency of the

opportunity that exists for validating decisions. In everyday life it is not very

common, nor desirable, to confirm or expect to be able to confirm every categorising

decision that is made. Indeed, an A.I. system that asked whether everything it did was

359

correct or not would be impossible to use. More typically a person has to work with

reduced opportunity for validation. A good example of this is on the field of hazard

and safety analysis in which certain Concepts used in plant design will hopefully not

result in validation in terms of negative responses to decisions, ie safety related

accidents occur. Until such an accident does occur and safety procedures have to be

tightened, an engineer has to cope with the absence of positive validation and

continue in the belief that the initial ideas will continue to apply in new but

conceptually similar instances.
(NB Tightening of safety procedures in this example corresponds exactly to what is

labelled the "refinement" step in Figure 5.2 above).

The work of Bruner et al identified that validation of decisions plays a part in four

aspects of the overall learning process. These points are reproduced here because of

their long term importance in a representation system.

Validation evokes problem solving behaviour - the opportunity to check
categorisation decisions against an ultimate, external criterion has the effect of
making one less casual towards error. That is, when validation is possible then
errors in decision making can be observed and studied. This is necessary to
stimulate learning if errors in decisions lead to undesirable consequences for the
engineer or system involved. This point is somewhat obvious but non-trivial to
model since a knowledge of such consequences will set the scene for future
behaviour.
Validation provides the means whereby learning proceeds - checking
intermediate hypotheses is an important part of the process of Concept
attainment and the formulation of problem solving strategies. This point
re-enforces the fact that the successful use and attainment of Concepts is a
strongly social process that should be reflected in the design of an A.I. system.
Validation provides a basis for the regulation of problem solving behaviour.
This is the means by which engineers develop heuristics, or keep a score, on the
use of certain Concepts based on the outcomes of past decisions about similar
instances.
Validation regulates one's level of aspiration - following on from the previous
point, repeated validation provides a basis for self assessment. This strongly
influences the limits which engineers set themselves in future tasks. This is an
important problem for systems which have to make "reasonable"
recommendations and then subsequently act on those recommendations since it
affects the types of problem solving strategy that will be considered.

A general observation on the reduced frequency of validation is that it results in a

move away from a problem solving behaviour towards some form of all-or- nothing

behaviour. If, as a result, a system becomes tolerant of errors then a certain margin of

error will come to be accepted as inevitable. Problem solving behaviour likewise

decreases when scores cannot be kept of the outcomes of past events or when

hypotheses cannot be tested. In such situations systems will exhibit a strong bias in

decision making and it is important to know why such bias exists if it has to be

subsequently corrected.

360

5.2.5 Further Aspects of Atrributes : Typical and Generic Instances
The final topic of discussion regarding conceptual categorisation concerns more

subtle forms of Attribute use in problem solving situations. Most of these ideas,

however, are inevitably applicable to the concept formation/attainment process since

the two processes are inextricably related to each other. When a category has been

learned the problem of how to use it or refine it given new examples then arises. An

important factor in any further behaviour is the number of Attributes, defining or

criterial, that affect categorisation. It is clear that if there are many defining

Attributes then the process of scanning the values of the Attributes in order to reach

inferential decisions may turn out to be a costly and time consuming activity. In such

cases there will be a tendency to reduce the cognitive effort, especially when time

pressures are operating, and certain Attributes will not be fully considered that

otherwise would be under more leisurely conditions. This simplifying and often

useful behaviour can be observed in two basic processes. The first and most obvious

method involves the idea of Attribute reduction. An engineer will often tend to rely

on the most criterial Attributes, ignoring less criterial Attributes, regardless of

whatever the basis of criteriality might be. This sort of Attribute reduction can happen

in several ways. It may be that some Attribute value in the presence of other criteria!

Attributes has proved highly predictive in the past, or it may be that the Attributes

used are those that are most immediately discriminable. The extent of attribute

reduction will usually reflect the constraints imposed upon a person. In cases where

certain outcomes have serious consequences then it is unlikely that much Attribute

reduction will occur. A similar situation arises when the degree of belief in the

validity of any of the Attributes is low. In most other situations, however, an Attribute

reduction strategy may be acceptable.

A second method, of less immediate relevance to this thesis, is the development of so

called "configurational attributes". This refers to the situation in which a frequently

observed object or event takes on a configurational quality itself, classically referred

to as a Gestalt quality in psychological literature. The interesting feature about

Gestalten is that it appears it is no longer necessary to scan through the set of defining

properties for categorisation purposes. Rather, the object or event becomes a

property or seemingly irreducible attribute in its own right. This form of recognition

appears to be highly perceptual in nature and is often the result of transforming

formally defined Attributes or Concepts into more immediate perceptual cues. The

technique is an advanced form of attribute reduction and introduces the useful trick of

predicting or "filling in" Attribute values based on the presence of one or two highly

criterial Attributes. This has obvious parallels with the use of default reasoning

techniques in A.I., see chapter 4.

361

An important driving force behind the whole of the conceptual categorisation process

is the aim of reducing the disorder and confusion of a system's environment and the

effort needed to come to terms and rationalise about that environment. This is one

reason why the orderliness of exemplar encounter and the problem of reducing

cognitive effort are so important in determining the behaviour people adopt.

It is clear from the studies made by Bruner et al that a key feature of this process is

adopting a focus or reference point from which one can proceed. Most of the effective

learning strategies described by Bruner et al use some sort of initial focus and this is

reflected in many teaching methods: start off with a base reference case and gradually

proceed by removing various simplifying assumptions. From a problem solving point

of view the important question is how order can be maintained after a Concept has

been initially learnt. There are two useful mechanisms observable in categorising

behaviour that are related to the use of Attribute reduction and configurational

Attributes, namely the use of typical and generic instances. The formation of a typical

instance of a category involves the phenomenon of an adaption level. A typical object

or event is formed in a gradual way and attempts to account for or summarise all

exemplars of a category that have been encountered so far. As such, it will use typical

or average values for each of the defining attributes. Engineers frequently use rule of

thumb guidelines of this sort. A good example is the use of quick sizing and costing

estimates based on data averaged over many case studies. These calculations can then

be used for the guidance of more detailed investigations. Generic instances are

related to but not the same as typical instances. A generic instance of a Concept is a

representation of a Concept in terms of idealised values, rather than average values,

of the defining or criterial attributes. Further, a generic instance will be stripped of

any noisy, non- defining Attributes, ie Attributes that change value from instance to

instance but which are non-defining. The function of a generic instance appears to be

somewhat different to that of a typical instance. In problem solving situations a

generic instance is often used as a base case search model when considering what

classes of objects, techniques, etc. would be relevant to the solution of as yet

unsolved problems. As such they provide an important initial problem solving focus

which provides direction for more detailed forms of reasoning. This in turn may

involve a specific category for which a typical instance is available to allow further

progress to be made.
A stunning example of this idea is the "fiction" of an ideal gas. An ideal gas is clearly

an idealised representation rather than a typical one. Nevertheless, this simple

representation of a gas and its associated describing equations has had a profound

effect on the development of all real gas models and equations of state proposed to

date. This particular generic instance is interesting in that the ideal "model" has

362

physical relevance in the limiting case of atmospheric pressure for many gases.

The use of strategies that involve typical and generic instances can greatly enhance

one's problem solving capabilities especially in cases where "creative insight" is

required, eg novel plant synthesis problems. These ideas, when combined with the

more general use of (reduced) criterial attributec., appear to provide simple but

powerful forms of reasoning that could be applied in a knowledge based system.

Section 5.3.2 provides a brief discussion on the difference between the ideas

described here, including the notion of prototypes, and the confused situation that has

arisen in frame based systems and object oriented programming in general.

5.3 Prototypes, Family Resemblances and Categorical Frameworks

It was stated at the beginning of this chapter that the study of Concepts and mental

modelling would focus on three areas, namely Conceptual Categorisation, the use of

prototypes and mental models. This section introduces the idea of a prototype as a

basis for conceptualisation. The work is described here as an extension of my

interpretation, as described above, of Bruner, Goodnow and Austin's (1956) work on

conceptual categorisation. The ideas involved are obviously related but little mention

is made of Bruner et al's work in the later work on prototypes.

It seems clear, given the considerable amount of research in psychology, that in

certain areas of vocabulary many labelled categories or Concepts are related by some

superordinate taxonomic structure. The nature of these structures was studied in a

series of papers by Berlin, as summarised in Berlin (1978). The work suggests that

taxonomies usually consist of less than five, sometimes six, layers and that many are

of the same general form. An example is shown in Figure 5.3 below.

363

Figure 5.3: A Feature Based Taxonomy

Level

0) Unique Beginner PLANT

IT E 	 CACTUS(Generic) FLOWER 	VEGETABLE Life Form

PM Generic OAK 	WILLOW

Specific DWARF

Varietal STRAIGHT 	 CURLY-LEAVED

(Despite the deceptive simplicity of this hierarchy it should be noted that it is far from

adequate in terms of the ideas on conceptual categorisation as it provides no

information on the use and nature of Attributes used to "justify" the labels or category

types. This is essential information for maintaining and using the categories).

What is useful about Berlin's analysis is the use of levels to differentiate different

forms of category. At the highest level (0) occur the broadest divisions of the

observed world. The next level (1) consists of "life forms" which are typically few in

number and never terminal, ie they always have sub- categories. In relative terms, the

most numerous type of category exists at level (2), termed "Generic" by Berlin. (NB

The use of Generic should not be confused with generic instances as described in

section 5.2 earlier. Generic, as used here, refers to a Concept or Category not an

idealised instance). Occasionally a generic form appears at level (1), as in the case of

CACTUS in Figure 5.3. This usually happens when the Concept is particularly

distinctive in some way.
The most important observation of Berlin was that one level, the generic level,

contains proportionately many more members than other levels. In addition, they are

often of a special significance in that they are typically learned earlier by children

than the categories at other levels. In Bruner et al's terms they are both perceptually

and functionally distinct from other Concepts. Berlin provides no evidence nor

reasoned arguments, but intuitively suggests that categories are formed in this way to

provide "maximum use of information".

In an attempt to provide a more detailed account, Rosch produced a series of papers

(Rosch (1973), Rosch and Mervis (1975), Rosch et al (1976), Rosch (1978)) on the

exact relationships between a category and its members. In particular, Rosch

introduced the notion of a "prototype", see below. This idea has been widely referred

to in the Al literature to justify the use of frames or objects in various guises. It is

clear from the literature that this term is often used in confused or misleading ways.

The discussion below briefly describes the precise nature of a prototype and how it

relates to the notions of a Concept, typical instance, generic instance, etc.

The simplest way to introduce prototypes is by means of an example. In a series of

experiments Rosch showed that people could make consistent judgements about how

good an example of a category a particular example was. For example, "apple" was

considered a better example of the category "fruit" than "olive" was, car is a better

example of a vehicle than skateboard, shell and tube is a better example of a heat

exchanger than spiral, etc. In addition, the truth of statements such as "an apple is a

fruit" are confirmed significantly faster than statements involving poorer examples,

eg "an olive is a fruit". In particular, children make more errors of judgement on these

so called, peripheral sentences involving poor examples, of a category. Rosch

labelled the good examples, or central instances, of a category prototypes.

The work of Rosch et al raises, or emphasises, three important points that were

implicit in the work of Bruner et al on conceptual organisation. The first point is that

categories have some form of "internal structure". This, of course, merely confirms

the earlier suggestion that the use of Attributes and their relation to one another is

important information in the working definition of a Concept. Rosch's work visibly

demonstrated that a simple model of word meaning based on sets of necessary

properties, ie a conjunction of a series of properties all of which must be possessed by

an instance in order to satisfy category membership, is psychologically implausible. If

it were, there should be no difference in response times to judgements of category

membership for all members of a given category. This is consistently observed not to

be true.

The second point, which is implied by the first, is that the assumption that all

members of a given category are of the same status, or "equidistant from the

category" as Rosch puts it, is not valid. Simply stating that the category membership

relationship is one of proper inclusion is not sufficient for many life form categories

and their generic members, ie levels (1) and (2) in Berlin's nomenclature. It is

insufficient for problem solving or learning purposes because it does not take into

account the internal category structure.

The third aspect of Rosch's work is that it suggests a reason why taxonomies, as

observed by Berlin, are structured in the way they are. Rosch suggests that the best

examples of a category, ie the prototypes, will be "maximally different from other

categories on the same level of linguistic contrast". If this is a general principle then it

suggests that all formed categories will tend to be maximally discriminable. Further,

in order to best exploit perceptual, functional and behavioural differences, the best

365

examples of a category would be those that did not arise at all in other categories, or

were not prominent in other categories at the same level of linguistic contrast. It also

follows that the level at which functional, perceptual, etc, differences are most

pronounced should correspond to the level on which most categories are formed. This

is in agreement with Berlin's observation that the generic level contains

proportionately many more members than other levels.

The notion of maximum discriminability is usually related to that of cue validity. Cue

validity was discussed in section 5.2.3 in the context of the selection of criteria!

Attributes. A somewhat oversimplified definition of cue validity is given in Rosch

and Mervis (1975) for Attributes of all types as:

the frequency of a cue being associated with the category divided by
the total frequency of that cue over all relevant categories

If this definition was used in the formation of maximally discriminable categories

then a cue of high validity for a bird, for example, would be having feathers since this

cue is not important in many other categories. Having "legs", however, would not be

a cue of high validity since it is one shared with many other Concepts, eg most

animals, insects, tables, chairs, etc. Using Bruner et al's terminology, "having

feathers" would be described as a highly criteria!, probably defining, attribute of the

Concept bird. Somewhat confusingly, Rosch goes on to suggest that the "cue

validity" for an entire category is the sum of the cue validities for each of its

attributes. I find two objections to the use of the term "cue validity" in this way:

What is meant by cue validity in terms of an overall category as a whole rather
than any one of its constituent Attributes, unless we are referring to some
Gestalt phenomenon?
The use of a simple summation of cue validities over all Attributes, including
non-criteria! Attributes since Rosch does not make Bruner et al's finer
distinctions between Attribute types, is of questionable value as a measure. For
example, a Concept with many non-criteria! Attributes could result in a
significant proportion of the summed value being contributed by the non-
criterial Attributes.

A term such as information content or measure, preferably biased toward criteria!

Attributes, would seem more appropriate especially given its intended use. Rosch et

a! (1976, p383) state that "categories within taxonomies of concrete objects are

structured such that there is generally one level of abstraction at which the most basic

category cuts can be made. In general, the basic level of abstraction in a taxonomy is

the level at which categories carry the most information, possess the highest cue

validity, and are, thus, the most differentiated from one another.

In other words this information measure can be used to help explain the form of

taxonomies at the life form and generic levels and the relative number of categories

366

involved.

In comparison with Berlin's work, Rosch suggested that taxonomies are simply

organised at three levels. The topmost level is termed a "superordinate" category, eg

animal, which has a number of members at the "basic" level, eg dog, cat, etc, which

in turn include a number of "subordinate" level members, eg labrador, spaniel, etc.

Given the discussion above, Rosch et al claim that categories at the basic level,

similar to Berlin's generic level, will be the most informative. Their experimental

findings would suggest that this is generally true. This is an important point in the

context of the development of reasoning systems to work with Concepts within the

overall framework shown in Figure 5.2.

Rosch (1978) suggests that the formation of categories is based on the principle of

cognitive economy. This basically states that categories will be formed so as to be

maximally informative such that "cue validity" is maximised. This statement must be

qualified because as it stands it implies that a large number of singleton categories

would be formed, each individuated on the basis of a single attribute, so as to give

categories with the highest cue validity. Categories are only formed where the

Attributes are perceived to reliably co-occur in particular groupings in the observed

world. This is in agreement with Bruner et al's claim that many formal equivalence

categories arise from more basic perceptual ones, the latter being necessary to

identify reliable groupings of Attributes.

Rosch and Mervis (1975) suggest that the principle of cognitive economy can be

extended to help explain the formation of the internal structure of categories in as far

as the use of prototypes is concerned. For this purpose Rosch appeals to the notion of

"family resemblances". The term family resemblances is taken from the well-known

philosophical work of Wittgenstein, Philosophical Investigations (1953), in which he

argues against the idea that Concepts can be defined in terms of necessary and

sufficient conditions. As an illustrative example, Wittgenstein considered the Concept

or category of games, eg chess, football, card games, patience, a child playing with a

ball, etc. The following extracts summarise the main points:

Consider for example the proceedings that we call 'games'. I mean
board-games, card-games, ball-games, Olympic games and so on.
What is common to them all? - Do not say: 'There must be something
common, or they would not be called games' - but look and see
whether there is anything common to all. - For if you look at them you
will not see something that is common to them all but similarities,
relationships, and a whole series of them at that.

And the result of this examination is: we see a complicated network
of similarities overlapping and criss-crossing: sometimes overall
similarities, sometimes similarities of detail.

367

I can think of no better expression to characterise these similarities
than 'family resemblances' ... (Wittgenstein, 1953, p3 1-32).

The basic point Wittgenstein is making is that there are few, if any, properties shared

by all games. Instead, one game shares some features with the next and that game in

turn shares some features, possibly different ones, with the next game, and so on. As

a result some pairs of games might not share any features with each other although

they would at least share one feature with another game.

Rosch used these ideas to define a measure of family resemblance similar to that of

cue validity, see earlier. Each Attribute of a member of a category, as listed by the

subjects taking part in the experiments, can be given a score. That score is the

number of members of the category which possess the Attribute. For each member of

a category the degree of family resemblance is simply taken to be the summed total of

the scores associated with each of its Attributes. Rosch tried to show how

judgements of prototypicality should correlate with the degree of family resemblance

since prototypes would be those members which a) shared most properties with other

members of the category, and b) shared fewest properties with members of

contrasting categories. This was found to be the case in several of Rosch's studies.

In summary then, Rosch states that

categories form to maximise the information rich clusters of attributes
in the environment and, thus, the cue validity of the attributes of
categories; when prototypes of categories form by means of the
principle of family resemblances, they maximise such clusters and
such cue validity still further within categories. (Rosch and Mervis,
1975, p602).

It appears then that the importance of the basic level in a taxonomic structure and the

salience of prototypes within categories can be part explained by the simple principle

of cognitive economy. This is an important result in the context of the development

and use of categories in a knowledge based representation system.

5.3.1 Further Discussion and Criticisms
Having introduced the basic ideas of prototypes and family resemblances it is worth

briefly discussing some criticisms of Rosch's work and how these ideas relate to

earlier descriptions of typical and generic instances, attribute reduction, etc in

conceptual categorisation.

A well informed analysis of Rosch's work can be found in Pulman (1983). This work

is written from a linguist's point of view and is concerned with the

cognitive/philosophical adequacy of theories of word meanings or concepts. As such

it is a good introduction to many of the technical linguistic problems that have to be

368

addressed in knowledge based systems.

Pulman identifies two basic problems that prevent direct use of Rosch's findings:

The exact status of prototypes and the nature of their Attributes in a theory of
conceptual categorisation is unclear.
Rosch's account of category formation is not well defined.

Pulman's arguments are summarised below but have been re-interpreted given the

discussion on types of conceptual categories and structuring of Attributes earlier.

Pulman makes no reference to the work of Bruner et al in his work.

In Rosch's studies it was assumed the Attributes which were used to calculate cue

validities were perceptual or functional givens and independent of the category to

which they belonged. It is clear, as Rosch (1978, page 41) herself points out, that this

is not the case. Pulman points out three such examples:

An "attribute" leg, for example, is perceptually quite different in Concepts such
as man, bird, insect, table, chair, etc, although being labelled by the same word.
Rosch makes use of complex, so called, "function attributes" such as
"sit-on-able-ness" or "can be sat on" in defining types of seats. The use of such
"attributes" however seems to require prior classification of the object as some
sort of chair since many other items are just as sit-on-able as chairs, eg tables,
boulders, suitcases, walls, etc.
Many of the "attributes" are "relational attributes" such as large, small, etc.
These attributes must also involve prior classification of objects since large, for
example, in the context of insects is not the same as large when describing
animals.

It is clear from the examples that the point Pulman is making is that many attributes

are "not identifiable prior to or independently of recognition of the category they

belong to", (page 97). Before discussing the consequences of this observation it

should be noted that both Rosch and Pulman use the term "attribute" in an extremely

loose or ill-defined way compared to my interpretation of that term in conceptual

categorisation. For example, nowhere in Rosch's or Pulman's discussions are

references made to Bruner et al's basic use of three forms of category, namely

affective, functional and formal equivalence categories. As a consequence the nature

of Rosch's "functional attributes" becomes very confused and/or vague. In a

conceptual categorisation framework these "attributes", eg sit-on-able-ness, would be

better described as functional concepts, eg things to sit on, which in turn permits

discrimination between man-made artefacts, eg chairs and naturally occurring

categories, eg boulders, to be handled in a general way. Further, Bruner et al

specifically discuss the close relationships between functional concepts, eg things to

sit on, and formal equivalence categories, eg chairs, and how examples of the latter

category often arise from the former. It is important then to understand the subtleties

between the different types of Concept and their use in order to avoid the potential

369

confusion over the use of Attributes arising from "naive" descriptions of words,

Concepts, etc.

A second point worth noting is that no use is made of Bruner et al's idea that

Concepts have internal structure which in part comprises of combinations of

Attributes either conjunctive, disjunctive or relational ways. Further, no explicit

distinction is made between the use of defining, criterial and non-criteria! Attributes.

This is a serious omission since such considerations must play a central role in both

category recognition and category formation processes.

The omission of functional Concepts and relational type formal equivalence

categories leads Pulman to describe "functional attributes" as two, or more, place

predicates, ie relations, between ourselves and some other object or objects. He

describes "attributes" with values such as small, large, etc, as two place relations

between individual objects and other objects or some implied standard of comparison.

It is clear that relational "attributes" in this sense are not independent of the categories

involved, which is Pulman's point, since they can only be interpreted once categories

have been formed or recognised.

Whilst in general agreement with Pulman on this point I object to his use of

"relational attributes" due to the confusion they would introduce in any representation

system. The deceptive use of comparative words such as small, large, high, etc, in an

absolute or adjectival way, eg X is small, might be naively taken to mean that they

can appear as Attribute values in the same way, for example, as someone's age. This

is not the case as Pulman recognises, there being some implied relationship with

another object or some "typical" value appropriate to the category. In my

interpretation of Bruner et al's ideas these sort of phenomena would be properly

handled in a general way by making use of relational type Concepts to express this

comparison. The linguistic description of this information is obviously important in

communicating such ideas to others. Extreme care must be taken, however, in

translating such phrases into possible Concept descriptions if the confused situation

that has arisen with frame/object descriptions is to be avoided. In particular, different

types of Attribute cannot all be lumped together and treated in the same way, as is the

case in simplistic frame based systems.

Despite these reservations regarding terminology, Pulman has two important points to

make. The first is that both the processes of category recognition and category

formation are logically incoherent or circular if they proceed via computation on

"attributes" that require prior recognition of the category itself. Rosch recognised this

problem and argued that her ideas on prototypes and family resemblances were not

concerned with a particular processing model (1978, page 28). In particular, Rosch

370

makes the following points:

The ideas or set of formal principles concerned with the structure of category
formation are not tied to any particular processing model.
Formation of categories refers to their formation in the culture or society.
The process by which attributes are individuated is the same as the process by
which basic categories are formed.-.. 	 -

The first point is presumably intended by Rosch to ensure that the principle of

cognitive economy is not taken directly as a theory of category formation or

recognition in order to avoid the problems of circulating. Rosch's third point is not

much help either since if attributes are themselves categories then how are these

categories formed? Once again the argument results in an infinite regress since the

latter categories are presumably themselves formed from attributes, and so on.

The second point, which appeals to the notion of category formation within a culture -

similar to Bruner et al's idea of socially accepted defining attributes in formal

equivalence categories, does not break the circular argument either. This is because it

still depends on the assumption that "attributes" can be individuated independently of

their categories which, as indicated earlier, cannot always be the case.

In order to break out of this circularity Pulman presents the following argument

which arrives at essentially the same conclusions as Bruner, Goodnow and Austin

made regarding the invented status of Concepts and Attributes. At some point

categories must be defined in terms of Attributes which are perceptual "givens" in the

sense that they have no further conceptual description. This seems quite plausible in

certain low level categories such as the Attributes involved in the recognition of

physical objects in terms of shape, colour, etc. However, this argument cannot be

carried to all types of category. Many categories involve relational, functional or

behavioural "attributes" (ie dogs bark, birds fly, etc) that do not have a direct relation

to such perceptual basis. Any claim that they do seems either false or empty because

the transition process to lower level perceptual Attributes of which they might be

comprised is largely inaccessible and, therefore, untestable.

In order to treat these functional and behavioural "attributes" it is necessary to

recognise that their salience is taken for granted. That is, to say that some object or

"attribute" is salient is simply to recognise that it plays a recurrent, identifiable role in

daily transactions. This means that for many purposes it is possible to treat these

"attributes" as basic in nature, but not primitive, in the sense that they could be

broken down into more basic elements if necessary. This implies that certain

categories or "attributes" have to be taken for granted or as givens prior to the

formation of other categories.

371

If this is correct then the conclusion Pulman reaches is that Rosch's findings do not

constitute a complete explanation for category formation or recognition. Rather, the

use of cue validity as an explanation for the formation of category structure is useful

in that it helps to identify the range of possible individuals that will be named as

prototypes in response to personal/social preferences.

Pulman's discussions regarding the status and nature of "attributes" in Rosch's

prototypes effectively recognises therefore the constructive or invented nature of

categories that Bruner et al had already identified. As noted earlier Bruner et al

suggest that the process of equivalence categorisation essentially involves "coding

and recoding processes employed by organisms who have past histories and present

requirements to be met", (p7, 1956). In the context of the present discussion, the

requirement is to provide a label to denote some perceptually identifiable attribute

that can be taken to be a perceptual given until more detailed analysis requires that its

definition be more fully explained. Bruner et al quote Stevens (1936) which sums up

this situation well:

Nowadays we concede that the purpose of science is to invent
workable descriptions of the universe. Workable by whom? By us. We
invent logical systems such as logic and mathematics whose terms are
used to denote discriminable aspects of nature and with these systems
we formulate descriptions of the world as we see it and according to
our convenience. We work in this fashion because there is no other
way for us to work.

In summary then, Pulman's criticisms of the exact status of prototypes and the nature

of their Attributes are well founded. A much clearer discussion of the situation could

be provided if use had been made of Bruner et al's distinction between category types

and the status and combination of Attributes within those categories.

Pulman's second main criticism of Rosch's work on prototypes is that the account of

category formation is not well defined (see page 369). This point is worth discussing

briefly. Consider two categories A and B, whether at the superordinate, basic or

subordinate level. Taking into account the notions of prototypes and family

resemblances any member of A could be taken as a member of B, ie A is a "subclass"

of B, if either

most of the Attributes of B are possessed by every A, where A is a subordinate
level category and B is a basic level category, or
every member of A shares at least one Attribute with B or shares an Attribute
with some other A' which itself shares an Attribute with B. In this case A and
A' are basic level categories and B is a superordinate level category.

(Notice that this definition is quite different from that normally found in inheritance

class hierarchies).

372

Rosch's account of category membership is derived from both common Attributes (at

the subordinate and basic levels) and family resemblances (at the basic and

superordinate levels). Categories, however, are supposed to be formed at all levels for

the same reason, namely maximisation of cue validity. If this is the case then it is

difficult to reconcile the existence of superordinate categories. This is because

categories are supposed to arise from the fact that certain groupings of Attributes

have a higher composite cue validity than others. If this simple interpretation were

taken at face value then family resemblance type categories would never arise simply

because they cannot be described in terms of co-occurring bundles of Attributes. The

fact that such groups of shared Attributes do not exist is the whole point of family

resemblance theory. A typical example that Rosch refers to is the category "furniture"

for which her subjects could find few, if any, shared "attributes".

If Rosch's ideas are interpreted in a simple minded way then at best such categories

would only contain a number of prototypes since there are no Attributes valid for the

whole category. The only Attributes having a significant cue validity would be those

common to more than one prototype but these would not be sufficient to generate or

account for all the peripheral members of the category as well.

It appears then that Rosch's principle of category formation based on maximisation of

cue validity is only tenable at the basic and subordinate levels and only partially so at

the superordinate level. Further, this requires an extremely loose interpretation of the

term "attribute" as described above.

Once again the whole phenomenon of structuring of categories can be more easily

understood if the ideas of Bruner et al are taken into account. The whole emphasis of

that work is placed upon the use of identity and equivalence categories, whether they

were of the affective, functional or formal type. The main purpose of categorisation,

both at the perpetual and conceptual level, is to

render discriminately different things equivalent, to group the objects
and events and people around us into classes, and to respond to them
in terms of their class membership rather than their uniqueness,
(Bruner et al, 1956, p1).

This statement can be interpreted to mean that the categorisation process will, by

default, always attempt to work at the highest level of abstraction or equivalence

suitable to the context of the problem at hand or prevailing situation. That is, the

default level at which a Concept is considered is the level which avoids the need for

consideration of any unnecessary detail. The obvious benefit of such an approach is

that it greatly reduces the cognitive strain or effort involved in describing or handling

problem information.

373

This constant use of Concept abstractions, in an upward sense to the level most

appropriate to the problem description, should be contrasted with the use of object

instances in inheritance hierarchies. In the latter case it is noticeable that the tendency

is almost always to consider an object instance at its most specific level in the

hierarchy, ie to take account of all inherited slots plus any local slots and consider the

instance as a leaf node in the inheritance hierarchy. The whole emphasis is therefore

on downward inheritance rather than upwards abstraction. This is an important point

and one that is developed further in the following chapter.

In the context of Pulman's criticism of Rosch's account of category formation and the

placement of categories within some superordinate structure, it seems clear that the

desire to create useful equivalence categories in the Concept attainment process

provides the necessary driving force to account for the formation of superordinate

level categories based on family resemblances. It is proposed here that such

categories are not formed based upon the maximisation of some simple measure of

cue validity. Rather they result from a need or desire to communicate information at a

higher but still meaningful level of abstraction. For instance, it is easier to refer to

"the furniture in the house" in a loose, general way rather than to provide an extensive

list of specific items to convey the same information. Indeed, if the context of the

situation/conversation/problem etc is such that no detailed knowledge of what actual

pieces of furniture are in a particular house then in many ways the abstraction

"furniture" is a more appropriate term to use, eg it suggests uncertainty as to the

actual contents of a house but indicates that typical or generic instances and/or

prototype members are likely to be involved.

The role of family resemblances and equivalence categories in a Concept formation

process is summarised later in section 5.3.2.

5.3.2 SUMMARY

The value of Rosch's work has been that:

It highlighted the use of prototypes as an important conceptual "tool".
Considerable experimental evidence has shown that many prototypes are
formed using a simple principle of maximisation of cue validity.
It confirms, along with the work of Berlin et al, that Concepts or categories
appear to be arranged in superordinate structures of similar construction and
limited depth. The work, however, does not take into account Bruner et al's
finer distinctions between Concept and Attribute types.

The work of Pulman (1983) is of considerable interest to those who wish to gain a

deeper insight into the use of prototypes, and Concepts in general, as a means of

providing a theory of word meaning (most of the content of this discussion is,

374

however, outside the scope of this thesis). In his work Pulman proposed the study of

prototypical verbs, along similar lines to Rosch's original work, but discovered the

results to be much more difficult to summarise. Much research remains to be done in

this area.

Pulman is also a good introduction to some of the philosophical arguments

concerning theories of categorisation in general. Some of these arguments are

touched upon in the following section.

375

5.4 MENTAL MODELS

The previous two sections introduced the ideas associated with Conceptual

Categorisation and the use of prototypes and family resemblances. The discussion

was mainly concerned with the principal types and features of mental Concepts. This

involved identifying the differences between functional and formal equivalence

categories as well as the difference in status between different types of Attribute and

their mode of combination. Further it was suggested how the use of prototypes and

family resemblances helped explain the structuring of Concepts into superordinate

structures that provide part of the basis for a theory of word meaning. Other than the

overall framework put forward for Concept formation, see Figure 5.2 , little has been

said, however, on the exact details of how Concepts, generic and typical instances,

the use of prototypes, etc, are utilised in reasoning processes. Indeed, from the point

of view of development of a knowledge representation system, no mention has been

made of the types of reasoning processes and possible mechanisms, other than

equivalence category identification itself, that could exploit the use of Concepts to

improve upon the limited capabilities of knowledge based systems as discussed in

chapters 3-4.

In order to characterise more clearly a framework for reasoning with Concepts this

section introduces the basic ideas of mental models as put forward by Johnson-Laird

(1983). This work has widely been recognised as one of the most influential

contributions to cognitive science in recent years. The content of the work is both

broad ranging and extensive. In many places the technical content of the

philosophical arguments is too detailed to be discussed adequately in an exploratory

thesis on knowledge representation such as this. All that is presented here, therefore,

is a simplified overview of the scope of Johnson-Laird's study. The background to

those ideas concerning the formation and use of mental models that can be directly

used in conjunction with those of Conceptual categorisation are described in some

detail. It should be noted that Johnson-Laird's original work is not explicitly based on

either the work of Bruner, Goodnow and Austin (1956) or Rosch and her co-workers,

eg Rosch (1978).

5.4.1 Scope of Johnson-Laird's Study
Johnson-Laird's work on mental models is an ambitious attempt to understand and

model human reasoning. In order to grasp the extent of this task consider the

following questions that Johnson-Laird poses:-

- What happens when we understand a sentence? We are aware of understanding it,
and still more aware of having failed to do so. Why can't we follow the mental

376

process of comprehension as we can follow the action of tying a shoelace?
- Why is it that the words that are most frequently used in conversation are

precisely the ones that have many different meanings? In a rationally designed
language, ambiguous words would be avoided and, if they had to be admitted,
they would be used the least frequently.
What is the meaning of words such as possible or time? You are familiar with
them, and have no difficulty in using or understanding them in a typical sentence.
But, now that you are asked what they mean, you are tongue-tied for a moment
and then can only offer synonyms rather than analytical definitions.

- Why is it that when we consciously try to characterise a Concept, we try to do so
in a cold-blooded, cut and dried fashion like lawyers defining a tort, whereas, as
Wittgenstein pointed out, if we are prepared to look and see how ideas are used in
daily life, we often find nothing so clear-cut, only indefinite and open ended
Concepts?

- How is it possible for you to make a valid deduction even if you have not learned
logic? Is there an innate mental logic? Or have you picked up rules of inference
from other people? If so, how did they acquire them?

In order to try and answer such questions requires an analysis of the fundamental

aspects of human thought. Such a study is necessary for the further development of

knowledge based systems since the issues involved lie at the heart of the description

of "intelligent" reasoning processes.

Johnson-Laird's-work covers five main areas, each relating to a specific topic:

The puzzle of mental logic, questions concerning thought.
The nature of mental representations and how they relate language to the world,
questions concerning meaning.
The process by which the meanings of sentences are constructed from the
meanings of their parts according to the grammatical relations between them,
questions concerning grammar.
How the interpretation of discourse is built up from the meanings of sentences,
questions concerning discourse.
The nature of intentionality and self-awareness, questions concerning
consciousness.

The central idea that Johnson-Laird puts forward that ties together these areas is that

humans construct mental models of the world and do so by invoking tacit mental

processes. Further, these mental processes have a basic, recursive nature that is

required to allow people to understand discourse, form mental models of both real

and imaginary situations, and to reason by manipulating mental models. It is

assumed that the core of the ability to explain, understand and make use of Concepts

rests on having a "working model" of the phenomenon in the mind.

Johnson-Laird recognises that this idea is not a new one. He takes as a starting point

the work of Craik (1943) who proposed that thinking involves the manipulation of

internal representations of the world. In particular Craik suggested that at least three

distinct reasoning processes must be involved:

A translation of external processes or forms into some internal representation.
The derivation of other internal representations by some sort of inference

377

process.
3. A retranslation of these internal representations into actions or at least a

recognition of the correspondence between the internal representations and
external events.

Points 1 and 3 are particularly important as they recognise the need to deal with

referential phenomena in a satisfactory way. The relationship between mental models

and external entities, ie the treatment of references, is essential both to the remainder

of this introduction and the developments described in the next chapter.

5.4.1.1 The Doctrine of Functionalism
Johnson-Laird justifies many of his arguments by making appeal to the notion of a

doctrine of functionalism. Put simply, this states the usefulness of a model is not

enhanced by extending it beyond a certain level, ie by embodying more knowledge

beyond a certain point. As Johnson-Laird points out, "like clocks, small-scale models

of reality need neither be wholly accurate nor correspond completely with what they

model in order to be useful", (page 3, Johnson-Laird 1983).

For example, a senior process design engineer, a process operator and an

undergraduate engineering student will have different levels of understanding, ie

detail of model, of the operation of a heat exchanger say. For many tasks however the

level of detail in a process operator's model of a unit's operation is perfectly

adequate. Even an expert in the field of heat exchanger design will not understand the

implications of any one design since heat transfer and fluid flow effects cannot yet be

modelled to sufficiently detailed levels, eg the characterisation and modelling of the

onset of boiling within an exchanger.

It is suggested then, reasonably enough, that there are no complete mental models for

empirical phenomenon and beyond a certain level there is little to be gained from

adding more information as regards the usefulness of a model. As a consequence

many models that are used by people merely simulate or mimic a phenomenon rather

than refer to the underlying principles ; yet they are still useful from an explanatory

point of view. Many models of processes will therefore be little more than high grade

simulations but nevertheless useful provided they are reasonably accurate for the

purposes required.

5.4.1.2 Mental Models and Effective Procedures
One of the main themes running through Johnson-Laird's work is that any

psychological theories in cognitive science, and in particular mental models, should

be expressed as effective procedures. The term effective procedure is used in a

computational sense and is suggested as a means to test the explanatory adequacy of a

theory. This has some immediate implications relevant to this work:

378

It implies that a theory can be implemented as a computer program suitable for
use, for example, in a knowledge based reasoning system.
It does not imply that a theory should necessarily be implemented as a program,
eg an equivalent, semi-formal axiomatic formulation would suffice.
Even less does it imply that the whole theory could be implemented as a
program but it would be a considerable bonus if it could be

Johnson-Laird is quick to point out that he is not claiming that all of human thought

can be reduced to simple forms of computation. What is suggested rather is that

effective procedures be used as a criterion of effectiveness in that theories be stated

explicitly and in a way that takes little for granted. This is a weak condition on the

adequacy of a theory since it merely ensures, as Johnson-Laird puts it, that the theory

is not a "wooly phantasy". The development of effective procedures for reasoning

processes will be by no means trivial. Even in mathematical terms, many different

effective procedures can be formulated for any given computable function.

Consider for example, the following quote regarding what it is to "understand" a

Concept:

Understanding certainly depends on knowledge and belief. If you
know what causes a phenomenon, what results from it, how to
influence, control, initiate, or prevent it, how it relates to other states
of affairs or how it resembles them, how to predict its onset and
course, what its internal or underlying 'structure' is, then to some
extent you understand it, (page 2, Johnson-Laird 1983).

Developing effective procedures to capture these sorts of aspects of reasoning is a

formidable challenge. Due to the arbitrary nature of human behaviour it would appear

that there is little possibility of ever being able to model accurately a particular

individual's reasoning processes. On the other hand there are no a priori reasons that

would appear to rule out the study of a wide range of reasoning abilities, eg

modelling inference and learning techniques, Concept attainment, recognising mood

and emotion in discourse, etc.

Johnson-Laird suggests himself that much of his work is "an argument to the effect

that the construction of mental models, the communication of their contents, and

reasoning on the basis of such representations, are nothing more than computational

processes", (page 12).

An initial summary, then, is that engineers understand the world by constructing

working models of it in their minds. These models may refer to, for example, real or

imagined processes, plant items, their purpose and mode of operation, theoretical

models describing their behaviour, etc. The models will invariably be incomplete and

simpler than the entities they represent, making use of procedures that attempt to

mimic or simulate their behaviour. The theory of mental models itself must also

379

provide a working model, the purpose of which happens to be a device or means for

constructing other working models. It must be capable of being formulated as an

effective procedure that must specify constraints on the classes of possible models as

well as the constituent elements and operations that comprise them. As such it forms

a meta level statement of the reasoning processes involved. The bulk of Johnson-

Laird' s work is concerned with providing details or discussions on the meta level

issues involved. Some of the more immediately relevant ideas are introduced below.

Before leaving this introduction it is worth emphasising the usefulness of limited

models. Consider for example the very limited models people have regarding the use

of numbers compared with the axioms of real number algebra, or the way in which

the Concept "time" can be described. Despite these limited models people can work

very effectively on problems involving these Concepts.

This is a familiar theme in process engineering in which engineers regularly make use

of simplified models to analyse and solve complex, real life problems. What is not

well understood at this stage is the mechanism or effective procedure required to

formulate such models. The attraction of the study of mental models, in conjunction

with the earlier ideas on Conceptual categorisation, is that it provides a means to

investigate the reasoning techniques involved.

5.4.2 MENTAL LOGIC
One of the most important aspects of Johnson-Laird's work is the study of the status

of a "mental logic". Most theories of reasoning invariably assume the existence of a

mental logic. The assumption of the existence of a logic in the mind, however, runs

the risk of paradox since how could such a logic be acquired by someone who could

not already reason soundly? Conversely, the claim that there is no logic in the mind

also appears to be false since how could a species have ever invented logic if it was

incapable of valid inference?

After extensive discussion Johnson-Laird comes to the conclusion that it is possible

to reason validly without the use of logic formalisms. Before stating how this can be

achieved it is worth repeating here several observations that led him to make this

conclusion:

People frequently make unwarranted or incorrect inferences when faced with
reasoning tasks.
It has been shown experimentally that the content of propositional statements
has a striking effect on the reasoning process. Inference rules in propositional
calculus are, of course, valid regardless of content and based purely on form. It
is apparent that problems posed in an abstract form are less easily handled than
those involving familiar objects, verbs etc. Johnson-Laird suggests that in the

380

latter case people can construct relevant mental models of the relationships
involved that make valid reasoning more likely.

3. It is clear that people follow extra-logical heuristics when making spontaneous
inferences, ie when choosing which conclusions to draw from the infinite
number that are implied by a set of premises. For example, given the premises
"If there is no error message then the program is compiled" and
"There is no error message"
then Johnson-Laird suggests most people draw the conclusion "the program is
compiled" rather than "there is no error message or the program is compiled",
etc. The meta principles governing the selection of inference rules lie, of course,
outside the formalism of logic but are essential to its successful application, see
chapter 2. A common heuristic that emerges is that inferences are guided by the
principle of maintaining the semantic content of the premises but re-expressing
them with greater linguistic economy. The study of logic has emphasised the
evaluation of given statements or conclusions rather than the spontaneous
production of non-trivial conclusions.

Apart from these main points there are several other obvious, niggling queries such as

"Why has it taken centuries for theories of logic to emerge if we innately possess

these reasoning skills?", "Why do people find the study of logic a difficult subject?",

"Which form of logics, from the many studied to date, do people make use of?", "Is it

reasonable to assume that people can cope with handling the semi-decidable or

undecidable decision procedures found in predicate and non-monotonic or modal

logics?".

Given these problems Johnson-Laird suggests that it is necessary to investigate forms

of valid reasoning without recourse to logic in an attempt to explain psychological

forms of reasoning. He does this by developing possible effective procedures that

could be used for reasoning with propositions and syllogistic forms of reasoning. The

exact formulation of these procedures is not that important here. Rather it is the

principle of the approach that is important and the observations made regarding the

use of mental models. (The reader is referred to the original work for detailed

descriptions of the procedures involved). Some of these observations are repeated

below.

5.4.2.1 Propositional Based Reasoning
Johnson-Laird shows that there are least two effective procedures that can be used for

making valid inferences without making use of rules of inference. All this implies

however is that propositional style reasoning can be achieved using procedures. This

is not that surprising since theorems are proved by meta level search procedures in

standard logics, albeit making heavy use of inference rules. What is important is the

observation that propositional based reasoning using a truth functional approach is

only a possible mode of thought for most people rather than an habitual one.

Johnson-Laird provides several interesting examples, (see p41-63,1983) which

suggest that a more likely explanation is that mental models are formed to represent

381

events described by a set of premises. This model must be based on the content of the

describing propositions as well as implicit inferences based on the general knowledge

of the reasoner. Johnson-Laird also suggests that linguistic assertions in daily life can

only occasionally be interpreted in a truth functional way, eg the on-off logic of

electrical switches. The following quote emphasises this point:

Reasoning is not a matter of recovering the logical forms of the
premises and applying rules of inference to them in order to derive a
conclusion. It is here not even a matter of substituting truth values for
constituents of propositions and working out their compositional
consequences. The heart of the process is interpreting premises as
mental models that take general knowledge into account, and
searching for counter examples to conclusions by trying to construct
alternative models of the premises, (p54, 1983).

This is a strong claim and is in opposition to the intuitive approaches taken in

developing Al knowledge based systems, as described earlier in chapter 3. On the

other hand, the notion of some sort of informal model which takes into account both

context dependent information and general knowledge can be seen in many of the

more sophisticated applications.

Johnson-Laird strengthens his indirect case against a mental logic by considering

connectives in assertions that are not truth functional, eg "because and "if'. Of

particular interest is the use of the word "if'. Johnson-Laird convincingly argues that

although there is a uniform procedure for interpreting conditionals considerable

variations arise in its logical behaviour. In particular it appears that the logical

properties are in part determined by the nature and content of the propositions that

they interrelate. This variation in interpretation would be difficult to justify using

some sort of mental logic.

As regards the use of mental models and "if' statements, Johnson-Laird suggests that

mental models are primarily constructed using the antecedent information. The

consequent of the conditional is then evaluated with respect to the model. For

example, if the consequent is an assertion then the validity of the conditional as a

whole depends upon the validity of the resultant model, possibly projected to

subsequent events if the assertion involves tense. If the consequent is a question it can

be answered with respect to the model and if it is a request it can be carried out when

the model corresponds to observed reality. In a mental model framework it is

relatively clear then how to account for content in inferences and cater for the

interpretation of non-truth functional connectives.

382

5.4.2.2 Syllogistic Reasoning
In order to provide more convincing evidence for the use of mental models

Johnson-Laird considers the topic of syllogistic forms of reasoning. This is an

interesting topic and is worth briefly discussing.

Syllogisms are deductions based on two premises, both premise and conclusion being

in one of four forms:

All X are Y
Some X are Y
NoX are Y
Some X are not Y

For instance, a typical syllogism is

All B are A and All B are C
therefore some A are C

The occurrence of B in each premise allows an inference to be made and is called the

middle term. The logic of syllogisms is relatively simple since there are only four

possible arrangements of the middle term. These are shown below for the possible

arrangements of the middle term B.

A - B 	B - A 	A - B 	B - A
B - C 	C - B 	C - B 	B - C

There are only 64 distinct forms, therefore, of pairs of syllogistic premises (4 types of

first premise, 4 types of second premise and 4 arrangements). Syllogisms were first

formulated as early as Aristotle. Their study in logic, however, has largely been

neglected since the introduction of general quantifier theory by Frege in 1879.

Why are syllogisms interesting? They are interesting for a number of reasons:

Syllogistic forms of reasoning are often used to dismiss the study of syllogisms!
(see p71, J-L, 1983)
Syllogisms often arise in many types of deduction. For example many
inferences based on general assertions involve syllogisms, eg

Do you have a TV set? Yes
Do you have a licence? No
Well, it requires a licence. Why?
All TV sets are required by law to have a licence

Some arguments that are likely
to be hard to understand are syllogisms.
No argument that is used spontaneously
is likely to be hard to understand.
Therefore, some syllogisms are not used
spontaneously in daily life.

It appears that simple sorts of syllogism are easily understood and used frequently

when making logical type deductions. It is also clear that certain types of deductions,

eg example b) above, are much harder to follow.

383

Johnson-Laird spends considerable time explaining how effective procedures can be

formulated for various reasoning tasks using syllogisms. A simple example taken

from Johnson-Laird is given here since it illustrates a fragment of the mental

modelling approach.

Consider the premises "All the artists are beekeepers" and "All the beekeepers are

chemists". Johnson-Laird suggests the use of a simple tableau as a sample

representation of the first premise:

artist = beekeeper
artist beekeeper 	

-

artist beekeeper
(beekeeper)
(beekeeper)

The beekeepers in brackets are those that are not artists. The number of entities used

is entirely arbitrary as long as it adequately represents the situation. The tableau is

easily extended to take account of the second premise:

artist = beekeeper
artist = beekeeper
artist = beekeeper

(beekeeper)
(beekeeper)

chemist
chemist
chemist
(chemist)
(chemist)
(chemist)

From this tableau it is easy to confirm the deduction that "All the artists are chemists"

is true. Deductive inference usually requires search for counter examples as well.

Consider the premises "None of the authors are burglars" and "some of the chefs are

burglars". The first premise is modelled by:

author
author
author

............ (Dotted line indicates disjoint groups)
burglar
burglar
burglar

The second premise is added as before:

author
author
author

burglar = chef
burglar = chef
(burglar) (chef)

Two tempting but unwarranted inferences would be "None of the authors are chefs"

or "None of the chefs are authors". Another unwarranted inference is that "some of

the authors are not chefs", as shown below.

author
author
author = chef

burglar = chef
burglar = chef

384

(burglar)

This is because all the authors might possibly be chefs as well:

author = chef
author = chef

burglar = chef
burglar = chef
(burglar)

A valid conclusion that can be drawn is that some of the chefs are not authors.

Johnson-Laird goes on to develop an effective procedure for reasoning syllogistically.

The formation of the tableaus corresponds to the formation of mental models, albeit

in a highly idealised and simplistic form. Despite the limited model, as indicated

earlier, useful inferences can then be performed.

It is a simple matter to translate these ideas into a symbolic programming language,

such as Prolog or Pop i 1, that allows the construction of arbitrary data structures. A

possible representation of the premise form "All of the X are Y", always given by

X = y
X = y

(y)
(y)

could be (in Prolog)

model-entry(x - y)
model-entry(x - y)
model-entry(y)
model-entry(y)

A more sophisticated representation which does not rely on an interpreter "running

out" of entries would be:

model-entry (xl. .xn - yl. .yn. .OtherYs).

This version requires the distinction between variables and hypothetic instances). A

number of other equally useful forms could be imagined. The important point is that

it is easy to set up the limited kinds of mental model proposed by Johnson- Laird.

The other syllogism forms are equally simple:

Some of the X are Y 	 X
X = y
(x) (y)

None of the X are Y 	 x
x

y
y

Some of the X are not Y 	 x
x

Cx) y

385

Y

Suitable Prolog forms are easily created to capture these tableau structures.

The rest of Johnson-Lairds discussion on syllogistic reasoning is concerned with

refining the procedures involved and explaining experimental results that show why

certain syllogisms are difficult to follow, namely those with premises requiring two or

more models.

5.4.2.3 Other Forms of Deductive Reasoning
Having illustrated the approach in the special cases of syllogistic reasoning the

argument for the use of mental models is extended to more general aspects of

inference. In the discussion the following four points are established:

A general theory of inference based on mental models can account for both
implicit and explicit inferences. Explicit inferences are those that usually cause
most difficulty and depend on searching for alternative models that may rule out
currently held conclusions. Implicit inferences are essential in understanding
written and spoken discourse. These type of inferences make use of the context
and content of the discourse as well as background knowledge. (This will
presumably be in the form of typical instances or prototypes rather than simple
default values -given the discussions in the previous two sections). As a
consequence, a single mental model can be formed. No attempt to search for
alternative models will be made until evidence or reasons for doing so should
arise.
The theory solves the paradox of how children, or knowledge based systems for
that matter, can learn to reason or acquire rules of inference before they can
reason validly in the first place. The paradox is solved because it is based on the
false assumption that children either need to acquire inference rules or possess
them innately in order to make valid deduction. Valid reasoning can, in fact, be
performed without recourse to logic.
The theory is compatible with the fact that humans are certainly capable of
making both valid and invalid inferences.
It is also compatible with the way in which formal logics are developed.
Certain inferences are much more difficult for people than others. This
difficulty provides the motivation for the search for systematic principles
governing valid inferences. Hence the formulation of classic axiomatic systems.

These are general points but very important ones as they effectively imply the process

of Concept attainment can be implemented within a framework of effective

procedures. This includes the refinement of both working definitions of Concepts, as

constituent part of a mental model, and the reasoning procedures used for their

interpretation. The claim that effective procedures for these mechanisms can be

formulated is a significant one. The problem with Bruner et al's account of Concept

attainment and that of Piaget concerning a child's ability to learn to reason, namely

by internalising their own actions in some way and reflecting upon them, is that

neither describe or suggest a mechanism by which the necessary reasoning can

actually be performed.

386

The theory of mental models suggests that these mechanisms should be amenable to

specification as general procedures.

5.4.2.4 Summary: The Status of Mental Logic and its Consequences for
Knowledge based Systems
The theory of mental models shows, perhaps more clearly than any other study in

cognitive science, that it is not necessary to assume the existence of a mental logic to

account for valid reasoning. Difficulties in performing certain types of inference can

be described in terms of the difficulty of constructing integrated models of a set of

premises and the subsequent testing of those models for contradictions, see also

Morris (1987,p7). The role of logic is clearly reduced to that of a task variable which

removes it from its widely held view as a putative account of reasoning processes.

This includes the specialised area of reasoning about logical problems themselves.

The conclusion has importatit consequences for many areas of cognitive science and

artificial intelligence and in particular those concerned with the continuity and

consistency of comprehension and inference processes, eg the development of

knowledge representation systems. For example the requirements of an advanced

knowledge based system for process engineering design require features such as

Concept refinement, self consistent learning, catering for vagueness, etc. Other

research in knowledge representation and the discussion of logics throughout chapters

2 to 4 indicate that such a system would be truly difficult to implement in logic terms.

It does not seem practical at this point, therefore, to pursue the development of a

process design environment that requires logic based reasoning as the basis or means

in which other reasoning capabilities are implemented. Rather inferences based on

formal logics should be viewed as results from a computational tool. This reduces the

status of formal proof procedures to that of other useful problem solving techniques,

eg equation solvers, although it is clear that the former has wider application in most

types of search problems. This is in direct contrast to many of the AT systems

referred to in chapter 3 whose reasoning and representation techniques are either

explicitly or implicitly formulated in a logical framework.

387

5.4.3 Types of Mental Representations
Having summarised the background context in which the theory of mental models

was developed it is now possible to describe specific aspects of the theory that will be

of subsequent importance to the development of a knowledge representation system.

Johnson-Laird proposes that at least three types of high level mental representations

are worth considering:

Propositional representations
Images
Mental Models

The first two notions draw on a wide range of psychological research for which

Johnson-Laird provides numerous references, (chapter 7, J-L, 1983). The claim that

images form a distinct sort of mental representation is a controversial one. Proponents

of this view suggest that images represent objects, i.e. there are analogical structural

relations between image parts corresponding to the perceptible relations between the

parts of the object they represent. Further they are amenable to mental

transformations, corresponding to changes in view of an object, and the mental

processes underlying their experience are similar to those underlying the direct

perception of an object or picture.

(An interesting account of the use of images to represent spatial information and their

use in problem solving is Kosslyn (1980)).

Critics of these ideas claim that images are only epiphenomenal, ie purely

interpretations, and are based on a single underlying form of mental representation

corresponding to propositional statements. As Johnson-Laird points out there is in

fact very little difference in the underlying functionality claimed by the two schools

of thought except that images are said to represent objects whereas propositions are

only said to be true or false of them. If the argument is about the level of description

then it can be trivialised as follows.

Consider the useful Concept of a two dimensional array in a program that can be used

as an entity in specifying effective procedures for some reasoning task. Using the

doctrine of functionalism, it is irrelevant that at one level all that is required is a string

or vector of symbols while at a higher level it is useful to reason about an array of

locations. It does not matter whether a phsyical two dimensional array of locations

exists. All that does matter is that the embodiment should "function" as an array. In a

similar vein Johnson-Laird suggests there is no reason to suppose that the mind is not

organised along similar lines re the use of images and propositions.

Propositional representations, then, are mental representations of linguistic

388

expressions. For the meantime this can be assumed to consist of strings of symbols.

Images are taken to be "perceptual correlates" of mental models from a particular

point of view, (p157, J-L, 1983). The rest of this discussion shall focus on the

differences between propositional representations and mental models. Given the

discussion above, however, it is not difficult to extend these arguments to the use of

images. The ability to directly handle and reason about graphical images of objects is

of considerable importance to the long term development of work station, graphics

based computing environments.

A principle assumption of the theory of mental models is that verbal descriptions are

initially represented in a propositional form, ie expressions in a "mental language",

that requires a semantics to map these propositional representations into mental

models. The search for alternative interpetations of models requires that an

independent representation of a set of premises be available, ie in propositional form.

These propositional representations can refer to real or imagined situations but are

always interpreted with respect to a mental model.

Two basic claims are made regarding the structure and content of mental models. The

first is that unlike propositional representations, mental models do not have an

arbitrary structure but one that is analogous to the state of affairs it represents. At first

sight this claim seems highly questionable. Johnson-Laird points out, however, that

the analogical structure can vary considerably and may only require that separate

entities be used to stand for individuals. The second claim is that mental models, and

images, are highly specific, eg it is only possible to form an image of a specific

triangle, say, rather than a "general" triangle, whatever "general" may mean. This is

interesting in that although a model must be specific it can still represent a general

class of entities. For example, the interpretation of a specific model depends on a

number of processes all of which may treat the model as a representative sample of a

larger set. This is presumably exactly the case when interpreting Rosch's prototypes,

which are specific cases, or Bruner et al's typical or generic instances.

The last example raises the fundamental issues that the "function" or purpose of a

model cannot be ignored. The structure and content of a model must be supported by

a description of the processes interpreting the model if valid deductions are to be

made regarding the model's content. The problem of "understanding", of course, is

that natural language is often inherently vague and the structure of discourse is

typically fragmented. This can easily lead to arbitrary assumptions or unwarranted

inferences being made as switches are made between one interpretation process and

another.

389

The assumption that propositional representations can be mapped into mental models

requires directly addressing theories of word meaning and coherence of discourse, see

points 2 - 5, page 377 above. This is an extremely difficult and complex task as it

involves many psychological, philosophical and linguistic issues. No attempt is made,

therefore, to even attempt to summarise Johnson- Laird arguments even though most

of these are themselves only introductory in nature. Instead only a selection of the

technical terms and issues involved shall be described. The reader is referred to the

original text for further explanatory details.

5.4.3.1 Intension, Extension and Formal Models of Language
The mapping process of a propositional representation, as a string of symbols, into a

mental model resembles the type of semantics used in formal logics. The use of logics

in the analysis of natural language in this way is referred to as model theoretic

semantics. The central principle of this approach is the same as that of classical logic,

namely that the principle of compositionality applies. That is, the semantics are

compositional or denotational, see chapter 2. Frege's work on logic draws the

distinction between the "sense" of an expression and its "reference". The "reference"

of an expression is simply the entity the expression refers to in the world. The "sense"

of an expression is less clearly defined but is concerned with the part of the

expressions meaning that connects it with its reference and can be thought of as the

"essence" of the meaning that can be expressed by different, subjective "ideas" of it,

ie different "ideas" can be associated with the same "sense" as is the case when one

person's "idea" of something is different from another's "idea" of it.

The somewhat vague definitions of sense and reference have since been replaced by

notions of intension and extension in formal studies of semantics. Johnson-Laird

quotes Frege's example of the expressions the Morning and the Evening star. These

both have the same extension, namely the planet Venus, but they have different

intensions. One means the star observed in the morning while the other means the star

observed in the early evening. In abstract terms, the extension of a declarative

sentence is its truth value and its intention the conditions which have to hold for the

sentence to be true.

In an ideal, abstract language, such as predicate calculus, one expression within a

sentence can be replaced by another with the same extension without affecting the

truth value of the sentence. For example, if "the reactor overheated" is true then so

too is "RiOl overheated" provided that the reactor and RiOl have the same extension.

The idea that the intension of a sentence can be built up from the intensions of its

component parts in a way that only depends on their grammatical mode of

combination is a principle that is central to model-theoretic semantics. Johnson-Laird

390

argues, however, that it is an assumption based on an ideal state of affairs. Further,

the assumption appears to be invalid and gives rise to intractable difficulties when

trying to take into account various observed phenomena in the interpretation of word

meanings. An example quoted earlier was the widely observed effect of subject

content on the ability to interpret and reason about propositional statements. if this is

the case then it is an extremely important observation since it is precisely an extended

theory, and implementation, of word meaning that is required in a self-consistent

knowledge based system. It is worth outlining then the salient features of the model

theoretic approach and the main problems it fails to address.

Denotational semantics and the assignment of truth values for a formal language are

carried out not with respect to the real world but to a model. A formal model is an

abstract construct that consists of a function that maps syntactically well formed

sentences to elements in some specified model structure. In applications of

computational linguistics this structure is typically some sort of nested tree structure,

similar to proof trees as described in chapter 2. Many applications also require the

use of the notion of possible worlds as discussed earlier in the context of the use of

modal logics, section 4.3.1.6.

In such logics an assertion, i.e. proposition, is necessarily true in a particular world if

ari only if it is true in all possible worlds that are accessible from that world.

Different assumptions can be made regarding the form of the accessibility relation,

see also Appendix D, corresponding to different axiomatisations of modal logics.

This formulation provides a clearer definition of the terms intension and extension

introduced above:

The intension of a predicate - the property that it captures - can be
treated as a function from the set of possible worlds to sets of
individuals; the extension of the predicate is the set of individuals to
which it applies in the particular possible world under consideration.....
The intension of a sentence - the proposition that it expresses - can be
treated as a function from the set of possible worlds to truth values
(true and false); the extension of the sentence is its truth value in the
particular possible world under consideration. (pl72, Johnson-Laird,
1983).

One of - the most well known applications of model theoretic semantics to natural

language analysis is that of Montague (1974) who makes of an intensional logic

based on lambda calculus, see Appendix B. This work is briefly described in

Johnson-Laird (pl74,1983). For those unfamiliar with computational linguistic

techniques Grishman ("Computational Linguistics", 1986) and Winograd ("Language

as a Cognitive Process", 1983) are excellent introductory texts. The limited success,

however, of systems based on the model theoretic approach in adequately handling

many common linguistic forms has led several researches to question the whole

391

validity of this approach. In particular, the following general points are worth noting:

The idealisation of assuming that language, and word meaning in general, can
be mapped to a model without reference to the general cognitive processes
involved leads to intractable difficulties with the semantics of sentences
involving propositional attitudes such as belief.
The notion that there is a function that provides each basic lexical item with an
interpretation in a model structure is an oversimplification that relies on the
vocabulary of a language being expressed as sets of necessary and sufficient
conditions. The previous discussions on Conceptual categorisation and the use
of prototypes indicate that for many types of word this is very unlikely to be the
case.
Model theoretic semantics merely assumes the existence of such functions
without specifying how they can be formulated or are intended to work.
Propositions expressed in sentences in ordinary language, and hence in text,
rules, etc covering some topic of process engineering, generally depend on the
context in which they occur, e.g. time, place, situation, listener, speaker, etc. To
assume that "context" can be denoted by a possible world is fraught with danger
since it suggests that "context" is some sort of passive external object
characterised by a set of indices corresponding to time, place, speaker, etc. This
is naive on two counts. First, the notion of the context of an utterance, or a
written sentence, requires that there are at least two contexts: one for the
speaker and one for the addressee. The difference between the two, as
Johnson-Laird argues (chapter 14, 1983), is in fact essential for intelligent
communication.
Second, just about anything could be considered relevant to the context of the
interpretation of a sentence since listeners in general have no means of knowing
what will or will not be relevant information until a sentence is heard or read. It
is unlikely then that context can be represented as a static, predefined sentence
of indices waiting to be "filled in".

In order to understand how the theory of mental models can help provide a

framework in which to tackle these problems it is necessary to consider first some

aspects of the fundamental nature of the meanings of words.

5.4.3.2 Aspects of Word Meaning
The precise nature of the meanings of words and Concepts remains an unresolved

problem in the fields of philosophy and cognitive science. The theory of mental

models does not attempt to provide a definitive set of answers to the questions that

have puzzled philosophers for many years, such as those quoted at the start of this

section. Instead, Johnson-Laird attempts to show that by considering word meaning

within a cognitive framework based on mental models many of the standard

arguments, some of which are given below, appear to be false antithesis.

The main objective of the remainder of this thesis is to use these arguments in

conjunction with the ideas introduced in the previous two sections to provide an

outline for a knowledge representation system that can address the fundamental

requirements of a process design environment.

392

5.4.3.3 Necessary and Sufficient Conditions

A question that has aroused much controversy is whether or not word meanings can

be expressed as necessary and sufficient conditions. It appears from the discussion in

chapter 4 that intuitive approaches taken in the development of simple knowledge

representation systems have given rise to a confused situation. It was pointed out that

many frame based systems are implemented implicitly assuming that some slots and

slot values be treated as necessary conditions. At the same time, as Brachman (1985)

made clear, the ability to override inherited slot values makes it impossible to

represent definitional conditions or contingent universals in a rigorous way, i.e.,

exactly the methods required to represent necessary and sufficient conditions. More

recent developments, e.g. the OPUS system, Nado and Fikes (1988) and Krypton,

Brachman, Fikes and Levesque (1983), have only attempted to clarify the situation

rather than analyse the need for necessary and sufficient conditions to represent

meanings. The reason why this problem is so important is that it fundamentally

changes the nature of the representation of Concepts and the process used to interpret

them.

In the study of philosophy there are two schools of thought of direct relevance to this

problem, namely Realism and Psychologism. The Realist approach, which was

argued by Frege in modern times but goes back to Plato, maintains that meanings are

independent of the mind. By that, it is essentially meant that the referents of

expressions, propositions, etc., are "real entities awaiting discovery rather than mental

constructs awaiting invention", Johnson-Laird (p183, 1983). This requires that a

Concept be defined by the essential characteristics of the objects of which it is true,

being true for some objects and false for others. Frege's notion of some sort of "real

sense" of a word or sign as opposed to different individuals' "ideas" of it, where the

terms sense and idea are used in the technical way by Frege, lends itself more readily

to the position that word meanings can in some way be properly defined as necessary

conditions.

Given the considerable research in cognitive science, as represented by the previous

two sections on Concepts and prototypes, it is difficult to see how this position can be

justified. Before explaining why, it is worth noting two points that Johnson-Laird

makes regarding the Realist approach:

1. If there is a "real" sense of a sign that can be the common property of many
individuals how is it passed from generation to generation without entering the
mind? e.g. Frege states "one can hardly......that mankind has a common store of
thoughts which is transmitted from one generation to another", (see p183, J-L,
1983). If these meanings do enter the mind then in what way are they different

393

from individual's "ideas" of that "sense"? Yet Frege specifically states that the
sense of a sign is not part of the individual mind.

2. If people have different ideas about the object denoted by a sign it does not
necessarily imply that they cannot also have a common idea about the sense of a
sign. Only if the latter were true would Frege's rigorous distinction between
sense and idea appear valid.

'Te whole basis of Conceptual categorisation, as described earlier, implicitly argues

against the Realists approach, or more precisely my interpretation of it does. It

fundamentally recognises the invented and often arbitrary status of concepts

developed in a cognitive framework that takes account of the effect of social

interaction on the process of Concept attainment. The perceived social acceptance of

certain Attributes in determining the criterial status of all Attributes that constitute a

Concept goes a considerable way to explaining how Frege's store of thoughts are

passed from one generation to another. Further Frege's account is oversimplified in

that it concentrates primarily on the intensions of objects. Bruner et al's work shows

that a much richer set of Concept type is required to account for the wide range of

phenomena people reason about, e.g. perceptual level concepts that are pre-verbal

(space, motion, colour etc), functional concepts, identity and formal equivalence

categories etc. In addition, these Concepts are bound up in a superordinate structure

and cannot be treated independently of one another.

These observations are in line with arguments put forward by proponents of

Psychologism. In particular, Johnson-Laird points out the work of de Saussure (1960,

written 1907-1911). de Saussure argues that is only possible to define Concepts in

terms of its relationships to other Concepts. The links between the words and

Concepts involved will reflect the relational nature of an individuals lexicon and

society's approval of the use of these words. de Saussure, as Frege, takes the view

that language transcends any particular individual but argues against there being any

objective realm to provide necessary and sufficient conditions to define the sense or

intension of any term.

5.4.3.4 Concepts, Prototypes and Family Resemblances
In order to gain a better insight into word meaning and the question of necessary and

sufficient conditions it is useful to reconsider aspects of Conceptual categorisation

and the use of prototypes.

In the case of categorisation and the use of formal equivalence categories it seems

clear that many Concepts have Attributes that are not combined in a simple AND/OR

Boolean way. Many concepts have instead a relational or functional nature, e.g. a

table not only has legs but the legs "support" the top of the table. Many intuitive

descriptions of Al type frames or objects presuppose some common characteristics

and values which run through all examples of a given class. For many types of natural

394

kind Concepts the work on family resemblances has shown this to be a false

assumption. If there is a common element it tends to be in terms of function, or other

perceptual level characteristics, rather than form. A familiar example of this in

process engineering is what sorts of object can be considered to be heat exchangers.

The actual form of the object is of secondary importance, i.e. non-criterial, as it can

involve numerous variations ranging from shell and tube constructions, plate

exchangers, graphite blocks, fluidised beds, etc. Instead, the main reason for

describing some object as an heat exchanger is whether or not its primary function is

to transfer heat between two notional streams, either by indirect or direct contact.

As regards the development of prototypes and taxonomic structures based on family

resemblances, which does not necessarily involve the use of common characteristics,

Johnson-Laird quotes the work of Smoke (1932) which makes the point well:

As one learns more and more about dogs, his concept of "dog"
becomes increasingly rich, not a closer approximation to some bare
"element"... No learner of "dog" ever found a "common element"
running through the stimulus patterns through which he learned.

This is exactly what is implicitly implied by the argument that categories have an

internal structure with an intended range of application learnt by experience, the

prototype(s) of a category representing a specific type of class norm. Wittgenstein's

work on family resemblances and the nature of concepts holds, then, that many types

of Concept definition are not specified by essential characteristics or sets of necessary

and sufficient conditions.

5.4.3.5 The Nature of Intensions
Much of the philosophical argument on the nature of intensions and word meaning is

made from two idealised or abstract points of view that fail to take into account the

perceptual mechanisms involved in the identification of Concepts and the use of

language. The purpose of this discussion is not to pursue these arguments but to

identify the nature of Concept definitions in a knowledge representation system based

on observations and research in cognitive science and whether or not this involves the

use of definitional conditions.

The discussion above has suggested that in the case of natural kind objects, at least,

the assumption of necessary conditions for category identification is not valid.

Pulman (1983) provides an excellent introduction into a more detailed discussion of

the subject and the characterisation of other word types. His arguments are

summarised in Table 6.1 below

395

TabJe6.1: Basic Word Types

Subject of
some stable
generalisation

Natural 	yes
Primary 	yes
Nominal 	can be

Subject of 	 Understood
some analytic 	mainly by
specification 	stereotype

no 	 yes
can be 	 yes
yes 	 can be

This table requires some explanation. Some of the terms involve technical definitions

which are explained at length in Pulman (p138-169, 1983).
- 	word stereotype in. . the third column is - used to indicate a generalisation of

Rosch's notion of prototype. A stereotype may be mainly perceptual information, e.g.

"red", or primarily functional, e.g. "torch", or rely on connotation eg "spinster".

The term analytic specification refers to the type of definitional conditions used in

attempts to define words like bachelor (male, single, etc). There is an important

distinction between weakly and strongly analytic specifications. Weakly analytic

specifications are conditional only whereas strongly analytic forms are bi-conditional.

The term stable generalisation is used to help distinguish between natural and

nominal kinds, these terms being more easily introduced by examples. Most natural

life forms, e.g. apple, orange, dog, tree, are for obvious reasons classified as "natural

kinds". The research on prototypes and family resemblances indicates that these

objects are primarily understood via a prototype and that their true intensions in terms

of an analytic specification are undefined. The term stable generalisation involves

two simple ideas shown by the following example from Pulman (p156, 1983).

Consider the sentence "dogs are animals". If the answer to the question "Could all

dogs have turned out not to be animals?" is yes then the original statement is

corrigible and therefore not analytic. If, however, the answer to the question "Given

that we think dogs are animals could the 1000th dog not be an animal when all the

previous examples were?" is no then the original statement passes the

"counter-example test", i.e. it is not refutable by a single counter-example.

Statements which are both corrigible and pass the counter-example test are stable

generalisations.

If natural kind terms are primarily understood via prototypes and can be subjects of

stable generalisations then it clarifies the status of "necessary conditions". For

example, consider the natural kind "tiger". Most individuals' prototypes presumably

consider tigers to be gold and black in markings. This is not a strict necessary

condition. It is not even a weak, necessary condition, eg we can have a tiger without

striped markings. It is just that the prototype is so familiar and rarely brought into

doubt that a posteriori its markings take on the status of essential characteristics. Such

a posteriori, i.e. after the event, truths are referred to by Kripke (1972) as

396

metaphysically necessary truths.

This account is in agreement with the account of conceptual categorisation as it

recognises the inverted status of both categories and Attributes. If sufficient

exemplars of non-striped tigers or striped non-tigers were discovered then it is likely

that the term tiger would be replaced by two or more new terms.

The basic difference between natural kind terms and nominal ones (Locke, 1960) is

that the latter are part analytic, e.g. bachelor, farmhouse, breakfast, etc. That is

weakly analytic specifications can be useful in checking category membership of

questionable exemplars. The use of stereotypes is still essential however for

.discriminating between examples such as. glass and goblet which would have similar

analytic specifications both in terms of form and function. It is important to note that

most of these categories are purely based on social convention and membership is

open to negotiation, particularly in dubious cases. Johnson-Laird refers to such terms

as having a "constructive semantics" by which he means that the intensions of such

words are mental constructions imposed upon the world.

Also included in this class of word are many man-made artefacts. The specification in

this case is usually in terms of intended function rather than some internal structure or

form. In particular the majority of functional plant equipment items, e.g. pumps,

heat-exchangers, reactors, etc., are covered in this important class of word. It is worth

noting that many such categories are labelled by the nominalisation of the verb

involved, e.g. pump. In these cases it is likely that the Concepts will be closely bound

up with related functional Concepts.

Other nouns stretch the notion of constructive semantics still further, e.g. home, chair,

melody and often only have weak analytic specifications concerning function. For

example, what can be considered to be a table, or a chair etc can vary considerably

and may look quite different from an individual's prototypes of these items.

Similarly, bricks, boulders, even the heel of a shoe can be substituted into a sentence

about hammering nails, and easily understood despite the fact they bear very little

resemblance to a prototypical hammer.

In summary then, nominal kinds make more use of analytic specifications but these

specifications are only weakly analytic and merely reflect perceived social

conventions. Considerable use of stereotypes is still required as a basic means of

utilising such Concepts.

The third type of word in Table 6.1 above is termed primary, following Locke (1960).

These words include examples such as hot, dry, wet, liquid, solid, red, blue, smooth

397

etc. These words often appear as adjectives or in noun form and can be thought of as

"the basic stuff' of the world of which our senses are aware. It is difficult to be more

precise because these words in common usage are only labels for perceptual level

notions that are hard to verbalise other than through common examples, comparisons,

etc. In most cases they are understood directly via a prototype, e.g. water, stone, etc.

Scientific type classifications of primary kind words provide an alternative means of

description, e.g. what constitutes a liquid, vapour, gas etc., but as with necessary

conditions for natural kind words these are very much a posteriori specifications. The

primary means of use and understanding of these words in "common sense problems"

is again via stereotypes.

This is a fundamental observation as it is precisely this sort of common sense

understanding that has long eluded developments in Al.

Finally it would be naive to think that the basic word types natural, nominal and

primary are sufficient to deal with the range of Concepts and associated intensions

needed in a process design environment. For example many functional Concepts do

not have a simple one to one correspondence with objects. A simple example is the

notion of how to solve an equation. How is the meaning of this functional concept

represented?

Another extremely important class of words not covered here are preposition type

words, e.g. at, on, with. This topic is well discussed in Miller and Johnson-Laird

(1976). These words also have a constructive semantics which is important for the

theory of mental models since they can be implemented as effective procedures,

creating the appropriate number of entities in a mental model, their inter-relationship

and so on.

The same applies to the basic set of sentential connectives, "and, or, if, then, else,

because, so..." and the various wh-words, "where, what, which....", either used as

interrogatives or in relative clauses.

5.4.3.6 Abstract Concepts, Formal Languages and Necessary Conditions
Given the discussion above the position taken here is that the status and use of

analytic specifications of many types of word in natural language requires careful

consideration. This contrasts with many other AT based developments which

implicitly assume sets of necessary and sufficient conditions in frame or object

definitions. In many cases this is seen to result from an oversimplistic view of the

semantics of Concepts and their use in everyday thought. The question then

remaining is "are there any concepts which require strongly analytic specifications?"

The only good examples I can offer are ideas formulated in abstract or formal

languages such as mathematics. For instance, precise geometric shapes fall into this

398

category. Statements regarding the definition of a circle, square, equilateral triangle,

etc. are incorrigible since they are always "true" by definition. Interestingly enough,

even these examples are rooted in perceptual level characteristics. As Bruner et al

point out, however, (p6, 1956) once a formal equivalence concept has been

established many more dependent Concepts can be generated with little regard for

their original source. This is particularly well demonstrated in the development of

many modern areas of mathematics. It is still the case however that most of these

Concepts can still be treated in the same way as nominal word types. (As an

interesting exercise try and describe 4-dimensional space without making reference to

2-D or 3-D Cartesian coordinate axes, the latter being generic instances of spatial

representations that make useful stereotypes).

5.4.3.7 The Nature of Extensions and Vagueness
The treatment of the exact nature of intensions and theories of word meaning is a

complex subject lying largely outside the scope of this thesis. A much simpler

problem to analyse is the question of vagueness. This was considered earlier, section

4.3, in the context of uncertainty in simple knowledge based systems. It was argued

there that the representation of uncertainty as point numerical measures was far from

adequate in many situations. Further the semantics of fuzzy set theory in particular

ran counter to basic intuitions about natural language in that self contradictions can

have truth values greater than zero. Johnson-Laird also discusses several of these

issues (p198-201,J-L, 1983), and arrives at much the same conclusion.

Johnson-Laird makes a major contribution, however, by pointing out that vagueness

is in fact a desired solution rather than a problem in the context of formal equivalence

categories. This claim requires clarification as follows. It is obvious that vagueness is

very persuasive in natural language usage. Speakers or writers may be deliberately

imprecise or vague when providing information, use misleading metaphors, figures of

speech, and so on. There are two types of vagueness worth noting:

Extensional vagueness - as in "Is the exchanger expensive (safe, etc.)?", "Is
John tall?".
Intensional vagueness - as in "Is a lamp an item of furniture?" due to the
imprecise nature of the furniture Concept.

These situations contrast with extensionally precise aspects of language such as

proper names which pick out or identify specific individuals.

Most concepts and relational predicates are not precise because if they were the

category boundaries would have to be specified and remembered precisely. The

cognitive demand this would place on people and the agreed social conventions that

would have to be set up would make this a massive undertaking and one likely to

defeat most people. The same would be true of any attempt to set up a knowledge

399

based system in a similar way.

The answer to this problem, John-Laird argues, is the way in which Concepts are

represented and interrelated in a taxonomic structure. The boundaries of a word's

extension are set by the nature of the particular taxonomy the Concept appears in. For

example, what counts as a dog depends on the similarity of categories representing

foxes, cats etc and the prototypes in use. As indicated earlier if the Concept involved

is primarily described in terms of function, eg a table or chair, then many items can

be treated in an equivalent way. This, of course, is exactly the basis underlying the

notion of equivalence categories.

Some concept hierarchies are relatively well defined such as common animal classes.

Other concepts are involved in more complex relationships. Johnson- Laird discusses

a fragment of the semantics of "in, at, on and with" as a more typical example.

The advantage of having Concepts organised in some superordinate structure is

precisely because it allows or yields vagueness in extensions without the need for any

accompanying account of uncertainty. This means, for example, that speakers are not

forced to be precise in cases where they are ignorant or they can communicate

information at the level of "vagueness" appropriate to the situation. This mechanism

allows Hayes (1974) to state that "the heap is small" without the need for numerical

measures of uncertainty that he, and others, have argued against. Whether or not this

is a relatively precise or vague statement will depend on the surrounding context of

the conversation and the information the speaker intended to communicate to the

listener.

These observations fit in with earlier ideas on conceptual categorisation and the use

of equivalence categories. The whole emphasis there is to think or speak with

maximum amount of economy appropriate to the situation. This implies that by

default people will communicate at a relatively vague level by moving up the

equivalence category structure until it is necessary to explain some point or other.

This explanation may involve more precise details or it may simply make appeal to

prototype connotations or refer to related Concepts in the taxonomic structure.

Resolving problems of intensional vagueness ultimately requires inventing new

words or more precise predicates in order to cope with dubious concept exemplars or

entirely new categories.

5.4.3.8 Summary: Word Meaning
The purpose of the discussion above on the nature of intensions and extensions in

theories of word meaning was to clarify how several key aspects should affect the

development of a knowledge representation system. As Johnson-Laird suggests

questions such as "Are meanings in the mind or in the world? Is Realism or

400

Psychologism right? Do concepts have necessary and sufficient conditions or not?"

appear to be false antitheses.

Closer analysis from a cognitive viewpoint reveals that the nature of intensions are

not uniform across different word types. Some words require mental constructions to

be imposed upon the world and are understood by both stereotype and part analytic

specifications. Other words, e.g. natural kinds, refer to entities whose underlying

structure is unknown or whose intensions are at best part cIA-s c..boMa by relatively few

experts. Lack of definition of such concepts is no bar to their successful use in

communication or reasoning, however, as they are principally understood via

stereotypes anyway. There are also words that can be stipulated as necessary and

sufficient conditions and support analytic type inferences. As Johnson-Laird puts it

"Language embodies no particular metaphysics" it embraces both Realism and

Psychologism".

The implication fOr knOvlôdge representâtiôn systems is that the differences in

interpretation of different Concept types have to be catered for. The representation

must support the notion of a Concept, inter-related to other Concepts within a

taxonomically organised structure, Concepts themselves having an internal structure

and, more often than not, stereotypical meanings. The structure itself plays an

instrumental role in determining the boundaries of word extensions and enhance the

ability to readily use and interpret words in more or less vague ways for

communication purposes.

5.4.3.9 Styles of Word Representation and the Effect of Context
In order to emphasise the cognitive aspects of word representation and interpretation

Johnson-Laird discusses at length the inadequacies of three styles of word

representation, namely lexical decomposition, semantic networks and meaning

postulates. The problems he identifies are summarised here as they illustrate the

important role that "context" has to play in interpretation mechanisms (Context is

used here in the general sense of the context or background of a conversation).

Lexical decomposition, as a style of word representation, attempts to decompose

words into sets of necessary and sufficient conditions. Consider the phrase "a man

lifts a child". A simplified representation of this would be:

man 	: Human, Adult, Male
child : Human, not (Adult)
lift : Cause(Activity X, Upwards (Move) Y),

where X is the subject.

The phru-se is represented as
Cause(Activity(Human, Adult, Male),

Upwards (Move) (Human, not (Adult)))

This sort of representation is very similar to what is found in many natural language

401

or knowledge based systems.

If this was a valid representation it suggests that the decomposition process should be

experimentally observable, more complex words taking longer to decompose than

simpler words (e.g. using man instead of adult). Johnson-Laird points out that this

effect, termed semantic complexity, has not been observed, (see chapter 10, J-L,

1983). What is observed is that complex sentences constructed using many

connectives or relative pronouns are hard to follow. This point is returned to later.

Meaning postulates are assumptions which limit the set of model-theoretic

interpretations of a language. They are used to stipulate required relations between

words, ensure that proper names refer to the same individual in all possible worlds,

etc. An example representation might be:

1. man MAN child CHILD lift LIFT Postulates: For Any X. If X is A MAN Then
Xis HUMAN and is ADULT and Xis MALE. For Any X. IfXis ACHILD
Then X is HUMAN and NOT (X is an Adult) For Any X and Y. If X LIFTS Y
Then X CAUSES Y TO MOVE UPWARDS

Adherents of this approach assume that comprehension consists of translating

sentences into a mental language which bears a very close resemblance to its surface

form. Each morpheme in natural language has a corresponding unanalysed token in

the mental language, e.g. man --> MAN The basic claim of the theory is that words

cannot be adequately defined and are merely translated into tokens in the mental

language.

Johnson-Laird argues that both approaches (as well as semantic networks, but these

are more a representation style rather than denoting a theory of meaning) are

inadequate to cope with the vagaries of comprehension. The fundamental flaw is that

they fail to explain how expressions relate to the world, or models of it. Four

examples are listed that make the point in different ways:

Ambiguity and Context - Johnson-Laud gives several examples of ambiguous
phases, e.g. "They are handsome". Depending on the context, handsome might
mean generous or good-looking. That is, the ambiguity is resolved once the
referent of "they" is known. A selectional restriction, i.e. meaning postulate, is
not placed on the meaning of "they" itself then. Rather, what needs to be
constrained, in general are the referents of expressions.
Predefined selectional restrictions also make it very difficult to cater for
imagined contexts such as in nursery rhymes, e.g. "the dish ran away with the
spoon". Yet people can comprehend such ideas easily. Imagined contexts are an
important source of engineering models. A simple example is the use of
"springs" to try and model fluid interactions in polymer solutions. Again the use
of context is invaluable in resolving apparent anomalies in word
comprehension.
Instantiation and Context - Context helps to narrow down the possible
interpretations of words. This might be in the form of an assumption about a

402

more specific category type (e.g. "the exchanger is good for temperature overlap
duties, assume a double pipe fin tube?") or the identity of a pronoun (e.g. "it is
expensive", given the context assume the identity of "it"). What context
provides then is a guide to the instantiation of specific referents.
Inferences and the Autonomy of Intensions - many approaches to word meaning
have assumed the autonomy of intensions used in inferences, i.e. the assumption
that meanings are independent of context or use. An extension of this approach
is to assume that the occurrence of a word in a specific linguistic context
somehow instantiates a more precise or specific sense of the term.
Johnson-Laird argues that this basic assumption is false. Consider the simple
sentence.
"The turtle rested on a floating log and fish swam beneath it".
Most people assume the fish swam beneath the log rather than between the
turtle and the log. This effect is hard to account for on the grounds of
instantiating more specific meanings - see below.
Another simple example is the use of phrases such as "X is Y", "On X's right".
Logicians or "meaning postulants" would have that the transitivity be stated in
an autonomous axiom. However, sit a number of people round a circular table
and the interpretation of "On X's right" becomes dubious. Requiring that higher
order postulates be used that generate specific meaning postulates as a function
of context dependent information clearly contradicts the assumption of the
autonomy of intensions.
Deixis and Interpretation - The examples above indicate how the reference of
some expressions play a role in determining the senses of other expressions, at
least in any plausible theory of comprehension. Consider the sentence:
"The bacon and egg is sitting at table 5 and getting impatient".
This is a simple example of indirect reference as might be used in a restaurant.
A reader makes sense of this by recovering the appropriate referent for "bacon
and egg", ie not the plate of bacon and egg itself but rather the person who
ordered it. A theory that assumed a set of literal meanings could first be
assigned to a sentence and then context made use of to eliminate inappropriate
meanings would not work in such situations. Similarly all conventional notions
regarding selectional restrictions will fail in such examples. The obvious, and
only solution, is to recognise that many acts of comprehension must be resolved
by making context dependent inferences. -

The examples above, hopefully, illustrate the vital effect of context on inferences.

Such effects cannot be accounted for by theories of word meaning that fail to relate

how expressions in a representation language relate to the world, or a model of it. The

latter make the implicit assumption of the autonomy of intensions which turns out to

be false in general.

Johnson-Laird states:

Unless the retrieval of referents is taken into account, it is impossible
to explain the resolution of lexical ambiguities, the instantiation of
words in context, the vagaries in the logical properties of spatial
relations, and a variety of deictic phenomena, (p242, J-L, 1983).

Many of the examples can be readily accounted for if it is assumed that a mental

model of the relevant state of affairs was constructed that takes account of context

dependent information. The procedures required to construct such a model are now

403

considered.

5.4.4 A Procedural Semantics for Mental Models
It was stated earlier that three types of mental representation were worth considering,

namely propositions, images and mental models. The purpose of this section is to

summarise the procedures needed to construct mental models based on proposition or

image type representations. The treatment of image representations is not pursued

further here but it is likely that much of what follows for the propositional case is true

for images also in terms of the overall functionality of any knowledge representation

system.

Based on considerable experimental evidence, Johnson-Laird suggests that a two

stage theory of comprehension is required. The first stage involves a superficial

understanding of a sentence or utterance (or what you see) that gives rise to a

propositional (or image) representation. This propositional representation, constructed

in some mental language using appropriate tokens, provides an economical way of

representing discourse, especially for sentences involving indeterminate descriptions,

e.g. "some of the exchangers are oversized". The richness of the tokens used in the

representation will be comparable to that of natural language.

The second and optimal stage of comprehension is to make use of the propositional

(image) representations as a partial basis for the construction of a mental model. The

basis is only partial since the constructing processes must also make use of general

knowledge (e.g. stereotypical information), contextual information, local constraints,

etc.

In order to understand what is implied by this two stage process consider again the

statement

"Some of the exchangers are oversized".

Any speaker of English will have no difficulty in grasping the meaning of the

sentence at a superficial level, irrespective of whether they know what an exchanger

is or not.

What, of course, is not grasped is the true significance of the statement, ie the

significance of the proposition it expresses. The sentence is simply one that has been

found in a thesis on representation. If the sentence had been read, however, in the

context of a preliminary design report and it was inferred that the "exchangers"

referred to one or more of the five proposed exchanger designs, the reader would be

part way to grasping the "significance" of the statement. That is, recovering the

404

particular proposition the statement conveyed in its original context. The full

significance of the statement, to the limited extent of what "full" can ever mean, also

requires establishing the writer's communicative intention.

The two stage comprehension process is hopefully well illustrated by the example

above. The first stage involves a superficial grasp of an utterance in some

propositional representation. This representation will resemble the surface level form

of the statement rather than a phonetic, say, transcription. The second stage, which is

optional, brings in the theory of mental models, the significance of a statement being

established by relating the propositional representation to a mental model. When the

referents of a statement have been inferred the new information or descriptions

conveyed by the statement can be added to the model, e.g. when "exchangers" was

identified as referring to the proposed heat exchanger designs in a specific report.

There are a number of important points worth making about the whole process:

Is there any evidence that a surface level propositional representation is used or
necessary? Johnson-Laird cites various researchers who have argued that this is
the case. How else, for example, would sentences like the over-sized exchangers
be handled out of context? Experimental evidence suggests that propositional
representations can only be recalled over a relatively short time.
Recall seems, instead, to be very much more a case of active reconstruction
based on what remains of a model of the original narrative or event.
The whole treatment of euphemisms, for example, can also be understood if the
distinction between surface level representations and more detailed models is
maintained.
Constructing the propositional representation implies that some syntactic
relationships between words must be recovered in order to represent the original
statement.
Mapping of surface level representations into mental models requires that the
basic intention of a statement must be at least established, e.g. is this a question,
or a descriptive statement, or a request, etc. Establishing this intentional
framework is essential for establishing context otherwise statements will merely
perplex us or "pass us by", such as the first reading of the oversized exchangers.
Considerable evidence suggests that the interpretation of representations in
terms of models will happen as early as possible. That is, it will happen at a
constituent by constituent or clause by clause level rather than at the level of a
complete sentence. Intelligent readers guess ahead as to what to expect next,
continuously updating their model as they proceed.
Constructing a model from surface level representations clearly requires extra
effort beyond handling the latter themselves. The process is not one of simple
translation. It requires going beyond the surface level information since
inferences are required that involve identifying or assuming referents, making
use of generic Concepts and taxonomic information, use of prototypical ideas,
etc. It is a constructive process, hence the term "constructive semantics" used in
the earlier discussion on the nature of intensions. Constructive semantics is not
a new idea. It is the whole essence of Conceptual categorisation, and has been
developed by other workers, e.g. Bransford, Barclay and Franks (1972).

As regards the last point it is worth noting the basic difference between interpretive

405

theories and constructive theories. An interpretive theory is one that assumes that a

semantic interpretation assigned to a sentence, often based on a full syntactic analysis

of the sentence, provides a full analysis of its meaning. Constructive theories, on the

other hand, hold that interpretations are made that infer beyond the linguistic

information provided ("jumping to conclusions" is a commonly used phrase that is

indicative of this approach).

Having briefly outlined the nature of the use of mental models on a trivial example it

is now possible to state the basic assumptions of the theory and the types of procedure

required for its implementation. For a full discussion of the following points see

Johnson-Laird (Chapters 11-16, 1983).

5.4.4.1 Principle Assumptions
The theory of mental models is based on five simple assumptions:

"The processes by which fictitious discourse is understood are not essentially
different from those that occur with true assertions". This assumption has
important consequences for the role of surface level representations in the
construction of hypothesised situations whether they be alternative process
synthesis designs or fanciful stories. I object to the use of the word "true",
however, and propose that "true assertions" be replaced by "assertions perceived
to be non-fictitious". As shown later, notions of truth and falsehood have to be
reconsidered in any cognitive theories of comprehension.
"In understanding a discourse, you construct a single mental model of it". This
is a fundamental point. There are not lots of mental models constructed from
which an appropriate model is chosen. A mental model is a single representative
sample. The question of how to construct the "correct" mental model requires a
non-deterministic mechanism, explained more fully later but also alluded to in
the next assumption.
"The interpretation of discourse depends on both the model and the processes
that construct, extend and evaluate it". The basic reason why a single model can
be used as a representative sample of the infinite set of possible models is that it
can be revised, or must require the capability of being so, in the light of
subsequent discourse. Subsequent here may refer to a constituent by constituent
level, or clause by clause level, or statement by statement level, etc. It is this
revision process that simulates the non-determinism needed to satisfy the
previous assumption. This assumption effectively rules out any assumptions
regarding the anatomy of intensions and has major implications regarding the
status and interpretation of any attempted "static definitions", e.g. meaning
postulates, heuristics formulated as production rules, object definitions, etc.
"The functions that construct, extend, evaluate, and revise mental models,
unlike the interpretation functions of model theoretic semantics, cannot be
treated in an abstract way". This assumption, or requirement, implies that there
must be explicit algorithms for computing the functions that map propositional
representations into mental models. In general it is likely that these will be
difficult to formulate. It is a fundamental point, however, on which the
usefulness of the theory of mental models rests.
"A discourse is true if it has at least one mental model that satisfies its truth
conditions that can be embedded in the model corresponding world". This
long-winded formulation only applies to assertions which have definite truth
conditions. It basically states that formal truth conditions, i.e. necessary and
sufficient conditions, can be catered for when they arise. As argued earlier,

406

however, the whole question of what "necessary and sufficient" means in a
theory of word meaning requires careful consideration.

The assumptions above all have major implications regarding the development and

implementation of knowledge representation systems. Rather than try and discuss

them all at once they will be introduced where relevant throughout the next chapter.

5.4.4.2 Basic Procedures
Johnson-Laird suggests that the essence of the theory of mental models can be boiled

down to a, seemingly, simple set of procedures required for translating assertions into

mental models or dealing with questions, requests, etc. The requirements listed here

are modified from those given in the original text:

A procedure that can construct a new mental model whenever an assertion is
introduced that neither makes a reference to any entity in the current model nor
refers to the current context of the discourse.
A procedure which can recognise if at least one entity referred to in a statement
is represented in the current model and, if so, add the other entities, properties
or relationships referred to in the statement in an appropriate way.
A procedure that can integrate or combine information from two or more
previously separate models if a statement is introduced that interrelates them
(but see qualification later).
A procedure which attempts to verify whether the asserted or assumed
properties or relations of the entities involved hold in the current model. This is
referred to as the verification procedure.
A procedure to introduce or add an entity, property or relation in order to verify
some statement for which there was previously insufficient information to
determine whether or not it held, i.e. make an assumption, possibly only
temporarily.
A procedure which can check whether the current model can be modified in
such a way that renders an assertion "true" which is apparently "false" whilst
maintaining the consistency of previous assertions in the model.
A procedure which can check whether an assertion is a valid deduction from
previous assertions by testing whether the current model can be modified in a
way that is consistent with previous assertions but renders an apparently true
statement false.

A number of important qualifications must be made regarding the specific nature of

these procedures.

The first procedure effectively implies that models and the entities comprising them

can come and go as time or analysis of a problem proceeds. The existence of separate

models is also recognised in the third procedure. The statement that information from

models can be combined should not be taken to mean that there is some large

repository of mental models akin to flowsheet case studies. Rather the context of the

discourse is essential in establishing what is worthwhile creating as a "long term"

model. Within that context it is then possible to cater for short term, "on the fly"

hypotheses which may involve creating temporary, much reduced or simplified

models, e.g. containing only one or two entities, to check out a particular idea. Any

resultant information can then be acted upon and incorporated back into a main model

407

if necessary.

The verification procedure raises the tricky question of establishing whether or not a

statement can be thought of as already being represented in a model or not. Unlike

Johnson-Laird I am reluctant to refer to this as the "truth value of assertion" since

what is understood by "true" or "false" in the context of mental models has yet to be

discussed.

Whatever the answer, the last two procedures are intended to simulate the non-

deterministic aspects of mental models by providing the mechanisms needed to revise

a model to account for additional information. The latter procedures, if implemented

exhaustively and without error, would constitute a decision procedure for any

inference that could be used in a mental model. Obviously, they cannot be practically

- implemented as such since such decision procedures are, in general, undecidable.

Further discussion is delayed until the nature of what is meant by truth is considered.

In general, the ability to grasp the significance of a propositional representation

involves invoking one of these procedures as a function of its referents, the context

represented by the current model, and "background knowledge" triggered by the

tokens comprising the statement. (By background knowledge I mean stereotypical

information drawn in by the association of a token with a Concept which itself resides

in a superordinate structure with relationships to other Concepts). The verification

and revision procedures are essential for inference purposes and depend wholly on

the ability to interpret an existing model. This raises a fundamental point, which was

pointed out earlier, that cannot be overemphasised. Namely, the way in which a

model is interpreted is intimately bound to the intended function of the model: "a

specification of structure and content must always be supplemented by an account of

the processes using the model if one is to formulate what the model represents",

(p158, J-L, 1983). This intended use is required precisely because many Concept

definitions are inherently vague. An explicit idea of the intended purpose of a model

provides a means by which background information can be qualified.

Consider the following problem fragment. A reference has been made to some

triangle in a problem statement. Before hearing the details of the problem, e.g.

triangle dimensions and angles, an entity is created in a model based on a prototype

of this class, eg, it may be an equilateral or isosceles triangle but it does not matter as

long as it has three sides joined up. Now, on further reading of the problem it is

discovered that a right angled triangle, say, is involved. Verification at this stage does

not involve a hard and fast check of the angles involved against our model entry

resulting in logical falsehood, inconsistent information or a rejection of the

information by the reader after much "thrashing around" as would occur in a simple

408

theorem prover. Instead, the status or intended purpose of the model entry is

immediately recognised, i.e. to allow a start to be made on the problem, and easily

modified to take account of the new and more specific information which, at this

stage, there is no reason to question. If all the triangle dimensions were also provided

and the reader was aware of the general constraints that govern triangle angles and

dimensions he or she may well validate that information in a logical way if it was felt

necessary to do so.

Although the example involves an abstract, formal concept involving necessary

conditions it still illustrates in a limited way the intended nature of the revision

processes involved in the interpretation of mental models. The word triangle need

merely be substituted by separation column or feed preparation section to illustrate

the relevance to process design problems. The important point is that successful

interpretation of a partial model requires an understanding, either explicit or implicit,

of the original context and purpose for which it was created.

Another more general point to note is that there will normally be a number of ways in

which a statement can be interpreted with respect to a mental model. Consider, for

example, the assertion

"Pump p101 is upstream of the reactor"

This information could be used to help establish which pump is called p101 on a

process flow diagram, or which unit could be the reactor. Alternatively, it can be used

to construct a description of the given state of affairs by introducing appropriate

entities into a mental model. The particular interpretation or process involved will

depend on the background context of the discourse in which the statement was made.

This is an example of the point made earlier regarding the context dependent retrieval

of referents needed to successfully construct models from propositional

representations.

A practical, but completely fortuitous example of the need to take problem context

into account and the vagueness of certain interpretations can be seen in the

development of the rule based system for physical property method selection in

chapter 3. In that system two mechanisms were described that attempted to take

problem context into account, namely a "data compromise" and an "applicability

compromise". It was clear at the time of development that the formulated rules

should not be treated in a hard and fast manner. The mechanisms introduced to allow

some flexibility into the interpretation of the rules can be seen as primitive attempts

to cater for the types of inference required in revisable mental models.

HIM

The introduction to the procedures required for the construction of mental models, as

described above, has been necessarily brief and simplified. For an extended

discussion of the issues involved see Johnson-Laird (Chapter 11, 1983). In particular

a programme is described that interprets spatial descriptions using procedures along

the lines of the seven basic ones described earlier.

5.4.4.3 Other Aspects of Mental Models
Johnson-Laird's discussion on the nature of mental models touches upon many issues

that are of long term relevance to the development of knowledge representation

systems but cannot be discussed here for reasons of space, eg the treatment of

grammar, parsing and the coherence of discourse in the context of mental models (see

J-L, chapters 12-16, 1983). There are three basic topics however which must be

mentioned:

Truth and Falsehood
Conceptual Primitives
Types of Mental Models

The notion of what true and false means in the context of mental models must be

considered carefully since it impinges directly on any implementation of the

verification or revision procedures required to construct, evaluate or extend a mental

model. In propositional logic a formula is said to be contingent when it is consistent

but not valid, ie true under some interpretations, false under others (see Appendix B).

In cognitive terms a contingent assertion could be taken to be true if it "corresponds

to reality". However, in the theory of mental models all that can be done is evaluate

the consistency of an assertion in relation to some model of the world. Even here, the

cognitive effort required to verify some assertion is likely to be very limited. The

question of how to compare an assertion with reality is much more problematical.

This is principally due to our fundamental incompleteness of knowledge of the world.

A partial answer to the problem suggested by Johnson-Laird involves considering the

model of discourse.

A mental model is simply a representative sample from an infinite set of possible

models that at any one instant represents the currently believed state of affairs. The

recursive procedures used to revise a mental model imply that any one of the infinite

number of possible models could in theory be generated. It is this revisable aspect of

the interpretation of mental models that, at first sight, seemingly causes considerable

problems in providing any working definition of a truth value. The heart of the

problem can be described in simplified terms as follows: a mental model can be taken

to represent the extension of an assertion, ie the situation it describes, and the

recursive revision mechanisms can be taken to represent the intension of the

410

assertion, ie the set of all possible situations it describes (see Johnson-Laird, p440

1983).

Now, earlier discussion indicated that for many types of word, eg natural kind words,

the true intensions are unspecified, or only part specified, and that the Concept the

word tokenises is primarily understood through stereotypical information. This in turn

requires taking into account the internal structure of a category as well as its

inter-relationships with other Concepts within a superordinate structure. The

interpretation of a Concept therefore may constantly change depending on the context

and purpose for which it is being used. If this is the case then in many cases it implies

that the notion of some rigorous or objective truth value must be abandoned. Indeed

the basic idea that the words true or false can be applied to inferences in a cognitive

framework is an implicit assumption carried over from the assumption that some sort

of mental logic exists. As discussed previously, the theory of mental models rejects

such an assumption.

The absence of an analytic specification of intension does not, of course, prevent

"intelligent" use or interpretation of a Concept. Indeed it is exactly this mechanism

that is required for successful Concept attainment, ie simple learning. Johnson-Laird

gives the example of a doctor observing some condition in a patient which he decides

to call disease X, say. By introducing a new natural kind term to the language the

doctor can communicate and convey to others the idea involved by describing

stereotypical features of the patients involved. A mental model can still be

constructed of the situation even though there may be universal ignorance of the

intension involved. As investigation continues it may be decided that the condition be

better classified as a number of diseases rather than a single one. In such a case

neither the intensions nor extensions of terms are fixed.

In an attempt to summarise the situation Johnson-Laird states:

If a discourse has complete truth conditions, it is true with respect to
the world if and only if it has at least one mental model that can be
mapped into the real world. If a discourse has only partial truth
conditions, it is false with respect to the world if it has no mental
model that can be mapped into the real world. If its truth conditions
are not fixed or known then, to use Russell's aphorism about
mathematics we never know what we are talking about, nor whether
what we are saying is true. Indeed, we cannot know.

This is a very weak claim and says nothing about how to verify assertions. It does

suggest that for successful communication of ideas represented in a model to others to

take place requires an ability to compare a model with some other independent

model, eg a textbook model of a column, say, that is widely agreed upon or a model

411

representing the perceived beliefs of another engineer. The ability to verify assertions

is bound up in the implementation of procedures used to represent conceptual

primitives. This was the second point in the list above and is now considered.

The need for Conceptual primitives, implemented as procedural primitives in mental

model theory, is not surprising. The discussion on the nature of Attributes as being

Concepts themselves in the context of Rosch's work indicated that such a mechanism

was required to break out of the infinite regress that otherwise occurs. The earlier

work of Bruner et al indicates that many concepts are treated at a perceptual level in

real life and form the basis from which higher level, functional and formal

equivalence categories can be constructed. Johnson-Laird (Chapter 15, 1983) also

makes an appeal to the idea of innate Conceptual primitives. As in the case of

Conceptual categorisation it is suggested that these primitives are perceptual in

nature, cannot be easily verbalised and constitute the basic means from which mental

models are constructed, eg create representations, imagine possibilities, etc.

Conceptual analysis can therefore be treated at three levels: primitives, encoded as

procedural primitives; simple Concepts, based directly on the use of primitives

involving stereotypical information; and complex, part definable Concepts

constructed in relation to other complex or simple Concepts.

In an earlier work, Miller and Johnson-Laird (1976) identified a basic set of Concepts

which require a number of primitives to describe them. This set includes the Concepts

of time, space, possibility, permissibility, causation and intention. Notions of time

and space are closely tied to perceptual experiences of these Concepts. Procedural

primitives representing these ideas are needed in order to reason about propositions

involving temporal and spatial order, eg is earlier than, is right of, etc. In complex

cases it may be useful to map spatial descriptions into idealised representations

involving Cartesian coordinate systems but this is a constructive, formal process and

should not be confused with the base level primitives involved.

Primitives based on possibility and permissibility are required to emulate the ability

to construct models of imagined or hypothesised situations that are alternative to a

current model. A permissible primitive is required to evaluate a model as is, ie

without recursive modification, with respect to formal relational Concepts, eg basic

principles or equations describing some subject area, in order to verify a model.

How to respond to attempted verifications will depend on the use of primitives based

on intention, eg the intended purpose of a model, intended status or use of an entity in

a model, etc. This in turn will subsequently affect the way in which a model is revised

to take account of new or contradictory information. Primitives describing intention

and causation will also be needed to implement the description of many functional

412

Concepts, eg to pump a fluid, since primitives are required to construct the assumed

causal relationships between the entities involved, eg the entity used to pump the

fluid and the fluid itself. They are also required to discriminate between the use of

related groups of verbs eg to see, to watch, to view, to scrutinise, etc.

Many of the primitives will be directly concerned with the "constructive" aspect of

semantics imposed upon the use of Concepts. Johnson-Laird discusses in detail one

example of this, namely the concept of ownership, (see Johnson-Laird, p416-418,

1983). This Concept is purely based on social convention and illustrates nicely the

notion of revisable truth conditions that depend on the amount of information that is

known at the time of interpretation of some assertion involving the Concept.

The major gap in the theory of mental models, from the point of view of

implementation of a knowledge representation system, is an indication of the precise

nature of these primitives and their interaction with the seven basic procedures listed

earlier for constructing, evaluating and extending mental models. The implicit

assumption, however, is that such procedures can be implemented to enable the "truth

conditions" of expressions to be evaluated in relation to a model of the world. If this

cannot be done it will then not be possible to modify the model in a way deemed

appropriate to the current context and model of discourse. The only "handle"

available to determine how a model should be modified is the use of primitives used

to indicate the intended purpose or function of model entities within the context of

some verification procedure.

(An oversimplified analogy with predicate calculus might be that every formula in a

model have associated with it a meta or higher level description indicating the status

of the formula that is taken into account in any subsequent inferences. In that case

default and non-monotonic logic would be special cases of such a logic). This

mechanism is also required to cater for those Concepts which are part or fully defined

in analytic terms as regards the way in which assertions involving such Concepts

should be verified.

From personal reflection and the indirect evidence presented in Johnson-Laird it

seems likely the logical rigour of this procedure will be very limited and probably

restricted to simple forms of syllogistic reasoning and limited application of Modus

Ponens.

The nature and use of such procedural primitives can perhaps be summed up in the

following two statements. The first is that the notion of revisable truth conditions,

which in turn is derived from the nature of Concepts in a taxonomic structure,

413

indicates that truth and falsify are not independent of the cognitive process involved.

The truth of assertions and meaning of terms are, as it were, whatever you want them

to be for a particular purpose. If a model is to be of any use in conveying information

to others it must, of course, take account of recognised social conventions regarding

the use of terms.

The second statement is that the theory of mental models requires three basic

constituents: primitive procedures that are both ineffable and recursive in cognitive

terms, propositional representations and models. The procedures are necessary for

mapping propositional representations into models. They would also be used for

relating images and models in a similar way. Primitives are also required to denote

the construction of higher level Concepts or analytic specifications that may well be

superficially represented in a meaning-postulate type form, eg the types of if-then

heuristic used in rule based systems. The effective means of interpreting Concepts in

a model indicates that in many ways it is more relevant to consider prototypes, for

example, as procedures that specify prototypical information in a model rather than as

some definite structure. In his discussion of Wittgenstein's use of schema and family

resemblances, Johnson-Laird suggests:

Hence, a schema is not an image, but a model that underlies the ability
to form an image (p190, J-L, 1983)

In fact, in Rosch's later work (eg Rosch (1978)) the idea of a prototype is formulated

as an operational definition based on judgements and reaction times so that categories

do not have specific prototype members so much as a "more prototypical than"

relation defined over the category members. Such procedural formulations make it

clearer how the inherent vagueness of Concept descriptions arise.

The final aspect of mental models to be considered here is the typology of mental

models that Johnson-Laird introduces. It is clear that mental models will contain

tokens that correspond to entities in the world. The properties of these tokens and the

inter-relationships between them correspond to the state of affairs represented by the

model. Johnson-Laird introduces the notion of types of mental model in order to help

specify the constraints that exist regarding what can be represented in a mental

model. In particular, a distinction between "physical models" and "conceptual

models" Physical models are described as corresponding directly to the physical

world, they can represent perceptible situations but cannot represent either abstract

relations or anything other than determinate physical descriptions. Six types of

physical model are suggested:

1. A relational model - consists of finite sets of tokens representing physical
entities, their physical properties and the physical relationships between the

414

entities.
A spatial model - a relational model in which the relations represent spatial
descriptions.
A temporal model - a sequence of spatial "frames" occur in a temporal order
corresponding to some sequence of events.
A kinematic model - a temporal model that is continuous in that it can represent
changes and movements of entities in a continuous way.
A dynamic model - a kinematic model in which there are causal relations
between "frames".
An image - a viewer based representation of the visible characteristics of an
underlying three dimensional spatial or kinematic model, ie corresponds to a
view of the state of affairs represented in an underlying model.

Although the model types seem intuitively obvious I find Johnson-Laird's claim that

mental models are direct structural analogues of the world difficult to believe or

understand in the context of temporal, kinematic and dynamic models. In addition, I

would argue that the use of causal relationships is likely to be of a limited nature in

practical situations. Many inferences in problem solving situations have to be made in

the absence of well defined causal models, eg medical diagnosis, business

predictions, etc. Even in more well defined situations, eg a chemical process

description, an engineer's working definition of the causal relationships involved will

only be of a simple or superficial nature. The notion of an image however as a

projected view of an underlying model is likely to be one of significant long term

interest to the development of a knowledge based system that wishes to convey or

interpret information in a graphical form. Johnson-Laird introduces four types of

"conceptual model" to represent more "abstract matters":

A monadic model - employing one place predicates to denote properties of
tokens and binary relations to denote identity and non-identity between tokens.
An extra notation is also required to denote the uncertainty of an entity of a
particular type existing.
A relational model - introduces a general relational model involving the tokens
in a monadic model. It also contains the mechanisms needed to cope with
quantifiers, indefinite and definite expressions, proper names, etc.
A meta-linguistic model - this allows abstract relations between elements in a
model, including a meta-linguistic model, and tokens corresponding to certain
forms of linguistic expression to be represented (see below).
A set-theoretic model - introduces mechanisms needed to reason abut tokens
denoting sets and the relationships between these tokens.

These model types merely cover the intuitive ideas implied in the rest of this

discussion on the mapping of propositional representations into mental models. The

meta-linguistic model does revise some interesting properties of mental models. The

abstract relations involved include essential interpretative ones such as "refers to" and

"means". For example, the linguistic structure

One of the X is Y

will have the following general model form:

415

x
'Y' --> 	X

x

The quotation marks indicate a token representing a linguistic expression and the

arrow denotes the relation of reference to entities existing in the model, assuming x

refers to previously entered entities. The meta-linguistic mode I definition is recursive

and means that one model can be thought of as being embeuled in another. This is

extremely important as it means that propositional attitudes, eg "I suspect that...", "I

believe that he thinks...", etc, can be represented by nesting beliefs within mental

models (see p430-438, J-L, 1983). It also provides a means to represent the notion of

logical truth in an explicit way. For instance if P is some symbolic expression that is

taken to be "true" can be represented as"

'2' --> model of world

where the arrow indicates the truth relation and the outer model relates P to another

model corresponding to some required state of the world. It is then a simple task to

represent an assertion of the form

...'.'P is true" means that P corresponds to the world

as shown below, where the double arrow indicates the relation "means":

'P is true' ==> P --> model of world

This example indicates the sort of meta-level "tricks" that can be used to implement

some of the conceptual primitives referred to earlier.

Apart from helping to identify the types of relationships involved the developments

described later will not attempt to follow or adhere to any strict distinctions between

Johnson-Laird's model types. There are two basic reasons for this decision

A typology of models seems premature at this stage of analysis.
There is no apparent reason to suggest that a formal discrimination between
model types is necessary for their interpretation. Rather the information in the
different model types appears to be different facets or viewpoints that could
easily be embodied in a single model.

5.4.4.4 Summary
The theory of mental models affects a large number of philosophical and cognitive

research issues. The introduction here has only touched upon these problems in a

necessarily brief and superficial way. Nevertheless, many of the important problems

that will have to be directly addressed by a more sophisticated form of knowledge

representation and inference system have been described. The following quotes

summarise the main points of the preceding discussion:

416

A mental model is a single representative sample from the set of
models satisfying the assertion. Comprehension normally leads to
just a single model, which is constructed by the procedural semantics
from what is known about the truth conditions of an assertion. ... If a
subsequent assertion shows that the particular model is incorrect, then
recursive procedures attempt to reconstruct the model so as to satisfy
the current set of assertions, (see p264, J-L, 1983).

Perhaps the most important part to be stressed regarding this entire discussion is as

follows:

the significance of an assertion depends on both the model and the
procedures for manipulating and evaluating it, (see p264, J-L, 1983).

This is a fundamental statement that cannot be overemphasised. It implicitly rules out

the assumption of autonomy of intensions, and hence simplistic knowledge

representations based on that assumption, implies the use of revisable truth conditions

and context dependent information, and requires that the intended function or purpose

of models and their constituent entities be accounted for in subsequent inferences.

......5.5.Overall Summary

This chapter has introduced many new ideas, some representing whole areas of

cognitive science research, that are considered to be central to the development of a

more sophisticated knowledge representation and reasoning system. The first topic

covered was the initial attempts within Al research to establish the importance of the

use of epistemological level relationships to more properly specify the internal

structure of Concept representations, see section 5.1. The analysis, principally due to

Brachman (1979), indicates that research on knowledge structuring primitives and

their semantics is required in order to more precisely define the nature of higher level

conceptual and linguistic constructs. In order to demonstrate the concept Brachman

provided a simple set of primitives in the KL-ONE system that could be used in the

definition of restricted frame-like objects in an inheritance hierarchy. Given the

review in chapter 3 concerning the confused semantic status of many frame based

systems, or rule based systems, and the likelihood that they could not be used in their

current form to satisfy the demanding requirements of an integrated process design

environment it was decided to investigate relevant research topics in the area of

cognitive science. In particular the theories of Conceptual Categorisation, prototypes,

and mental models were discussed. It is clear that such research has much to offer the

study of Al. Of considerable importance is the contribution that can be made

regarding the nature of concepts and their use in everyday thought. This work can

therefore be used to provide guidance for the development of suitable knowledge

417

representation primitives at various levels, epistemological, conceptual, etc.

There are certain key features worth summarising from each of the areas of

conceptual categorisation, the use of prototypes, and the theory of mental models.

Conceptual categorisation established an overall framework in which the process of

concept attainment can be achieved. This framework emphasises the interactive, ie

social aspect of such an endeavour and the importance of the effect of validation in

various forms on the overall process. Conceptual Categorisation theory also makes

various claims regarding the nature of Concepts. Equivalence categories and Identify

categories are identified as basic forms. These range from highly perceptual,

pre-verbal notions to abstract foimalisations. The notion of an equivalence category is

fundamental to many inference processes. That is, the natural tendency is to treat

discriminably different things in an equivalent way in order to simplify the reasoning

processes involved and reduce the cognitive effort required to cope with the large

amounts of information available at any one time. Equivalence categories can be

treated as one of two basic types, either functional or formal. Formal equivalence

categories can be further analysed according to their basic mode of attribute

combination, conjunctive, disjunctive or relational. The difference between criterial

and non-criterial attributes and the flexibility of choice of which Attributes come

under the criterial heading under different circumstances is recognised. The use of

equivalence categories strongly suggests that Concepts are organised in some

superordinate structure. Further it seems clear that there are many links between low

level, "common sense" notions of Concepts and events, eg force, and higher level

abstractions of the same Concept. The nature of the two levels is likely to be

considerably different. Within the hierarchical Concept structure the use of typical, ie

averaged, instances and generic, ie idealised, instances appear to be useful inference

mechanisms. In general processes involving attribute reduction are important for

reasoning with equivalence categories.

The study of prototypes and family resemblances has most to offer in the area of

investigating how hierarchical Concept structures are constructed. The findings are

compatible with that of Conceptual categorisation but emphasise the importance of

the internal structure within a category. The idea of structuring categories within a

hierarchy based on simple common equivalences is superceded by an analysis based

on the use of family resemblances in which there may be no common elements

between sub-categories in terms of surface level form. In many cases the common or

binding element is one of intended function. Research in this area has also indicated

the importance of the use of prototypes, more generally stereotypes, in understanding

418

Concepts existing at the basic kind level. Many natural kind words occur at this level.

Further linguistic research has shown several basic word types, eg primary, natural

and nominal can best be treated by recognising the difference in contribution to word

meaning arising from the use of stereotypes and part analytic specifications, either

weakly or strongly analytic. As with Conceptual categorisation, then, it appears there

is no one simple way in which Concepts can be interpreted or said to be understood.

Finally, the theory of mental models puts forward a theory of comprehension that

implicitly caters for most of these ideas although they are not explicitly referred to in
the original text. By claiming that mental models are constructed by a mapping

process making use of propositional representations, the theory of mental models also

encompasses all five of Brachman's levels of knowledge representation, from

implementation through to linguistic. The theory of mental models offers many ideas

of potential importance to Al not least of which is the analysis of the nature of both

intensions and extensions. This emphasises the importance of the use of context and a

model of discourse in the retrieval of referents. The theory suggests that a procedural

semantics be adopted for the interpretation of mental models that obviates the need to

assume the existence of a mental logic in order to make valid inferences. Mental

models are recursively modifiable which once again emphasises the need for

"revisable truth conditions" when considering the interpretation of a Concept. In order

to properly understand the significance of assertions it is necessary to account for

both the intended function and purpose of constituent entities in a model and the

procedures used to manipulate and evaluate it. As a consequence the autonomy of

intensions can, in general, no longer be assumed.

The most obvious conclusion from this study is that for many Concepts knowledge

cannot be represented in a context independent or "static" form. This, of course, is

exactly what many implementations of rule and frame-based systems effectively

purport to be, eg heuristic rules defined in isolation, frames using fixed Attributes and

relying on common element construction via inheritance, etc. Since the actual process

of attempting to write such rules or frames is simply an attempted linguistic

expression of mental Concepts, which by their very nature are inherently vague, it

seems unlikely that reasoning systems based on context independent and fixed

interpretation algorithms will be capable of making the sorts of inferences required in

an integrated process design environment. Johnson-Laird (p262, 1983) makes this

point in an indirect way when he suggests that meanings of words in some object

language will have no simple, let alone one to one, relation with that object language.

The conclusion, then, is a controversial but unavoidable one if the ideas presented in

419

this chapter are taken seriously.

Chapter 6
Development of Knowledge Representation Ideas

This chapter describes the preliminary development of knowledge representation

techniques based on a cognitive or mentalist approach as alluded to in the previous

chapter. At the time of development the potential size and difficulty of the task was

not underestimated. As stated earlier, the research was undertaken with the view that

if at all successful then the basic approach will have much more to offer process

engineering developments in the long term than current knowledge based system.

6.1 Outline of Representation Requirements

In order to allow a start to be made on the problem it was decided to select a

restricted set of features taken from the areas of Conceptual categorisation,

prototypes, and mental models and investigate how these might be modelled in a

system, albeit in oversimplified ways in the first instance. The features studied fall

into two main areas. The first concerns the use of Concepts and their describing

Attributes within some sort of taxonomic structure. The second area concerns the use

of what I have termed a functional model (the word "functional" is used given its

dictionary definition - "designed with special regard to purpose and practical use:

serving a function"). Functional model is used in preference to mental model in order

to emphasise the limited approximation of the former to the theoretical requirements

of the latter. The specific items of interest regarding Concepts are as follows:

The difference between functional and formal equivalence categories should be
handled.
The internal structure of a Concept should be studied, including different modes
of Attribute combination in formal equivalence categories.
The use of stereotypical information should be catered for.
The distinction between criterial and non-criterial attributes should be
maintained in concepts where part analytic specifications can be used.
The notion that a Concept definition is variable in nature dependent upon the
context in which it is interpreted must be modelled.
The idea of inter-related Concepts within a taxonomic structure based on family
resemblances should be modelled.

In many ways the most important of these requirements is point five since it

implicitly assumes the need for a revisable functional model. All of points one to six

require that suitable representation primitives be developed to implement these ideas.

The specific item of interest in the area of functional models is the investigation of

how to implement the seven basic procedures needed to construct, evaluate and

extend mental models. These procedures will be wholly constrained by the

sophistication with which Concepts can be modelled. Indeed the implementation of

the two areas are intimately bound up in one another.

There are two final points to be made that will be seen to greatly enhance the

potential use of such a knowledge based system. The first point concerns the use of

formal algorithms to solve idealised problems when implemented in some "external"

way. It is clear that in process engineering design many problems involve

modelling unit operations as sets of equations that can then be "solved" by some

iterative technique. The technique itself, eg, Newton's method, the secant method,

flash calculation methods, etc., has the status of a formal, abstract, relational Concept

with part-analytical specifications. It is these formal aspects that are described in texts

on numerical analysis and learned by process engineers. The intended use of the

Concept is often described in terms of some generic function relating to notional

variables "y" and "x". Having grasped the stereotypical behaviour or connotations

involved most engineers are ready to accept that the technique can be implemented

"externally", ie on a computer, but still be used to reason about entities in a mental

model, ie unit operations in a process model. Concepts such as Newton's method can

then be linked to functional concepts such as "things to solve equations with" and

reasoned about as task variables. This means that efficient implementations of

numerical algorithms can easily be accommodated within the overall system

structure. It is also worth noting that this description seems to describe well the

actual, or at least perceived, situation that exists in solving real problems.

The second point is similar to the first in that it concerns the explicit use of logic, and

in particular various types of theorem prover, to help solve problems. In exactly the

same way as engineers can think of entities in a mental model being represented by a

set of equations in a particular context and using algorithmic procedures to solve a

given problem, so too can entities be mapped to a set of logical formula of various

types, eg propositions, predicates etc, and be used within an "external" theorem

prover to verify a particular hypothesis. This is because the status of logic, in a

cognitive framework, is reduced to that of a task variable like any other formal

abstraction one wishes to make use of in a problem solving environment. This

situation undoubtedly appears to be the case in real life. People can read and grasp the

ideas involved in the formalisations of many types of logic (eg propositional, first

order, non-monotonic etc) but few, if any, could claim to be able to make rapid

inferences using the actual algorithms proposed for theorem provers. As in the case of

numerical algorithms, the use of logic when OIS 4LCI explicit abstraction is

not ruled out in the proposed system.

The use of formal abstractions in a problem solving environment is an important

422

general principle that can be accounted for in a theory of mental models. This is well

discussed in Levy (1987). It generally involves the following steps:

A problem is recognised to exist. This will be evident from the model of
discourse. There then exists the question of whether there is any motivation to
solve the problem.
By some recognition procedure, an inference technique is selected that may
involve some abstract formalism.
The problem is then "mapped in" to some appropriate form.
This form is then manipulated to attempt to achieve some intended effect.
The form is then "mapped out" into a mental model to infer what this may mean
in real world terms. This will often involve communication to update the model
of discourse
If the consequences are not liked or believed it may be necessary to return to the
original expression of the problem and try some other approach.

The whole mapping approach is exactly what was referred to at the start of section

5.4 regarding Johnson-Laird's use of Craik's model of thinking. The problem with

logic, or any other like formalism, is that it is distanced from language and

comprehension in a way that ignores the mapping in and out processes, the selection

of possible mappings and the use of non-linguistic formalisms.

In summary then the primitives procedures developed for interpreting functional

models should recognise the need to be able to map a Concept into a required abstract

formalism.

6.2 System Structure

The following sections describe the development of Designer's Assistant - version II.

Due to the novelty of many of the ideas much of the research proceeded in an

iterative manner, most ideas being refined or abandoned in the process. Rather than

try and describe these ideas immediately) it is easier to describe the overall structure

of the system that emerged from a programming point of view. A number of terms

will be used however, eg Topic, whose meaning will not be fully discussed until later.

Given the probable size of the system that would emerge, it was decided to organise

Designer's Assistant in a modular fashion, that is, closely related concepts would be

partitioned into modules pertaining to specific subject areas or Topics. It was not

originally envisaged that such a partitioning should have any assertional import or

effect on reasoning and was purely intended for programming convenience, ie one

module being transparently available to another. As it turns out, the proposed system

structure and use of Topics can be used to good effect in primitive reasoning

mechanisms.

423

An overview of the system structure from a user's point of view is shown in Figure

6.1.

Figure 6.1: User's View of Designer's Assistant

User er's Assistant

The items on the left of the figure correspond to modules used to implement specific

Topics. Also indicated on the bottom left of the figure are "external" utilities and

databanks. The former is used to indicate any external, executable code, eg the NAG

library of numerical algorithms. The latter is used to indicate external data storage, eg

physical property data, that can be interpreted in a suitably appropriate way within a

module. The item labelled "Host" represents a host module which, from the users

point of view, can be thought of as the part of the system dealing with the overall

problem conveyed by the user through the "input/output" system. The two other

aspects of Designer's Assistant that the user will be aware of are the functional model

and the model of discourse. The functional model can be thought of as the process

model which is interpreted by whichever module happens to be acting as host at the

time. The model of discourse shall later be shown to be essential for the system to be

of practical use. It is interpreted in the same way as a functional model but is

primarily concerned with modelling conveyed intent and purpose. This involves a

form of user model (how the host models a user), a "self' model (how the host

models itself) and a representation of the discourse between the two. These ideas will

be explained in more detail later.

The actual implementation details of any module are better described by Figure 6.2.

424

Figure 6.2: A Module Within Designer's Assistant

Other H

Unix, e

There is no one inference algorithm, as such, to interpret a functional model but

rather a large set of utilities that attempt to implement the required functionality of

the primitives used in the model representation. Some of these primitives are

functional in the sense that they perform some intended function, eg $set, $modify

(system primitives are indicated by a preceding dollar sign $). Several of these

primitives make use internally of a system of blackboards as shown in the diagram.

The blackboards are used purely for convenience of data storage and are not involved

in inferences other than for the storage and retrieval of "data", both external and

internal. Their operation is described in section 6.2.1 below.

From the system point of view and the interpretation of a single functional model the

structure of Designer's Assistant is represented by Figure 6.3.

425

Figure 6.3: System View of Designer's Assistant

I 	 '.

/ 	 '

Each module is simply regarded as a set of procedures capable of creating evaluating

or extending a given functional model. From a system point of view it is irrelevant

that these procedures have been partitioned into modules. The figure indicates that

any one module may invoke another if required. The system is written to ensure that

infinite interpretation loops are trapped and terminated. The implementation is such

that individual modules can be invoked in a distributed manner if desired, ie invoked

in parallel for suitable reasoning tasks.

6.2.1 Use of Blackboards
The use of a blackboard system for internal storage and retrieval mechanisms was

chosen simply to provide a clean, modular and consistent way of implementing

system level primitives, eg accessing input typed by a user. In the current version of

Designer's Assistant there are four specific blackboard managers and one generic

manager. The generic manager, labelled Board-man in Figure 6.2 is responsible for

initialising and managing the other four managers, eg initialising work space etc. It

also looks after the work space required for a host's local copy of a functional model,

or any embedded models, as well as handling "raw" input/output data. The other four

managers are concerned with different aspects or limitations of the system that have

to be represented. As indicated on Figure 6.2 these are:

1. DA-man - Designer's Assistant internal manager that is used to store data
relating to the internal status of the functional model interpretation procedures,
eg noting when interpretation "events" start and finish. Such low level
information is not normally explicitly represented in the model of discourse as it
would become extremely cluttered and difficult to reason with. This
information is still explicitly available to the interpretation routines using this
mechanism.

426

ID-man - All input and output between a module and the rest of the system,
meaning another module or the user, is passed via the ID manager. This
manager uses input/output channels allocated by the Unix Manager.
Unix-man - the Unix manager is used to provide a standard way of accessing or
allocating operating system dependent facilities. This includes providing
communication sockets, accessing files, loading external executable code, etc.
Most of this is simply achieved by using the facilities of the base
implementation language Prolog.
Prolog-man - the Prolog manager is used to keep track of memory limitations
and perform base level Prolog operations outside" the model procedures. This
feature was intended to help isolate the implementation specific details from the
more generic parts of procedures.

All of the blackboard managers operate in exactly the same way. In the case of data

storage a command argument is supplied along with Topic and Module information

and the relevant data. The command used is one of the functional primitives of the

representation language eg $add, $modify, etc. The same applies to data retrieval

except that the data argument can be a variable (a simple retrieve operation) or a

Prolog structure either part or fully instantiated (to provide a checking mechanism).

In the context of Conceptual categorisation the blackboard facilities are considered to

represent perceptual level responses that are outwith the reasoning capabilities of the

system. This could easily be modified if necessary by describing these operations in

suitable functional concepts (see section 6.3.2 later). As it stands the use of

blackboards is upwardly compatible with the interpretation of the functional model

since the same functional primitives are used in each case to achieve some intended

effect.

6.2.2 Module Operation
This section briefly outlines the top level implementation of any module within

Designer's Assistant. Since each module corresponds to one or more Topics, a Topic

representing a structure of related Concepts, the steps involved simply mimic the

iterative loop involved in the Concept attainment process, see Figure 5.2. These steps

are shown in Figure 6.4 below.

427

Figure 6.4: Top Level Loop in Designer's Assistant

start up -> initialise module,
establish I/O , set status

+ ~ f--

check resources

receive—input, reset status ------------------------

check if reset, if changed to new problem -----

rocess input, satisfy requests,--------------------

reset status

1 	U
validate output

tidy up n exit

The initial step outside the loop is required when a module is loaded into Designer's

Assistant. A number of calls are made to the Bboard manager and the DA Manager.

The Bboard manager initialises the other blackboard managers and notes the name of

the functional model it has been given to work with. The name is a simple string

identifier used to distinguish between temporary functional models. A module can be

passed a copy of an existing model, presumably to investigate some functional

Concept or establish an embedded model, or it can start from scratch. Copying

functional models is done merely to simplify the task of keeping track of temporary

model revisions. If some intended effect is not achieved then it is simpler to delete the

revised model than undo changes to a starting model. The main procedure,

run-module, iterates over a small set of high level calls. The first two steps involve

low level checks with the Prolog manager and DA manager regarding resources and

428

the internal status of the interpretation procedures. The third call accesses any "input"

and interprets this with respect to the functional model. This is an important step and

corresponds directly to the mapping of surface level propositional representations into

a mental model.

If this input phase succeeds and any requests are pending then an attempt is made to

process these requests, updating the functional model as necessary. If any of these

requests succeed then an attempt is made to convey the information back to the user

in a suitable form, propositional assertions in the current version. If anything

untoward happens in this process then the system exits to a common point where it

can be decided how to proceed. It is at this point the feedback loop required for

concept attainment can be implemented. The other alternative shown involves

halting the module and returning to the calling process. If the intended effect has been

achieved then a revised functional model can either be merged with or replace an

existing one.

6.3 The Development of Concepts

The previous section described the overall framework of Designer's Assistant. The

framework and the intended mode of operation provide the context in which a more

detailed discussion of specific aspects of the system can take place. The purpose of

this section is to introduce the techniques that were developed to represent Concepts.

The original intention was to satisfy the requirements for Concept representation as

given in section 5.5.

There are two important points to keep in mind concerning the remainder of this

discussion:

By viewing Concepts within a cognitive theory of comprehension it is
impossible to divorce the representation of a Concept from its interpretation.
This is due to the basic nature of Concepts, the inherent vagueness involved,
alternative means of interpretation, context dependencies, etc.
The notion of a Concept should not be confused with any intuitive ideas about
A.I. type frames or objects. In particular there is a recognition of the different
types of Concept involved and the fundamental differences in the ways which
they can be interpreted. There is no assumption of a fixed set of describing slots.
Rather Concept definitions are taken to be variable in nature in a way that -
allows for context dependencies. In addition there is no implicit use of slot or
attribute inheritance within a taxonomic structure of Concepts. In Rosch's
terminology Concepts at the superordinate and basic levels are best treated from
a family resemblance approach. Inheritance is more suited to describe the
relation between subordinate and basic level Concepts.

With these points in mind the remainder of the section is structured as follows:

1. Outline description of formal Concepts in a declarative form. The representation

429

presented is an attempt to provide the necessary hooks or links needed to reason
about formal equivalence categories.
Outline description of the representation format and the use of functional
Concepts.
Description of the development of the primitive procedures and utilities needed
to interpret such Concepts in the context of a functional model.

430

6.3.1 System Level Concepts
The treatment of formal equivalence categories is most easily introduced by

describing the set of base level Concepts that can be used to describe any other

Concept. Rather than give recursive definitions of these meta-type terms, since there

are no lower level or more primitive Concepts, the definitions involve system

primitives that indicate how the Concept is to be interpreted, (e.g. "$type(internal)").

This is an important point as it turns out the process of Concept attainment requires

the ability to reason about such ideas in an introspective or self-reflective way.

The simplified definitions of several Concepts are shown below in Figure 6.5 These

include the notion of an object, an attribute, adjectives, quantities, values and names

(i.e. proper names).

Figure 6.5: Base Level Concepts

concept (object, object, formal, conj, any)

$ref 0,
$context 	($given object-0),
$nature 	(abstract],
$structure 	[it $can_be defined],
$def_atts 	('$BASE' - ($type(internal) $of 0 $is object)),

$non_def_atts [attribute],
$sub_types 	(physical,mathematical, abstract]

concept (attribute, attribute, formal,conj, any) :-

$ref [Att, D]
$context
	

($given object-O),
$nature
	[abstract],

$fnctnl
	

(Att $describes 01,
$structure [it $cant_be defined],
$de f
	

Att $has_a value),

$ sub_types (adjective, quantity)

concept (adjective, attribute, formal,disj(context) ,any) :-

$ref (Adj,Choice-(0 $or Q)],
$context ($given object-O $or quantity-Q),
$nature [abstract],
$fnctnl 	(Adj $describes Choice),
$def 	(none)

concept(quantity,attribute,formal,cOnj,any) :-

$ref [Q,O],
$atts from (attribute, attribute, formal, conj,any]

- E [Q,O] , []] ,
$sub_types (physical]

concept (value, attribute, formal, conj,any) :-

431

$ref (V,Z

$context
$nature
$fnctnl
$de f
$adjs

($given attribute-Att),
[abstract],
[V $represents Att],
(none),
(known, unknown]

concept(name,attribute,formal,COflj,any)

$ref [N,Obj],
$context 	($given object-Obj),
$nature 	[abstract-attribute

$but treated $as_a linguistic-object],
$fnctnl 	[N $represents Obj],
$def 	(none),
$adjs 	[known, unknown]

concept (variable,attribute, formal,disj (context) ,any) :-

$ref (V,Choice-(O $or Q)],
$context 	($given object(mathematical)-O $or quantity-Q),
$nature 	[abstract-attribute

$but treated $as_a linguistic-object],
$fnctnl 	[V $represents Choice],
$def 	($equivto name $of Choice _),
$sub_types [$any - object (mathematical)],
$adjs 	[known, unknown]

concept (known, adjective,formal,disj (context) ,any) :-

$ref [K,Choice-(A $or V)],
$context 	($given attribute-A $or variable-V) 1
$nature 	[abstract],
$fnctnl 	[K $describes Choice],
$def 	($if Choice $has_a value

$then $note Choice $is known

concept (unknown, adjective, formal,disj (context) ,any) :-

$ref [Uk,Choice-(A $or V)],
$context 	($given attribute-A $or variable-V),
$nature 	[abstract],
$fnctnl 	(Uk $describes Choice),
$def 	($if Choice $has

-
not_a value

$then $note Choice $is unknown

concept (system,object,forinal,cOnj,afly)

$ref S,
$nature 	[abstract],
$structure [S $consists_of collection $of objects - [O[Rest]],
$interrels [relationships $between objects - [OIRest] $in S

$can_be defined],
$def_atts (see-structure $and see-relationships

432

The base level constructs have straightforward interpretations. An overview of these

definitions is now given. Further details on the use of specific terms in a Concept

description are given later.

An object, i.e. some entity, represents any formal Concept that can be reasoned about.

Instead of using one generic type the category subtypes physical, mathematical and

abstract are used. Physical entities refer to those which have direct physical correlates

and include both natural kinds and nominal kinds. Other entities are considered to be

abstract in nature, i.e. abstract, mental constructions imposed upon the world. For

example, the notion of an object itself and its describing attributes are abstractions.

The idea of a set, i.e. a grouping of entities, is an abstract Concept. So too are

important Concepts in process design such as a control volume, a system and its

surroundings, etc. Abstractions often correspond to idealised representations that can

be used to simplify the analysis of problems.

A distinction is made, somewhat arbitrarily at this stage, between abstract Concepts

that are mathematical in nature, e.g. equations, numbers, etc., and other abstract

forms. The principal reason for this distinction was to recognise the importance of

analytic specifications in these sorts of Concepts. A similar case could be made for

terms used in the field of logic. Mathematical descriptions also involve special

notational forms that can be interpreted in a more precise way than other linguistic

forms and are somewhat unique in this respect compared to other Concepts.

Objects are part described by attributes which are either taken as criterial or

non-criterial (corresponding to $def and $non_defatts in Figure 6.5 above).

Criterial attributes cannot, in general, be taken to mean necessary and sufficient

conditions. Depending on the context and intended purpose at the time they will be

interpreted in different ways. Attributes themselves are further specified by

"adjectives" and "quantities".

Adjectives are a catch all means of object description and refer, often implicitly, to

the value of some attribute, e.g the adjective "red" and the attribute "colour" of some

object. Quantities are reserved for measurable attributes and are of particular

importance are physical quantities, i.e. quantities involving physical phenomena.

The distinction between adjectives and quantities is important in cases where the

same base attribute can be described in different ways. Consider the problem of

handling assertions such as "X is small". In a functional model this is directly

represented by the adjective "small" along with context information. There is no need

to create some fictitious uncertainty factor. If a situation arises that requires some

comparison of values regarding the implicit attribute "height", say, the the

433

stereotypical information can be used to relate the adjective to the quantity involved

from which a direct (numerical) comparison can be made. The use of stereotypes and

the intended purpose of in a given context has then to be noted if any "sense" of the

comparison is to be made at a later date.

The application to process design situations is obvious if "height" is replaced by

"value", say, with an associated "cost" quantity.

Adjectives can, in general, be used for any sort of descriptive attribute irrespective of

whether it can be described in terms of a measurable quantity. It is important for both

forms to co-exist to allow vagueness to be expressed in suitable forms. Even when

precise values are known (e.g. the cost of a reactor) the adjective form of description

will still tend to be used in object descriptions for communicative purposes (e.g. it is

expensive, cheap, etc.). Quantity type descriptions tend to be used only in those

situations that require the measured values to be enumerated.

The "value" of an attribute can be used to refer to either the adjective used or the

measured quantity.

The use of "name" as a general attribute refers to the association between a proper

name and the object or entity involved, e.g. person - John, reactor - riO!. In a similar

way a "variable" is treated as an attribute that names some quantity or mathematical

object.

From the reading of Figure 6.5 it is seen that attributes can be sub-classified. This is

more important for measured quantities as it allows discrimination between different

formulations of the quantity involved, e.g. relative and absolute scales of

measurement, empirical correlations, net, gross or compounded attribute values etc.

The use of the attribute "value" Concept provides a means of defining the adjectives

"known" and "unknown". These terms are treated elsewhere as primitives.

Finally, the base level definition of a system as a collection of objects with

inter-relationships between them can be used to construct an entry in a functional

model that is applicable to virtually any type of process design problem.

6.3.1.1 Concept Layout
Having given a brief summary of the base level Concepts in Designer's Assistant it is

now appropriate to describe in more detail the layout of information within a

Concept. In a standard frame based system this would be covered in a straightforward

way using a set of well defined syntax rules. The task is much more problematic here

434

however since Concept definitions cannot be sensibly separated from the

non-deterministic primitives that interpret them. Nevertheless an attempt to

summarise the main ideas is given below. More complicated features of Concepts

will be introduced at later points in this chapter.

6.3.1.2 Concept Header
The header of a Concept is of the general form

concept(Name,SystemType,ConceptType,ConceptMode,Topic)

where

Name is the word or symbol used to represent the object, e.g. pump, reactor,

equation, set, etc.

SystemType is one of "object,attribute, adjective or quantity" for non-functional

entities.

ConceptType is the type of a Concept depending on its attained status. In the current

version this is simply a choice of either formal or heuristic. Formal types have part

analytic specifications.

ConceptMode is the mode of attribute combination and is one of "conj"

(conjunctive), "disj" (disjunctive), or "relational". Simple disjunctive definitions tend

to arise from imprecise or ambiguous analytic specifications and, as Bruner et al

observed, are often replaced by terms defined in a more precise, conjunctive manner.

A relational, formal Concept allows arbitrary relations or constraints to be made

between constituent attributes or entities.

Topic refers to the name of the Topic structure of which a Concept is a part. In many

cases this is give the same name as the module involved, e.g. thermodynamics. If the

word "any" is used for Topic then the Concept is likely to be some sort of low level

abstraction applicable across many Topics.

The information in the header is primarily used as a convenient means of

implementation and for easy access of Concepts within the Prolog language. Most of

the information is in fact redundant as it could be inferred from the body of the

Concept description. The latter approach is not practical in the current system.

6.3.1.3 Concept Referent Bindings
Following a concept header is a term of the form

$ref ReferentVariable

or

435

$ref [ReferentVariable,RelatedReferent]

These terms are used to provide a binding with entities existing in a functional model.

The functional model entries are referred to as "referents". This is a technical term

used in theories of word meaning that requires some explanation.

In the discussion relating to Realism, Psychologism and the nature of intentions, see

section 5.4.3, the work of de Saussure was referred to. de Saussure took a Concept to

be the mental entity signified by some linguistic sign, i.e. word form. That is, some

words, "signifiers", are mentally associated with a Concept, the "signified'. A good
example is the use of a pronoun, e.g. "h&' or "it". This linguistic form refers to some

mental entity that may or may not correspond to some object in the real world, e.g. a

specific plant item or some mythical animal. The word that is used to refer to this

mental entity is "referent". This usage of the word referent follows the linguistic

theory of Hudson(1984). It should not be confused with other approaches which use

referent to indicate the entity in the real world that is being referred to. The former

usage is suited to theories comprehension that deal with models of the world, as is the

case with mental model theory.

For the moment, it is sufficient to note that an "instance" of a Concept in a functional

model is accessed by some unique token to indicate the name of the referent. Further

Concepts are then interpreted with respect to these referents. The "$ref'term provides

the basic mechanism to temporarily bind a Concept to a referent to allow the former

to be interpreted in the context of the latter. In the case of attributes, adjectives, etc.,

the instance of the attribute Concept is itself indicated by a referent that is then related

to some other referent, the RelatedReferent, that the attribute purports to describe.

This is indicated by the pair of referents in the second version of the $ref term above.

It will be seen later that it is important to be able to reason about an attribute

independently of any entity it is used to describe.

6.3.1.4 Context Dependencies
Concepts in Designer's Assistant must be interpreted within a given context. All

interpretations are stored along with Context information, either in a direct or indirect

form, e.g. via another referent. All Concepts, therefore, provide a term of the form

$context ($given ... context bindings...).

A typical example is

$context ($given object - 0).

This means that the Concept will be interpreted in the context of some other Concept,

in this case the referent 0 of some other object. This context can then be applied to

436

any referent that can be treated as being equivalent to the object Concept.

The context binding mechanism is one of the basic ways in which the central idea

embodied in Conceptual Categorisation of treating discriminably different things (e.g.

referents) in an equivalent way can be implemented.

A special case worth noting is that of disjunctive contexts. When describing Concepts

in the format presented here it was noticed that what was disjunctive about a

Concept was not its description but rather its binding context. A simple example in

Figure 6.5 above is the "variable" Concept which can refer to either some

mathematical object 0 or some quantity Q. In such cases the ConceptMode is

"disj(context)" and the referent binding term is written as

$ref [VarReferent,Choice - (0 $or Q) 1.

In this example both 0 and Q are possible referents and Choice is the selected

referent under a particular interpretation.

6.3.1.5 Concept Nature
The nature of non-functional Concepts is invariably abstract or physical and is

indicated by a term such as

$nature [abstract].

The special case of Concepts of a mathematical nature was highlighted above. The

words "event" and "situation" are also use to indicate special forms of Concept.

6.3.1.6 Functional Aspects of Concepts
In section 5.2.1 it was indicated that formal equivalence categories should be

described in a way that stopped short of describing their use. This principle is

generally adhered to but for ease of implementation it was found simpler to place a

cross reference to the functional Concepts involved in the non-functional Concept

description.s. For example, the base level Concepts describing adjectives and values

use the terms

$fnctnl [Adj $describes Object]

and

$fnctnl [Value $represents Attribute]

The implicit reading is that there are functional Concepts defined elsewhere that refer

to "things to describe objects with", "things to represent attributes", etc. This general

link mechanism extends to higher level physical or abstract Concepts, e.g. "things to

transfer heat with", "things to solve algebraic equations".

437

6.3.1.7 Criterial and Non-Criterial Attributes
The criterial part of a Concept description is given by a "$def' term. Depending on

the type of Concept this can take a number of forms. In the case of entity type

Concepts it is likely to be a sequence, either conjunctive or disjunctive, of plausible

assertions interpreted in a weakly analytic way. These assertions are always

interpreted relative to some context. For example

$context ContextDescription

$def Assertion 1 $and Assertion2

In the case of adjective type Concepts the $def term is often a

$if ... $then

statement which either tests for the presence of other attributes or makes use of

typical values for related quantities depending on the context. (The notation for

referring to stereotypes is given later). As indicated earlier, the intensional use of

"vague" adjectives is often preferrable for description purposes, especially in those

case where one is ignorant of precise details.

The $def terms for physical quantities are the most straightforward and will normally

be the defining algebraic relationships involved. The context of physical quantity

concepts will normally refer to dependent relationships or quantities to help simplify

the definition. For example,

$context ($given unit-U $and pressure-P $of U
$and temperature-T $of U

Even at this stage it is worth emphasising that $def terms can be interpreted in a

number of ways. For instance, there is no guarantee that a $if ... $then statement in a

adjective concept will be interpreted in a left to right, test and act fashion as normally

occurs in procedural type languages. A procedure may choose just to look at the $if

parts or the $then parts in an attempt to make some sort of inference.

Non-criterial attributes for entity type Concepts are usually just listed by name with

optional references to simple forms of typical, i.e. averaged, values. For example,

non-criterial attributes for an adult male might include

$non_def_atts [weight $typically 11 12 stone",
age $typically between - [1120 years", 1170 years"]

If the typical information is at all complicated it is better placed in the attribute

Concept itself. In the initial implementation it was intended that only the more

438

commonly used attributes be placed in this list in order to limit any search or effort in

situations that require going beyond the use of criterial attributes. Infrequently

applied attributes can be described in isolation and picked up in an exhaustive search

of a Topic via the entities referred to in the $context term.

6.3.1.8 Concept Structure
The theory of mental models places a strong emphasis on the claim that" the

models constructed are structurally analogous to the state of affairs they represent. On

first reading this seems a dubious claim, especially in cases of complex three

dimensional shapes or complex sequences of events.Nevertheless the simplified

structures used to emulate simple forms of syllogistic reasoning do appear to enable

significant inferences to be made.

In the initial development of procedures to handle criterial and non-criterial attributes

it emerged that the structural form of a Concept did appear to merit being treated in a

separate way. The most notable feature of the interpretation of structural forms is the

need to create referents in a functional model. This is particularly so in the case of

aggregate forms of Concept, e.g. groupings of objects, a system, etc., because of the

imprecise nature of some of the descriptions. For instance the term

it $consists _of collection $of objects - [ObjectiOthers]

is an allowable form that represents some indefinite grouping of objects. Interpreting

this term calls for special entries to be made in a functional model to represent this

situation. The approach needed is very similar to that described in section 5.4.2 in the

introduction to syllogistic reasoning.

Until the significance of the structural forms of Concept descriptions become more

clearly established it was decided to separate structural descriptions from other

describing attributes. Many Concepts therefore make use of a "$structure term

$structure StructureDescription

There are a number of basic forms that can be used in structure descriptions:

• $consists_of Y
• $is_a member $of Y
• $isa collection $of Y
• $is_a sequence $of Y

There are also a number of special terms useful for describing low level Concepts:

[undefined, regarded $as ...

[it $can_be defined]
[it $cant_be defined]

The definition of a set for example involves the first "undefined ..." form. Basic

439

notions of grouping are therefore treated as primitives at a perceptual level in

Designer's Assistant.

If a Concept has a $structure term it will be referred to in the $def term by

see - structure.

The definition of a system in Figure 6.5 above uses this feature.

N.B. The use of the word structure here should not be confused with its use in section

5.3 concerning the internal structure of a category. Structure there refers to ordering

of class members according to a "more prototypical than" relation.

6.3.1.9 Subtypes, Special Cases and Use of Inherited Forms
The final features of a Concept to consider at this point are those involving taxonomic

aspects of descriptions.

To indicate that a link to a subclass, or a set of subclasses, exists a "$sub_types" term

can be used. The definition of object, for example, uses the term

sub—types [physical, mathematical, abstract].

There are two points to note about this:

Indicating that such a link exists says nothing about whether or not attributes are
inherited. What it does indicate isat there must be at least some sort of family
resemblance between the subtypes involved. With nominal type words, e.g.
pumps, an important common element will be the intended function. Inheritance
of attributes in these cases will be less important since there are often relatively
few to consider, e.g. the fluid involved.
Another useful term to help characterise Concepts is "$sp_cases". This is used
to introduce a list of special cases for a given category. Special cases are not
prototypical in any sense. Indeed, they are atypical and are listed precisely
because they have special characteristics unique to a class. This term was
introduced primarily for dealing with mathematical Concepts such as an empty
set, identity forms, and so on.

Finally, attributes can be "inherited" from another Concept by using a "$atts_from"

term. The general form used is

$atts_from [[Concept, Headerinfo] - [LocalContext,InheritedContext]]

The Concept name and header information are used to locate the appropriate Concept.

LocalContext is a list of variables used to bind to the local context while

InheritedContext is the same but for the inherited context. These binding lists

provide a simple but powerful way of imposing the epistemological ,i.e. knowledge

structuring, constraints suggested by Brachman, see section 5.1. This is because the

variables in the inherited context will in fact be referents that can further constrained

or specified locally within a Concept, using the $def term, to indicate how the

440

inherited information is to be used. Further, this can be done without the need for

introducing an extra set of primitives at the epistemological level.

There is a subtle but very important point to note here. Inheritance is not viewed as a

mechanism for providing common sets of slots or attributes to subclasses, as is the

case in simple frame based systems. In Designer's Assistant the mechanism of

interpreting a referent within an "inherited" context is precisely that of treating the

referent in an equivalence based way compared to the "parent" referent. That is,

attributes do not just "appear" at the lower level. The distinction between the two

referents is maintained. The lower level referent is treated temporarily as being

equivalent to the accompanying referent. Interpretations based on this equivalence

need to be recorded along with this contextual information.

6.3.2 Functional/Procedural Concepts
The Concepts described so far have been mainly concerned with providing primitive

tokens, e.g. '$consists_of', to describe and recognise entities in a functional model.

That is the classes of tokens have been either one of description or recognition. The

third class of primitive token is concerned with the ability to express intended forms

of action or purpose. In formal Concepts these action or procedural type primitives

should allow various types of algorithm to be expressed. In other cases the primitives

will be used to express more general lines of reasoning such as the systems

engineering methodology described in chapter 1. Both formal algorithms and "vague"

forms of guidance are captured within functional Concepts in Designer's Assistant.

In the work of Bruner et al(1956) and Johnson-Laird(1983) the question of explicitly

reasoning about procedural knowledge is not addressed. In those cases the "actions"

involved are closely bound to physical responses and perceptual level Concepts.

There is, however, a considerable body of knowledge relating to formal equivalence

categories that is expressed in functional terms in process engineering. Common

solution techniques for specific forms of unit models are typical examples, e.g. short

cut flash calculations, as are more general solution techniques, e.g. Newton's method

for solving a set of algebraic equations.

In Designer's Assistant solution techniques, methods, etc., are all viewed as

functional Concepts. What distinguishes these types of Concept from those

previously described is that some of the primitives used indicate specific actions or

sequences of events that may be carried out or reasoned about.

There are two aspects of functional Concepts. The first involves procedural type

descriptions as noted above. The second aspect, and the one that Bruner et al

emphasise, is the grouping of entities that can perform a specific function. For

441

example, "things to solve equations with" refers to entities that are methods or

algorithms. In the general case such functional groupings can only refer to stereotypes

since many forms could be used to fulfil a particular purpose if need be, e.g. things to

sit on. Nominal kind words, e.g. table forms, pumps, etc., will often be closely

related to these functional descriptions.

Functional Concepts are useful for a number of tasks over and above the obvious

need to express procedural information. These include:

Provide a means of guiding search activity when trying to fulfil some request.
Provide a means to perform analogies by treating other Concepts as equivalent
to known ones for some given task. This is a fundamental form of creative
reasoning.
Provide a means to label "intended purpose" in a functional model. This may be
at a "physical" level, e.g. the use of an heat exchanger, or at an abstract level,
e.g. the use of shortcut solution method.

6.3.2.1 Examples in Set Theory
To illustrate the form of functional Concepts using procedural type primitives some-

examples of Concepts in basic set theory are presented below. These Concepts form

part of the maths module which is described later, see section 6.4.

The reason for choosing an abstract, formal topic, i.e. set theory, was to avoid

introducing to many perceptual level primitives into the system, e.g. primitives for

motion, spatial layout etc. As it turned out the extensive use of special notations in

mathematics created many problems of its own. Concepts such as "set" or the

"member of" relation are also so basic that primitives had to created to represent these

ideas anyway. The development of Concepts in set theory therefore illustrates many

of the problems that would be encountered in other areas.

The Concepts in abstract set theory are set up within a subtopic of the mathematics

topic. They make use of some of the generic Concepts such as set expressions which

are defined at this higher level. Fragments of these Concepts are listed in Figure 6.6

below.

Figure 6.6: Some Generic Concepts in the Mathematics Topic

concept (equation, object, formal, conj,mathematics) -

$ref
$nature 	I object(mathematical) $but

it $represents relation - equals(Lhs,Rhs)],
$structure (it $consists_of relation -

$and arguments - [Lhs,Rhs]],
$defatts (see - structure),
$sub_types (equation(algebraic) ,equation (set)]

442

concept (equation(set) ,object,formal,conj,mathematics) :-

$ref 	E,
$nature 	[mathematical],
$structure [(it $consists_of relation

$and arguments - [Lhs,Rhs]
$where
Lhs $and Rhs) $are expressions (set)

],
$def_atts (see - structure

Examples of the non-functional set theory Concepts are given in Figure 6.7 below.

These range from simple definitions for a set to more complex descriptions of

relations and functions.

Figure 6.7: Some Functional Concepts in the Set Theory Topic

concept(set,object,formal,conj,theory(set)) :-

$ref S,
$nature [mathematical],
$fnctnl [it $is_a tool(basic) sin theory(set)],
$structure [undefined,

regarded $as_a collection $of objects
11

$defatts (see - structure),
$non__def_atts [cardinality]

concept(tuple,object,formal,conj,theory(set)) :-

$ref T,
$nature [mathematical],
$fnctnl [it $is_a tool(basic) $in theory(set)],
$structure [undefined,

regarded $as_a sequence $of objects],
$defatts (see-structure),
$non__def_atts [size],
$ sub_types [pair, triple, N-tuple]

concept(N-tuple,object,formal,conj,theory(set))

$atts_from [tuple,object,formal,conj,theory(set)],
$def_atts ($given tuple-T

T $has N-elements
I.

concept(pair,object,formal,conj,theory(set)) :-

$atts_from [tuple,object,formal,conj,theOry(set)],
$def_atts ($given tuple-T ;

T $has 2-elements
I.

concept(member,relational,formal,conJ,theory(Set))

443

$nature (mathematical],
$context ($given object-A $and set-B),
$fnctnl [it $relates object-A $and set-B],
$def 	(undefined $but test(internal))

concept(intersection,relational,formal,conj,theory(set)) :-

$nature 	[mathematical),
$context 	($given sets - [A,B]),
$fnctnl 	(f(A,B) ->> C $where (A $and B)

$are expressions (set)
$and C $is_a set

I
$def 	(C $is set_of_all(X, X $is_a member $of A

$and X $is_a member $of B)

concept(difference,relational,formal,conj,theory(set))

$nature [mathematical],
$context ($given sets - [A,B]),
$fnctnl [f(A,B) 	->> C $where (A $and B)

$are expressions (set)
$and C $isa set

$def
],
(C $is set of_all(X, X $is_a member $of A $and

X $is not a member $of B)

concept(N - relation(place),relational,formal,conj,theory(set)) :-

$nature [mathematical],
$context ($given sets - (a(l)

$fnctnl [it $isa relation(generic)-R
$and_ it $relates N - (sets -(a(1) 	a(N)))
$but treated $as_an object],

$def (R $is_a subset $of
expression(set) - (a(l)'$X' ... '$X'a(N))

),
$specific_def (R $can_be defined

$by ($a rule $or $a sentence)),
$sub types [relation (binary)]

concept(function,relationat,formal,conj,theory(set)) :-

$nature [mathematical],
$corttext ($given relation(binary)-F $between sets - [A,B]),
$fnctnl C it $isa relation(binary,generic)-F

$and_ it $relates sets - [A,B]
$but treated $as_an object],

$def 	($if for_all(X, X $is_a member $of A,
$exists_one pair(X,Y) $and
pair(X,Y) $is_a member $of F
$and Y $is_a member $of B

$or pair(X,Y) $is_nota member $of F

$then F $isa function
),

$specific_def (F $can_be defined $by
($a rule-Rule $or $a sentence)),

444

$non_def_atts [inverse,domain, range],
$sub types (mapping, function (partial)),
$notation (F $is denoted $by (f,':',A,'->',B] ,

Rule $is denoted $by ([f,':',X,' ->',Y] $or
equation - (Y=f(X))

$comxnon use [$treat Rule $as F $and
(A $and B) $as one $of ['R','N','C','Z','Q']

The descriptions of sets, tuples, n-tuples, pairs etc. are hopeful self explanatory.

The relational type Concepts are used to describe standard set theoretic relations, e.g.

intersection, union, etc., as well as generic N-place relations, functions, etc.

Relational Concepts make use of some additional terms that are worth describing.

The notation

f(A,...) ->> Z $where Qualifications

is simply a shorthand for function type relations, i.e. those relations which are

normally used to evaluate some product entity. The intersection Concept is a simple

example that uses this form. The more general way of indicating relationships is to

use a term of the form

it $relates A $and B ... $where Qualifications

where A and B are referents picked up from the context bindings. The body of the

specification for a formal relation is placed in the $def term as for attributes and

adjectives.

In order to handle the mapping between surface level propositional representations

using special symbolic notations, e.g. "f R -> R" to indicate a real function, a

"$notation" term can be used to denote the syntax. The entry for the function Concept

is a good example of this. A formal description of a function states the domain and

range involved as well as the rule used to define a specific function, e.g. "f: x ->

sin(x)". The $notation entry for function indicates that either of the forms "f: x ->

sin(x)" or "y = sin(x) { = f(x) } can be used to denote the specific form of a rule.

There are two other useful features used in the description of the function Concept.

The first is the form

$but treated asa Whatever

in the $fnctnl term. This indicates that the relational Concept will be referred to in an

object like way in surface level representations, e.g. in the subject position of a

sentence.

The second feature, again related to surface level representations, is the use of a

"$specific..def" term. The entry for a function is

445

F $can_be defined $by ($a rule-Rule $or $a sentence).

This term indicates that an entry for a specific function in a functional model can be

picked up from either of these two forms.

The purpose of all these notational extras is to provide a convenient way of relating

special surface level fortlfis to entities, i.e. referents, in a functional model. This

information can be acted upon by procedures for both the interpretation and

generation of surface level descriptions.

Having described the object and relational Concepts involved it is now possible to

describe the functional Concepts that can be used to manipulate them. Figure 6.8

below shows some of the Concepts needed to rearrange and solve simple equations

involving sets.

Figure 6.8: Functional Concepts to Manipulate Set Expressions

concept($to solve - equation , method(general),
heuristic,functional,_) :-

$plan
$if equation $can_be classified $then

$assign T $to type $of E ;
$do solve - T

concept($to solve - equation(set), evaluation(simple),
heuristic,functional,abstract_set_theory)

$plan
$given equation(set) - E
$if E $canbe solved $then

$do rearrange - E $into form(normal) ;
$check E $has arguments - [Lhs,Rhs] ;
$do evaluate - Rhs ;
$assign Lhs $to Rhs

concept($to evaluate - expression(set),
definition $of operators,
formal,functional,abstract_set_theory) :-

$plan
$given expression(set) - E
$if E $consists_of operator - Op

$and arguments - [L,R]
$then

$do evaluate - L
$do evaluate - R ;
$eval_term term(E, Op, L, R)

446

$else
$if E $consists_of operator-Op $and argument-L

$then
$do evaluate - L ;
$eval_terrn term(E,Op,L)

The sequence of intended events in a functional Concept is given by the $plan term.

In order to represent intended actions three new primitives are introduced, namely

$do, $assign, $eval_term. The first two are quite general and can be used to refer to

non-mathematical tasks and objects. The $eval_term is a shorthand form that is only

valid for evaluating mathematical type expressions (set, algebraic, etc.). The form

$do evaluate - Thing

is the more general form to use.

If these Concepts were acivally used to solve equations or evaluate expressions the

procedures would have to rearrange and unwind expressions down to the variable

level "by hand" as it were, making use of the explicit definitions of set membership,

intersection, union etc. In practice, this would be an extremely lengthy procedure.

The following functional Concept provides an alternative definition that make use of

an external, efficient implementation of a set manipulation tool.

Figure 6.9: An Alternative Functional Concept to Solve Set Expressions

concept($to solve - equation(set),evaluation(simple),
heuristic,functional,abstract_set_theory)

$plan
$if equation(set) $cari_be solved $then

$do rearrange - equation(set) $into form(normal) ;
$do solve - equation(set) $using internal (set eval)

Section 6.4.2.3 explains how encoded algorithms can be accessed and used to speed

up certain tasks. The important point to note is that the interpretation procedures can

be used to evaluate set expressions if need be and will interpret the explicit

descriptions of Concepts in the set theory topic to do so. This sort of capability is the

first step in what is commonly referred to as reasoning from first principles. The

system can either make use of efficient deterministic implementations of algorithms

that are coded up externally or it can use the original Concepts involved when

situations arise that require their reinterpretation. An example of the latter is in

learning or Concept attainment situations where previous interpretations have to be

reevaluated to take account of new information. This sort of task requires that

447

procedural forms be represented in an explicit way that can then be used as the

subject or data for other interpretation routines. Functional Concept descriptions

provide this sort of functionality.

6.3.2.2 Using External Code to Solve Simple Equations
The discussion above indicated that it is important to be able to reason about and use

formal functional Concepts both in an explicit declarative form as well as in a

specific, efficiently implemented procedural form. In order to provide the necessary

links between "external" code, functional Concepts and referents in a functional

model the notion of an internal Concept is introduced.

Consider for example the alternative functional Concept for solving set equations

above. This uses the line

$do solve-equation(set) $using internal(set_eval).

This says that the equation is to be solved using an internal Concept called set_evaL

The definition of this internal Concept is given below.

internal(set eval, functional, abstract—set—theory) :-

$context 	(solving - (equation(set) - E)),

$guard [E $consists_of relation-() $and arguments - [Lhs,Rhs],
E $canbe solved $for Lhs],

$inputs 	[Rhs],
$outputs 	[Lhs],
$action 	($call set eval(Rhs,Lhs)

I.

The terms involved are quite simple:

- $context : provides context bindings with the functional model as usual.
- $guard : Either a conjunctive or disjunctive term that specifies constraints on the

referents involved that must be satisfied before the rest of the Concept can be
interpreted.

- $inputs : A list of variables, bound via the context, which are used as input
arguments for the external code.

- $output : A list of variables that can be used to return values from the external
code. These values have then to be associated with referents in the functional
model once the code has been executed.

- $action : This term specifies the sequence of intended actions that are needed to
map referent descriptions into variables, pass these variables to a call that invokes
the external code, then map any output variables back to referents in the
functional model once the code has completed.

Internal Concepts are just a special form of functional Concept that allows efficient

implementations of algorithms to be used. There is the same flexibility in

interpretation of internal Concepts as there is for other functional Concepts. For

example, the specified sequence of of actions can be reasoned about in a declaritive

way. The default interpretation is to evaluate the terms in a top down, left to right

448

manner giving the appearance of a procedural interpretation.

In order to demonstrate how the manipulation of Concepts based on formal

equivalence categories can be easily represented, the functional Concepts required for

solving a linear algebraic equation are now described.

The top level functional Concept to solve any type of single equation is

concept($to solve - equation , method(general),
heuristic, functional,_) -

$ref E,
$plan

$if equation $can_be classified $then

$assign T $to type $of E ;
$do solve - T

If the referent E can be subclassified as algebraic then the "$do solve.." term will

cause the following functional Concept to be interpreted:

concept($to solve - equation(algebraic), evaluation,
heuristic, functional, algebra)

$plan
$given equation(algebraic) - E
$check solving - (equation - E $for variable-V) ;
$if E $is linear $in V

$then $do solve - E $for V
$using internal (solve_lin)

The plan involves testing whether the adjective "linear" can be applied to the variable

referent involved, related in the functional model to the equation referent, and if so

solves the equation for the required variable using the following internal Concept:

internal(solve lin,functional, algebra) :-

$context (solving - (equation-E $for variable-X)),
$guard 	[none],
$inputs 	[E,X],
$outputs [Val],
$action 	($call solve_lin(&E,&X,Val) ;

$assign value $of X $to Val

In special cases where adjectives do have analytic specifications it seems acceptable

to use some efficient implementation of code to test the truth value involved. The

adjective linear when applied to an algebraic equation for a given variable is one such

case. The Concept used for linear is as follows:

concept(linear,adjective,formal,conj,algebra) :-

MIZ

$nature [abstract],
$fnctnl [it $describes $an equation(algebraic)],
$i test 	un test, 	 -
$def 	(see - $internal_test)

The definition makes use of an internal Concept un_test which is defined as

internal(un_test, functional, algebra)

$context (testing - (equation - E
$is linear sin variable-X)),

$guard 	[none],
$inputs 	[E,X],
$outputs [Ans],
$action 	($caul lin_test(&E,&X,Ans) ;

$if Ans == true
$then $note (E $is linear $in X

$else
$note (E $is_not linear $in X

The "$action" term for this Concept finally calls some code, also called lin_test, to

test the validity of the use of the adjective.

6.4 Initial Attempts to Implement a Maths Module

The discussion of Designer's Assistant has so far covered two areas:

The overall system structure, section 6.2.
The basic types of Concept and features available for representing Concept
descriptions.

This section gives an overview of the initial attempt to implement a set of procedures

and associated utilities to construct and interpret functional models using the

available Concept descriptions. The development of these low level utilities

represents a significant proportion of the research effort spent on the latter part of this

thesis. Any individual utility is in itself, however, rather uninteresting (e.g. parsing

and manipulating specific Prolog structures) and to describe them all in any detail

would serve no particular purpose. All that is given here therefore is a summary of

the main utilities that were developed for implementing a simple mathematics module

based on the Concepts presented earlier. Appendix E gives a listing of the main utility

files in the system and the types of operation involved.

6.4.1 Simple Example Problems
The initial development of utilities focussed on the interpretation of functional

Concepts that could be used to fulfil particular requests made in the model of

conversation. This in turn involved development of many of the utilities needed to

create entries in a functional model and interpret the referents in a particular context.

450

To demonstrate the feasibility of the overall approach a simplified set of input/output

routines were used to read in fixed forms of problem statement. Two extremely simple

problems and answers are shown below taken from a script of a session.

problem area : abstract set theory.
consider

A = (1, 2, 3)
B = 13, 4, 5).

solve
C = A mt B.

proceed.

done that ... ask a question for more detail
I: value of C?

C has value {3}

problem area : algebra.

solve
x*(2+a)_4 = y
for x.

proceed.

done that ... ask a question for more detail
:value of x ?

x has value (4+y)/(2+a)
I: how ?

I solved the algebraic equation using evaluation.
I: end.

yes

The input syntax is quite restricted consisting of the following forms:

problem area: indicates the topic of interest.
consider: introduces a series of statements describing a problem.
solve : introduces a number of specific requests.

The constrained form of syntax greatly reduces the problem of providing a general

means of mapping surface level representations into appropriate constructions in a

functional model.

Despite the trivial nature of the problems considered the output does show that the

Concepts in set theory and algebra can be interpreted as described earlier. The set

example makes no use of internal Concepts and relies on the definition of the

intersection relation given earlier. The following structures are parts of the internal

terms used to describe the referents in the set equation. The first one is part of the

description of variable C and the second one is part of the referent description for the

entire equation.

recorded(functional model, Term,)

451

Term = object(variable(set), var3,
[3] - ($by solving - equation(set) - var4)],
isa([variable(set)]), status([solved])])

Term = object(equation(set), eqtn3,
(var3 = [1,2,3] mt [3,4,51) -

($by rearranging - equation(set) - eqtn3)),
(var3 = var2 mt van) - given],

[other([eqtn3 $can_be solved $for var3,
eqtn3 $consistsof relation - (=) _
$and arguments - [var3, [1,2,3] mt [3,4,5111)1)

where var3 is cross referenced to 'C'
var2 is cross referenced to 'A'
varl is cross referenced to 'B'

The format of referent entries in a functional model is discussed below.

The linear equation is solved, or rearranged in this case, using a subset of the tools

available in the symbolic equation solving system PRESS, see Bundy and

Sterling(1982). PRESS itself is a large system that attempts to solve equations within

a theorem proving environment and was used in the MECHO system referred to in

Chapter 2. The specific tools needed to solve single algebraic equations were used in

isolation and accessed via an internal Concept, solve_un, as listed in the previous

section.

6.4.2 Main Utility Areas
In order to interpret and manipulate Concepts and functional models a large set of

utility procedures had to be developed (- several thousand lines of Prolog code).

These utilities are still far from complete in that Concepts can only be interpreted in a

limited number of ways. Despite these limitations the main areas of functionality

considered are now given.

6.4.2.1 Expression Parser
In order to map the simplified problem descriptions into referents in a functional

model a special parser was written that interpreted expressions and created entries in

the appropriate way. The parser makes use of any special notational forms referred to

in a Concept as well as common synonyms for the Concepts involved, e.g.

intersection is written as t'int", union as "vv", difference as "-". The same is true for

for relational operators in algebra, (times, divides, etc.).

On reflection, it was realised that the parser should have been written as a set of

generic procedures that handle special notations for any sort of Concept. These

procedures should then be embedded within higher level functional Concepts for

consistency.

452

6.4.2.2 Temporary Model Interpretations
Evaluating any term in a functional Concepts, e.g. "$do Thing", potentially involves

interpreting a number of other functional Concepts in a recursive manner. Any call

may involve treating one referent as being equivalent to another for some particular

purpose, e.g. to "inherit" an attribute description, to make a simple form of analogy,

etc. A set of procedures were developed to allow referents to be interpreted in

different ways that catered for the recursive interpretation of Concepts. When

functional Concepts "unwind" the referents representing temporary interpretations

can be marked as "garbage" to be removed when convenient. Each recursive

interpretation is summarised internally in a way that would allow the reasoning

process and contextual information to be retrieved later if necessary. This is similar in

spirit to the approach taken in truth maintenance systems, see section 4.3, with

respect to storage of justifications. Due to the need to recall context, intended

purpose, etc. the approach here has to record several extra items of information other

than the nodes directly justifying some proposition, see section 6.4.3 below.

6.4.2.3 Using Internal Concepts
An important aspect of Designer's Assistant that could let it be developed into a

practical tool is the ability to reason about and interface to external code that

performs very specific tasks. This is done through the use of internal Concepts as

explained earlier. A set of utilities were developed to map descriptions of referents in

a functional model into variable bindings that could be passed to and from calls to

external procedures. For examples, an external procedure may require an equation

that is to be solved in a particular form. This is the case for the earlier example of a

procedure to solve an algebraic equation. The following construct can be used to

manipulate the referent description, i.e. the equation E:

$if $required form of E is weak(normal)
$then $do rearrange - E $using ... Whatever

This can be used to rearrange B into an appropriate form.

The interpretation of actions before and after a call to an external procedure involves

the same utilities described for functional Concepts. This potentially provides the

ability to reason about the content and use of external code in as sophisticated a way

as other functional Concepts.

6.4.2.4 Concept, Context, and Attribute Utilities
Most of the utilities all require access to the Concept and Attribute descriptions. A

common set of procedures are therefore provided to access the various parts of

Concepts. Other useful Concept procedures include those to test whether one referent

can be treated as a subclass or equivalent to another. This is usually done within a

453

given context in which extra constraints are placed upon the "incoming" referent, i.e.

the referent being matched with the Concept type referred to in the context. Matching

referents up in this way requires matching relevant parts of their attribute

descriptions. Procedures have been written to perform simple forms of attribute

matching. This usually involves interpreting the $def term of the attribute involved

which in turn can involve any of the utilities previously referred to.

The referent entries in a functional model have to record this contextual information

in a suitable form. This is briefly described in section 6.4.3 below.

6.4.2.5 Topic Utilities
The development of Topics is far from complete in the current version of Designer's

Assistant. A Topic is notionally meant to provide the necessary links to place

Concepts within a taxonomic structure based on family resemblances.

At present there are only utilities for testing Topics in simple ways and no procedures

yet exist for restructuring a Topic. Such a capability is required for properly

implementing Concept attainment processes. The Topic itself is simply a set of

Prolog structures that provide a number of alternative descriptions of how Concepts

cross reference each other. This includes subcategory references, functional use of

concepts, and references to Concepts, and references to Concepts in $structure

descriptions. The functional groupings of Concepts are lists of Concepts that refer to

other common Concepts in the $fnctnl term.

Stereotypical information is stored in the Concept descriptions themselves rather than

within the Topic structure. The information simply consists of lists of named

Concepts that will be used in preference to others by some of the interpreter utilities.

There are three terms used to indicate different types of stereotypical information:

$protos List: A list of preFe.rred prototypes for a given Concept.
$common_adjs List: A list of common adjectives used to describe a Concept.
$obs List : A list of common forms or observations used in surface level
representations involving a given Concept.

Finally, the relational links between adjectives and quantities are currently implicitly

specified by the $def entries used to describe these Concepts. This cross reference

information should however be made explicit within the Topic structures.

The internal structure and use of Topics still requires considerable development

before a set of guidelines can be given as to how best stereotypical information can be

interpreted. The current structures merely provide the basic information that would be

be expected in any cross referenced taxonomy.

454

6.4.3 Object Entries in the Functional Model
Entries for referents of Concepts in a functional model are implemented as pairs of

Prolog terms recorded in Prolog's internal database. The functional model itself is not

implemented as an explicit data structure. Rather it is a term used to describe the set

of recorded referents that comprise it. This includes referents for attribute

descriptions, surface level expressions, and internally generated referents resulting

from context matching. To indicate the information used the terms used to record

referents of objects are now briefly described.

There are two recorded terms for each referent, both recorded under the same

database key. The key indicates the name of the functional model in use. Temporary

keys can be generated when necessary to represent the idea of embedded functional

models. The main items of information stored within a recorded term are:

ConceptWord: The word or token used to label the Concept, e.g. "pump".
ConceptType : Type information from the Concept header.
AttributeRefList : A list of attribute referents used to describe this referent.
ValueList : A list of "values" for this referent. For example, a referent for a
mathematical variable may have one or more values. For other Concepts
"value" often refers to the specific form of the $structure description.
DescList : A list of summarised descriptive statements in propositional form.
Cgtoi : If a generic referent is matched against an individual then the pair
fref-Behaviour is stored in the Cgtoi list, where Iref is the matched referent
according the interpretation Behaviour. Behaviour is just the primitive token
responsible for the top level match, e.g. $is_a, $has.
Citogrefs : This is a list of Ref-Behaviour pairs where Ref is an individual that
is treated as equivalent to this referent under some Behaviour. There can
obviously be many such equivalence based interpretations.
Cconrefs : When a generic context is matched against another context a number
of constraints are generated. The referents for the things in the generic context
that are constrained by the match are stored in this list. This list is therefore a
subset of the variable listed in the original context bindings.
Cconstbinds : This list is updated when Cconrefs is updated. It is a list of pairs
of the form IconstraintTerms - Ibinds. That is, the constraints on the - -
referent under a context match along with the matching instance bindings.
These are needed for unification purposes when updates are made due to
changes in the matching instance referents.

This information is used and updated by many of the utilities that work with referents

in the functional model.

6.4.4 Overview of Maths Module
Although the mathematics module was only developed to a limited extent it is worth

outlining its overall implementation in the context of the wider operation of

Designer's Assistant described in section 6.2.2.

The top level procedure that is invoked from the system level has a simple calling

sequence:

455

maths_module (InputChannels ... OutputChannels)
set-environment(...),

set_up_data (...
plan_requests(...

run_requests (...),

gather-report-terms(

The set—environment call picks up various pieces of information from the blackboard

managers, accesses existing functional models if present, etc. The set_up_data is then

used to perform the simplified mapping of surface level representations of data and

requests into functional model entries. If any requests were made then an attempt is

made to plan their evaluation using any appropriate functional Concepts. An attempt

is then made to process these requests using whichever Concepts are necessary. The

gather—report—terms is not properly implemented but it is supposed to tidy up

extraneous referents in the functional model and generate appropriate responses to the

original requests.

The general structure of this module could be used for many other Topic areas. The

calling sequence is deceptively simple. The recursive revision mechanisms that are

used in their implementation can result in extremely involved interpretations of

Concepts. The level of complexity that results is not surprising given the reasoning

tasks that are trying to be emulated.

6.4.5 Discussion of Designer's Assistant and Further Research
The development of Designer's Assistant is still at a very early stage. The

descriptions of Concepts and Attributes in the current implementation provide the

minimum sorts of information required to allow primitive procedures to be developed

for their interpretation. The development of such primitives is by no means a trivial

problem. This is especially true given that research into the nature and use of

stereotypical information and how it can be expressed in general theories of word

meaning is still in its early stages. There are very few firm guidelines therefore on

what features reasoning with stereotypes should exhibit.

Despite this current lack of understanding of theories of comprehension a positive

start has been made on the problem of implementing a reasoning system that captures

the ideas put forward by Bruner et al on Conceptual Categorisation, Rosch and

coworkers on the use of prototypes, and Johnson-Laird on the theory of mental

models.

Two basic forms of Concept have been represented, namely functional and

non-functional Concepts. The distinction between the two is fundamental as

functional Concepts provide the basis and instrumental direction needed for

implementing a variety of observed problem solving behaviours, e.g. solving by

456

analogy, incremental or gradual forms of learning, etc. The combination of functional

Concepts and internal Concepts provides the possibility of being able to reason about

complex solution techniques before and after their use, implemented in some

efficient, external way. This, of course, is exactly how engineer's currently work

with, say, libraries of numerical analysis routines. The important point to realise is

that since the theory of mental models reduces the role of logic to a task variable as it

were there is no reason why theorem provers cannot be treated in exactly the same

way as, say, equation solvers. Just as a unit operation or plant can be modelled or

mapped down into a set of algebraic equations and then handed over to an equation

solver, so too could propositional or predicate representations of unit operations be

generated and used by a theorem prover to derive some specific theorem.

Non-functional Concepts are usefully split into object like entities and the Attributes

used to describe them. By representing Attributes as Concepts themselves it is

relatively straightforward to create dynamic interpretations of object type referents by

attaching or detaching Attribute referents in different contexts when necessary. It is

then possible to formulate more general reasoning processes that discriminate

between the use of criterial and non-criterial Attributes. It is also relatively clear how

complex problems involving the interpretation of surface level representations, e.g.

ambiguous statements, can be reasoned about using referents within a functional

model framework.

There is a large amount of work that needs to be done in order to further the progress

of developing reasoning mechanisms for Designer's Assistant. The most immediate

problem is that of developing primitives that can map between surface level

representations and functional model descriptions. Work was started on this problem

but was not completed to any satisfactory extent. The importance of this aspect of the

system cannot be overemphasised. A good deal of "everyday" reasoning relies

heavily on making simple inferences from surface level type descriptions of

problems, situations etc. The context of the model of the conversation provides

instrumental direction for guiding any subsequent reasoning. The work is also

essential for the fairly basic task of developing a working interface to Designer's

Assistant.

Work of a more fundamental nature that needs to be done includes:

1. A reassessment of the fundamental word types that should be handled in
Designer's Assistant and to what extent they rely on stereotypical
interpretations and analytic specifications. For example, in formal topics such as
set theory it would be useful to introduce what might be called an "abstract
kind" that corresponds in many ways to natural kind words. Abstract kinds
appear to make appeal to stereotype interpretations but have a strong analytic
component as regards their abstract "structure".

457

Development of equivalence category primitives that allow Topic structures to
be interpreted and revised in a comprehensive way. It is my opinion that these
procedures cannot be sensibly implemented without detailed regard for the use
of Concepts in surface level descriptions, e.g. written problem statements,
simple two dimensional graphics images, etc.
A reassessment, and standardisation, of the various forms that can be currently
used to formulate the different types of Concept descriptions.

Despite the significant research and programming effort that is still required it is my

opinion that a knowledge based system designed on ideas taken from cognitive

science research is indeed feasible. If this is the case then the benefits to be gained

from further development along these lines could be substantial in terms of the

reasoning capabilities of the system.

Chapter 7
Final Conclusions

The majority of the research described in this thesis was completed in the period 1984

- 1988. The final conclusions below therefore postdate the rest of this work by some

two years. The comments made take into account relevant research that has been

published in the intervening period.

The three main research goals of the work are laid out in chapter 1, section 1.9.

The first goal was to investigate and further develop representation techniques that

would be suitable for use in a process engineering design environment. The

investigation was to include:

The representation of objects, their attributes and inter-relationships with one
another.
The representation of problem solving techniques that took into account the
consistent use of data and knowledge in a design.
The explicit representation of an overall design methodology

The second and third goals were concerned with identifying what constraints a design

methodology would place on a representation system.

In view of these goals an extensive study of both conventional integrated design

environments using database technology and state of the art representation techniques

from the field of Artificial Intelligence was made. It was concluded that attempting to

implement the complex forms of representation required using conventional database

systems was incompatible with the stated goal of maintaining the integrity of data and

design knowledge throughout a design process, unless significant additions were

made to the capabilities of these systems. Personal experience with the systems

currently in use in I.C.I. has since confirmed this conclusion.

The study of A.I. representation techniques reflected state of the art developments in

the field at that time. Three main areas were studied and prototype systems developed

in Prolog were used to demonstrate the issues involved regarding their use for simple

design problems:

Rule based production systems - a simple rule interpreter to select heat
exchangers. The flexibility of combining Prolog within a production system was
illustrated.
Blackboard systems - a framework for a modular design environment was
described based on an overall blackboard structure. The system made use of
inherited information within a taxonomy of classes and implemented a more
sophisticated production rule system. Tokens used in rules were defined in
object like structures that allowed the constraints that existed between them to
be specified. Procedural attachment of code was similarly handled in a standard
way. A mechanism was provided to allow "compromises" in the use of data and

application of rules. A simple physical property method selection selection
system was implemented to illustrate the ideas.

3. Frame based systems - the use of object based representations using inheritance
was investigated. A flexible representation environment, CLAP, was
implemented on top of Prolog. The environment includes many of the advanced
features found in current commercial systems. The environment combines
different programming styles and forms of representation useful for many sorts
of design problems : the use of objects, inheritance and message passing,
procedural style method descriptions, and aspects of logic programming.

Considerable effort was made to show how much of this work, as well as standard

heuristic and algorithmic approaches to process synthesis, can be all be understood

and described using basic ideas from graph theory and first order predicate logic. An

understanding of all these approaches and their formulation in a logic framework is

important if sensible comparisons are to be made of the relative merits of the different

programming styles involved.

The combination of all three studies mentioned went some way to addressing the

three aims. The CLAP system best represents this part of the research. The idea

embodied in CLAP was that a variety of programming styles and representation

techniques will be required for a practical programming tool. The use of production

systems can be easily embedded within CLAP as can standard procedural code.

CLAP itself could be used as the implementation interpreter for a module in a

blackboard system. Alternatively it could be used to reimplement the overall

blackboard structure itself by making use of objects to represent blackboards and the

message passing facilities provided.

There are two extensions in CLAP, not available in other systems reported in the

literature, that are of particular relevance. First, CLAP provides a built in way of

explicitly describing relationships between objects. CLAP differs from, say,

Knowledge Craft in that it provides mechanisms not only to work with symbolic

relationships, e.g. "is upstream of', but also to handle the generation of algebraic

forms of constraints and their potential solution. The model building capabilities of

CLAP have been subsequently put to use in the work of Hutton(1990) in the context

of process unit modelling.

The second notable feature of CLAP is the use of what are called extended methods.

Extended methods are intended to allow flexible design methodologies to be

investigated by providing suitable high level constructs in which to describe general,

non-committal forms of process design analysis, i.e. general guidelines on how to go

about solving a design problem. A parallel construct is provided that would allow the

investigation of an A.I.P. approach to process systems engineering design to be

investigated. Such an investigation was not made in this thesis but the idea has been

followed up by Hutton(1990).

During this period of research an appreciation had been gained of some of the more

advanced areas of study in both A.I. and cognitive science. After careful

consideration it was concluded that an overall modular structure for a design

environment based on a blackboard architecture may well be appropriate for a

process design environment but that the representation techniques needed were far

from adequate. Chapter 4 provides an extensive discussion of the shortcomings of

both rule and frame based representations. Alternative logic formulations were

introduced to illustrate some of the problems involved. Unfortunately, many of these

logics are still in an early stage of research and are very difficult to implement in a

general and efficient way.

It was stated, section 4. 1, that two fundamental objectives have yet to be achieved:

A unified and systematic representation of fundamental, heuristic and
procedural knowledge and a consistent means for its interpretation must be
devised.
A means of updating and revising representations of process models in a
consistent way that tackles the problem of arbitrary tokenism must also be
devised.

The remainder of the thesis was devoted to studying these problems. It fell into two

main areas:

A study of the fundamental nature of Concepts and reasoning within a cognitive
framework.
An evaluation of whether such ideas could be captured in a knowledge based
system.

The study of Concepts and simple forms of reasoning about them was deemed

necessary to shed light on the confusion that seems to have arisen from the intuitive

representation and reasoning approaches used in A.I. The study concentrated on early

work on Conceptual Categorisation in the field of psychology, Bruner, Goodnow and

Austin(1956), as well the psychological study of Prototypes by Rosch and her

coworkers(1970's). It also drew heavily on the recent contribution of

Johnson-Laird(1983) to cognitive science in the form of mental models as a basis for

a theory of comprehension.

The study raised some fundamental points concerning the nature of Concepts and

"thought" that have many implications for representation systems. Perhaps the most

important of these is that most Concepts in a theory of comprehension are inherently

vague and are rarely understood in terms of necessary and sufficient conditions. The

theory of mental models well exhibits this viewpoint and makes the fundamental

assumption that the interpretation of Concepts will invariably have to be revised as

reasoning proceeds.

Another extremely important point is the need to emphasise the role of equivalencing

461

in reasoning, i.e. treating discriminably different things in an equivalent way, in order

to simplify and provide direction for reasoning tasks.

The final research effort was a preliminary attempt to investigate whether such ideas

could ever be implemented in a system in order to address the two fundamental

research objectives stated above. The tentative conclusion drawn from the very

limited success of this work was that such a system could indeed be feasibly

implemented. This optimism is based purely on the understanding of the problems

involved gained during the attempted implementation of Designer's Assistant. The

main, and perhaps somewhat obvious conclusion of this final part of the thesis is that

considerable theoretical research effort is still required. The two most pressing areas

are:

The nature of stereotypical information and its relation to different word types
in the wider context of a theory of word meaning.
The instrumental role of models of conversation for communication purposes
and their use in guiding instrumental cognitive activity.

This research is hardly within the traditional scope of chemical engineering. It is my

opinion however that the main contribution that A.I. can make to process engineering

in the future is not in the form of improved solutions to specific design problems.

Rather, it will be in the form of systems that can handle design information in an

"intelligent" manner and allow process engineers to communicate their design

intentions in a way that has a direct effect on the reasoning and tasks performed by

such systems. This is why such emphasis was placed on the role of context and

intended purpose in the discussions in chapter 5.

Perhaps the main research contribution of this work has been to bring together a

number of related ideas from psychology and cognitive science and propose an

overall framework for a reasoning system that could be potentially developed to meet

these long term aims.

Appendix A
Basic Graph Theory Terminology

A graph is simply defined to be a set of points in space (also called "nodes" or
"vertices") which are interconnected by a set of lines. In the case of an undirected
graph the lines are referred to as edges and do not have an associated direction
between the nodes which they interconnect. Thus, an undirected graph 0 is the pair of
sets (V,E) where

V is the non-empty vertex set, and
E is the edge set of undirected pairs of not necessarily distinct elements of V.

For the graph in Figure A.1

V = (v 1 , v21 ... v5),
E = f (v ,v2),(v 1 ,v3),(v2,v3),(v3 ,v4),(v3 ,v5),(v4,v5))

Figure A.!: A Simple Graph

V1

e2 e4

el Z::e3

e6

e5

v2 0

The vertices, v and v1, connected by an edge, e, are called the end points of e. An
edge e is said to be incident with a node v if v is an end point of e. A node v is said to
be adjacent to node v if (v,v) e E. Two edges are also said to be adjacent if they
have a common end point.
The degree, or branching degree, of a vertex v, written d(v), is the number of edges
incident with v.

Directed graphs are more common in A.I. applications than undirected graphs. A
directed graph or digraph consists of a pair of sets (V,A), where

V is the non-empty vertex set, and
A is the set of directed pairs of, not necessarily distinct, elements of V.

The directed pairs (x,y) e A are called arcs or links. If an arc is directed from node n
to n', n' is said to be a successor node of n(or child or offspring) and node n is termed
a parent node of n'.
The number of successors emanating from a given node is called the out-degree
d(n). A directed edge (n,n') is said to incident from n and incident to n'. Similarly,
the in-degree d(n) is the number of directed edges incident to n. A digraph is
balanced if for every vertex v e A, d+(v) = d(v), and a symmetric digraph is one in
which for every edge (v 1,v) there is a complimentary edge ((v,v).

In the case of directed graphs there is a successor mapping
S : V - V, where the image of n under S, S(n), is defined by
S(n) - tn'I(n,n') E A)

Directed graphs are therefore sometimes alternatively represented as a pair (V,S).

An important subclass of graphs are trees. A tree is a graph in which each node,
except the root node, has only one parent node. The root node in the tree has no
parent node. A node which has no successors is called a leaf, tip or terminal node.
The depth or level of a node n in a rooted tree is the number of links between the root
node and node n. A uniform tree of depth N is one in which each node at a depth less
than N has the same branching degree and all nodes at depth N are leaf nodes.
An ancestor of node n is any lying on the path from the root node to node n. If node
n is an ancestor of node n' then n' is a descendant of n, or is accessible from node n.
The path between nodes n 1 and nk is the sequence of nodes nl,n21...,nk1 where each n 1
is a successor of n• 1 , and the path has length k. A circuit is a closed path (that is its
endopoints coincide) and a loop is a circuit containing only one arc. In the case of
undirected graphs the terms chain and cycle are used rather than path and circuit.

A graph G is said to be connected if there is a chain between every pair of vertices of
G. The more precise definition of a tree is that it is a connected graph containing no
circuits.

A.! AND/OR Graphs

Many A.I. problems are concerned with AND/OR graphs rather than the special case
of trees. In general, a node n can be an OR node with respect to one parent and and
AND node with respect to another. Since multiple links can eminate from a node it is
usual to call an AND/OR graph a hypergraph. Instead of arcs connecting pairs of
nodes, hyperarcs connect a parent node with a set of successor nodes. The hyperarcs
are called connectors. A k-connector is directed from a parent node to a set of
successor nodes. If all the connectors are 1-connectors the AND/OR graph is the
special case of an ordinary graph described previously.

Appendix B
Basic Terminology of Formal Logic

The following appendix provides a basic, somewhat informal, definition of the
concepts involved in the simpler formal languages of logic. More detailed and
rigorous definitions can be found in texts such as Marciszewski(1981),
Pospesel(1976), Frost(1986), and Thayse(1988). The propositional calculus is
outlined first and subsequently expanded to cover first order predicate calculus.

B.! Propositional Calculus Terminology

Syntax : The syntax of propositional calculus defines the alphabet of symbols used in
the language and how these symbols can be combined to form legal constructions.
The propositional vocabulary consists of a set of propositions (or propositional
constants) and of five logical connectives. A logical proposition, P say, can stand for
a variety of statements such as "he101 is a pump", "the reactor is overheating", etc.
The convention used here is to use upper case letters for arbitrary propositions, lower
case for well defined propositions. The logical connectives are used to combine
propositions into well-formed formulas (wffs) and are shown in Table 2.a. 1 below.

Table 2.a.1: Logic Symbols

Name 	Symbol Arity\Alternative Symbols

negation 	-1 monadic -, not
conjunction 	A dyadic &,., and
disjunction 	v dyadic 1, or
implication dyadic
equivalence dyadic

The meanings of -, A, and v correspond to everyday usage of these terms. The
definition of logical (or material) implication differs, however, from the normal use
of "implies". Consider the formula H D C, where H is the hypothesis (also called the
antecedent) and C is the conclusion (or consequent) of the implication. Implication H
D C is usually defined as —1H v C, which says that it is true if the consequent is true
(regardless of the antecedent) or if the hypothesis is false (regardless of the
antecedent) or if the hypothesis is false (regardless of the consequent). Similarly, the
equivalence connective is defined as [H Cl A [C D H].
It is easily shown that any n-adic connective can be represented using these basic
connectives. A simple example is that of representing "if X then Y else Z", which is
modelled by the formula (X Y) A (—X D Z).

A literal is just a proposition or the negation of a proposition. Formulas built using
the A connective are called conjunctions, each component formula termed a conjunct.
Likewise, a disjunction is built up with the v connective, with disjunct component
formulas. Any conjunction or disjunction composed of wffs is also a wff. The
negation of a wif is also a wff.

The semantics of any formal language, including propositional calculus, defines how
meaning is assigned to well formed sentences. Propositional logic is concerned only
with sentences which are true or false. More formally, the semantic domain {T,F} is
introduced, sometimes represented by (1,0). An interpretation function, or
interpretation of a formula, is a function which assigns a truth value to each

proposition. The domain of the function is the set of propositions, and an
interpretation of a formula which is true is called a model of the formula. The
semantics of propositional logic are compositional, or denotational, in that the
meaning of a formula must be a function of the meaning of its components. This
means that given the truth values of the components of a wff containing logical
connectives, the truth value of the overall formula is uniquely determined. The
standard connectives above are, therefore, described as truth-functional in nature.
The semantics of each connective are conveniently described by truth tables as shown
below for the dyadic connectives, Table 2.a.2.

Table 2.a.2: Truth Table for Dyadic Connectives
X 	Y 	XAY 	XvY XY XY
T 	T 	T 	T T T
T 	F 	F 	T F F
F 	T 	F 	T T F
F 	F 	F 	F T T

It is a trivial matter to combine such tables to assign a truth value to an arbtrarily
complex formula. The use of truth tables to determine properties of formulas such as
satisfiability, validity, equivalence and logical consequence, is called semantic
reasoning.

A formula or set of formulas is satisfiable if there is at least one truth assignment
which satisfies it, ie if it has a model and can be interpreted value T, e.g. p v q is
satisfied when p is true.

A formula or set of formulas is universally valid when it is always interpreted as true
for any interpretation of the constituent propositions, e.g. —t-- p p or p p.

Two formulas are equivalent if they are assigned the same truth value by every truth
assignment which is appropriate to both formulas. This, of course, is just the
definition of the logical connective

Valid formulas are often called tautologies and the notation A means that A is a
tautology. If S is a set of formulas then S t= A denotes that all interpretations which
satisfy S also satisfy A. A is then said to be a logical consequence of S. A tautology,
therefore, is a logical consequence of the empty set. If a formula can be satisfied, i.e.
it is consistent, but is not valid then it is said to be contingent. If a formula cannot be
satisfied under any interpretation it is inconsistent, or unsatisfiable e.g. P A —p is
inconsistent.

Finally, given the above notation it is clear that

B I=A =(BA),

which says that A is a logical consequence of B if and only if the material
implication, or conditional, B A is a tautology. This can be extended to

where H are hypotheses and C is a conclusion. A fundamental problem in logic is to
determine whether a formula C is a logical consequence of a set of formulas S. This
is called the deduction problem. It reduces therefore to showing that the relevant
conditional is a tautology. Now, a formula C is a logical consequence of S if and
only if Su'Cis inconsistent, or alternatively a set is inconsistent if and only 4 t. Cs; q,

logical consequence of it. This is called the deduction principle and is expressed as

466

(H1 ,...,11) 	 i= F.

The use of the deduction principle is central to many logical theorem proving
techniques.

Clauses and Normal Forms Many theorem proving techniques require that a wif be
first transformed into an equivalent formula expressed in "normal" or "canonical"
form. A basic form referred to is a "clause". A clause is simply a disjunction of a
finite number of literals, eg the wff 0 1 v 12 v ... v i) is a clause. The empty clause is
the only inconsistent clause and is usually represented by F.

There are two normal forms used in propositional logic, namely conjunctive normal
form and disjunctive normal form. A formula is in conjunctive normal form if it is a
conjunction of disjunction of literals, ie the conjunction of a finite number of clauses.
It can be shown that any wif in propositional logic can be transformed into
conjunctive normal form (eg see Frost(1986), p194). The dual concept of a clause is
a cube. A cube is the conjunction of a finite number of literals. Likewise, disjunctive
normal form is the disjunction of a finite number of cubes. Any wff can also be
reduced to an equivalent disjunctive normal form.

An important subclass of clausal form is the Horn clause. A Horn clause is a clause
containing at most one positive literal such as {-p, —q, —zr, s} which is equivalent to
the conditional (p A q A r) D S.

A definite Horn clause contains a positive literal otherwise it is termed a negative
Horn clause. A positive unit clause consists solely of a single positive literal. This
can be used to represent an unconditional fact.

The use of Horn clauses are important in practice and are the basic representation
form used in the programming language Prolog (Clocksin and Mellish,1984"). The
Prolog form of the conditional (p A q A r) s is

S p,q,r.

B.2 Predicate Calculus Terminology

Syntax: The basic components of predicate calculus are variables, individual
constants, predicate constants, the connectives (-,, A, v, D,), the universal quantifier
V (for all), and the existential quantifier 3 (there exists).

Variables are introduced to represent general statements about "classes" of
unspecified individuals rather than fully specified individuals, e.g. in the following,

Every pump has a shut off-head.
P101 is a pump.
Therefore, P101 has a shut off-head,

general denotations like the word pump are called variables while particular
denotations, like P101, are called individual constants.

Predicate constants, often just referred to as predicates, are used to make statements
about individuals, e.g in 'P101 is faulty', 'is faulty' is a predicate constant. The
expression is 'faulty' has no truth value itself. A truth value can only be assigned to a
predicate constant if it is applied to an adequate number of arguments, called terms.
The number of arguments is called the arity, and the application of the predicate
constant is called the predicate form. For a predicate constant P of arity m, and terms

467

, the predicate form is denoted by

P(t1, ...,), e.g. is_faulty(P101)

A term is either a variable or an individual constant. It is worth noting that
propositions are merely predicate constants of arity 0.

Predicates of arity one can be used to define "sets" or "sorts", e.g. man(x), aniinal(x),
vessel(y), reactor(Y). Some sorts may well include subsets of other sorts in their
definition such as animal and human.

Quantifiers, Scope and Lambda Notation The principal use of the existential and
universal qualifiers is to make useful statements which contain variables in their
formulas, e.g. all tanks are types of vessels. The formula

(V x) P(x)

has value T as an interpretation when the value of P(x) under this, interpretation is
true for all assignments of x to entities in the domain. The formula

(3 x) P(x)

has value T for an interpretation when the value for P(x) under this interpretation is T
for at least one assignment of x to an entity in the domain. The scope of a
quantification refers to the formula to which quantification is being applied. An
occurrence of a variable x in a quantification, Vx or 3x, is said to be quantified and
all other occurrences of x in the scope of the quantifiication are said to be bound.
Variables which are neither bound or quantified are said to be free. The notion of
bound variables as "place holders" is more clearly expressed by Lambda notation
both in mathematical formulas and logic formulas. Consider the simple non-linear
function.

f(x) = sin(x) +5

This is expressed in Lambda notation as

f = Ax.sin(x) +5

In this notation x does not denote any object but the "place" of an object which will
be occupied by other objects when the function f object is used. The object status of f
is also better emphasised in this notation. Similarly in logical expressions, if L is a
logic formula and if x is a variable of L then ?.xL is called a A-expression. The
lambda operator is a useful extension to predicate calculus and results in the Lambda
Calculus. This is briefly described below.

First Order Predicate Calculus

A basic extension to the predicate calculus described above is the replacement of the
concept of individual constant by the more general concept of functional constant.
Functional constants have well defined arities like predicate constants but differ from
predicates in that they do not have the values T or F assigned to them. Instead, when
a functional constant is applied to an adequate number of terms it returns in "object"
in the entity domain related to its arguments. e.g. the functional form, father(JOHN),
can be used to denote the mapping between the entities JOHN and his male parent.

Functions can be recusively applied as in father(father(JOHN)). The concept of a

468

term is now extended to cover either a variable or a functional form. Predicate forms
can, therefore, use functional forms in their argument list,
e.g. 	married(father(JOHN), mother(JOHN)),

is_controlled(outlet_siream(R1O 1)).
Individual constants are just functional constants of arity 0.

Given this definition of functional constants and the earlier definition of
quantification, a logic is said to be first order if it permits quantification over

viials_butnoL.oer...pie4icate or functional constants. This implies that formulas
such as (VP) P(x) are not wffs in first order predicate calculus. Higher order
languages permit such formulas.

B.3 Substitution and Unification

A substitution is a mapping from the a set V of variables with a set T of terms. A
substitution s is represented by a set of ordered pairs (t 1/v 11 t2/v21 ..., Jv). The pair
t/v1 means that term is substituted for variable v 1 throughout a formula. The
process of finding substitutions of terms for variables to make expressions identical is
called unification. This is an extremely important technique in theorem proving and
more generally in symbolic computation.

Consider the literal suitable_estimation_method(p,t,fluid,METHODA), where p,t, and
fluid are variables, METHODA is a constant. The substitution instance (zip, w/t)
giving suitable_estimation_method(t,w,fluid,METHODA), is called an alphabetic
variant of the original literal since the variables have merely been renamed. The
substitution (lO/p, 273/t, METHANE/fluid) results in a ground instance since none
of the terms in the literal contains a variable. A term t 2 is said to be an instance of
term t 1 if there exists in substitution s such that t2 = s(t1). If a term contains no
variables it is said to be fully instantiated. Each occurrence of a variable in an
expression must be substituted by the same term throughout the expression such that
distinct variable names remain distinct after any substitution. This is called the
uniform substitution rule.

If a substitution s is applied to a set of expressions (E.) the substitution instances are
denoted by E 1s. A set of expressions is said to be unifiable if there exists a
substitution s such that E 1 s = E2s = ... = Ens. s is said to be a unifier since the set (E 1)

collapses to a singleton. e.g. The substitution s = {CHLORINE/x, 29'/ unifies
{EXPENSIVE(x,COST(x,t),298),
EXPENSWE(x,COST(x,298),298))

to give 	 {EXPENSIVE(CHLORINE,COST(CHLORINE,298),298)).

Most unification algorithms are concerned with finding the most general unifier of a
set of expressions. In the last example, for instance, there was no need to substitute
CHLORINE for x. This unified literal can be expressed by

1. = (1) = s02) = ... s(l), where s = s1us2u ... us.

s is also referred to us the unifying composition. Table 2.a.3 below shows some
examples of unifying compositions.

469

Table 2.a.3: Example Unifications

S i
[A/y)
{f(z)/x}
(Aix)
(g(y)/x)

S2 su
(y/x) {A/y,A/z)
{f(A)/x} (f(A)/x, A/z)
(B/x) inconsistent
{
f(y)/y) inconsistent

The last entry is important as it illustrates that no variable x can be replaced by a term
containing that same variable which does not reduce to x. In such cases unification is
impossible. Such a verification, called the occurs-check, is often omitted when
efficiency is important as is the case of the Prolog language.

Unification is a naturally recursive process of linear complexity in the size of the
terms to be unified. Figure 2.a.1 below uniformally outlines the UNIFY algorithm
(Paterson and Wegman(1976), Nilsson(1982)) which will find the most general
unifier of a set of unifiable expressions or return failure. The algorithm assumes that
a literal will be expressed in list-structured form, e.g. P(x,y,f(z))is written as
(P x y (f z)) in list structured form.

Figure 2.a.1: A recursive UNIFY algorithm

UNIFY(expressions El, E2)

STEPS

1) 	If El or E2 is an atom then interchange so that
El is an atom and DO block SUBSTITUTE-CHECK
(an atom is a predicate or functional or
individual constant, or a variable or a negation symbol)

BLOCK SUBSTITUTE - CHECK

if El and E2 are identical return EMPTY SET.

else if El is a variable START

2.1) if El occurs in E2 return FAIL

2.2) else return {E2/El}

FINISH

else if E2 is a variable return {El/E2}.

else return FAIL.

END BLOCK SUBSTITUTE CHECK

 Assign Fl to first element of El, Ti to rest of El.

 Assign F2 to first element of E2, T2 to rest of E2.

 Assign Sl to result of UNIFY (Fl, F2)

 If 51 = FAIL return FAIL.

 Assign Gl to result of applying Si throughout Ti.

 Assign G2 to result of applying 52 throughout T2.

 Assign S2 to result of UNIFY (Gl, G2).

470

If S2 = FAIL, return FAIL.

Return the composition of Si and S2.

B.4 Prenex, Normal, Skolem and Clausal Forms

In propositional logic conjunctive and disjunctive normal forms, as described earlier,
were introduced to simplify testing for consistency or validity. These forms can be
directly extended to predicate logic but are restated in terms of a more general form,
namely prenex form. The definition of a prenex form is simply a matrix preceded by
a prefix which is a finite sequence of quantifications of distinct variables, e.g.
Q1x1 Q2x2...QM 	is in prenex form where 	Q1 	denotes either 	V or
and M is a quantifier free formula, the matrix. It can be proved that every
logical formula can be stated in an equivalent prenex form (see Thayse, 1988).
The following algorithm steps outline the process.

Eliminate equivalence and implication connectives
by use of rewriting rules.

Reduce the scope of all negation symbols to apply
at most to one atomic formula by use of rewriting rules, eg
--A -) A, -iVxA -3 TA - A
-2A -5 Vx-,A, -n (A A B) -5 (-,A V -iB)

Bound variables are renamed if necessary such that
free and bound variables do not share common names.
This is required within the scope of all quantifiers.

referred to as standardising variables

All quantifictions are moved to the front of the
formula by use of rewrite rules, e.g.
(VxA A VxB) -s Vx(A A B)

In predicate logic a clause is the disjunction of a finite number of literals; a
cube is a finite conjunction of literals; a conjunctive normal form is a prenex
form whose matrix is a finite conjunction of clauses; and a disjunctive normal
form is a prenex form the matrix of which is a finite disjunction of cubes.

In order to further simplify handling quantifiers Skolem forms of formulas are
normally used. Any formula A can be expressed in a form SA,
of simpler structure, such that A and SA
are either both consistent or inconsistent. This form is called the Skolem form
and is derived as follows.

Ensure the formula is closed,
i.e. does not contain free variables.
If formula A has free variables x 1 ... x.
then the formula 2x 1 ... 2x, A is closed
and is consistent if and only if A is consistent.

Translate the formula into an equivalent prenex form.

Transform the matrix of this form into equivalent
conjunctive normal form.
This results in a closed prenex form.

Steps 1 to 3 are preliminary in nature.
The skolem procedure itself now follows:

For each existentially quantified variable associate
a functional form whose functor is a new, distinct
functional constant and whose arguments are any universally

471

quantified variables which occur before the existential
quantifier, e.g. for

y) [(3x) P(x,y)]
associate g(y), say, with x.
The function g(y) is called the Skolem function and
maps each value of y into "the x that exists".

In the matrix of the formula replace all occurrences
of existentially quantified variables by their associated
functional forms.

Remove all existential quantification from the prefix.
This results in the Skolem form.
e.g. (Vy)[(Bx) P(x,y)J becomes (Vy) P(g(y),y)

A skolem form, therefore, is a closed prenex form such that the prefix only
contains universal quantifiers. It is usual to drop the prefix and implicitly
assume universal quantification.

A clausal form is simply a Skolem form whose matrix is transformed into
conjunctive normal form. Nilsson(1980) describes an equivalent process in some
detail with examples. Clocksin and Mellish(1984) present a Prolog program to
transform formulas to clausal form. See also Bundy(1983).

B.5 Formal Deduction Systems, Rules of Inference, Theorems and
Proofs

The use of formal languages such as propositional logic and predicate calculus
for theorem proving purposes often involves the use of a formal deduction, or
more generally production, system. The purpose of such a system is, given a set
of wffs S, to deduce logical consequences of S. In formal deduction systems the
mechanisms by which this is achieved are purely syntactic in nature and can
proceed, if necessary, without reference to truth values.

The type of systems most studied in logic are called axiomatic systems. An
axiomatic system consists of a formal language, a set of logical axiom schema,
and a set of inference rules. A logical axiom is a universally valid wff of the
formal language e.g. P -+ [P v QJ.
An inference rule defines the syntactic operation, or mechanism, by which new
valid statements can be derived from existing ones, i.e. they allow deductions to
be made. A well known inference rule is Modus Ponens which states that given
P - Q and P then infer Q.
In predicate calculus the derived wffs are called theorems. A
derivation or proof of a theorem is simply the ordered sequence of axioms and
inference rules that were invoked to produce that theorem.

There are two important properties of a formal deduction system: soundness and
completeness. A system is said to be sound if all of the formulas which can be
derived from a set of wffs S are also logical consequences of S, i.e. every
theorem is a valid formula. If a formula A can be derived it is written asi-A.
A sound system has, therefore, the property that

-A— t= A.

The converse is true for completeness,

472

=A — i-A.

That is every logical consequence of a set of wffs can be derived from that set. A
sound set of inference rules is an essential property of useful formal systems
but a complete set of rules is not always required, although usually desired.

Finally it is worth noting that there is nothing unique as regards the set of
axioms and inference rules that are adopted. For example, Lukasiewicz's (1929)
axiomatisation of prepositional logic consists of the axioms

-,P -4 P] -4 P
P - -,p - Q]
[P 	Q1 -' [(Q-4R] -3 [P -3R],]

together with the inference rules Modus Ponens and Uniform Substitution
regarding any propositional variable in a derived theorem. For example from
P—[-1P—*Q]infer A—[--,A—Q].
Hubert and Ackerman (1928), however, chose a less obscure but less concise set
of abbreviations and axioms:

Let 	 P -4 Q stands for -iP v Q
P A Q stands for -i[--iP V -iQ]
P - Qstandfor [P -4Q]A(Q -4 P],

with axioms,
[P v P] -) P
P -) [P v Q]
[P v Q] -3 (Q V P]
[P -9 Q] -4 [[R v P] - [P v Q]]

Proofs which use a set of axioms and a single inference rule, such as Modus
ponens, are usually referred to as Hilbert-Like" Proofs. An alternative approach is not
to use axioms at all but only inference rules resulting in "Gentzen-Like" proofs after
Gentzen (1934). The latter type of system is called a natural deduction system.
Inference rules are of the form

S 1 _... Sn
S

which indicates that S can be deduced from S 1 ... S.

A set of introduction and elimination rules are defined for connectives and quantifiers
e.g. the introduction rule for A is

S 	A, S
S => A A B

The symbol =:> is used in this context to indicate an inference or a derivation and as
such is a formal object (or metasymbol) representing the reasoning itself.

Finally, a theory T consists of a formal system together with a set of wffs, collectively
referred to as the "proper axioms" of T, which are known to be true in some set of
intended interpretations. In particular it is those interpretations which satisfy all the
proper axioms of the theory. A theory can, therefore, be used to represent a "given
situation" or "state of affairs" from which further conclusions can be drawn.

473

B.6 Lambda Calculus

Lambda calculus is an extension of predicate logic used in modal or intensional
logics. Modal logics are concerned with "possible" worlds, i.e. hypothesised
situations, and require a mechanism for expressing properties of, as yet, unknown
objects. At some later point in the reasoning process these unamed objects may be
named or identified with a given referent. The lamba operator, A., is used to express
the required properties as follows.

Set notation is familiar in mathematics. To express, for instance, the set of process
units in a plant one could write

{ulu is a process unit)

The set of conditions on any variable u can be extended as necessary,

e.g. (ul (u is a process unit) and (throughput of u> 10 te) ...),

and multiple variables can be used,

e.g. {u,p: (p is a plant) and (u is a process unit in p)}.

The set expression merely specifies, or defines, the set.

Similarly, a lambda expression denotes some set of objects, possibly singleton. For
example,

Xx[design_team_task(alistair, projecti, x)],

denotes the set of tasks that alistair has to perform in projecti. The lambda operator
is similar to the existential and universal quantifiers in that it serves to bind the
occurrences of variables.

e.g. Xx,y [design_team_task(x, projecti, y)]

denotes the set of pairs (x,y) that result in the predicate design_team_task being
satisfied.

If F is a logic formula then 2LxF is a Lambda expression denoting some set. An n-ary
Lambda expression

x12 A.x21 ... ,A.xF

consists of a body F together with a list of n variables called the formal parameters.
The values of the lambda expression A.x 1 , ... , A.x F are the values of the n-ary
predicate obtained by assigning instances to the formal parameters, e.g.

Ax,y(x + y) applied to 4 results in A.y(4 + y)

F can, in fact, be a functional specification, i.e. one returning an object rather than a
predicate. This is how it is normally used in modal logics.

Consider, for example, a separation synthesis problem. The problem is to select a
separation unit, as yet unknown, that must satisfy some required properties p1 ... Pn
e.g. achieve 99% separation. This can be written as

474

A.x[p1Ap2A ... p]

This functional specification can be created as an object in its own right and can be
"applied" to other objects, i.e. arguments, like any functional constant in predicate
logic. This is a subtle point for the novice, if the synthesis problem is represented,
say, by the predicate

design_item(separation_unit ??var)

then ??var has to be some function which evaluates to an object in a possible world.
A logical conjunction can't be used directly as no such object might exist. What is
required is to be able to reason about a hypothetical object which stands for ??var and
has a specification of its properties.

B.7 Validity checking using the Tableau Proof Method

The top-down tableau proof method is most easily described in the context of
checking the validity of a formula by means of search of a counter example. A
simple example from Frost(1986) is given below.

A tableau consists of two columns, a left column and a right column. Formulas in the
left column have a truth assignment of T, while those in the right column have a truth
assignment F. A tableau can be "split" when there are two, or more, ways in which a
sub-formula can be assigned the required truth value.

Consider the formula [EQ v —,PJ - P] -> P. To check if the formula is valid an
assignment of false is made, i.e. place the formula in right column.

I [EQ v -,P] -* P1 -+ P

A formula of the form A -9 B is false if A is T and B is F. So the tableau expands to

[Q v -iP) -* P 	I

The sub-formula in the left column can be assigned with value T in two ways; either
[Q v —1P] is false or P is true. So the tableau is split, and shown in full, as follows:

I [[Qv-,P] -*P]
[Qv -iP] -*P 	I P

'Qv-,P 	 P 	I
'tableau 10 	 tableau 11

using the L -9 rule.

The sub-proof represented by Tableau 11 "closes" since P occurs in both columns
indicating a contradiction. The proof continues with tableau 10 which requires that
(Q v —1P) be false. This can only happen if both Q and —P are false giving

I Q v
IQ
' -'P

P1

Finally, —1P can only be false if P is true, also shown above. Again this sub-proof
closes as a contradiction in the truth assignment of P occurs.

The following eight simple rules are used to construct tableau proofs.

475

(R -) : If A -4 B occurs in the right column, put A in the left column and B in the
right.
(L -p) : If A -* B occurs in the left column, split the tableau. Write A on the right of
the new tableau and B on the left of the old one, i.e.

A -) B I
IA

(R A) if A A B occurs on the right, split the tableau. Write A on the right of the new
one and B on the right of the old one.

I AA B
1A - 1 B

(L A) : if A A B occurs on the left, put both A and B on the left.
(R v) : if A v B occurs on the right, put both A and B on the right.
(L v) : if A v B occurs on the left, split the tableau. Write A on the left of the new
one and B on the left of the old one.

A 	BI
Al 	Bl

(R -,) : If -1A occurs on the right, write A on the left.
(L -) : If -1A occurs on the left, write A on the right.

The binary labelling scheme can be conveniently used to reflect the structure of the
proof.

Full details of the method can be found in Zeman (1973)

B.8 Identifying Paths in Matrix Connection

The matrix connection method requires an efficient way of eliminating paths
containing a subpath Pa which has a connection, i.e. a complimentary pair of literals.

The following simple example from Frost (198??) outlines the approach. Consider
the set of clauses

Cl: {P,-1Q} 	C2: {-,P,R} 	C3: (-1R)
C4: (P,S) 	C5: (Q)

The steps are-

Choose any clause, Cl say, and any literal in that clause, P say.
(i.e. a left to right depth first search choice will be used here but any strategy
can be used).
Put all other literals in the chosen clause, Cl, on a stack,
i.e stack = (-iQ)
Identify a clause with a complimentary literal, -1P, to the chosen one, eg C2 will
do. All paths containing this connection can now be discarded. In this
example, all subsequent paths through C3 C4 and C5.
Combine by selecting another literal in the last chosen clause, C2 here, and
stack the rest. R is the only literal left to choose and there are none to stack.
Repeat the process form step 3 but avoid previously chosen clauses, In this
example the pair R, -1R connects the clauses C2 and C3.
When no literals are left in a clause, eg. C3, then backtrack to a literal on the
stack, -Q, and repeat from step 3.

In this example -iQ in Cl can connect with Q in C5. On backtracking this time there

476

are no more literals on the stack and the procedure terminates.

For a more detailed description of the alogrithm see Bibel (1982).

Appendix C
Uncertainty Factors and Probabilities in Production Systems

C.1 Confidence Factors in Mycin

Consider a set of diseases Dl, D2... which are exhaustive and mutually exclusive.
Baye's theorem results in the following formulae for the probability of a given
disease given some evidence e:

P (Di 1e) = P(D)P(eIDi)
j1P(D)1, (eID)

The left hand side is a useful piece of information. The right hand side involves the
probabilities of diseases occurring and the probability that evidence e is observed in
the presence of a given disease. Since evidence is usually combined in an
incremental manner the equation is usually modified to the form

P (Di 1E2) = P(eID 1&E1)_P(D 1 IEl)
P(elD&E1) P(DJEl)

where El is the set of all items of evidence so far and E2 is El plus a new item of
evidence e.

This is not particularly useful in a production system since there will typically be a
large number of diseases and a large number of items of evidence to consider.
Computation of probability updates would be expensive. It is unlikely, however, that
good prior probabilities for all items of evidence could be gathered from medical
records to use in this formula.

Mycin trys to get round this problem by introducing a certainty factor to represent the
belief in a hypothesis h given some evidence e. It is defined as Cf[h,e] = MB[h,e] -
MD[h,e], where MB[h,e] is the measure of belief in hypothesis h and MD[h,e] is the
measure of disbelief. They are both numbers which represent the degree to which
evidence e increases the belief or disbelief in hypotheses h.

Their definition is borrowed from subjective probability theory. If P(h) represents
someone's degree of belief in h, and P(hle) is greater than P(h) then evidence e has
increased their belief and decreased their disbelief in hypothesis h. The proportionate
decrease in disbelief is given by

?(hle) - P(h)
1 - P(h)

Conversely if P(hle) is less than P(h) then e has lowered the belief in h, the
proportionate decrease in belief being

P(h) - P(hle)
P (h)

The first of these is taken to be MB[h,e] when p(hle) > p(h). MD[h,e] is taken to be
the latter when p(hle) <p(h). The definitions used are written as

MB[h,e] = 1 	 , if P(h) = 1
max(P(hle), P(h)) - P(h) 	, otherwise

max(1,O) - P(h)

MD[h,e] = 1
	

if P(h) = 0

479

min (P(hle), P(h)) - P(h) 	, otherwise
min (l,O) - 2(h)

If one measure is non-zero the other must be zero for that hypothesis and evidence
since an item of evidence cannot change the degree of belief in both directions at
once. Also, if P(hle) = P(h) then both measures are zero since the evidence has not
changed the degree of belief. It is worth noting that

If h is certain then Cf[h,e] = 1
If not(h) is certain then Cf[h,e] = -1
If h is independent of e then Cf[h,e] =0
In any case Cf[h,e] + Cf[not(h),e] =0

The problem with these definitions is that there is no direct relation that can be used
to calculate Cf[h,e 1&e2] given Cf[h,e 1] and Cf[h,e2]. See Adams(1976) for a full
discussion, also Buchanan and Shortcliffe(1984, Chapter 12).

C.2 Propagating Probabilities in Prospector

The odds of a hypothesis H with probability P(H) is given by

0(H) = P(H)/(l - 2(H)),
i.e. P(H) = O(H)/(l + 0(H))

The odds of H given evidence E are

0(HIE) = 	P(HIE) 	= 	_(IH).P(H) 	= LS * 0(H)
P(not(H)IE) 	P(Etnot(H)).P (not (H))

LS, the level of sufficiency, is estimated prior to calculation and used to label the
inference links between nodes in an inference net. Similarly,

0(Hlnot(E)) = LN* 0(H)

LS and LN are just multiplicative factors, i.e. likelihood ratios, indicating the effect of
evidence E, or lack of it, on the odds of hypothesis H.

Prospector has prior probability estimates of each assertion node, P(E). User replies
to questions result in modified probabilities, (P(EIE'). A linear function is used to
approximate the effect of evidence E' on hypotheses H.

P(Hlnot(E)) +2(H)_-P(Hlnot(E)).P(EIE') if P(EIE')<P(E)
P (E)

P(lflE') =
2(H) + P(HIE) - P(H).(P(EIE') - 2(E)) 	if P(E)<P(EIE')

- 2(E)

The first form is used when P(EIE') falls below the prior probability,negative
evidence, and the second form is used when P(EIE') is estimated above the prior
probability.

The problem is how to calculate the effect of several pieces of evidence E 1 on a
hypothesis H. If LS 1 is the likelihood ratio for each piece of evidence E 1 and it is
assumed the E 1 are independent under hypothesis H and not (H) such that

P(E 1 EIH) = H 	P(E1IH) 	and

P (Elf EI not (H)) = fl 	P(E1 I not (H))

480

then the posterior odds are given by

0(HIE 1 E) = (1711P.1 Ls) *0(H)

If any E is false then LN is used instead of LS. The problem is that the E . 	only
known to be true with probability P(ElE') and the resulting calculation becomes
somewhat complex. To avoid this a heuristic estimate is made:

0(1-lIE') = (fl11.1 L1')*O(H)

where L1 9= O(111E 1 ')/O(H), the effective likelihood ratio.

The valves for O(HIE 1 ') can be obtained given the earlier formula for calculating
P(HIE)

Ross(1987) gives the following example to illustrate the method. Consider the simple
fragment of inference net in Figure?? Suppose the user has indicated that Hi is
definitely true. Then the odds for H2 are

0(H2IH1) = 20*(0.03/(1_0.03)) = 0.618557
so 	P(H21111) = 0.618557/(1+0.618577) = 0.382166

The odds for 113 now depend on 112 and Hi. The value for LS is modified from 300
to 300*((0.382166 - 0.03)1(1-0.03)) = 108.917 So, 0(1131112) =
108.817*(0.01/(10.01)) = 1.10017 and P(1-131F12) = 1.100171(i+1.10017) = 0.523849

These calculations assume that each E is conditionally independent of H or not(H).
Probabilities at AND and OR nodes are taken to be the minimum and maximum
values of the component nodes rather than attempt to perform the more rigorous
calculations.

Figure C.1 : Fragment of Inference Net

P=0.03 	 P=0.01

~~LS = 300 LS=20

Appendix D
Formalisation of Possible World Semantics

A non-empty set of possible worlds connected by a binary accessibility relation R is

called a universe W. If a and b are two worlds in W and if world b is accessible from

world a then aRb holds.

The pair (W,R) is called a structure. The formal properties of R, eg reflexivity,

transitivity, determine the formulas that are deemed to be valid.

Let L be the language, ie form of modal logic, and P be the set of propositional

constants of L. A valuation u is a mapping WxP into (T,F). This associates a truth

value with each propositional constant in each world W. A "model" is a 3-tuple

(W,R,u). A model indicates in each world of W the set of propositional constants of L

for which the valuation i. has assigned the value T.

The semantics of a modal logic are defined in terms of a consequence relation.1=

between models and modal formulas.

The notation (W,R,u) =f is used to indicate that a formula fL is true in world in w

with respect to the model (W,R,u).

The relation 	is defined as:

1.(W,R,u)
(W,R,u) 	F
(W,R,u) '=Wf if u(w,f) T and f is a propositional constant of L
(W,R,u) 	fg if (W,R,'u) 	f holds only when (W,R,u) 	g
(W,R,u) 	Lf if for any world x eW such that wRx, one has (W,R,u) I=, f.

The last rule is important in that it says a formula Lf is true in a world w of a model

(W,R,'u) if the formula f is true in all the worlds of the universe W which are

accessible from the world w.

The above description is necessarily brief. For a full introduction see Chellas (1980).

It is hopefully clear, however, how possible world semantics relate to multiple

contexts in a truth maintenance system, see Section 4.3.1.

Appendix E
Utility Files in Designer's Assistant

The main utility files developed for Designer's Assistant are briefly mentioned
summarised here. All that is described is the main area of functionality of the clauses
in each file. The utilities are all related to the notion of primitive tokens used to
describe Concepts and their use in interpreting and manipulating functional models.

The system is implemented in Edinburgh Prolog. The utilities make heavy use of the
pattern matching and backtracking facilities provided. The files are listed below in
alphabetic order.

addfilts : utilities to add a referent to the list of "promoted" referents that are
favoured for resolving surface level descriptions.

algebra.con (Inc, .pro) : the basic concepts in algebra used to solve linear
equations.

compatcode : utilities to decide if referents can be treated as equivalent based on
Topic structure.

concept: the utilities needed to access the various parts of Concept descriptions.

constraints : an important set of clauses that attempt to match constraints between
two contexts. This involves setting up setting up "intensional" type referents in the
functional model with associated constraints on their interpretation.

context: The top level goals used to match contexts and their constituent referents
against one another. Subtle use of Prolog backtracking is made to emulate the
recursive revision of interpretations.

dautils : a wide variety of low level Prolog utilities, e.g. list scanning and
manipulation functions, Prolog structure matching utilities.

filterdown, filterup: These clauses when combined together provide a sophisticated
bidirectional search mechanism used to try and resolve the use of referents.
Filter_down is used to take Concept descriptions, set up potential referents and then
start a top down search to resolve those referents. Filter_up uses stereotypical
inforamtion to propagate existing referents "up the search tree". Both sets of clauses
make use of the notion of a promoted referent set to help reduce the search effort.

filters : A set of utilities used in the filtering search mechanism, e.g. promoting
referents, removing them, resolving them, handling hanging referents, etc.

fmutils : the low level utilities for accessing referents in the functional model, e.g.
adding referents, creating them, system level tests.

input : various input utilities including those to add assumptions to a referent
description.

interp.pro: the top level set of clauses used to implement the interpretation of the
various primitive tokens in Designer Assistant's Concept description language.

loosefilters : Utilities used in the filtering mechanism. These are used to delete
referents that are thought to be inappropriate to an interpretation.

483

maths.con: some simple Concepts to describe equations.

newpatchoice: utilities to select parts of stereotypical descriptions to further resolve
some intepretation.

parser: a parser used to handle special formats of surface level representations, e.g.
equations that might be mixed in with sentences.

pending: The utilties used to get pending input of the I/O manager.

plan : the clauses used to set up and interpret functional plans in a procedural like
way, i.e. left to right, top down order. This involves mapping referents into and out of
nested interpretations, process: the top level clause for processing" a context when
handling input.

runinput : the top level clauses used to get input and drive the subsequent
interpretation.

rearrange: utilities used to scan or reset the pending input. This can involve adding
partially processed input back on to the pending input so that it may be used to match
up other stereotypes not yet considered.

runmodule : the top level clauses used to interface a module to the rest of
Designer's Assistant.

sets: the various Concepts used to describe simple ideas in set theory.

structure.utl : various utilities to analyse the $structure parts of Concepts. These
have an important effect on the referent filtering utilities.

wordtools : a set of clauses for handling "word" Concepts, that is the treatment of
words in a language as Concepts in their own right. These Concepts can be used to
interpret input or generate output as required.

D.1 Example of a Word Concept

It was stated in chapter six that the interpretation of surface level representations had
been started but had not been successfully completed. This is not quite true as many
of the utilities needed to handle surface level input in the form of natural language
sentences have been worked on. In particular the referent filtering mechanisms were
developed, for the most part, to handle interpreting Concepts in the context of
representing surface level forms in the functional model. Following the theoretical
work of Hudson(1984) a novel form of natural language interpretation was worked on
that avoided a strict syntactic analysis as is usually found in natural language front
ends. Instead it is recognised that words in English are Concepts themselves that can
be interpreted in much the same way as any other Concept. Hudson realised the
importance of relating these Word Concepts to the other mental Concepts that they
denote in the context of a conversation. Chapter 6 makes the point that this
connection between Words and Concepts must be made in order to take part in
conversations in an "intelligent" way, e.g. resolving ambiguity in a given context.

The filtering utilities in Designer's Assistant are, therefore, an attempt to provide a
context dependent interpretation mechanism that can handle both the "syntactic" and
"semantic" aspects of Word interpretation. This differs markedly from many natural
language front ends which attempt to perform a rigorous syntax analysis followed by

484

a "semantic" interpretation. It takes little reflection to realise that this cannot be a
plausible approach in a cognitive framework given the very limited grasp of grammar
that many competent speakers of English possess (present author included !).

As a matter of interest, some Word Concepts are presented below that indicate the
sorts of representations that were worked on. The context in these Concepts refers to
referents in the model of discourse that the utilities make use of.

concept(sentence,object,heuristiC,COnj,anY) :-

$ref S,
$context ($given conversation-C),
$nature 	[linguistic],
$structure (it $is_a

sequence - (Al.. .AN) $of words) $in C),
$defatts (see-structure),
$sub_ types [sentence (declaritive)]

I.

concept (sentence (declaritive) ,object,heuristic,conj,afly) :-

$ref SD,
$vars [X,V],

$nature [linguistic],
$fnctnl (SD $introduces

($a description $of object-X) $or
$the type $of X)

$def_atts (see-functional $and see-structure),
$structure ([reference $to X, is, description $of X]

$or
[reference $to X,is,(a $or the),
optional(description $of X),type $of X]

concept(reference,Object,heUristic,cOfli,any) :-

$ref 	R,
$vars 	[W,Ws,X,C,T,A,S],
$nature 	[linguistic],
$context ($given conversation-C $at time-T

$and addressee-A $of C
$and speaker-S $of C),

$fnctnl (R $represents San object-X),
$structure (R $is_a (word-W $or sequence-Ws $of words)),
$def_atts (see-structure),
$patterns (C [a,optional(description $of X),X]

$where X $is known Sto S Sat T
$but unknown $to A $at T
$or
[the,optional(description $of X),X]
$where X $is known $to (S Sand A) $at T
$or
[name $of X] $where X $is known $to S $at T

concept(a,word,heuristic,Cofli,any)

$ref 	A,

485

$vars 	[C,T,X,V],
$context 	($given conversation-C $at time-T),
$nature 	(linguistic],
$def_atts 	(see - functional),
$fnctnl 	(it $introduces $an object-X

$where X $is unknown $to addressee $of C
$but known $to speaker $of C

),
$patterns 	[A,optional(description $of X),X,$rest],
$mistakes 	((A,verb-V,$rest] $then $assume A $is_a variable

REFERENCES

Adams, J.B., "A probability model of medical reasoning and the MYCIN model",
Mathematical Biosciences, 32, pp 177-186, 1976.

Adler, S.B., Spencer, C.F., Ozkardersh,H., and Kuo,C.M., "Industrial Uses of
Equations of State : A state of the are review", in Phase Equilibria and Fluid
Properties in the Chemical Industry, Ed. Storvick,T.S., and Sandler,S.I., ACM
Symposium Series, 60, Washington, 1977.

Allen J.F., "Maintaining Knowledge about Temporal Intervals", Communications of
the ACM, 26(11), pp 832-843, 1983.

Andrews, P.B., "Theorem Proving via general matings", JACM 28(2), pp 193-214,
1981.

ANSI, "Interim Report of the ANSJJX3/SPARC Study Group on Data Base
Management Systems", ACM SIGFIDET, 7(2), pp3-139, 1975.

ART, Programming Primer, Inference Corp., 1985.

Baldwin,J.F.," FRIL - an inference language based on Fuzzy Logic", in Proceedings
of Expert Systems, 1983.

Baiza, R.M., Bernhardt, D.L., and Dube, R.P., "Data base technology Applied to
Engineering Data", Proceedings of the Second International Conference on
Foundations of Computer Aided Process Design, Snowmass, Colorado, CACHE
Publications, 1983.

Banares-Alcantara, R., "DECADE: A Hybrid Kowledge Based System for Catalyst
Selection", PhD Thesis, Chem. Emg. Dept., Carnegie-Mellon, 1986.

Banares-Alcantara R., Westerberg,A.W., and Rychener,M.D., "Development of
an Expert System for Physical Property Predictions", Comp. and Chem.
Eng.,9(2)pp127-142, 1985.

Barr,A., and Feigenbaum, E.A., Eds.,"Handbook of Artificial Intelligence", Volume
1, Los Altos, California, William Kaufman, 1981.

Bellman, R., and Dreyfus, S.," Applied Dynamic Programming", Princeton, NJ,
Princeton University Press, 1962.

Benayoune, M., and Preece, P.E., "An Engineering Data Model for Computer
Aided design Databases", PSE 85, Institution of Chemical Engineers, Sysmposium
Series No 92, 1985.

Benayoune, M., and Preece, P.E., " Review of Information Management in
Computer Aided Engineering", Computers and Chem. Eng., 1l(l),ppl-6, 1987.

Berlin,B.," Ethnobiological Classification in Cognition and Categorisation", Hillsdale
NJ, Lawrence Erlbaum Associates, 1978.

Bibel, W.," A syntactic connection between proof procedures and refutation
procedures", 2nd Conf. on Automated Deduction, Oberwolfach, Germany, 1976.

Bibel, W.," A comparative study of several proof procedures", Artificial Intelligence

18, pp 269-293, 1982.

Bibel, W.," Matings in Matrices", CACM 26(11), pp844-852, 1983.

Bingzhen,C., Jingzhu,S., Qing,S., Shanying,H.," Development of an Expert System
for Synthesis of Heat Exchanger Networks", Proc. of PSE 88, Inst. of Eng. Australia,
Aug., 1988.

Blass,E., "Methodical Dvelopment of Chemical Engineering Processes", Ger. Chem.
Eng., 9, pp 127-135, 1986.

Bobrow,D.G., and Stefik,M, "The LOOPS Manual",Xerox Corperation, 1983.

Bobrow, D.G., and Winograd, T., "An Overview of KRL, a Knowledge
Representation Language", Cognitive Science, 1, pp 3-46, 1977.

Boffey, T.B.,"Graph Theory in Operations Research", MacMillan Press Ltd., 1982.

Boyer, R.S., and Moore, J.S., "The sharing of structure in theorem proving
programs", in Meizer, B., and Michie, D., Machine Intelligence 7, New York,
Edinburgh University Press, 1972.

Brachman, R.J.," A Structural Paradigm for Representing Knowledge", BBN
Report, No. 3605, Bolt Beranek & Newman, Cambridge, Mass., 1978.

Brachman, RJ., "On the Epistemological Status of Semantic Networks",
Associative Networks: Representation and Use of Knowledge by Computers, pp
3-50, edited by N.Y. Findler, Academic Press, New York, 1979.

Brachman, RJ., Fikes, R.E. and Levesque, HJ., "KRYPTON: A Functional
Approach to Knowledge Representation", FLAIR Technical Report No. 16, Fairchild
Laboratory for Artificial Intelligence Research, Palo Alto, CA, May 1983.

Brachman,R.J.," I Lied about the trees, Or Defaults and Definitions in Knowledge
Representation", The Al Magazine, pp80-93, Autumn, 1985.

Bransford,J.D., Barclay,J.R., Franks,Jj, "Sentence Memory: a constructive versus
interpretive approach", Cognitive Psychology, 3, ppl93-209, 1972.

Brownston, L, Farrell,R., Kant,E., and Martin, N.,"Programming Expert Systems
in OPS5", Addison-Wesley, 1985.

Bruner, J.S., Goodnow,J.J., Austin,G.A.," A Study of Thinking", John Wiley and
Sons Inc., New York, 1956.

Buchanan,B.G., and ShortlifTe,E.H., Eds., "Rule based Expert Systems", Reading,
Mass. Addison-Wesley, 1984.

Buchmann, A.P., "A methodology for the logical design of project engineering
databases", PhD Thesis, Chemical Engineering Department, University of Austin,
Texas, 1980.

Bundy, A.," The computer modelling of mathematical reasoning", Academic Press,
London, 1983.

Bundy,A., and Sterling,L.S., "Meta-Level Inference in Algebra", Research Paper
164, Dept. of Artificial Intelligence, University of Edinburgh, 1981.

U

Bundy,A., Byrd,L.,Luger,G.,Mellish,C.,Milne,R., and Palmer,M., "Solving
Mechanics Problems Using Meta Level Inference", DAI Research Paper 112,
University of Edinburgh, 1979.

Bundy,A., Byrd,L.,Luger,G.,Mellish,C.,Milne,R., and Palmer,M., "A program to
solve Mechanics problems", Working Paper 50, Dept. of Artificial Intelligence,
Edinburgh, 1979.

Carbonell,J.R.," Al in CM: An Artificial Intelligence approach to computer aided
instruction", IEEE Transactions on Man-Machine Systems MMS-11, 4, p190-202,
1970.

Chang, C.L., Lee, R.C.T., "Symbolic Logic and Mechanical Theorem Proving",
New York, Academic Press, 1973.

Charniak,E., "Ms. Malaprop, a Language comprehension program", Proc. 5th mt.
Joint Conf on AT., MIT, vol 1, pp 1-8, 1977.

Charniak, E., McDermott, D., "Introductio to Artificial Intelligence", Addison
Wesley Pub., Reading, Mass., 1985.

Chellas,B.F.," Modal Logic: an Introduction", Cambridge University Press, 1980.

Chen, P.P., "The Entity Relationship Model- towards a unified view of data", ACM
TODS, 1, pp9-36, 1976.

Cherry, D.H., "Data Organisation in chemical plant design", PhD Thesis, Cambridge
University, 1975.

Cherry, D.H., Grogan, J.C., Knapp,G.L., and Perris, F.A., "Use of databases in
engineering design", Chem. Eng. Progress, 78(5), pp 59-67, 1982. Clancey, W.J.,
The epistemology of a rule based expert system. A framework for explanation,
Artificial Intelligence, 20, pp215-251, 1983.

Clancey,W.J. and Letsinger, R.,"Neomycin: Reconfiguring a rule based expert
system for application to teaching", Proc. of the 7th Int. Joint Conference on A.I.,
p829-836,1981.

Clancey,W.J.,(1983), "The epistemology of a rule based expert system: a framework
for explanation", Artificial Intelligence, 20, pp 215-25 1, 1984.

C!ocksin,W.F., and Mellish, C.S., "Programming in Prolog", Springer Verlag,
Berlin, 1981, 1984 (2ndEdtn).

CODASYL, CODASYL Data Base Task Group Report,ACM, New York, April,
1971.

CODASYL Data Description Language Committee, DDL Journal of Development,
Materiel Data Management Center, Quebec, 1978.

Codd, E.F., "A Relation Model of Data for Large Shared Data Banks", Comm.
ACM, 13, pp377-387, 1970.

Codd, E.F.,"Extending the database relational model to capture more meaning",
ACM TODS, 4, pp397-434, 1979.

Cohen, P.R., "Heuristic Reasoning about Uncertainty: An Al approach", Pitman

m

Publishing, 1985.

Cohn,A.G.,"A more expressive formulation of many sorted logic", J. Autom.
Reasoning, 3, pp 113-200, 1987.

Craik,K.,"The Nature of Explanation", Cambridge University Press, 1943.

Craft, J., "The Impact of CAD and Database Techniques in Process Engineering",
PSE 85, Institution of Chemical Engineers, Sysmposium Series No 92, 1985.

Date, CJ.," An Introduction to Database Systems", 3rd Edition, Addison Wesley,,
1981.

Dechter, R., and Pearl, J.," Generalized best-first strategies and the optimality of
A*", Technical Report UCLA-ENG-83-19, p95-99, Cognitive Systems Laboratory,
UCLA.

Douglas, J.M.," Conceptual Design of Chemical Processes", McGraw Hill Book
Company, 1988.

Doyle,J.,' A truth maintenance system", Artificial Intelligene, 12, pp231- 272, 1979.

Duda, R.O., Gaschnig, J.G.,Hart,P.E, "Model Design in the Prospector consultant
for mineral exploration", In D.Michie, ed., Expert Systems in the Micro-Electronic
age, Edinburgh University Press, pp 153-167, 1979.

Duxbury, H.A. and Preston, M., "The Process Systems Contribution to Process
Safety", Proceedings of Foundations of Computer Aided Process Operations, Park
City, Utah, (CACHE Publication), Elsevier Science Pub. Inc., 1987.

Earl,W.B., and Williamson,C.J., "Control System Synthesis", Proc. of PSE88, Inst.
of Eng., Sydney, Australia, 1988.

Erman,L.D., London,P.E., Fickes, S.F., "The design and an example of the use of
HEARSAY-UI", Proc. of AAAI-83, 409-415, 1983.

Etherington,D.W., "Formalising Non-monotonic reasoning systems", Technical
Report 83-1,Dept. of Comp. Sci., University of Bath Columbia, Vancouver, Canada,
1983.

Etherington,D.W., "Formalising Non-monotonic systems", Artificial Inteffigene,
3 1(1), pp 41-85, 1987.

Etherington, D.W., and Reiter, R., "On Inheritance Hierarchies With Exceptions",
Proc. AAAI-83, Washington, D.C., pp 104-108,1983.

Fahiman, S.E., "NETL: A system for Representing and Using Real World
Knowledge", the MIT Press Cambridge, MA. (1979).

Fikes,R.E., and Nilsson, NJ, "STRIPS: a new approach to the application of
theorem proving to problem solving", Artificial Intelligencem 2(3/4), pp 189-208,
1971.

Fikes,R., and Kehler,T., "Control of Reasoning in Frame Based Representations",
Communications of the ACM, Special issue on Architectures for Knowledge Based
Systems, 1985.

iv

Fillmore, C., "The case for case", in Universals in Linguistic Theory, ed,.
Bach,E. and Harms,R., Holt, New York, 1968.

Forgy,C.L.,"OPS5 User's Manual", Technical Report CMU-CS-81-135, Dept. of
Computer Science, Carnegie Mellon University.

Forgy, C. and McDermott, J., "OPS: A domain independent production system
language", in IJCAI 5, pp 933-939.

Frost, R.A.," Introduction to Knowledge Based Systems", Collins, London, 1986.

Fusillo, R.H., and Powers, GJ., "Synthesis of Operating Procedures for Complete
Chemical Plants", Comp. and Chem Eng., 12(9,10), 1988.

Gardarin, G., and Gelenbe, E., Eds.," New Applications of Data Bases", Academic
Press, London, 1984.

Garey, M.R., and Johnson, D.S.," Computers and Intractibiity", San Francisco,
W.H.Freeman, 1979.

Garvey,T.D, Lowrance,J.D., and Fischler,M.A.., "An inference techniques for
integrating knowledge from disparate sources", in Proc. LTCAI-81, Vancouver BC, pp
319-325, 1981.

Gibbons, A.," Algorithmic Graph Theory", Cambridge University Press, 1985.

Goldberg,A., and Robson,D.,"Smalltalk-80: The language and its implementation",
Reading, Mass., Addison-Wesley, 1983.

Gray, P., "Logic, Algebra and Databases", Ellis Horwood Limited, Chichester,
England, 1984.

Grishman, R., "Computational Linguistics", Cambridge University Press, 1986.

Hart,P.E., Nilsson,N.J., and Raphael, B., "A formal basis for the heuristic
determination of minimum cost paths", IEEE Trans. Syst. Science and Cybernetics,
SSC-4(2), 100-107.

Hayes,P.J., "The frame problem and related problems in Artificial Intelligence", in
Artificial Intelligence and Human Thinking,Elithorn, A., and Jones, D., (eds.), San
Francisco, Jossey-Bass, 1973.

Hayes, PJ., "Some Problems and Non-Problems in Representation Theory", Proc.
AISB Summer Conference, University of Sussex, pp 63-79, 1974.

Hayes, Pj., "The Logic of Frames", Frame Conceptions and Text Understanding, pp
46-61, edited by D. Metzing, Walter de Gruyter & Co., Berlin, 1979.

Hayes, PJ., "The Naive Physics Manifesto", in Expert Systems in the Micro
Electronic Age, ed. D.Michie, Edinburgh University Press, 1979(b).

Hayes, PJ., "The Second Naive Physics Manifesto", in Formal Theories of the
CommonSense World, Ed. by Hobbs,J.R., and Moore,R.C., pp 1-36, Norwood NJ.
Ablex Publishing Corporation, 1985.

Hayes-Roth,B., "The Blackboard Architecture: A General Framework for Problem
Solving?", Heuristic Programming Project, Report no IiPP-83-30, Stanford

VA

University, May, 1983.

Hayes-Roth, F., Waterman, D.A., and Lenat, D.B., "Building Expert Systems",
Addison Wesley, London, 1983.

Hendrix, G.G., "The representation of semantic knowledge", In Speech
Understanding Research: Final Technical Report, Ed. Walker,D.E., Stanford
Research Institute, Menlo Park, California, 1976.

Henning,G., Leone,H., Stephanopoulos,G.,"MODEL.LA parts 1 and 2", Reports
LISPE-89-048, LISPE-89-049, Massachusetts Inst. Tech., 1989.

Hewitt, C., "Description and theoretical anlalysis (using schemata) of PLANNER, a
language for proving theorems and manipulating models in a robot", Rep. No.
TR-258, Al Laboratory, Massachussetts Institute of Technology, 1972.

Hill, R. "LUSH Resolution and its completeness", DCS Memo No 78, A.I. Dept.,
Edinburgh University.

Hillier,F.A., and Lieberman, GJ., "Introduction to Operations Research", San
Francisco CA, Holden-Day Inc, 1980.

Horn, B.L., "An Introduction to Object Oriented Programming, Inheritance and
Method Combination", Reprt CMU-CS-87-127, Carnegie Mellon Urn., 1988.

Huang,Y.W., and Fan,L.T.,"Designing an object relation hybrid database for
chemical process engineering", Comp. and Chem. Eng., 12(9/10), pp 973-985, 1988.

Hudson, R., "Word Grammar", Blackwell Inc., Oxford, 1984.

Hutton, D., "Knowledge Based Flowsheeting Report", Internal Document, Dept.
Chem. Eng., Edinburgh University, 1990.

Hutton,D., Ponton,J.W., and Waters,A., "Al applications in process design,
operation and safety", The Knowledge Engineering Review, 5(2), 1990.

Ibaraki, T., "The power of dominance relations in branch and bound Algorithms",
JACM 24(2):264-79.

Jackson, P., "Introduction to Expert Systems", Addison Wesley Pub., Reading,
Mass., 1986

Jackson, P.,"A Brief Review of Knowledge Representation Tools and Techniques",
DAT Research Paper No. 343, University of Edinburgh, 1987.

James, A., "Selection Criteria for an Integrated CAE System", PSE 85, Institution of
Chemical Engineers, Sysmposium Series No 92, 1985.

Johnson-Laird, "Mental Models", Cambridge University Press, 1983.

Johnson,L., and Keravnou,E.T., "Expert Systems TEchnology", Abacus Press,
1985.

Jones, JK., and Liles, J.A., "Integrated Process Design Systems can boost
productivity by over 50%", ChemAsia 83, Computers in Design, Singapore, 1983.

Jones, N., "An expert system for first aid", MSc Thesis, Department of Artificial

Vi

Intelligence, University of Edinburgh, 1984.

KEE User's Manual, Intellicorp. Inc., 1985.

de Kleer,J., and Brown,J.S.,"A qualitative physics based on confluences", Artificial
Intelligence, 24, pp7-83, 1984.

de Kleer, J., Doyle, J., Steele, G.L. and Sussman, GJ., "AMORD: Explicit Control
of Reasoning", Proc. Symposium on Artificial Intelligence and Programming
Languages, SIGPLAN Notices 12(8), and SIGART Newsletter, No 64, August 1977.

Kirkwood, R.L., Locke,M.H., Douglas, J.M., "A prototype expert system for
synthesising chemical process flowsheets", Comp. and Chem. Eng., 12(4), pp
329-343, 1988.

de Kleer, "An Assumption based TMS", Artificial Intelligence, 28, ppl27-162,
1986(a).

de Kleer, "Extending the ATMS", Artificial Intelligence, 28, ppl63-196, 1986(b).

de Meer, "Problem Solving with the ATMS", Artificial Intelligence, 28, ppl97-224,
1986(b).

Kling, R.F, "A Paradigm for Reasoning by Analogy", Artificial Intelligence, 2, 197 1.

Knowledge Craft, Knowledge Craft Reference Manual, Carnegie Group Inc., 1986.

Knuth, D.E., and Moore, R.W., "An Analysis of alpha-beta pruning", Artificial
Intelligence, 6(4), p293-326, 1975.

Kocis, G.R., and Grossmann, I.E., "Computational Experiences in Solving MJNLP
Problems with DICOT", PSE 88, Third Int. Symposium on Process Sytems
Engineering, 28 August - 2 Sept. Inst. of Engineers, National Conf. Publication No
88/17,Sydney, Australia, 1988.

Kosslyn, S.M., "Images and Mind", Cambridge, Mass., Harvard University Press,
1980.

Kowalski,R.A., and Kuehner,D, "Linear Resolution with Selection Function",
Artificial Intelligence 2, 227-260, 1971.

Kowalski,R.A., "A proof procedure using connection graphs", JACM 22(4),
572-595, 1975.

Kowalski, R., "Logic for Problem Solving", Elsevier, New York, 1979.

Kramer, M.A., "Expert Systems for Process Fault Diagnosis", A General
Framework, Proceedings of FOCAPO, Park City, Utah, 1987.

Kripke,S.A., "Semantical Considerations on Modal Logic", in Reference and
Modality, L.Linsky, pp63-72, Oxford University Press, 1971.

Kripke,S.A., "Naming and Necessity", Davidson and Harman, 1972.

Kuipers,B., "Qualitative Simulation", Artificial Intelligence, 29, pp 289-338, 1986.

Kumar, V, Kanal, L.N., Artificial Intelligence, 21, p 179-198, 1983.

vu

Lawler, E.L., and Wood, D.E., "Branch and Bound methods: a survey", Operations
Research 14(4) p699-719, 1966.

Leesley,M.E., Buchmann,A., and Muiraney, D., "An approach to a largely
integrated systems for the computer aided design of chemical process plants", Proc.
Int. Congr. Contribution of Computers to the Development of Chemical Engineering
and Industrial Chemistry, Paris, pp6l-66, 1978.

Levesque, H.J. and Brachman, R.J., "A Fundamental Tradeoff in Knowledge
Representation and Reasoning (Revised Version)", Readings in Knowledge
Representation, edited by R.J. Brachman and H.J. Levesque, Morgan Kaufmann
Publishers Inc., Los altos, CA, 1985.

Levey, P., "Modelling Cognition: some current issues", in Modelling Cognition, ed.
Morris, P., John Wiley and Sons, 1987.

Lien,K., Suzuki,G., and Weterberg,G., "The Role of Expert Systems Technology in
Design", Report EDRC-06-13-86, Carnegie Mellon University, 1986.

Lindley,D.V, "Making Decisions", Wiley (2nd Edition), 1985.

Linhoff,B., et al,"A User Guide on Process Integration for the Efficient Use of
Energy", I.Chem.E., Rugby, 1982.

Locke,J., "An essay concerning human understanding",Abridged edm.,
Woozley,A.D. (ed),London, Fontana/Collins, (1960).

Lone, R., and Plouffe, W., "Relational Databases for Engineering
Data" ,Proceedings of the Second International Conference on Foundations of
Computer Aided Process Design, Snowmass, Colorado, CACHE Publications, 1983.

Loveland, D.W., "Automated Theorem Proving: A Logical Basis", New York, North
Holland., 1978.

Lu,M.D., and Motard, R.L., "Computer Aided Total Flowsheet Synthesis", Comp.
and Chem. Eng., 9(5), pp 431-445, 1985.

Luckham, D.C., and Nilsson, N.J., "Extracting Information from resolution proof
trees", Artificial Intelligence, 2(1), pp27-54,

McCarthy, J., "Epistemological Problems of Artificial Intelligence", Proc. UCAI-77,
Cambridge, MA, pp 1038-1044, 1977.

McDermott, D. and Doyle,J., "Non-monotonic Logic I", Artificial Intelligence, 13,
pp 27-39, 1980.

McDermott, D., "Artificial Intelligence meets Natural Stupidity", in J.Hagueland,
Mind Design, Cambridge MA. MIT press, 1981.

McDermott, D., "Non-monotonic Logic II: non-monotonic modal theories", TACM,
29(1), pp33-57, 1982.

McDermott, J., "Ri: An expert in the computer system domain", Proc. of AAAI-80,
p269-271, 1980.

McDermott, J., "Ri Revisited: Four years in the trenches", Al Magazine, Autumn,
pp2l-32, 1984.

VIII

McDermott, J., and Sussmann, GJ., "The CONNIVER Reference manual", MIT
Al Lab, Memo 259, 1972.

Mah, R.S.H., "Effects of Thermophysical Property Estimation on Process Design",
Computers and Chem. Eng., Vol. 1, pp 183-189, 1977.

Manna, Z., "Mathematical Theory of Computation", McGraw-Hill,New York, 1974.

Manna, Z., and Waldinger, R., "A deductive Approach to program synthesis", in
IICAI-6, pp 542-55 1, 1979.

Marciszewski,W., "Dictionary of Logic", The Hague, Martins Nijhoft, 1981.

Martelli, A., and Montanan, U., "From dynamic programming to search algorithms
with functional costs", in 11CM, 4, pp345-350, 1975.

Martelli, A., and Montanan, U., "Optimising decision trees through heuristically
guide search", Comm. ACM, 21, 1025-1039., 1978.

Matthew, I. and Dietz, K., "Complete Process Plant Design Using the Intergraph
System", Eurochem 83, Inter. Chem. and Proc. Eng. Conference, UK. 1983.

Miller, G.A., and Johnson-Laird, P.N., "Language and Perception", Cambridge
University Press, 1976.

Minsky, M., "A Framework for Representing Knowledge", in the Psychology of
Computer Vision (ed. Winston P.H.) McGraw Hill. New York, 1975.

Montague,R.," Formal Philosophy: Selected Papers", New Haven, Yale University
Press, 1974.

Moszkowski,B., "Executing Temporal Logic Problems," Cambridge University
Press, 1986.

Moore, R.C.," Reasoning from incomplete knowledge in a procedural deductin
system", AI-TR-347, Artificial Intelligence Laboratory, Massachussets Institute of
Technology, 1975.

Moore, R.C., "Possible World semantics for auto-epistemic logic", Proc.
AAAI-Workshop on Non-monotonic reasoning, New Palatz, New York, pp 344-354,
1984.

Moore, R.C., "Semantical considerations on non-monotonic logic", Artificial
Intelligence, 25(1), pp 75-94, 1985.

Moore, R.C., "Autoepistemic logic", in Smets et al 1988, see below.

Moore,J, and Newell,A., "How can Merlin Understand?", in L.Gregg, Knowledge
and Cognition, Hillsdale, New York, pp201-310, 1973.

Morris, P., "Modelling Cognition", John Wiley and Sons, 1987.

Motard, R.L., "Computer technology in Process Systems Engineering", Computers
and Chemical Engineering, 7(4), pp 483-491, 1983.

Motard,R.L., "Integrated Computer-Aided Process Engineering", Proc. of PSE88,
Inst. of. Eng., Sydney, Australia, 1988.

ix

Murray, N.V., "Completely Non-Clausal Theorem Proving", Artificial Intelligence,
18,1,67-85, 1982.

Nado,R., and Fikes,R., "Semantically Sound Inheritance for a Formally Defined
Frame Language with Defaults", pp 443-447, Proc of AAAI, 1987..

Newell, A., and Simon, H.A., "Human Problem Solving", Englewood Cliffs, NJ,
Prentice Hall, 1972.

Nilsson, NJ., "Principles of Artificial Intelligence", Springer-Verlag, 1982.

Niida, K., Yagi, H., Umeda, T., "An application of data base management systems
to process design", Computers and Chem. Eng., Vol. 1, pp33-40, 1977.

Niida,K., Koshijima,L, and Uineda,T., "Diagnosis Kit, Proc. of PSE88, Inst. of
Eng., Sydney, Australia, 1988.

Norman,D.A.,and Rumelhart,D.E., "Explorations in Cognition", Freeman, San
Francisco, California, 1975.

Palay, AJ. "Searching with Probabilities", Pitman Publishing, London, 1985.

Pearl, J., "Asymptotic properties of minimax trees and game-searching procedures",
Artificial Intelligence 14(2), pp1 13-38, 1980.

Pearl, J., "Machine Intelligence", 4(4), pp392-399, July, 1982.

Pearl, J., "Heuristics, Intelligent Search Strategies for computer Problem Solving",
Addison Wesley, Reading, Mass., 1984.

Pereira, L.M., and Porto,A., "Selective Backtracking for Logic Programs", Proc. of
5th Automatic Deduction Conf., Pub. in. Lecture Notes in Computer Science,
Springer-Verlag, 1980.

Piaget, "Play, Dreams and Imitations in Childhood", New York, Norton, 1951.

Piela,P.C., "ASCEND, An Object oriented environment for modelling and analysis",
PhD Thesis, Cept. Chem. Eng., Carnegie-Mellon University, Pittsburgh PA, 1989.

Pohl, I., "First results on the effect of error in heuristic search", In Machine
Intelligence 5, ed. Meltzer, B., and Michie, D., pp219-236, New York, American
Elsevier, 1970.

Pohl, I., "The avoidance of relative catastrophe, heuristic competence," genuine
dynamic weighting and computational issues in heuristic problem solving, Proc.
IJCAI 3, Stanford, 1973.

Ponton, J.W., "ESSPROS User Notes", Internal Document, University of Edinburgh,
1985.

Pospesel, H., "Introduction to Logic Predicate Logic", Englewood Cliffs New
Jersey, Prentice Hall, 1976.

Proctor, S.I., "Challenges and Constraints in Computer Implementation and
Applications", Proceedings of the Second International Conference on Foundations of
Computer Aided Process Design, Snowmass, Colorado, CACHE Publications,1983.

x

Prolog, Edinburgh Prolog (The New Implementation) User's Manual, Version 1.4,
A.I.Applications Institute, Edinburgh University, 1986.

Pulman, S.G.," Word Meaning and Belief', Helman, London, 1983.

Quilhian, M.R., "Word Concepts: A Theory and Simulation of Some Basic Semantic
Capabilities", Behavioural Science, 12, pp 410-430, 1967.

Rebok,R., et at, "QLISP: A langauge for the Interactive Development of Complex
Systems", SRI Technical Note, SRI International, Al Centre, Stanford, 1976.

Reiter, R., "On Reasoning by Default", Proc. TINLAP-2, Theoretical Issues in
Natural Language Processing-2, University of Illinois at Urbana-Champaign, pp
210-218,1978.

Reiter,R., "A logic for default reasoning", Artificial Intelligence, 13, pp .81-132,
1980.

Reiter,R., and Criscuolo,G., "On interacting defaults", Proc. LTCAI-81,pp270-276,
1981.

Reklaitis,G.V., Rippin,D.W.T., Eds., Special Issue on "Artificial Intelligence in
Chemical Engineering - Research and Development", Comp. and Chem. Eng.,
12(9/10),1988.

Roberts,R.B., and Goldstein,I.P., "The FRL Manual", Al Memo No 409, MIT
Artifical Intelligence Laboratory, Cambridge, MA, 1977.

Robinson, J.A.,"A machice oriented logic based on theresolution principle",
JACM,12, 25-41, 1965.

Roizen, P., and Pearl, J., Artificial Intelligence 21, p190-220, 1983.

Rosch,E.H. et a!, "Basic Objects in Natural Categories", Cognitive Pstchology, 8,
pp382-439, 1976.

Rosch,E., and Lloyd,B., "Cognition and Categorisation", Hillsdale NJ, Lawrence
Erlbaum Associates, 1978.

Rosch,E., and Mervis,C., "Family Resemblances: Studies in the Internal Structure of
Categories", Cognitive Psychology, 7, pp573-605, 1975.

Ross, P., "Expert Systems Course", DAI Teaching Paper No. 1,1985.

Ross, P., "CRESS - a Credible Expert System Shell", User's Notes, Department of
Artificial Intelligence, University of Edinburgh, 1987.

Rumelhart,D.E. and Norman,D.A;, "Active Semantic Networks as a model of
human memory", in Proceedings of 3rd Int. Joint Conf. on Al., 1973.

Sacerdoti, E.D., "Planning in a hierarchy of abstraction spaces", Artificial
Intelligence, 5(2), pp 115-135, 1974.

Sacerdoti, E.D., "A Structure for Plans and Behaviour", Elsevier, North Holland,
1977.

Said, K.M., "Formalisation of Reasoning in Judicial Expert Systems through Deontic

UJ

Logic", in Proc. of 1st Int. Expert Systems Conf., 1985.

Sargent, R.W.H., "Process Systems Engineering: Challenges and Constraints in
Computer Science and Technology", Proceedings of the Second International
Conference on Foundations of Computer Aided Process Design, Snowmass,
Colorado, CACHE Publications, 1983.

Sargent,R.W.H., "Process Design - What Next?", pp 529-553, Proc. of Foundations
of Computer Aided Design, July 1989, Published by Elsevier, Amsterdam, 1990.

de Saussure, F., "Course in General Linguistics", London, Peter Owen, 1960.

Schank,R., "The structure of episodes in memory", in D.G.Bobrow and A.Collins,
Representation and Understanding, Academic Press, New York, 1975.

Schmidt, J.W., and Brodie, M.L., "Relational Database Systems - Analysis and
Comparison", Springer Verlag, New York, 1983.

Shafer, G., "A mathematical theory of evidence", Princeton NJ, Princeton University
Press, 1976.

Shapiro,S.C., "A net structure for semantic information storage, deduction and
retrieval", Proc. of 2nd Int. Joint Conf. on Al. pp 5 12-523, 1971.

Shortliffe, E.H.," Compute-Based Medical Consultations", MYCIN, New York,
Elsevier, 1976.

Shortliffe, E.H., and Buchanan,B.G., "A model of inexact reasoning in medicine",
Mathematical Biosciences, 23, pp 351-379, 1975.

Simmons,R.F.,"Semantic Networks: Their computation and use for understanding
English sentences", pp 63-113, in Computer models of thought and Language, ed.
Schank,R.C., and Colby, K.M., Freeman, San Francisco, 1973.

Smets,P., Mamdani,E.H., Dubois,D., Prade, H., "Non-Standard Logics for
Automated Reasoning", Academic Press, 1988.

Smith, J.M., and Smith, D.C.P., "Database Abstractions: Aggregation and
Generalisation", ACM TODS, 2, pp 105-133, 1977.

Smoke, K.L., "An objective study of concept formation", Psychological
Monographs, 42(191), 1932.

Sriram, D., "A Bibliography on Knowledge Based Expert Systems in Engineering",
Report DRC-12-23-84, Carnegie Mellon University, 1984(b).

Sriram, D., et at., "Knowledge Based Expert Systems: An Emerging Technology for
CAD in Chemical Engineering", Report DRC-06-76-84, Carnegie Mellon University,
1984(a).

Stailman, R.M., and Sussmann, GJ., "Forward reasoning and dependency directed
backtracking in a system for computer aided circuit analysis", Artificial Intelligence,
9(2),135-196,1976.

Stefik,M., Bobrow,D.G., Mittal,S., and Conway.L, "Knowledge Programming in
LOOPS", Al Magazine Autumn, 1983.

XII

Stephanopoulos, 	G., 	Johnston,J., 	Kriticos, 	T., 	Lakshmanan,R.,
Mavrovouniotis,N., and Siletti,C., "Design Kit: An Object Oriented Environment
for Process Engineering", Comp. and Chem. Eng., 11(6), pp 655-674, 1987.

Stephanopoulos,G., "Artificial Intelligence and Symbolic Computing, in Process
Engineering Design",Proc. of Foundations of Computer Aided Design,July 1989,
Published by Elsevier, Amsterdam, 1990.

Sterling, L. and Shapiro, E., "The Art of Prolog", MIT Press, Cambridge,
Massachusetts, 1986.

Stickel, M.E., "Theory Resolution: building in non-equational theories", In Proc. of
the AAAI 83, Washington, Colombia, 1983.

Stockman, G.C., Artificial Intelligence 12, pp 179-196, 1979.

Struthers, A., "Literature Survey on Process Synthesis", Hons. Research Project,
Chem. Eng. Dept., Edinburgh University, 1984.

Struthers, A., "CLAP User Document", Dept. Chem. Eng., Edinburgh University,
1987.

Szolovits,P., and Pauker, S.G., Categorical and Probabilistic Reasoning in Medical
Diagnosis, Artificial Intelligence, 11, pp1 15-144, 1978.

Takamatsu, T., "The Nature and Role of Process Systems Engineering", Computers
and Chem. Eng., 7(4), pp203-218, 1983.

Tate, A., "Generating Project Networks", in UCAI-5, pp888-893, 1977.

Tate, A., A review of Knowledge Bases Planning Techniques, Proc. of 5th Technical
Conference of British Computer Society on Expert Systems 1985, Cambridge
University Press, 1986.

Thayse, A. (editor), "Form Standard Logic to Logic Programming", John Wiley &
Sons, Chichester, 1988.

Touretzky,D.S., "The Mathematics of Inheritance Systems", Pitman, London, 1986.

Trickett, K.G., and Chaney, J.C., "PDMS: plant layout and piping design",
Computer Aided Process Plant Design, pp 1123-1182, Gulf Publishing Company,
1982.

Tsubaki, M., "DBMS with the cpability of program management and user language
management - DPLS", ml. Proc. Soc. Jap., 17(10), pp921-926, 1976.

Tsubaki, M., and Motard, R.L., "Data based process simulation", Computer
Applications in Chemical Engineering, proc. of 12th European Symposium, CACE
79, volume 2, pp741-753, Montreux, Switzerland, April, 1979.

Turner,R. "Logics for Artificial Intelligence", Ellis Horwood, 1984.

Ullman, J.D., "Principles of Database Systems", Computer Science Press, Maryland,
USA, 1982.

van Melle, W., Scott, A.C., Bennet, J.S. and Pears, M.A.S., "The EMYCIN
manual", Report No HPP-81-16, Heuristic Programming Project, Computer Science

xm

Dept., Stanford University, 1981.

Vancoille,MJ.S., Bogaerts, W.F.L., "Practical Building of Expert Systems for
Materials Selection and Corrosion Problems", in Expert Systems in Structural Safety
Assessment, ed. MPA Stuttgart, Springer Verlag, Heidelberg, 1989.

Vancoille,MJ.S., Bogaerts, W.F.L., Perdieus,F.,"AI Based Corrosion Risk
Analysis in Oil Refinery Operation", Internal Report, Dept. MTM - Engineering,
University Leuven, Belgium, 1989.

Venkatasubramanian,V., and Dhurjati,P., "An Object-Oriented Knowledge Base
Representation for the Expert System FALCON", Proc. of Foundations of Computer
Aided Process Operations, Park City, Utah, 1987.

Venkatasubramanian,V., and Rich,S.H., "An Object-Oriented Two Tier
Architecture for Integrating compiled and deep level knowledge for process
daignosis", Comp. and Chem. Eng., 12(9/10), pp 903-921, 1988.

Warren, D.H.D., "WARPLAN, A system for generating plans," Memo 76, Dept. of
Computational Logic, University of Edinburgh, 1974.

Warren, D.H.D.," Implementing Prolog - Compiling Logic Programs 1 and 2", DAI
Research Reports 39 and 40, University of Edinburgh, 1977.

Warren, D.H.D.,Pereira,L.M., and Pereira, F.C.N., "Prolog the language and its
implementation compared with LISP", Proceedings of the Symposium on Al and
Programming Languages, p109-1 15, reprinted in SIGPLAN Notices/ SIGART
Newsletter (1977).

Waters,A., and Ponton,J.W.," Qualitative Simulation and Fault Propagation in
Process Plants", Chem.Eng.Res.andDes., 67, pp407-422, 1989.

Weatherhill,T., and Cameron,!., "Preliminary Hazop Studies using Expert
Systems", Proc. of PSE 88, Inst. of Eng. Australia, Aug., 1988.

Wehe,R., Lien,K., and Westerberg,A., "Control Considerations for a Separations
System Design Expert", Report EDRC-06-29-87, Engineering Design Research
Centre, Carnegie Mellon University, 1987.

Weiner,R.S., Pinson, L.J., "Object Oriented Programming and C++",
Addison-Wesley, 1988.

Weiss,S.M. and Kulikowski, C.A., "A Practical Guide to Designing Expert
Systems", Chapman and Hall, London, 1983.

White, A.P., "Inference Deficiences in Rule Based Expert Systems", in Research and
development in Expert Systems, Ed. M.A.Bramer, Cambridge University Press,pp
39-51, 1985.

Whitney, J.S., "The Plantman Computer Aided Design", Eurochem 83, Inter. Chem.
and Proc. Eng. Conference, UK. 1983.

Weinreb,D., and Moon,D., "LISP machine manual", Symbolics Inc. 1981.

Wilkins, D., "A non-clausal theorem proving system", Proceedings of the AISB
Summer conference, Brighton, UK, 1974.

xiv

