

Science and Mathematics Education Centre

Teaching Tools and Techniques for Efficient Teaching and Learning

of Computer Programming for Beginners Using JAVA

Don Nimal Padmasiri Kannangara

This thesis is presented for the Degree of
Doctor of Philosophy

of
Curtin University

January 2013

ii

Declaration

To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgment has been made.

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university.

iii

ABSTRACT

Despite the educational research that has been carried out considering demographic,

cognitive and social factors to improve teaching programming in the last decades,

finding an effective teaching method is still a debatable issue among Java

programming tutors. There are a number of basic concepts to be understood in

learning a programming language. The teaching styles to be used to teach different

concepts could vary due to the complexity and nature of the concept. This study was

aimed at identifying such concepts and the preferred teaching style for teaching such

concepts in the Java language. The results of a survey of the students who recently

completed introductory level Java programming language revealed such concepts,

and also the most preferred teaching style for each concept. This study also

investigated the preferred learning styles for learners with artistic abilities and

logical abilities. In addition, there have been many research projects based on

Cognitive Load Theory (CLT) to investigate better ways of handing germane,

intrinsic, and extraneous memory loads on the working memory of learners. The

mental modeling technique has been found to be associated with most of the

fundamental principles of the Cognitive Load Theory (CLT). This research also

included the findings of classroom experiments using activities based on mental

modeling, such as analogies, worked examples, and scaffolding, and adhering to the

principles of CLT. The context for this research involved teaching Java

programming concepts at the introductory level using low cost teaching tools. The

study reports on the effects of such activities in teaching Java programming

principles.

iv

ACKNOWLEDGEMENTS

I would never have been able to finish this thesis without the guidance of my

supervisor, support from the staff and students of Waiariki Institute of Technology,

and help from my family and wife.

I would like to express my sincere gratitude to my supervisor, Professor

Darrell Fisher, for his admirable guidance, care and patience, and providing me with

all the support and advice in conducting this research.

 I would like to thank the students who participated in the surveys in both

phases of this research. I specially thank the librarian and learning support team at

the Waiariki Institute of Technology, especially Mrs Anne-Marie Roux, Mr Graeme

Holdaway, Mrs Claire Schnell, Mrs Wendy Monk, and Ms Robin Shirley for helping

with proof reading the thesis and the reference pages.

I would also like to thank Mrs Annabel Shuler, the former director of the

Department of Computing, Technology, and Communications, who supported me

financially for my visit to Curtin University and for purchasing books.

I would also like to thank my mother, brothers and sisters who were always

supporting me and encouraging me with their best wishes. Finally, I would like to

thank my wife, Deepika Kannangara, and three daughters Jayani, Hasani and Savani

who were always there encouraging me and stood by me through the good times and

bad.

v

TABLE OF CONTENTS

 Abstract iii

 Acknowledgements iv

 List of Tables x

 List of Figures xii

Chapter 1 INTRODUCTION 01

1.1 Background 01

1.2 Java Programming Language 03

1.3 Mental Modeling and Cognitive Load Theory 04

1.4 Overview of Methodology 06

1.5 Significance 07

1.6 Overview of the Thesis 08

Chapter 2 REVIEW OF THE LITERATURE 10

2.1 Introduction 10

2.2 Instructional Models and Learning Theories 14

Behaviourism and Constructivism 14

Kolb Learning Experiential Model 16

Bloom’s Taxonomy 17

Felder-Silverman Learning Style Model 18

Past Research on Felder-Silverman Learning Style Model 20

R2D2 Learning Model 22

R2D2 Learning Model for Online Learning 24

Past Research on Learning Styles 25

2.3 Cognitive Load Theory 25

Working Memory Models 27

 Advanced Memory Models 28

Atkinson–Shiffrin Memory Model 28

The Baddeley and Hitch Model 29

Kieras Model 31

Working Memory Organisation Approaches/ Hypothesis 32

Total Capacity Approach 32

vi

Task-specific Hypothesis 32

Processing Efficiency Approach 32

Cognitive Load Types 32

Intrinsic Cognitive Load 33

Extraneous Cognitive Load 33

Germane Cognitive Load 34

Interactivity between Memory Loads. 34

Knowledge Representation Theories 35

Cognitive Load Theory as a Pedagogy 37

Past Research based on Cognitive Load Theory 38

2.4 Neurological Aspects of Human Brain 39

Neurological Research on Cerebral Cortex 39

Hemispheric Dominance Theory 40

2.5 Mental Models 44

Past Research on Mental Modeling 45

Constructivism and Mental Models 46

Dual Coding Theory and Relational Organisational Hypothesis 47

Using Visual Tools in Teaching 48

2.6 Instructional Techniques and Tools 49

Scaffolding 49

Use of Anchor Concept Graph in Scaffolding 50

Use of Distributed Scaffolding 50

Collaborative Learning Support using Scaffolding 50

Cognitive Learning Support using Scaffolding 51

Scaffolding using Visual Tools 51

Cognitive Apprenticeship and Metacognition 52

Situated Learning Theory 53

Mind Mapping 54

Use of Mind Mapping in Collaborative Learning 55

2.7 Issues in Teaching and Learning OO Programming 58

Past research on Teaching Issues in OO Programming 58

Cognitive Issues in Teaching 58

Use of Worked Examples in Teaching 59

Use of Cognitive Tools in Teaching 60

vii

Use of Visualising Techniques in Teaching 61

Programming Development Environment Issues 61

Past Research on Teaching Issues in Java Programming 62

Difficult Concepts of the Java Language 62

Pedagogical Issues 62

Conceptual Issues 63

Use of Scaffolding 64

Use of OO-Light Approach 64

Use of Traditional Approach 66

Use of Functional Approach 67

Use of Online Approach 67

Use of Mixed Approach 68

Use of Object First Approach 68

Use of Constructivist Learning Theory 68

Use of Bloom’s Taxonomy and Objects-First Approach 69

2.8 Java Development Envirnments 69

RAPTOR 70

BlueJ 71

Kawa 72

Dr. Java 72

Eclipse 72

Visual J# 73

Borland JBuilder 73

2.9 Summary 74

Chapter 3 METHODOLOGY 77

3.1 Introduction 77

3.2 Research Focus and Significance of the Study 79

3.3 Research Questions 80

Research Questions in Phase One 80

Research Questions in Phase Two 84

 3.4 Mind Mapping as a Teaching Tool 84

3.5 Use of Mental Modeling to teach Java Concepts 85

3.6 Use of BlueJ Visual Tool to teach Java Programming 94

viii

3.7 Sampling Technique 96

3.8 Data Collection and Analysis 96

3.9 Assumptions and Limitations 97

3.10 Ethical Considerations 98

3.11 Summary 99

Chapter 4 FINDINGS AND DISCUSSION 100

4.1 Introduction 100

4.2 Findings in Phase One 100

Difficult Concepts of the Java Language 100

Correlation between Difficulty Levels and Skills 103

Types of Learners 105

Teaching Styles for Different Concepts 106

4.3 Findings in Phase Two 107

Mini Questionnaire-1 Findings 109

Findings from the quantitative data 109

Findings from the qualitative data 111

Mini Questionnaire-2 Findings 113

Findings from the quantitative data 113

Findings from the qualitative data 118

Mini Questionnaire-3 Findings 120

Findings from the quantitative data 122

Findings from the qualitative data 125

Mini Questionnaire-4 Findings 126

Findings from the quantitative data 130

Findings from the qualitative data 133

Mini Questionnaire-5 Findings 134

Findings from the quantitative data 136

Findings from the qualitative data 138

4.4 Performance Improvement of Students 140

4.5 Summary 140

ix

Chapter 5 CONCLUSION 144

5.1 Insights 144

5.2 Significance 147

5.3 Limitations 147

5.4 Implication for Future Research 148

5.5 Recommendations 149

5.6 Final Comment 149

References 150

Appendix A: Code of the STUDENT class 173

Appendix B: Code of the EMPLOYEE class 175

Appendix C: Mini Questionaire-1 178

Appendix D: Mini Questionaire-2 181

Appendix E: Mini Questionaire-3 184

Appendix F: Mini Questionaire-4 187

Appendix G: Mini Questionaire-5 191

Appendix H: Participant Information Sheet-1 194

Appendix I: Consent Form 196

Appendix J: Participant Information Sheet-2 197

Appendix K: Ethical Approval 199

Appendix L: Questionaire – Phase One 200

x

LIST OF TABLES

2.1 Comparison of Behavioural and Constructivist Instructional Design
Models

15

2.2 Four Quadrants of the Human Brain and Activities 41

4.1` Difficulty Levels of Java Concepts 102

4.2 Teaching Styles for Different Concepts 106

4.3 Summary of Artistic and Logical Skills of the Participants in Mini
Questionnaire-1

109

4.4 Summary of the Most Useful Teaching Tools/Methods Used in Activity-
1

109

4.5 Preference of Tools/Methods of Students with Logical and Artistic
Abilities in Activity-1

110

4.6 Summary of Tools/Methods Preferred by Students in Activity-1

111

4.7 Summary of Artistic and Logical Skills of the Participants in Mini
Quationaire-2

115

4.8 Summary of the Most Useful Teaching Tools/Methods Used in
Activity-2

116

4.9 Preference of Tools/Methods of Students with Logical and Artistic
Abilities in Activity-2

117

4.10 Summary of Tools/Methods Preferred by Students in Activity-2

117

4.11 Summary of Artistic and Logical Skills of the Participants in Mini
Questionaire-3

123

4.12 Summary of the Most Useful Tools/Methods Used in Activity-3

123

4.13 Preference of Tools/Methods of Students with Logical and Artistic
Abilities in Activity-3

124

4.14 Summary of Tools/Methods Preferred by Students in Activity-3

124

4.15 Summary of Artistic and Logical Skills of the Participants in Mini
Questionaire-4

131

4.16 Summary of the Most Useful Tools/Methods Used in Activity-4

131

xi

4.17 Preference of Tools/Methods of Students with Logical and Artistic
Abilities- Activity-4

132

4.18 Summary of Tools/Methods Preferred by Students in Activity-4

133

4.19 Summary of Artistic and Logical Skills of Participants in Mini
Questionaire-5

136

4.20 Summary of the Most Useful Teaching Tools/Methods Used in Activity-
5

136

4.21 Preference of Tools/Methods of Students with Logical and Artistic
Activity-5

137

4.22 Summary of Tools/Methods Preferred by Students in Activity-5

137

4.23 Students Performance from 2008 to 2012

140

xii

LIST OF FIGURES

2.1 S-R paradigm 14

2.2 Kolb experiential learning cycle 16

2.3 Bloom’s taxonomy 18

2.4 Dimensions of learning and teaching styles 19

2.5 The importance of assessment issues for individual learning styles 21

2.6 The R2D2 Model 23

2.7 R2D2 Model for online learning 24

2.8 Atkinson–Shiffrin memory model 30

2.9 Overview of EPIC architecture 31

2.10 Left hemisphere regions of the brain 39

2.11 Right hemisphere regions of the brain 40

2.12 The four quadrant brain dominance model 42

2.13 Paradigm shift from 1960 to 1990 43

2.14 Brain dominant profile of computer science and engineering students 44

2.15 Sample mind map 54

2.16 Cognitive load relationships in programming 60

3.1 Listed areas and concepts in the Java language 81

3.2 Learning styles explanation 82

3.2 Learning style options for concepts 82

3.4 Questions on artistic and logical abilities 83

xiii

3.5 Question on type of learner 83

3.6 Class diagram and mind map of the student class 85

3.7 Star structure 87

3.8 Method returning a value 89

3.9 Java code of main method and getGrade method 90

3.10 Main method using getGrade method 91

3.11 Arrays of objects and primitive types 92

3.12 BlueJ graphical user interface 95

4.1 Scatter diagram of total difficulty level vs. art skills of students 104

4.2 Difficulty levels of learners of different categories 104

4.3 Summary of the types of learners 105

4.4 Activity - 1 108

4.5 Activity - 2 115

4.6 Activity - 3 122

4.7 Activity - 4.1 127

4.8 Pictorial representation of an array of primitive data - 4.1 128

4.9 Activity - 4.2 129

4.10 Pictorial representation of an array of objects - 4.2 130

4.11 Activity - 5

135

1

CHAPTER 1

INTRODUCTION

1.1 Background

An introductory level Java programming course has been taught in the Bachelor of

Computing, Communications Technology (BCCT) degree programme at the

Waiariki Institute of Technology, Rotorua, New Zealand since 2005. The Dr. Java,

an Integrated Development Environment (Allen, Cartwright, & Stoler, 2002), was

used as a teaching tool and a recommended text book (Horstmann, 2005) for the

course. Teaching materials were based on the content of the textbook and were

prepared using PowerPoint slides. The teaching materials contained a broad mix of

theory and examples. The order of delivery was based on the chapter sequence of the

text book. Examples were used to explain the topics and students tried them out

during laboratory sessions. In addition, programming exercises were given to

students to apply the knowledge they gained from each lesson. Although there were

not sufficient teacher guided laboratory sessions arranged for the students, they were

encouraged to do exercises and ask questions. According to Willis’s (1995)

definition, this instructional method was behavioural.

Unfortunately, more than 50% of the students failed this course and due to the low

pass rate there was not a sufficient number of students in the advanced level

programming courses. Therefore, it was crucial to improve both teaching and

learning to increase pass rates for this course. Being the course coordinator and the

key tutor of this course, I began this four year research project to experiment with

low cost tools and techniques to investigate the possibility of improving teaching

Java for beginners.

To guide this investigation, the following research questions were addressed:

1. What are the difficult Java concepts for the learners and the most suitable

teaching styles for teaching such concepts?

2. Is there any relationship between logical and artistic hemispheric

dominance factors of students and the difficulty levels of Java concepts?

2

3. What are the preferred learning styles of learners and the combinations of

learning styles?

4. Are the teaching tools based on a combination of Cognitive Load Theory

(CLT), the concepts of mental modeling and scaffolding effective in

teaching difficult concepts in the Java language?

5. Is there a relationship between students’ learning preferences and their

logical and artistic hemispheric dominance?

A questionnaire was used to identify the difficult Java concepts for the students who

had already done the introductory programming course. This course was also offered

at two other polytechnics: UNITEC Institute of Technology and Bay Of Plenty

Polytechnic in New Zealand. The three polytechnics used the same syllabus and

shared the teaching materials. Therefore, the students in the three polytechnics who

completed this course were invited to participate in this survey. Then for the

subsequent year, a number of low cost tools and techniques were adopted to teach

identified difficult concepts and a series of mini-surveys was conducted to collect

both qualitative and quantitative data from students at Waiariki Institute of

Technology.

Thus, the participants of the first survey were the students who enrolled in the

introductory programming Java course at the three polytechnics in 2008. The

participants of the subsequent mini-surveys were the students who enrolled in this

course at Waiariki Institute of Technology from 2009 to 2012.

The general belief is that computer programming is difficult due to its logical nature.

Although many programming books provide a series of mathematical problem

solving exercises, the belief that mathematics knowledge is essential to learning

programming is controversial (Hadjerrouit, 1998). According to the comments in the

forums available on the internet on this issue, there are some special computer

programming applications, such as three dimensional graphics in which mathematics

knowledge is essential (Roper, 2012). Some argue that mathematics may help but

this is not essential for the learning of computer programming (Mathematics and

Computer Programming, 2003). According to Sperry’s findings (1981), the

intellectual functions of the brain are divided between the left and the right

hemispheres of the cortex of the brain (Buzan & Buzan, 2006). As a part of this

3

study, the Brain Dominance Model (BDM) was studied in detail. According to

BDM, the left brain performs logical functions whereas the right brain is for visual

functions. In each survey, two questions were asked of students to rate their artistic

ability and their logical, analytical and mathematical ability. Each question had five

options: Poor, Average, Good, Very Good, and Excellent. Each participant selected

only one option for each question. The data collected using the questionnaire in

phase one were also analyzed to find out if there was a relationship between

students’ logical/artistic ability and their preferred learning style.

1.2 Java Programming Language

The Java language was developed as a pure object-oriented (O-O) language in the

early 1990s by Sun Microsystems. Many teachers have found Java programming not

only hard to learn but also to teach (Kannangara, 2007). The issue of teaching and

learning Java programing language has been the focus of most recent researchers

who have published hundreds of papers in the last three decades. Therefore, it was

vital to find out the inherent difficulty of this language. Prior to the introduction of

the object-oriented programming paradigm in 1980s, structured programming was

the widely used programming methodology. Norton (1997) argues that “Although

object-oriented programming evolved from structured programming, the end-results

are revolutionary and rather disorienting” (p. 2). Transition from structured

programming to object-oriented languages began three decades ago. Some popular

structured programming languages such as C and Basic were further developed with

the object-oriented features and introduced to the market as the object oriented

version of the languages with names such as C++ and Visual Basic. These hybrid

languages comprise of both object-oriented and structured features. Many teachers

taught these hybrid languages using structured programming features initially and

then the object-oriented concepts were introduced towards the end of the course

(Kannangara, 2007). Although this was possible in teaching hybrid computer

languages such as C++ and Visual Basic, it was not possible with the Java language

due to its pure object-oriented nature. Therefore, a teaching paradigm for Java

programming language requires drastic changes to the structured way of teaching

(Kannangara, 2007).

4

The research project began with a search of the literature related to the teaching

pedagogies of Java programming language. The literature review revealed that this

topic has been investigated by many researchers and an enormous number of

research projects have been carried out exploring this issue from different

perspectives over the last two decades. Such perspectives include: conceptual,

cognitive, paradigm, interactive development environments, pedagogical,

instructional design models, teaching tools, and sequence of delivery. Currently, the

focus of newly published research is found to be based on the cognitive aspects of

teaching.

1.3 Mental Modeling and Cognitive Load Theory

Mental modeling has been historically used for scriptural interpretation in religious

places using statues and pictures (Johnson-Laird, Girotto, & Legrenzi, 1998). This

concept of mental modeling was postulated by Craik in 1943 as psychological

representations of real, hypothetical, or imaginary situations (Johnson-Laird et al.,

1998). Some researchers have realized and used these imaginary situations in

teaching and understanding concepts. Van Haaster and Hagan (2004) have suggested

the possibility of using images in creating mental models to help understand

programming concepts. The mental modeling approach has been found to be useful

in teaching programming concepts by a number of researchers (Garner, 2009; Ma,

Ferguson, Roper, & Wood, 2007; Werhane et al., 2011). Therefore, mental modeling

was chosen to be used in the teaching of Java programming concepts in this research

study.

Cognitive Load Theory was proposed by Miller (1956) and identified the limitations

of the working memory. This theory has been further developed by a number of

researchers with working memory models, different cognitive loads, and Schema

Model Theory (Arbib, 1992). The new developments describe the process of

learning more effectively and ways of utilizing the limited working memory of the

learners to improve the learning process (Sweller, 1999). Garner (2002) developed a

teaching tool called the Code Restructuring Tool (CORT) and experimented using

worked examples to improve the teaching of Visual Basic programming. The

worked examples were found to be useful in reducing the intrinsic cognitive load on

the working memory of the learner resulting in better performance in learning.

5

Garner (2009) later suggested the use of mental modeling prior to the use of CORT

for better performance. Therefore, the possibility of using cognitive aspects related

to Cognitive Load Theory (CLT) was chosen for experimentation with the aim of

enhancing the teaching of the Java language at the Waiariki Institute of Technology.

The concept of mental modeling was experimented on with worked examples as

teaching tools to teach Java concepts in this research. In addition to these, cognitive

aspects of the teaching materials were also considered as a technique to help students

better understand the concepts. The teaching materials of the Java programming

course were modified according to the principles of the CLT, minimizing extraneous

and intrinsic cognitive loads. Scaffolding was used to balance the varied germane

cognitive load levels of students. Mental modeling is also found to be related to the

Dual Code Theory (DCT), which describes the way human brain processes visual

and verbal information (Paivio, 2006). The worked examples, mental modeling, and

scaffolding were the three main techniques applied in this study with the aim of

improving teaching Java programming for beginners at the second phase of the

research.

The object-first model is one of the pedagogical approaches used to teach object-

oriented programming (Lister et al., 2006). A slightly modified version of the object-

first approach, concentrating more on concepts, was used to teach Java programming

concepts in this research. In this approach, the basic concepts such as: creating a

class structure, creating objects using a class, manipulating objects, using control

structures, using methods, parameter passing, and using arrays were covered first.

These concepts were taught using worked examples, mental modeling, and

scaffolding. The Integrated Development Environment used was chosen for the

teaching of Dr. Java due to its simplicity and its suitability for beginners. The

teaching methodology used was constructivism with collaborative learning. The

teacher-centred delivery method was chosen due to the small classes of this course.

The interactive teaching with hands on sessions was used as the classes were held in

computer laboratories. This enabled scaffolding to be used especially for students

with difficulties in understanding programming concepts and practical issues.

Available teaching tools as well as low cost teaching tools such as images were

6

adopted in teaching. The consistency of images used for interpretation of different

aspects of the Java language was maintained throughout this study.

1.4 Overview of Methodology

This research was carried out in two phases. The Analyze, Design, Develop,

Implement, and Evaluate (ADDIE) model was used as a guideline for instructional

design in both the phases (Culatta, 2011). In the first phase, the data were collected

from the students who had completed this course prior to the introduction of new

teaching tools and methodologies. Using the data collected from students, the

difficult concepts in the Java language for the students were identified. In the second

phase, mental modeling, worked examples and scaffolding were adopted to teach the

difficult concepts identified in the first phase. Mind maps were used as a mental

model to study the possibility of enhancing teaching the concept of the class

structure of Java programming language. There are some visual programming

environments which can be used to create programs without much effort; the novice

programming students find these easier to understand. But the critique is that some

students tend to be familiar with graphical environment and not the concepts (Pears

et al. 2007). These graphical environments do generate some programming code as

well. In this research, BlueJ, a graphical program development environment was

introduced to students who made a judgment about the tool after learning all the

concepts using mental modeling tools and using code based Dr. Java programming

environment.

The data collected from the questionnaires were analyzed using statistical software

such as NVivo 9 and statistx-8. The use of a combination of cognitive aspects,

mental modeling and scaffolding to teach Java at introductory level is unique to this

research project. The tools and techniques used are all low cost and affordable for

many institutions. Therefore, the findings of this research could benefit many

teachers who teach at the introductory level of Java programming. As a result,

students would also benefit from the findings. The findings could also open new

possibilities for research for those who are involved in research on teaching

programming issues.

7

The majority of participants responding to the surveys were students enrolled in the

introductory programming course using the Java language at the Waiariki Institute of

Technology. The limited number of students enrolled had an impact on the choice of

samples. The highest intake was around 40 students in 2008. In the subsequent years,

the number of students enrolled decreased to between 10 to 20 students in a class.

Because of this, convenience samples had to be used in the research and

consequently the data samples were smaller than expected. This may have affected

the accuracy of the findings.

1.5 Significance

The focus on this research has been on the use of low cost teaching tools based on

cognition and mental modeling to explore the possibility of enhancing the teaching

of Java programming language. Researchers who are currently working on

improving the teaching of object-oriented programming will benefit from the

findings of this study as it may lead them to further research in this area. Among the

wide range of applications of mental modeling, Ma et al. (2007) have suggested the

possibility of using viable mental models in teaching Java programming. This

research used mental models according to the guidelines of Cognitive Load Theory

(CLT) with the intention of maintaining germane and extraneous memory loads at a

minimal level. In addition, scaffolding was experimented with using partially-

completed Java programming examples for the same purpose as suggested by Garner

(2007). Therefore, outcomes of this research will be useful for researchers who are

currently involved in research related to Cognitive Load Theory (CLT), mental

modeling and scaffolding. This research has also explored the relevance of students’

hemispheric dominance to the suitability of a number of teaching tools that were

used in this study. Therefore, the findings will benefit those who are interested in

Hemispheric Dominance Theory (HDT) and its applications.

The outcomes of this study will also be significant for Java programming teachers as

it discloses the difficult concepts and areas for students learning Java programming

language and the possibility of applying mental modeling concepts using a unique

set of symbols. In addition, teachers will be able to use the successful tools along

with the teaching styles discovered in this research project. Furthermore, the Java

8

teachers also will be exposed to new teaching tools and methods which could

increase the effectiveness of teaching.

Overall, the findings of this study will benefit the stake holders, especially

researchers, teachers and learners of Java programming language. Low cost tools

were used in this project; therefore the successful tools should be affordable for

many teachers and organizations who may wish to use them.

1.6 Overview of the Thesis

The first chapter, the introduction, contains the background and the research

questions addressed in this research. A brief description of the methodology and the

research background and theories based on each tool also are found in Chapter One

as are the significance of the findings of the research and an overview of the thesis.

Chapter Two includes a comprehensive literature review which includes: the popular

instructional design models and learning theories; in depth coverage of the Cognitive

Load Theory (CLT); memory models and knowledge representation theories; and

past research on cognition. The neurological aspects of the human brain and

Hemispheric Dominance Theory (HDT) are also discussed in detail in Chapter Two.

With regard to mental modeling, past research, its relevance to constructivism, Dual

Coding Theory (DCT), and Relational Organisational Hypothesis (ROH) are also

discussed. A section in Chapter Two includes instructional techniques and tools,

such as scaffolding, cognitive apprenticeship, and mind mapping. Past research on

teaching object-oriented programming and Java programming is the largest section

of the chapter. The programming issues include cognitive, pedagogical, conceptual,

the use of visualization, scaffolding, cognitive tools, and a number of approaches to

teaching the Java language. The features of seven Integrated Development

Environments (IDE) and their pros and cons are also discussed in Chapter Two.

A detailed research methodology is presented in Chapter Three. This chapter covers

the background details which led to the choice of the research questions and the

methodologies that were used in this research. Such details include conceptual issues

in the Java language, mental modeling, balancing cognitive loads, Hemispheric

Dominance Theory (HDT) aspects and the use of scaffolding. The methodology of

9

testing of mind mapping and graphical user interface programming environment

(BlueJ) are also included in Chapter Three.

Chapter Four presents the results obtained from the use of the quantitative and

qualitative findings of the questionnaire used in phase one of the research and the

five questionnaires used in phase two.

Chapter Five identifies insights gained from the findings and includes a discussion.

In addition, this chapter covers the significance, limitations, implications, and

recommendations.

10

CHAPTER 2

REVIEW OF LITERATURE

2.1 Introduction

Teaching and learning programming at an introductory level is known to be

challenging for both teachers and students (Van de Ven & Govers, 2007), and Java

has a well-deserved reputation as a significantly more complex programming

language than comparable procedural languages. This is because Java is a pure

object-oriented computer programming language in which archetypical procedural

characteristics are almost totally non-existent. Therefore teachers utilising Java need

to take special care to introduce concepts in ways that limit complexity and

furthermore, such pedagogic methodological considerations should be based upon a

theoretical understanding of learning models and approaches. Not surprisingly, there

is an enormous amount of published research literature concerning the use of

different teaching tools and techniques to enhance and simplify the teaching of

programming (Kannangara, 2007). While the matter remains largely unresolved and

debatable, nonetheless some clear themes emerge.

Theoreticians, researchers, educators and psychologists have introduced a range of

learning models and successfully used them in different areas of teaching. This

review includes a general historical framework of such established models, as well

as a survey of the latest knowledge representation theories grounded in Cognitive

Load Theory (CLT). Established models are based on a few basic theories, including

behaviourism, constructivism and cognitivism, or combinations of these, although

there are fundamental differences between the first two. Among the popular learning

models used by educators are Bloom’s Taxonomy, the Felder-Silverman Learning

Style Model, and the Recursive, Reflective, Design and Development (R2D2) model.

Numerous research publications based on these models have been completed and

enhance teaching and learning in different ways.

In the last two decades there have been further research projects which take

cognitive aspects into consideration and apply these to enhancing teaching quality. In

11

particular, Cognitive Load Theory, applied through a range of different cognitive

models, is a notable feature of recent research projects (Clark, Nguyen, & Sweller,

2006). One fundamental aspect of this theory, the limitation of Working Memory

(WM), is the focus of current research in teaching and learning. There are different

definitions of WM, as well as a number of approaches and hypotheses about memory

organisation in the use of WM. The literature on different cognitive loads, whether

intrinsic, extraneous or germane, and the element of interactivity between them, has

been found to be important in preparation of better quality teaching materials and

tasks, and many research papers discuss the better utilisation of WM by

manipulating the intrinsic, extraneous, and germane factors. The importance

attributed to WM as a concept within cognitive aspects of teaching and learning is

due to recent neurological research, in which different functional regions of the brain

including WM, have been identified (Smith, 2000; Smith & Jonides, 1999). These

findings seem to agree with Hemispheric Dominance Theory (HDT), which was

introduced by Sperry (Chwif & Barretto, 2003). The review also draws attention to

mental modeling as a powerful technique in teaching and learning, and notes that

past research on mental modeling has revealed that visualisation can be successful in

teaching Java programming concepts. The concept of mental models is based upon

social constructivism, a theory advanced by Piaget, Vygotsky and Bruner (Berk,

2003). Related to the concept of mental modeling is the Dual Code Theory (DCT),

which also involves visualisation. Despite the long history of DCT, recent research

shows that it is still applicable today: it is, for example, the basis for Baddeley’s

Working Memory Model (Paivio, 2006). Researchers have experimented with visual

tools and analysed their relevance to the cerebral and limbic quadrants of the brain.

Further details on mental models, visualisation tools and DCT are included in this

literature review.

Applications of two tools and techniques, namely scaffolding and mind mapping,

appear prominently in the research literature in a range of contexts, including

teaching Java programming language. Scaffolding is an essential instructional

technique, which can be used with both constructivist and cognitive methods of

teaching programming. Cognitive apprenticeships are one kind of scaffolding,

related to the social constructivist paradigm (Cognitive apprenticeship, n.d.). Here,

situated learning theory is applied to scaffolding within a cultural context. Mind

12

mapping is another instructional tool that can be effectively used in collaborative

learning and is documented in this literature survey.

It is increasingly apparent that the teaching of object-oriented (O-O) programming

requires a paradigm shift from structured ways of thinking to an O-O way of

thinking. Some issues in imparting programming knowledge to novice learners are

conceptual, while the rest are inherent to the programming language used for

teaching. Although a number of research projects have been carried out to find ways

of improving the teaching and learning of programming, the best method for teachers

of students at beginner level is still a highly debatable question (Kannangara, 2007).

Most published research has been on the use of different teaching pedagogies and

tools, and on the sequence of delivery depending on the nature of the programming

language used. As this research is focussed on issues related to OO concepts and the

Java programming language, this review includes past research on both areas.

Finally, the choice of a Java development environment in teaching can have a

significant impact on learning. The main categories of Java development

environments are: professional tools used in the industry, educational tools and tools

with graphical user interfaces (GUI). There are pros and cons for each environment

category (Brusilovsky, Calabrese, Hvorecky, Kouchnirenko & Miller, 1997). This

chapter includes details of popular Java development environments including

RAPTOR, BlueJ, Kawa, Dr. Java, Eclipse, Visual J#, and JBuilder.

Section two of this chapter begins with a comprehensive analysis of the features of

behaviourist and constructivist theories followed by descriptions and applications of

popular instructional design methods such as the Kolb Learning Experiential Model,

Bloom’s Taxonomy, the Felder-Silverman Learning Style Model and the R2D2

Learning Model. In addition, past research on learning styles is discussed. The third

section of this chapter focuses on the fundamentals of the Cognitive Load Theory

and Working Memory Models such as Baddeley and Hitch, Atkinson–Shiffrin, and

Kieras. This section includes a brief description of different WM definitions such as

the Total Capacity Approach, the Task-specific Hypothesis, and the Processing

Efficiency Approach. The cognitive load types: intrinsic: extraneous: germane: their

interactivity, and the how they affect the limited WM in the learning process are also

discussed in section three. In addition, knowledge representation theories on the

13

Long Term Memory (LTM), Short Term Memory (STM) and schema concept are

also discussed. This section also includes the use of Cognitive Load Theory as

pedagogy, and past research related to teaching computer programming languages.

Section four of this chapter discusses the recent neurological research findings on the

functionalities of the different parts of the human brain. This section also includes a

detailed description of the Hemispheric Dominance Theory which describes the

functionalities of the four quadrants of the brain. This section also includes details of

some research on brain dominance theory and the paradigm shift related to the four

quadrants of the Brain Dominance Model.

Section five of this literature review includes the mental modeling concept and its

recent applications in teaching introductory programming. This section also contains

some research findings on visualisation and conceptual representation using mental

modeling. The latest philosophical research outputs in mental modeling with regard

to constructivism and social constructivism theory are also included in this section.

The use of imagery eventually became pictures. The Dual Coding Theory which

describes the way of storing images in the brain is also discussed in section five.

Some research findings on the use visual tools in teaching are also included in this

section.

Section six discusses the instructional techniques and tools that are used in teaching.

The main focus is on scaffolding and includes the research applications of

scaffolding on different aspects of teaching. In addition, more socialised scaffolding

techniques, such as apprenticeship and situated techniques, are discussed. Mind

mapping usage as a teaching tool and research applications in different areas of

teaching are included in the discussion. A number of research applications using

mind mapping in collaborative learning Java programming and other programming

languages are also discussed in this section.

Section seven of this chapter is the longest section where the research projects

related to teaching issues, different findings and other object-oriented languages at

beginners’ level are discussed. The final section of the chapter provides a summary

of the review of the literature and further research opportunities are identified.

14

2.2 Instructional Models and Learning Theories

2.2.1 Behaviourism and Constructivism

The traditional instructional models are based on behavioural theories. The S-R

paradigm describes the behavioural learning theory. The learner is considered as a

black box. Stimuli activate the senses and the overt behaviour of the learner

(organism) is the response to the stimuli (see Figure 2.1).

Figure 2.1. S‐R paradigm.

Willis (1995) has clearly differentiated the characteristics (features) of the

behavioural instructional design model and the constructivist instructional design

model as in Table 2.1

15

Table 2.1
Comparison of Behavioural and Constructivist Instructional Design Models

Feature Behavioural design Constructivist design
Process Sequential and linear Collaborative, nonlinear

and recursive
Planning Top down and systematic Organic, developmental,

and reflective
Objectives Guided development Emerge from development

and design work
Experts Experts involved in the process Think that experts do not

exist
Instructions Careful sequencing of teaching

with sub-skills
Instruction highlights
learning in meaningful
contexts

Goal Delivery of preselected
knowledge.

Personal considerate
within meaningful
contexts

Evaluation

Summative is important Formative is vital

Data Objective data are valuable Subjective data are valued

There are three types of behavioural learning theories, namely, contiguity, operant

conditioning, and classical conditioning (Huitt & Hummel, 1999). Willis (1995),

describes a behaviourist as a person who assumes language as a theory-neutral

medium which could be used to impart meaning of the external world to learners

without being influenced or changed. As described by Willis (1995), for a

constructivist, language is contextual and it is believed that the meaning of language

develops as it is used. This means that behaviourists and constructivists have

different perceptions on the role of language and the nature of truth. According to

Willis (1995), behaviourists and constructivists have different views and they use

different approaches in designing teaching lessons. Although behaviourists carry out

scientific research, they believe that knowledge is objective and universal. The

constructivists’ belief is quite the opposite to this and assumes that knowledge is

subjective (Willis, 1995). The behavioural instructional design model is sequential

whereas constructivists use a recursive and cyclic process. The behaviourists plan

instructions systematically in a top down manner. Constructivists’ planning involves

collaboration and reflection and is developmental and organic. The objective of

behaviourists is guided development whereas the objective emerges from the

constructivist’s design and development work. In behaviourism, there are experts

16

who have special knowledge, but there are no experts in constructivism. Careful

teaching of sub skills in a sequential manner is important in behaviourism. In

constructivism, learning meaningful contexts is emphasised by the instructions. The

aim of behavioural instructional design is the delivery of preselected knowledge.

Personal understanding within meaningful contexts is expected from constructivist

instructional design model. Summative evaluation is critical in behaviourism and

formative evaluation is critical in constructivism. Objective data are valuable in

behaviourism, but subjective data are most valuable in constructivism (Willis, 1995).

2.2.2 Kolb Experiential Learning Model

Kolb, who devised this model, believed that it is “the process whereby knowledge is

created through the transformation of experience. Knowledge results from the

combination of grasping and transforming experience” (Kolb, 1984, p. 41). It is a

holistic model based on experiential learning. The term “experiential” differentiates

this model from other cognitive and behavioural theories (Kolb, Boyatzis, &

Mainemelis, 1999). The Kolb Learning Cycle and Fekier’s Learning Styles are

similar models that describe how students learn (Howard, Carver, & Lane, 1996).

This model upholds the reflective constructivist view using experiential learning

(Greenaway, 2011).

Figure 2.2. Kolb experiential learning cycle.

17

The Kolb experiential learning cycle has four modes (see Figure 2.2). Two of them,

Concrete Experience (CE) and Abstract Conceptualization (AC), are dialectically

related for acquiring experience whilst the other two, Reflective Observation (RO)

and Active Experimentation (AE), are dialectically related for transforming

experience (Kolb et al., 1999). A learner may grasp new information through

tangible and concrete experience or using symbolic representation or a virtual

simulated environment. According to Kolb et al. (1999), concrete experience is the

basis for observations and reflections. Reflections are assimilated into abstract

concepts. Such concepts lead the learner to new implications which can be

experimented with, and as a result new experiences are gained. As Kolb and Kolb

(2005) describes, the theory based on the Kolb experiential learning model is built on

propositions: learning is not best envisaged in terms of outcomes but as a process of

continuing reconstruction of experience; the process of learning should draw out the

students’ beliefs and ideas to facilitate learning; conflict, differences, and

disagreements drive the learning process; learning is a holistic process of adaptation

to the world; learning requires synergetic transactions between the learner and the

environment; and in the process of learning, knowledge is created. Kolb also

identified and included, in his experiential learning cycle, four different learning

styles namely diverging, assimilating, converging, and accommodating (Kolb &

Kolb, 2005). Teaching recursion for novice programming learners was the subject of

a group of researchers using Kolb’s Experiential Learning Model. In this research,

the researchers believed that each learner has a unique way of perceiving and

processing information which is the most comfortable way of learning (Wu, Dale, &

Bethel, 1998).

2.2.3 Bloom’s Taxonomy

The meaning of the word taxonomy is classification. Bloom, an educational

psychologist, developed this method of classifying intellectual levels of learners in

1956. The model was updated to make it relevant to 21st century education by

Anderson in 1990 (Overbaugh & Schultz, n.d.)

18

Figure 2.3. Bloom’s taxonomy.

This model classifies the forms and the learning levels of a student (Atherton, 2010).

The hierarchical levels represent the learner’s depth of knowledge in a given subject

or cognitive domain. The first layer represents the learner’s ability to memorize or

recall the facts (Howard et al., 1996). The learner at the second layer level should be

able to explain or describe the facts. A learner who achieves the third layer should be

able to apply and use the facts. At the analysing level, the learner should be able to

compare and contrast the facts. The ability to defend, judge, and evaluate is achieved

by the learner at the evaluating level of the Bloom’s Taxonomy. The top most level

is reached by those learners who can create a new product or point of view

(Overbaugh & Schultz, n.d.). The learners may reach a deeper understanding of the

subject matter at the highest level of the Bloom’s Taxonomy (Howard et al., 1996).

Bloom believed that learning is connected to cognitive, affective or psychomotor

domain. The cognitive domain involves mental skills, processing information, and

knowledge. The affective domain relates to attitudes and feelings and the

psychomotor domain to manipulative physical skills (Churches, 2009).

2.2.4 Felder-Silverman Learning Style Model

Felder and Silverman (1988) carried out some research based on the belief that the

learning depends not only students’ native ability and prior preparation but also

compatibility of the student’s style of learning with the instructor’s style of teaching.

According to Felder and Silverman (1988) learning takes place in two steps. The first

step is reception of external information through the senses. The second is the

19

processing step which involves “simple memorization or inductive or deductive

reasoning, reflection or action, and introspection or interaction with others" (Felder

& Silverman (1988, p. 674). As a result of the two steps, a student is either learning

or not learning. Felder and Silverman (1988) introduced the teaching and learning

style model which is comprised of a learning-style model and a teaching-style

model. The learning-style model classifies students according to their ways of

receiving and processing information. The teaching-style model classifies teaching

methods for addressing proposed learning-styles (Felder & Silverman, 1988). Most

of the learning styles can be matched to a suitable training style (see Figure 2.4)

Figure 2.4. Dimensions of learning and teaching styles. Adapted from (Felder &
Silverman, 1988, p. 675)

Some learners perceive the world by sensing or intuition. In sensing, a learner

receives data through senses. Intuition is a way of perceiving the world through

imagination. The second categories of learners, visual/auditory, are divided into

three categories namely visual, auditory, and kinaesthetic. This category was

renamed as visual/verbal by Felder in 2002. The learners who could remember

things better when they learn from visuals and textual representations regardless of

whether they are written or spoken fall into this category (Graf, Viola, Kinshuk, &

Leo, 2007). Babies learn by observing the world. This learning style is known as

induction. The deductive way of learning requires organised materials to be

presented to the learner. Felder and Silverman (1988) categorised the third type of

20

learner as inductive/deductive. Both active and reflective learning involve complex

mental processes. Active learners learn by actively engaging in experiments and

reflective learners examine and manipulate information when learning. The

active/reflective learning category is the fourth in this model (Felder & Silverman,

1988). The fifth category of the model is sequential/global category. Sequential

learners learn by using presentation of material in a logically ordered manner. They

tend to follow small incremental steps when finding solutions. Global learners

expect to be provided with the big picture or the goal of the lesson before being

introduced to the steps. Global learners are divergent learners and sequential learners

are convergent learners (Felder & Silverman, 1988). Global learners tend to take in

learning material almost arbitrarily. When a learner learns enough material, he will

be able to get the global picture of the learning outcome (Graf et al., 2007). Global

learners are able to find connections between different areas and solve complex

problems. Sequential learners expect broad knowledge whereas global learners are

interested in overviews (Graf et al., 2007).

2.2.4.1 Past Research on the Felder-Silverman learning style model

Felder and Silverman’s research was carried out with students having an engineering

background. The researchers grouped two types of learners by taking their similar

characteristics in engineering education into consideration. This model became very

popular over a 10-year period and it is now known as the Felder-Silverman Learning

Style Model (FSLSM). This model was used by a group of researchers at Athabasca

University, Canada, to investigate the possibility of improving their web-based

courses. Peer assessment techniques were adopted using Felder-Soloman’s Index of

Learning Styles (ILS) questionnaire to identify each other’s preferred learning styles

(Felder & Soloman, 1997). ILS is based on the Felder-Silverman Learning Style

Model (Kovacic, Green, & Eves, 2004). According to peer assessments, the students

were classified into different groups for adaptive web-based teaching. Two of the

four dimensions of teaching styles, active/reflective and sensing/intuitive, were

considered with particular interest in this research. The four assessment issues

considered in this research were Creativity, Completeness, Execution, and Security

(Wen, Graf, Lan, Anderson, & Dickson, 2007).

21

Figure 2.5. The importance of assessment issues for individual learning styles.
Adapted from Wen et al., 2007, p. 12

Active learners usually try out things and work actively with the learning material by

applying the content of the material, and by experimenting. Active learners also

prefer communicating with others by working in groups participating in discussions.

Reflective learners prefer to think and reflect on the learning material. They prefer to

work individually or in a small group with a good friend (Graf et al., 2007). Sensing

learners are considered to be patient and work slowly and carefully. They usually

learn facts and actual learning material and use standard approaches to solve

problems. Such learners are considered to be more sensible and realistic. They are

more practical and relate the learnt material to the real world (Graf et al., 2007).

Intuitive learners enjoy challenges and hence benefit from exercises. Assessment

issues in this research include creativity, completeness, execution and security. The

research group at Athabasca University concluded that more effective and accurate

assessment could be achieved by taking individual learning styles of students into

consideration (Wen et al., 2007).

The use of learning styles is becoming popular in technology-enhanced teaching and

learning (Graf et al., 2007). According to Graf et al. (2007), this could be achieved

by accommodating and integrating learning styles into all aspects of educational

technology. Recent investigations on learning styles have revealed the importance of

incorporating suitable learning styles to make learning easier. A research study was

carried out to identify characteristics of the four dimensions of the FSLSM model at

Massey University in New Zealand and Vienna University of Technology in Austria.

The four dimensions (groups) of learning styles considered in this research were

active/reflective, sensing/intuitive, visual/verbal, and sequential/global. This research

used the Index of Learning Styles (ILS) Questionnaire (Felder & Soloman, 1997) to

22

collect data from about 290 undergraduate and postgraduate students at Massey

University and Vienna University of Technology. The items in the ILS questionnaire

were grouped into four dimensions. The data were analysed in depth using the

correlation between learning styles and the dimensional group. The findings tallied

with the FSLSM model. This research found a strong correlation between visual

learning style and the visual/verbal dimension (Graf et al., 2007).

Litzinger, Lee, Wise and Felder (2007) used the FSLSM model with modified items

from the ILS questionnaire, adding five scale options for each question in a research

project at Pennsylvania State University. The addition of five scale options improved

the reliability of the data collected. The research was focused on investigating the

validity of the FSLSM model using the ILS questions having a dichotomous

response format aiming to enhance the reliability of the data. The introduction of

multi scale options resulted in a reduction of the standard deviations of the scores for

all scales and improved consistency and reliability of the four dimensions (Litzinger

et al., 2007)

2.2.5 R2D2 Learning Model

Most traditional instructional design models are based on “social science theories

from the behavioural family, broadly defined to include information processing and

cognitive science theories that break down content to be taught into smaller units

which are then taught with direct instruction strategies” (Willis, 1995, p. 5). Willis

(1995) introduced an alternative model of instructional design (ID) to the traditional

models. The R2D2 model was originally proposed as the Recursive, Reflective

Instructional Design Model by Willis in 1995. This model was based on three

principles, namely, recursion, reflection, and participation (Willis, 1995). Willis and

Wright (2000) say that the R2D2 is one way of implementing the basic principles of

constructivist instructional design. Willis (1995) argues that this model differs from

other behavioural teaching models as it begins with a team of stakeholders with a

general rather than specified aim and also because of its cyclic nature. The team of

stakeholders is usually composed of instructors, students, subject matter experts, and

instructional designers. The R2D2 design is non-linear and it can be followed in any

order and revisited at any time (Chen & Toh, 2005).

23

According to the R2D2 learning model, the focus is fuzzy at the beginning of

learning and as it progresses, it becomes shaper (Willis & Wright, 2000). Three focal

points of the model (see Figure 2.6) are Define, Design, and Development. The

learning takes place in a cyclic manner and the pattern is unpredictable. The

participants will work on three aspects of the design and the focal points are what is

important about the work (Willis & Wright, 2000).

Figure 2.6. The R2D2 Model. Adapted from (Willis & Wright, 2000, p. 6).

The three activities at the focus of this model have been defined as creating and

supporting a participatory team, progressive problem solution, and developing

phronesis or contextual understanding. All the activities are equally important for the

entire process (Willis & Wright, 2000). The most difficult task for a constructivist

designer is to create a group with supportive, encouraged, and facilitated

participation members. One way of creating a good team is to select a small

participatory group of members representing each different stakeholder group. An

alternative way of forming a good group is to organize a core team with two or three

members and then various people will be involved at different points of the process

(Willis & Wright, 2000). The R2D2 learning model is one of the constructivist

models used in mainly academic and research contexts. Although there is no

conclusively proven research evidence that these models are the best instructional

designs, selecting a model is rational not empirical (Willis & Wright, 2000).

Reigeluth (1996) has indicated changing nine aspects of teaching as a result of a

paradigm shift from the industrial age paradigm to the information age paradigm.

This indicates the current trend of moving from behaviourism to constructivist

instruction design.

24

2.2.6 R2D2 Learning Model for Online Learning

The R2D2 learning model was extended for online learning environments by Bonk

and Zhang (2008). This model is cyclic with four phases namely Reading,

Reflecting, Displaying, and Doing. The Reading phase is for auditory and verbal

learners. The Reflecting phase is for reflective and observational learners. The

Displaying phase is for visual learners. The Doing phase is for kinaesthetic learners.

Figure 2.7. R2D2 Model for online learning. Adapted from (McKinney, 2009, p. 1)

When a course is delivered online, it is easy to prepare course materials for those

who learn by reading. If the online delivery is to be successful, it should also

facilitate learning by providing elements of the learning styles favoured by those

who learn by hearing, doing, or reflecting critically (Amckinn, 2009). Cartner and

Hallas (2009) used this model to teach English online in the English for Academic

Study (EAS) programme at Auckland University of Technology (AUT). The blended

paper on Listening and Note Taking was delivered using two hours of learning with

a computer, two hours face to face learning and six hours of independent study per

week. Students were provided with language learning software, Microsoft Word,

Microsoft PowerPoint, and four activities facilitated through a website. The students

had to learn about the use of: writing skills using Microsoft Word; emails for

communication; forums or blogs; wikis for collaborative work; internet for topic

research; audio files; podcasts; and online videos. Four activities were completed

using the R2D2 cycle (Cartner & Hallas, 2009). A survey was used to gather data

about students’ assessment of their progress of learning using this model. The

finding revealed that the strength of the model lies in the two phases: reflection and

25

doing, which do not usually happen in blended environments. The student feedback

and the facilitator’s feedback were useful in assisting task completion and

independent and dependent learning (Cartner & Hallas, 2009).

2.2.7 Past Research on Learning Styles

Students’ learning styles were studied empirically using Felder-Soloman’s Index of

Learning Styles (ILS) questionnaire at the Open Polytechnic of New Zealand. The

study focused on the learning styles used for teaching computer concepts (Kovacic et

al., 2004). Kovacic et al. (2004) argue that both processing (Actively/Reflectively)

and perception (Sensing/Intuitive) are two dimensions which are common to FSLSM

and Kolb learning models. But new dimensions, Visually/Verbally and

understanding with two poles, Sequentially/Globally, were added to FSLSM. The

result of the study revealed a significant relationship between learning styles and

socio demographic characteristics (Kovacic et al., 2004).

Another study examined the suitability of learning styles for introductory level

programming and also the relationship between student learning style and academic

performance. In this study, the reflective learners did better than active learners and

verbal learners performed better than visual learners in examinations (Thomas,

Ratcliffe, Woodbury & Jarman, 2002).

A group of researchers carried out a study to discover the most suitable learning style

for teaching mathematics and computer programming. Both quantitative and

qualitative data including student comments were collected in this study. The

outcome of the survey was that mathematics students prefer sequential, inductive,

and deductive learning styles and the programming students prefer sequential, visual,

and active learning styles. It was also revealed that learning mathematics requires a

strong verbal component while computer programming needs more visual

components (Zander et al., 2009).

2.3 Cognitive Load Theory

The Cognitive Load Theory (CLT) explains information processing for cognition

using the concept of Working Memory (WM) and Long Term Memory (LTM).

According to this theory, human LTM is a huge store of skills and knowledge in the

26

brain. Miller (1956), who laid the foundations of CLT referred to WM as short-term

memory (STM). CLT is based on finding more about the limits of WM in terms of

the amount of information it can hold (Van Gerven & Pascal, 2003). According to

Miller (1956), the STM of the human brain imposes severe limitations on the amount

of information that we are able to receive, process, and remember. Miller (1956)

found out that for most people the number of items of information that can be

maintained in an active state simultaneously in the STM is seven.

Miller’s findings have been developed further over the last 50 years into a

comprehensive set of instructional principles called Cognitive Load Theory (Clark et

al., 2006). The Cognitive Load Theory was built upon the assumption that people

can deal with two or three elements at a time and that the degree of interactivity of

such elements could affect the capacity of this WM (Garner, 2002). The CLT

describes the way learning takes place within the brain and cognitive loads are

imposed by complex cognitive tasks (Paas, Van Gog, & Sweller, 2010). The CLT is

proven to result in efficient instructional learning environments as a consequence of

leveraging the human cognitive learning process (Clark et al., 2006). Some authors

define CLT as a universal set of learning principles which are related to fundamental

tools of training such as text, visual and audio (Clark et al., 2006). It has been proven

that learning can be improved by minimizing the wasted mental resources described

in cognitive load theory. According to the CLT, managing the learner’s WM

includes limiting the complexity of the work, reducing the degree of mental effort

involved and minimising irrelevant information provided by the teacher (Kalyuga,

2006).

Building on Miller’s (1956) findings on limitations on STM, Sweller (1988)

developed the CLT that consists of schemas, or a combination of elements which

describes an individual’s knowledge base. It has been the focus of instruction and

learning assuming that the limited WM of an individual contributes to limitations on

information processing (Sweller, 1999). Chandler and Sweller (1991) describe

Cognitive Load Theory (CLT) in this way, “Cognitive Load Theory is concerned

with the manner in which cognitive resources are focused and used during learning

and problem solving” (p. 2). The WM has limited capacity and duration. New

knowledge is generated on the working memory. In the process of creating new

27

knowledge, the past knowledge related to the new learning stored on the LTM is

transferred to the WM. Using this past knowledge and the new visual and audio

information on sensory stores, the new knowledge is created on the WM. Finally

newly created knowledge is transferred to the LTM (Cooper, 1998). The CLT can

also be described as an instructional design theory which could be used by teachers

to reduce the load caused by poor design of teaching and learning materials (Pitts,

Ginns, & Errey, 2006). Pitts et al. (2006) describe the cognitive load as the total

amount of mental activity that the WM has to attend to at a given instant of time.

2.3.1 Working Memory Models

The limitations of the sub systems of the memory were identified by William James

in 1890. James (1890) found that for a state of mind to survive on the memory, it

should last on the memory for a certain length of time. James (1890) named this

cognitive construct that retains the memory as primary memory (James, 1890).

Miller (1954) introduced the term immediate memory of the brain which is a

measure of the amount of information a person can retain. The concept Working

Memory (WM) in these early definitions was based on a single memory store. Later

working memory models evolved as one of the multiple cognitive subsystems

responsible for different storages and executive control functions of the brain (Yuan,

Steedle, Shavelson, Alonso, & Oppezzo, 2006).

According to Baddeley’s original WM concept, WM is comprised of three major

components (Ashcraft & Radvansky, 2010). These components include two sensory

stores (or auxiliary systems) along with an attention control mechanism. The

attention control mechanism is also known as a central processor or central executive

(Kalyuga, 2006). According to Baddeley’s model, the temporary storage of

information, manipulation of information and executive control are the three major

functional aspects of the WM (Clark et al., 2006).

The model proposed by Akinson and Shriffrin was slightly different from

Baddeley’s model (Yuan et al., 2006). This model included Short Term Memory

(STM), Long Term Memory (LTM) and Sensory Store. The STM is viewed as a

capacity limited, temporary memory store which is used for information processing.

According to this model, incoming information is stored in the sensory store and the

28

information attended to is passed onto the STM while the rest will be lost. The

information not rehearsed is decayed on the STM. The rehearsed information on the

WM is encoded and saved on the LTM which has an enormous capacity and is long

lasting (Yuan et al., 2006).

In the early models of Working Memory, it was considered as a single memory store.

But in later models such as the Baddeley and Hitch model (1974), WM is considered

as a multi-component system (Yuan et al., 2006). Despite the long history of the

concept of the Working Memory (WM), or as some refer to it, the Short Term

Memory (STM), researchers have not yet come to a unanimous agreement

(Kyllonen, 2002).

2.3.2 Advanced Memory Models

In advanced models, LTM and STM are considered as separate memory stores or

single memory stores. These models suggest different modes of activation for both

Long Term and Short Term Memory stores (Kalyuga, 2006). Baddeley and Hitch

(1974) improved the Modal Model further by adding functional importance in

cognitive processing, and replacing the term Short Term Memory (STM) by

Working Memory (WM). The WM concept was introduced to account for processing

units of information. Baddeley (1986, p. 34) describes the WM as “a system for the

temporary holding and manipulation of information during the performance of a

range of cognitive tasks”. Logie (1999, p. 174) describes WM as a “desktop of the

brain that keeps track of what we are doing or where we are from moment to

moment that holds information long enough to make a decision, to dial a telephone

number or to repeat a strange foreign word that we have just heard”. The focus of

these models is that the WM and the STM have been tested using concurrent

processing of several tasks. Such tests are more complex and involve meaningful

cognitive operations (Clark et al., 2006).

2.3.2.1 Atkinson–Shiffrin Memory Model

This model was introduced in 1968 by Atkinson and Shiffrin (1968). It is also known

as the multi-store model due to the multiple components of the memory. The

Atkinson–Shiffrin memory model proposed three memory components: sensory

memory, STM, and LTM (Ashcraft & Radvansky, 2010). The sensory memory

29

component was left out in the original model (Lynch, 2011). The sensory memory

receives enormous information from different senses. The types of sensory memory

include visual, auditory, and haptic. This is also known as iconic sensory memory

which holds visual information. Auditory or echoic sensory memory holds auditory

information. The haptic memory holds sensory memory for touch (Ashcraft &

Radvansky, 2010). Most of such information stays on sensory memory for a short

period of time and cannot be processed due to the limitations of our memory. If

attention is paid to any received information on any of the sensory memory, then it is

transferred to the STM. The remembering process begins at this point. Then this

information is rehearsed repeatedly and finally it is transferred to LTM (Ashcraft &

Radvansky, 2010). The STM has limited capacity and it refers to the information

retained on our senses long enough to be used. This model suggests that processed

information is transferred to LTM which has unlimited capacity and is long lasting

(Lynch, 2011). The iconic (visual) input lasts less than half a second but echoic

(auditory) input lasts about three to four seconds on the sensory memory (Lynch,

2011).

2.3.2.2 The Baddeley and Hitch Model

The Baddeley and Hitch model of Working Memory is a multiple component system

(Yuan et al., 2006). According to this model, the WM consists of a sensory store and

central executive. One component of the sensory store is used as a temporary storage

for acoustic and verbal information and is called an articulatory or phonological

loop. This is also referred to as an inner voice. The other component is used as a

temporary storage for visual and spatial information and is called a visuospatial

sketch pad or inner eye (Clark et al., 2006). The information on sensory store may

fade away quickly if the attention is diverted or WM capacity is overloaded

(Kalyuga, 2006). Sensory memory is stimulated and processed through our senses

such as sight, sound, smell, touch, and taste. This sensory information is constantly

overwritten by new inputs unless it is refreshed. Unless this sensory information is

attended to, visual information will stay on WM for half a second and auditory

information for three seconds (Pitts et al., 2006). In Baddeley’ view these two

sensory components have a specific set of responsibilities supporting central

executive with lower-level processing involved in a task (Ashcraft & Radvansky,

2010). According to Baddley (2001), WM consists of buffers which are used for

30

storing coded information. One buffer is responsible for storing verbal information

and another is responsible for storing visual and spatial information (Baddley, 2001).

The third buffer, called episodic, was introduced recently (Baddley, 2001). The

Working or Short Term Memory can be compared with the random access memory

(RAM) of the computer. The information is stored as chunks in the WM. These

chunks of information could be simple character, numerals, or even complex

abstracts and images (Pitts et al., 2006). The episodic buffer integrates information

already in WM with information retrieved from LTM. This part of the WM binds

different types of information together to form a complete memory (Ashcraft &

Radvansky, 2010).

Figure 2.8. Atkinson–Shiffrin memory model. Adapted from Ashcraft and
Radvansky, 2010, p. 38.

The rehearsed information is transferred from the STM to the LTM. The information

on the STM is forgotten or lost through the processes of displacement or decay if

rehearsal does not happen (McLeod, 2007). This model is considered to be due to its

suggestion that both STM and LTM operate in a similar fashion, but it influenced

researchers to carry out further studies into memory models (McLeod, 2007).

Realising that the STM is more complicated and instead of considering it as a unitary

31

store, Baddeley and Hitch (1974) developed this model by further identifying

different components of the STM such as the central executive, visuospatial sketch

pad, and articulatory loop (McLeod, 2007).

2.3.2.3 Kieras Model

There are diverse opinions about what components should be included in the WM

(Yuan et al., 2006). For example, in the Kieras model there are four components.

The four components are visual, auditory, tactical, and kinaesthetic. (Yuan et al.,

2006). Kieras used the Executive Process/Interactive-Control (EPIC) architecture, a

software simulator for modeling cognition and action issues about WM. The EPIC

included the auditory processor, visual processor, ocular motor processor, vocal

motor processor, tactile processor, and manual motor processor as inputs (see Figure

2.9) to the WM (Kieras, Meyer, Mueller, & Seymour, 1999)

Figure 2.9. Overview of EPIC architecture. Adapted from Meyer, 2011, p. 1.

32

According to simulated results in EPIC, the mean duration of the auditory WM was

two to four greater than the two seconds previously claimed in other models (Kieras

et al., 1999).

2.3.3 Working Memory Organisation Approaches/Hypotheses

There are a number of hypotheses that describe the differences in WM and the effect

on the performance of individuals (Clark et al., 2006).

2.3.3.1 Total Capacity Approach

In the total capacity approach, all the cognitive processes get resources from a fixed

pool (Clark et al., 2006). It also states that when there is more storage of resources

on the WM, it will result in a decline in the processing capabilities of an individual

(Clark et al., 2006).

2.3.3.2 Task Specific Hypothesis

This hypothesis was introduced by Daneman and Carpenter (1980). According to

this hypothesis, the WM capacity is specific to a given task when that task is

performed (Daneman & Carpenter, 1980). A person with efficient processing skills

will have more WM to store processing products. The processing efficiency for a

particular task could be achieved by training.

2.3.3.3 Processing Efficiency Approach

According to the processing efficiency approach, a single central system is

responsible for processing and storage. If an individual’s processing is inefficient, it

takes up more WM, leaving less capacity for storing information (Daneman &

Tardif, 1987).

2.3.4 Cognitive Load Types

There are three main types of cognitive loads namely intrinsic, germane, and

extraneous which have been identified in cognitive load theory. Mental capacity is

limited, therefore, it is important to balance these three cognitive loads to maximise

the efficiency of teaching (Clark et al., 2006).

33

2.3.4.1 Intrinsic Cognitive Load

The intrinsic cognitive load is the inherent difficulty or the natural complexity

associated with the information to be understood and learnt (Chandler & Sweller,

1991). It is a measure of the learner’s mental work needed due to the complexity of

the lesson (Clark et al., 2006). The intrinsic load is fixed for a given task and

knowledge level. It cannot be altered unless the basic task is changed or the

knowledge level is altered (Sweller, 2010). Although the intrinsic cognitive load is

considered to be immutable, some techniques can be applied to manage complexity

by segmenting and sequencing complex material (Sweller, Van Merrienboer, &

Paas, 1998). The intrinsic cognitive load depends on the level of element

interactivity. The element interactivity is the coordination of several knowledge

elements in the memory to accomplish a particular task (Clark et al., 2006). Some

learning tasks are learnt in serial fashion while other tasks require coordination. The

serial fashion tasks are related to low element interactivity whereas the coordinated

tasks require high element interactivity (Clark et al., 2006). An example of an

element could be a concept or procedure that has to be learnt (Sweller, 2010). Low

interactivity tasks require low WM load due to limited element interactivity (Sweller,

2010). For example, learning to create and use a primitive variable in the Java

language requires lower element interactivity than learning to create and use an

object, an activity which should impose a much higher intrinsic load on the WM.

The intrinsic cognitive load depends on the knowledge skills associated with the

instructional objectives needed to teach a particular lesson. Although intrinsic load

cannot be altered, it is possible for a teacher to decompose a complex lesson with a

high element of interactivity into a series of prerequisite tasks and distribute the

supporting knowledge over a series of sub-topics or lessons (Clark et al., 2006).

Therefore, experienced professional instructors usually manage intrinsic cognitive

load by arranging and sequencing content into a series of instructional events (Clark

et al., 2006).

2.3.4.2 Extraneous Cognitive Load

According to Clark et al. (2006), extraneous cognitive load imposes irrelevant

mental work on the learning task to be achieved and is a waste of mental resources.

Optimal instruction procedures should not cause extraneous cognitive load for the

34

WM of the learner. One of the useful applications of Cognitive Load Theory is to use

techniques to reduce extraneous load (Sweller, 2004). Sweller (2010) argues that

although there is a reasonably clear pattern to the generation of identified cognitive

effects, little attempt has been made to identify the cause of extraneous cognitive

load. It might have a common underlying cause.

2.3.4.3 Germane Cognitive Load

The germane load was first described by Sweller, Van Merrienboer and Paas (1998).

Both intrinsic and extraneous loads are caused by the characteristics of the learning

material. However, the germane cognitive load is caused by the element of

interactivity applied to individual learners (Beckmann, 2010). Thus, the germane

cognitive load is concerned with the characteristics of the learner and not the

learning materials. This means that for the same learning material, a learner with low

knowledge levels will have more interactivity resulting in a higher germane load

than that of a learner with higher knowledge levels (Sweller, 2010). The germane

cognitive load is the load applied while processing, constructing and automating

schemas (Sweller et al., 1998).

2.3.4.4 Interactivity between Working Memory Loads

According to Clark et al. (2006), complex topics are associated with large complex

schemas. Such tasks can be broken down into subtasks so that each subtask will be

associated with a subschema. Thus, one way of reducing this load is to teach

subtasks in isolation and bring them back together as a combined task (Clark et al.,

2006).

As Beckmann (2010) suggests, the element interactivity contributes to both

extraneous and intrinsic cognitive load. If the element of interactivity can be reduced

without altering what is to be learned, then there will be less extraneous cognitive

load (Beckmann, 2010). Some information may impose not only intrinsic but also

extraneous cognitive load on the learners (Sweller, 2010). The sources of extraneous

cognitive loads include those that lead to goal-free, worked example, split attention,

and redundancy effects (Sweller, 2010). In instructional procedures that facilitate

learning, the number of elements that are to be simultaneously processed by learners

should sometimes be reduced. A lesson with high intrinsic cognitive load and low

35

extraneous cognitive load will have a high germane cognitive load because of the

need for the learner’s interactivity dealing with essential learning materials (Sweller,

2010). The germane cognitive load takes up a portion of the WM resources for

interacting elements which determine the intrinsic cognitive load (Sweller, 2010).

Both intrinsic and extraneous cognitive loads constitute an independent source of

memory. But, the germane load which is generated due to the interactivity associated

with the intrinsic load is not independent and uses available memory resources of the

WM (Sweller, 2010). In order to maximise learning, lesson instructions should be

organised to let the WM resources deal with the elements related to intrinsic and

germane cognitive loads. The effectiveness of learning will be affected if the learner

has to deal with elements imposed by extraneous cognitive load (Sweller, 2010).

When more WM is taken up for extraneous cognitive load, there will be less memory

available to deal with the intrinsic cognitive load and also the germane cognitive

load. When the extraneous cognitive load is decreased, the germane cognitive load

will be increased and as a result more memory resources will be available for the

intrinsic cognitive load (Sweller, 2010).

2.3.5 Knowledge Representation Theories

There are many theories to describe the way knowledge is represented in the LTM.

Such theories explain how knowledge is stored in the brain and how prior knowledge

is used later on to acquire and store new knowledge. This concept was first

introduced by the psychologist Frederic Bartlett in 1930. The term schema was not

new in cognition and was used by Jean Piaget in his theory in 1926 (Pitts et al.,

2006). Piaget used the word schema for both a category of knowledge and the

process of obtaining that knowledge (Cherry, 2011). In his Cognitive Development

Theory, Piaget used the term schema for the organisational structures that manage

the sense of experience in children’s brains. According to Piaget, such schemas do

change with age (Berk, 2003). Bartlett studied human memory using an experimental

psychology method. This method was based on using folktales, ordinary prose, and

pictures to study the human memory storage of meaningful material. The participants

of the survey studied the material for a period of time and were required to recall it

several times. This experiment proved that the human memory for meaningful

material is not reproductive and but is rather a reconstructive memory. The process

36

of reconstructing memory includes combining elements from the original material

together with existing knowledge (Ashcraft & Radvansky, 2010). Some argue that

schema theory was based on Ausubel’s (1976) assimilation theory (Mead et al.,

2006).

The concept of schema is used in psychology and education to describe knowledge

representation in the brain. A schema is a model or hypothetical structure that

organises knowledge (Pitts et al., 2006). Schema integrates and stores meaning and

the relationships of individual experiences in the form of knowledge. Schema is an

abstraction of a collection of learners’ past experiences and can be applied later on as

new, in related contexts. Schemas are individual and can be encoded differently by

individuals even if it is created as a result of a shared experience with a group of

people (Mead et al., 2006). According to Driscoll (2000), there are three ways that a

new experience affects the creation of a new schema and fits into the hierarchy of

existing schemas. The first way, accretion, where the new experience fits well to

existing schemas and is remembered by the learner with no significant alterations.

The second way, tuning, is where the learner’s new experience cannot be fully

understood in the context of existing schemas and as a result a new schema evolves

to accommodate new experience. The third way, restructuring, is where the learner’s

new experience is quite different from existing schemas and tuning an existing

schema is not viable (Mead et al., 2006). The learning process naturally invokes the

formation of a new schema which is the key to the development of expertise and the

problem solving ability of a learner. Unlike a novice, the expert in a particular

subject has relevant schemas which facilitate the processing of information for

learning. An expert can easily recognize and use relevant past experiences stored in

the brain in the form of schemas to select a suitable problem solving strategy (Mead

et al., 2006). A novice in a subject area lacks relevant and useful knowledge in

schemas to be used in problem solving (Mead et al., 2006).

Caspersen and Bennedsen (2007) used the word “pattern” for concrete representation

of schema. According to this definition, schemas could be chunks, plans, templates,

or idioms. The schema representation in program design will be design patterns. For

the algorithm design domain, it will be elementary patterns and algorithmic patterns

(Caspersen & Bennedsen, 2007). The processing and encoding takes place on the

37

limited WM of the learner. A schema is capable of holding huge amounts of

information. It is important that this be treated as one element of information. When

the schema becomes complex, the processing also becomes advanced on the WM.

When the processing is completed, the encoded schema is stored on the LTM which

is considered to be unlimited (Caspersen & Bennedsen, 2007).

According to Newell and Simon (1972) knowledge is represented by a set of

conditional rules. The production rules are stored on the LTM and loaded to the WM

to be used whenever conditions of a rule occur. It then triggers action which could

change the contents of the WM (Kalyuga, 2006).

Another theory explains the way that knowledge representation is based on

production rules. This theory is called ACT-R (Adaptive Control of Thought-

Rational), and was introduced by Anderson (1993). ACT-R theory is based on

findings in cognitive neuroscience. According to this theory, memory organises

individual processing modules to produce cognition (Anderson, 1993). ACT_R

theory suggests two kinds of memory modules called declarative and procedural.

The declarative modules consist of the facts such as propositions, images, other

experiences of facts and experiences (Kalyuga, 2006). The procedural memories are

in the form of production rules which contain skills and knowledge (Kalyuga, 2006).

2.3.6 Cognitive Load Theory as a Pedagogy

In cognitive pedagogy, it is important to keep all three categories of cognitive loads

low so that it does not hinder learning and information of schemas. The intrinsic

cognitive load is usually an immutable characteristic of the topic to be taught. The

teacher can reduce the cognitive load by adjusting germane and extraneous cognitive

loads. The extraneous cognitive load can be reduced by improving the quality of

teaching materials and examples (Paas, Renkl, & Sweller, 2003). Scaffolding is

another useful technique to reduce the germane cognitive load in particular. Thus,

the new concepts to be taught could be introduced to students in a sequential and

timely manner to reduce both germane and extraneous cognitive loads (Paas et al.,

2003).

 Muller (2005) used Pattern-Oriented Instruction (POI) to reduce cognitive load in

problem solving in computer programming. This involves locating areas with high

38

element connectivity resulting in high intrinsic cognitive load. Such areas require

particular attention to ensure that cognitive load is minimized and as a result learning

becomes effective. In POI, different patterns such as idioms, programming patterns,

algorithmic patterns and design patterns are identified (Muller, 2005).

The human knowledge base is retained in the form of schemas, therefore, problem

solving ability has to be developed by constructing cognitive schemas. The POI

approach was aimed at enhancing the “development of algorithmic problem-solving

competence through the construction of an effective knowledge base” (Muller, 2005,

p. 65). The identified patterns could be re-used in developing algorithmic solutions

(Muller, 2005). Muller (2005) argues that learners who understand a problem

comprehensively as a whole, perform well in problem solving. Apparently, such

learners tend to load more relevant schemas and less irrelevant schemas to the WM

while solving problems (Muller, 2005).

2.3.7 Past Research based on Cognitive Load Theory

Just and Carpenter (1992) explain individual differences of WM capacity of people.

Their findings were based on a study of reading comprehension related to WM. This

study uncovered individual differences on “the amount of activation they have

available for meeting the computational and storage demands of language

processing” (Just & Carpenter, 1992, p. 124). The study revealed the existence of

qualitative differences of reading, speed and accuracy of individuals.

Garner (2002), has suggested that the Cognitive Load Theory needs to be carefully

taken into account when designing instruction material for teaching computer

programming. According to Garner (2002), programming has a very high intrinsic

cognitive load which takes up a considerable amount of the limited WM of the

learners. A preliminary study using a teaching tool CORT for teaching Visual basic

languages, suggested that CORT has reduced extraneous load and has great potential

to provide necessary amount of the germane cognitive load to help students develop

required programming schemata (Garner, 2002).

39

2.4 Neurological Aspects of the Human Brain

2.4.1 Neurological Research on Cerebral Cortex

Neurological findings on Working Memory (WM) identified different functional

regions of the brain. Smith (2000) and Smith and Jonides (1999) used brain imaging

techniques to identify regions of the brain where various activities were taking place.

The frontal cortex is about 33% of the human brain. It engages in higher cognitive

functions of the STM. The executive processes taking place in a part of this WM.

This part is “mediated in part by the prefrontal cortex (PFC)” of the left hemisphere

of the brain (Smith & Jonides, 1999, p. 1657). The activated areas of the brain for

verbal and special activities have been investigated using neurological experiments.

The findings of such studies have revealed that the storage of verbal material

activates Broca’s area (see Figure 2.10) of the left hemisphere of the brain and

storage of special information activates the premotor (see Figure 2.11) area of the

right hemisphere of the brain (Ashcraft & Radvansky, 2010; Smith, 2000; Smith &

Jonides, 1999).

Figure 2.10. Left hemisphere regions of the brain. Adapted from Ashcraft &
Radvansky 2010, p. 163.

40

Figure 2.11. Right hemisphere regions of the brain. Adapted from Ashcraft &
Radvansky, 2010, p. 164.

2.4.2 Hemispheric Dominance Theory

Sperry was awarded the Nobel Prize for his research findings on the cerebral cortex

of the human brain (Buzan & Buzan, 2006). According to his findings, the major

intellectual functions are divided between the left and the right hemispheres of the

cortex of the brain. The right hemisphere is said to be dominant in the areas such as

rhythm, spatial awareness, gestalt (wholeness), imagination, day dreaming, colour

and dimension. The dominant areas of the left hemisphere include words, logic,

numbers, sequence, linearity, analysis and lists (Buzan & Buzan, 2006).

The Herrmann Brain Dominance Instrument (HBDI) is a way of assessing thinking

styles of people using 120 questions (HBDI, 2001). The questions are targeted for

measuring individual preferences. There are no correct or wrong answers to these

questions (HBDI, 2001). This system was developed by William Ned Herrmann.

This brain dominance model classifies thinking into four different quadrants (Chwif

& Barretto, 2003). The activities of each quadrant are summarised in Table 2.2.

41

Table 2.2
Four Quadrants of the Human Brain and Activities. Adapted from Chwif and
Barretto, 2003, p. 1995)

Quadrant Key Words Preferred activities
Quadrant A (left brain,
cerebral). Analytical
thinking

Logical, analytical,
quantitative, factual,
critical;

logical,
factual,
technical,
critical,
auditory,
quantitative

understand how things work,
collect data, analyse data,
judge ideas built on facts,
criteria and reason out
logically

Quadrant B (left brain,
limbic).
Sequential thinking

safekeeping
structured
sequential
organized
complexity
detailed
planned

problem solve following
directions, detailed
orientation of work, organize
and implement

Quadrant C (right brain,
limbic).
Interpersonal thinking

kinaesthetic
emotional
interpersonal
spiritual
 sensory
symbolic
feeling

listen and express ideas, look
for personal meaning, input
sensory, and interact as a
group

Quadrant D (right brain,
cerebral).
Imaginative thinking

visual
holistic
intuitive
innovative
conceptual
imaginative

look at the big picture,
initiative, challenging
assumptions, visuals,
thinking, creative and
problem solving, thinking is
long term.

42

Figure 2.12. The four quadrant brain dominance model.

In Herrmann’s model, both left brain and right brain are divided into two parts

namely cerebral and limbic. Cerebral is the upper part of the brain whereas limbic

refers to the lower part of the brain (Lumsdaine & Lumsdaine, 1995).

A paradigm shift is a change from one way of thinking to another. Paradigm shifts in

education have happened in the past. As an example, a paradigm shift in thinking

skills required for success in studies occurred between 1960 and 1990 (Lumsdaine &

Lumsdaine, 1995). Figure 2.13 shows that the paradigm had been shifted from

Quadrant B to Quadrant D during this period (Lumsdaine & Lumsdaine, 1995). Sung

(2010) argued that in the 21st century a paradigm shift is to use active learning with

collaboration using integrated teaching models. In the 21st century, teachers are not

the sole provider of knowledge as students have access to information available on

the internet (Larson, Miller, & Ribble, 2009). This will lead to a huge paradigm shift

in education with the teacher playing a facilitator role rather than teaching in the

traditional sense. When there is a paradigm shift in any subject area, long lasting

education reforms will be required (Ferrero, 2005). The education system shifted

from teacher centered to student centered in the last two decades due to increasing

focus on teaching practice (Pears et al., 2007).

43

Figure 2.13. Paradigm shift from 1960 to 1990. Adapted from Lumsdaine and
Lumsdaine, 1995, p. 195.

The paradigm shift of students from the beginning of the course to the end of the

course was studied at Michigan University (Lumsdaine & Lumsdaine, 1995). The

Herrmann Brain Dominance Instrument (HBDI) was used for students in different

engineering faculties. The different results were found in different programmes

offered at Michigan University. The quadrilateral with the dotted line in Figure 2.14

shows the brain dominance profile of computer engineering students at the beginning

of the course and the quadrilateral with solid line shows their brain dominance

profile in the final year of the computer science and engineering students

(Lumsdaine & Lumsdaine, 1995). According to this result (see Figure 2.14), the

students who studied computer science engineering have become more left-brained

oriented thinkers at the end of the four year course. This was achieved by getting

students involved in additional creative problem solving activities throughout the

course (Lumsdaine & Lumsdaine, 1995).

44

Figure 2.14. Brain dominant profile of computer science and engineering students.
Adapted from Lumsdaine and Lumsdaine, 1995, p. 201.

Logical, analytical skills, which are sequential in nature, are thought to be required

for computing. McCluskey and Parish (1993) tested the effect of learning HyperCard

by right-brain dominant, left-brain dominant, and mixed-brain dominant students.

The findings were quite the opposite to the expected notion that the left-brain

students do cognitively-oriented computer tasks better than those with right brain or

mixed-brain (McCluskey & Parish, 1993). When this experiment was done, the

eyedness was the measure used to categorise students’ brain dominancy.

2.5 Mental Models

Mental models were introduced by the Scottish psychologist Craik in 1943. Craik

proposed three distinct processes involved in reasoning in the human brain. The first

process is the translation of external processes into an internal representation in

terms of words, numbers and figures. The second process is the derivation of other

symbols from them by some sort of inferential process. The third process is the

retranslation of the symbols into actions or recognition of the correspondence

between these symbols and external events (Johnson-Laird, 1983).

45

2.5.1 Past Research on Mental Modeling

People usually use visual images, pictures or scenes when they are using their

imagination. These are psychological representations of real, hypothetical, or

imaginary situations (Johnson-Laird et al., 1998) and are internal constructs that are

stored on our memory. The mental models work conscientiously or unconsciously in

a human brain when we think and respond (Carlson, 2007). Once the mental models

are accepted as reality, then they are powerful and influence the way humans interact

with others. It is suggested that such models work effectively in churches and

temples and help to retain scriptural interpretation and historical traditions. Some

operations can be carried out on imaginary models and they can be related to

corresponding conceptual processes (Johnson-Laird et al., 1998).

Many researchers have recently experimented with the possibility of using mental

modeling with students to enhance teaching. Ma et al. (2007) used a questionnaire

with open ended questions where novice Java programming students were asked to

describe the execution of a small program using texts or diagrams. These questions

were unstructured and were aimed at getting unanticipated information of each

participant’s mental models. The questionnaire contained some multiple choice

questions which predicted the answer of a given set of small programs with pre-

defined answer options. The data collected from the multiple choice questions were

mapped to possible mental models. In this survey, the most novice of the

programming students had non-viable mental models on the use of reference variable

and a few had non-viable mental models on the use of assignments of values to

variables. It was concluded that the reason that many failed the introductory Java

programming course was their lack of understanding of the reference variable. In this

research, the researchers have highlighted the importance of helping students to

develop viable mental models (Ma et al., 2007).

Visualisation tools are useful in creating mental models and help students to

understand concepts of software development. For example, visualisation could be

useful to help students to understand the concept of an object state and object

identity versus equality in OO programming (Van Haaster & Hagan, 2004).

According to Ben-Ari (2001b), when a teacher uses a visualisation tool to teach

abstract concepts, there are intrinsic difficulties in synchronising the mental models

46

of the student with those of the teacher. Therefore, a common starting point is

required to develop a shared mental model of a concept for both the teacher and the

students (Norman, 1990). Some researchers have used visualisation software tools

such as Alice to successfully teach introduction to objects, methods, decision

statements, loops and recursion (Dann, Cooper, & Pausch, 2001).

Mental models represent an abstract concept. The conceptual representation is

unique to an individual and provides predictive and explanatory powers in

understanding the concept (Wu et al., 1998). Teachers define the conceptual model,

which should represent the topic to be taught, as the sense of being accurate and

complete in a consistent way (Norman, 1983). If the learner has an accurate mental

model of what has been learnt it means that that the learner has understood it and

learning has been successfully completed (Wu et al., 1998). Wu et al. (1998) argue

that the teacher needs to develop a conceptual model which facilitates students in

developing their own mental models.

2.5.2 Constructivism and Mental Models.

Constructivism is a way of constructing human learning. The learners build new

knowledge upon the foundations of previous knowledge. The key thinkers of

constructivism were Piaget, Vygotsky, and Bruner (MacNaughton, 2003). The

Theory of Social Constructivism is a dominant philosophical theory introduced by

Kant. Social constructivism is based on a mental modeling concept. Kant concluded

that humans construct knowledge by organising and sequencing the experiences that

they gain from the outside word (Werhane et al. 2011).

Constructivism is an educational concept which helps learners to construct mental

models (Lui, Kwan, Poon, & Cheung, 2004). Lui et al. (2004) used cognitive

science to construct mental models of programming elements in the mind of learners.

The learners who managed to construct viable mental models which matched the

design model understood the correct concepts and became successful in learning

programming. According to Ben-Ari (2001a), learning in a constructivist way is

effective and demands the construction of viable models. The construction of mental

models is a recursive process in which new models are constructed and existing ones

47

are adjusted or dropped. Five hazards that could hinder learning computer

programming have been suggested by Lui et al. (2004).

They are:

1. presentation of high fidelity programming interfaces on test books

and lecture notes;

2. abstract symbols and implicit concepts in languages such as C and

Java are difficult for novice learners;

3. frustration of novices due to time spent on editing, compiling, and

running to check each mental model;

4. lack of prior knowledge or correctly constructed knowledge on

which to construct new knowledge; and

5. having unsuitable pieces of knowledge as the basis to construct

new knowledge.

Hazards four and five are related to the construction of new mental models by

students. Lui et al. (2004) suggest that weak students are less tolerable of these

hazards. The learners get access to mentally designed models using the interface

provided by the language, programming environment, lecture notes or lecture

contents. The learners interact with the interface through which they have to probe

the actual model in order to construct and test the model (Lui et al., 2004).

2.5.3 Dual Coding Theory and Relational-Organisational Hypothesis

Yates (1966) argues that imagery was used and applied in a broader sense with the

aim of accelerating the acquisition of knowledge even before Christ (as cited in

Paivio, 2006). With the increase of language emphasis in education, imagery was

eventually externalized as pictures (Paivio, 2006). Dual coding theory and its

educational implications further enhance the historical evidence of centralisation of

knowledge using imagery and pictures (Paivio, 2006). The use of images in

cognitive processing has been investigated in the last three decades (Ryu, Lai,

Colaric, Cawley,& Aldag, 2000).

Recent research led to the revival of the use of imagery in education and the

formulation of the Dual Code Theory (DCT). The Dual Coding Theory (DCT) is

48

based on the assumption that visual and verbal information is processed, encoded,

stored, and retrieved for subsequent use by different channels of the brain (Paivio,

2006). Although verbal memory and image memory store and function

independently, both work interactively (Thomas, 2010). Verbal information contains

the item’s linguistic meaning and the visual images represent what the item looks

like (Liu, 2011). Paivio, an emeritus professor of psychology at the University of

Western Ontario, experimented by giving pairs of words to a group of people and

checking how they could recall them. Baddeley appreciated and adopted DCT in his

WM model. In Baddeley’s Working Memory Model, the two memory stores were

named visuospatial sketchpad and phonological loop.

There are some other controversial theories that have been proposed by others

(Thomas, 2010). The Relational-Organisational hypothesis is an alternative to Dual

Coding Theory. According to this hypothesis, humans create a number of links or

hooks between the items of pairs which are required to remember paired-associated

information. Bower (1970, as cited in Liu, 2011) researched this with three groups of

participants each with a different set of instructions in a pairs associated task. For

group one, two items were rehearsed aloud. The second group was asked to construct

two images which were not interactive and the two items were separated in a

marginal space. The third group was asked to construct an interactive scene with two

images which were interactive. Group three managed to recall 53% of the paired

associates and group two was able to recall only 27% of the paired associates. Bower

argued that if DCT was true, both group two and three would have performed

equally. Based on these findings, Bower concluded that interacting images create

more links between target information and other information, making it easier to

retrieve (Liu, 2011).

2.5.4 Using Visual Tools in Teaching

Critical thinking skills require logical thinking and reasoning which includes

sequencing, classification, deductive and inductive reasoning, comparison,

hypothesizing, cause/effect, patterning, webbing, analogies, forecasting, planning,

and critiquing (Dunbar, 1997). Critical thinking is considered as a functionality of

the left-brain (Ursyn & Scott, 2007). Images and animations are visual learning tools

that can be used to enhance learning at any level. Visual representations help to

49

bridge language barriers (Willis & Miertschin, 2005). Ursyn and Scott (2007) state

that visual ways of thinking related to simulation and visualisation give rise to the

ability to perceive complex systems. Communication through visual symbols is

nonlinear and quite different from communicating using verbal symbols. Such

nonlinear processing involves cognitions and produces personal referents and

insights. Hence, visual symbols help to develop creative thinking (Ursyn & Scott,

2007). Many researchers believe in using visual tools for reducing the complexity of

an intellectual task. Visual tools help the learner to understand abstract ideas and

understand processes, concepts, misconceptions and tasks in their own way (Krajcik,

Czerniak, & Berger, 2003). Most programming concepts are abstract with no

graphical form. Therefore, teachers tend to use visual representation of the structure

and operation of programs and algorithms to make them easier to understand for

novices in programming. However, “Students may look at dynamic visualizations

without understanding the context or deeper meaning” (Pears et al. 2007, p. 209).

2.6 Instructional Techniques and Tools

2.6.1 Scaffolding

Scaffolding for supporting learning was introduced by Wood, Bruner and Ross

(1976) as a metaphor to explain the one-to-one assistance that teachers provide to

learners. In scaffolding, the teacher provides assistance only if the required skill is

beyond the learner’s capability (Lipscomb, Swansonm, & West, 2008). Educators

widely use scaffolding to assist students’ learning. Educators get students engaged

in a collaborative manner by providing scaffolding with structures for learning.

These support structures are necessary to complete tasks and to develop the

knowledge structures for the students who need support. In scaffolding, teachers

provide clear directions, use methods to keep the students on task, and do sporadic

assessment with feedback (Mead et al., 2006). Six categories of scaffolding namely:

instructing, questioning, modeling, feeding back, cognitive structuring, and

contingency management were identified by Gallimore and Tharp (1990). Krajcik et

al. (2003) describe scaffolding as the process of providing support directions by a

more knowledgeable person for an intellectual task which is beyond the learner’s

capacity at the beginning. The scaffolding concept is that the support given to a

learner needs to be gradually reduced as the learner internalises the knowledge and

50

skills. In this process, the responsibility for completing the task is transferred from

the teacher to the learner (Puntambekar & Hubscher, 2005).

2.6.1.1 Use of Anchor Concept Graph in Scaffolding

The Anchor Concept Graph is a useful structure for educators to use in scaffolding as

it shows the required building blocks needed to understand a concept. A node of a

concept graph represents the knowledge structure to be developed by a student.

Students must traverse a path of the graph through intermediate nodes to reach the

goal node. The purpose and the graph direction must be clear and well defined.

There could be more than one path on the graph to reach a goal node. Teachers use

the graph structure to keep track of each student’s traversing to make sure that

students reach the final goal (Mead et al., 2006). Mead et al. (2006) suggest

intermediate nodes as ideal locations for intermittent assessments in scaffolding.

2.6.1.2 Use of Distributed Scaffolding

The distributed scaffolding concept is usually applied when different ways of

meeting development needs are required. It may involve a different type of

knowledge, communication and a large assortment of learning or support. Tabak

(2004) argues that the tasks need to be extended over a long period of time due to

their complexity. When scaffolding takes place over a period of time, the student’s

scaffolding needs may change. Therefore it is necessary to meet the changing needs

of the student accordingly (Tabak, 2004). Redundant scaffolding is a distributed

scaffolding pattern in which a learner receives multiple supports of different types

(Tabak, 2004). The Zone of Proximal Development (ZPD) was defined by

Vygotsky as the gap between the learner’s independent problem solving level and

the level which they are expected to attain (Wertsch, 1985). Tabak (2004) argues

that redundant scaffolding is the solution to students with varied ZPD within the

same class.

2.6.1.3 Collaborative Learning Support using Scaffolding

According to Stahl (2006), mind tools can be used for scaffolding with shared

cognitive processes for a group of learners in a collaborative manner. Using mind

tools for a group of people could be more complex than using them with individuals

51

due to multi-interactivity and reinterpretation of the meaning among the members of

the group. Stahl (2006) used chat tools for communication along with a whiteboard

to collaborate ideas. Information and Communication Technology will continue to

be used as a mind tool in collaborative learning and scaffolding (Kirschner &

ErKens, 2006).

2.6.1.4 Cognitive Learning Support using Scaffolding

From the pedagogical view of cognitive load theory, it is important to adjust the

germane cognitive load while maintaining extraneous cognitive load at a minimal

level in teaching. This can be achieved by “modifying teaching materials and

examples, by using scaffolding, and by carefully sequencing and timing the

introduction of new concepts” (Mead et al., 2006, p. 186). A research paper written

by Caspersen & Bennedsen (2007) was based on the use of cognitive load theory,

cognitive apprenticeship, and worked examples to improve the teaching of computer

programming. Scaffolding was used to support students as they continued with the

tasks. As the learning progresses, fading was eventually applied to hand over the

responsibility for performing the task to the learner. This instructional design has

been used successfully at University of Aarhus in Denmark with more than 400

students enrolled in introductory level programming (Caspersen & Bennedsen,

2007).

2.6.1.5 Scaffolding using Visual Tools

Some intelligent software tools have been used to provide scaffolding for learners.

Garner (2002), used a software tool called the Code Restructuring Tool (CORT) for

scaffolding at Edith Cowan University, Australia. The students were provided with

partially complete solutions of assignments and the CORT provided online

scaffolding while completing the assessments. CORT provided four categories of

support types, namely, syntactical, semantic, structural, and algorithmic. The CORT

determined the degree of assistance required and provided strong scaffolding for

student learning. According to Garner (2007), it is important to design partially-

completed problems in such a way that scaffolding is reduced gradually in order to

maintain the cognitive load at a moderate level.

52

At the University of Houston in the USA, mind mapping was used as a visual tool in

team collaborative learning (Willis & Miertschin, 2006). The process consisted of

three-stage scaffolding. In the first stage, scaffolding was provided to individual

students who created mind maps independently. In the second stage, mind maps

were exchanged between team members and for peer review. Scaffolding was also

provided to the team members who had developed a new knowledge structure

collaboratively at the second stage. In the last stage the students had to show the

proficiency of the applied contents and how concepts were integrated. At this stage

scaffolding was provided to the students. The scaffolding at each stage was provided

by means of the assessment tasks given to students for completion (Willis &

Miertschin, 2006).

Mind tools and cognitive tools transform information into knowledge. These tools

can be simple or complicated: ranging from email to visualization systems. They are

used to “engage in, and facilitate, critical thinking and higher order learning”

(Kirschner & ErKens, 2006, p. 199). Students use mind tools to represent what they

know in different meaningful ways. Therefore a teacher can use mind tools for

scaffolding. The messages between the teacher and learner also provide a scaffolding

structure when specific kinds of responses are used. This form of scaffolded

conversation results in more consistent and convincing conversations (Jonassen,

Carr, & Yueh, 1998).

2.6.2 Cognitive Apprenticeship and Metacognition

The members of communities which are bound by a shared set of interests usually

follow the cognitive apprentice model of learning (Dennen, 2008). The cognitive

apprenticeship is part of the social constructivist paradigm. In cognitive

apprenticeship, the principles of ZPD are applied with tasks that require scaffolding

(Cognitive apprenticeship, n.d.). As in traditional apprenticeships, cognitive

apprenticeship students are expected to demonstrate skills with assistance and

coaching. A cognitive model which could be used to develop reasoning abilities of

the learners by making expert thinking in a visible subject area is a cognitive

apprenticeship model (Collins, Brown, & Holum, 1991). Some researchers use the

word metacognition, which was introduced by Flavell (1976), to describe cognitive

apprenticeship. It refers to a person’s knowledge concerning his own cognitive

53

process or anything related to it (Flavell, 1976). Collins, Brown, and Newman (1989,

p. 456) describe cognitive apprenticeship as “learning through guided experience on

cognitive and metacognitive, rather than physical, skills and processes”. Another

definition which is more related to traditional apprenticeship is that “Cognitive

apprenticeship is a process by which learners learn from a more experienced person

by way of cognitive and metacognitive skills and processes” (Dennen & Burner,

2007, p. 427). In the Cognitive Apprentice Learning Model, cognitive skills are

developed though interactions using activities such as such as modeling, coaching,

reflection, articulation, and exploration (Collins et al., 1989; Dennen & Burner,

2007; Seel, 2001). Cognitive apprenticeship could be provided to learners on

computers creating simulated apprenticeships in a multimedia environment.

According to Reeves (1993), it is a major benefit to have well designed interactive

simulated apprenticeships in the classroom environment.

2.6.3 Situated Learning Theory

Situated Learning Theory (SLT) was proposed by Lave and Wenger. According to

SLT, learning takes place within activity, context and culture. According to Lave and

Wenger (1991), this theory is related to Vygotsky’s social development (Learning

Theories Knowledge base, 2011). Brown et al. (1989) describe the context of

situated learning and the way that it can be applied to real life and for meaningful

learning; it is required to embed the social and physical context within which it can

be used. Lave (1988) identified three categories of learners: Activities of students,

practitioners and Just Plain Folks (JPF) and studied the learning patterns of each

category (as cited in Brown et al. 1989). Lave (1988) focussed on JPFs and found

that the ways they learn were quite distinct from what others do. They can

acculturate through apprenticeship or qualitative change as others have in a

conventional way. Lave (1988) found that JPFs acculturate into different

communities (as cited in Brown et al., 1989). Brown et al. (1989) believe that JPF

behaviour should be discouraged in schools. Although Situated Learning Theory is

logical and easily explained, it is difficult to implement such ideas practically in

instructional settings (Herrington & Oliver, 1995). The biggest challenge in the

situated learning model is the observation and identification of the community of

practice of learners (Lave & Wenger, 1991). When computer applications are used as

teaching tools, it takes learners away from the real life work situations. Therefore, it

54

becomes a new learning environment away from authentic situations and hence leads

to a setback in situation learning context (Hummel, 1993). Hummel (1993) suggests

virtual reality and hypermedia be used in computer learning applications to simulate

real life work situations.

2.6.4 Mind Mapping

In the late 1970s, Buzan (2011) defined mind mapping as “a powerful technique

which provides a universal key to unlock the potential of the brain” (p. 1). In an

educational context, Martin (2007) described mind mapping as a technique which

combines graphical and textual components for studying and planning. It ties

together a range of cortical skills with word, image, number, logic, rhythm, colour,

and spatial awareness in a powerful manner. Unlike most other tools, mind mapping

allows the user to freely associate with new ideas of his brain. The open ended nature

of the mind map allows the user to make new connections (Buzan, 1991). This tool

is currently used by millions of people in the world (Buzan, 2011).

Figure 2.15. Sample mind map. Adapted from Buzan, 2011, p. 1.

According to the guidelines given on Buzan’s website, mind maps should start in the

middle of a blank page, allowing the brain to express freely and naturally, allowing

ideas to spread out in all directions across the page. A central coloured image or

picture may be used to help focus and concentrate the user’s imagination. Colours

should be used throughout as they help creative thinking and add extra vibrancy to

55

the brain. The main branches should be connected to a central image and the second

and third level branches all connect to the first level. This helps the user’s brain as it

works by association. The connections help the creator to understand and remember

the contents a lot more easily. The branches should be curved as straight lines could

be boring for the brain. Single key words should be used per line to add more power

and flexibility to the mind map. Images or pictures should be used throughout the

mind map (Buzan, 2011). It is also important to use colours throughout the mind

map as colours enhance memory, delight the eye and stimulate the right cortical

brain. In addition, it is important to use single headed or multi-headed arrows to

show forward and backward directions of the contents of the mind map. Symbols

such as asterisks, exclamation marks, crosses, and questions marks are usually used

next to words to show connections and clarity. Geometrical shapes such as squares,

circles, oblongs, and ellipses are used to mark areas or words which are similar in

nature. They are also used to show and classify the sequence of importance.

Triangles can be used to indicate possible solutions on the mind map (Buzan, 2006).

Historically, mind mapping was popular among researchers for generating ideas in

loosely structured brainstorming sessions. In such sessions, ideas could be

categorised informally in the branches of a mind map. At the end of the

brainstorming session, ideas from different branches of the mind map were reviewed

to create important ideas (Millen, Schriefer, Lehder, & Dray, 1997).

2.6.4.1 Use of Mind Mapping in Collaborative Learning

Mind Mapping has been successfully used in computer-supported collaborative

learning (CSCL) at Saint Petersburg State University, Russia. Now mind mapping is

a widely known learning tool especially in CSCL (Koznov & Pliskin, 2008). Willis

and Miertschin (2006) used mind mapping to experiment on collaborative group

learning. Tablet PCs (TCP) were used to investigate the possibility of incorporating

mind mapping activities in order to improve the critical thinking of Information

Systems Technology students (Willis & Miertschin, 2006). The use of mind mapping

in enhancing peer interaction aiming at collaborative learning was studied at the

Saint Petersburg State University, Russia using 200 undergraduate level student

participants. In this study, students firstly created individual mind maps to develop

the understanding of their module topics, and secondly exchanged their mind maps

with the team members for peer review with comments which aided the refining of

56

their understandings. At the end of this study, the researchers noticed “booming

efficiency of collaborative learning processes and student activity, and the entire

education process seems to have become more creative and interesting” (Koznov &

Pliskin, 2008, p. 488). Some researchers consider Mind Mapping as a tool for

organising meanings. Learners analyse and organize what they know or what they

are learning using semantic organization tools. Mind Mapping is the best known

semantic organization tool (Jonassen et al., 1998). There are newly developed simple

teaching tools with embedded free hand manipulation features. GroupScribbles (GS)

is one such design tool for teachers to support student knowledge building using

collaborative learning (Tan, Chen, & Looi, 2009). Jakovljevic (2003) believes that

current methods for teaching programming fail to give in-depth understanding of

programming concepts and the use of mind tools has not properly been investigated

in the present programming classrooms.

The Vodafone research and development group discovered the benefits of using

mind mapping use-cases opposed to the linear use-cases. Despite the surprising

similarities between two use-casings, the group found a number of benefits in using

mind map use-cases. One advantage was the ability to include vague information at

an early stage in the project. In Mind Mapping no information gets lost during

extensive and/or confusing use case elaboration. The Mind Map use-cases indicate a

specific style of thinking. Therefore it can be leveraged in other phases of

requirements elicitation. The fast swap between big picture specification and every

single detail is another advantage in mind map use-cases. It was also found that the

packages could be easily rearranged and package alternatives were simple and able

to be identified and adjusted. Mind map use-cases enhance hithero use-case writing

practises (Holtel, 2005).

Scribbles, a software package, was used at the School of Computing at the

University of Dundee for object-oriented design. This software package is capable of

recognising hand drawn shapes and enables the use of freehand manipulation of a

hybrid mind map. The mind map provides a platform for brainstorming and

eventually that platform unlocks the capacity to explore ideas across a number of

dimensions and levels of ideas. It is also possible to store valuable ideas and

documentation in the early stages of program design using mind maps. This stored

57

information would be useful at the design stage of the software project. This is a very

lightweight modeling environment ideally suited to introducing students to object-

oriented design (Martin, 2007). Martin (2007) prefers this light weight tool to

Computer Aided Software Engineering (CASE) tools due to its hybrid nature with

mind maps and unlike CASE tools it allows free hand manipulation of mind maps

(Martin, 2007).

The Computer Science Department of University of Wales, Aberystwyth (UWA)

embarked upon a project called MindMapX. This product involves a real time

multiuser mind mapping application that could not only be used in software

engineering but also in other disciplines. This product enables students to

collectively plan, learn and develop their ideas in software engineering which

includes object-oriented programming (Davis, 2005).

Jonassen et al. (1998) categorised mind tools into several classes; namely semantic

organization, dynamic modeling, information interpretation, knowledge construction,

and conversation and collaboration. Mind mapping comes under the category of

semantic organization tools. Semantic networking tools contain visual screen tools

to produce concept maps. Concept mapping is a learning strategy in which visuals

map of concepts are drawn and then connect to each other by using lines. As

Jonassen, Beissner and Yacci (1993) describe, this structural knowledge is stored in

the memory as spatial representations of ideas and their interrelationships. It is more

beneficial to use computers as mind tools using appropriate software as knowledge

representation formalisms rather than using computer-based instructions (Jonassen et

al., 1998).

One singular advantage of mind mapping is that having the main topic at the centre,

it becomes more clearly defined. The more important ideas are closer to the centre

and less important ideas are near the edge of a branch. The links between key

concepts are easily recognisable on a mind map. The structure of the mind map helps

recall and review contents more effectively. The structure of the mind map allows

new additions without much effort and each mind map is unique.

58

2.7 Issues in Teaching and Learning OO Programming

2.7.1 Past Research on Teaching Issues in OO Programming

2.7.1.1 Cognitive Issues in Teaching

According to Winslow (1996), the dropout rate was highest in programming courses

at the University of Dayton, Ohio. Such courses were regarded as difficult. Winslow

(1996) argues that novice programmers face a wide range of difficulties and deficits

and they need at least 10 years of experience to become an expert programmer.

Winslow (1996) believes that a novice programmer’s knowledge is limited to surface

and superficially organised knowledge. Winslow (1996) found that novices were

lacking detailed mental models which are useful program chunks or structures in

programming. Robins, Rountree, and Rountree (2003) believe that many of the

strengths and abilities of programming experts are due to their ability to recognise

and adapt patterns or schemas. Therefore learning programming requires not only

knowledge about the language, but also the ability to comprehend programs and to

generate programs (Robins et al., 2003).

At the Open University of Hong Kong, it was found that about 10 to 20 percent of

the introductory level programming students were unable to understand the

fundamental programming concepts and as a result they didn’t go past the first

assignment every year (Lui et al., 2004). After a few years of experience, teachers

realised that the reason for failures was due to their incorrect understanding of the

programming concepts. A group of researchers developed courseware for such

students using an approach called Perform Approach, based on cognitive science

theories and constructivism. In the perform approach, weak students were provided

with different support schemes for concept construction. This rigorous process of

learning helped to avoid weak students constructing incorrect concepts (Lui et al.,

2004).

Van de Ven and Govers (2007) conducted a survey at the Eastern Institute of

Technology in Napier, New Zealand to find out ways by which the effectiveness of

teaching and learning could be improved at an introductory level in computer

programming. It was aimed at finding the most difficult parts in teaching

programming, in order to identify factors which could overcome difficulties. The

59

result of the survey revealed that most students became frustrated and lost their

motivation as they did not have the background to understand the high level of new

content presented at the start of the course.

White and Silvitanides (2002) argue that students require a formal operational level

of cognitive development in order to learn a programming language (as cited in van

de Ven & Govers, 2007). According to White and Silvitanides, students formulate

different programming environments and require different levels of cognitive load

for different languages (as cited in Van de Ven & Govers, 2007). The literature

review carried out by Prasad and Fielden (2003) came to the conclusion that

adapting the teaching to the different cognitive styles of the students may have the

greatest chance of success in computer programming.

2.7.1.2 Use of Worked Examples in Teaching

Garner (2002) believes that the nature of computer programming results in a high

intrinsic cognitive load on the learner’s memory and emphasises the need for

reducing the intrinsic cognitive load of learners. Garner has suggested taking

Cognitive Load Theory into account when developing instruction materials for

programming students (Garner, 2002). According to Garner (2002), novice

programming students could be provided with complete worked examples in order to

reduce extraneous cognitive load. Afterwards, when students are given incomplete

assignments to complete, they will abstract and use the relevant schemas from the

LTM which were created while studying worked examples. Past research suggests

that incomplete, but well-structured and understandable examples be given to

students to generate missing codes or to complete examples. Such incomplete

examples should be carefully designed to include sufficient clues to guide students to

complete the work. The aim of this careful design of the examples should be to

minimise the germane cognitive load of the task imposed on the learner’s WM. In

addition, it is also important to make sure that that the blueprints are found for

mapping to a new problem situation and it forces mindful acquisition of relevant

schemas to the new problem when students start working on the example (Garner,

2002).

60

Figure 2.16. Cognitive load relationships in programming. Adapted from Garner,
2002, p. 4.

An instructional format using worked examples reduces unnecessary cognitive load

imposed in conventional instructional format. It has been proven to be effective for

novice learners (Van Gog, Paas, & Sweller, 2010). According to Koedinger and

Aleven (2007), learners receive enormous amounts of instructional guidance from

worked examples compared to problem solving exercises. The amount of guidance

to be added to the worked examples was studied by Wittwer and Renkl (2010) who

found that it had little effect on gaining procedural knowledge but was useful in

understanding conceptual knowledge. The worked example itself contains the

solution procedure for the learner to study.

2.7.1.3 Use of Cognitive Tools in Teaching

Garner (2002) experimented with a teaching tool called the Code Restructuring Tool

(CORT) to improve teaching Visual Basic programming at introductory level

students. The CORT was based upon using partly completed solutions of programs

in teaching. The CORT had three levels of using code which provided different

degrees of the germane cognitive loads to students. As discussed earlier, the CORT

was tested at Edith Cowan University in Australia. The researcher designed teaching

materials taking the principles of the Cognitive Load Theory into consideration. Due

to the high intrinsic cognitive load in programming topics, it was realised that the

need for lowering the extraneous cognitive load was important. The partly

completed work should make students think, apply germane cognitive load and

finally create a new schema in the LTM as new knowledge. This process had been

incorporated into the software tool CORT. There are different views and suggestions

61

for using partly completed programs in teaching. Van Merrienboer and Paas, (1990)

suggest using understandable and well-structured program examples with sufficient

clues so that students understand and complete the work. This would enable students

to acquire schemas to be used for mapping new problem situations. Another

suggestion from Lieberman (1986) is to give worked examples to students and ask

them to annotate with the detailed functionalities of the code. After using CORT for

a couple of years, Garner (2009) confirmed “the possibility of utilising a technology

supported part-complete solution method, in the form of the CORT system, with

students in introductory programming classes” (p. 308). Garner (2009) suggests

development of mental models for students prior to the use of the CORT system.

2.7.1.4 Use of Visualizing Techniques in Teaching

Yousoof, Sapiyan and Kamaluddin (2006) proposed visualization as a technique to

reduce cognitive load in programming. In visualising, the computer program run

time behaviour is visually displayed on the screen. This framework integrates

learning support and enables students to totally concentrate on the learning with no

redundancy or split attention and as a result the WM could be fully utilised. This also

enables the proper use of visual memory received from visual sensors. The visual

metaphor can retain and process faster than the verbal metaphor. Therefore, better

utilisation of WM was expected from the proposed visualised framework (Yousoof

et al., 2006). The proposed framework consists of concept maps to visualise the

various aspects of a concept and also relationships between various aspects. These

concept maps are expected to help build schema structure in the LTM.

2.7.1.5 Programming Development Environment Issues

Programming development environments or interfaces have been designed for

professional programmers. Such environments aren’t suitable for novice

programmers (Reis & Cartwright, 2004). Vogts, Calitz, and Greyling (2010) argue

that novice programmers tend to focus more on getting syntax right rather than with

pedagogical aims in mind when they use programming development environments.

Despite the availability of suitable programming environments for students, some

tertiary institutions tend to use a professional programming environment due to

external pressure to have real world programming experience for the students (Vogts

et al., 2010). A comprehensive study was conducted on this issue by three

62

researchers at the Nelson Mandela Metropolitan University on the perception of the

two environments, academic performance and programming behaviour of novice

programmers. The findings of this study include: motivation and self-belief of

students are important and shouldn’t be ignored: appropriate program development

environments should be used in teaching (Vogts et al., 2010).

2.7.2 Past Research on Teaching Issues in Java Programming

2.7.2.1 Difficult Concepts of the Java Language

Garner, Haden and Robins (2005) studied and analysed problems that students

encounter while studying Java as the first programming language at the University of

Otago, New Zealand. This study was carried out keeping track of the questions

asked by students during Java practical laboratory sessions conducted by instructors.

The most frequently asked questions were on the use of arrays followed by data flow

and headers. Garner et al. (2005) noted that the students had more issues associated

with procedural or algorithmic aspects than with OO aspects. The problems

associated with the procedural nature were on control flow and data flow. In OO, the

main issue the students had was with constructors and when objects should be used

in a program (Garner et al., 2005).

2.7.2.2 Pedagogical Issues

Teachers at Agder College in Norway, used Simula and C++ computer language for

teaching programming courses at the introductory level. Due to better features and

advantages available in the Java language, the Agder College switched over to the

Java for teaching the first programming language students in 1996. Hadjerrouit

(1998) evaluated the suitability of the Java language, taking three years of

experience using Java as the first language into consideration. This research revealed

the importance of getting students’ mind-set prepared in an object-oriented way from

the beginning of the Java programming course. It was a difficult task for beginners

until significant programming experience is gained. Hadjerrouit (1998) argues that

many Java programming textbooks contains unnecessary illustrations of Java

program development environment and some specific applications such as using

applets, using pictures and sounds. Unfortunately, such books do not sufficiently

cover topics, such as algorithmic thinking, structured programming, and object-

63

oriented design (Hadjerrouit, 1998). In this critical evaluation, Java was found to be

a relatively difficult language for students with no programming background, and

also a language suitable for teaching students with some programming knowledge.

But the researcher, Hadjerrouit, had identified the fact that teaching Java was not just

a problem of technology, but a pedagogical problem. Teaching and learning Java

needs new ways of thinking and in more depth in order to grasp, and this is more

challenging (Hadjerrouit, 1998).

2.7.2.3 Conceptual Issues

With the popularity and the demand for the Java language at the end of the 20th

century, there was some uncertainty about the suitability of using Java computer

programming language to teach introductory level courses at Australian universities.

There were some debates over this issue and three researchers, Clark, MacNish, and

Royle from two leading Australian universities: the University of Canberra and the

University of Western Australia embarked upon a research project centred on this

issue. They explored the fact that OO languages such as Java impose an immediate

conceptual load on students who are new to programming. They identified

educational overheads inherent in Java programming language. The researchers also

found a need to introduce the concept of class and object at early stages of the

course. They also found the need for teachers to be explicit about the fact that the

instances of the primitive data types contain values and the instances of objects

contains the references to objects (Clark, MacNish, & Royle, 1998). Terms such as

instance, encapsulation and hierarchy that are used to explain the concept of class

and objects were found to be hard especially for many students for whom English

was not their first language (Clark et al., 1998). Another difficulty in teaching the

Java language is the need to expose students to exception handling too early. Finally,

the researchers suggested object-oriented concepts such as classes, objects, creation

of objects, and methods of a class are fundamentals and should be taught from the

beginning of the introductory programming course. The teacher could use the

advantage of corresponding software objects to real world objects when introducing

to the concepts in the Java language (Clark et al., 1998).

64

2.7.2.4 Use of Scaffolding

Butler and Morgan (2007) investigated the academic problems faced by novice

object-oriented programming students who use Java computer programming

language at Monash University, Australia. About 150 novice programming students

at Monash University participated in a survey which was aimed at finding the

problems they faced in learning Java programming. The findings of the survey

indicated that students were not receiving adequate feedback from lecturers on

conceptually difficult issues such as OOP principles and efficient program design

(Butler & Morgan, 2007). This course begins with basic programming paradigms

and spans to high levels of conceptual complexity. The students had indicated

Algorithms, Methods, OO concepts, and OO design as difficult areas to understand

and implement. The researchers have suggested the need for using further surveys

with the aim of finding out exactly why students find these conceptually difficult. It

was also concluded that there was a need for scaffolding student learning in the

difficult areas identified in this research (Butler & Morgan, 2007).

2.7.2.5 Use of OO-Light Approach

Lunney, McCullagh, and Lundy (2003) experimented using an approach called OO-

light teaching approach to teach Java as the first programming language in graduate

courses at the University of Ulster, UK. The students who enrolled in this course had

already completed a primary degree in diverse disciplines such as science,

engineering, arts, and management. The majority of the students were mature and

highly motivated towards career progression. According to a survey conducted with

the students who had enrolled in this course in 2002, 90% said that the programming

course was the most difficult one of the graduate courses. Thus, Lunney et al. (2003)

started teaching Java using applets and graphical components of Abstract

Windowing Toolkit (AWT) and Swing components. Kawa, a graphical user interface

tool, was used for program development in this course. The OO-light approach

differs from the traditional approach in which a good foundation of Java concepts is

given to students at the beginning of the course. The researchers involved in the OO-

light approach realised the need for basic understanding about interactive objects to

understand graphical interface programs using applets. Therefore, the applets were

used in a parrot-like fashion, not going into deeper learning at the beginning of the

65

course. This was followed by a traditional approach to teach basic concepts until

students grasp the concept of class. The researchers used non-object-oriented aspects

of teaching basic concepts such as main method, using primitive variable, selection

statements, repetitive statements and static methods and delayed teaching novel

features such as arrays associated with loops until object-oriented features were

introduced to the students (Lunney et al., 2003).

Collins (2002) experienced a similar problem of failing students in Java

programming in undergraduate and postgraduate level degree programs at the

University of Keele, UK. Despite the use of various approaches such as object first

and object last in teaching Java, students were still not fully satisfied at the

University of Keele (Collins, 2002). Collins (2002) believes that students require a

clear understanding of the programming concepts of Java, before the development of

programs. The OO-light approach could ease pedagogical shortcomings and initial

overhead of the Java language. It also could motivate and appeal more to graduate

level students as they begin learning using applets in web based applications

(Lunney et al., 2003).

Object-oriented Programming (OOP) has become a dominant paradigm today due to

its complexity and better organisation. Therefore, it is important to expose students

at early stages to the OOP paradigm using computer languages such as Java

(Georgantaki & Retalis, 2007). Grey and Miles (2002) consider the Java language as

an ideal choice due to the fact that it is fully object-oriented and its wide range of

libraries will enable students to use the knowledge in more specialised projects in the

future. However, most students, including those who already had prior experience

with procedural languages, found it difficult to understand even a simple Java

program due to the need for understanding new concepts in an object-oriented

paradigm at early stages (Grey & Miles, 2002).

Java programming was taught to first year students as a procedural language and

later as an object-oriented language in the subsequent year at the University of Hull.

This approach was changed in 1999 and the Java language was taught using object-

oriented features at early stages with an interactive learning package on a CD_ROM

to support the course (Grey & Miles, 2002). Novice programming learners need to

66

understand the classes, static methods and return types of methods to write the

simplest program. Input value from the keyboard is complex in the Java language, as

it requires the knowledge of I/O streams and exception handling. Such expectation is

beyond the comprehension of novice programming students at early stages (Grey &

Miles, 2002). Grey and Miles (2002) realised that many students used such concepts

blindly without clear understanding. According to Grey and Miles (2002), there are

two ways of addressing this issue. One way is to ask students to ignore many

important aspects of the Java language and the other is to hide some of the complex

issues. The teaching paradigm used at Hull University was not to hide any of Java

features, but to sequence teaching in such a way that it minimises the new concepts

encountered at any one time. In addition, real world objects using pre-written classes

were used in practical exercises. This course was interactive and partially completed

programs were given to novice programming learners. In this course, learning from

other people’s codes was considered a useful learning technique. Story telling

techniques were used to introduce the sequence of a number of themes and express

issues directly related to the experience of the student (Grey & Miles, 2002). Such

novel techniques can enrich the teaching material of a computer based course. Such

material could incorporate audio/visual presentations. Although there was some

interactivity in teaching, Grey and Miles (2002) included text and graphics and

omitted audio and video as programming is not a visual activity.

2.7.2.6 Use of Traditional Approach

The fundamental topics to be taught in computer programming include variable

types, methods, parameters, return types, local variables, and conditional statements.

This list of topics was extended further in teaching Java programming with the topics

such as private and public access specifiers, classes, objects, and state of objects. The

challenge of teaching Java programming to beginners at Radford University,

Virginia was teaching all of these topics at early stages of the course and also

sequencing the content to make sense to the students (Barland, 2008). The println ()

method could be used at early stages in programming to perform different

calculations and display the result on console applications. This function-first

approach was useful for learning passing arguments and returning values. It was also

useful for them to be familiar with the syntax of the Java language. Students used

private and public keywords without clearly understanding the meaning. As a result,

67

their first impression of programming became esoteric and unintuitive. With the

experiences of teaching introductory level Java programming at Radford University,

it was realised that proper sequencing of the topics reduces the unnecessary

confusion and stress of learners (Barland, 2008). Barland (2008) found out that by

reorganising the topics and minimising the emphasis on syntax of the Java language

in the early stages, teaching could be improved. In addition, it is important to

emphasize connections to high school algebra in Java programmes used at early

stages of programming.

2.7.2.7 Use of Functional Approach

Bloch (2009) found students at beginner’s level spending a lot of time, and

struggling with the Java language. As a solution to this dilemma, Java was

introduced using a simple limited concept called subset and then eventually guided

them to advance to a more complex concept. In addition, the students were exposed

to step by step design recipes for software development (Bloch, 2009). This process

included concrete questions, and products enabling the students to know what they

have achieved so far and the next step to be followed. According to Bloch (2009),

students should be exposed to functional programming prior to imperative,

sequential, or procedural programming. Such functional programming includes

programs with simpler semantics or familiar models with algebraic expression

evaluations (Bloch, 2009).

2.7.2.8 Use of Online Approach

According to Hadjerrouit (2007), programming is a difficult subject because it is a

skill rather than a body of knowledge. There are a few online programming learning

facilities and web-based programming tutors available today. Although, appropriate

feedback is given to the online learner, most of such systems focus on technological

application features rather than pedagogical aspects based on learning pedagogies.

Hadjerrouit (2007) experimented teaching Java programming to novice students

using blended approach. In this study, design-based research with a feedback loop

was adopted to explore the possibility of improving students’ ability to acquire basic

Java programming concepts online (Hadjerrouit, 2007).

68

2.7.2.9 Use of Mixed Approach

Caspersen and Bennedsen (2007) proposed a teaching model based on three leaning

theories to improve teaching programming at introductory level. The three theories

used were: Cognitive Load Theory, Cognitive Apprenticeship, and Worked

Examples. In addition, a pattern-based approach emphasizing program design and

general problem-solving skills were applied to aid schema creation and improve

learning (Caspersen & Bennedsen, 2007). Cognitive apprenticeship was applied to

complex tasks with conceptual and factual knowledge.

2.7.2.10 Use of Object First Approach

The issue of teaching programming using object-first or imperative-first was

addressed by the members of the Special Interest Group on Computer Science

Education (SIGCSE) by email and the findings were published as a research output

(Lister et al., 2006). In the object-first model, teachers focus on the principles of

object-oriented programming and design with exposure to inheritance at the

beginning of the course. In the latter part of the course, traditional control structures

are taught within the OOP context. Some programming teachers believe in using a

procedural paradigm first and then moving onto an object-oriented paradigm. They

argue that fundamental knowledge of algorithms, structured programming,

procedures, and historical development, is needed for students before introducing

object-oriented programming (Lister et al., 2006). Burton, and Bruhn, (2003) support

this idea and consider OOP as an extension to algorithmic thinking but accept OOP

as a new paradigm. Culwin (1999) argues that most people who decide on

undergraduate curriculum development have learned the procedural paradigm first

and then moved on to the OOP paradigm, hence they have the conception that the

old paradigm is a pre-requisite for the new paradigm. The programming-first

approach could be painful for some learners who are expecting industry relevant

teaching due to the wide usage of object-oriented programming in the industry.

2.7.2.11 Use of Constructivist Learning Theory

A number of researchers have suggested using Constructivist Learning Theory to

overcome difficulties in learning Java concepts. (Hadjerrouit, 1999; Lui et al., 2004;

Mead et al., 2006). These researchers argue that students are required to construct a

69

valid model in learning programming and that constructivist learning strategies are

yet to be used in Java programming. According to Mead et al. (2006), we have to

consider three basic components: curriculum, pedagogy, and assessment in teaching

computer programming languages. According to past research documents, there has

been much emphasis on the programming abilities of students. Some research

documents consider the learning difficulties from cognitive scientists, learning

theorists, and computer scientists point of views. Unfortunately, no attempt has been

made on the impact of text books and curricular structures on learning (Mead et al.,

2006). Mead et al. (2006) argue that novice students must construct a valid model

of a computer in order to deal with the difficulties of learning programming.

Moreover, proficiency in programming requires the acquisition of higher-order

thinking skills, such as analysis, design, analogical thinking, reuse, evaluation, and

reflection. Currently, however, few educators systematically apply constructivism to

computer science (Berglund, Daniels & Pears, 2006), and constructivist learning

strategies are only beginning to emerge.

2.7.2.12 Use of Bloom’s Taxonomy and Objects-First approach

Machanick (2007) researched the use of the object-first approach to teach Java

programming language adopting the Bloom’s Taxonomy to design the course

delivery at the University of Queensland, Australia. In this research, factual contents

were introduced to introductory level students at the beginning and subsequently the

higher level cognitive skills and design skills were taught. Bloom’s taxonomy

enabled classification of concepts to be taught and skills to be acquired. It helped to

decide on suitable tasks at a given skill level. Bloom’s Taxonomy was applied as a

basis for sequencing the teaching concepts to be taught in the course (Machanick,

2007). Despite the strong motivation students reported in the course appraisal,

researchers were unable to find sufficient evidence to come to a strong conclusion

about the suitability of an Object-First approach in teaching the Java language

(Machanick, 2007).

2.8 Java Development Environments

There is a wide range of Java development environments available. Some of these

are professional tools to be used for industrial applications developments whilst

others are developed and designed to be used in teaching environments. The use of

70

educational tools could be very useful in overcoming students’ difficulties and also

in achieving teaching and learning objectives (Brusilovsky, et al., 1997). Contrary to

the above argument is that some teaching tools which are too simple, too

complicated, or inappropriate could not serve the purpose and may cause problems

for students. Some students could get confused in professional program development

environments containing huge set of interface components and functionalities

(Kölling, Quig, Patterson & Rosenberg, 2003). Some Graphical User Interface

(GUI) environments which are used for OO programming development could give a

distorted picture of programming concepts to the learners. According to Kölling et

al. (2003), students who use Graphical User Interface (GUI) development

environment, concentrate more on visual aspects rather than programming concepts.

Kölling et al. (2003) describe such environments as traps. Kölling et al. (2003)

describe such environments as traps. GUI environments are suitable for program

builders, not for the learners. Therefore, it is important to understand the distinction

between teaching tools and professional tools in Java programming (Georgantaki &

Retalis, 2007). As Georgantaki and Retalis (2007) suggested, it is appropriate to

teach Java programming to novices using Java teaching tools and then introduce

professional tools to students at a later stage.

2.8.1 RAPTOR

RAPTOR is a visual programming design tool which generates the C++ and Java

code to a certain extent. It was developed by the department of computer science at

the US Air Force Academy (Welcome to the RAPTOR home page, 2011). It is

freely distributed to the computer science education community. Carlisle (2009)

used this tool to teach Java programming language and presented the outcomes in a

research paper. Carlisle (2009) found that RAPTOR reduces the time student spend

on dealing with complex syntaxes and also helps them to visualise classes.

According to the findings of a survey conducted by Fowler, Allen, Armarego and

Mackenzie (2000), 70% – 83% of the students were visual learners. Quoting this

finding, Carlisle (2009) argues that the “textual nature of most programming

environments works against the learning style of the majority of the students” (p.

276). UML designer allows the user to design classes graphically including

comments, specifying Java access modifiers. It is also possible to specify

inheritance, associations, nesting, aggregation, and dependency. Interface

71

implementation is possible in RAPTOR. The RAPTOR class editor is useful for

students to create Java code for Instance variables, Constructors, and Methods using

GUI interface without much effort (Carlisle, 2009). Carlisle (2009) found this tool a

simple environment in which to experiment with OO programming and useful for

visualising complex concepts such as recursion, heaps, and stacks.

2.8.2 BlueJ

BlueJ is a visual Integrated Development Environment (IDE) for the Java language.

It was designed and implemented by Kölling and Rosenberg (1996) to improve the

teaching and learning of introductory programming using object-oriented style in the

Java language. Despite its limited features, it is useful software for beginners in Java

programming. The features of BlueJ include graphical representation classes and

objects, simplicity, and inspect features to see the values of the properties of an

object. BlueJ provides software project structure graphically in UML like diagrams

(Kölling & Rosenberg, 1996). According to Kouznetsova (2007), BlueJ helps

beginners to grasp difficult Java programming concepts easily. BlueJ also helps

students to generate and edit Java code and enables students to use graphical images

without prior knowledge of Java graphics in Swing libraries (Kouznetsova, 2007).

The students at Sam Houston State University had difficulties in grasping object-

oriented concepts in Java programming. The Bluej was experimented as a teaching

tool to help students understand Java concepts better in game development

applications. This experiment revealed that BlueJ was very helpful and it increased

their level of engagement in programming. (Kouznetsova, 2007). Assignments with

incorporated graphics are crucial in teaching Java programming language as

graphical representation enhances student engagement. Students can easily create

graphics and incorporate them into applications using BlueJ (Kouznetsova, 2007;

Van Haaster & Hagan, 2004).

BlueJ facilitates the object-first teaching approach in which students are able to

experience the interaction with objects before being confronted with the Java

concepts and syntax (Kölling & Rosenberg, 1996). Hagan and Markham (2000)

published a research paper on their experiences using BlueJ to teach introductory

level programming using the Java language. The analysis of the data collected from

72

students on their backgrounds, perceptions and attitudes towards BlueJ was found to

be very positive, and towards the end of the course, from the answers students had

given to examination questions and in assignment interviews, the researchers were

convinced that they had a good grasp of object-oriented concepts (Hagan &

Markham, 2000).

2.8.3 Kawa

Kawa is a software tool that can be used for managing and creating Java programs.

Kawa provides an integrated development environment (IDE) which consists of an

editor, compiler, window for library browsing and output window (Introduction to

Kawa 3.13, n.d). Kawa was adopted at the University of Ulster in the UK to teach

Java programming at an introductory level (Lunney et al., 2003). Lunney et al.

(2003) consider Kawa to be the best IDE environment to teach a first programming

language. The major concern with Kawa is that it has no new developments.

2.8.4 Dr. Java

Dr. Java is an open source Integrated Development Environment (IDE) for Java

programming language. It runs on multiple platforms such as Windows, Linux, and

Macintosh (Olan, 2004). It was developed at Rice University in the USA. Dr. Java is

a pedagogic programming environment with a simple interface which enables

students to focus on programming rather than spending time on learning the

programming environment (Allen, et al., 2002). Dr. Java does not provide graphical

representation of classes and objects as in BlueJ (Georgantaki & Retalis, 2007). Dr.

Java provides an interactive pane with a feature named Read-Eval-Print-Loop

(REPL). This feature allows the evaluation of Java expressions and statements

without running the whole program and as a result facilitates incremental program

development. REPL is useful for introductory level Java programming learners to

test methods with parameters and return values. Dr. Java is provided with a tool for

generating Javadoc documentation for classes.

2.8.5 Eclipse

Eclipse is a multi-language open source software development environment (IDE)

which could be used for developing Java programs (Moyer, 2010). Among the other

open source Java programming environments, Eclipse is considered a professional

73

program development environment (Chen & Marx, 2005). Chen and Marx (2005)

argue that most Java IDEs have been designed for pedagogical purposes and fail to

expose students to real world environments. One attractive feature of Eclipse is that

it has a very simple editor and students do not need to spend more time with

instructors to be familiar with the editor. The advantage of using Eclipse is that its

IDE environment provides professional industry level experience for the students.

The wizards in Eclipse save time for the users as they generate codes for classes,

methods, and constructors (Chen & Marx, 2005). The facility to generate Javadoc

standard documents is also an attractive feature in Eclipse (Olan, 2004). There are a

number of plug-ins available for Eclipse. For example JScoper is a plug-in using a

graphical call graph browser that can be used to convert Java code to Real-Time

Specification for Java (RTSJ) (Ferrari, Garbervetsky, Braberman, Listingart, &

Yovine, 2005). Other useful plug-ins include LaTeX, CVS, and UML diagrams

(Moyer, 2010). The cheat sheet functionality of Eclipse enables users to create

tutorials which are interactive with Eclipse’s User Interface to support features.

However, extensive effort and specific skills are required to create cheat sheets

(Ying, Gang, Nuyun & Hong, 2009).

2.8.6 Visual J#

Visual Studio .NET provides a multi–language environment which supports Visual

Basic .NET, Visual C++ .NET, Visual C# .NET, and Visual J# .NET. Mixed

language solutions can be developed in Visual Studio by the Microsoft.NET

environment. Unlike most of the other Java applications, J# programs do not run on

a Java Virtual Machine. J# programs run only on .NET Framework (Introducing

Visual Studio .NET, 2011). Due to the declining usage of J#, on January 10, 2007

Microsoft announced the retirement of J# and that J# language and JLCA tool will

not be available in future versions of Visual Studio (Product Announcement, 2011) .

This is a drawback for Microsoft which pushed big telecoms and financial

institutions from Java to .NET (Cantù, 2007).

2.8.7 Borland JBuilder

JBuilder is a full-fledged IDE environment for Java programming language

(Kouznetsova, 2007). It is a professional IDE with Facilities for developing, testing,

debugging and deploying J2ME applications (Utting, 2006). It was developed by the

74

Borland Software Corporation and sold to Embarcadero Technologies in 2008.

Embarcadero Technologies released the latest version of JBuilder 2008 in 2008

(Embarcadero customer support, 2010). Some research articles using JBuilder as a

development tool have been published. In one of the students’ projects, JBuilder was

used on Extreme Programming (XP) as a tool at Brighton University. Two other

tools: Castor for object relational mapping and MySQL were used along with

JBuilder. The students found the tools quite complex and the debugging Java

Servlets and Java Server Pages (JSP) very slow even on fast computers (Lappo,

2002). In another research application which was aimed at students exploring

cognitive difficulties in maintaining an unfamiliar object-oriented system, JBuilder

was chosen (Karahasanović & Thomas, 2007). In a survey conducted by Haaster and

Hagan (2004), students had commented that JBuilder was quite complex and not

suitable for novices in OO programming.

2.9 Summary

The literature review underpinning the research described in this thesis includes a

detailed coverage of most of the popular instructional design methods and learning

theories. The report began by collecting details of various learning models, such as

behavioural, constructivist, experiential and cognitive. Learning models such as the

Kolb Experiential Learning Model, Bloom’s Taxonomy, the Felder-Silverman

Learning Style Model and the R2D2 Learning Model were discussed in detail. As

more recent research studies were explored, it was found that research on teaching

and learning had been focused on cognitive learning models. In particular, the

emphasis has been on managing limited WM by carefully manipulating germane,

extraneous, and intrinsic cognitive loads. The use of worked examples in teaching

programming have been successfully used in reducing extraneous cognitive load in

past research applications (Caspersen & Bennedsen, 2007; Garner, 2002, 2007,

2009; Koedinger & Aleven, 2007; Van Gog et al., 2010; Wittwer & Renkl, 2010).

Garner (2009) used worked examples in Visual Basic programming language using a

teaching tool called CORT. Garner (2009) has suggested the development of mental

models prior to the use of worked examples as a future research prospect. Wittwer

and Renkl (2010) found worked examples to be useful for understanding conceptual

knowledge. These findings suggested future research areas which are yet to be

experimented with in teaching Java programming for beginners. One such future

75

research prospect was identified to study the possibility of using worked examples to

impart the conceptual knowledge of Java programming concepts at a beginner’s

level using consistent mental modeling techniques.

Despite the long history of using mental modeling to retain scriptural interpretation

and historical traditions (Johnson-Laird et al., 1998), past research proved them to be

useful in conceptually representing abstract concepts (Wu et al., 1998). A number of

researchers have emphasised the importance of using visual images, pictures, or

visualisation tools to improve teaching (Ben-Ari, 2001b; Carlson, 2007; Johnson-

Laird et al., 1998; Ma et al., 2007; Roper & Wood, 2007; Van Haaster & Hagan,

2004; Wu et al., 1998). A survey conducted by Ma et al. (2007) found the need to

help students to develop viable mental models in order to understand reference

variables at the very beginning. The issue of the need to synchronise the mental

models of the teacher and the students or having a shared mental model of a concept

has been highlighted by some researchers (Ben-Ari, 2001b; Norman, 1990). This

literature opened up new research opportunities to experiment with the use of shared

mental modeling techniques in explaining Java programming concepts. Past research

also suggests the use of visualisation tools, pictures and images for mental modeling.

Hemispheric Dominance Theory, widely known as the right brain-left brain theory,

was suggested by Sperry in 1960. This theory divides major intellectual functions

into the left and the right hemispheres of the brain. Recent neurological research has

identified the regions of the brain where different functionalities take place (Smith,

2000; Smith & Jonides, 1999). These findings led to an opportunity for this research

to discover if there is a correlation between brain dominance and the ability to

understand Java programming.

Instructional techniques and visual tools were studied in detail in this literature

survey. It was found that although mind mapping is considered a powerful visual and

collaborative teaching tool, it has never been used in teaching Java programming

concepts. Therefore, this is another area that could be investigated.

Some Integrated Development Environments (IDEs) have been designed for

professional Java programmers while others have been developed for Java

programming language learners. The use of appropriate program IDE for teaching

76

Java programming at a beginner’s level has been a debatable issue among

researchers (Vogts et al., 2010). The Dr. Java IDE was used due for two main

reasons. First, this course belonged to UNITEC Institute of Technology, Auckland. It

was delivered at the Waiariki Institute of Technology under the guidance of

UNITEC and Dr. Java matched the UNITEC prescription. The second reason was

the simplicity of the IDE environment of Dr. Java for beginners in Java language.

This chapter has demonstrated that considerable research has been completed and

now this research can build on the theoretical framework provided by these studies.

At the same time, this research makes an original and unique contribution to the

efficient teaching and learning of computer programming for beginners using JAVA.

77

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter provides details of the methodology used to identify problem areas in

the teaching of programming using the Java language at the introductory level and

how instructional problems were addressed in an attempt to improve this teaching.

The initial task was to find an acceptable instructional design model to meet the

expectations of the research. The popular Analyze, Design, Develop, Implement, and

Evaluate model (ADDIE) was chosen to provide guidelines for the instructional

design process. According to the ADDIE instructional design model, it is required to

identify instructional problems, instructional goals and objectives, delivery options,

pedagogical issues, learning environment and learners’ existing knowledge and skills

(Culatta, 2011).

At an early stage in this research, it was necessary to identify instructional problems

and delivery options of the Java language for beginners. Therefore, in the first phase

of this research, a questionnaire was used to determine from the students who had

completed this course, what they considered to be the difficult areas and concepts in

learning Java programming language. Furthermore, they were asked to consider

suitable teaching styles for each concept.

In addition, an extensive literature survey was carried out which provided ample

information about instructional problems related to teaching and learning Java

programming and also object-oriented programming. According to the findings of

the literature survey, researchers have identified instructional problems as

pedagogical (Hadjerrouit, 1998), cognitive (Garner, 2002; Yousoof et al., 2006) and

conceptual (Clark et al., 1998). In particular, Yousoof et al. (2006) has proposed a

model for using visualization techniques to deal with cognitive aspects of learning

programming. The need for detailed mental models as program chunks or structures

was identified by Winslow (1996) nearly two decades ago.

78

Recent developments on working memory models such as Baddeley’s have led to the

formulation of Dual Code Theory (DCT). According to DCT, visual and verbal

information are handled by different channels of the brain (Paivio, 2006). As

suggested by Paivio (2006), mental modeling using imagery and pictures were

adopted for teaching in phase two of the research described in this thesis.

Garner (2009) experimented with a cognitive tool called CORT in which worked

examples were used based on the principles of the Cognitive Load Theory in

teaching programming. Many other researchers have identified teaching

programming as a formal operational level cognitive development (Ven de Ven &

Govers, 2007). It was interesting to find that so many different approaches had been

tested by teachers in different parts of the world when teaching this language. Such

approaches include using the Object First Approach, Bloom’s Taxonomy,

Constructivist Learning Theory, OO-Light Approach, Scaffolding, Traditional

Approach, Functional Approach, Online Approach, and a Mixed Approach. It is

noteworthy that approaches such as the Traditional Approach and the Object First

Approach were found to be opposed to each other.

Taking the findings of the literature survey and the data collected from the students

in the first phase of this research into consideration, instructional goals and

objectives were determined. It was decided to use the concept first approach as the

Java language has been developed on the principles of object-oriented concepts. The

teaching materials were changed to enable the introduction of mental modeling with

the goal of giving students a thorough knowledge of programming concepts. In

addition, recent findings in cognitive load theory, which are related to management

of cognitive loads, were applied in the preparation of teaching materials and

examples. After teaching the concepts with the new teaching tools and techniques,

the success of teaching each concept was evaluated by the students using a Mini-

questionnaire during the second phase.

Suitable delivery options and pedagogical issues were also to be decided for this

course. As proposed by Clark et al. (1998), it was decided to introduce the concept of

class and objects and the manipulation of objects at the beginning of the course. The

development of Cognitive Load Theory and its applications to the efficient usage of

working memory is a recent advance in pedagogical research in teaching. These

79

research projects have given particular emphasis to the use of worked examples to

reduce unnecessary cognitive loads imposed by conventional instructional materials

(Van Gog et al., 2010). The partially completed assignments were used to build the

schemas with new knowledge using the prior knowledge available on schemas in the

long term memory of the learners (Garner, 2002). The element interactivity

contributes to both extraneous and intrinsic cognitive load (Beckmann, 2010).

Therefore, the topics were delivered using the teaching materials produced with

reduced intrinsic and extraneous cognitive loads. The germane cognitive load for

individual students was to be kept at a minimal level by using scaffolding in a

collaborative manner.

The other teaching tools used include FreeMind 0.8.0, Dr. Java, and BlueJ. The

techniques used include graphics for mental modeling, collaborative learning and

scaffolding. The tools and techniques used to teach identified concepts were based

on the principles of Cognitive Load Theory with the aim of managing the learner’s

working memory effectively and also using the concept of mental modeling to help

with the understanding of programming concepts. In addition, Hemispheric

Dominance Theory (HDT) and its relevance to their learning styles were investigated

in this research.

3.2 Research Focus and Significance of the Study

The research project examines the teaching tools and techniques that could be used

to effectively teach Java programming to beginners. Any teaching tool or technique

is usually based on a theory or hypothesis. Therefore, it was necessary to apply, and

experiment with, new instructional design models and learning theories in classes.

Consequently, the emphasis in this research was placed more on cognitive learning

concepts due to evidence of its proven applications in teaching (Clark et al., 2006).

The literature study revealed that the methodology to be used in teaching Java was

still a debatable issue among programming teachers and researchers (Kannangara,

2007). The object-first approach (Lister et al., 2006) was adopted as a teaching

methodology with more emphasis placed on the Java concepts, and classes and

objects were introduced at the early stages of teaching. A selected set of low cost

teaching tools was used to impart the knowledge of object-oriented programming

80

principles and concepts. The teaching tools and techniques used were based on the

principles of Cognitive Load Theory (CLT) combined with mental modeling and

scaffolding. Hence, the outcome of this project should reveal the effect of using a

combination of the principles of CLT and mental modeling in teaching object-

oriented programming principles using the Java language. The findings of this

research will benefit not only teachers but also learners due to the low cost teaching

tools used in teaching difficult Java programming concepts.

3.3 Research Questions

The following research questions were addressed in the Phase One of this research:

1. What are the difficult Java concepts for the learners and the most suitable

teaching styles for teaching such concepts?

2. Is there any correlation between logical and artistic hemispheric dominance

factors of students and the difficulty levels of Java concepts?

3. What are the preferred of learning styles of learners and the combinations of

learning styles?

3.3.1 Research Questions in Phase One

The main aim of this phase was to identify the difficult areas and concepts of the

Java programming language for the students. A questionnaire was used to collect

data from students who had just finished the introductory level Java programming

course. This course was designed and developed at the UNITEC Institute of

Technology, Auckland in New Zealand. It was delivered at the Waiariki Institute of

Technology and Bay of Plenty Polytechnic under the license of Bachelor of

Computer Systems (BCS) programme at the UNITEC Institute of Technology. The

questionnaire was web based and made available on the internet to the participants in

the three institutions. With the researcher’s past experience in teaching the Java

language, areas and concepts which were considered to be important were listed in

the questionnaire (see Figure 3.1). Each concept had five difficulty levels listed on

radio buttons as “too difficult”, “very difficult”, “difficult”, “not difficult”, and “very

easy”. One option of the difficulty levels for each concept was chosen by the

participant. There was sufficient space available on the questionnaire for the students

81

to add any other difficult areas or concepts which were not listed and could be

important in the Java language. They were also asked to indicate the difficulty level.

Figure 3.1. Listed areas and concepts in the Java language.

The meanings of the learning styles; auditory, kinesthetic, and visual were included

in the questionnaire to make them clear to the participants (see Figure 3.2). Another

question related to the above was to suggest the most suitable learning style for each

concept or area listed on the survey. The three learning style options given were

auditory, kinesthetic, and visual (see Figure 3.3). A participant could select one of

the three options on the radio buttons and could also indicate their second choice of

learning style in the space provided on the text box (see Figure 3.3).

82

Figure 3.2. Learning styles explanation.

Figure 3.3. Learning style options for concepts.

A question was included to indicate the participant’s judgment on his/her artistic

ability such as singing, painting, and writing poetry. A similar question was used to

indicate his/her logical, analytical thinking, and mathematics ability. Each question

had five options: Poor, Average, Good, Very good, and Excellent with five radio

buttons (see Figure 3.4). A participant could select only one option in each question.

83

These two questions were included to investigate the correlation between students’

total difficulty level and the logical and artistic brain dominance profile.

Figure 3.4. Questions on artistic and logical abilities.

A question, What type of learner are you?, was included in the questionnaire with

three options: Auditory learner, Kinaesthetic learner, and Visual learner using check

boxes (see Figure 3.5). The participants could tick more than one option for this

question. This question was used to explore the distribution of students by preferred

leaning types and to analyse the combinations of learning types of the data sample

chosen.

Figure 3.5. Question on type of learner.

In addition, questions related to demographics were included to collect information

on students’ gender, age, work experience, and their highest academic qualification.

It was hoped to discover some useful information on the different types of learners.

84

3.3.2 Research Questions in Phase Two

The following research questions were addressed in Phase Two of this research:

4. Can the teaching tools based on a combination of Cognitive Load Theory

(CLT), the concepts of Mental Modeling and scaffolding be effective in

teaching difficult concepts in the Java language?

5. Can there be a relationship between students’ learning preference and their

logical and artistic hemispheric dominance?

3.4 Mind Mapping as a Teaching Tool

The creation of a template for a class is a fundamental concept in Java programming

language to be understood by students but according to the survey given in Phase

One, 27% of the student population found this concept difficult to understand. Since

Dr. Java is not a visual programming IDE, the functionality of the components of the

class template were taught using textual programming code. Therefore, mind

mapping was introduced as a tool along with the class diagram and textual code in

phase two of the research. The aim of this was to explore the possibility of using

mind mapping as a teaching tool for this concept. Mind mapping was chosen as it is

renowned as an excellent visual tool in collaborative learning (Willis & Miertschin,

2006). Also, mind mapping is a low cost tool. As suggested by Koznov and Pliskin

(2008), use of a combination of both graphical and textual components could help

learning. There are many free mind mapping software tools available today. The

FreeMind 0.8.0 mind mapping is one of them and was used in this research

(FreeMind – free mind mapping software, 2011). The students had the option of

using hand drawn mind maps or the software.

The students were asked to produce a mind map diagram for a given class template.

Three main branches: Instance variables, Constructors, and Methods were drawn in

three different colours (see Figure 3.6). Each instance variable and the variable type

were listed at the second level branches under instance variables (see Figure 3.6).

The Methods were divided into two main branches to elaborate the two categories:

Accessor and Mutator. The Accessor Methods were listed at the third level branches

under Accessor branch and Mutator Methods were listed at the third level branches

under Mutator branch. All the Constructors: default; and alternatives; were placed in

a separate branch and each branch represented a Constructor.

85

The mind map was adapted as a more elaborate version of the class diagram (see

Figure 3.6). A teaching activity using mind mapping was used to explain the concept

of the class template in the second and third weeks of the course. The lesson was

introduced using a worked example. The worked example was a complete Java code

of a class and consisted of a couple of instance variables, constructors, and methods

(see Appendix A).

As the first part of the second phase of the research, mind mapping was

experimented with as a tool to explain the concept of the class template. After having

taught students this concept using a worked example and a mind map, the Mini-

questionnaire -1 (see Appendix G) was used to get students’ comments about the

effectiveness of using mind mapping and the worked example to teach this concept.

Figure 3.6. Class diagram and mind map of the student class.

3.5 Use of Mental Modeling to teach Java Concepts

Mental modeling is based upon social constructivism. It was historically used to

represent an external process internally in the human brain in terms of words,

numbers and figures (Johnson-Laird, 1983). It can be psychological representations

of real, hypothetical, or imaginary situations (Johnson-Laird et al., 1998). Recent

research suggests visualization as a way of understanding object oriented

programming concepts (Van Haaster & Hagan, 2004). According to Carlson (2007),

knowledge is stored in the brain as internal constructs or images. These mental

models activate when we retrieve or use such knowledge. Some researchers have

experimented with visual software development environments such as Alice to teach

86

object oriented concepts (Dann et al., 2001). But, Pears et al. (2007) argue that in

such software environments, students tend to visualize dynamically and do not

understand the deeper meaning or context of the concept. There are situations where

the teacher’s mental model and the student’s mental model do not synchronize (Ben-

Ari, 2001b; Norman, 1990). Therefore teachers should help students to build mental

models while teaching concepts (Ma et al., 2007; Wu et al., 1998).

In the second phase of this research, the possibility of using images to create mental

models to enhance teaching Java programming at beginner’s level was investigated.

Some of the programming concepts were taught using a carefully designed teaching

activity (see Figure 4.5) with the intention of helping students to create mental

models and reduce cognitive loads. The success of this was tested using a Mini-

questionnaire at the end of the course.

A visual representation of an object was designed with the aim of creating a mental

model to help in the understanding of a number of concepts. Such concepts include

creation of an object using a class, variable categories, and arrays of objects. A set of

images was used consistently throughout the course so that students became familiar

with and gave meaning to images. For example, one of the images used to visualize

methods was the stick man. The Star Structure (see Figure 3.7) was used to visualize

objects and the variables were represented using a rectangle or box. The state change

of objects was explained visualizing the change with the value assigned to

properties.

87

Figure 3.7. Star structure.

Some students had commented about the difficulty in understanding the concept of

reference variables in Java programming language in the questionnaire used in Phase

One of this research. In Figure 3.7, E1 is shown as a rectangle as it is a reference

variable. The instance variables are also shown as rectangles. The object on Figure

3.7 has no static name and it has to be accessed through the reference variable E1. It

is shown using an arrow.

A worked example with a class template was used to create an object on the

computer’s Random Access Memory (RAM) and also to manipulate the object using

Mutator and Accessor Methods of the class. Many researchers have used worked

examples to help learners understand difficult concepts. They have also discovered

that such examples help to reduce both intrinsic and extraneous cognitive loads

(Garner, 2002; Van Gog et al., 2010) and support creation of new schema (Caspersen

& Bennedsen, 2007).

Figure 3.7 is an example of a Star Structure which was used to illustrate the creation

and manipulation of an object using an Employee Class Template (see Appendix B)

with three instance variables: name; age; and salary. Many semantics have been

embedded into this image. The embedded semantics including the fact that instance

variables are containers of data and an object is comprised of many instance

E1

88

variables. The data are shown in red colour on the Star Structure. The Star Structure

of the object in Figure 3.7 has three instance variables which are shown as

rectangles. When the Java code is taught to create an object, this figure could help

students to imagine the state of the object visually with no values in instance variable

rectangles.

The Java code given below creates a reference variable E1 which contains the

reference to the object created by the default constructor.

Employee E1 = new Employee();

A relevant picture similar to Figure 3.7 is usually shown to students until they

establish a mental model to visualize the concept. When teaching the use of a

mutator method to assign a value to an instance variable of an object command and

the state of the object on the image are shown to students with the value added to the

box of that instance variable in red colour. The following is an example of a mutator

method used to add a value to an instance variable of an object.

E1.addName(“Peter”);

In the second part of the Phase Two, Star Structure was used to visualize object

components, and the state of an object after each operation, with the aim of

enhancing teaching. This visual structure was used throughout the course. The Mini-

Questionnaire-2 (see Appendix D) was used to get students’ comments about the

effectiveness of using Star Structure and the worked examples to teach the creation

and manipulation of objects.

The use of an accessor method on an object to retrieve data from an object is more

complicated than the use of a mutator method due to its return type and the value.

According to the results of the survey conducted in phase one, 15% of students had

difficulties in understanding this concept. Therefore, Figure 3.8 was introduced to

help students understand the concept of returning a value using a picture of a stick

man returning a ball. This image was used while explaining the Java code that

retrieves the value of an instance variable of an object using a method that returns a

89

value. The Java code shown below is an example of an accessor method which

returns a value. The returned value is assigned to myAge variable.

int myAge = E1.getAge();

Figure 3.8 was used as a tool for mental modeling this concept. The stick man

represents a method and the box represents the variable. This image was created with

the intention of helping schema building for the concept of returning a value. As per

Garner’s (2002) findings, the relevant existing schemas in the long term memory are

used in creating new schemas in the working memory and the new knowledge is

stored as a new schema in the long term memory. The learner’s existing schema on a

human throwing a ball into a box is used to create a new schema with the concept of

a Java method returning a value and the value returned is assigned a variable.

Figure 3.8. Method returning a value.

The survey results in Phase One, indicated that using parameters in a method was

found to be difficult for about 23% of the student population. The image in Figure

3.10 was used with the aim of creating a mental model using an analogy to make this

concept easier to understand. This image was used while teaching this concept of

passing parameters and returning a value back to the calling program using Java

code (see Figure 3.9). The main method was run a couple of times with different sets

of values to show the reusability of the getGrade method.

30

90

Figure 3.9. Java code of main method and getGrade method.

In Figure 3.10, the getGrade method has one parameter. This parameter is used to

pass a salary value into the getGrade method. The getGrade method decides the

grade for the salary and returns the appropriate grade back to the main method. In

Figure 3.10, the two methods, getGrade and main are visualized as two stick men.

Figure 3.10 provides an analogy symbolizing two methods as two stick men, one

assigning work to the other. In this example, getGrade method can be reused. This

analogy describes the functionality of the getGrade method. In designing this

teaching tool, the cognitive aspects of building new schema using existing schemas

in the long term memory was applied. It was assumed that most students are familiar

with this analogy used in the real world and so it could be used to build knowledge

related to the Java method as a new schema using the existing schema (Driscoll,

2000; Mead et al., 2006).

The parameter variables and the local variable to the main method are displayed as

rectangles, with the passing and returning values.

The success of the use of this image in teaching the concept of passing parameters

was evaluated by students answering the Mini-questionnaire-3 (see Appendix E) at

the end of the course.

Public void main()
{
 char answer = getGrade (50000.0);
}

public char getGrade(double salary)
 { char ch=' ';
 if (salary >= 60000)
 ch= 'A';
 else if ((salary < 60000) && salary > 40000)
 ch = 'B';
 else if ((salary < =40000) && salary > 0)
 ch = 'C';
 return ch; }

91

Figure 3.10. Main method using getGrade method.

According to the survey in Phase One, using arrays for primitive was one of the

difficult Java concepts for many students. Many participants in the survey had found

using an array for objects was even harder than using an array for primitive

variables.

92

Array of Employee objects

Array of primitive variables

Figure 3.11. Arrays of objects and primitive types.

The teaching tool used to improve teaching arrays was the use of worked Java

programming examples, along with pictorial representation of an array (see Figure

3.11). The filing cabinet was used as an analogy to provide a pictorial representation

of the array structure as shown in Figure 3.11. A complete Java program with an

Peter 30

John Jane

John

Roy

Marie

20

45

51

35

42000.00

45000.90

80000.00

90000.00

35000.00

30

34

12

89

90

93

array of five integer variables was provided to students as a worked example.

Students experimented running the program with integer type inputs on an array. The

students were asked to run the program a couple of times with different sets of

values. The second step of learning was to modify the Java program code to change

the length of the array and run the program with different sets of values. The third

step of learning was to modify the data type of the array to other types such as

double and String. The students were asked to modify the pictorial representation

(see Figure 3.11) according to the changes on the program.

The teaching of the use of an array for objects was delayed until the students became

familiar with arrays using primitive variables. This concept was found to be difficult

for 41% of the students. A worked example was used to explain the concept of using

an array of objects as was done with primitive variables. The concept was taught

using the Kolb Experiential Learning Model with scaffolding. The students used the

worked example and assimilated new knowledge by experimenting and modifying

the code of the program using guidelines and scaffolding that were provided. The

students were provided with the code of the Employee class (see Appendix B) and

the code of the main method that creates the array of five Employee type objects.

The complicated and high element of interactivity of the code in the main method

such as the creation of an array for objects, use of loops to create objects on the array

and input data into the created objects could result in a high germane cognitive load

for many students (Beckmann, 2010). Therefore, in an attempt to ease the high

germane cognitive load, the whole process was explained as three sets using three

pictorial representations to show the structures created on the computer memory and

their content after each set of code.

When the code in the main method was run, there was no output displayed on the

computer screen. The students were asked to modify the code to print the contents of

the five objects using a loop. This task may not impose high intrinsic cognitive load

as the loop has been already used twice on the worked example. Due to their varied

germane levels, some students needed teacher guidance to continue with the tasks

assigned with the worked example. The students were also asked to modify the code

by changing the length of the array to accommodate more employee record. The

students were then asked to add the fourth instance variable: address to the

94

Employee class so that the address of each employee could be stored on the array.

This task involved adding code to the Employee class, and the Main method. The

students were expected to change the pictorial representations of the three sets before

or after the modifications on the Java code. Finally, at the end of the class, the

students were given the questionnaire-4 (see Appendix F) to evaluate the success of

the pictorial tool and the techniques used in teaching this concept.

3.6 Use of BlueJ Visual Tool to teach Java Programming

BlueJ is a graphical IDE environment developed as a learning environment for the

Java programming language. BlueJ generates Java code and the graphical user

interface (GUI) can be used by any user without prior knowledge of the Java

language (Kouznetsova, 2007; Van Haaster & Hagan, 2004). According to

Kouznetsova (2007) BlueJ helps beginners to grasp difficult Java programming

concepts easily. Those who do not agree with providing a GUI learning environment

for beginners in programming say that it is not a tool for teaching programming

concepts due to students’ familiarization with dragging and dropping buttons and not

concentrating on concepts (Georgantaki & Retalis, 2007).

Inheritance was found to be the most difficult concept for students to understand.

The main focus in teaching Java programming concepts in this research has been on

managing intrinsic and germane cognitive load with teacher assistance and using

metal modeling with pictorial representations. The visual aspect of BlueJ was used

for mental modeling classes and inheritance between them. Hands-on sessions

supported by the teacher were applied in an activity to ease the germane cognitive

load of some learners.

Towards the end of the course, BlueJ was introduced. The students were given the

task of creating the Person class and Student sub class using the code generation

feature of BlueJ (see Figure 3.12).

95

Figure 3.12. BlueJ graphical user interface.

Students were given a set of tasks to be carried out interactively in the computer

room after an introductory lesson on BlueJ (see Figure 4.11). In addition, the BlueJ

user manual was provided to the students. The teacher guidance was provided to

students who required support to carry out the tasks given to them. The first task was

to write the code for the two classes and adding inheritance feature to make the

Person class the super class and the Student class the sub class. Then the students

experienced creating three objects of Student class using default and alternative

constructors. Then they used Mutator methods to set values to objects and Accessor

methods to access the contents of objects. Students were asked to identify the

methods of the sub class and the methods inherited from the super class. The inspect

feature was also used to see the contents of each object.

At the end of the session, Mini-questionnaire-5 (see Appendix G) was used to get

student comments on the success of using BlueJ to teach the inheritance concept in

Java programming language.

Two questions were included in all the five Mini-questionnaires to find out students’

artistic and logical abilities. The aim of having these two questions was to

investigate the relationship between brain dominance and mental modeling using

96

images and worked examples. Each of those questions had five options: Poor;

Average; Good; Very good; and Excellent. The participant could select only one

option.

3.7 Sampling Technique

Although students at three polytechnics were involved in the first phase, the second

phase of the research was carried out with the students who had enrolled in the

Introductory Java programming course in the last four years at the Waiariki Institute

of Technology. The research in the second phase was based on experimenting on

teaching tools and concepts in a class room environment. For this reason,

convenience sampling was the only available option to be used in this research. The

convenience sampling technique is also known as grab or opportunity sampling in

which the sample population available for the research is selected due to its

availability. Participation in the survey was entirely optional for the students;

however, the percentage of participation in the second phase was around 90% of the

class.

3.8 Data Collection and Analysis

Web based questionnaires were used to collect data from students in both phases of

the research. An account at http://freeonlinesurveys.com was used to create the

questionnaires. An email was sent to all students in the class to inform them about

the survey and to provide the web address to access the questionnaire. In the email, it

was stated that participation in the survey was voluntary. An information page was

included in the webpage of the questionnaire. The consent to participate in the

survey was indicated by ticking a check box. The participant could not answer the

questions on the survey without ticking the consent question. The questionnaire used

in phase one was completed by thirty three students. A three week period was

allowed for the students to complete the questionnaire.

There were five Mini-questionnaires used in Phase Two. Mini-questionnaire-1 (see

Appendix C) was used to evaluate the use of mind-mapping as a teaching tool. Mini-

questionnaire-2 (see Appendix D) was used to evaluate the use of mental modeling

in teaching class and object Java concept. Mini-questionnaire-3 (see Appendix E)

was used to evaluate the use of mental modeling in teaching parameter passing Java

97

concept. Mini-questionnaire-4 (see Appendix F) was used to evaluate the use of

mental modeling in teaching an array concept in the Java language. Mini

questionnaire -5 (see Appendix G) was used to evaluate using the BlueJ Visual tool

to teach Java programming.

The data collected from the questionnaires were both qualitative and quantitative.

Despite some summative information provided by the website itself, data had to be

exported to other packages for analysis. The quantitative data were analyzed using

Excel and Statistix-7 and the qualitative data were exported to Nvivo9 for

processing. Open-ended questions, such as commenting on the usefulness of a tool in

understanding a programming concept, were included and categorized as positive

and negative comments using the Nvivo9 statistical package. Student achievement

results before and after introducing the new teaching tools were also used as a

measure of impact on student learning.

3.9 Assumptions and Limitations

The data sample in Phase One included the participants from three polytechnics in

New Zealand. Although a criterion for participant selection was not applied, the

student participation depended on their decision to participate in the survey. The

convenience sampling method was applied in phase two of the research in which

data were collected from students at the Waiariki Institute of Technology. Although

a convenience sample is not the best sample of the population, it was used because of

the availability of the data sample at the Waiariki Institute of Technology. The

maximum number of students enrolled in the introductory programming course

using the Java language was 43 in year 2008 and the course was offered once a year.

The annual enrolment of students for the introductory programming course at the

Waiariki Institute of Technology has dropped significantly in subsequent years.

Participation in the study was entirely voluntary and not all students were expected

to complete the questionnaires used in this research. Random sampling was not

possible due to the limited number of students enrolled in this course.

There were some limitations due to financial constraints and availability of limited

tools that could be used to teach Java programming concepts in this study. The low

cost options such as pictures were used to aid in mental modeling. The data were

98

processed using the statistical software available at the Waiariki Institute of

Technology.

3.10 Ethical Considerations

As a number a surveys were used in this research, ethics approval was obtained from

the Human Research Ethics Committee at Curtin University, Australia prior to

conducting the surveys (see Appendix-P). A copy of the approval from Curtin

University and the details of the data to be collected and the copies of questionnaires

were supplied to the Research Committee of the Waiariki Institute of Technology.

Students who had completed an introductory level of programming at three

polytechnics were chosen to participate in phase one of the research. They were

requested to take part in this research by email. The questionnaire was available on

the internet at http://freeonlinesurveys.com site. In addition, a printed information

sheet was handed over to students by a staff member of the department requesting

students to participate on the survey. Students had the option of completing the

survey on a hard copy or online. Participants were given an opportunity to ask any

question with regards to the research by email or verbally. The stored data at this site

have been protected by a username and a password. The purpose of the research was

clearly stated on the information sheet and was available on the internet webpage

(see Appendix H) for the participant to read before taking part in the survey.

Students were assured their rights to withdraw from the research at any time without

prejudice or any negative consequences. In case of withdrawal, they were assured

that the data collected prior to their withdrawal would not be processed and would be

destroyed. Participants were asked not to include their personal details such as name

or identification codes on the questionnaire. The consent was obtained by using a

check button on the webpage. The data fields were not highlighted for data entry

until the check button for the consent was ticked. Students who completed the

hardcopy of the questionnaire were given a hardcopy of the consent form (see

Appendix I) to be signed.

In Phase Two of the research, data were collected using five Mini questionnaires. As

in Phase One, the Mini-questionnaires were available online and in paper form. The

information sheet-2 (see Appendix J) was made available to students on the web

99

pages and also on printed form for those who chose to complete the questionnaire on

paper. As in information sheet-1, the information sheet-2 contained the purpose of

the research, students’ rights to withdraw from the research at any point of time,

confidentiality of data, the fact that the participation is voluntary, and the need of

their consent to participate in the survey. Participants had to sign the consent form

prior to filling in the Mini-questionnaire. As in Phase One, a printed consent form

was made available for those who completed the Mini-questionnaire on hardcopy.

3.11 Summary

Chapter Three has covered the methodology used to address the research questions

outlined in Chapter One. The instructional design model ADDIE was followed

throughout the research. A summary of the findings of the literature survey related to

this methodology was provided in the introduction section. Such literature included:

the recent applications of Cognitive Load Theory (CLT) with the emphasis on

efficient use of working memory and lowering cognitive loads using worked

examples; use of mental modeling in teaching and Hemispheric Dominance Theory

(HDT). In addition, a brief description of the existing teaching approaches and the

reason for using concept first approach was justified. The research focus and the

theoretical and practical aspects of the significance of this research were discussed in

section two. The research questions targeted in the two phases of the research were

discussed in section three. The findings in Phase One of this research were used in

deciding the concepts to be used and the ways of delivering them were included in

phase two. The findings in phase one revealed that the majority of the student

population (76%) were kinaesthetic learners followed by visual learners (56%).

Therefore, teaching tools which combined visual and kinaesthetic learning were

chosen for the experiment in Phase Two. In addition, every effort was made to

reduce cognitive loads to maximise the use of the working memory of the learner. In

particular, partly completed work assignments and scaffolding were used throughout

this research. A set of pictures and analogies were introduced and used them

consistently in work assignments to help create mental models for the students in the

second phase. Five Mini-questionnaires were used to collect data. The analysis of the

collected data and consequent discussion follow in Chapter Four.

.

100

CHAPTER 4

FINDINGS AND DISCUSSION

4.1 Introduction

In this chapter, data collected in the two phases of the research are analysed and

discussed. This chapter also includes how the findings in Phase One contributed to

the design and development of activities to be experimented with in Phase Two. The

identification of difficult Java programming concepts and preferred teaching styles

from the students’ point of view were the most important findings in Phase One. In

addition, the learners were categorised into three groups: auditory, kinaesthetic and

visual. The percentages of students in each category were calculated and

proportionately catered for in the teaching activities designed for Phase Two. The

summarised details of the difficult concepts and teaching styles, and type of learners

are presented in tables and charts in this chapter.

In Phase Two, five teaching activities were developed and used to teach the difficult

areas identified in Phase One. Each activity was evaluated by the students using a

mini questionnaire. The visual tools such as Mind mapping and BlueJ were

experimented with in two activities and findings of their usefulness have been

included in the chapter. In addition, as suggested by Paivio (2006) and Van Gog et

al. (2010), the use of pictures and analogies for mental modeling and schema

building were used. The findings of the usefulness of mental modeling used in five

activities are discussed in this chapter. Worked examples and teacher guidance were

used in activities in an attempt to reduce germane and intrinsic cognitive loads as

suggested by Beckmann (2010). The findings from the feedback from students on

the effectiveness of such techniques are also included in this chapter.

4.2 Findings in Phase One

4.2.1 Difficult Concepts of the Java Language

Thirty three students from the three polytechnics participated in the survey

conducted in Phase One of the research. Each participant was asked to indicate the

101

level of difficulty of each Java programming concept listed in the questionnaire. The

five difficulty level options for a concept were numerically coded as: too difficult

(5), very difficult (4), difficult (3), not difficult (2), and very easy (1). The data were

analysed using Microsoft Excel and Statistix7 statistical software packages. The

mean value (μ) and the standard deviation (σ) for each concept were calculated (see

Table 4.1). The standard score (Z Score) was calculated using the formula:

ࢠ ൌ 	
࢞ െ	ૄ࢞
ો࢞

The probability of the percentage of the student population p (3<x<5) with difficulty

in level 3, 4 and 5 of each concept was calculated using Z-table. The last column of

the Table 4.1 shows the percentage of the students who found each concept difficult,

very difficult or too difficult.

According to the results shown in Table 4.1, inheritance was the most difficult

concept with 44.8% of the students finding it difficult to understand. The second

most difficult concept was the use of arrays for objects with 41.7% of the student

population finding it difficult. Using arrays for primitive variables was found to be

difficult for 37.4% of the student population. The use of text files was also found to

be hard for 38.6% of the student population. Of the student sample, 27.6% had

difficulties in understanding the class and object concept (see Table 4.1). New

teaching tools were devised in the second phase of the research to improve the

teaching of most of the concepts identified as difficult in Phase One.

102

Table 4.1
Difficulty Levels of Java Concepts

Concept (variable – x) Mean

(μ)
Standard
Deviation
(σ)

Z Score % found
difficult in
population

(p (x>=3))

Variable types 1.58 0.65 2.15 1.6%

Variable categories (local,
instance, parameter)

2.27 1.01 0.72 23.8%

Conditional statements (if
then else)

2.12 0.96 0.92 17.8%

Repetitive statements 2.18 0.98 0.83 20.3%

Class & Object concept 2.24 1.00 0.76 27.6%

Create an object using a
class

2.09 0.80 1.13 12.9%

Class Template 2.30 0.92 0.76 27.6%

Returning a value from a
method

2.03 0.95 1.02 15.4%

Testing and debugging 2.33 0.96 0.70 24.2%

Preparation of test data 2.33 0.92 0.72 23.6%

Using arrays for primitive
variables

2.67 1.05 0.32 37.4%

Using arrays for objects 2.79 0.99 0.21 41.7%

String manipulation 2.21 0.86 0.92 17.9%

Text files 2.67 1.14 0.29 38.6%

Logic depiction methods 2.45 0.90 0.60 27.4%

Inheritance

2.88 0.96 0.13 44.8%

103

Prasad and Li (2004) conducted a similar survey to find difficult areas in C++

programming for the introductory level students and found the use of arrays as the

most difficult area. But, their study was focussed on the structural aspects of the

difficult levels rather than on conceptual aspects.

4.2.2 Correlation between Difficulty Levels and Skills

The total difficulty levels for each participant, for all the concepts were calculated by

adding quantified values of the difficult levels together. This total difficulty level of

the participants was used as one variable of the correlation. The logical and artistic

skill levels were numerically coded: “excellent” as 5, “very good” as 4, “good” as 3,

“average” as 2 and “poor” as 1. The total skills of both logical and artistic were

calculated by adding the two numerical values as both_skills. The other three

variables used in the correlation were the logical skill, artistic skill and both_skills

score of the participants.

The Pearson's formula to calculate correlation of a paired	ሺݔ௜, :௜ሻ data sample isݕ

ݎ ൌ 	
∑ ሺݔ௜ െ	ૄ	௫ሻሺݕ௜ െ	ૄ	௬ሻ
௡
௜ୀଵ

ඥ∑ ሺݔ௜ 	െ ૄ	௫ሻଶ௡
௜ୀଵ 	ඥ∑ ሺݕ௜ 	െ ૄ	௬ሻଶ௡

௜ୀଵ 	
	

where ૄ	௫	ܽ݊݀	ૄ	௬ are mean values of the two variables x and y.

The Statistix7 which supports Pearson's correlation coefficient was used to calculate

the correlation coefficient of the variables described above. The correlation

coefficient (r) between total difficulty levels and the logical skill variables was found

to be -0.14. This figure indicates that there is zero or insignificant correlation

between students’ total difficulty level and their logical skill. But the correlation

coefficient between students’ total difficulty level and their artistic skill was found to

be 0.24 (p = 0.19). This indicates a weak positive correlation between artistic skill

and the total difficulty level of Java programming concepts (see Figure 4.1).

104

Figure 4.1. Scatter diagram of total difficulty level vs. art skills of students.

In addition, the correlation between students’ total difficulty level and the students

with both artistic and logical skills was found to be 0.07. This figure indicates zero

or insignificant correlation between the both skills and the total difficulty levels of

the student population.

Figure 4.2. Difficulty levels of learners of different categories.

The bar chart in Figure 4.2 was plotted with total difficulty levels of students with

art, logical and both skills on the y axis and the list of concepts on the x axis. Despite

the weak positive correlation found between artistic skills and difficulty level, Figure

4.2 clearly shows that the students with artistic skills found it more difficult to

understand almost all the Java concepts than did the students with logical and both

artistic and logical skills.

105

4.2.3 Types of Learners

An item in the questionnaire enabled grouping of the participants into three

categories of learners: auditory, kinaesthetic, and visual. The participants were given

the option to choose more than one of these types of learners. In the sample, the

majority of the student population (76%) was found to be kinaesthetic. The

percentage of visual learners was found to be 55%, and the percentage of auditory

type of learners was found to be 24% (see Figure 4.3).

The kinaesthetic combined with visual was also found to be significantly higher

(39%). There were few learners (12%) with the combination of visual and auditory

learning types (see Figure 4.3).

Figure 4.3. Summary of the types of learners.

The results in Figure 4.3 indicate that the teaching tools to be used to enhance

teaching Java programming concepts could be more effective if kinaesthetic, visual

or both were incorporated in teaching. These findings were taken into consideration

in designing teaching activities which were to be used experimentally in phase two

of the research. These activities integrated visual aspects by using visual tools and

kinaesthetic aspects by using partially completed exercises and teacher guidance.

The visual tools were carefully chosen to build up mental models. In addition,

worked examples and teacher guidance were used taking into consideration the

management of working memory aspects of Cognitive Load Theory (CLT).

106

4.2.4 Teaching Styles for Different Concepts

The students were asked to suggest the most suitable teaching style for the teaching

of each concept from the three given options: auditory, kinaesthetic, and visual.

Table 4.2 contains the results of this process as the percentages of styles suggested

by the students.

Table 4.2
Teaching Styles for Different Concepts

Concept Auditory Kinaesthetic Visual

Variable types 21.2% 48.5% 27.3%

Variable categories (local, instance,
parameter)

18.2% 45.4% 33.3%

Conditional statements (if then else) 06.1% 66.7% 27.3%

Repetitive statements 09.1% 63.6% 24.2%

Class & Object concept 09.1% 45.4% 36.4%

Create an object using a class 12.1% 54.5% 30.3%

Class template 12.1% 48.5% 36.4%

Use of parameter variables 15.1% 51.5% 30.3%

Returning a value from a method 21.2% 51.5% 24.2%

Testing and Debugging 06.1% 72.7% 18.2%

Preparation of test data 18.2% 51.5% 27.3%

Using arrays for primitive variables 09.1% 63.6% 24.2%

Using arrays for objects 09.1% 63.6% 24.2%

String manipulation 12.1% 60.6% 24.2%

Text files 09.1% 60.6% 27.3%

Logic depiction methods

Inheritance

12.1%

06.6%

51.5%

57.6%

33.3%

36.4%

107

According to the findings, the kinaesthetic way of teaching was suggested by the

majority of students for teaching all the concepts. These findings were considered in

designing teaching activities to teach the difficult concepts identified. In each

activity, more than 50% of the time was allocated to hands-on sessions using worked

examples.

4.3 Findings in Phase Two

The Activity-1 (see Figure 4.4) was used to teach Java programming class structure.

This activity had a Mind map to show the class structure, a worked example of a

Java class (see Appendix A) and a hands-on exercise. Thirty participants who

attended this teaching activity took part in the survey by completing Mini

questionaire-1 (see Figure 4.4).

108

Activity – 1

Use the Student.java files to complete this hands-on exercise. You may ask for
assitance of the teacher as required.

1. The above Mind Map describes the code given in the Student.java class
(worked example).

2. Locate the Java code of instance shown on the Mind Map variables in
Student.java file.

3. Locate the Java code of each constructor shown on the Mind Map in
Student.java file.

4. Locate each Java code of each method shown on the Mind Map in
Student.java file.

5. Find out the difference between accessor and mutator methods by observing
the code given Student.java file.

6. Draw a new instance variable leaf (branch) with the name studentAddress to
the mind map.

7. Write the Java code for the new instance variable and modify the default
and the second alternative constructor in the file Student.java. Compile the
class.

8. Draw two methods leaves (branches) with the names setAddress and get
address on the mind map.

9. Write the Java code for the two new methods in the file Student.java.
10. Draw a new alternative constructor leaf (branch) with the parameter name

aStudentdob to the mind map.
11. Write the Java code for the new alternative constructor and compile the

code.
12. Now with the experience you had keep adding more instance variables,

constructors and methods.

Figure 4.4. Activity - 1.

109

4.3.1 Mini Questionaire-1 Findings

4.3.1.1 Findings from the quantitative data

Table 4.3
Summary of Artistic and Logical Skills of the Participants in Mini Questionnaire-1

Skill Level
Artistic
%

Logical
%

Poor 0.0 0.0
Average 66.7 3.3
Good 23.3 40.0
Very good 3.3 33.3
Excellent 6.7 23.4

According to Table 4.3, the participants’ logical, analytical thinking, and

mathematics skills are significantly higher than their artistic skills, such as singing,

painting, and writing poetry. About 97% of the students thought that they had good,

very good or excellent logical skills whereas the percentage of students with good,

very good or excellent artistic skills was 33.3%. The percentage of the students with

average artistic skills was about 67%.

The participants indicated the most useful aspect of teaching Activity-1 by choosing

one of the options: Mind map, worked example, teacher guidance, or hands-on

exercise. A summary of the feedback from the students is given in Table 4.4.

Table 4.4
Summary of the Most Useful Teaching Tools/Methods Used in Activity-1

Teaching tool/method Percentage of responses

Mind Map 20.7%

Worked example 43.3%

Teacher guidance 10.0%

Hands-on exercise 26.7%

As shown in Table 4.4, the most useful teaching component of this activity was the

use of a worked example (43.3%). The worked example was used with the intention

110

of easing the intrinsic cognitive load of learners. The visual aspect of the teaching

activity was applied using a Mind map with the intention of creating a mental model

to help learning. Teacher guidance was used to support students who needed extra

support so that their germane cognitive load could be reduced. This result indicates

that the cognitive aspect of learning is more significant than that of teacher guidance

and mental modeling.

The majority of the students who suggested the worked example to teach this

concept had good logical skills (69%) and average artistic skills (69%). Most of the

students with very good logical skills (66%) and average artistic skills (67%)

preferred the Mind map. All the students who suggested teacher guidance as the

most useful had very good logical and average artistic skills. The hands-on exercise

was highly valued by 50% of the students with excellent logical skills and 50%of the

students with average artistic skills (see Table 4.5).

Table 4.5
Preference of Tools/Methods of Students with Logical and Artistic Abilities in
Activity-1

Tool/Method Logical Artistic

E
xc

el
le

nt

V
 G

oo
d

G
d

G
oo

d

A
ve

ra
ge

po
or

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

po
or

Mind map 0% 66% 17% 17% 0% 0% 0% 67% 33% 0%

Worked example 23% 8% 69% 0% 0% 8% 0% 23% 69% 0%

Teacher guidance 0% 100

%

0% 0% 0% 0% 0% 0% 100

%

0%

Hands-on exercise 50% 25% 25% 0% 0% 13% 12% 25% 50% 0%

One of the questions asked in the Mini questionnaire-1 (see Appendix C) was for the

students to suggest the best combination of the tools/methods to be used. The

percentage of the participants who suggested all the tool/methods: Mind map,

worked example, teacher guidance, and hands-on example to be used were 60%.

111

While 97% of the participants suggested Mind map, worked example, and hands-on

example, teacher guidance was suggested to be used by 73% of the participants of

the survey (see Table 4.6).

Table 4.6
Summary of Tools/Methods Preferred by Students in Activity-1

 M
in

d
m

ap

W
or

ke
d

ex
am

pl
e

T
ea

ch
er

gu

id
an

ce

H
an

ds
-o

n
ex

er
ci

se

A
ll

 to
ol

s

M
in

d
M

ap

&
 W

or
ke

d
ex

am
pl

e
&

H

an
d-

on

w
or

k

Percentage of
students

97% 90% 73% 100% 60% 87%

4.3.1.2 Findings from the qualitative data

One of the questions in the Mini questionnaire-1(see Appendix C) was to find out

the usefulness of the Mind map in learning the concept. Almost all (97%) of the

participants found the Mind map useful to learn the Java class concept. The

following were some noteworthy comments:

Mind map puts everything into a clear view which made it easier to write my
Java programs and understand the syntax.

Mind map gives a clear idea of what is really going on behind the code an idea
of types of objects and variables to be used.

Mind map shows the components of the Java class template clearly.

Mind map helped me to differentiate instance variables, constructors and
methods.

The visual image of the Mind map helps to remember the class template.

It gives colourful braches highlighting the structure of the Java class.

The Mind map is an excellent tool because of its visual aspect.

I think Mind maps help in understanding Java better because it turns the spoken
and/or written into a visual one.

112

The usefulness of the whole exercise was one of the questions in the Mini

questionnaire-1, for which almost all the participants commented positively.

There were 12 comments about the usefulness of worked example. Many had

commented about the usefulness of worked example to understand the class template

and its logic. Some students had mentioned the usefulness of using Mind map with

worked examples. Some of these comments were:

Worked examples give us a better understanding of Java and how Java code

work.

Worked examples are helpful when used with the Mind map picture.

It helps because there were examples of how the template worked. I was able to

figure out what was wrong when it went wrong.

Worked examples are more practical better than learning theory using

PowerPoint slides.

Java coding is easier when used worked examples.

It was good as there were examples to explain of how the logic worked.

There were seven comments on the hands-on exercise given to modify the worked

example provided.

We were able to work on the code by ourselves without much effort.

This type of learning is better than teaching on the board.

This exercise is more exciting and easy to understand.

Hand-on exercises are very useful to learn Java.

We need to work on the code by ourselves to learn Java.

The PowerPoint slides are boring. In this I can experience and view what is

going on instead of listening to a lot of theory

113

Five students commented on the visual aspects of Mind map. They thought that

Mind map not only helped to understand but also enabled them to write Java code

faster. The noteworthy comments are:

The picture in the Mind map helped me practically write code in Java

programming.

It makes the classes and methods easier to see. It enables for me to write Java

code quicker. I believe that Mind map help me to understand Java code better.

Mind map lets you visualise what you practically do in Java programming.

Three students found teacher guidance useful as it enabled them to to contact the

tutor for difficult questions whenever required.

4.3.2 Mini Questionnaire-2 Findings

4.3.2.1 Findings from the quantitative data

Teaching Activity-2 (see Figure 4.5) was used to teach the creation and manipulation

of Java objects. It contained pictures, analogy, worked example, hands-on exercise

and teacher guidance.

114

Activity -2
Use the Employee.java file to complete this hands-on exercise. You may ask for
assistance of the teacher as required.

Information of Employees

Employee Name Employee Age Salary

Peter 30 45000.90

Richard 40 60345.40

Sarah 20 67900.00

If we are to store these data (in red) in a Java program, we have to create a class or
template first. (The class Employee.java is provided to you.)

Then we create three objects using that class in the main method.

Finally we assign values to the three objects.

Objects

name age

 name age
salary

name age

 salary

salary

Peter 30

45000.90
Richard 40

60345.40

Sarah 20

67900.00

115

Analogy

Getting a value from an instance variable of an object.

Exercise

Modify the Employee class with an additional property called gender. Add a method
called setGender and modify the printEmployeeDetails method.

Write Java code to add the values as shown in the table given below to the three
objects created in EmployeeTester class.

Information of Employees

Employee Name Employee Age Salary Gender
Peter 30 45000.90 M
Richard 40 60345.40 M
Sarah 20 67900.00 F

Figure 4.5. Activity - 2.

At the end of the teaching activity, Mini questionnaire-2 (see Appendix D) was used

to collect feedback from students. Twenty eight students participated in the survey in

four consecutive years (2009, 2010, 2011 and 2012). The summary of the findings of

the participants’ artistic and logical skills are listed in Table 4.7.

Table 4.7
Summary of Artistic and Logical Skills of the Participants in Mini Questionaire-2

Skill Level
Artistic

%
Logical

%
Poor 21.4 0.0
Average 17.9 7.1
Good 17.9 39.3
Very good 28.6 39.3
Excellent 14.3 14.3

116

According to Table 4.7, the participants’ logical, analytical thinking, and

mathematical skills are higher than their artistic skills such as singing, painting, and

writing poetry. Some participants (21%) thought that their artistic skill was poor.

Table 4.8
Summary of the Most Useful Teaching Tools/Methods Used in Activity-2

Teaching tool/method Percentage of responses

Worked example 25.0%

Teacher guidance 14.3%

Hands-on exercise 25.0%

Analogy /Picture 35.7%

One of the items in the questionnaire was to choose the best/most useful tool/method

for teaching Activity-2. According to the results presented in Table 4.8, the most

useful tool/method was the picture and analogy used in the activity. The students

rated the use of worked example and hands-on exercise as the second most useful

component of this teaching session. These results indicates that pictures/analogies,

worked example and hands-on exercise are most effective in teaching this concept.

The majority of the students who were very good in both logical (57%) and artistic

(43%) skills preferred the worked example. The majority of students who suggested

hands-on exercise had good logical (42%) and artistic skills (42%). The majority of

students who suggested teacher guidance as the most useful had good logical skills

(75%) and average (75%) artistic skills. The use of Star Structure (see Figure 3.7)

and analogy (see Figure 3.8) was highly valued by most students with very good

logical (50%) but poor artistic (40%) skills (see Table 4.9)

117

Table 4.9
Preference of Tools/Methods of Students with Logical and Artistic Abilities in
Activity-2

Tool/Method Logical Artistic

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

P
oo

r

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

P
oo

r

Analogy/Picture 20% 50% 30% 0% 0% 20% 20% 20% 0% 40%

Worked example 0% 57% 29% 14% 0% 0% 43% 0% 27% 20%

Teacher guidance 0% 0% 75% 25% 0% 0% 25% 0% 75% 0%

Hands-on exercise 29% 29% 42% 0% 0% 29% 29% 42% 0% 0%

A question was asked of the participants to indicate the best combination of the

tools/methods to be used in this activity. Many participants (64%) suggested all four

teaching techniques: analogy /picture, worked example, teacher guidance, and hands-

on example to be used. Most participants (93%) suggested a combination of

analogy/picture, worked example, and hands-on example to be used. Teacher

guidance was suggested by 68% of the participants (see Table 4.10).

Table 4.10
Summary of Tools/Methods Preferred by Students in Activity-2

 A
na

lo
gy

 &

P
ic

tu
re

W
or

ke
d

ex
am

pl
e

T
ea

ch
er

gu

id
an

ce

H
an

ds
-o

n
ex

er
ci

se

A
ll

to
ol

s
&

m

et
ho

ds

A
na

lo
gy

P

ic
tu

re
,

W
or

ke
d

ex
am

pl
e

&

H
an

d-
on

w

or
k

Percentage of
students

89% 93% 68% 96% 64% 93%

118

4.3.2.2 Findings from the qualitative data

There were 26 positive comments from participants of the survey giving different

reasons for the usefulness of Activity-2 in understanding the concept of creation and

manipulation of objects.

The following are some noteworthy comments.

Seeing pictures helps to understand the concept being explained.

The pictures help our minds to make the connection between how things interact

with each other.

Pictures help to visualise concepts.

Pictures better help to form a picture in one’s mind about the concepts and

methods of Java.

Your brain remembers pictures more easily.

Understanding concepts can be difficult for new students. Using sample

diagrams, it becomes easier.

Picture made the lesson easier to relate in the head. Pictures really help to

describe the concepts that many struggled to get.

I think star structure helps in understanding Java because it shows written code

in a visual manner.

The visual image of the star structure helps to remember the class template &

how an object looks like.

It provides a visual stimulant for your brain rather than just following steps.

The analogy helped me to remember and understand the concept better.

The participants were asked to suggest any other ways that could be used to improve

teaching this concept. The suggestions include:

Nothing is required to change in teaching style.

119

Less samples of Java files so we can learn to write it all ourselves.

Facilitate more hands on learning.

Provide less worked examples so that they learn to write them by themselves, and

go through or provide answers so that students can check their work.

One question in the Mini questionnaire-2 allowed the students to make comments on

the usefulness of the hands-on session using teacher guidance, worked example,

analogy and the pictorial representation to understand creation and manipulation of

Java objects. 23 participants had given positive comments. There were seven

positive comments about the worked example used in Activity-2. Typical useful

comments were:

This lesson was very good. I like this style of lesson using worked examples over

the standard PowerPoint.

I could experiment more with worked examples and get experience doing it

ourselves.

Practical sessions help me to understand and remember Java code.

Worked examples are good and we can experience writing the code.

Pictures and worked examples are very useful.

Some found worked example along with pictures useful in understanding creation

and manipulation of objects. Some other students had enjoyed using worked

example and hands-on exercise which had made the concept easier to grasp for them.

Ten students commented on the practicality of using hands-on exercises. Some

commented that their learning was more effective when they used hands-on exercise.

Many expressed their aversion to teaching using PowerPoint slides.

120

Examples of such comments were:

Yes. Strongly agree with this as PowerPoint can get tedious and with a hand on

approach the students understand concepts through trial and error.

I find it hard to just sit and listen. My brain tends to tune out when people talk

too much.

Because doing it as you learn lets you see what is happening and if you get

errors it can be explained to the class.

Hand on work is more interactive.

Hands-on sessions help because you get actually to do something instead of

reading about it.

Practical or hands-on is much easier to understand.

Four students had written comments about the usefulness of teacher guidance in this

activity. Two of the comments were:

Teacher guided practical sessions are useful for me.

Yes, if you get errors you can ask the teacher.

4.3.3 Mini Questionaire-3 Findings

Activity-3 (see Figure 4.6) with an analogy symbolizing two methods as two stick

men, one assigning work to the other, was used to teach parameter passing.

Activity - 3

Use the Employee.java file to complete this hands-on exercise. You may ask for
assitance of the teacher as required.

Java Code

public char getGrade(double salary)

 { char ch=' ';

 if (salary >= 60000)

121

 ch= 'A';

 else if ((salary < 60000) && salary > 40000)

 ch = 'B';

 else

 ch = 'C';

 return ch; }

1. Open the Exployee.java class.

2. Create ExployeeTester.java class with the main method in it.

3. Copy getGrade method to the Exployee.java class.

4. Create an Employee object E1 using the command:
Employee E1 = new Employee()

5. Add the following command to the main method
E1.setSalary(40000);
char grade = E1.getGrade(E1.getSalary());
 E1.printSalary();
 System.out.println(grade);

E1.setSalary(70000);
 grade = E1.getGrade(E1.getSalary());
 E1.printSalary();
 System.out.println(grade)

6. Run the program.

122

You should get the answer
40000.0
C
70000.0
A
If you do not get the answer get help from the teacher.

7. Now by using the picture analogy, explain why you get the output C and A to

another student in your class.

8. Use the getGrade method with different values in your program.

Exercise: Write a method called ageGroup to which a value of age is passed using

an integer type parameter and then the method returns a string value according to

the following criteria. Test the method in the main method using different values.

Age group Return value

>=65 Senior citizen

>=16 and <65 Adult

<16 Child

Figure 4.6. Activity - 3.

In this activity, the possibility of applying schema theory (Ashcraft & Radvansky,

2010) according to which a new schema (knowledge) is created using existing

schema (Driscoll, 2000; Mead et al., 2006) was investigated. At the end of the

teaching activity Mini questionnaire-3 (see Appendix E) was used to evaluate the

suitability of Activity-3 for the purpose. The 21 participants who attended the

teaching session took part in this mini survey.

4.3.3.1 Findings from the quantitative data

All the participants of this survey had good, very good or excellent logical skills.

Their artistic skills were not as good as logical skills. About 57% of the participants

had good artistic skills and the rest had average or poor artistic skills (see Table

4.11).

123

Table 4.11
Summary of Artistic and Logical Skills of the Participants in Mini Questionnaire-3

Skill Level
Artistic

%
Logical

%
Poor 9.5 0.0
Average 33.3 0.0
Good 57.1 28.6
Very good 0.0 57.1
Excellent 0.0 14.3

The participants’ response to the most useful component of the Activity-3 were

summarised and categorised as shown in the Table 4.12.

Table 4.12
Summary of the Most Useful Tools/Methods Used in Activity-3

Teaching tool/method Percentage of

responses

Visual/Analogy 50%

Teacher guidance 5%

Hands-on exercise 45%

According to the numbers in Table 4.12, the most useful teaching tool for the

participants was visual analogy. Nearly half of the participants (45%) thought that

the hands-on exercise used was the most useful aspect in this activity. Although, this

percentage (45%) was comparatively lower than the Visual/Analogy aspect (50%) of

this activity, it had the highest preference from students in the other four activities.

Teacher guidance was not considered as useful by many students. This result

indicates that the cognitive aspect of learning, especially on schema building and

visual mental modeling is the most important in teaching this Java concept. In

addition, the participants similarly valued the kinaesthetic way of learning using

hands-on work.

The majority of the students with very good or good ratings in both logical (100%)

and artistic skills (70%) preferred the analogy used in this activity. The hands-on

activity was preferred by the majority of the participants with good or very good

124

logical skills (90%). These results show the preference of students with high logical

and artistic skills for cognitive and kinaesthetic aspects of learning (see Table 4.13).

Table 4.13

Preference of Tools/Methods of Students with Logical and Artistic Abilities in
Activity-3

Tool/Method Logical Artistic

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

P
oo

r

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

P
oo

r

Visual/Analogy 0% 50% 50% 0% 0% 0% 0% 70% 30% 0%

Teacher guidance 100% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Hands-on exercise 20% 70% 10% 0% 0% 0% 0% 50% 0% 0%

The participants of the Mini questionnaire-3 were asked to indicate the best

combination of the tools/methods to be used in teaching. Many participants (67%)

suggested a combination of all the three teaching techniques: analogy /picture,

teacher guidance, and hands-on example to be used. Almost all (95%) preferred the

combination of analogy /picture and hands-on exercise. These findings indicate that

students prefer analogy /picture, and hands-on work to teacher guidance (see Table

4.14).

Table 4.14
Summary of Tools/Methods Preferred by Students in Activity-3

 V
is

ua
l

an
al

og
y

T
ea

ch
er

gu

id
an

ce

H
an

ds
-o

n
ex

er
ci

se

A
ll

to
ol

s
&

m

et
ho

ds

V
is

ua
l

an
al

og
y

P
ic

tu
re

, &

H
an

d-
on

w

or
k

Percentage of
students

95% 71% 100% 67% 95%

125

4.3.3.2 Findings from the qualitative data

Almost all the students commented positively on the usefulness of Activity-3 to help

understand the concept of parameter passing. More than 50% of the comments were

about the visual aspects and the analogy used in the activity. Some notable

comments are given below.

It is easy to remember something with visual like pictures.

Pictures make concept less abstract.

Pictures give us better understanding in a different perspective.

Pictures stimulate student’s brain.

It is a clear representation of the concept.

It helped me to understand and remember Java code.

I found this analogy useful to understand the concept of passing parameters

Pictures help us to visualise what is really happening.

This picture helped me to understand how parameters work.

The pictorial explanations are very effective in learning.

Seven students found the practical aspect of the activity useful to learn this concept.

They found the varied work involved, the engagement on the activity and

interactivity with hands-on work useful. Some found Activity-3 as an easier way of

learning. Such comments include:

Practical or hand-on work is much easier for me to understand.

It helps because you get actually to do something instead of reading about it.

Varied work is involved in hand-on sessions.

Hand-on sessions are less monotonous.

126

It is more interactive.

Practical learning is an easier way of learning

One student suggested that the teacher should provide more exercises, so that

students can apply the acquired knowledge by themselves.

The above comments clearly show that the cognitive aspects of learning using

pictorial analogies to help new schema building and worked examples to ease

intrinsic cognitive load of learners are the most important in learning this Java

concept. In addition, the use of hands-on work to incorporate kinaesthetic aspects of

learning has been valued by students in learning this concept.

4.3.4 Mini Questionnaire-4 Findings

Two teaching activities were used to teach the use of arrays. Activity 4.1 (see

Figures 4.7 and 4.8) was used to teach arrays with primitive variables and the

Activity 4.2 (see Figures 4.9 and 4.10) was used to teach arrays with objects.

127

Activity-4.1

WORKED EXAMPLE – ARRAY OF PRIMITIVE TYPE

import java.util.Scanner;
public class testArray
{
 public static void main(String [] args)
 {
 int size=5;
 // create array to store five integer values

 int [] numberArray = new int [size];
 // See the pictorial representation Code set-1

 // Creation of a scanner object
 Scanner in = new Scanner (System.in);

 int index = 0;
 while (index < numberArray.length)
 {
 System.out.print("Enter number " + (index +1));
 // Add name of an employee using a scanner object
 numberArray [index]= in.nextInt();

 index = index +1;
 }
 // See the pictorial representation Code set-2

 //Write Java code to print the five integer values stored on the array values using a
loop

 }
}

Figure 4.7. Activity – 4.1.

128

Figure 4.8. Pictorial representation of an array of primitive data – 4.1.

129

Activity 4.2

WORKED EXAMPLE – ARRAY OF OBJECTs

public static void main(String [] args)
 {
 int size=5;
 // create array to store Employees
 Employee [] emps = new Employee [size];
 // See the pictorial representation Code set-1

 //Create 4 employees objects using default constructor
 for(int index = 0; index < emps.length; index++)
 {
 emps[index] = new Employee();
 }
 // See the pictorial representation Code set-2

 // Creation of a scanner object
 Scanner in = new Scanner (System.in);

 int index = 0;
 String empName;
 int empAge;
 double empsalary;
 while (index <emps.length)
 {
 System.out.print("Enter name" + (index +1));
 // Add name of an employee using a scanner object
 empName = in.next();
 emps[index].setName(empName);

 // Add age of an employee using a scanner object
 empAge = in.nextInt();
 emps[index].setAge(empAge);

 // Add salary of an employee using a scanner object
 empSalary = in.nextDouble();
 emps[index].setSalary(empSalary);

 index = index +1;
 }
// See the pictorial representation Code set-3

//Write Java code to print the data of the five employee objects using a loop
 }

Figure 4.9. Activity – 4.2.

130

Figure 4.10. Pictorial representation of an array of objects – 4.2.

These teaching activities were designed by combining pictorial array structures,

worked examples, hands-on exercises, and teacher guidance. The success of these

teaching activities was evaluated by the students who attended the session, by using

Mini questionnaire-4 (see Appendix F). The 29 students who completed Activity-4

participated in this survey.

4.3.4.1 Findings from the quantitative data

The participants indicated their logical and artistic skills by choosing one of the five

options given in each question. The summarised artistic and logical skills of the

participants are shown in Table 4.15.

131

Table 4.15
Summary of Artistic and Logical Skills of the Participants in Mini Questionaire-4

Skill Level
Artistic

%
Logical

%
Poor 20.7 0.0
Average 34.5 10.3
Good 17.2 24.1
Very good 17.2 51.7
Excellent 10.3 13.8

The majority of the participants (90%) were found to have good, very good or

excellent logical skills. The percentage of the participants with at least good artistic

skills was found to be 45%. These figures show that participants’ overall logical

skills were higher than their artistic skills.

One of the items in questionnaire-4 asked participants to indicate the most useful

component of the teaching activity by choosing one of the given options: array

structures, worked examples, teacher guidance, and hands-on exercises. The

summary of the findings is given in the Table 4.16.

Table 4.16
Summary of the Most Useful Tools/Methods Used in Activity-4

Teaching tool/method Percentage of responses

Array structures 20.7%

Worked examples 31.0%

Teacher guidance 20.7%

Hands-on exercises 27.6%

According to Table 4.16, the most useful teaching tool/method for the students was

the worked examples (see Figures 4.7 and 4.9). But a considerable number of

participants had chosen other tools/methods as well. This indicates that all the

tools\methods used in this activity are important in teaching this concept.

132

Most students (83%) with very good logical skills were found to be among the

participants who had chosen the array structures as the most important teaching tool

in this activity. A similar trend was found with 67% of the participants with very

good logical skills choosing worked examples as the most important method of

teaching (see Table 4.17).

Table 4.17
Preference of Tools/Methods of Students with Logical and Artistic Abilities- Activity-
4

Tool/Method Logical Artistic

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

po
or

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

po
or

Array structures 0% 83% 17% 0% 0% 17% 32% 17% 17% 17%

Worked examples 11% 67% 22% 0% 0% 11% 22% 11% 34% 22%

Teacher guidance 17% 33% 17% 33% 0% 0% 0% 34% 33% 33%

Hands-on exercises 25% 25% 37% 13% 0% 12% 13% 13% 50% 12%

A question in the Mini questionnaire-4 requested the students to indicate the best

combination of the tool/methods to be used in this activity. Many participants (83%)

suggested all the four teaching tool/methods: array structures, worked examples,

teacher guidance, and hands-on examples to be used to teach this concept. Almost all

participants (97%) suggested a combination of array structures, worked examples,

and hands-on examples. Teacher guidance was suggested to be used by 89% of the

participants. These results shows that students’ preference for a combination of

visual, kinaesthetic, and cognitive aspects is the most appropriate to teach this

concept (see Table 4.18).

133

Table 4.18
Summary of Tools/Methods Preferred by Students in Activity-4

 A
rr

ay

st
ru

ct
ur

es

W
or

ke
d

ex
am

pl
es

T
ea

ch
er

gu

id
an

ce

H
an

ds
-o

n
ex

er
ci

se
s

A
ll

T
he

T

oo
ls

 &

m
et

ho
ds

A
rr

ay

st
ru

ct
ur

es
,

W
or

ke
d

E
xa

m
pl

e
&

ha

nd
-o

n
w

or
k

Percentage of
students

97% 97% 86% 100% 97% 83%

4.3.4.2 Findings from the qualitative data

Almost all the participants (97%) thought that Activity-4 helped them understand the

array concept. The participants of the survey were asked to write comments on how

the activity helped them learning the array concept. Some noteworthy comments are

listed below.

Brain remembers pictures easily.

It is always easier when pictures are used.

Visual tools make the lesson easier to understand the concepts that many

struggled to get.

Pictures helped to visualise and understand the concept.

Pictures help our minds to make the connection between theory and practical.

Pictures give a different perspective for learning.

Pictures visually explain the concept.

All the participants commented positively on the use of teacher guided hands-on

sessions using worked examples in learning array concept. Six out of 29 students

thought that the teacher guidance provided during the interactive practical sessions

using worked examples was useful to learn this concept. The rest (79%) of the

134

students had written comments on the usefulness of using hands-on practical

sessions using worked examples. Some of such comments include:

The interactive exercises are very useful in learning.

Hand-on sessions are not boring.

This exercise helped learning with minimal effort.

This exercise explains the difference between arrays of numbers and objects.

We could experiment and get experience by ourselves.

The worked examples made it easy for us to understand arrays.

Hands-on sessions are easier to understand.

The activity helped us to understand what was happening with code.

These comments indicate that the majority of the students with high logical skills

prefer a kinaesthetic way of learning. According to the four quadrant brain

dominance model (see Figure 2.12), logical activities are in quadrant-A of the left

hemisphere of the brain whereas the kinaesthetic activities are in quadrant-C of the

right hemisphere of the brain.

4.3.5 Mini Questionnaire-5 Findings

BlueJ is a Java program development tool that provides a graphical environment to

the users. Teaching Activity-5 (see Figure 4.11) was designed and used to teach the

inheritance concept using BlueJ, teacher guided exercise and teacher guidance. Mini

questionnaire-5 (see Appendix G) was used to get feedback from students about the

usefulness of this teaching activity. Thirty two students participated in this survey.

135

Activity – 5

Person
String ID
String name
int age
void setId()
String getID()
void setName()
String getName()
void setAge()
int getAge()

Super Class

Student
String courseCode
Double marks
void setCode()
String getCode()
void setMarks()
double getMarks()

Sub Class

1. Use BlueJ to create the above two classes using inheritance.
2. Create three objects as shown below:

3. Test the three objects of the Student class using the following values.

ID name age courseCode marks
0001 Peter 23 COMP.5111 70
0002 Jane 21 COMP.5100 80
0003 John 18 COMP.5101 100

Figure 4.11. Activity – 5.

136

4.3.5.1 Findings from the quantitative data

The participants’ judgements on their artistic and logical skills were categorised and

summarised as shown in the Table 4.19.

Table 4.19
Summary of Artistic and Logical Skills of Participants in Mini Questionnaire-5

Skill Level
Artistic

%
Logical

%
Poor 0.0 0.0
Average 53.1 12.5
Good 34.4 28.1
Very good 6.3 25.0
Excellent 6.3 34.4

According to this summary, participants’ average logical skill was found to be much

higher than their artistic skill. Most participants (53%) thought that they had average

artistic skills (see Table 4.19). Most (87.5%) students thought that their logical skill

was good, very good or excellent.

In the Mini questionnaire-5, the participants were requested to indicate the most

useful aspect of the teaching activity by choosing one of the options: BlueJ visual

interface, hands-on work, and teacher guidance. A summary of the findings is shown

in Table 4.20.

Table 4.20
Summary of the Most Useful Teaching Tools/Methods Used in Activity-5

Teaching tool/method Percentage of responses

BlueJ visual interface 46.9%

Hands-on work example 37.5%

Teacher guidance 15.6%

According to the results shown in Table 4.20, most useful aspect of this teaching

activity was the use of the BlueJ visual interface (46.9%). Some students (37.5%)

thought that hands-on exercise was the most useful aspect in this activity.

137

The majority of the students, who preferred the BlueJ visual programming tool had

excellent logical skills and average artistic skills. The majority of the students who

suggested teacher guidance as the most useful aspect of teaching had very good

logical skills and average artistic skills. The majority of the student who nominated

the hands-on exercise as the most useful had good logical skills and average artistic

skills (see Table 4.21).

Table 4.21
Preference of Tools/Methods of Students with Logical and Artistic Activity-5

Tool/Method Logical Artistic

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

po
or

E
xc

el
le

nt

V
 G

oo
d

G
oo

d

A
ve

ra
ge

po
or

BlueJ 40% 27% 13% 20% 0% 13% 13% 13% 61% 0%

Teacher guidance 20% 40% 40% 0% 0% 0% 0% 0% 100% 0%

Hands-on exercises 33% 17% 42% 8% 0% 0% 0% 25% 75% 0%

A question was asked of the students to indicate the best combination of the

tools/methods to be used in this activity. The majority (61%) of the participants

suggested all the techniques: BlueJ, teacher guidance, and hands-on examples to be

used. Many participants (91%) suggested two techniques: BlueJ visual interface, and

hands-on example. Teacher guidance was suggested to be used by 66% of the

participants (see Table 4.22).

Table 4.22
Summary of Tools/Methods Preferred by Students in Activity-5

 B
lu

eJ

T
ea

ch
er

gu

id
an

ce

H
an

ds
-o

n
ex

er
ci

se

A
ll

 T
he

T

oo
ls

 &

m
et

ho
ds

B
lu

eJ
 &

H

an
d-

on

W
or

k

Percentage of
students

94% 66% 100% 61% 91%

138

4.3.5.2 Findings from the qualitative data

Most of the students (93%) agreed that BlueJ helped them to understand the

inheritance programming concept. Although the majority of the participants of this

survey have better logical skills, it is interesting to find the students’ preference for

the graphical environment of this tool. These results indicate that students’ artistic

and logical skills are not related to their preference for visual teaching tools such as

BlueJ. Of the 32 participants, 28 commented on the usefulness of BlueJ to

understand the inheritance concept. 16 comments were about the usefulness of the

graphical aspect of BlueJ, especially to illustrate the inheritance between classes.

The following are some of the important comments.

It clearly shows the connection between classes.

Graphics in BlueJ is useful to understand the inheritance.

It helps to improve understand because it turns the text explanation into
graphical.

It creates and displays objects visually and enables testing methods visually.

Visual objects give us feeling of existence of objects.

I think BlueJ’s graphical representation of the Java code of inheritance helped
me to understand this concept.

There were some comments from students describing BlueJ as a useful tool not only

for teaching but also for self-learning Java programming for beginners. Some

students had enjoyed the facility in BlueJ for testing constructors and methods

without writing code. Such comments include:

By using inherited method from a super class in BlueJ, a user can understand the
concept clearly.

It helps to understand relationships between classes better.

Bluej helps to test constructors and methods without writing code.

BlueJ is a good tool to understand inheritance for beginners.

BlueJ is a useful tool to help understand relationships between classes.

BlueJ is an ideal teaching package for self-learning.

139

One of the reasons for using BlueJ was to create a mental model of the inheritance

concept graphically in the learner’s mind and find out the learning outcomes from

their point of view. These comments indicate that mental modeling helped to

understand difficult Java concepts such as inheritance.

The participants were asked if the teacher guided hands-on exercise using BlueJ was

helpful to understand the inheritance concept. Most participants (97%) answered

‘yes’ to this question. The participants were also asked to write comments on how it

could help. 30 students had written positive comments. Some students found the

interactivity involved in this teaching activity useful. Such comments include:

Varied work is involved in hand-on sessions,

Hand-on sessions are less monotonous

It is more interactive.

The majority of students thought that hand-on exercise helped develop their

understanding due to the kinaesthetic nature of the exercise. Such comments include:

Practical is an easier way of learning.

Practical or hands-on is much easier for me to understand.

It helps because you get actually to do something instead of reading about it.

One participant commented on the usefulness of teacher guidance in learning.

The positive comments on both visual aspects of BlueJ and hands-on exercises

indicate that mental modeling using graphics and the kinaesthetic way of learning is

the most suitable for teaching the inheritance concept.

140

4.4 Performance Improvement of Students

A new way of teaching was introduced to students using Mind mapping tools,

mental modeling diagrams, and worked examples in years 2009 to 2012. Table 4.23

shows statistical data of students’ performance on the Introductory Java

Programming course in these four years and compared with the results for 2008.

Table 4.23
Students Performance from 2008 to 2012

Year

N
o

of

st
ud

en
ts

A
 G

ra
de

P

A
SS

B
 G

ra
de

P

A
SS

C
 G

ra
de

P

A
SS

T
ot

al

P
A

SS

T
ot

al

F
A

IL

%
 P

A
S

S

%
 P

A
S

S

w
ith

 A

G
ra

de

2008 43 0 3 6 9 34 21% 0%
2009 39 3 4 10 17 22 44% 8%
2010 13 2 2 4 8 5 62% 15%
2011 11 6 1 3 10 1 91% 55%
2012 9 4 1 3 8 1 89% 44%

The participants of the survey in phase one of this research had learnt introductory

Java programming course in the conventional way at Waiariki Institute of

Technology in year 2008. The pass rate of this group was the lowest (21%) in 2008

(see Table 4.23). The newly devised teaching tools were introduced to teach Java

concepts in 2009. Despite the number of students enrolled declining from year 2008,

the percentage of students who passed increased dramatically. In particular, the

number of students passing with an A grade increased significantly. These results

clearly indicate that the students have benefitted from the new teaching tools

introduced in 2009. The decrement of student teacher ratio from 2008 to 2012 could

also have been a contributing factor for this improvement.

4.5 Summary

The data analysed in Phase One of this research revealed the difficulty level of most

of the Java concepts from the students’ point of view. The difficult concepts were

found to be inheritance, use of arrays for objects and primitive variables, use of text

files, parameter variables, and class-object concept.

141

In Phase One, the correlation between difficulty levels and students’ logical skills

and artistic skills were calculated and a weak correlation between difficulty level and

the artistic skill of students was found.

The answers to the question “What type of learner are you?” with multiple options:

Kinaesthetic, visual, and auditory, revealed that the highest percentage of students

(75%) were found to be kinaesthetic learners. The visual learner population was the

second highest with 55% and the lowest learner population was found to be auditory

with 24%. A combination of kinaesthetic and visual learner was found to be 39% of

the population.

The participants of Phase One suggested the most suitable teaching style for each

concept out of the three options of teaching styles; auditory, kinaesthetic, and visual.

The majority of the participants suggested the kinaesthetic way of teaching for most

of the concepts. Using visual way of teaching was the second highest choice. The use

of auditory was the least popular choice for all the concepts (see Table 4.2). These

percentages were taken into account in designing teaching activities to combine

visual, kinaesthetic, and visual aspects of teaching in Phase Two.

Five different teaching activities were designed combining visual, kinaesthetic

(hands-on), teacher guidance, and worked examples.

In Activity-1, Mind mapping was used as a visual tool. It was also combined with

worked examples, hands-on work and teacher guidance to teach O-O Class concept.

According to the findings of the Mini questionnaire-1 (see Appendix C), worked

example was the most preferred component for the students. It was also found that

students with high logical skills enjoyed the visual aspect of the Mind mapping and

worked examples in learning. The combination of worked example, and hands-on

example were found to be the best suited for many students.

In Activity-2, a pictorial representation of an object called Star Structures was

introduced as a mental model. The creation and manipulation of objects was

introduced as a hands-on activity combining visual pictures, worked example and

teacher guidance. An analogy was also used to explain returning a value from a

method. The feedback collected from the Mini questionnaire-2 (see Appendix D)

142

indicated that the students had found picture/analogy, worked example, and hands-on

application equally important to understand this concept. The students with good or

very good logical skills found hands-on work the most useful in this activity. As in

Activity-1, the preferred combination of learning was analogy/picture, worked

example, and hands-on example.

Activity-3 was the simplest activity in which visual analogy combined with hands-on

work and teacher guidance was used to explain the concept of parameter passing and

returning a value in a method. According to the summarised data collected using

Mini questionnaire-3 (see Appendix E), the visual analogy was found to be the most

useful part of the activity for students. This analogy was suggested as useful by the

majority of students with high logical and artistic skills. Almost all preferred a

combination of analogy and hands-on exercise to learn this concept.

Activity-4 comprised visual array structure, worked examples, hands-on work, and

teacher guidance. This activity was designed and used to explore the possibility of

improving the quality of teaching the array concept using primitive variables and

also array of objects. The Mini questionnaire-4 (see Appendix F) was used to collect

feedback from students. According to the summarised data collected, 97% of the

students expressed usefulness of the activity to understand the concept with various

comments added. The worked example used was found to be the most useful for

many and the combination of hands-on session, worked example, and the pictorial

array structure was the choice of 97% of the participants. Some students did not find

teacher guidance as useful as the other three aspects of this activity. This result

indicates that teaching activities combined with kinaesthetic and visual work well

together in teaching the array concept.

BlueJ was used in the fifth activity as a visual tool with the intention of creating a

mental model and also to reduce the intrinsic cognitive load of the learner’s working

memory. As in the other activities, hands-on activity and teacher guidance were

incorporated in the activity. Data collected using the Mini questionnaire-5 (see

Appendix G) clearly exposed the effectiveness of this tool with 93% of the students

supporting it. The hands-on work and the BuleJ visual interface were enjoyed by

students more than the teacher guidance provided to them in the teaching activity.

143

This result once again revealed the success of teaching Java concepts by using

activities combined with kinaesthetic and visual aspects.

Since the introduction of new teaching activities, students’ performance has

improved over the last three years resulting in the achievement of higher grades. This

result clearly support the success of teaching activities designed in accordance with

the principles of Cognitive Load theory (CLT) with properly managed intrinsic,

germane, and extraneous cognitive loads. The use of analogies and pictures was also

found to be effective in applying mental modeling concepts to teach Java

programming.

144

CHAPTER 5

CONCLUSION

5.1 Insights

One of the aims of this investigation was to identify the difficult Java concepts

which must necessarily be addressed in teaching Java programming at an

introductory level. Such core Java concepts were found to be inheritance, the use of

arrays, the class and object concepts, and the use of text files.

A second basic aim of the investigation was to determine the most desirable way of

learning each concept from the students’ point of view. According to the findings, a

kinaesthetic approach to learning was found to be the most suitable learning method

for all Java concepts experimented with in this research. The second best method for

learning Java concepts was found to be a visual approach. The least desired method

of learning was the auditory approach. A final and related research question in Phase

One was to discover the preferred combination of learning styles for teaching Java

concepts, and this was found to be kinaesthetic and visual.

In order to design teaching activities for the second phase, the findings of the

percentages of kinaesthetic, visual, and auditory types of learners within the student

sample provided vital evidence. Findings in the first phase revealed that more than

50% of the student population is either kinaesthetic or visual. Therefore, 50% to 75%

of visual and kinaesthetic components of teaching could desirably be included in

activities. The auditory component of teaching could be limited to 25% to 50% in

activities. According to the findings of Fowler, et al. (2000), 70%-83% of learners

are visual, however this percentage is slightly higher than the findings of this survey,

and the variance could be attributed to the different Java programming environments

used in the two research projects or to the types of learners who enroll in these

courses. This research employed Dr. Java, a non-visual programming environment,

whereas Fowler, et al. (2000) utilised students from a RAPTOR visual Java

programming environment.

145

There is also a general belief that people with logical abilities are better at learning

computer programming, whereas those with a more artistic sensibility are not as

good, and this was investigated as a research question in the Java programming

environment. The correlation coefficient between students’ artistic ability and their

total level of difficulty with Java concepts was found to be 0.24 (p = 0.19), showing

a weak positive correlation between artistic abilities and total difficulty level. There

was no correlation found between total difficulty level with Java concepts and

logical ability of students. These findings give some support to the general belief that

people with logical abilities are better at learning computer programming. Not

surprisingly, the students who opted to do this course considered that they have

much better logical skills than artistic skills. This can be clearly seen in the summary

of skills of the students who participated in the five mini questionnaires. Although

Hadjerrouit (1998) argued that mathematical and logical abilities were not essential

for computer programming students, these findings corroborate the fact that those

who are lacking mathematical and logical skills find most Java concepts difficult.

However, as noted by Hadjerrouit (1998), it cannot be denied that some authors of

programming books employ mathematical examples and exercises, and hence logical

and mathematical abilities have become a requirement for learners who use those

texts.

One of the research questions targeted in Phase Two of this investigation was to

study the relationship between students’ learning preference and their logical and

artistic hemispheric dominance. The summary of five activities in the second phase

clearly shows that those learners who claimed to have good or very good logical

skills preferred visual aspects of learning such as analogies and pictorial mental

models. In addition, a combination of cognitive aspects and kinaesthetic aspects of

learning was preferred by many students in all five activities utilised in Phase Two.

According to the four quadrant brain dominance model (Figure 2.12), logical

activities are in quadrant-A, visual activities are in quadrant-D, and kinaesthetic

activities are in quadrant-C. In all five activities, it was apparent that students with

logical skills prefer visual and kinaesthetic aspects. These results indicate that the

current Java programming students’ preference has changed and shifted towards

quadrant-D and quadrant-C. This result agrees with the findings of Lumsdaine and

Lumsdaine (1995), who predicted a paradigm shift from quadrant-A to quadrant-D in

146

the 1990s. This trend was described by Reigeluth (1996) as a shifting paradigm,

moving from behaviourism to constructivism. In addition, Sung (2010) suggested a

21st century paradigm shift towards active learning with group collaboration, using

integrated teaching models. The findings of the research suggest that learning

programming is a cognitive issue that is best approached by supportive pedagogical

methods.

The final question which was investigated within Phase Two was to evaluate the

effectiveness of teaching tools based on a combination of Cognitive Load Theory

(CLT), and the concepts of mental modeling and scaffolding in learning Java

concepts. A combination of Mind map, worked example and hands-on exercise was

found to be the most beneficial for many students to understand the class concept in

Java programming. Of the three components employed in this activity, students

found the worked example the most useful. The BlueJ software tool and the hands-

on worked example were found to be beneficial for the majority of students with

higher logical skills in learning the inheritance concept. As suggested by Sweller

(2010), worked or partially completed examples reduce intrinsic cognitive load as

they alter knowledge levels. These results indicate that the cognitive aspects of

learning are the most important in teaching Java concepts.

In addition, mental modeling was also experimented with using low cost teaching

tools. The consistent use of a star structure in many activities within this course was

found to be beneficial for students, assisting them to visualise the concept of an

object. In addition, the use of analogy in teaching was found to be valuable for many

students. Moreover, employing pictures and analogies for mental modeling and

schema building was experimented with, as suggested by Paivio (2006) and Van

Gog et al. (2010). The results indicate that schema theory could be used effectively

in knowledge building in teaching Java programming language.

Gallimore and Tharp (1990) identify teacher guidance, mental modeling, and

cognitive structuring as different categories of scaffolding. In most activities used in

this research, teacher guidance was not found to be highly important for the students.

This could be due to sufficient scaffolding being provided using worked examples

and mental modeling, such that many students could carry out the hands-on activities

on their own without requiring teacher support. Some comments by students

147

indicated that they wished to do some work on their own right from the beginning.

When compared to previous experience, this suggests that learning was becoming

comparatively easier due to the superior tools and methods being employed in

teaching.

5.2 Significance

The findings as to the most difficult Java programming concepts should be beneficial

for most educators who teach Java programming. This research especially explored

the use of worked examples as a way of minimising the cognitive loads of working

memory. These examples were found to be very effective for many students in

learning Java concepts. The two software tools utilised, BlueJ, and Mind mapping,

were freeware and were found to be valuable for students to understand the Java

class, object and inheritance concepts. The other tools used were pictures, such as

Star Structure (see Figure 3.7), and analogies to impart knowledge of Java concepts.

The pictures and analogies employed as scaffolding along with worked examples

were preferred by students. All of the tools utilised were low cost and affordable by

all teachers of Java programming.

The findings of this research agree with the recently developed Dual Code Theory

(DCT), according to which visual and verbal information are handled by different

channels of the brain (Paivio, 2006). In this research, teaching activities were

profitably combined with visual, verbal, and kinaesthetic aspects of teaching, taking

students’ learning type into consideration. In addition, this research bore out

perceived benefits of mental modeling aspects of teaching. These findings could be

useful for researchers who are involved in studies of cognition and working

memories.

5.3 Limitations

There were several limitations which compromised the accuracy of the findings of

this research. In phase two of the research, the teaching activities were experimented

with in the classroom environment and the students who attended classes were the

participants in the surveys. Unfortunately, the number of students enrolled in the

Java programming course has drastically declined since 2010. For this reason, it was

difficult to find sufficient students in one class to validate the survey as random

148

sampling was not possible. As a result, the research had to be carried out in three

consecutive years using convenience data sampling of different groups. Although

this research addressed the most difficult areas identified in phase one, a single area

was neglected. The use of text files was found to be difficult for many students, and

while the issue was not addressed using the newly devised teaching techniques with

graphics or analogies, worked examples and teacher guidance were employed in

teaching this concept. However, due to the reluctance of students to participate in too

many surveys, the success of this teaching activity was not evaluated using a

questionnaire.

Despite lengthy personality tests available to find the logical and artistic skills of

people more accurately, this research was dependent on the participant’s judgement

of their artistic and logical skills. This would undoubtedly have had impact on the

accuracy of the percentages given for the skills of the participants. It was practically

impossible to incorporate lengthy personality tests in the surveys conducted in the

research, with the inevitable result that accuracy had to be compromised.

5.4 Implications for Future Research

According to the findings of the second phase of this research, in all the activities,

teacher guidance was not considered as useful as other aspects of teaching by many

students. Indeed, some students requested more activities without worked examples.

It could be possible that the activities were made too simplistic for them and as a

result, they found them to be not challenging enough. Another possibility is that once

a concept is understood, students want to try it in programs without further

interruption. There could be a further investigation, targeting average students in a

Java class, to find out how easy tasks should be made.

The students who enrolled in the Java class were found be good in the logical rather

than the artistic domain, and these findings were consistent for the three consecutive

years. However, as noted above, the evaluation of logical and artistic skills was

based on the learners’ own judgements. A truer estimate of these skills is another

area to be investigated further. It is also worth examining the distribution of logical

and artistic skills among students using more accurate personality tests with a

random data sample.

149

5.5 Recommendations

The findings of this research suggest that teaching Java programming is a cognitive

issue rather than a pedagogical one. The most important aspect in teaching is to

eliminate extraneous cognitive load by avoiding teaching anything unrelated to the

concept being focussed on. The teaching activities utilised to communicate difficult

concepts must be designed in such a way that visual, kinaesthetic and auditory

aspects of teaching are combined. In addition, it is vital to use worked and/or partly

completed examples to reduce intrinsic cognitive load to tolerable levels for the

learners.

Mental modeling using pictures and analogies is also a very powerful technique to

help with learning Java concepts. Analogies used should be simple and familiar to

most students and the pictures employed need be consistent throughout the course to

create a supportive mental model for the concepts being taught. Low cost teaching

tools such as mind mapping, BlueJ, pictures and pictorial analogies, can be utilised

effectively to teach difficult Java programming concepts more easily.

5.6 Final Comment

The selection of a set of suitable teaching tools/methods to teach a concept is usually

challenging and could vary with the nature of the concept. Although analogies were

found to be very effective, it is often hard to find a suitable analogy for each concept.

However, a good mixture of low cost tools, pictures, worked examples, and hands on

exercises could readily be utilised to make teaching of any difficult Java concept

more straightforward.

150

REFERENCES

Allen, E., Cartwright R., & Stoler, B. (2002). Dr Java: A lightweight pedagogic

environment for Java. ACM SIGCSE Bulletin, 34(1), 137-141.

Amckinn. (2009). Teaching multiple learning styles with R2D2. Retrieved from

https://apps.lis.illinois.edu/wiki/display/wise/Teaching+Multiple

+Learning+Styles+with+R2D2

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

Arbib, M. A. (1992), Schema Theory, In S. Shapiro (Ed.), The encyclopedia of

artificial intelligence (2nd ed.). (pp. 1427-1443). NY: Wiley.

Ashcraft, M., & Radvansky, G. A. (2010). Cognition (5th ed.). Boston, MA: Pearson

Education.

Atherton, J. (2010). Bloom’s taxonomy. Retrieved from

http://www.learningandteaching.info/learning/bloomtax.htm

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and

its control processes. In K.W. Spence (Ed.), The Psychology of learning and

motivation: Advances in research and theory. (vol. 2, pp. 89–195). NY:

Academic Press.

Baddeley, A. D. (1986). Working memory. Oxford, United Kingdom: Oxford

University Press.

Baddeley, A. D. (2001). Is working memory still working? American Psychologist,

56, 851-864.

Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G.A. Bower (Ed.),

Recent advances in learning and motivation (vol. 8, pp. 47–89). New York,

NY: Academic Press.

151

Barland, I. (2008). Some methods for teaching functions first using java. In

Proceedings of the 46th Annual Southeast Regional Conference. Aubum,

USA.

Beckmann, J. (2010). Taming a beast of burden: On some issues with the

conceptualisation and operationalisation of cognitive load. Learning and

Instruction, 20, 250-264.

Ben-Ari, M. (2001a). Constructivism in Computer Science Education, Journal of

Computers in Mathematics & Science Teaching, 20(1), 45-73.

Ben-Ari, M. (2001b). Program visualisation in theory and practice. Upgrade, 11(2),

8-11.

Berk, L. E. (2003). Child development (6th ed.). Boston, MA: Allyn and Bacon.

Bloch, S. (2009). Teach scheme, reach Java: Introducing object-oriented

programming without drowning in syntax, Journal of Computing Sciences in

Colleges, 24(6), 12-14.

Bonk, C. J., & Zhang, K. (2008). Empowering online learning: 100+ activities for

reading, reflecting, displaying and doing. San Francisco, CA: Jossey-Bass.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of

learning. Educational Researcher, 18(1), 32-42.

Brusilovsky, P., Calabrese, E., Hvorecky, Y., Kouchnirenko, A., & Miller, P. (1997).

Minilanguages: A way to learn programming principles. Education and

Information Technologies, 2(1), 65-83.

Burton, P. J., &, Bruhn, R. E. (2003). Teaching programming in the OOP era.

SIGCSE Bulletin, 35(2), 111-114.

152

Butler, M., & Morgan, M. (2007). The learning challenges faced by novice

programming students studying high level and low feedback concepts. In

Proceedings ASCILITE Singapore 2007. Singapore.

Buzan, T. (1991). Use both sides of your brain. London, United Kingdom :Penguin

Books.

Buzan, T. (2011). What is a Mind Map? Retrieved from

http://www.tonybuzan.com/about/mind-mapping/

Buzan, T., & Buzan, B. (2006). The mind map book. London, United Kingdom :

BBC

Cantù, M. (2007). Microsoft Retires Visual Jsharp. Retrieved from

http://blog.marcocantu.com/blog/retired_jsharp.html

Carlisle, M. C. (2009). RAPTOR: A visual programming environment for teaching

object- oriented programming. Journal of Computing Sciences in Colleges,

Consortium for Computing Sciences in Colleges, 24(4), 275-281.

Carlson, R. (2007) What is a mental model? Retrieved from

http://www.nationalministries.org/missional_church/docs/MCT_Mental_Mod

el.pdf

Cartner, H., & Hallas, J. (2009). Exploring the R2D2 model for online learning

activities to teach academic language skills. Proceedings of the 26th Annual

ascilite International Conference, Auckland, New Zealand.

Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming

course: A learning theoretic approach. Proceedings of the Third International

Workshop on Computing Education Research, Atlanta, GA.

153

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of

instruction. Cognition and Instruction, 8(4), 293- 332.

Chen, Z., & Marx, C. (2005). Experiences with Eclipse IDE in programming

courses. JCSC, 21(2), 104-112

Chen, C. J., & Toh, S. C. (2005). A feasible constructivist instructional development

model for virtual reality (VR)-based learning environments: Its efficacy in

the novice car driver instruction of Malaysia. ETR&D, 53(1), 111-123.

Cherry, K. (2011). Background and key concepts of Piaget's theory. Retrieved from

http://psychology.about.com/od/piagetstheory/a/keyconcepts.htm

Churches, A. (2009). Bloom’s digital taxonomy. Retrieved from

http://edorigami.wikispaces.com/file/view/bloom%27s+Digital+taxonomy+v

3.01.pdf

Chwif, L., & Barretto, M. R. P. (2003). Simulation models as an aid for the teaching

and learning processing operations management. In Proceedings of 2003

Winter Simulation Conference, New Orleans, LA.

Clark, D., MacNish, C., & Royle, G. F. (1998). Java as a teaching language

opportunities, pitfalls and solutions. Proceedings of the 3rd Australasian

conference on Computer science education (pp. 173-79). University of

Queensland, Brisbane, Australia: SIGCSE.

Clark, R., Nguyen, F., & Sweller, J. (2006). Efficiency in learning: Evidence-based

guidelines to manage cognitive load. San Francisco, CA: Pfeiffer.

Cognitive apprenticeship. (n.d). Retrieved from

http://www.edtech.vt.edu/edtech/id/models/cog.html

154

Collins, D. (2002). Java second. The suitability of Java as a first programming

language. Proceedings of the Sixth Java & the Internet in the Computer

Curriculum Conference, North London, United Kingdom.

Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making

thinking visible. American Educator, 15(3), 6-11, 38-46.

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship:

Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick

(Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser

(pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum.

Cooper, G. (1998). Research into Cognitive load Theory and Instructional Design at

UNSW. Retrieved from http://dwb4.unl.edu/Diss/Cooper/UNSW.htm

Culatta , R. (2011). ADDIE Model. Retrieved from

http://www.instructionaldesign.org/models/addie.html

Culwin, F. (1999). Object Imperatives! Proceedings of the 30th Technical

Symposium on Computer Science Education (SIGCSE), New Orleans, LA.

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory

and reading. Journal of Verbal learning and Verbal Behaviour, 19(4), 450-

466.

Daneman, M., & Tardif, T. (1987). Working memory and reading skill re-examined.

In M. Coltheart (Ed.), Attention and performance, 7, (pp. 491-508). London:

Erlbaum.

Dann, W., Cooper, S., & Pausch, R. (2001). Using Visualization to Teach Novices

Recursion, Proceedings of the 6th ACM SIGCSE Conference on Innovation

155

and Technology in Computer Science Education (pp109–112). Canterbury,

United Kingdom.

Davis, L. (2005). MindMapX. ACM SIGCSE Bulletin, 37(2), 405.

Dennen, V. P. (2008). Intersecting communities of practice: Merging roles across the

academic and blogging worlds. Proceedings of the e-Society 2008

Conference, Algarve, Portugal.

Dennen, V. P., & Burner, K. J. (2007). The cognitive apprenticeship model in

educational practice. In J. M. Spector, M. D. Merrill, J. Van Merrienboer &

M. P. Driscoll (Eds.), Handbook of research on educational communications

and technology (3rd ed., 425-439). Mahwah, NJ: Erlbaum.

Driscoll, M. P. (2000). Psychology of Learning for Instruction (2nd ed.) Boston,

MA: Allyn & Bacon.

Dunbar, K. (1997). How scientists think: Online creativity and conceptual change in

science. In T. B. Ward, S. M. Smith, & S. Vaid (Eds.), Conceptual structures

and processes: Emergence, discovery and change. Washington, DC: APA

Press.

Embarcadero customer support. (2010). Retrieved from

http://support.embarcadero.com/article/37871

Felder, R. M. & Silverman, L. K. (1988). Learning and Teaching Styles in

Engineering Education, Engineering Education, 78(7), 674-681.

 Felder, R. M., & Soloman, B. A. (1997). Index of Learning Styles questionnaire.

Retrieved from http://www.engr.ncsu.edu/learningstyles/ilsweb.html

156

Ferrari, A., Garbervetsky, D., Braberman, V., Listingart, P., & Yovine, S. (2005).

JScoper: Eclipse support for research on scoping and instrumentation for

real time Java applications. Retrieved from www-

2.dc.uba.ar/exclusivos/garbervetsky/thesis/BFG_etx2005.pdf

Ferrero, D. J. (2005). Pathways to reform: Start with values. Educational

Leadership, 62(5), 8-14.

Flavell, J. H. (1976). Metacognitive aspects of problem solving. In Resnick (Ed.),

The nature of intelligence. New Jersey, NJ: Lawrence Erlbaum Associates.

Fowler, L., Allen, M., Armarego, J., & Mackenzie, J. (2000). Learning styles and

CASE tools in software engineering. Proceedings of the 9th Annual Teaching

Learning Forum, Perth, Australia.

FreeMind – free mind mapping software. (2011). Retrieved from

http://freemind.sourceforge.net/wiki/index.php/Main_Page

Gallimore, R., & Tharp, R. (1990). Teaching mind in society: Teaching, schooling,

and literate discourse. In L. C. Moll (Ed.), Vygotsky and education:

instructional implications and applications of sociohistorical psychology,

(pp. 175–205). Cambridge, United .Kingdom: Cambridge University Press.

Garner, S. K. (2002). Reducing the cognitive load on novice programmers. In P.

Barker & S. Rebelsky (Eds.), Proceedings of World Conference on

Educational Multimedia, Hypermedia and Telecommunications. Chesapeake,

VA: AACE.

Garner, S. K. (2007). An exploration of how a technology-facilitated part-complete

solution method supports the learning of computer programming. Journal of

Issues in Informing Science and Information Technology, 4, 491-501.

157

Garner, S. K. (2009). A quantitative study of a software tool that supports a part-

complete solution method on learning outcomes. Journal of Information

Technology Education, 8, 285-310.

Garner, S., Haden, P., & Robins, A. (2005). My program is correct but it doesn’t

run: A preliminary investigation of novice programmers’ problems. In: ACE

2005. Proceedings of the 7th Australasian Conference on Computing

Education, Newcastle, Australia.

Georgantaki, S., & Retalis, S. (2007) Using educational tools for teaching Object

Oriented design and programming, Journal of Information Technology

Impact, 7(2), 111-130.

Graf, S., Viola, S. R., Kinshuk, & Leo, T. (2007). In-depth A\analysis of the Felder-

Silverman learning style dimensions. Journal of Research on Technology in

Education, 40(1), 79-93.

Greenaway, R. (2011). Experiential learning articles and critiques of David Kolb's

theory. Retrieved from

http://reviewing.co.uk/research/experiential.learning.htm#ixzz1dXRYN3v7.

Grey, D. & Miles, R. (2002). Teaching Java objectively: Reflections on a web-based

java course. Proceedings of the Sixth Java & the Internet in the Computer

Curriculum Conference, North London, United Kingdom.

Hadjerrouit, S. (2007). A blend learning model in Java programming: A design-

based research approach. Proceedings of the Computer Science and IT

Education Conference 2007, Mauritius.

Hadjerrouit, S. (1998). Java as first programming language: A critical evaluation,

ACM SIGCSE Bulletin. 30(2), 43-47.

158

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and

programming. Proceedings of the 4th Annual Conference on ITICSE,

Cracow, Poland.

Hagan, D., & Markham, S. (2000). Teaching Java with the BlueJ environment.

Proceedings of Australasian Society for Computers in Learning in Tertiary

Education Conference ASCILITE 2000, Coffs Harbour, Australia.

HBDI. (2001). Retrieved from http://cemmgroup.com/hbdi.pdf

Herrington, J., & Oliver, R. (1995). Critical characteristics of situated learning:

implications for the instructional design of multimedia. In Ellis, A., & Pearce,

J. (Eds.), ASCILITE95 Conference Proceedings (pp. 253-262). Melbourne,

Australia: University of Melbourne.

Holtel, S. (2005). Utilizing mind maps for essential use case specification. Retrieved

from

http://roots.dnd.no/modules.php?op=modload&name=Downloads&file=inde

x&req=getit&lid=164

Horstmann, C. S. (2005). Java concepts (4th ed.). NY:Wiley.

Howard, R. A., Carver, C. A., & Lane, W. D. (1996). Felder's learning styles,

Bloom's taxonomy, and the Kolb learning cycle: Tying it all together in the

CS2 course. SIGCSE Bulletin, 28(1), 227-231.

Huitt, W. & Hummel, J. (1999). Educational psychology [Powerpoint slides].

Retrieved from

http://www.edpsycinteractive.org/edpsyppt/Theory/behthr.ppt

Introducing Visual Studio .NET. (2011). Retrieved from

http://msdn.microsoft.com/en-us/library/fx6bk1f4(v=vs.71).aspx

159

Introduction to Kawa 3.13. (n.d). Retrieved from

http://itee.uq.edu.au/~comp1500/_CoreDoc/KawaRead.pdf

Jakovljevic, M. (2003). Concept mapping and appropriate instructional strategies in

promoting programming skills of holistic learners. Proceedings of the 2003

Annual Research Conference of the South African Institute of Computer

Scientists and Information Technologists on Enablement through

Technology, South Africa.

James, W. (1890). The principles of psychology. Retrieved from

http://psychclassics.yorku.ca/James/Principles/prin16.htm

Jonassen, D. H., Beissner, K., & Yacci, M. A. (1993). Structural knowledge:

Techniques for representing, assessing, and acquiring structural knowledge.

Hillsdale, NJ: Lawrence Erlbaum Associates.

Jonassen, D., Carr, C., & Yueh, H. (1998). Computers as mindtools for engaging

learners in critical thinking. Retrieved from

http://www.siue.edu/education/techready/5_Software_Tutorials/5_AncillaryP

ages/Mindtools.pdf.

Johnson-Laird, P. N., (1983). Mental models: Towards a cognitive science of

language, inference and consciousness. Cambridge, United Kingdom:

Cambridge University Press.

Johnson-Laird, P. N., Girotto, V., & Legrenzi, P. (1998). Mental models: A gentle

guide for outsiders. Retrieved from

http://icos.groups.si.umich.edu/gentleintro.html

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension:

Individual differences in working memory. Psychological Review, 99, 122-

149.

160

Kalyuga, S. (2006). Instructing and testing advanced learners: A cognitive load

approach. New York, NY: Nova Science.

Kannangara, D. (2007). Transition from C++ to JAVA : Use of action research

method to improve students’ learning. Proceedings of the Teaching and

Learning Conference, Eastern Institute of Technology (p.131). Napier, New

Zealand: AKO.

Karahasanović, A., & Thomas, R. C. (2007). Difficulties experienced by students in

maintaining Object-Oriented systems: An empirical study. In The 9th

Australasian Computing Education Conference (ACE2007), Victoria,

Australia.

Kieras, D. E., Meyer, D. E., Mueller, S., & Seymour, T. (1999). Insights into

working memory from the perspective of the EPIC architecture for modeling

skilled perceptual-motor and cognitive human performance. In A. Miyake &

P. Shah (Eds.), Models of working memory: Mechanisms of active

maintenance and executive control (pp. 183–223). New York, NY:

Cambridge University Press.

Kirschner, P. A., & ErKens, G. (2006). Cognitive tools and mindtools for

collaborative learning. Journal of Educational Computing Research, 35(2),

199-209.

Koedinger, K. R., & Aleven, V. (2007). Exploring the assistance dilemma in

experiments with cognitive tutors. Educational Psychology Review, 19, 239-

264.

Kolb, A. Y., & Kolb, D. A. (2005). The Kolb learning style inventory-version 3.1

2005 technical specifications. Retrieved from http://www.whitewater-

rescue.com/support/pagepics/lsitechmanual.pdf

161

Kolb, D. A. (1984). Experiential learning: experience as the source of learning and

development. Englewood Cliffs, NJ: Prentice-Hall.

Kolb, D. A, Boyatzis, R. E. & Mainemelis, C. (1999). Experiential learning theory:

Previous research and new directions. Retrieved from

http://www.d.umn.edu/~kgilbert/educ5165-731/Readings/experiential-

learning-theory.pdf

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and

its pedagogy [Special Issue].Journal of Computer Science Education, 13(4).

Kölling, M., & Rosenberg, J. (1996). An Object-Oriented program development

environment for the first programming course. SIGSE Bulletin, 28(1), 83-87.

Kouznetsova, S. (2007). Using BlueJ and Blackjack to teach object-oriented design

concepts in CS1. Journal of Computing Sciences in Colleges, 22(4), 49-55.

Kovacic, Z., Green, J., & Eves, C. (2004). Learning styles of computer concepts

students in a distance tertiary institution. Proceedings of the NZARE

National Conference 2004, Wellington, New Zealand.

Koznov, D., & Pliskin, M. (2008). Computer supported collaborative learning with

mind-maps. In T. Margaria and B. Steffen (Eds.), Proceedings of 3rd

International Symposium on Leveraging Applications of Formal Methods,

Verification and Validation, Porto Sani, Greece.

Krajcik, J. S., Czerniak, C. M., & Berger, C. F. (2003). Teaching science in

elementary and middle school classrooms: A project-based approach. New

York, NY: McGraw-Hill.

Kyllonen, P. C. (2002). Knowledge, speed, strategies, or working memory capacity?

A systems perspective. In R. J. Sternberg & E. L. Gigorenko (Eds.), The

162

general factor of intelligence: How general is it? (pp. 415–445). Mahwah,

NJ: Erlbaum.

Lappo, P. (2002). No pain, no XP: Observations on teaching and mentoring extreme

programming to university students. Proceedings of the 3rd International

Conference on eXtreme Programming and Agile Processes in Software

Engineering, Alghero, Italy.

Larson, L., Miller, T., & Ribble, M. (2009). Five considerations for digital age

leaders: What principals and district administrators need to know about tech

integration today. Learning and Leading with Technology, 37(4), 12-15.

Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral

participation. Cambridge, United Kingdom: Cambridge University Press.

Learning theories knowledge base. (2011). Situated learning Theory (Lave) at

Learning-Theories.com. Retrieved from http://www.learning-

theories.com/situated-learning-theory-lave.html

Lieberman, H. (1986). An example based environment for beginning programmers.

Instructional Science,14(3), 277-292.

Lipscomb, L., Swanson, J., & West, A. (2008) Scaffolding. Retrieved from

http://projects.coe.uga.edu/epltt/index.php?title=Scaffolding

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., Whalley,

J. (2006). Research perspectives on the objects-early debate. SIGCSE Bulletin

Inroads, 38(4), 173-192.

Litzinger, T. A., Lee, S. H., Wise, J. C., & Felder, R. M. (2007). A psychometric

study of the index of learning styles. Journal of Engineering Education,

96(4), 309-319.

163

Liu, S. (2011). Knowledge representation. Retrieved from

http://wenku.baidu.com/view/db5ab4ff04a1b0717fd5ddbd.html

Logie, R. H. (1999). Working memory. The Psychologist, 12(4), 174-178.

Lui, A., Kwan, R., Poon, M., & Cheung, Y. (2004). Saving weak programming

students: Applying con-structivism in a first programming course.

Association of Computing Machinery SIGCSE Bulletin, 36(2), 72-76.

Lumsdaine, M., & Lumsdaine, E. (1995). Thinking preferences of engineering

students: Implications for curriculum restructuring. Journal of. Engineering.

Education, 84(2), 193-204.

Lunney, T. F., McCullagh, P. J., & Lundy, P. J. (2003). Java as the lingua franca for

teaching graduate students. Proceedings of Second International Conference

on the Principles and Practice of Programming in Java, Kilkenny City,

Ireland.

Lynch, P. (2011). Atkinson-Shiffrin model. Retrieved from

http://www.experiment-resources.com/atkinson-shiffrin-model.html

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2007). Investigating the viability of

mental models held by novice programmers. Proceedings of the 38th SIGCSE

Technical Symposium on Computer Science Education, Covington, Georgia,

499-503.

Machanick, P. (2007). Teaching Java Backwards. Computers & Education, 48(3),

396-408.

MacNaughton, G. (2003). Shaping early childhood. Learners curriculum and

contexts. Berkshire, England: Open University Press.

164

Martin, C. J. (2007). Scribbles: An exploratory study of sketch based support for

early collaborative object oriented design. 12th Annual SIGCSE Conference

on Innovation and Technology in Computer Science Education, Dundee,

Scotland.

Mathematics and Computer Programming. (2003) Retrieved from

https://nrich.maths.org/discus/messages/2069/6386.html?1057677366

McCluskey, J. J., & Parish, T. S. (1993). A comparative study of cognitive skills in

learning hypercard by right-brain dominant, left-brain dominant, and mixed

brain dominant students. Education, 113(4), 553-555.

McKinney, A. (2009). Teaching multiple learning styles. Retrieved from

http://introductiononlinepedagogy.pbworks.com/w/page/20123560/Teaching

%20Multiple%20Learning%20Styles

McLeod, S. A. (2007). Multi store model of memory. Retrieved from

http://www.simplypsychology.org/multi-store.html

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., St.Clair, C., & Thomas, L.

(2006). A cognitive approach to identifying measurable milestones for

programming skill acquisition. Proceedings of ITiCSE 2006, Bologna, Italy,

182-194.

Meyer, D. E. (2011). The brain, cognition, and action laboratory: EPIC. Retrieved

from http://www.umich.edu/~bcalab/epic.html

Millen, D., Schriefer, A., Lehder, D., & Dray, S., (1997). Mind maps and casual

models: Using graphical representations of field of research. Retrieved from

http://www.sigchi.org/chi97/proceedings/poster/mil.htm

165

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on

our capacity for processing information. Psychological Review, 63, 81-97.

Moyer, D. (2010). Integrated development environments (IDEs): Present and future

functionality. Retrieved from http://91-527-

f2010.wiki.uml.edu/file/view/IDE+midterm+r2.pdf

Muller, O. (2005). Pattern oriented instruction and the enhancement of analogical

reasoning. ICER 2005: Proceedings of the 2005 International Workshop on

Computing Education Research (pp. 57-67). New York, NY: ACM Press.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:

Prentice-Hall.

Norman, D. A. (1983). Some observation of mental models. In D. Gentner & A. L.

Stevens (Eds.), Mental model . Hillsdale, NJ: Erlbaum

Norman, D. A. (1990). The design of everyday things. New York, NY: Doubleday

Currency.

Norton, A. (1997). Object interfaces. In Proceedings of the Twenty-Second Annual

SAS Users Group International Conference. Cary, NC.

Olan, M. (2004). Dr. j vs. the bird: java ide's one-on-one. Journal of Computing

Sciences in Colleges, 19(5), 44-52.

Overbaugh, R. C., & Schultz, L. (n.d.). Bloom's taxonomy. Retrieved from

http://www.odu.edu/educ/roverbau/Bloom/blooms_taxonomy.htm

Paas, F., Renkl, A., & Sweller, J. (Eds.). (2003). Introduction: Cognitive load theory

and instructional design: Recent developments [Special Section]., 38, 1-4.

166

Paas, F., Van Gog, T., & Sweller, J. (2010). Cognitive load theory: New

conceptualizations, specifications, and integrated research perspectives.

Educational Psychology Review, 22, 115-121.

Paivio, A. (2006). Duel coding theory in education. Retrieved from

http://www.umich.edu/~rdytolrn/pathwaysconference/presentations/paivio.pd

f

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Paterson,

J. (2007). A survey of literature on the teaching of introductory
programming, ACM SIGCSE Bulletin, 39(4), 204-223.

Pitts, C., Ginns, P., & Errey, C. (2006). Cognitive load theory and user interface

design: Making software easy to learn and use – Part1. Retrieved from

http://www.ptg-global.com/papers/psychology/cognitive-load-theory.cfm

Prasad, C., & Fielden, K. (2003). Introducing Programming: A balanced approach.

The New Zealand Journal of Applied Computing and Information

Technology, 7(1), 89-94

Prasad, C. & Li, X. (2004). Teaching introductory programming to information

systems and computing majors: Is there a difference? Proceedings of the.

Sixth Australasian Computing Education Conference, Dunedin, New

Zealand, 261-267.

Product announcement. (2011). Retrieved from http://msdn.microsoft.com/en-

us/vjsharp/default.aspx

Puntambekar, S., & Hubscher, R. (2005). Tools for scaffolding students in a

complex learning environment: What have we gained and what have we

missed? Educational Psychologist, 40(1), 1-12.

167

Reeves, T. C. (1993). Evaluating interactive multimedia. In D. M. Gayeski (Ed.),

Multimedia for learning: Development, application, evaluation (pp. 97-112).

Englewood Cliffs, NJ: Educational Technology Publications.

Reigeluth, C. M. (1996). A new paradigm of ISD? Educational Technology, 36(3),

13-20.

Reis, C., & Cartwright, R. (2004). Taming a professional IDE for the classroom.

ACM. SIGCSE Bulletin, 36(1), 156–160.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching

programming: A review and discussion. Computer Science Education, 13(2),

137-172.

Roper, C. (2012). Programmers. Retrieved from

http://programmers.stackexchange.com/questions/89158/do-you-have-to-be-

good-at-math-to-be-a-good-programmer

Ryu, J., Lai, T., Colaric, S., Cawley, J., & Aldag, H. (2000). Dual coding theory.

Retrieved from http://iteach.saintleo.edu/InstructionalDesign/Paivio.html

Sebastian, C. (2004). Brain dominance test. Retrieved from

http://www.ipn.at/ipn.asp?BHX

Seel, N. M. (2001). Epistemology, situated cognition, and mental models: Like a

bridge over troubled water. Instructional Science, 29(4-5), 403-427.

Smith, E. E. (2000). Neural bases of human working memory. Current Directions in

Psychological Science, 9, 45-49.

Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal

lobes. Science, 283, 1657-1661.

168

Stahl, G. (2006). Supporting group cognition in an online math community: A

cognitive tool for small-group referencing in text chat. Journal of

Educational Computing Research, 35, 103-122.

Sung, H. (2010). Response to intervention: A catalyst for paradigm shift for 21st

century education. Retrieved from http://jepsc.org/JEPSCFall2010.pdf

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning,

Cognitive Science, 12(2), 257-285.

Sweller, J. (1999). Instructional design in technical areas. Camberwell, Australia:

ACER Press.

Sweller, J. (2004). Instructional design consequences of an anology between

evolution by natural selection and human cognitive architecture. Instructional

Science, 32, 9-31.

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane

cognitive load. Educational Psychology Review, 22(2), 123-138.

Sweller, J., Van Merrienboer, J., & Paas, F. (1998). Cognitive architecture and

instructional design. Educational Psychology Review, 10, 251–296.

Tabak, I. (2004). Synergy: A compliment to emerging patterns of distributed

scaffolding. Journal of the Learning Sciences,13(3), 305-335.

Tan, N. Y. L., Chen, W., & Looi, C. K. (2009). GroupScribbles as a rapid CSCL

tool: Learning experiences of pre-service teachers. Proceedings of the 17th

International Conference on Computers in Education [CDROM]. Hong

Kong.

169

Thomas, N. J. T. (2010). Dual coding and common coding theories of memory.

Retrieved from http://plato.stanford.edu/entries/mental-imagery/theories-

memory.html

Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E. (2002). Learning styles and

performance in the introductory programming sequence. In Proceedings of

the 33rd SIGCSE Technical Symposium (pp. 33-37). New York, NY: ACM.

Ursyn, A., & Scott, T. (2007). Web with art and computer science. Proceedings of

ACM SIGGRAPH 2007 educators program, San Diego, CA.

Utting, I. (2006). Problems in the initial teaching of programming using Java: The

case for replacing J2SE with J2ME. Proceedings of the 11th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education

(pp. 193-196). Bologna, Italy.

Van Gerven, & Pascal W. M. (2003). The efficiency of multimedia learning into old

age. British Journal of Educational Psychology, 73(4), 489-505.

Van Gog, T., Paas, F. & Sweller, J. (2010). Cognitive load theory: Advanced in

research on worked examples, animations, and cognitive load measurement.

Educational Psychological Review, 22, 375-378

Van Haaster, K., & Hagan, D. (2004). Teaching and learning with BlueJ: An

evaluation of a pedagogical tool. Information Science and Information

Technology Education Joint Conference. Rockhampton, Australia.

Van Merrienboer, J. J. G., & Paas, F. (1990). Automation and schema acquisition in

learning elementary computer programming. Computers in Human Behavior,

6(3), 273-289.

170

Van de Ven, G. & Govers, E. (2007). The difficulty with programming: Improving

teaching and learning in introductory programming. The New Zealand

Journal of Applied Computing and Information Technology, 11(1), 80-91.

Vogts, D., Calitz, A. P., & Greyling, J. H. (2010). The effects of professional and

pedagogical program development environments on novice programmer

perceptions. South African Computer Journal, 45, pp. 53-58.

Welcome to the RAPTOR home page (2011). Retrieved from

http://raptor.martincarlisle.com/

Wen, D., Graf, S., Lan, C. H., Anderson, T., & Dickson, K. K. (2007). Supporting

Web-based Learning through Adaptive Assessment. FormaMente Journal, 1-

2(2), 45-79.

Werhane, P. H., Hartman, L.P., Moberg, D., Englehardt, E., Pritchard, M., &

Parmar, B. (2011). Social constructivism, mental models, and problems of

obedience. Journal of Business Ethics, 100(1), 103-118.

Wertsch, J. V. (1985). Vygotsky and the social formation of the mind. Cambridge,

MA: Harvard University Press.

Willis, C.L., & Miertschin, S. L. (2005). Mind tools for enhancing thinking and

learning skills. Proceedings of 6th Conference on Information Technology

Education, New Jersey, NJ:ACM.

Willis, C.L., & Miertschin, S. L. (2006). Mind maps as active learning tools.

Journal of Computing Sciences in Colleges 21(4), 266–272.

Willis, J. (1995). A recursive, reflective instructional design model based on

constructivist-interpretivist theory. Educational Technology, 35(6), 5-23.

171

Willis, J., & Wright, K. E. (2000). A general set of procedures for constructivist

instructional design: The new R2D2 model. Educational Technology, 40(2),

5-20.

Winslow, L. E. (1996). Programming pedagogy : A psychological overview.

SIGCSE Bulletin, 28, 17–22.

Wittwer, J., & Renkl, A. (2010). How effective are instructional explanations in

example-based learning? A meta-analytic review. Educational Psychology

Review, 22(4), 393-409.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving.

Journal of Child Psychology & Psychiatry & Allied Disciplines, 17(2), 89-

100.

Wu, C., Dale, N. B., & Bethel, L. J. (1998). Conceptual models and cognitive

learning styles in teaching recursion. Proceedings of the Twenty-Ninth

SIGCSE Technical Symposium, Atlanta, Georgia, GA, 292-296.

Ying, Z., Gang, H., Nuyun Z., & Hong, M. (2009). Smart tutor: Creating IDE-based

interactive tutorials via editable replay. Proceedings of the of the 31st

International Conference on Software Engineering, Vancouver, Canada,

559-562

Yousoof, M., Sapiyan, M., & Kamaluddin, K. (2006). Reducing cognitive load in

learning computer programming. Transactions on Engineering, Computing

and Technology, 12, 259-262.

Yuan, K., Steedle, J., Shavelson, R., Alonzo A., & Oppezzo, M. (2006). Working

memory and fluid intelligence and science learning. Educational Research

Review, 1(2), 83–98.

172

Zander, C., Thomas, L., Simon, B., Murphy, L., McCauley, R., Hanks, B., &

Fitzgerald, S. (2009). Learning styles: Novices decide. Proceedings of

ITiCSE, 223-227.

Every reasonable effort has been made to acknowledge the owners of copyright
material. I would be pleased to hear from any copyright owner who has been omitted
or incorrectly acknowledged.

173

APPENDICES

APPENDIX A : CODE OF STUDENT CLASS

/* File: Student.java
 * Purpose: This Student class contains data relevant to students (id, name,date of

birth).
 * The query methods provide access to the private instance variables.
 * Author:
 * Modified
 * Date
*/
public class Student
{
 private int studentID; // to store student id number
 private String studentName; // student's name
 private String studentDOB; // to store DOB

 /**
 * Default constructor
 **/
 public Student()
 {
 studentID = 0;
 studentName = "";
 studentDOB = "";

 }
 /**
 * Alternative constructor 1
 * @param student_id
 */
 public Student(int student_id)
 {
 studentID = student_id;
 }

 /**
 * Alternative constructor 2
 * @param id
 * @param name
 * @param dob
 */
 public Student(int id, String name, String dob)
 {
 studentID = id;
 studentName = name;
 studentDOB = dob;
 }

174

 /**
 * Query method to access student's id number
 * @return studentID
 */
 public int getStudentId()
 {
 return studentID;
 }
 /**
 * Command method to assign a value for a student's id number
 * @param Id
 */
 public void setId(int Id)
 {
 studentID = Id;
 }
 /**
 * Query method to access student's name.
 * @return StudentName
 */
 public String getName()
 {
 return studentName;
 }
 /**
 * Command method to assign a value for a student's name
 * @param aName
 */
 public void setName(String aName)
 {
 studentName = aName;
 }
/**
 * Query method to access student's date of Birth.
 * @return course
 */
 public String getDOB()
 {
 return studentDOB;
 }
 /**
 * Command method to assign a value for a student's date of Birth.
 * @param aDOB
 */
 public void setCourse(String aDOB)
 {
 studentDOB = aDOB;
 }
}

175

APPENDIX B : CODE OF THE EMPLOYEE CLASS

/*
 * Class name: Employee
 * Purpose: To create object of the type Employee and manipulate
 * Author:
 * Date created:
*/

public class Employee
{
 // Instance variables
 private String name;
 private int age;
 private double salary;

 // Default Constructor
 public Employee()
 {
 name="";
 age =0;
 salary = 0.0;
 }
 // Alternative Constructor
 public Employee(String aName, int aAge, double aSal)
 {
 name=aName;
 age =aAge;
 salary = aSal;
 }

 // This method is used to add a name to an object
 public void setName(String aaName)
 {
 name = aaName;
 }

 // This method is used to get the value of the name of an object
 public String getName()
 {
 return name;
 }

 // This method is used to add age to an object
 public void setAge(int aaAge)
 {
 age = aaAge;
 }

176

 // This method is used to get the value of the age of an object
 public int getAge()
 {
 return age;
 }

 // This method is used to set salary value to an object
 public void setSalary(double aaSal)
 {
 salary = aaSal;
 }

 // This method is used to get the value of the age of an object
 public double getSalary()
 {
 return salary;
 }

 // This method is used to print the name of an object
 public void printName()
 {
 System.out.println(name);
 }

 // This method is used to print the Age of an object
 public void printAge()
 {
 System.out.println(age);
 }

 public void printSalary()
 {
 System.out.println(salary);
 }

}

// This is to test the Employee class
public class EmployeeTester
{
 public static void main (String[] args)
 {

 //Create an object called E1 using Employee class
 Employee E1 = new Employee();

 //Create an object called E2 using Employee class
 Employee E2 = new Employee();

 //Create an object called E3 using Employee class

177

 Employee E3 = new Employee();

 //Add name Don to name property of E3 object
 E3.setName("Don");

 //Add name Don to name property of E1 object
 E1.setName("Peter");

 // Print name of E3 using printName method
 E3.printName();

 }
}

178

APPENDIX C: MINI QUESTIONAIRE - 1

NOTE
Please read the information sheet and sign the consent form before answering the questions
in this survey.

The tutor used mind maps to explain the concept of Java class template to students in the last
two weeks.
 Examples:

Q1. Do you think that the mind maps help to understand Java class templates better?

YES

NO

Q2. If your answer is yes to the question above question, Why do you think mind maps help
to understand Java class templates better?
 Please write your comments?

179

 Please write your comments on what else the tutor could do to help you to understand
Java class template better?

In our last class, we used worked examples along with mind maps and teacher guided
practical sessions for the students to learn by experiencing how instance variables,
constructors, and methods work. This method was used instead of using powerpoint slides.

Q3. Do you think it was a better way of teaching?

YES

NO

Q4. If the answer is YES to the above question, why do you think the worked examples
and teacher guided hands-on sessions help to learn Java class template better? Please write
your comments.

Q4. Which one of the following aspects of teaching was the most useful in this teaching
session?

Visual features

Worked Examples

Teacher Guidance

Hands-on Practical

180

Q5. What combination of the following tool/method(s) do you suggest for teaching this
concept? You may tick more than one option.

Mind map

Worked Example

Teacher Guidance

Hands-on Practical

Q6. How do you rate your artistic ability like singing, painting, and writing poetry etc.?
Please tick one option
Poor
Average
Good
Very good
Excellent

Q7. How do you rate your logical, analytical thinking, and mathematics ability?
Please tick one option
Poor
Average
Good
Very good
Excellent

181

APPENDIX D: MINI QUESTIONAIRE-2

Please read the information sheet and sign the consent form before answering the
questions in this survey

The tutor used graphical pictures to teach creation of objects using a class template, assigning
values, and retrieving contents.

 Star Structure

Q1. Do you think that the star structure and analogy used helps students to understand
creation and manipulation of the contents of objects better?

YES

NO

Q2. If your answer is yes to the above question, why do you think they help to learn the
concept better?
Please write your comments.

182

Please write your comments on what else the tutor could do to help you understand this
Java concept better.

In our last class, we used worked examples along with the star structure as a pictorial
representation of an object to understand the creation and manipulation of objects. It was a
teacher guided session and the students learnt by modifying the Java code given to them. This
method was used instead of using PowerPoint slides.

Q3. Do you think it was a better way of teaching?

YES

NO

 If the answer is YES to the above question, why do you think the teacher guided hands-on
sessions using worked examples help learning Java concepts better? Please write your
comments.

Q4. Which one of the following aspects of teaching was the most useful in this teaching
session?

Worked Examples

Teacher Guidance

Hands-on Practical

Visual / Analogy used

183

Q5. What combination of the following tool/method(s) do you suggest for teaching this
concept? You may tick more than one option.

Visual / Analogy used

Worked Example

Teacher Guidance

Hands-on Practical

Q6. How do you rate your artistic ability like singing, painting, and writing poetry etc.?
Please tick one option
Poor

Average

Good

Very good

Excellent

Q7. How do you rate your logical, analytical thinking, and mathematics ability?
Please tick one option
Poor
Average
Good
Very good
Excellent

184

APPENDIX E: MINI QUESTIONAIRE – 3

Please read the information sheet and sign the consent form before answering to
the questions in this survey

The tutor used a picture to visualise the use of parameter variables of a method.

Example:

Java Code

public char getGrade(double salary)

 {

 char ch=' ';

 if (salary >= 60000)

 ch= 'A';

 else if ((salary < 60000) && salary > 40000)

 ch = 'B';

 else

 ch = 'C';

 return ch;

 }

185

Q1. Do you think that the picture analogy, hands-on exercise, and teacher support helped
students to understand the use of parameter variables in a method?

YES

NO

Q2. If your answer is yes to the above question, why do you think this activity helped to learn
this concept?

Please write your comments.

Please write your comments on what else the tutor could do to help you understand this
Java concept better?

Q4. Which one of the following aspects of teaching was the most useful in this teaching
session?

Visual / Analogy used
Teacher Guidance
Hands-on Practical

Q5. What combination of the following teaching tool/method(s) do you suggest for teaching
this concept? You may tick more than one option.

Visual / Analogy used
Teacher Guidance
Hands-on Practical

186

Q6. How do you rate your artistic ability like singing, painting, and writing poetry etc.?
Please tick one option.

Poor
Average
Good
Very good
Excellent

Q7. How do you rate your logical, analytical thinking, and mathematics ability?
Please tick one option

Poor
Average
Good
Very good
Excellent

187

APPENDIX F: MINI QUESTIONAIRE - 4

Please read the information sheet and sign the consent form before answering to
the questions in this survey

The tutor used array structures to visualise the objects to teach the use of variables and
objects in arrays.
 Array Structures

Array of Employee objects

Array of primitive variables

Peter 30

John Jane

John

Roy

Marie

20

45

51

35

42000.00

45000.90

80000.00

90000.00

35000.00

30

34

12

89

90

188

Q1. Do you think that this activity helped students to understand the use of arrays of
variables and objects well?

YES

NO

Q2. If your answer is yes to the above question, Why do you think it helped to learn the
concept better?
Please write your comments.

Please write your comments on what else the tutor could do to help you understand this
Java concept better.

In our last class, we used worked examples along with the array structures as pictorial
representations to support learning the use of arrays. It was a teacher guided session and the
students learnt by understanding and modifying the Java code given to students. This method
was used instead of using powerpoint slides.

189

Q3. Do you think it was a better way of teaching?

YES

NO

Q4. If the answer is YES to the above question, why do you think the teacher guided hands-
on sessions using worked examples help learning Java better? Please write your comments.

Q4. Which one of the following aspects of teaching was the most useful in this teaching
session?

Array Structure
Worked Examples
Teacher Guidance
Hands-on Practical

Q5. What combination of the following tool/method(s) do you suggest for teaching this
concept? You may tick more than one option.

Array Structure
Worked Example
Teacher Guidance
Hands-on Practical

Q6. How do you rate your artistic ability like singing, painting, and writing poetry etc.?
Please tick one option.

Poor
Average
Good
Very good
Excellent

190

Q7. How do you rate your logical, analytical thinking, and mathematics ability?
Please tick one option

Poor
Average
Good
Very good
Excellent

191

APPENDIX G: MINI QUESTIONAIRE - 5

NOTE
Please read the information sheet and sign the consent form before answering the
questions in this survey.

 The tutor used BlueJ visual Java programming environment as a tool to explain Inheritance

and polymorphism by creating super class (Person) and sub class (Student). Bluej was also

used to test methods and constructors.

 Example:

Q1. Do you think that the BlueJ helps to understand inheritance programming concepts
better?

YES

NO

Q2. If your answer is yes to the above question, why do you think BlueJ helps to understand
inheritance programming concepts better?
Please write your comments.

192

We did an exercise using a teacher guided practical hands-on session using BlueJ to learn
inheritance concept of the Java Language.

Q3. Do you think it was a better way of teaching?

YES

NO

Q4. If the answer if YES to the above question, why do you think teacher guided hands-on
sessions using Bluej help to learn inheritance and Java constructors and methods better?
Please write your comments

Q5. Which one of the following aspects of teaching was the most useful in this teaching
session?

BlueJ Visual Interface
Teacher Guidance
Hands-on Practical Exercise

Q6. What combination of the following tool/method(s) do you suggest for teaching this
concept? You may tick more than one option.

BlueJ Visual Interface
Teacher Guidance
Hands-on Practical Exercise

Q7. How do you rate your artistic ability like singing, painting, and writing poetry etc.?
Please tick one option
Poor
Average
Good
Very good
Excellent

193

Q8. How do you rate your logical, analytical thinking, and mathematics ability?
Please tick one option
Poor
Average
Good
Very good
Excellent

194

APPENDIX H: PARTICIPANT INFORMATION SHEET 1

Curtin University of Technology

School of School of Science & Computing
The Science and Mathematics Education Centre (SMEC)

Participant Information Sheet 1

My name is Don Nimal Padmasiri Kannangara. I am currently completing a piece of

research for my Doctor of Philosophy (PhD) at Curtin University of Technology.

Purpose of Research

I am investigating the possibility of improving teaching Java programming at the

introductory level using a number of teaching tools in accordance with the

principles of Cognitive Load Theory.

In the first phase of the research, I hope find out the areas and the concepts which

were hard to understand for most students when they were learning the introductory

level programming using the Java language. The questionnaire contains a list of

areas and concepts which are assumed to be important to understand for students.

Your Role

I am interested in finding out the difficulty level of each of the areas and concepts

listed in the questionnaire. The questionnaire is available on the internet. I will ask

you to choose one of the difficulty level options from the combo box in each of the

areas and concepts listed in the questionnaire. If you had any other difficult areas or

concepts when you were learning the Java language, I ask you to type it in the space

provided and choose the difficulty level for each of them from the combo boxes.

The web address will be given to you by person who gives out this information

sheet.

195

Consent to Participate

Your involvement in the research is entirely voluntary. You have the right to

withdraw at any stage without it affecting your rights or my responsibilities. When

you have signed the consent form or ticked the check box on the webpage, I will

assume that you have agreed to participate and allow me to use your data in this

research.

Confidentiality

The information of personal details is not required in this questionnaire. The

questionnaire will not have space for you to enter your name or any other identifying

information. In adherence to university policy, the collected data will be kept in a

locked cabinet for five years before it is destroyed.

Further Information

This research has been reviewed and given approval by Curtin University of

Technology Human Research Ethics Committee (Approval number SMEC-01-09). If

you would like further information about the study, please feel free to contact me on

+64 7 3468688 or by email: don.kannangara@waiariki.ac.nz. Alternatively you can

contact my supervisor Prof. Darrell Fisher on +61 8 9266 3110 or email:

d.fisher@curtin.edu.au

Thank you very much for your involvement in this research. Your participation
is greatly appreciated.

196

APPENDIX I: CONSENT FORM

CONSENT FORM

 I understand the purpose and procedures of the study.

 I have been provided with the participant information sheet.

 I understand that the procedure itself may not benefit me.

 I understand that my involvement is voluntary and I can withdraw at any time
without problem.

 I have been given opportunity to ask questions.

 I agree to participate in the study outlined to me.

Signature ________________________ Date _____________________

Witness Signature __________________ Date _____________________

197

APPENDIX J: PARTICIPANT INFORMATION SHEET 2

Curtin University of Technology

School of School of Science & Computing
The Science and Mathematics Education Centre (SMEC)

Participant Information Sheet 2

My name is Don Nimal Padmasiri Kannangara. I am currently completing a piece of
research for my Doctor of Philosophy (PhD) at Curtin University of Technology.

Purpose of Research

I am investigating the possibility of improving teaching Java programming at the
introductory level using a number of teaching tools in accordance with the principles
of Cognitive Load Theory. In the second phase of the research, I hope to find out
about the usefulness of the teaching tool that I have used in my session. I also would
like to know about the adequacy of the subject knowledge given, relevance of
information given , and also about the teaching style used in my teaching session.
The mini-questionnaire contains about 5 questions.

Your Role

I am interested in finding out how effective the teaching tool that was used in my
Java programming session today. I will ask you to answer the questions given in the
mini-questionnaire. Please do not include your personal information such as name or
ID number on the questionnaire.

Consent to Participate

Your involvement in the research is entirely voluntary. You have the right to
withdraw at any stage without it affecting your rights or my responsibilities. When
you have signed the consent form I will assume that you have agreed to participate
and allow me to use your data in this research.

198

Confidentiality

The information of personal details, is not required in this questionnaire. In
adherence to university policy, the collected data will be kept in a locked cabinet for
five years before it is destroyed.

Further Information

This research has been reviewed and given approval by Curtin University of
Technology Human Research Ethics Committee (Approval number SMEC-01-09). If
you would like further information about the study, please feel free to contact me on
+64 7 3468688 or by email: don.kannangara@waiariki.ac.nz. Alternatively you can
contact my supervisor Prof. Darrell Fisher on +61 8 9266 3110 or email:
d.fisher@curtin.edu.au

Thank you very much for your involvement in this research. Your participation
is greatly appreciated.

199

APPENDIX K: ETHICAL APPROVAL

200

APPENDIX L: QUESTIONAIRE – PHASE ONE

*1) I agree to participate in this survey.

Yes No

*2) Your gender?

Male Female

*3) Your age group?

below
20 years

20 to
29 years

30 to
39 years

40 to
49 years

50
and
above

*4) Your work experience?

None Less than 5 years More than 5 years

*5) Your highest academic qualification prior to this course?

Form 5 or below
(NZ) / 10 Std (India)

Form 6 or 7 (NZ) /
10+2 Std (India)

Tertiary
qualification

*6) How do you rate your artistic ability like singing, painting, andwriting
poetry etc.?

Poor Average Good Very
good

Excellent

*7) How do you rate your logical, analytical thinking, and mathematics
ability?

201

Poor Average Good Very
good

Excellent

8) Please select one of the difficulty levels for each of the concepts or areas
listed below with the experience you had while learning the Java
language at the introductory level.

1

too
difficult

2

very
difficult

3

difficult

4

not
difficult

5

very
easy

Variable types
(int, char, &
double etc.)

Variable
categories
(local,
parameter &
instance)

Using
conditional
statements (if
..then ..else)

Using
repetitive
statements
(loops)

Understanding
of the concept
of classes and
objects

Creation of an
object using a
Class

Creation of a
template for a
class

Use of
parameter
variables
(auguments)in
a method

Returning a
value from a
method

Testing and
debugging

Preparation of
test data for a
program

202

Using arrays
for primitive
data types

Using arrays
for objects of
a class

String
manipulation
in Java (using
methods in
String class)

Using text files
for input and
output

Inheritance

Logic
depiction
methods
(structure
diagrams
etc.)

9) Please enter the difficult concepts or areas which are not listed in the
above question and the difficult level for each of them.

1
too

difficult

2
very

difficult

3
difficul

t

4
not

difficul
t

5
very
easy

Plese enter
the difficult
concept/are

as here

10) Which one of the following logic depiction methods do you prefer for
program design?

Structur
e
Diagra
m

Structur
ed
English

Flowchar
t

Other (Please Specify):

24519864

203

There are three different types of learning styles

1. The auditory learner learns by hearing and expects someone to explain.

2. The kinaesthetic learner requires hand on experience.

3. A visual learner learns by drawing diagrams, using mental pictures, and re writing
lecturer’s notes etc.

11) In your judgement, What type of learner are you? You may tick more
than one learner type. Please write your comments.

Audito
ry
learner

Kinaesthet
ic learner

Visual
learner

Other (Please Specify):

12) Which one of the following teaching styles would be the most suitable
to teach each of the following areas? Please indicate your second
choice (if any) on the text box.

Auditory Kinaesthetic Visual Your Second
Choice

Variable types
(int, char, &
double etc.)

Variable
categories
(local,
parameter &
instance)

204

Using
conditional
statements (if
..then ..else)

Using repetitive
statements
(loops)

Understanding
of the concept
of classes and
objects

Creation of an
object using a
Class

Creation of a
template for a
class

Use of
parameter
variables
(auguments)in
a method

Returning a
value from a
method

Testing and
debugging

Preparation of
test data for a
program

Using arrays
for primitive
data types

Using arrays
for objects of a
class

String
manipulation in
Java (using
methods in
String class)

Using text files
for input and
output

Inheritance

Logic depiction
methods
(structure
diagrams etc.)

