35,976 research outputs found

    Determination of local material properties of OSB sample by coupling advanced imaging techniques and morphology-based FEM simulation

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by Walter de Gruyter & Co. and can be found at: http://www.degruyter.com/.The goal was to determine local mechanical properties inside of oriented strand board (OSB) based on a realistic morphology-based finite element (FE) model and data acquired from a physical test performed on the same material. The spatial information and local grayscale intensity from CT-scans obtained from small OSB sample was transformed into a 2D regular morphology-based FE mesh with corresponding material properties. The model was then used to simulate the actual compression test performed on the specimen using simplified boundary conditions. The simulated strain fields from the model were compared with the actual strain field measured on the specimen surface during the compression test by means of a full-field optical method, named digital image correlation (DIC). Finally, the original set of material properties was adjusted by an iterative procedure to minimize the difference between the simulated and the measured strain data. The results show that the developed procedure is useful to find local material properties as well as for morphological modeling without the need of segmentation of the image data. The achieved results serve as a prerequisite for full 3D analyses of the complex materials

    First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon

    Get PDF
    We present the first results of the KMOS Lens-Amplified Spectroscopic Survey (KLASS), a new ESO Very Large Telescope (VLT) large program, doing multi-object integral field spectroscopy of galaxies gravitationally lensed behind seven galaxy clusters selected from the HST Grism Lens-Amplified Survey from Space (GLASS). Using the power of the cluster magnification we are able to reveal the kinematic structure of 25 galaxies at 0.7z2.30.7 \lesssim z \lesssim 2.3, in four cluster fields, with stellar masses 8log(M/M)118 \lesssim \log{(M_\star/M_\odot)} \lesssim 11. This sample includes 5 sources at z>1z>1 with lower stellar masses than in any previous kinematic IFU surveys. Our sample displays a diversity in kinematic structure over this mass and redshift range. The majority of our kinematically resolved sample is rotationally supported, but with a lower ratio of rotational velocity to velocity dispersion than in the local universe, indicating the fraction of dynamically hot disks changes with cosmic time. We find no galaxies with stellar mass <3×109M<3 \times 10^9 M_\odot in our sample display regular ordered rotation. Using the enhanced spatial resolution from lensing, we resolve a lower number of dispersion dominated systems compared to field surveys, competitive with findings from surveys using adaptive optics. We find that the KMOS IFUs recover emission line flux from HST grism-selected objects more faithfully than slit spectrographs. With artificial slits we estimate slit spectrographs miss on average 60% of the total flux of emission lines, which decreases rapidly if the emission line is spatially offset from the continuum.Comment: Accepted for publication in Ap

    A Novel Self-Intersection Penalty Term for Statistical Body Shape Models and Its Applications in 3D Pose Estimation

    Full text link
    Statistical body shape models are widely used in 3D pose estimation due to their low-dimensional parameters representation. However, it is difficult to avoid self-intersection between body parts accurately. Motivated by this fact, we proposed a novel self-intersection penalty term for statistical body shape models applied in 3D pose estimation. To avoid the trouble of computing self-intersection for complex surfaces like the body meshes, the gradient of our proposed self-intersection penalty term is manually derived from the perspective of geometry. First, the self-intersection penalty term is defined as the volume of the self-intersection region. To calculate the partial derivatives with respect to the coordinates of the vertices, we employed detection rays to divide vertices of statistical body shape models into different groups depending on whether the vertex is in the region of self-intersection. Second, the partial derivatives could be easily derived by the normal vectors of neighboring triangles of the vertices. Finally, this penalty term could be applied in gradient-based optimization algorithms to remove the self-intersection of triangular meshes without using any approximation. Qualitative and quantitative evaluations were conducted to demonstrate the effectiveness and generality of our proposed method compared with previous approaches. The experimental results show that our proposed penalty term can avoid self-intersection to exclude unreasonable predictions and improves the accuracy of 3D pose estimation indirectly. Further more, the proposed method could be employed universally in triangular mesh based 3D reconstruction

    Associating object names with descriptions of shape that distinguish possible from impossible objects.

    Get PDF
    Five experiments examine the proposal that object names are closely linked torepresentations of global, 3D shape by comparing memory for simple line drawings of structurally possible and impossible novel objects.Objects were rendered impossible through local edge violations to global coherence (cf. Schacter, Cooper, & Delaney, 1990) and supplementary observations confirmed that the sets of possible and impossible objects were matched for their distinctiveness. Employing a test of explicit recognition memory, Experiment 1 confirmed that the possible and impossible objects were equally memorable. Experiments 2–4 demonstrated that adults learn names (single-syllable non-words presented as count nouns, e.g., “This is a dax”) for possible objectsmore easily than for impossible objects, and an item-based analysis showed that this effect was unrelated to either the memorability or the distinctiveness of the individual objects. Experiment 3 indicated that the effects of object possibility on name learning were long term (spanning at least 2months), implying that the cognitive processes being revealed can support the learning of object names in everyday life. Experiment 5 demonstrated that hearing someone else name an object at presentation improves recognition memory for possible objects, but not for impossible objects. Taken together, the results indicate that object names are closely linked to the descriptions of global, 3D shape that can be derived for structurally possible objects but not for structurally impossible objects. In addition, the results challenge the view that object decision and explicit recognition necessarily draw on separate memory systems,with only the former being supported by these descriptions of global object shape. It seems that recognition also can be supported by these descriptions, provided the original encoding conditions encourage their derivation. Hearing an object named at encoding appears to be just such a condition. These observations are discussed in relation to the effects of naming in other visual tasks, and to the role of visual attention in object identification

    SAGA: Stellar Abundances for Galactic Archaeology

    Full text link
    A tutorial for the Stellar Abundances for Galactic Archaeology (SAGA) database is presented. This paper describes the outline of the database, reports the current status of the data compilation and known problems, and presents plans for future updates and extensions.Comment: Proceedings of the conference, "Nuclei in the Cosmos XII", invited talk at Online Support sessio

    BRST Analysis of the Supersymmetric Higher Spin Field Models

    Get PDF
    We develop the BRST approach for all massless integer and half-integer higher spins in 4D Minkowski space, using the two component spinor nota- tion and develop the Lagrangian formulation for supersymmetric higher spin models. It is shown that the problem of second class constraints disappears and the BRST procedure becomes much more simple than in tensorial nota- tion. Furthermore, we demonstrate that the BRST procedure automatically provides extra auxiliary components that belong in the set of supersymmetry auxiliary components. Finally, we demonstrate how supersymmetry transfo- rmations are realized in such an approach. As a result, we conclude that the BRST approach to higher spin supersymmetric theories allows to derive both the Lagrangian and the supersymmetry transformations. Although most part of the work is devoted to massless component supersymmetric models, we also discuss generalization for massive component supersymmetric models and for superfield models
    corecore